mm/z3fold: fix potential memory leak in z3fold_destroy_pool()
[platform/kernel/linux-rpi.git] / mm / huge_memory.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  Copyright (C) 2009  Red Hat, Inc.
4  */
5
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7
8 #include <linux/mm.h>
9 #include <linux/sched.h>
10 #include <linux/sched/coredump.h>
11 #include <linux/sched/numa_balancing.h>
12 #include <linux/highmem.h>
13 #include <linux/hugetlb.h>
14 #include <linux/mmu_notifier.h>
15 #include <linux/rmap.h>
16 #include <linux/swap.h>
17 #include <linux/shrinker.h>
18 #include <linux/mm_inline.h>
19 #include <linux/swapops.h>
20 #include <linux/dax.h>
21 #include <linux/khugepaged.h>
22 #include <linux/freezer.h>
23 #include <linux/pfn_t.h>
24 #include <linux/mman.h>
25 #include <linux/memremap.h>
26 #include <linux/pagemap.h>
27 #include <linux/debugfs.h>
28 #include <linux/migrate.h>
29 #include <linux/hashtable.h>
30 #include <linux/userfaultfd_k.h>
31 #include <linux/page_idle.h>
32 #include <linux/shmem_fs.h>
33 #include <linux/oom.h>
34 #include <linux/numa.h>
35 #include <linux/page_owner.h>
36
37 #include <asm/tlb.h>
38 #include <asm/pgalloc.h>
39 #include "internal.h"
40
41 /*
42  * By default, transparent hugepage support is disabled in order to avoid
43  * risking an increased memory footprint for applications that are not
44  * guaranteed to benefit from it. When transparent hugepage support is
45  * enabled, it is for all mappings, and khugepaged scans all mappings.
46  * Defrag is invoked by khugepaged hugepage allocations and by page faults
47  * for all hugepage allocations.
48  */
49 unsigned long transparent_hugepage_flags __read_mostly =
50 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
51         (1<<TRANSPARENT_HUGEPAGE_FLAG)|
52 #endif
53 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
54         (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
55 #endif
56         (1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
57         (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
58         (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
59
60 static struct shrinker deferred_split_shrinker;
61
62 static atomic_t huge_zero_refcount;
63 struct page *huge_zero_page __read_mostly;
64 unsigned long huge_zero_pfn __read_mostly = ~0UL;
65
66 static inline bool file_thp_enabled(struct vm_area_struct *vma)
67 {
68         return transhuge_vma_enabled(vma, vma->vm_flags) && vma->vm_file &&
69                !inode_is_open_for_write(vma->vm_file->f_inode) &&
70                (vma->vm_flags & VM_EXEC);
71 }
72
73 bool transparent_hugepage_active(struct vm_area_struct *vma)
74 {
75         /* The addr is used to check if the vma size fits */
76         unsigned long addr = (vma->vm_end & HPAGE_PMD_MASK) - HPAGE_PMD_SIZE;
77
78         if (!transhuge_vma_suitable(vma, addr))
79                 return false;
80         if (vma_is_anonymous(vma))
81                 return __transparent_hugepage_enabled(vma);
82         if (vma_is_shmem(vma))
83                 return shmem_huge_enabled(vma);
84         if (IS_ENABLED(CONFIG_READ_ONLY_THP_FOR_FS))
85                 return file_thp_enabled(vma);
86
87         return false;
88 }
89
90 static struct page *get_huge_zero_page(void)
91 {
92         struct page *zero_page;
93 retry:
94         if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
95                 return READ_ONCE(huge_zero_page);
96
97         zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
98                         HPAGE_PMD_ORDER);
99         if (!zero_page) {
100                 count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
101                 return NULL;
102         }
103         count_vm_event(THP_ZERO_PAGE_ALLOC);
104         preempt_disable();
105         if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
106                 preempt_enable();
107                 __free_pages(zero_page, compound_order(zero_page));
108                 goto retry;
109         }
110         WRITE_ONCE(huge_zero_pfn, page_to_pfn(zero_page));
111
112         /* We take additional reference here. It will be put back by shrinker */
113         atomic_set(&huge_zero_refcount, 2);
114         preempt_enable();
115         return READ_ONCE(huge_zero_page);
116 }
117
118 static void put_huge_zero_page(void)
119 {
120         /*
121          * Counter should never go to zero here. Only shrinker can put
122          * last reference.
123          */
124         BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
125 }
126
127 struct page *mm_get_huge_zero_page(struct mm_struct *mm)
128 {
129         if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
130                 return READ_ONCE(huge_zero_page);
131
132         if (!get_huge_zero_page())
133                 return NULL;
134
135         if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
136                 put_huge_zero_page();
137
138         return READ_ONCE(huge_zero_page);
139 }
140
141 void mm_put_huge_zero_page(struct mm_struct *mm)
142 {
143         if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
144                 put_huge_zero_page();
145 }
146
147 static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
148                                         struct shrink_control *sc)
149 {
150         /* we can free zero page only if last reference remains */
151         return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
152 }
153
154 static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
155                                        struct shrink_control *sc)
156 {
157         if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
158                 struct page *zero_page = xchg(&huge_zero_page, NULL);
159                 BUG_ON(zero_page == NULL);
160                 WRITE_ONCE(huge_zero_pfn, ~0UL);
161                 __free_pages(zero_page, compound_order(zero_page));
162                 return HPAGE_PMD_NR;
163         }
164
165         return 0;
166 }
167
168 static struct shrinker huge_zero_page_shrinker = {
169         .count_objects = shrink_huge_zero_page_count,
170         .scan_objects = shrink_huge_zero_page_scan,
171         .seeks = DEFAULT_SEEKS,
172 };
173
174 #ifdef CONFIG_SYSFS
175 static ssize_t enabled_show(struct kobject *kobj,
176                             struct kobj_attribute *attr, char *buf)
177 {
178         if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
179                 return sprintf(buf, "[always] madvise never\n");
180         else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags))
181                 return sprintf(buf, "always [madvise] never\n");
182         else
183                 return sprintf(buf, "always madvise [never]\n");
184 }
185
186 static ssize_t enabled_store(struct kobject *kobj,
187                              struct kobj_attribute *attr,
188                              const char *buf, size_t count)
189 {
190         ssize_t ret = count;
191
192         if (sysfs_streq(buf, "always")) {
193                 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
194                 set_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
195         } else if (sysfs_streq(buf, "madvise")) {
196                 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
197                 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
198         } else if (sysfs_streq(buf, "never")) {
199                 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
200                 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
201         } else
202                 ret = -EINVAL;
203
204         if (ret > 0) {
205                 int err = start_stop_khugepaged();
206                 if (err)
207                         ret = err;
208         }
209         return ret;
210 }
211 static struct kobj_attribute enabled_attr =
212         __ATTR(enabled, 0644, enabled_show, enabled_store);
213
214 ssize_t single_hugepage_flag_show(struct kobject *kobj,
215                                 struct kobj_attribute *attr, char *buf,
216                                 enum transparent_hugepage_flag flag)
217 {
218         return sprintf(buf, "%d\n",
219                        !!test_bit(flag, &transparent_hugepage_flags));
220 }
221
222 ssize_t single_hugepage_flag_store(struct kobject *kobj,
223                                  struct kobj_attribute *attr,
224                                  const char *buf, size_t count,
225                                  enum transparent_hugepage_flag flag)
226 {
227         unsigned long value;
228         int ret;
229
230         ret = kstrtoul(buf, 10, &value);
231         if (ret < 0)
232                 return ret;
233         if (value > 1)
234                 return -EINVAL;
235
236         if (value)
237                 set_bit(flag, &transparent_hugepage_flags);
238         else
239                 clear_bit(flag, &transparent_hugepage_flags);
240
241         return count;
242 }
243
244 static ssize_t defrag_show(struct kobject *kobj,
245                            struct kobj_attribute *attr, char *buf)
246 {
247         if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
248                 return sprintf(buf, "[always] defer defer+madvise madvise never\n");
249         if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
250                 return sprintf(buf, "always [defer] defer+madvise madvise never\n");
251         if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
252                 return sprintf(buf, "always defer [defer+madvise] madvise never\n");
253         if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
254                 return sprintf(buf, "always defer defer+madvise [madvise] never\n");
255         return sprintf(buf, "always defer defer+madvise madvise [never]\n");
256 }
257
258 static ssize_t defrag_store(struct kobject *kobj,
259                             struct kobj_attribute *attr,
260                             const char *buf, size_t count)
261 {
262         if (sysfs_streq(buf, "always")) {
263                 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
264                 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
265                 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
266                 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
267         } else if (sysfs_streq(buf, "defer+madvise")) {
268                 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
269                 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
270                 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
271                 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
272         } else if (sysfs_streq(buf, "defer")) {
273                 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
274                 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
275                 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
276                 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
277         } else if (sysfs_streq(buf, "madvise")) {
278                 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
279                 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
280                 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
281                 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
282         } else if (sysfs_streq(buf, "never")) {
283                 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
284                 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
285                 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
286                 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
287         } else
288                 return -EINVAL;
289
290         return count;
291 }
292 static struct kobj_attribute defrag_attr =
293         __ATTR(defrag, 0644, defrag_show, defrag_store);
294
295 static ssize_t use_zero_page_show(struct kobject *kobj,
296                 struct kobj_attribute *attr, char *buf)
297 {
298         return single_hugepage_flag_show(kobj, attr, buf,
299                                 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
300 }
301 static ssize_t use_zero_page_store(struct kobject *kobj,
302                 struct kobj_attribute *attr, const char *buf, size_t count)
303 {
304         return single_hugepage_flag_store(kobj, attr, buf, count,
305                                  TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
306 }
307 static struct kobj_attribute use_zero_page_attr =
308         __ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
309
310 static ssize_t hpage_pmd_size_show(struct kobject *kobj,
311                 struct kobj_attribute *attr, char *buf)
312 {
313         return sprintf(buf, "%lu\n", HPAGE_PMD_SIZE);
314 }
315 static struct kobj_attribute hpage_pmd_size_attr =
316         __ATTR_RO(hpage_pmd_size);
317
318 static struct attribute *hugepage_attr[] = {
319         &enabled_attr.attr,
320         &defrag_attr.attr,
321         &use_zero_page_attr.attr,
322         &hpage_pmd_size_attr.attr,
323 #ifdef CONFIG_SHMEM
324         &shmem_enabled_attr.attr,
325 #endif
326         NULL,
327 };
328
329 static const struct attribute_group hugepage_attr_group = {
330         .attrs = hugepage_attr,
331 };
332
333 static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
334 {
335         int err;
336
337         *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
338         if (unlikely(!*hugepage_kobj)) {
339                 pr_err("failed to create transparent hugepage kobject\n");
340                 return -ENOMEM;
341         }
342
343         err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
344         if (err) {
345                 pr_err("failed to register transparent hugepage group\n");
346                 goto delete_obj;
347         }
348
349         err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
350         if (err) {
351                 pr_err("failed to register transparent hugepage group\n");
352                 goto remove_hp_group;
353         }
354
355         return 0;
356
357 remove_hp_group:
358         sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
359 delete_obj:
360         kobject_put(*hugepage_kobj);
361         return err;
362 }
363
364 static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
365 {
366         sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
367         sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
368         kobject_put(hugepage_kobj);
369 }
370 #else
371 static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
372 {
373         return 0;
374 }
375
376 static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
377 {
378 }
379 #endif /* CONFIG_SYSFS */
380
381 static int __init hugepage_init(void)
382 {
383         int err;
384         struct kobject *hugepage_kobj;
385
386         if (!has_transparent_hugepage()) {
387                 /*
388                  * Hardware doesn't support hugepages, hence disable
389                  * DAX PMD support.
390                  */
391                 transparent_hugepage_flags = 1 << TRANSPARENT_HUGEPAGE_NEVER_DAX;
392                 return -EINVAL;
393         }
394
395         /*
396          * hugepages can't be allocated by the buddy allocator
397          */
398         MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER);
399         /*
400          * we use page->mapping and page->index in second tail page
401          * as list_head: assuming THP order >= 2
402          */
403         MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);
404
405         err = hugepage_init_sysfs(&hugepage_kobj);
406         if (err)
407                 goto err_sysfs;
408
409         err = khugepaged_init();
410         if (err)
411                 goto err_slab;
412
413         err = register_shrinker(&huge_zero_page_shrinker);
414         if (err)
415                 goto err_hzp_shrinker;
416         err = register_shrinker(&deferred_split_shrinker);
417         if (err)
418                 goto err_split_shrinker;
419
420         /*
421          * By default disable transparent hugepages on smaller systems,
422          * where the extra memory used could hurt more than TLB overhead
423          * is likely to save.  The admin can still enable it through /sys.
