2 * Copyright (C) 2009 Red Hat, Inc.
4 * This work is licensed under the terms of the GNU GPL, version 2. See
5 * the COPYING file in the top-level directory.
9 #include <linux/sched.h>
10 #include <linux/highmem.h>
11 #include <linux/hugetlb.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/rmap.h>
14 #include <linux/swap.h>
15 #include <linux/shrinker.h>
16 #include <linux/mm_inline.h>
17 #include <linux/kthread.h>
18 #include <linux/khugepaged.h>
19 #include <linux/freezer.h>
20 #include <linux/mman.h>
21 #include <linux/pagemap.h>
22 #include <linux/migrate.h>
23 #include <linux/hashtable.h>
26 #include <asm/pgalloc.h>
30 * By default transparent hugepage support is disabled in order that avoid
31 * to risk increase the memory footprint of applications without a guaranteed
32 * benefit. When transparent hugepage support is enabled, is for all mappings,
33 * and khugepaged scans all mappings.
34 * Defrag is invoked by khugepaged hugepage allocations and by page faults
35 * for all hugepage allocations.
37 unsigned long transparent_hugepage_flags __read_mostly =
38 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
39 (1<<TRANSPARENT_HUGEPAGE_FLAG)|
41 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
42 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
44 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_FLAG)|
45 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
46 (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
48 /* default scan 8*512 pte (or vmas) every 30 second */
49 static unsigned int khugepaged_pages_to_scan __read_mostly = HPAGE_PMD_NR*8;
50 static unsigned int khugepaged_pages_collapsed;
51 static unsigned int khugepaged_full_scans;
52 static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
53 /* during fragmentation poll the hugepage allocator once every minute */
54 static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
55 static struct task_struct *khugepaged_thread __read_mostly;
56 static DEFINE_MUTEX(khugepaged_mutex);
57 static DEFINE_SPINLOCK(khugepaged_mm_lock);
58 static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
60 * default collapse hugepages if there is at least one pte mapped like
61 * it would have happened if the vma was large enough during page
64 static unsigned int khugepaged_max_ptes_none __read_mostly = HPAGE_PMD_NR-1;
66 static int khugepaged(void *none);
67 static int khugepaged_slab_init(void);
69 #define MM_SLOTS_HASH_BITS 10
70 static __read_mostly DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
72 static struct kmem_cache *mm_slot_cache __read_mostly;
75 * struct mm_slot - hash lookup from mm to mm_slot
76 * @hash: hash collision list
77 * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
78 * @mm: the mm that this information is valid for
81 struct hlist_node hash;
82 struct list_head mm_node;
87 * struct khugepaged_scan - cursor for scanning
88 * @mm_head: the head of the mm list to scan
89 * @mm_slot: the current mm_slot we are scanning
90 * @address: the next address inside that to be scanned
92 * There is only the one khugepaged_scan instance of this cursor structure.
94 struct khugepaged_scan {
95 struct list_head mm_head;
96 struct mm_slot *mm_slot;
97 unsigned long address;
99 static struct khugepaged_scan khugepaged_scan = {
100 .mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
104 static int set_recommended_min_free_kbytes(void)
108 unsigned long recommended_min;
110 if (!khugepaged_enabled())
113 for_each_populated_zone(zone)
116 /* Make sure at least 2 hugepages are free for MIGRATE_RESERVE */
117 recommended_min = pageblock_nr_pages * nr_zones * 2;
120 * Make sure that on average at least two pageblocks are almost free
121 * of another type, one for a migratetype to fall back to and a
122 * second to avoid subsequent fallbacks of other types There are 3
123 * MIGRATE_TYPES we care about.
125 recommended_min += pageblock_nr_pages * nr_zones *
126 MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
128 /* don't ever allow to reserve more than 5% of the lowmem */
129 recommended_min = min(recommended_min,
130 (unsigned long) nr_free_buffer_pages() / 20);
131 recommended_min <<= (PAGE_SHIFT-10);
133 if (recommended_min > min_free_kbytes)
134 min_free_kbytes = recommended_min;
135 setup_per_zone_wmarks();
138 late_initcall(set_recommended_min_free_kbytes);
140 static int start_khugepaged(void)
143 if (khugepaged_enabled()) {
144 if (!khugepaged_thread)
145 khugepaged_thread = kthread_run(khugepaged, NULL,
147 if (unlikely(IS_ERR(khugepaged_thread))) {
149 "khugepaged: kthread_run(khugepaged) failed\n");
150 err = PTR_ERR(khugepaged_thread);
151 khugepaged_thread = NULL;
154 if (!list_empty(&khugepaged_scan.mm_head))
155 wake_up_interruptible(&khugepaged_wait);
157 set_recommended_min_free_kbytes();
158 } else if (khugepaged_thread) {
159 kthread_stop(khugepaged_thread);
160 khugepaged_thread = NULL;
166 static atomic_t huge_zero_refcount;
167 static struct page *huge_zero_page __read_mostly;
169 static inline bool is_huge_zero_page(struct page *page)
171 return ACCESS_ONCE(huge_zero_page) == page;
174 static inline bool is_huge_zero_pmd(pmd_t pmd)
176 return is_huge_zero_page(pmd_page(pmd));
179 static struct page *get_huge_zero_page(void)
181 struct page *zero_page;
183 if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
184 return ACCESS_ONCE(huge_zero_page);
186 zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
189 count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
192 count_vm_event(THP_ZERO_PAGE_ALLOC);
194 if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
196 __free_page(zero_page);
200 /* We take additional reference here. It will be put back by shrinker */
201 atomic_set(&huge_zero_refcount, 2);
203 return ACCESS_ONCE(huge_zero_page);
206 static void put_huge_zero_page(void)
209 * Counter should never go to zero here. Only shrinker can put
212 BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
215 static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
216 struct shrink_control *sc)
218 /* we can free zero page only if last reference remains */
219 return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
222 static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
223 struct shrink_control *sc)
225 if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
226 struct page *zero_page = xchg(&huge_zero_page, NULL);
227 BUG_ON(zero_page == NULL);
228 __free_page(zero_page);
235 static struct shrinker huge_zero_page_shrinker = {
236 .count_objects = shrink_huge_zero_page_count,
237 .scan_objects = shrink_huge_zero_page_scan,
238 .seeks = DEFAULT_SEEKS,
243 static ssize_t double_flag_show(struct kobject *kobj,
244 struct kobj_attribute *attr, char *buf,
245 enum transparent_hugepage_flag enabled,
246 enum transparent_hugepage_flag req_madv)
248 if (test_bit(enabled, &transparent_hugepage_flags)) {
249 VM_BUG_ON(test_bit(req_madv, &transparent_hugepage_flags));
250 return sprintf(buf, "[always] madvise never\n");
251 } else if (test_bit(req_madv, &transparent_hugepage_flags))
252 return sprintf(buf, "always [madvise] never\n");
254 return sprintf(buf, "always madvise [never]\n");
256 static ssize_t double_flag_store(struct kobject *kobj,
257 struct kobj_attribute *attr,
258 const char *buf, size_t count,
259 enum transparent_hugepage_flag enabled,
260 enum transparent_hugepage_flag req_madv)
262 if (!memcmp("always", buf,
263 min(sizeof("always")-1, count))) {