424          */
425         if (totalram_pages() < (512 << (20 - PAGE_SHIFT))) {
426                 transparent_hugepage_flags = 0;
427                 return 0;
428         }
429
430         err = start_stop_khugepaged();
431         if (err)
432                 goto err_khugepaged;
433
434         return 0;
435 err_khugepaged:
436         unregister_shrinker(&deferred_split_shrinker);
437 err_split_shrinker:
438         unregister_shrinker(&huge_zero_page_shrinker);
439 err_hzp_shrinker:
440         khugepaged_destroy();
441 err_slab:
442         hugepage_exit_sysfs(hugepage_kobj);
443 err_sysfs:
444         return err;
445 }
446 subsys_initcall(hugepage_init);
447
448 static int __init setup_transparent_hugepage(char *str)
449 {
450         int ret = 0;
451         if (!str)
452                 goto out;
453         if (!strcmp(str, "always")) {
454                 set_bit(TRANSPARENT_HUGEPAGE_FLAG,
455                         &transparent_hugepage_flags);
456                 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
457                           &transparent_hugepage_flags);
458                 ret = 1;
459         } else if (!strcmp(str, "madvise")) {
460                 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
461                           &transparent_hugepage_flags);
462                 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
463                         &transparent_hugepage_flags);
464                 ret = 1;
465         } else if (!strcmp(str, "never")) {
466                 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
467                           &transparent_hugepage_flags);
468                 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
469                           &transparent_hugepage_flags);
470                 ret = 1;
471         }
472 out:
473         if (!ret)
474                 pr_warn("transparent_hugepage= cannot parse, ignored\n");
475         return ret;
476 }
477 __setup("transparent_hugepage=", setup_transparent_hugepage);
478
479 pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
480 {
481         if (likely(vma->vm_flags & VM_WRITE))
482                 pmd = pmd_mkwrite(pmd);
483         return pmd;
484 }
485
486 #ifdef CONFIG_MEMCG
487 static inline struct deferred_split *get_deferred_split_queue(struct page *page)
488 {
489         struct mem_cgroup *memcg = compound_head(page)->mem_cgroup;
490         struct pglist_data *pgdat = NODE_DATA(page_to_nid(page));
491
492         if (memcg)
493                 return &memcg->deferred_split_queue;
494         else
495                 return &pgdat->deferred_split_queue;
496 }
497 #else
498 static inline struct deferred_split *get_deferred_split_queue(struct page *page)
499 {
500         struct pglist_data *pgdat = NODE_DATA(page_to_nid(page));
501
502         return &pgdat->deferred_split_queue;
503 }
504 #endif
505
506 void prep_transhuge_page(struct page *page)
507 {
508         /*
509          * we use page->mapping and page->indexlru in second tail page
510          * as list_head: assuming THP order >= 2
511          */
512
513         INIT_LIST_HEAD(page_deferred_list(page));
514         set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR);
515 }
516
517 bool is_transparent_hugepage(struct page *page)
518 {
519         if (!PageCompound(page))
520                 return false;
521
522         page = compound_head(page);
523         return is_huge_zero_page(page) ||
524                page[1].compound_dtor == TRANSHUGE_PAGE_DTOR;
525 }
526 EXPORT_SYMBOL_GPL(is_transparent_hugepage);
527
528 static unsigned long __thp_get_unmapped_area(struct file *filp,
529                 unsigned long addr, unsigned long len,
530                 loff_t off, unsigned long flags, unsigned long size)
531 {
532         loff_t off_end = off + len;
533         loff_t off_align = round_up(off, size);
534         unsigned long len_pad, ret;
535
536         if (off_end <= off_align || (off_end - off_align) < size)
537                 return 0;
538
539         len_pad = len + size;
540         if (len_pad < len || (off + len_pad) < off)
541                 return 0;
542
543         ret = current->mm->get_unmapped_area(filp, addr, len_pad,
544                                               off >> PAGE_SHIFT, flags);
545
546         /*
547          * The failure might be due to length padding. The caller will retry
548          * without the padding.
549          */
550         if (IS_ERR_VALUE(ret))
551                 return 0;
552
553         /*
554          * Do not try to align to THP boundary if allocation at the address
555          * hint succeeds.
556          */
557         if (ret == addr)
558                 return addr;
559
560         ret += (off - ret) & (size - 1);
561         return ret;
562 }
563
564 unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr,
565                 unsigned long len, unsigned long pgoff, unsigned long flags)
566 {
567         unsigned long ret;
568         loff_t off = (loff_t)pgoff << PAGE_SHIFT;
569
570         if (!IS_DAX(filp->f_mapping->host) || !IS_ENABLED(CONFIG_FS_DAX_PMD))
571                 goto out;
572
573         ret = __thp_get_unmapped_area(filp, addr, len, off, flags, PMD_SIZE);
574         if (ret)
575                 return ret;
576 out:
577         return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags);
578 }
579 EXPORT_SYMBOL_GPL(thp_get_unmapped_area);
580
581 static vm_fault_t __do_huge_pmd_anonymous_page(struct vm_fault *vmf,
582                         struct page *page, gfp_t gfp)
583 {
584         struct vm_area_struct *vma = vmf->vma;
585         pgtable_t pgtable;
586         unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
587         vm_fault_t ret = 0;
588
589         VM_BUG_ON_PAGE(!PageCompound(page), page);
590
591         if (mem_cgroup_charge(page, vma->vm_mm, gfp)) {
592                 put_page(page);
593                 count_vm_event(THP_FAULT_FALLBACK);
594                 count_vm_event(THP_FAULT_FALLBACK_CHARGE);
595                 return VM_FAULT_FALLBACK;
596         }
597         cgroup_throttle_swaprate(page, gfp);
598
599         pgtable = pte_alloc_one(vma->vm_mm);
600         if (unlikely(!pgtable)) {
601                 ret = VM_FAULT_OOM;
602                 goto release;
603         }
604
605         clear_huge_page(page, vmf->address, HPAGE_PMD_NR);
606         /*
607          * The memory barrier inside __SetPageUptodate makes sure that
608          * clear_huge_page writes become visible before the set_pmd_at()
609          * write.
610          */
611         __SetPageUptodate(page);
612
613         vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
614         if (unlikely(!pmd_none(*vmf->pmd))) {
615                 goto unlock_release;
616         } else {
617                 pmd_t entry;
618
619                 ret = check_stable_address_space(vma->vm_mm);
620                 if (ret)
621                         goto unlock_release;
622
623                 /* Deliver the page fault to userland */
624                 if (userfaultfd_missing(vma)) {
625                         vm_fault_t ret2;
626
627                         spin_unlock(vmf->ptl);
628                         put_page(page);
629                         pte_free(vma->vm_mm, pgtable);
630                         ret2 = handle_userfault(vmf, VM_UFFD_MISSING);
631                         VM_BUG_ON(ret2 & VM_FAULT_FALLBACK);
632                         return ret2;
633                 }
634
635                 entry = mk_huge_pmd(page, vma->vm_page_prot);
636                 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
637                 page_add_new_anon_rmap(page, vma, haddr, true);
638                 lru_cache_add_inactive_or_unevictable(page, vma);
639                 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
640                 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
641                 add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
642                 mm_inc_nr_ptes(vma->vm_mm);
643                 spin_unlock(vmf->ptl);
644                 count_vm_event(THP_FAULT_ALLOC);
645                 count_memcg_event_mm(vma->vm_mm, THP_FAULT_ALLOC);
646         }
647
648         return 0;
649 unlock_release:
650         spin_unlock(vmf->ptl);
651 release:
652         if (pgtable)
653                 pte_free(vma->vm_mm, pgtable);
654         put_page(page);
655         return ret;
656
657 }
658
659 /*
660  * always: directly stall for all thp allocations
661  * defer: wake kswapd and fail if not immediately available
662  * defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise
663  *                fail if not immediately available
664  * madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately
665  *          available
666  * never: never stall for any thp allocation
667  */
668 static inline gfp_t alloc_hugepage_direct_gfpmask(struct vm_area_struct *vma)
669 {
670         const bool vma_madvised = !!(vma->vm_flags & VM_HUGEPAGE);
671
672         /* Always do synchronous compaction */
673         if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
674                 return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY);
675
676         /* Kick kcompactd and fail quickly */
677         if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
678                 return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM;
679
680         /* Synchronous compaction if madvised, otherwise kick kcompactd */
681         if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
682                 return GFP_TRANSHUGE_LIGHT |
683                         (vma_madvised ? __GFP_DIRECT_RECLAIM :
684                                         __GFP_KSWAPD_RECLAIM);
685
686         /* Only do synchronous compaction if madvised */
687         if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
688                 return GFP_TRANSHUGE_LIGHT |
689                        (vma_madvised ? __GFP_DIRECT_RECLAIM : 0);
690
691         return GFP_TRANSHUGE_LIGHT;
692 }
693
694 /* Caller must hold page table lock. */
695 static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
696                 struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
697                 struct page *zero_page)
698 {
699         pmd_t entry;
700         if (!pmd_none(*pmd))
701                 return false;
702         entry = mk_pmd(zero_page, vma->vm_page_prot);
703         entry = pmd_mkhuge(entry);
704         if (pgtable)
705                 pgtable_trans_huge_deposit(mm, pmd, pgtable);
706         set_pmd_at(mm, haddr, pmd, entry);
707         mm_inc_nr_ptes(mm);
708         return true;
709 }
710
711 vm_fault_t do_huge_pmd_anonymous_page(struct vm_fault *vmf)
712 {
713         struct vm_area_struct *vma = vmf->vma;
714         gfp_t gfp;
715         struct page *page;
716         unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
717
718         if (!transhuge_vma_suitable(vma, haddr))
719                 return VM_FAULT_FALLBACK;
720         if (unlikely(anon_vma_prepare(vma)))
721                 return VM_FAULT_OOM;
722         if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
723                 return VM_FAULT_OOM;
724         if (!(vmf->flags & FAULT_FLAG_WRITE) &&
725                         !mm_forbids_zeropage(vma->vm_mm) &&
726                         transparent_hugepage_use_zero_page()) {
727                 pgtable_t pgtable;
728                 struct page *zero_page;
729                 vm_fault_t ret;
730                 pgtable = pte_alloc_one(vma->vm_mm);
731                 if (unlikely(!pgtable))
732                         return VM_FAULT_OOM;
733                 zero_page = mm_get_huge_zero_page(vma->vm_mm);
734                 if (unlikely(!zero_page)) {
735                         pte_free(vma->vm_mm, pgtable);
736                         count_vm_event(THP_FAULT_FALLBACK);
737                         return VM_FAULT_FALLBACK;
738                 }
739                 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
740                 ret = 0;
741                 if (pmd_none(*vmf->pmd)) {
742                         ret = check_stable_address_space(vma->vm_mm);
743                         if (ret) {
744                                 spin_unlock(vmf->ptl);
745                                 pte_free(vma->vm_mm, pgtable);
746                         } else if (userfaultfd_missing(vma)) {
747                                 spin_unlock(vmf->ptl);
748                                 pte_free(vma->vm_mm, pgtable);
749                                 ret = handle_userfault(vmf, VM_UFFD_MISSING);
750                                 VM_BUG_ON(ret & VM_FAULT_FALLBACK);
751                         } else {
752                                 set_huge_zero_page(pgtable, vma->vm_mm, vma,
753                                                    haddr, vmf->pmd, zero_page);
754                                 spin_unlock(vmf->ptl);
755                         }
756                 } else {
757                         spin_unlock(vmf->ptl);
758                         pte_free(vma->vm_mm, pgtable);
759                 }
760                 return ret;
761         }
762         gfp = alloc_hugepage_direct_gfpmask(vma);
763         page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER);
764         if (unlikely(!page)) {
765                 count_vm_event(THP_FAULT_FALLBACK);
766                 return VM_FAULT_FALLBACK;
767         }
768         prep_transhuge_page(page);
769         return __do_huge_pmd_anonymous_page(vmf, page, gfp);
770 }
771
772 static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
773                 pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write,
774                 pgtable_t pgtable)
775 {
776         struct mm_struct *mm = vma->vm_mm;
777         pmd_t entry;
778         spinlock_t *ptl;
779
780         ptl = pmd_lock(mm, pmd);
781         if (!pmd_none(*pmd)) {
782                 if (write) {
783                         if (pmd_pfn(*pmd) != pfn_t_to_pfn(pfn)) {
784                                 WARN_ON_ONCE(!is_huge_zero_pmd(*pmd));
785                                 goto out_unlock;
786                         }
787                         entry = pmd_mkyoung(*pmd);
788                         entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
789                         if (pmdp_set_access_flags(vma, addr, pmd, entry, 1))
790                                 update_mmu_cache_pmd(vma, addr, pmd);
791                 }
792
793                 goto out_unlock;
794         }
795
796         entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
797         if (pfn_t_devmap(pfn))
798                 entry = pmd_mkdevmap(entry);
799         if (write) {
800                 entry = pmd_mkyoung(pmd_mkdirty(entry));
801                 entry = maybe_pmd_mkwrite(entry, vma);
802         }
803
804         if (pgtable) {
805                 pgtable_trans_huge_deposit(mm, pmd, pgtable);
806                 mm_inc_nr_ptes(mm);
807                 pgtable = NULL;
808         }
809
810         set_pmd_at(mm, addr, pmd, entry);
811         update_mmu_cache_pmd(vma, addr, pmd);
812
813 out_unlock:
814         spin_unlock(ptl);
815         if (pgtable)
816                 pte_free(mm, pgtable);
817 }
818
819 /**
820  * vmf_insert_pfn_pmd_prot - insert a pmd size pfn
821  * @vmf: Structure describing the fault
822  * @pfn: pfn to insert
823  * @pgprot: page protection to use
824  * @write: whether it's a write fault
825  *
826  * Insert a pmd size pfn. See vmf_insert_pfn() for additional info and
827  * also consult the vmf_insert_mixed_prot() documentation when
828  * @pgprot != @vmf->vma->vm_page_prot.
829  *
830  * Return: vm_fault_t value.