264 set_bit(enabled, &transparent_hugepage_flags);
265 clear_bit(req_madv, &transparent_hugepage_flags);
266 } else if (!memcmp("madvise", buf,
267 min(sizeof("madvise")-1, count))) {
268 clear_bit(enabled, &transparent_hugepage_flags);
269 set_bit(req_madv, &transparent_hugepage_flags);
270 } else if (!memcmp("never", buf,
271 min(sizeof("never")-1, count))) {
272 clear_bit(enabled, &transparent_hugepage_flags);
273 clear_bit(req_madv, &transparent_hugepage_flags);
280 static ssize_t enabled_show(struct kobject *kobj,
281 struct kobj_attribute *attr, char *buf)
283 return double_flag_show(kobj, attr, buf,
284 TRANSPARENT_HUGEPAGE_FLAG,
285 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
287 static ssize_t enabled_store(struct kobject *kobj,
288 struct kobj_attribute *attr,
289 const char *buf, size_t count)
293 ret = double_flag_store(kobj, attr, buf, count,
294 TRANSPARENT_HUGEPAGE_FLAG,
295 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
300 mutex_lock(&khugepaged_mutex);
301 err = start_khugepaged();
302 mutex_unlock(&khugepaged_mutex);
310 static struct kobj_attribute enabled_attr =
311 __ATTR(enabled, 0644, enabled_show, enabled_store);
313 static ssize_t single_flag_show(struct kobject *kobj,
314 struct kobj_attribute *attr, char *buf,
315 enum transparent_hugepage_flag flag)
317 return sprintf(buf, "%d\n",
318 !!test_bit(flag, &transparent_hugepage_flags));
321 static ssize_t single_flag_store(struct kobject *kobj,
322 struct kobj_attribute *attr,
323 const char *buf, size_t count,
324 enum transparent_hugepage_flag flag)
329 ret = kstrtoul(buf, 10, &value);
336 set_bit(flag, &transparent_hugepage_flags);
338 clear_bit(flag, &transparent_hugepage_flags);
344 * Currently defrag only disables __GFP_NOWAIT for allocation. A blind
345 * __GFP_REPEAT is too aggressive, it's never worth swapping tons of
346 * memory just to allocate one more hugepage.
348 static ssize_t defrag_show(struct kobject *kobj,
349 struct kobj_attribute *attr, char *buf)
351 return double_flag_show(kobj, attr, buf,
352 TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
353 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
355 static ssize_t defrag_store(struct kobject *kobj,
356 struct kobj_attribute *attr,
357 const char *buf, size_t count)
359 return double_flag_store(kobj, attr, buf, count,
360 TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
361 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
363 static struct kobj_attribute defrag_attr =
364 __ATTR(defrag, 0644, defrag_show, defrag_store);
366 static ssize_t use_zero_page_show(struct kobject *kobj,
367 struct kobj_attribute *attr, char *buf)
369 return single_flag_show(kobj, attr, buf,
370 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
372 static ssize_t use_zero_page_store(struct kobject *kobj,
373 struct kobj_attribute *attr, const char *buf, size_t count)
375 return single_flag_store(kobj, attr, buf, count,
376 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
378 static struct kobj_attribute use_zero_page_attr =
379 __ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
380 #ifdef CONFIG_DEBUG_VM
381 static ssize_t debug_cow_show(struct kobject *kobj,
382 struct kobj_attribute *attr, char *buf)
384 return single_flag_show(kobj, attr, buf,
385 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
387 static ssize_t debug_cow_store(struct kobject *kobj,
388 struct kobj_attribute *attr,
389 const char *buf, size_t count)
391 return single_flag_store(kobj, attr, buf, count,
392 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
394 static struct kobj_attribute debug_cow_attr =
395 __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
396 #endif /* CONFIG_DEBUG_VM */
398 static struct attribute *hugepage_attr[] = {
401 &use_zero_page_attr.attr,
402 #ifdef CONFIG_DEBUG_VM
403 &debug_cow_attr.attr,
408 static struct attribute_group hugepage_attr_group = {
409 .attrs = hugepage_attr,
412 static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
413 struct kobj_attribute *attr,
416 return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs);
419 static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
420 struct kobj_attribute *attr,
421 const char *buf, size_t count)
426 err = kstrtoul(buf, 10, &msecs);
427 if (err || msecs > UINT_MAX)
430 khugepaged_scan_sleep_millisecs = msecs;
431 wake_up_interruptible(&khugepaged_wait);
435 static struct kobj_attribute scan_sleep_millisecs_attr =
436 __ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
437 scan_sleep_millisecs_store);
439 static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
440 struct kobj_attribute *attr,
443 return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
446 static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
447 struct kobj_attribute *attr,
448 const char *buf, size_t count)
453 err = kstrtoul(buf, 10, &msecs);
454 if (err || msecs > UINT_MAX)
457 khugepaged_alloc_sleep_millisecs = msecs;
458 wake_up_interruptible(&khugepaged_wait);
462 static struct kobj_attribute alloc_sleep_millisecs_attr =
463 __ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
464 alloc_sleep_millisecs_store);
466 static ssize_t pages_to_scan_show(struct kobject *kobj,
467 struct kobj_attribute *attr,
470 return sprintf(buf, "%u\n", khugepaged_pages_to_scan);
472 static ssize_t pages_to_scan_store(struct kobject *kobj,
473 struct kobj_attribute *attr,
474 const char *buf, size_t count)
479 err = kstrtoul(buf, 10, &pages);
480 if (err || !pages || pages > UINT_MAX)
483 khugepaged_pages_to_scan = pages;
487 static struct kobj_attribute pages_to_scan_attr =
488 __ATTR(pages_to_scan, 0644, pages_to_scan_show,
489 pages_to_scan_store);
491 static ssize_t pages_collapsed_show(struct kobject *kobj,
492 struct kobj_attribute *attr,
495 return sprintf(buf, "%u\n", khugepaged_pages_collapsed);
497 static struct kobj_attribute pages_collapsed_attr =
498 __ATTR_RO(pages_collapsed);
500 static ssize_t full_scans_show(struct kobject *kobj,
501 struct kobj_attribute *attr,
504 return sprintf(buf, "%u\n", khugepaged_full_scans);
506 static struct kobj_attribute full_scans_attr =
507 __ATTR_RO(full_scans);
509 static ssize_t khugepaged_defrag_show(struct kobject *kobj,
510 struct kobj_attribute *attr, char *buf)
512 return single_flag_show(kobj, attr, buf,
513 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
515 static ssize_t khugepaged_defrag_store(struct kobject *kobj,
516 struct kobj_attribute *attr,
517 const char *buf, size_t count)
519 return single_flag_store(kobj, attr, buf, count,
520 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
522 static struct kobj_attribute khugepaged_defrag_attr =
523 __ATTR(defrag, 0644, khugepaged_defrag_show,
524 khugepaged_defrag_store);
527 * max_ptes_none controls if khugepaged should collapse hugepages over
528 * any unmapped ptes in turn potentially increasing the memory
529 * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
530 * reduce the available free memory in the system as it
531 * runs. Increasing max_ptes_none will instead potentially reduce the
532 * free memory in the system during the khugepaged scan.