831  */
832 vm_fault_t vmf_insert_pfn_pmd_prot(struct vm_fault *vmf, pfn_t pfn,
833                                    pgprot_t pgprot, bool write)
834 {
835         unsigned long addr = vmf->address & PMD_MASK;
836         struct vm_area_struct *vma = vmf->vma;
837         pgtable_t pgtable = NULL;
838
839         /*
840          * If we had pmd_special, we could avoid all these restrictions,
841          * but we need to be consistent with PTEs and architectures that
842          * can't support a 'special' bit.
843          */
844         BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
845                         !pfn_t_devmap(pfn));
846         BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
847                                                 (VM_PFNMAP|VM_MIXEDMAP));
848         BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
849
850         if (addr < vma->vm_start || addr >= vma->vm_end)
851                 return VM_FAULT_SIGBUS;
852
853         if (arch_needs_pgtable_deposit()) {
854                 pgtable = pte_alloc_one(vma->vm_mm);
855                 if (!pgtable)
856                         return VM_FAULT_OOM;
857         }
858
859         track_pfn_insert(vma, &pgprot, pfn);
860
861         insert_pfn_pmd(vma, addr, vmf->pmd, pfn, pgprot, write, pgtable);
862         return VM_FAULT_NOPAGE;
863 }
864 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd_prot);
865
866 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
867 static pud_t maybe_pud_mkwrite(pud_t pud, struct vm_area_struct *vma)
868 {
869         if (likely(vma->vm_flags & VM_WRITE))
870                 pud = pud_mkwrite(pud);
871         return pud;
872 }
873
874 static void insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
875                 pud_t *pud, pfn_t pfn, pgprot_t prot, bool write)
876 {
877         struct mm_struct *mm = vma->vm_mm;
878         pud_t entry;
879         spinlock_t *ptl;
880
881         ptl = pud_lock(mm, pud);
882         if (!pud_none(*pud)) {
883                 if (write) {
884                         if (pud_pfn(*pud) != pfn_t_to_pfn(pfn)) {
885                                 WARN_ON_ONCE(!is_huge_zero_pud(*pud));
886                                 goto out_unlock;
887                         }
888                         entry = pud_mkyoung(*pud);
889                         entry = maybe_pud_mkwrite(pud_mkdirty(entry), vma);
890                         if (pudp_set_access_flags(vma, addr, pud, entry, 1))
891                                 update_mmu_cache_pud(vma, addr, pud);
892                 }
893                 goto out_unlock;
894         }
895
896         entry = pud_mkhuge(pfn_t_pud(pfn, prot));
897         if (pfn_t_devmap(pfn))
898                 entry = pud_mkdevmap(entry);
899         if (write) {
900                 entry = pud_mkyoung(pud_mkdirty(entry));
901                 entry = maybe_pud_mkwrite(entry, vma);
902         }
903         set_pud_at(mm, addr, pud, entry);
904         update_mmu_cache_pud(vma, addr, pud);
905
906 out_unlock:
907         spin_unlock(ptl);
908 }
909
910 /**
911  * vmf_insert_pfn_pud_prot - insert a pud size pfn
912  * @vmf: Structure describing the fault
913  * @pfn: pfn to insert
914  * @pgprot: page protection to use
915  * @write: whether it's a write fault
916  *
917  * Insert a pud size pfn. See vmf_insert_pfn() for additional info and
918  * also consult the vmf_insert_mixed_prot() documentation when
919  * @pgprot != @vmf->vma->vm_page_prot.
920  *
921  * Return: vm_fault_t value.
922  */
923 vm_fault_t vmf_insert_pfn_pud_prot(struct vm_fault *vmf, pfn_t pfn,
924                                    pgprot_t pgprot, bool write)
925 {
926         unsigned long addr = vmf->address & PUD_MASK;
927         struct vm_area_struct *vma = vmf->vma;
928
929         /*
930          * If we had pud_special, we could avoid all these restrictions,
931          * but we need to be consistent with PTEs and architectures that
932          * can't support a 'special' bit.
933          */
934         BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
935                         !pfn_t_devmap(pfn));
936         BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
937                                                 (VM_PFNMAP|VM_MIXEDMAP));
938         BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
939
940         if (addr < vma->vm_start || addr >= vma->vm_end)
941                 return VM_FAULT_SIGBUS;
942
943         track_pfn_insert(vma, &pgprot, pfn);
944
945         insert_pfn_pud(vma, addr, vmf->pud, pfn, pgprot, write);
946         return VM_FAULT_NOPAGE;
947 }
948 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud_prot);
949 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
950
951 static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
952                 pmd_t *pmd, int flags)
953 {
954         pmd_t _pmd;
955
956         _pmd = pmd_mkyoung(*pmd);
957         if (flags & FOLL_WRITE)
958                 _pmd = pmd_mkdirty(_pmd);
959         if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
960                                 pmd, _pmd, flags & FOLL_WRITE))
961                 update_mmu_cache_pmd(vma, addr, pmd);
962 }
963
964 struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
965                 pmd_t *pmd, int flags, struct dev_pagemap **pgmap)
966 {
967         unsigned long pfn = pmd_pfn(*pmd);
968         struct mm_struct *mm = vma->vm_mm;
969         struct page *page;
970
971         assert_spin_locked(pmd_lockptr(mm, pmd));
972
973         /*
974          * When we COW a devmap PMD entry, we split it into PTEs, so we should
975          * not be in this function with `flags & FOLL_COW` set.
976          */
977         WARN_ONCE(flags & FOLL_COW, "mm: In follow_devmap_pmd with FOLL_COW set");
978
979         /* FOLL_GET and FOLL_PIN are mutually exclusive. */
980         if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
981                          (FOLL_PIN | FOLL_GET)))
982                 return NULL;
983
984         if (flags & FOLL_WRITE && !pmd_write(*pmd))
985                 return NULL;
986
987         if (pmd_present(*pmd) && pmd_devmap(*pmd))
988                 /* pass */;
989         else
990                 return NULL;
991
992         if (flags & FOLL_TOUCH)
993                 touch_pmd(vma, addr, pmd, flags);
994
995         /*
996          * device mapped pages can only be returned if the
997          * caller will manage the page reference count.
998          */
999         if (!(flags & (FOLL_GET | FOLL_PIN)))
1000                 return ERR_PTR(-EEXIST);
1001
1002         pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
1003         *pgmap = get_dev_pagemap(pfn, *pgmap);
1004         if (!*pgmap)
1005                 return ERR_PTR(-EFAULT);
1006         page = pfn_to_page(pfn);
1007         if (!try_grab_page(page, flags))
1008                 page = ERR_PTR(-ENOMEM);
1009
1010         return page;
1011 }
1012
1013 int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1014                   pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
1015                   struct vm_area_struct *vma)
1016 {
1017         spinlock_t *dst_ptl, *src_ptl;
1018         struct page *src_page;
1019         pmd_t pmd;
1020         pgtable_t pgtable = NULL;
1021         int ret = -ENOMEM;
1022
1023         /* Skip if can be re-fill on fault */
1024         if (!vma_is_anonymous(vma))
1025                 return 0;
1026
1027         pgtable = pte_alloc_one(dst_mm);
1028         if (unlikely(!pgtable))
1029                 goto out;
1030
1031         dst_ptl = pmd_lock(dst_mm, dst_pmd);
1032         src_ptl = pmd_lockptr(src_mm, src_pmd);
1033         spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1034
1035         ret = -EAGAIN;
1036         pmd = *src_pmd;
1037
1038         /*
1039          * Make sure the _PAGE_UFFD_WP bit is cleared if the new VMA
1040          * does not have the VM_UFFD_WP, which means that the uffd
1041          * fork event is not enabled.
1042          */
1043         if (!(vma->vm_flags & VM_UFFD_WP))
1044                 pmd = pmd_clear_uffd_wp(pmd);
1045
1046 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1047         if (unlikely(is_swap_pmd(pmd))) {
1048                 swp_entry_t entry = pmd_to_swp_entry(pmd);
1049
1050                 VM_BUG_ON(!is_pmd_migration_entry(pmd));
1051                 if (is_write_migration_entry(entry)) {
1052                         make_migration_entry_read(&entry);
1053                         pmd = swp_entry_to_pmd(entry);
1054                         if (pmd_swp_soft_dirty(*src_pmd))
1055                                 pmd = pmd_swp_mksoft_dirty(pmd);
1056                         set_pmd_at(src_mm, addr, src_pmd, pmd);
1057                 }
1058                 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1059                 mm_inc_nr_ptes(dst_mm);
1060                 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1061                 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
1062                 ret = 0;
1063                 goto out_unlock;
1064         }
1065 #endif
1066
1067         if (unlikely(!pmd_trans_huge(pmd))) {
1068                 pte_free(dst_mm, pgtable);
1069                 goto out_unlock;
1070         }
1071         /*
1072          * When page table lock is held, the huge zero pmd should not be
1073          * under splitting since we don't split the page itself, only pmd to
1074          * a page table.
1075          */
1076         if (is_huge_zero_pmd(pmd)) {
1077                 struct page *zero_page;
1078                 /*
1079                  * get_huge_zero_page() will never allocate a new page here,
1080                  * since we already have a zero page to copy. It just takes a
1081                  * reference.
1082                  */
1083                 zero_page = mm_get_huge_zero_page(dst_mm);
1084                 set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
1085                                 zero_page);
1086                 ret = 0;
1087                 goto out_unlock;
1088         }
1089
1090         src_page = pmd_page(pmd);
1091         VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
1092
1093         /*
1094          * If this page is a potentially pinned page, split and retry the fault
1095          * with smaller page size.  Normally this should not happen because the
1096          * userspace should use MADV_DONTFORK upon pinned regions.  This is a
1097          * best effort that the pinned pages won't be replaced by another
1098          * random page during the coming copy-on-write.
1099          */
1100         if (unlikely(is_cow_mapping(vma->vm_flags) &&
1101                      atomic_read(&src_mm->has_pinned) &&
1102                      page_maybe_dma_pinned(src_page))) {
1103                 pte_free(dst_mm, pgtable);
1104                 spin_unlock(src_ptl);
1105                 spin_unlock(dst_ptl);
1106                 __split_huge_pmd(vma, src_pmd, addr, false, NULL);
1107                 return -EAGAIN;
1108         }
1109
1110         get_page(src_page);
1111         page_dup_rmap(src_page, true);
1112         add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1113         mm_inc_nr_ptes(dst_mm);
1114         pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1115
1116         pmdp_set_wrprotect(src_mm, addr, src_pmd);
1117         pmd = pmd_mkold(pmd_wrprotect(pmd));
1118         set_pmd_at(dst_mm, addr, dst_pmd, pmd);
1119
1120         ret = 0;
1121 out_unlock:
1122         spin_unlock(src_ptl);
1123         spin_unlock(dst_ptl);
1124 out:
1125         return ret;
1126 }
1127
1128 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1129 static void touch_pud(struct vm_area_struct *vma, unsigned long addr,
1130                 pud_t *pud, int flags)
1131 {
1132         pud_t _pud;
1133
1134         _pud = pud_mkyoung(*pud);
1135         if (flags & FOLL_WRITE)
1136                 _pud = pud_mkdirty(_pud);
1137         if (pudp_set_access_flags(vma, addr & HPAGE_PUD_MASK,
1138                                 pud, _pud, flags & FOLL_WRITE))
1139                 update_mmu_cache_pud(vma, addr, pud);
1140 }
1141
1142 struct page *follow_devmap_pud(struct vm_area_struct *vma, unsigned long addr,
1143                 pud_t *pud, int flags, struct dev_pagemap **pgmap)
1144 {
1145         unsigned long pfn = pud_pfn(*pud);
1146         struct mm_struct *mm = vma->vm_mm;
1147         struct page *page;
1148
1149         assert_spin_locked(pud_lockptr(mm, pud));
1150
1151         if (flags & FOLL_WRITE && !pud_write(*pud))
1152                 return NULL;
1153
1154         /* FOLL_GET and FOLL_PIN are mutually exclusive. */
1155         if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
1156                          (FOLL_PIN | FOLL_GET)))
1157                 return NULL;
1158
1159         if (pud_present(*pud) && pud_devmap(*pud))
1160                 /* pass */;
1161         else
1162                 return NULL;
1163
1164         if (flags & FOLL_TOUCH)
1165                 touch_pud(vma, addr, pud, flags);
1166
1167         /*
1168          * device mapped pages can only be returned if the
1169          * caller will manage the page reference count.
1170          *
1171          * At least one of FOLL_GET | FOLL_PIN must be set, so assert that here:
1172          */
1173         if (!(flags & (FOLL_GET | FOLL_PIN)))
1174                 return ERR_PTR(-EEXIST);
1175
1176         pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT;
1177         *pgmap = get_dev_pagemap(pfn, *pgmap);
1178         if (!*pgmap)
1179                 return ERR_PTR(-EFAULT);
1180         page = pfn_to_page(pfn);
1181         if (!try_grab_page(page, flags))
1182                 page = ERR_PTR(-ENOMEM);
1183
1184         return page;
1185 }
1186
1187 int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1188                   pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1189                   struct vm_area_struct *vma)
1190 {
1191         spinlock_t *dst_ptl, *src_ptl;
1192         pud_t pud;
1193         int ret;
1194
1195         dst_ptl = pud_lock(dst_mm, dst_pud);
1196         src_ptl = pud_lockptr(src_mm, src_pud);
1197         spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1198
1199         ret = -EAGAIN;
1200         pud = *src_pud;
1201         if (unlikely(!pud_trans_huge(pud) && !pud_devmap(pud)))
1202                 goto out_unlock;
1203
1204         /*
1205          * When page table lock is held, the huge zero pud should not be
1206          * under splitting since we don't split the page itself, only pud to
1207          * a page table.