534 static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
535 struct kobj_attribute *attr,
538 return sprintf(buf, "%u\n", khugepaged_max_ptes_none);
540 static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
541 struct kobj_attribute *attr,
542 const char *buf, size_t count)
545 unsigned long max_ptes_none;
547 err = kstrtoul(buf, 10, &max_ptes_none);
548 if (err || max_ptes_none > HPAGE_PMD_NR-1)
551 khugepaged_max_ptes_none = max_ptes_none;
555 static struct kobj_attribute khugepaged_max_ptes_none_attr =
556 __ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
557 khugepaged_max_ptes_none_store);
559 static struct attribute *khugepaged_attr[] = {
560 &khugepaged_defrag_attr.attr,
561 &khugepaged_max_ptes_none_attr.attr,
562 &pages_to_scan_attr.attr,
563 &pages_collapsed_attr.attr,
564 &full_scans_attr.attr,
565 &scan_sleep_millisecs_attr.attr,
566 &alloc_sleep_millisecs_attr.attr,
570 static struct attribute_group khugepaged_attr_group = {
571 .attrs = khugepaged_attr,
572 .name = "khugepaged",
575 static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
579 *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
580 if (unlikely(!*hugepage_kobj)) {
581 printk(KERN_ERR "hugepage: failed to create transparent hugepage kobject\n");
585 err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
587 printk(KERN_ERR "hugepage: failed to register transparent hugepage group\n");
591 err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
593 printk(KERN_ERR "hugepage: failed to register transparent hugepage group\n");
594 goto remove_hp_group;
600 sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
602 kobject_put(*hugepage_kobj);
606 static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
608 sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
609 sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
610 kobject_put(hugepage_kobj);
613 static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
618 static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
621 #endif /* CONFIG_SYSFS */
623 static int __init hugepage_init(void)
626 struct kobject *hugepage_kobj;
628 if (!has_transparent_hugepage()) {
629 transparent_hugepage_flags = 0;
633 err = hugepage_init_sysfs(&hugepage_kobj);
637 err = khugepaged_slab_init();
641 register_shrinker(&huge_zero_page_shrinker);
644 * By default disable transparent hugepages on smaller systems,
645 * where the extra memory used could hurt more than TLB overhead
646 * is likely to save. The admin can still enable it through /sys.
648 if (totalram_pages < (512 << (20 - PAGE_SHIFT)))
649 transparent_hugepage_flags = 0;
655 hugepage_exit_sysfs(hugepage_kobj);
658 module_init(hugepage_init)
660 static int __init setup_transparent_hugepage(char *str)
665 if (!strcmp(str, "always")) {
666 set_bit(TRANSPARENT_HUGEPAGE_FLAG,
667 &transparent_hugepage_flags);
668 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
669 &transparent_hugepage_flags);
671 } else if (!strcmp(str, "madvise")) {
672 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
673 &transparent_hugepage_flags);
674 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
675 &transparent_hugepage_flags);
677 } else if (!strcmp(str, "never")) {
678 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
679 &transparent_hugepage_flags);
680 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
681 &transparent_hugepage_flags);
687 "transparent_hugepage= cannot parse, ignored\n");
690 __setup("transparent_hugepage=", setup_transparent_hugepage);
692 pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
694 if (likely(vma->vm_flags & VM_WRITE))
695 pmd = pmd_mkwrite(pmd);
699 static inline pmd_t mk_huge_pmd(struct page *page, pgprot_t prot)
702 entry = mk_pmd(page, prot);
703 entry = pmd_mkhuge(entry);
707 static int __do_huge_pmd_anonymous_page(struct mm_struct *mm,
708 struct vm_area_struct *vma,
709 unsigned long haddr, pmd_t *pmd,
715 VM_BUG_ON(!PageCompound(page));
716 pgtable = pte_alloc_one(mm, haddr);
717 if (unlikely(!pgtable))
720 clear_huge_page(page, haddr, HPAGE_PMD_NR);
722 * The memory barrier inside __SetPageUptodate makes sure that
723 * clear_huge_page writes become visible before the set_pmd_at()
726 __SetPageUptodate(page);
728 ptl = pmd_lock(mm, pmd);
729 if (unlikely(!pmd_none(*pmd))) {
731 mem_cgroup_uncharge_page(page);
733 pte_free(mm, pgtable);
736 entry = mk_huge_pmd(page, vma->vm_page_prot);
737 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
738 page_add_new_anon_rmap(page, vma, haddr);
739 pgtable_trans_huge_deposit(mm, pmd, pgtable);
740 set_pmd_at(mm, haddr, pmd, entry);
741 add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
742 atomic_long_inc(&mm->nr_ptes);
749 static inline gfp_t alloc_hugepage_gfpmask(int defrag, gfp_t extra_gfp)
751 return (GFP_TRANSHUGE & ~(defrag ? 0 : __GFP_WAIT)) | extra_gfp;
754 static inline struct page *alloc_hugepage_vma(int defrag,
755 struct vm_area_struct *vma,
756 unsigned long haddr, int nd,
759 return alloc_pages_vma(alloc_hugepage_gfpmask(defrag, extra_gfp),
760 HPAGE_PMD_ORDER, vma, haddr, nd);
763 /* Caller must hold page table lock. */
764 static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
765 struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
766 struct page *zero_page)
771 entry = mk_pmd(zero_page, vma->vm_page_prot);
772 entry = pmd_wrprotect(entry);
773 entry = pmd_mkhuge(entry);
774 pgtable_trans_huge_deposit(mm, pmd, pgtable);
775 set_pmd_at(mm, haddr, pmd, entry);
776 atomic_long_inc(&mm->nr_ptes);
780 int do_huge_pmd_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
781 unsigned long address, pmd_t *pmd,
785 unsigned long haddr = address & HPAGE_PMD_MASK;
787 if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
788 return VM_FAULT_FALLBACK;
789 if (unlikely(anon_vma_prepare(vma)))
791 if (unlikely(khugepaged_enter(vma)))
793 if (!(flags & FAULT_FLAG_WRITE) &&
794 transparent_hugepage_use_zero_page()) {
797 struct page *zero_page;
799 pgtable = pte_alloc_one(mm, haddr);
800 if (unlikely(!pgtable))
802 zero_page = get_huge_zero_page();
803 if (unlikely(!zero_page)) {
804 pte_free(mm, pgtable);
805 count_vm_event(THP_FAULT_FALLBACK);
806 return VM_FAULT_FALLBACK;
808 ptl = pmd_lock(mm, pmd);
809 set = set_huge_zero_page(pgtable, mm, vma, haddr, pmd,
813 pte_free(mm, pgtable);
814 put_huge_zero_page();
818 page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
819 vma, haddr, numa_node_id(), 0);
820 if (unlikely(!page)) {
821 count_vm_event(THP_FAULT_FALLBACK);
822 return VM_FAULT_FALLBACK;
824 if (unlikely(mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))) {
826 count_vm_event(THP_FAULT_FALLBACK);
827 return VM_FAULT_FALLBACK;
829 if (unlikely(__do_huge_pmd_anonymous_page(mm, vma, haddr, pmd, page))) {
830 mem_cgroup_uncharge_page(page);
832 count_vm_event(THP_FAULT_FALLBACK);
833 return VM_FAULT_FALLBACK;
836 count_vm_event(THP_FAULT_ALLOC);
840 int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
841 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
842 struct vm_area_struct *vma)
844 spinlock_t *dst_ptl, *src_ptl;
845 struct page *src_page;
851 pgtable = pte_alloc_one(dst_mm, addr);
852 if (unlikely(!pgtable))
855 dst_ptl = pmd_lock(dst_mm, dst_pmd);
856 src_ptl = pmd_lockptr(src_mm, src_pmd);