1208          */
1209         if (is_huge_zero_pud(pud)) {
1210                 /* No huge zero pud yet */
1211         }
1212
1213         /* Please refer to comments in copy_huge_pmd() */
1214         if (unlikely(is_cow_mapping(vma->vm_flags) &&
1215                      atomic_read(&src_mm->has_pinned) &&
1216                      page_maybe_dma_pinned(pud_page(pud)))) {
1217                 spin_unlock(src_ptl);
1218                 spin_unlock(dst_ptl);
1219                 __split_huge_pud(vma, src_pud, addr);
1220                 return -EAGAIN;
1221         }
1222
1223         pudp_set_wrprotect(src_mm, addr, src_pud);
1224         pud = pud_mkold(pud_wrprotect(pud));
1225         set_pud_at(dst_mm, addr, dst_pud, pud);
1226
1227         ret = 0;
1228 out_unlock:
1229         spin_unlock(src_ptl);
1230         spin_unlock(dst_ptl);
1231         return ret;
1232 }
1233
1234 void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud)
1235 {
1236         pud_t entry;
1237         unsigned long haddr;
1238         bool write = vmf->flags & FAULT_FLAG_WRITE;
1239
1240         vmf->ptl = pud_lock(vmf->vma->vm_mm, vmf->pud);
1241         if (unlikely(!pud_same(*vmf->pud, orig_pud)))
1242                 goto unlock;
1243
1244         entry = pud_mkyoung(orig_pud);
1245         if (write)
1246                 entry = pud_mkdirty(entry);
1247         haddr = vmf->address & HPAGE_PUD_MASK;
1248         if (pudp_set_access_flags(vmf->vma, haddr, vmf->pud, entry, write))
1249                 update_mmu_cache_pud(vmf->vma, vmf->address, vmf->pud);
1250
1251 unlock:
1252         spin_unlock(vmf->ptl);
1253 }
1254 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1255
1256 void huge_pmd_set_accessed(struct vm_fault *vmf, pmd_t orig_pmd)
1257 {
1258         pmd_t entry;
1259         unsigned long haddr;
1260         bool write = vmf->flags & FAULT_FLAG_WRITE;
1261
1262         vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1263         if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1264                 goto unlock;
1265
1266         entry = pmd_mkyoung(orig_pmd);
1267         if (write)
1268                 entry = pmd_mkdirty(entry);
1269         haddr = vmf->address & HPAGE_PMD_MASK;
1270         if (pmdp_set_access_flags(vmf->vma, haddr, vmf->pmd, entry, write))
1271                 update_mmu_cache_pmd(vmf->vma, vmf->address, vmf->pmd);
1272
1273 unlock:
1274         spin_unlock(vmf->ptl);
1275 }
1276
1277 vm_fault_t do_huge_pmd_wp_page(struct vm_fault *vmf, pmd_t orig_pmd)
1278 {
1279         struct vm_area_struct *vma = vmf->vma;
1280         struct page *page;
1281         unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1282
1283         vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd);
1284         VM_BUG_ON_VMA(!vma->anon_vma, vma);
1285
1286         if (is_huge_zero_pmd(orig_pmd))
1287                 goto fallback;
1288
1289         spin_lock(vmf->ptl);
1290
1291         if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1292                 spin_unlock(vmf->ptl);
1293                 return 0;
1294         }
1295
1296         page = pmd_page(orig_pmd);
1297         VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page);
1298
1299         /* Lock page for reuse_swap_page() */
1300         if (!trylock_page(page)) {
1301                 get_page(page);
1302                 spin_unlock(vmf->ptl);
1303                 lock_page(page);
1304                 spin_lock(vmf->ptl);
1305                 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1306                         spin_unlock(vmf->ptl);
1307                         unlock_page(page);
1308                         put_page(page);
1309                         return 0;
1310                 }
1311                 put_page(page);
1312         }
1313
1314         /*
1315          * We can only reuse the page if nobody else maps the huge page or it's
1316          * part.
1317          */
1318         if (reuse_swap_page(page, NULL)) {
1319                 pmd_t entry;
1320                 entry = pmd_mkyoung(orig_pmd);
1321                 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1322                 if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry, 1))
1323                         update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1324                 unlock_page(page);
1325                 spin_unlock(vmf->ptl);
1326                 return VM_FAULT_WRITE;
1327         }
1328
1329         unlock_page(page);
1330         spin_unlock(vmf->ptl);
1331 fallback:
1332         __split_huge_pmd(vma, vmf->pmd, vmf->address, false, NULL);
1333         return VM_FAULT_FALLBACK;
1334 }
1335
1336 /*
1337  * FOLL_FORCE can write to even unwritable pmd's, but only
1338  * after we've gone through a COW cycle and they are dirty.
1339  */
1340 static inline bool can_follow_write_pmd(pmd_t pmd, unsigned int flags)
1341 {
1342         return pmd_write(pmd) ||
1343                ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pmd_dirty(pmd));
1344 }
1345
1346 struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1347                                    unsigned long addr,
1348                                    pmd_t *pmd,
1349                                    unsigned int flags)
1350 {
1351         struct mm_struct *mm = vma->vm_mm;
1352         struct page *page = NULL;
1353
1354         assert_spin_locked(pmd_lockptr(mm, pmd));
1355
1356         if (flags & FOLL_WRITE && !can_follow_write_pmd(*pmd, flags))
1357                 goto out;
1358
1359         /* Avoid dumping huge zero page */
1360         if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1361                 return ERR_PTR(-EFAULT);
1362
1363         /* Full NUMA hinting faults to serialise migration in fault paths */
1364         if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
1365                 goto out;
1366
1367         page = pmd_page(*pmd);
1368         VM_BUG_ON_PAGE(!PageHead(page) && !is_zone_device_page(page), page);
1369
1370         if (!try_grab_page(page, flags))
1371                 return ERR_PTR(-ENOMEM);
1372
1373         if (flags & FOLL_TOUCH)
1374                 touch_pmd(vma, addr, pmd, flags);
1375
1376         if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1377                 /*
1378                  * We don't mlock() pte-mapped THPs. This way we can avoid
1379                  * leaking mlocked pages into non-VM_LOCKED VMAs.
1380                  *
1381                  * For anon THP:
1382                  *
1383                  * In most cases the pmd is the only mapping of the page as we
1384                  * break COW for the mlock() -- see gup_flags |= FOLL_WRITE for
1385                  * writable private mappings in populate_vma_page_range().
1386                  *
1387                  * The only scenario when we have the page shared here is if we
1388                  * mlocking read-only mapping shared over fork(). We skip
1389                  * mlocking such pages.
1390                  *
1391                  * For file THP:
1392                  *
1393                  * We can expect PageDoubleMap() to be stable under page lock:
1394                  * for file pages we set it in page_add_file_rmap(), which
1395                  * requires page to be locked.
1396                  */
1397
1398                 if (PageAnon(page) && compound_mapcount(page) != 1)
1399                         goto skip_mlock;
1400                 if (PageDoubleMap(page) || !page->mapping)
1401                         goto skip_mlock;
1402                 if (!trylock_page(page))
1403                         goto skip_mlock;
1404                 if (page->mapping && !PageDoubleMap(page))
1405                         mlock_vma_page(page);
1406                 unlock_page(page);
1407         }
1408 skip_mlock:
1409         page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1410         VM_BUG_ON_PAGE(!PageCompound(page) && !is_zone_device_page(page), page);
1411
1412 out:
1413         return page;
1414 }
1415
1416 /* NUMA hinting page fault entry point for trans huge pmds */
1417 vm_fault_t do_huge_pmd_numa_page(struct vm_fault *vmf, pmd_t pmd)
1418 {
1419         struct vm_area_struct *vma = vmf->vma;
1420         struct anon_vma *anon_vma = NULL;
1421         struct page *page;
1422         unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1423         int page_nid = NUMA_NO_NODE, this_nid = numa_node_id();
1424         int target_nid, last_cpupid = -1;
1425         bool page_locked;
1426         bool migrated = false;
1427         bool was_writable;
1428         int flags = 0;
1429
1430         vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1431         if (unlikely(!pmd_same(pmd, *vmf->pmd)))
1432                 goto out_unlock;
1433
1434         /*
1435          * If there are potential migrations, wait for completion and retry
1436          * without disrupting NUMA hinting information. Do not relock and
1437          * check_same as the page may no longer be mapped.
1438          */
1439         if (unlikely(pmd_trans_migrating(*vmf->pmd))) {
1440                 page = pmd_page(*vmf->pmd);
1441                 if (!get_page_unless_zero(page))
1442                         goto out_unlock;
1443                 spin_unlock(vmf->ptl);
1444                 put_and_wait_on_page_locked(page);
1445                 goto out;
1446         }
1447
1448         page = pmd_page(pmd);
1449         BUG_ON(is_huge_zero_page(page));
1450         page_nid = page_to_nid(page);
1451         last_cpupid = page_cpupid_last(page);
1452         count_vm_numa_event(NUMA_HINT_FAULTS);
1453         if (page_nid == this_nid) {
1454                 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
1455                 flags |= TNF_FAULT_LOCAL;
1456         }
1457
1458         /* See similar comment in do_numa_page for explanation */
1459         if (!pmd_savedwrite(pmd))
1460                 flags |= TNF_NO_GROUP;
1461
1462         /*
1463          * Acquire the page lock to serialise THP migrations but avoid dropping
1464          * page_table_lock if at all possible
1465          */
1466         page_locked = trylock_page(page);
1467         target_nid = mpol_misplaced(page, vma, haddr);
1468         if (target_nid == NUMA_NO_NODE) {
1469                 /* If the page was locked, there are no parallel migrations */
1470                 if (page_locked)
1471                         goto clear_pmdnuma;
1472         }
1473
1474         /* Migration could have started since the pmd_trans_migrating check */
1475         if (!page_locked) {
1476                 page_nid = NUMA_NO_NODE;
1477                 if (!get_page_unless_zero(page))
1478                         goto out_unlock;
1479                 spin_unlock(vmf->ptl);
1480                 put_and_wait_on_page_locked(page);
1481                 goto out;
1482         }
1483
1484         /*
1485          * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
1486          * to serialises splits
1487          */
1488         get_page(page);
1489         spin_unlock(vmf->ptl);
1490         anon_vma = page_lock_anon_vma_read(page);
1491
1492         /* Confirm the PMD did not change while page_table_lock was released */
1493         spin_lock(vmf->ptl);
1494         if (unlikely(!pmd_same(pmd, *vmf->pmd))) {
1495                 unlock_page(page);
1496                 put_page(page);
1497                 page_nid = NUMA_NO_NODE;
1498                 goto out_unlock;
1499         }
1500
1501         /* Bail if we fail to protect against THP splits for any reason */
1502         if (unlikely(!anon_vma)) {
1503                 put_page(page);
1504                 page_nid = NUMA_NO_NODE;
1505                 goto clear_pmdnuma;
1506         }
1507
1508         /*
1509          * Since we took the NUMA fault, we must have observed the !accessible
1510          * bit. Make sure all other CPUs agree with that, to avoid them
1511          * modifying the page we're about to migrate.
1512          *
1513          * Must be done under PTL such that we'll observe the relevant
1514          * inc_tlb_flush_pending().
1515          *
1516          * We are not sure a pending tlb flush here is for a huge page
1517          * mapping or not. Hence use the tlb range variant
1518          */
1519         if (mm_tlb_flush_pending(vma->vm_mm)) {
1520                 flush_tlb_range(vma, haddr, haddr + HPAGE_PMD_SIZE);
1521                 /*
1522                  * change_huge_pmd() released the pmd lock before
1523                  * invalidating the secondary MMUs sharing the primary
1524                  * MMU pagetables (with ->invalidate_range()). The
1525                  * mmu_notifier_invalidate_range_end() (which
1526                  * internally calls ->invalidate_range()) in
1527                  * change_pmd_range() will run after us, so we can't
1528                  * rely on it here and we need an explicit invalidate.
1529                  */
1530                 mmu_notifier_invalidate_range(vma->vm_mm, haddr,
1531                                               haddr + HPAGE_PMD_SIZE);
1532         }
1533
1534         /*
1535          * Migrate the THP to the requested node, returns with page unlocked
1536          * and access rights restored.
1537          */
1538         spin_unlock(vmf->ptl);
1539
1540         migrated = migrate_misplaced_transhuge_page(vma->vm_mm, vma,
1541                                 vmf->pmd, pmd, vmf->address, page, target_nid);
1542         if (migrated) {
1543                 flags |= TNF_MIGRATED;
1544                 page_nid = target_nid;
1545         } else
1546                 flags |= TNF_MIGRATE_FAIL;
1547
1548         goto out;
1549 clear_pmdnuma:
1550         BUG_ON(!PageLocked(page));
1551         was_writable = pmd_savedwrite(pmd);
1552         pmd = pmd_modify(pmd, vma->vm_page_prot);
1553         pmd = pmd_mkyoung(pmd);
1554         if (was_writable)
1555                 pmd = pmd_mkwrite(pmd);
1556         set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd);
1557         update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1558         unlock_page(page);
1559 out_unlock:
1560         spin_unlock(vmf->ptl);
1561
1562 out:
1563         if (anon_vma)
1564                 page_unlock_anon_vma_read(anon_vma);
1565
1566         if (page_nid != NUMA_NO_NODE)
1567                 task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR,
1568                                 flags);
1569
1570         return 0;
1571 }
1572
1573 /*
1574  * Return true if we do MADV_FREE successfully on entire pmd page.