857 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
861 if (unlikely(!pmd_trans_huge(pmd))) {
862 pte_free(dst_mm, pgtable);
866 * When page table lock is held, the huge zero pmd should not be
867 * under splitting since we don't split the page itself, only pmd to
870 if (is_huge_zero_pmd(pmd)) {
871 struct page *zero_page;
874 * get_huge_zero_page() will never allocate a new page here,
875 * since we already have a zero page to copy. It just takes a
878 zero_page = get_huge_zero_page();
879 set = set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
881 BUG_ON(!set); /* unexpected !pmd_none(dst_pmd) */
886 if (unlikely(pmd_trans_splitting(pmd))) {
887 /* split huge page running from under us */
888 spin_unlock(src_ptl);
889 spin_unlock(dst_ptl);
890 pte_free(dst_mm, pgtable);
892 wait_split_huge_page(vma->anon_vma, src_pmd); /* src_vma */
895 src_page = pmd_page(pmd);
896 VM_BUG_ON(!PageHead(src_page));
898 page_dup_rmap(src_page);
899 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
901 pmdp_set_wrprotect(src_mm, addr, src_pmd);
902 pmd = pmd_mkold(pmd_wrprotect(pmd));
903 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
904 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
905 atomic_long_inc(&dst_mm->nr_ptes);
909 spin_unlock(src_ptl);
910 spin_unlock(dst_ptl);
915 void huge_pmd_set_accessed(struct mm_struct *mm,
916 struct vm_area_struct *vma,
917 unsigned long address,
918 pmd_t *pmd, pmd_t orig_pmd,
925 ptl = pmd_lock(mm, pmd);
926 if (unlikely(!pmd_same(*pmd, orig_pmd)))
929 entry = pmd_mkyoung(orig_pmd);
930 haddr = address & HPAGE_PMD_MASK;
931 if (pmdp_set_access_flags(vma, haddr, pmd, entry, dirty))
932 update_mmu_cache_pmd(vma, address, pmd);
938 static int do_huge_pmd_wp_zero_page_fallback(struct mm_struct *mm,
939 struct vm_area_struct *vma, unsigned long address,
940 pmd_t *pmd, pmd_t orig_pmd, unsigned long haddr)
947 unsigned long mmun_start; /* For mmu_notifiers */
948 unsigned long mmun_end; /* For mmu_notifiers */
950 page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
956 if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL)) {
962 clear_user_highpage(page, address);
963 __SetPageUptodate(page);
966 mmun_end = haddr + HPAGE_PMD_SIZE;
967 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
969 ptl = pmd_lock(mm, pmd);
970 if (unlikely(!pmd_same(*pmd, orig_pmd)))
973 pmdp_clear_flush(vma, haddr, pmd);
974 /* leave pmd empty until pte is filled */
976 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
977 pmd_populate(mm, &_pmd, pgtable);
979 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
981 if (haddr == (address & PAGE_MASK)) {
982 entry = mk_pte(page, vma->vm_page_prot);
983 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
984 page_add_new_anon_rmap(page, vma, haddr);
986 entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
987 entry = pte_mkspecial(entry);
989 pte = pte_offset_map(&_pmd, haddr);
990 VM_BUG_ON(!pte_none(*pte));
991 set_pte_at(mm, haddr, pte, entry);
994 smp_wmb(); /* make pte visible before pmd */
995 pmd_populate(mm, pmd, pgtable);
997 put_huge_zero_page();
998 inc_mm_counter(mm, MM_ANONPAGES);
1000 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1002 ret |= VM_FAULT_WRITE;
1007 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1008 mem_cgroup_uncharge_page(page);
1013 static int do_huge_pmd_wp_page_fallback(struct mm_struct *mm,
1014 struct vm_area_struct *vma,
1015 unsigned long address,
1016 pmd_t *pmd, pmd_t orig_pmd,
1018 unsigned long haddr)
1024 struct page **pages;
1025 unsigned long mmun_start; /* For mmu_notifiers */
1026 unsigned long mmun_end; /* For mmu_notifiers */