1575  * Otherwise, return false.
1576  */
1577 bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1578                 pmd_t *pmd, unsigned long addr, unsigned long next)
1579 {
1580         spinlock_t *ptl;
1581         pmd_t orig_pmd;
1582         struct page *page;
1583         struct mm_struct *mm = tlb->mm;
1584         bool ret = false;
1585
1586         tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
1587
1588         ptl = pmd_trans_huge_lock(pmd, vma);
1589         if (!ptl)
1590                 goto out_unlocked;
1591
1592         orig_pmd = *pmd;
1593         if (is_huge_zero_pmd(orig_pmd))
1594                 goto out;
1595
1596         if (unlikely(!pmd_present(orig_pmd))) {
1597                 VM_BUG_ON(thp_migration_supported() &&
1598                                   !is_pmd_migration_entry(orig_pmd));
1599                 goto out;
1600         }
1601
1602         page = pmd_page(orig_pmd);
1603         /*
1604          * If other processes are mapping this page, we couldn't discard
1605          * the page unless they all do MADV_FREE so let's skip the page.
1606          */
1607         if (total_mapcount(page) != 1)
1608                 goto out;
1609
1610         if (!trylock_page(page))
1611                 goto out;
1612
1613         /*
1614          * If user want to discard part-pages of THP, split it so MADV_FREE
1615          * will deactivate only them.
1616          */
1617         if (next - addr != HPAGE_PMD_SIZE) {
1618                 get_page(page);
1619                 spin_unlock(ptl);
1620                 split_huge_page(page);
1621                 unlock_page(page);
1622                 put_page(page);
1623                 goto out_unlocked;
1624         }
1625
1626         if (PageDirty(page))
1627                 ClearPageDirty(page);
1628         unlock_page(page);
1629
1630         if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
1631                 pmdp_invalidate(vma, addr, pmd);
1632                 orig_pmd = pmd_mkold(orig_pmd);
1633                 orig_pmd = pmd_mkclean(orig_pmd);
1634
1635                 set_pmd_at(mm, addr, pmd, orig_pmd);
1636                 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1637         }
1638
1639         mark_page_lazyfree(page);
1640         ret = true;
1641 out:
1642         spin_unlock(ptl);
1643 out_unlocked:
1644         return ret;
1645 }
1646
1647 static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd)
1648 {
1649         pgtable_t pgtable;
1650
1651         pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1652         pte_free(mm, pgtable);
1653         mm_dec_nr_ptes(mm);
1654 }
1655
1656 int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1657                  pmd_t *pmd, unsigned long addr)
1658 {
1659         pmd_t orig_pmd;
1660         spinlock_t *ptl;
1661
1662         tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
1663
1664         ptl = __pmd_trans_huge_lock(pmd, vma);
1665         if (!ptl)
1666                 return 0;
1667         /*
1668          * For architectures like ppc64 we look at deposited pgtable
1669          * when calling pmdp_huge_get_and_clear. So do the
1670          * pgtable_trans_huge_withdraw after finishing pmdp related
1671          * operations.
1672          */
1673         orig_pmd = pmdp_huge_get_and_clear_full(vma, addr, pmd,
1674                                                 tlb->fullmm);
1675         tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1676         if (vma_is_special_huge(vma)) {
1677                 if (arch_needs_pgtable_deposit())
1678                         zap_deposited_table(tlb->mm, pmd);
1679                 spin_unlock(ptl);
1680                 if (is_huge_zero_pmd(orig_pmd))
1681                         tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
1682         } else if (is_huge_zero_pmd(orig_pmd)) {
1683                 zap_deposited_table(tlb->mm, pmd);
1684                 spin_unlock(ptl);
1685                 tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
1686         } else {
1687                 struct page *page = NULL;
1688                 int flush_needed = 1;
1689
1690                 if (pmd_present(orig_pmd)) {
1691                         page = pmd_page(orig_pmd);
1692                         page_remove_rmap(page, true);
1693                         VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
1694                         VM_BUG_ON_PAGE(!PageHead(page), page);
1695                 } else if (thp_migration_supported()) {
1696                         swp_entry_t entry;
1697
1698                         VM_BUG_ON(!is_pmd_migration_entry(orig_pmd));
1699                         entry = pmd_to_swp_entry(orig_pmd);
1700                         page = pfn_to_page(swp_offset(entry));
1701                         flush_needed = 0;
1702                 } else
1703                         WARN_ONCE(1, "Non present huge pmd without pmd migration enabled!");
1704
1705                 if (PageAnon(page)) {
1706                         zap_deposited_table(tlb->mm, pmd);
1707                         add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1708                 } else {
1709                         if (arch_needs_pgtable_deposit())
1710                                 zap_deposited_table(tlb->mm, pmd);
1711                         add_mm_counter(tlb->mm, mm_counter_file(page), -HPAGE_PMD_NR);
1712                 }
1713
1714                 spin_unlock(ptl);
1715                 if (flush_needed)
1716                         tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE);
1717         }
1718         return 1;
1719 }
1720
1721 #ifndef pmd_move_must_withdraw
1722 static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl,
1723                                          spinlock_t *old_pmd_ptl,
1724                                          struct vm_area_struct *vma)
1725 {
1726         /*
1727          * With split pmd lock we also need to move preallocated
1728          * PTE page table if new_pmd is on different PMD page table.
1729          *
1730          * We also don't deposit and withdraw tables for file pages.
1731          */
1732         return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma);
1733 }
1734 #endif
1735
1736 static pmd_t move_soft_dirty_pmd(pmd_t pmd)
1737 {
1738 #ifdef CONFIG_MEM_SOFT_DIRTY
1739         if (unlikely(is_pmd_migration_entry(pmd)))
1740                 pmd = pmd_swp_mksoft_dirty(pmd);
1741         else if (pmd_present(pmd))
1742                 pmd = pmd_mksoft_dirty(pmd);
1743 #endif
1744         return pmd;
1745 }
1746
1747 bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
1748                   unsigned long new_addr, pmd_t *old_pmd, pmd_t *new_pmd)
1749 {
1750         spinlock_t *old_ptl, *new_ptl;
1751         pmd_t pmd;
1752         struct mm_struct *mm = vma->vm_mm;
1753         bool force_flush = false;
1754
1755         /*
1756          * The destination pmd shouldn't be established, free_pgtables()
1757          * should have release it.
1758          */
1759         if (WARN_ON(!pmd_none(*new_pmd))) {
1760                 VM_BUG_ON(pmd_trans_huge(*new_pmd));
1761                 return false;
1762         }
1763
1764         /*
1765          * We don't have to worry about the ordering of src and dst
1766          * ptlocks because exclusive mmap_lock prevents deadlock.
1767          */
1768         old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
1769         if (old_ptl) {
1770                 new_ptl = pmd_lockptr(mm, new_pmd);
1771                 if (new_ptl != old_ptl)
1772                         spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
1773                 pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
1774                 if (pmd_present(pmd))
1775                         force_flush = true;
1776                 VM_BUG_ON(!pmd_none(*new_pmd));
1777
1778                 if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) {
1779                         pgtable_t pgtable;
1780                         pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1781                         pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
1782                 }
1783                 pmd = move_soft_dirty_pmd(pmd);
1784                 set_pmd_at(mm, new_addr, new_pmd, pmd);
1785                 if (force_flush)
1786                         flush_tlb_range(vma, old_addr, old_addr + PMD_SIZE);
1787                 if (new_ptl != old_ptl)
1788                         spin_unlock(new_ptl);
1789                 spin_unlock(old_ptl);
1790                 return true;
1791         }
1792         return false;
1793 }
1794
1795 /*
1796  * Returns
1797  *  - 0 if PMD could not be locked
1798  *  - 1 if PMD was locked but protections unchange and TLB flush unnecessary
1799  *  - HPAGE_PMD_NR is protections changed and TLB flush necessary
1800  */
1801 int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1802                 unsigned long addr, pgprot_t newprot, unsigned long cp_flags)
1803 {
1804         struct mm_struct *mm = vma->vm_mm;
1805         spinlock_t *ptl;
1806         pmd_t entry;
1807         bool preserve_write;
1808         int ret;
1809         bool prot_numa = cp_flags & MM_CP_PROT_NUMA;
1810         bool uffd_wp = cp_flags & MM_CP_UFFD_WP;
1811         bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE;
1812
1813         ptl = __pmd_trans_huge_lock(pmd, vma);
1814         if (!ptl)
1815                 return 0;
1816
1817         preserve_write = prot_numa && pmd_write(*pmd);
1818         ret = 1;
1819
1820 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1821         if (is_swap_pmd(*pmd)) {
1822                 swp_entry_t entry = pmd_to_swp_entry(*pmd);
1823
1824                 VM_BUG_ON(!is_pmd_migration_entry(*pmd));
1825                 if (is_write_migration_entry(entry)) {
1826                         pmd_t newpmd;
1827                         /*
1828                          * A protection check is difficult so
1829                          * just be safe and disable write
1830                          */
1831                         make_migration_entry_read(&entry);
1832                         newpmd = swp_entry_to_pmd(entry);
1833                         if (pmd_swp_soft_dirty(*pmd))
1834                                 newpmd = pmd_swp_mksoft_dirty(newpmd);
1835                         set_pmd_at(mm, addr, pmd, newpmd);
1836                 }
1837                 goto unlock;
1838         }
1839 #endif
1840
1841         /*
1842          * Avoid trapping faults against the zero page. The read-only
1843          * data is likely to be read-cached on the local CPU and
1844          * local/remote hits to the zero page are not interesting.
1845          */
1846         if (prot_numa && is_huge_zero_pmd(*pmd))
1847                 goto unlock;
1848
1849         if (prot_numa && pmd_protnone(*pmd))
1850                 goto unlock;
1851
1852         /*
1853          * In case prot_numa, we are under mmap_read_lock(mm). It's critical
1854          * to not clear pmd intermittently to avoid race with MADV_DONTNEED
1855          * which is also under mmap_read_lock(mm):
1856          *
1857          *      CPU0:                           CPU1:
1858          *                              change_huge_pmd(prot_numa=1)
1859          *                               pmdp_huge_get_and_clear_notify()
1860          * madvise_dontneed()
1861          *  zap_pmd_range()
1862          *   pmd_trans_huge(*pmd) == 0 (without ptl)
1863          *   // skip the pmd
1864          *                               set_pmd_at();
1865          *                               // pmd is re-established
1866          *
1867          * The race makes MADV_DONTNEED miss the huge pmd and don't clear it
1868          * which may break userspace.
1869          *
1870          * pmdp_invalidate() is required to make sure we don't miss
1871          * dirty/young flags set by hardware.
1872          */
1873         entry = pmdp_invalidate(vma, addr, pmd);
1874
1875         entry = pmd_modify(entry, newprot);
1876         if (preserve_write)
1877                 entry = pmd_mk_savedwrite(entry);
1878         if (uffd_wp) {
1879                 entry = pmd_wrprotect(entry);
1880                 entry = pmd_mkuffd_wp(entry);
1881         } else if (uffd_wp_resolve) {
1882                 /*
1883                  * Leave the write bit to be handled by PF interrupt
1884                  * handler, then things like COW could be properly
1885                  * handled.
1886                  */
1887                 entry = pmd_clear_uffd_wp(entry);
1888         }
1889         ret = HPAGE_PMD_NR;
1890         set_pmd_at(mm, addr, pmd, entry);
1891         BUG_ON(vma_is_anonymous(vma) && !preserve_write && pmd_write(entry));
1892 unlock:
1893         spin_unlock(ptl);
1894         return ret;
1895 }
1896
1897 /*
1898  * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise.
1899  *
1900  * Note that if it returns page table lock pointer, this routine returns without
1901  * unlocking page table lock. So callers must unlock it.
1902  */
1903 spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
1904 {
1905         spinlock_t *ptl;
1906         ptl = pmd_lock(vma->vm_mm, pmd);
1907         if (likely(is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) ||
1908                         pmd_devmap(*pmd)))
1909                 return ptl;
1910         spin_unlock(ptl);
1911         return NULL;
1912 }
1913
1914 /*
1915  * Returns true if a given pud maps a thp, false otherwise.
1916  *
1917  * Note that if it returns true, this routine returns without unlocking page
1918  * table lock. So callers must unlock it.
1919  */
1920 spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma)
1921 {
1922         spinlock_t *ptl;
1923
1924         ptl = pud_lock(vma->vm_mm, pud);
1925         if (likely(pud_trans_huge(*pud) || pud_devmap(*pud)))
1926                 return ptl;
1927         spin_unlock(ptl);
1928         return NULL;
1929 }
1930
1931 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1932 int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma,
1933                  pud_t *pud, unsigned long addr)
1934 {
1935         spinlock_t *ptl;
1936
1937         ptl = __pud_trans_huge_lock(pud, vma);
1938         if (!ptl)
1939                 return 0;
1940         /*
1941          * For architectures like ppc64 we look at deposited pgtable
1942          * when calling pudp_huge_get_and_clear. So do the
1943          * pgtable_trans_huge_withdraw after finishing pudp related
1944          * operations.
1945          */
1946         pudp_huge_get_and_clear_full(tlb->mm, addr, pud, tlb->fullmm);
1947         tlb_remove_pud_tlb_entry(tlb, pud, addr);
1948         if (vma_is_special_huge(vma)) {
1949                 spin_unlock(ptl);
1950                 /* No zero page support yet */
1951         } else {
1952                 /* No support for anonymous PUD pages yet */
1953                 BUG();
1954         }
1955         return 1;
1956 }
1957
1958 static void __split_huge_pud_locked(struct vm_area_struct *vma, pud_t *pud,
1959                 unsigned long haddr)
1960 {
1961         VM_BUG_ON(haddr & ~HPAGE_PUD_MASK);
1962         VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
1963         VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PUD_SIZE, vma);
1964         VM_BUG_ON(!pud_trans_huge(*pud) && !pud_devmap(*pud));
1965
1966         count_vm_event(THP_SPLIT_PUD);
1967
1968         pudp_huge_clear_flush_notify(vma, haddr, pud);
1969 }
1970
1971 void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud,
1972                 unsigned long address)
1973 {
1974         spinlock_t *ptl;
1975         struct mmu_notifier_range range;
1976
1977         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1978                                 address & HPAGE_PUD_MASK,
1979                                 (address & HPAGE_PUD_MASK) + HPAGE_PUD_SIZE);
1980         mmu_notifier_invalidate_range_start(&range);
1981         ptl = pud_lock(vma->vm_mm, pud);
1982         if (unlikely(!pud_trans_huge(*pud) && !pud_devmap(*pud)))
1983                 goto out;
1984         __split_huge_pud_locked(vma, pud, range.start);
1985
1986 out:
1987         spin_unlock(ptl);
1988         /*
1989          * No need to double call mmu_notifier->invalidate_range() callback as
1990          * the above pudp_huge_clear_flush_notify() did already call it.
1991          */
1992         mmu_notifier_invalidate_range_only_end(&range);
1993 }
1994 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1995
1996 static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
1997                 unsigned long haddr, pmd_t *pmd)
1998 {
1999         struct mm_struct *mm = vma->vm_mm;
2000         pgtable_t pgtable;
2001         pmd_t _pmd;
2002         int i;
2003
2004         /*
2005          * Leave pmd empty until pte is filled note that it is fine to delay
2006          * notification until mmu_notifier_invalidate_range_end() as we are
2007          * replacing a zero pmd write protected page with a zero pte write
2008          * protected page.
2009          *
2010          * See Documentation/vm/mmu_notifier.rst
2011          */
2012         pmdp_huge_clear_flush(vma, haddr, pmd);
2013
2014         pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2015         pmd_populate(mm, &_pmd, pgtable);
2016
2017         for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
2018                 pte_t *pte, entry;
2019                 entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
2020                 entry = pte_mkspecial(entry);
2021                 pte = pte_offset_map(&_pmd, haddr);
2022                 VM_BUG_ON(!pte_none(*pte));
2023                 set_pte_at(mm, haddr, pte, entry);
2024                 pte_unmap(pte);
2025         }
2026         smp_wmb(); /* make pte visible before pmd */
2027         pmd_populate(mm, pmd, pgtable);
2028 }
2029
2030 static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
2031                 unsigned long haddr, bool freeze)
2032 {
2033         struct mm_struct *mm = vma->vm_mm;
2034         struct page *page;
2035         pgtable_t pgtable;
2036         pmd_t old_pmd, _pmd;
2037         bool young, write, soft_dirty, pmd_migration = false, uffd_wp = false;
2038         unsigned long addr;
2039         int i;
2040
2041         VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
2042         VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2043         VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
2044         VM_BUG_ON(!is_pmd_migration_entry(*pmd) && !pmd_trans_huge(*pmd)
2045                                 && !pmd_devmap(*pmd));
2046
2047         count_vm_event(THP_SPLIT_PMD);
2048
2049         if (!vma_is_anonymous(vma)) {
2050                 old_pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
2051                 /*
2052                  * We are going to unmap this huge page. So
2053                  * just go ahead and zap it
2054                  */
2055                 if (arch_needs_pgtable_deposit())
2056                         zap_deposited_table(mm, pmd);
2057                 if (vma_is_special_huge(vma))
2058                         return;
2059                 if (unlikely(is_pmd_migration_entry(old_pmd))) {
2060                         swp_entry_t entry;
2061
2062                         entry = pmd_to_swp_entry(old_pmd);
2063                         page = migration_entry_to_page(entry);
2064                 } else {
2065                         page = pmd_page(old_pmd);
2066                         if (!PageDirty(page) && pmd_dirty(old_pmd))
2067                                 set_page_dirty(page);
2068                         if (!PageReferenced(page) && pmd_young(old_pmd))
2069                                 SetPageReferenced(page);
2070                         page_remove_rmap(page, true);
2071                         put_page(page);
2072                 }
2073                 add_mm_counter(mm, mm_counter_file(page), -HPAGE_PMD_NR);
2074                 return;
2075         }
2076
2077         if (is_huge_zero_pmd(*pmd)) {
2078                 /*
2079                  * FIXME: Do we want to invalidate secondary mmu by calling
2080                  * mmu_notifier_invalidate_range() see comments below inside
2081                  * __split_huge_pmd() ?
2082                  *
2083                  * We are going from a zero huge page write protected to zero
2084                  * small page also write protected so it does not seems useful
2085                  * to invalidate secondary mmu at this time.
2086                  */
2087                 return __split_huge_zero_page_pmd(vma, haddr, pmd);
2088         }
2089
2090         /*
2091          * Up to this point the pmd is present and huge and userland has the
2092          * whole access to the hugepage during the split (which happens in
2093          * place). If we overwrite the pmd with the not-huge version pointing
2094          * to the pte here (which of course we could if all CPUs were bug
2095          * free), userland could trigger a small page size TLB miss on the
2096          * small sized TLB while the hugepage TLB entry is still established in
2097          * the huge TLB. Some CPU doesn't like that.
2098          * See http://support.amd.com/TechDocs/41322_10h_Rev_Gd.pdf, Erratum
2099          * 383 on page 105. Intel should be safe but is also warns that it's
2100          * only safe if the permission and cache attributes of the two entries
2101          * loaded in the two TLB is identical (which should be the case here).
2102          * But it is generally safer to never allow small and huge TLB entries
2103          * for the same virtual address to be loaded simultaneously. So instead
2104          * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
2105          * current pmd notpresent (atomically because here the pmd_trans_huge
2106          * must remain set at all times on the pmd until the split is complete
2107          * for this pmd), then we flush the SMP TLB and finally we write the
2108          * non-huge version of the pmd entry with pmd_populate.
2109          */
2110         old_pmd = pmdp_invalidate(vma, haddr, pmd);
2111
2112         pmd_migration = is_pmd_migration_entry(old_pmd);
2113         if (unlikely(pmd_migration)) {
2114                 swp_entry_t entry;
2115
2116                 entry = pmd_to_swp_entry(old_pmd);
2117                 page = pfn_to_page(swp_offset(entry));
2118                 write = is_write_migration_entry(entry);
2119                 young = false;
2120                 soft_dirty = pmd_swp_soft_dirty(old_pmd);
2121                 uffd_wp = pmd_swp_uffd_wp(old_pmd);
2122         } else {
2123                 page = pmd_page(old_pmd);
2124                 if (pmd_dirty(old_pmd))
2125                         SetPageDirty(page);
2126                 write = pmd_write(old_pmd);
2127                 young = pmd_young(old_pmd);
2128                 soft_dirty = pmd_soft_dirty(old_pmd);
2129                 uffd_wp = pmd_uffd_wp(old_pmd);
2130         }
2131         VM_BUG_ON_PAGE(!page_count(page), page);
2132         page_ref_add(page, HPAGE_PMD_NR - 1);
2133
2134         /*
2135          * Withdraw the table only after we mark the pmd entry invalid.
2136          * This's critical for some architectures (Power).
2137          */
2138         pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2139         pmd_populate(mm, &_pmd, pgtable);
2140
2141         for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
2142                 pte_t entry, *pte;
2143                 /*
2144                  * Note that NUMA hinting access restrictions are not
2145                  * transferred to avoid any possibility of altering
2146                  * permissions across VMAs.
2147                  */
2148                 if (freeze || pmd_migration) {
2149                         swp_entry_t swp_entry;
2150                         swp_entry = make_migration_entry(page + i, write);
2151                         entry = swp_entry_to_pte(swp_entry);
2152                         if (soft_dirty)
2153                                 entry = pte_swp_mksoft_dirty(entry);
2154                         if (uffd_wp)
2155                                 entry = pte_swp_mkuffd_wp(entry);
2156                 } else {
2157                         entry = mk_pte(page + i, READ_ONCE(vma->vm_page_prot));
2158                         entry = maybe_mkwrite(entry, vma);
2159                         if (!write)
2160                                 entry = pte_wrprotect(entry);
2161                         if (!young)
2162                                 entry = pte_mkold(entry);
2163                         if (soft_dirty)
2164                                 entry = pte_mksoft_dirty(entry);
2165                         if (uffd_wp)
2166                                 entry = pte_mkuffd_wp(entry);
2167                 }
2168                 pte = pte_offset_map(&_pmd, addr);
2169                 BUG_ON(!pte_none(*pte));
2170                 set_pte_at(mm, addr, pte, entry);
2171                 if (!pmd_migration)
2172                         atomic_inc(&page[i]._mapcount);
2173                 pte_unmap(pte);
2174         }
2175
2176         if (!pmd_migration) {
2177                 /*
2178                  * Set PG_double_map before dropping compound_mapcount to avoid
2179                  * false-negative page_mapped().
2180                  */
2181                 if (compound_mapcount(page) > 1 &&
2182                     !TestSetPageDoubleMap(page)) {
2183                         for (i = 0; i < HPAGE_PMD_NR; i++)
2184                                 atomic_inc(&page[i]._mapcount);
2185                 }
2186
2187                 lock_page_memcg(page);
2188                 if (atomic_add_negative(-1, compound_mapcount_ptr(page))) {
2189                         /* Last compound_mapcount is gone. */
2190                         __dec_lruvec_page_state(page, NR_ANON_THPS);
2191                         if (TestClearPageDoubleMap(page)) {
2192                                 /* No need in mapcount reference anymore */
2193                                 for (i = 0; i < HPAGE_PMD_NR; i++)
2194                                         atomic_dec(&page[i]._mapcount);
2195                         }
2196                 }
2197                 unlock_page_memcg(page);
2198         }
2199
2200         smp_wmb(); /* make pte visible before pmd */
2201         pmd_populate(mm, pmd, pgtable);
2202
2203         if (freeze) {
2204                 for (i = 0; i < HPAGE_PMD_NR; i++) {
2205                         page_remove_rmap(page + i, false);
2206                         put_page(page + i);
2207                 }
2208         }
2209 }
2210
2211 void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
2212                 unsigned long address, bool freeze, struct page *page)
2213 {
2214         spinlock_t *ptl;
2215         struct mmu_notifier_range range;
2216         bool do_unlock_page = false;
2217         pmd_t _pmd;
2218
2219         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
2220                                 address & HPAGE_PMD_MASK,
2221                                 (address & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE);
2222         mmu_notifier_invalidate_range_start(&range);
2223         ptl = pmd_lock(vma->vm_mm, pmd);
2224
2225         /*
2226          * If caller asks to setup a migration entries, we need a page to check
2227          * pmd against. Otherwise we can end up replacing wrong page.
2228          */
2229         VM_BUG_ON(freeze && !page);
2230         if (page) {
2231                 VM_WARN_ON_ONCE(!PageLocked(page));
2232                 if (page != pmd_page(*pmd))
2233                         goto out;
2234         }
2235
2236 repeat:
2237         if (pmd_trans_huge(*pmd)) {
2238                 if (!page) {
2239                         page = pmd_page(*pmd);
2240                         /*
2241                          * An anonymous page must be locked, to ensure that a
2242                          * concurrent reuse_swap_page() sees stable mapcount;
2243                          * but reuse_swap_page() is not used on shmem or file,
2244                          * and page lock must not be taken when zap_pmd_range()
2245                          * calls __split_huge_pmd() while i_mmap_lock is held.
2246                          */
2247                         if (PageAnon(page)) {
2248                                 if (unlikely(!trylock_page(page))) {
2249                                         get_page(page);
2250                                         _pmd = *pmd;
2251                                         spin_unlock(ptl);
2252                                         lock_page(page);
2253                                         spin_lock(ptl);
2254                                         if (unlikely(!pmd_same(*pmd, _pmd))) {
2255                                                 unlock_page(page);
2256                                                 put_page(page);
2257                                                 page = NULL;
2258                                                 goto repeat;
2259                                         }
2260                                         put_page(page);
2261                                 }
2262                                 do_unlock_page = true;
2263                         }
2264                 }
2265                 if (PageMlocked(page))
2266                         clear_page_mlock(page);
2267         } else if (!(pmd_devmap(*pmd) || is_pmd_migration_entry(*pmd)))
2268                 goto out;
2269         __split_huge_pmd_locked(vma, pmd, range.start, freeze);
2270 out:
2271         spin_unlock(ptl);
2272         if (do_unlock_page)
2273                 unlock_page(page);
2274         /*
2275          * No need to double call mmu_notifier->invalidate_range() callback.
2276          * They are 3 cases to consider inside __split_huge_pmd_locked():
2277          *  1) pmdp_huge_clear_flush_notify() call invalidate_range() obvious
2278          *  2) __split_huge_zero_page_pmd() read only zero page and any write
2279          *    fault will trigger a flush_notify before pointing to a new page
2280          *    (it is fine if the secondary mmu keeps pointing to the old zero
2281          *    page in the meantime)
2282          *  3) Split a huge pmd into pte pointing to the same page. No need
2283          *     to invalidate secondary tlb entry they are all still valid.
2284          *     any further changes to individual pte will notify. So no need
2285          *     to call mmu_notifier->invalidate_range()
2286          */
2287         mmu_notifier_invalidate_range_only_end(&range);
2288 }
2289
2290 void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
2291                 bool freeze, struct page *page)
2292 {
2293         pgd_t *pgd;
2294         p4d_t *p4d;
2295         pud_t *pud;
2296         pmd_t *pmd;
2297
2298         pgd = pgd_offset(vma->vm_mm, address);
2299         if (!pgd_present(*pgd))
2300                 return;
2301
2302         p4d = p4d_offset(pgd, address);
2303         if (!p4d_present(*p4d))
2304                 return;
2305
2306         pud = pud_offset(p4d, address);
2307         if (!pud_present(*pud))
2308                 return;
2309
2310         pmd = pmd_offset(pud, address);
2311
2312         __split_huge_pmd(vma, pmd, address, freeze, page);
2313 }
2314
2315 void vma_adjust_trans_huge(struct vm_area_struct *vma,
2316                              unsigned long start,
2317                              unsigned long end,
2318                              long adjust_next)
2319 {
2320         /*
2321          * If the new start address isn't hpage aligned and it could
2322          * previously contain an hugepage: check if we need to split
2323          * an huge pmd.
2324          */
2325         if (start & ~HPAGE_PMD_MASK &&
2326             (start & HPAGE_PMD_MASK) >= vma->vm_start &&
2327             (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2328                 split_huge_pmd_address(vma, start, false, NULL);
2329
2330         /*
2331          * If the new end address isn't hpage aligned and it could
2332          * previously contain an hugepage: check if we need to split
2333          * an huge pmd.
2334          */
2335         if (end & ~HPAGE_PMD_MASK &&
2336             (end & HPAGE_PMD_MASK) >= vma->vm_start &&
2337             (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2338                 split_huge_pmd_address(vma, end, false, NULL);
2339
2340         /*
2341          * If we're also updating the vma->vm_next->vm_start, if the new
2342          * vm_next->vm_start isn't hpage aligned and it could previously
2343          * contain an hugepage: check if we need to split an huge pmd.
2344          */
2345         if (adjust_next > 0) {
2346                 struct vm_area_struct *next = vma->vm_next;
2347                 unsigned long nstart = next->vm_start;
2348                 nstart += adjust_next;
2349                 if (nstart & ~HPAGE_PMD_MASK &&
2350                     (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
2351                     (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
2352                         split_huge_pmd_address(next, nstart, false, NULL);
2353         }
2354 }
2355
2356 static void unmap_page(struct page *page)
2357 {
2358         enum ttu_flags ttu_flags = TTU_IGNORE_MLOCK | TTU_SYNC |
2359                 TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD;
2360
2361         VM_BUG_ON_PAGE(!PageHead(page), page);
2362
2363         if (PageAnon(page))
2364                 ttu_flags |= TTU_SPLIT_FREEZE;
2365
2366         try_to_unmap(page, ttu_flags);
2367
2368         VM_WARN_ON_ONCE_PAGE(page_mapped(page), page);
2369 }
2370
2371 static void remap_page(struct page *page, unsigned int nr)
2372 {
2373         int i;
2374         if (PageTransHuge(page)) {
2375                 remove_migration_ptes(page, page, true);
2376         } else {
2377                 for (i = 0; i < nr; i++)
2378                         remove_migration_ptes(page + i, page + i, true);
2379         }
2380 }
2381
2382 static void __split_huge_page_tail(struct page *head, int tail,
2383                 struct lruvec *lruvec, struct list_head *list)
2384 {
2385         struct page *page_tail = head + tail;
2386
2387         VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
2388
2389         /*
2390          * Clone page flags before unfreezing refcount.
2391          *
2392          * After successful get_page_unless_zero() might follow flags change,
2393          * for exmaple lock_page() which set PG_waiters.
2394          */
2395         page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
2396         page_tail->flags |= (head->flags &
2397                         ((1L << PG_referenced) |
2398                          (1L << PG_swapbacked) |
2399                          (1L << PG_swapcache) |
2400                          (1L << PG_mlocked) |
2401                          (1L << PG_uptodate) |
2402                          (1L << PG_active) |
2403                          (1L << PG_workingset) |
2404                          (1L << PG_locked) |
2405                          (1L << PG_unevictable) |
2406 #ifdef CONFIG_64BIT
2407                          (1L << PG_arch_2) |
2408 #endif
2409                          (1L << PG_dirty)));
2410
2411         /* ->mapping in first tail page is compound_mapcount */
2412         VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
2413                         page_tail);
2414         page_tail->mapping = head->mapping;
2415         page_tail->index = head->index + tail;
2416
2417         /* Page flags must be visible before we make the page non-compound. */
2418         smp_wmb();
2419
2420         /*
2421          * Clear PageTail before unfreezing page refcount.
2422          *
2423          * After successful get_page_unless_zero() might follow put_page()
2424          * which needs correct compound_head().
2425          */
2426         clear_compound_head(page_tail);
2427
2428         /* Finally unfreeze refcount. Additional reference from page cache. */
2429         page_ref_unfreeze(page_tail, 1 + (!PageAnon(head) ||
2430                                           PageSwapCache(head)));
2431
2432         if (page_is_young(head))
2433                 set_page_young(page_tail);
2434         if (page_is_idle(head))
2435                 set_page_idle(page_tail);
2436
2437         page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
2438
2439         /*
2440          * always add to the tail because some iterators expect new
2441          * pages to show after the currently processed elements - e.g.
2442          * migrate_pages
2443          */
2444         lru_add_page_tail(head, page_tail, lruvec, list);
2445 }
2446
2447 static void __split_huge_page(struct page *page, struct list_head *list,
2448                 pgoff_t end, unsigned long flags)
2449 {
2450         struct page *head = compound_head(page);
2451         pg_data_t *pgdat = page_pgdat(head);
2452         struct lruvec *lruvec;
2453         struct address_space *swap_cache = NULL;
2454         unsigned long offset = 0;
2455         unsigned int nr = thp_nr_pages(head);
2456         int i;
2457
2458         lruvec = mem_cgroup_page_lruvec(head, pgdat);
2459
2460         /* complete memcg works before add pages to LRU */
2461         split_page_memcg(head, nr);
2462
2463         if (PageAnon(head) && PageSwapCache(head)) {
2464                 swp_entry_t entry = { .val = page_private(head) };
2465
2466                 offset = swp_offset(entry);
2467                 swap_cache = swap_address_space(entry);
2468                 xa_lock(&swap_cache->i_pages);
2469         }
2470
2471         for (i = nr - 1; i >= 1; i--) {
2472                 __split_huge_page_tail(head, i, lruvec, list);
2473                 /* Some pages can be beyond i_size: drop them from page cache */
2474                 if (head[i].index >= end) {
2475                         ClearPageDirty(head + i);
2476                         __delete_from_page_cache(head + i, NULL);
2477                         if (IS_ENABLED(CONFIG_SHMEM) && PageSwapBacked(head))
2478                                 shmem_uncharge(head->mapping->host, 1);
2479                         put_page(head + i);
2480                 } else if (!PageAnon(page)) {
2481                         __xa_store(&head->mapping->i_pages, head[i].index,
2482                                         head + i, 0);
2483                 } else if (swap_cache) {
2484                         __xa_store(&swap_cache->i_pages, offset + i,
2485                                         head + i, 0);
2486                 }
2487         }
2488
2489         ClearPageCompound(head);
2490
2491         split_page_owner(head, nr);
2492
2493         /* See comment in __split_huge_page_tail() */
2494         if (PageAnon(head)) {
2495                 /* Additional pin to swap cache */
2496                 if (PageSwapCache(head)) {
2497                         page_ref_add(head, 2);
2498                         xa_unlock(&swap_cache->i_pages);
2499                 } else {
2500                         page_ref_inc(head);
2501                 }
2502         } else {
2503                 /* Additional pin to page cache */
2504                 page_ref_add(head, 2);
2505                 xa_unlock(&head->mapping->i_pages);
2506         }
2507
2508         spin_unlock_irqrestore(&pgdat->lru_lock, flags);
2509
2510         remap_page(head, nr);
2511
2512         if (PageSwapCache(head)) {
2513                 swp_entry_t entry = { .val = page_private(head) };
2514
2515                 split_swap_cluster(entry);
2516         }
2517
2518         for (i = 0; i < nr; i++) {
2519                 struct page *subpage = head + i;
2520                 if (subpage == page)
2521                         continue;
2522                 unlock_page(subpage);
2523
2524                 /*
2525                  * Subpages may be freed if there wasn't any mapping
2526                  * like if add_to_swap() is running on a lru page that
2527                  * had its mapping zapped. And freeing these pages
2528                  * requires taking the lru_lock so we do the put_page
2529                  * of the tail pages after the split is complete.
2530                  */
2531                 put_page(subpage);
2532         }
2533 }
2534
2535 int total_mapcount(struct page *page)
2536 {
2537         int i, compound, nr, ret;
2538
2539         VM_BUG_ON_PAGE(PageTail(page), page);
2540
2541         if (likely(!PageCompound(page)))
2542                 return atomic_read(&page->_mapcount) + 1;
2543
2544         compound = compound_mapcount(page);
2545         nr = compound_nr(page);
2546         if (PageHuge(page))
2547                 return compound;
2548         ret = compound;
2549         for (i = 0; i < nr; i++)
2550                 ret += atomic_read(&page[i]._mapcount) + 1;
2551         /* File pages has compound_mapcount included in _mapcount */
2552         if (!PageAnon(page))
2553                 return ret - compound * nr;
2554         if (PageDoubleMap(page))
2555                 ret -= nr;
2556         return ret;
2557 }
2558
2559 /*
2560  * This calculates accurately how many mappings a transparent hugepage
2561  * has (unlike page_mapcount() which isn't fully accurate). This full
2562  * accuracy is primarily needed to know if copy-on-write faults can
2563  * reuse the page and change the mapping to read-write instead of
2564  * copying them. At the same time this returns the total_mapcount too.
2565  *
2566  * The function returns the highest mapcount any one of the subpages
2567  * has. If the return value is one, even if different processes are
2568  * mapping different subpages of the transparent hugepage, they can
2569  * all reuse it, because each process is reusing a different subpage.
2570  *
2571  * The total_mapcount is instead counting all virtual mappings of the
2572  * subpages. If the total_mapcount is equal to "one", it tells the
2573  * caller all mappings belong to the same "mm" and in turn the
2574  * anon_vma of the transparent hugepage can become the vma->anon_vma
2575  * local one as no other process may be mapping any of the subpages.
2576  *
2577  * It would be more accurate to replace page_mapcount() with
2578  * page_trans_huge_mapcount(), however we only use
2579  * page_trans_huge_mapcount() in the copy-on-write faults where we
2580  * need full accuracy to avoid breaking page pinning, because
2581  * page_trans_huge_mapcount() is slower than page_mapcount().
2582  */
2583 int page_trans_huge_mapcount(struct page *page, int *total_mapcount)
2584 {
2585         int i, ret, _total_mapcount, mapcount;
2586
2587         /* hugetlbfs shouldn't call it */
2588         VM_BUG_ON_PAGE(PageHuge(page), page);
2589
2590         if (likely(!PageTransCompound(page))) {
2591                 mapcount = atomic_read(&page->_mapcount) + 1;
2592                 if (total_mapcount)
2593                         *total_mapcount = mapcount;
2594                 return mapcount;
2595         }
2596
2597         page = compound_head(page);
2598
2599         _total_mapcount = ret = 0;
2600         for (i = 0; i < thp_nr_pages(page); i++) {
2601                 mapcount = atomic_read(&page[i]._mapcount) + 1;
2602                 ret = max(ret, mapcount);
2603                 _total_mapcount += mapcount;
2604         }
2605         if (PageDoubleMap(page)) {
2606                 ret -= 1;
2607                 _total_mapcount -= thp_nr_pages(page);
2608         }
2609         mapcount = compound_mapcount(page);
2610         ret += mapcount;
2611         _total_mapcount += mapcount;
2612         if (total_mapcount)
2613                 *total_mapcount = _total_mapcount;
2614         return ret;
2615 }
2616
2617 /* Racy check whether the huge page can be split */
2618 bool can_split_huge_page(struct page *page, int *pextra_pins)
2619 {
2620         int extra_pins;
2621
2622         /* Additional pins from page cache */
2623         if (PageAnon(page))
2624                 extra_pins = PageSwapCache(page) ? thp_nr_pages(page) : 0;
2625         else
2626                 extra_pins = thp_nr_pages(page);
2627         if (pextra_pins)
2628                 *pextra_pins = extra_pins;
2629         return total_mapcount(page) == page_count(page) - extra_pins - 1;
2630 }
2631
2632 /*
2633  * This function splits huge page into normal pages. @page can point to any
2634  * subpage of huge page to split. Split doesn't change the position of @page.
2635  *
2636  * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
2637  * The huge page must be locked.
2638  *
2639  * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
2640  *
2641  * Both head page and tail pages will inherit mapping, flags, and so on from
2642  * the hugepage.
2643  *
2644  * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
2645  * they are not mapped.
2646  *
2647  * Returns 0 if the hugepage is split successfully.
2648  * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
2649  * us.
2650  */
2651 int split_huge_page_to_list(struct page *page, struct list_head *list)
2652 {
2653         struct page *head = compound_head(page);
2654         struct pglist_data *pgdata = NODE_DATA(page_to_nid(head));
2655         struct deferred_split *ds_queue = get_deferred_split_queue(head);
2656         struct anon_vma *anon_vma = NULL;
2657         struct address_space *mapping = NULL;
2658         int extra_pins, ret;
2659         unsigned long flags;
2660         pgoff_t end;
2661
2662         VM_BUG_ON_PAGE(is_huge_zero_page(head), head);
2663         VM_BUG_ON_PAGE(!PageLocked(head), head);
2664         VM_BUG_ON_PAGE(!PageCompound(head), head);
2665
2666         if (PageWriteback(head))
2667                 return -EBUSY;
2668
2669         if (PageAnon(head)) {
2670                 /*
2671                  * The caller does not necessarily hold an mmap_lock that would
2672                  * prevent the anon_vma disappearing so we first we take a
2673                  * reference to it and then lock the anon_vma for write. This
2674                  * is similar to page_lock_anon_vma_read except the write lock
2675                  * is taken to serialise against parallel split or collapse
2676                  * operations.
2677                  */
2678                 anon_vma = page_get_anon_vma(head);
2679                 if (!anon_vma) {
2680                         ret = -EBUSY;
2681                         goto out;
2682                 }
2683                 end = -1;
2684                 mapping = NULL;
2685                 anon_vma_lock_write(anon_vma);
2686         } else {
2687                 mapping = head->mapping;
2688
2689                 /* Truncated ? */
2690                 if (!mapping) {
2691                         ret = -EBUSY;
2692                         goto out;
2693                 }
2694
2695                 anon_vma = NULL;
2696                 i_mmap_lock_read(mapping);
2697
2698                 /*
2699                  *__split_huge_page() may need to trim off pages beyond EOF:
2700                  * but on 32-bit, i_size_read() takes an irq-unsafe seqlock,
2701                  * which cannot be nested inside the page tree lock. So note
2702                  * end now: i_size itself may be changed at any moment, but
2703                  * head page lock is good enough to serialize the trimming.
2704                  */
2705                 end = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
2706         }
2707
2708         /*
2709          * Racy check if we can split the page, before unmap_page() will
2710          * split PMDs
2711          */
2712         if (!can_split_huge_page(head, &extra_pins)) {
2713                 ret = -EBUSY;
2714                 goto out_unlock;
2715         }
2716
2717         unmap_page(head);
2718
2719         /* prevent PageLRU to go away from under us, and freeze lru stats */
2720         spin_lock_irqsave(&pgdata->lru_lock, flags);
2721
2722         if (mapping) {
2723                 XA_STATE(xas, &mapping->i_pages, page_index(head));
2724
2725                 /*
2726                  * Check if the head page is present in page cache.
2727                  * We assume all tail are present too, if head is there.
2728                  */
2729                 xa_lock(&mapping->i_pages);
2730                 if (xas_load(&xas) != head)
2731                         goto fail;
2732         }
2733
2734         /* Prevent deferred_split_scan() touching ->_refcount */
2735         spin_lock(&ds_queue->split_queue_lock);
2736         if (page_ref_freeze(head, 1 + extra_pins)) {
2737                 if (!list_empty(page_deferred_list(head))) {
2738                         ds_queue->split_queue_len--;
2739                         list_del(page_deferred_list(head));
2740                 }
2741                 spin_unlock(&ds_queue->split_queue_lock);
2742                 if (mapping) {
2743                         if (PageSwapBacked(head))
2744                                 __dec_node_page_state(head, NR_SHMEM_THPS);
2745                         else
2746                                 __dec_node_page_state(head, NR_FILE_THPS);
2747                 }
2748
2749                 __split_huge_page(page, list, end, flags);
2750                 ret = 0;
2751         } else {
2752                 spin_unlock(&ds_queue->split_queue_lock);
2753 fail:
2754                 if (mapping)
2755                         xa_unlock(&mapping->i_pages);
2756                 spin_unlock_irqrestore(&pgdata->lru_lock, flags);
2757                 remap_page(head, thp_nr_pages(head));
2758                 ret = -EBUSY;
2759         }
2760
2761 out_unlock:
2762         if (anon_vma) {
2763                 anon_vma_unlock_write(anon_vma);
2764                 put_anon_vma(anon_vma);
2765         }
2766         if (mapping)
2767                 i_mmap_unlock_read(mapping);
2768 out:
2769         count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
2770         return ret;
2771 }
2772
2773 void free_transhuge_page(struct page *page)
2774 {
2775         struct deferred_split *ds_queue = get_deferred_split_queue(page);
2776         unsigned long flags;
2777
2778         spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2779         if (!list_empty(page_deferred_list(page))) {
2780                 ds_queue->split_queue_len--;
2781                 list_del(page_deferred_list(page));
2782         }
2783         spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2784         free_compound_page(page);
2785 }
2786
2787 void deferred_split_huge_page(struct page *page)
2788 {
2789         struct deferred_split *ds_queue = get_deferred_split_queue(page);
2790 #ifdef CONFIG_MEMCG
2791         struct mem_cgroup *memcg = compound_head(page)->mem_cgroup;
2792 #endif
2793         unsigned long flags;
2794
2795         VM_BUG_ON_PAGE(!PageTransHuge(page), page);
2796
2797         /*
2798          * The try_to_unmap() in page reclaim path might reach here too,
2799          * this may cause a race condition to corrupt deferred split queue.
2800          * And, if page reclaim is already handling the same page, it is
2801          * unnecessary to handle it again in shrinker.
2802          *
2803          * Check PageSwapCache to determine if the page is being
2804          * handled by page reclaim since THP swap would add the page into
2805          * swap cache before calling try_to_unmap().
2806          */
2807         if (PageSwapCache(page))
2808                 return;
2809
2810         spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2811         if (list_empty(page_deferred_list(page))) {
2812                 count_vm_event(THP_DEFERRED_SPLIT_PAGE);
2813                 list_add_tail(page_deferred_list(page), &ds_queue->split_queue);
2814                 ds_queue->split_queue_len++;
2815 #ifdef CONFIG_MEMCG
2816                 if (memcg)
2817                         memcg_set_shrinker_bit(memcg, page_to_nid(page),
2818                                                deferred_split_shrinker.id);
2819 #endif
2820         }
2821         spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2822 }
2823
2824 static unsigned long deferred_split_count(struct shrinker *shrink,
2825                 struct shrink_control *sc)
2826 {
2827         struct pglist_data *pgdata = NODE_DATA(sc->nid);
2828         struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
2829
2830 #ifdef CONFIG_MEMCG
2831         if (sc->memcg)
2832                 ds_queue = &sc->memcg->deferred_split_queue;
2833 #endif
2834         return READ_ONCE(ds_queue->split_queue_len);
2835 }
2836
2837 static unsigned long deferred_split_scan(struct shrinker *shrink,
2838                 struct shrink_control *sc)
2839 {
2840         struct pglist_data *pgdata = NODE_DATA(sc->nid);
2841         struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
2842         unsigned long flags;
2843         LIST_HEAD(list), *pos, *next;
2844         struct page *page;
2845         int split = 0;
2846
2847 #ifdef CONFIG_MEMCG
2848         if (sc->memcg)
2849                 ds_queue = &sc->memcg->deferred_split_queue;
2850 #endif
2851
2852         spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2853         /* Take pin on all head pages to avoid freeing them under us */
2854         list_for_each_safe(pos, next, &ds_queue->split_queue) {
2855                 page = list_entry((void *)pos, struct page, mapping);
2856                 page = compound_head(page);
2857                 if (get_page_unless_zero(page)) {
2858                         list_move(page_deferred_list(page), &list);
2859                 } else {
2860                         /* We lost race with put_compound_page() */
2861                         list_del_init(page_deferred_list(page));
2862                         ds_queue->split_queue_len--;
2863                 }
2864                 if (!--sc->nr_to_scan)
2865                         break;
2866         }
2867         spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2868
2869         list_for_each_safe(pos, next, &list) {
2870                 page = list_entry((void *)pos, struct page, mapping);
2871                 if (!trylock_page(page))
2872                         goto next;
2873                 /* split_huge_page() removes page from list on success */
2874                 if (!split_huge_page(page))
2875                         split++;
2876                 unlock_page(page);
2877 next:
2878                 put_page(page);
2879         }
2880
2881         spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2882         list_splice_tail(&list, &ds_queue->split_queue);
2883         spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2884
2885         /*
2886          * Stop shrinker if we didn't split any page, but the queue is empty.
2887          * This can happen if pages were freed under us.
2888          */
2889         if (!split && list_empty(&ds_queue->split_queue))
2890                 return SHRINK_STOP;
2891         return split;
2892 }
2893
2894 static struct shrinker deferred_split_shrinker = {
2895         .count_objects = deferred_split_count,
2896         .scan_objects = deferred_split_scan,
2897         .seeks = DEFAULT_SEEKS,
2898         .flags = SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE |
2899                  SHRINKER_NONSLAB,
2900 };
2901
2902 #ifdef CONFIG_DEBUG_FS
2903 static int split_huge_pages_set(void *data, u64 val)
2904 {
2905         struct zone *zone;
2906         struct page *page;
2907         unsigned long pfn, max_zone_pfn;
2908         unsigned long total = 0, split = 0;
2909
2910         if (val != 1)
2911                 return -EINVAL;
2912
2913         for_each_populated_zone(zone) {
2914                 max_zone_pfn = zone_end_pfn(zone);
2915                 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
2916                         if (!pfn_valid(pfn))
2917                                 continue;
2918
2919                         page = pfn_to_page(pfn);
2920                         if (!get_page_unless_zero(page))
2921                                 continue;
2922
2923                         if (zone != page_zone(page))
2924                                 goto next;
2925
2926                         if (!PageHead(page) || PageHuge(page) || !PageLRU(page))
2927                                 goto next;
2928
2929                         total++;
2930                         lock_page(page);
2931                         if (!split_huge_page(page))
2932                                 split++;
2933                         unlock_page(page);
2934 next:
2935                         put_page(page);
2936                 }
2937         }
2938
2939         pr_info("%lu of %lu THP split\n", split, total);
2940
2941         return 0;
2942 }
2943 DEFINE_DEBUGFS_ATTRIBUTE(split_huge_pages_fops, NULL, split_huge_pages_set,
2944                 "%llu\n");
2945
2946 static int __init split_huge_pages_debugfs(void)
2947 {
2948         debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
2949                             &split_huge_pages_fops);
2950         return 0;
2951 }
2952 late_initcall(split_huge_pages_debugfs);
2953 #endif
2954
2955 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
2956 void set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw,
2957                 struct page *page)
2958 {
2959         struct vm_area_struct *vma = pvmw->vma;
2960         struct mm_struct *mm = vma->vm_mm;
2961         unsigned long address = pvmw->address;
2962         pmd_t pmdval;
2963         swp_entry_t entry;
2964         pmd_t pmdswp;
2965
2966         if (!(pvmw->pmd && !pvmw->pte))
2967                 return;
2968
2969         flush_cache_range(vma, address, address + HPAGE_PMD_SIZE);
2970         pmdval = pmdp_invalidate(vma, address, pvmw->pmd);
2971         if (pmd_dirty(pmdval))
2972                 set_page_dirty(page);
2973         entry = make_migration_entry(page, pmd_write(pmdval));
2974         pmdswp = swp_entry_to_pmd(entry);
2975         if (pmd_soft_dirty(pmdval))
2976                 pmdswp = pmd_swp_mksoft_dirty(pmdswp);
2977         set_pmd_at(mm, address, pvmw->pmd, pmdswp);
2978         page_remove_rmap(page, true);
2979         put_page(page);
2980 }
2981
2982 void remove_migration_pmd(struct page_vma_mapped_walk *pvmw, struct page *new)
2983 {
2984         struct vm_area_struct *vma = pvmw->vma;
2985         struct mm_struct *mm = vma->vm_mm;
2986         unsigned long address = pvmw->address;
2987         unsigned long mmun_start = address & HPAGE_PMD_MASK;
2988         pmd_t pmde;
2989         swp_entry_t entry;
2990
2991         if (!(pvmw->pmd && !pvmw->pte))
2992                 return;
2993
2994         entry = pmd_to_swp_entry(*pvmw->pmd);
2995         get_page(new);
2996         pmde = pmd_mkold(mk_huge_pmd(new, vma->vm_page_prot));
2997         if (pmd_swp_soft_dirty(*pvmw->pmd))
2998                 pmde = pmd_mksoft_dirty(pmde);
2999         if (is_write_migration_entry(entry))
3000                 pmde = maybe_pmd_mkwrite(pmde, vma);
3001
3002         flush_cache_range(vma, mmun_start, mmun_start + HPAGE_PMD_SIZE);
3003         if (PageAnon(new))
3004                 page_add_anon_rmap(new, vma, mmun_start, true);
3005         else
3006                 page_add_file_rmap(new, true);
3007         set_pmd_at(mm, mmun_start, pvmw->pmd, pmde);
3008         if ((vma->vm_flags & VM_LOCKED) && !PageDoubleMap(new))
3009                 mlock_vma_page(new);
3010         update_mmu_cache_pmd(vma, address, pvmw->pmd);
3011 }
3012 #endif