1028 pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
1030 if (unlikely(!pages)) {
1031 ret |= VM_FAULT_OOM;
1035 for (i = 0; i < HPAGE_PMD_NR; i++) {
1036 pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE |
1038 vma, address, page_to_nid(page));
1039 if (unlikely(!pages[i] ||
1040 mem_cgroup_newpage_charge(pages[i], mm,
1044 mem_cgroup_uncharge_start();
1046 mem_cgroup_uncharge_page(pages[i]);
1049 mem_cgroup_uncharge_end();
1051 ret |= VM_FAULT_OOM;
1056 for (i = 0; i < HPAGE_PMD_NR; i++) {
1057 copy_user_highpage(pages[i], page + i,
1058 haddr + PAGE_SIZE * i, vma);
1059 __SetPageUptodate(pages[i]);
1064 mmun_end = haddr + HPAGE_PMD_SIZE;
1065 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1067 ptl = pmd_lock(mm, pmd);
1068 if (unlikely(!pmd_same(*pmd, orig_pmd)))
1069 goto out_free_pages;
1070 VM_BUG_ON(!PageHead(page));
1072 pmdp_clear_flush(vma, haddr, pmd);
1073 /* leave pmd empty until pte is filled */
1075 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1076 pmd_populate(mm, &_pmd, pgtable);
1078 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1080 entry = mk_pte(pages[i], vma->vm_page_prot);
1081 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1082 page_add_new_anon_rmap(pages[i], vma, haddr);
1083 pte = pte_offset_map(&_pmd, haddr);
1084 VM_BUG_ON(!pte_none(*pte));
1085 set_pte_at(mm, haddr, pte, entry);
1090 smp_wmb(); /* make pte visible before pmd */
1091 pmd_populate(mm, pmd, pgtable);
1092 page_remove_rmap(page);
1095 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1097 ret |= VM_FAULT_WRITE;
1105 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1106 mem_cgroup_uncharge_start();
1107 for (i = 0; i < HPAGE_PMD_NR; i++) {
1108 mem_cgroup_uncharge_page(pages[i]);
1111 mem_cgroup_uncharge_end();
1116 int do_huge_pmd_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
1117 unsigned long address, pmd_t *pmd, pmd_t orig_pmd)
1121 struct page *page = NULL, *new_page;
1122 unsigned long haddr;
1123 unsigned long mmun_start; /* For mmu_notifiers */
1124 unsigned long mmun_end; /* For mmu_notifiers */
1126 ptl = pmd_lockptr(mm, pmd);
1127 VM_BUG_ON(!vma->anon_vma);
1128 haddr = address & HPAGE_PMD_MASK;
1129 if (is_huge_zero_pmd(orig_pmd))
1132 if (unlikely(!pmd_same(*pmd, orig_pmd)))
1135 page = pmd_page(orig_pmd);
1136 VM_BUG_ON(!PageCompound(page) || !PageHead(page));
1137 if (page_mapcount(page) == 1) {
1139 entry = pmd_mkyoung(orig_pmd);
1140 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1141 if (pmdp_set_access_flags(vma, haddr, pmd, entry, 1))
1142 update_mmu_cache_pmd(vma, address, pmd);
1143 ret |= VM_FAULT_WRITE;
1149 if (transparent_hugepage_enabled(vma) &&
1150 !transparent_hugepage_debug_cow())
1151 new_page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
1152 vma, haddr, numa_node_id(), 0);
1156 if (unlikely(!new_page)) {
1158 ret = do_huge_pmd_wp_zero_page_fallback(mm, vma,
1159 address, pmd, orig_pmd, haddr);
1161 ret = do_huge_pmd_wp_page_fallback(mm, vma, address,
1162 pmd, orig_pmd, page, haddr);
1163 if (ret & VM_FAULT_OOM)
1164 split_huge_page(page);
1167 count_vm_event(THP_FAULT_FALLBACK);
1171 if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))) {
1174 split_huge_page(page);
1177 count_vm_event(THP_FAULT_FALLBACK);
1178 ret |= VM_FAULT_OOM;
1182 count_vm_event(THP_FAULT_ALLOC);
1185 clear_huge_page(new_page, haddr, HPAGE_PMD_NR);
1187 copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
1188 __SetPageUptodate(new_page);
1191 mmun_end = haddr + HPAGE_PMD_SIZE;
1192 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1197 if (unlikely(!pmd_same(*pmd, orig_pmd))) {
1199 mem_cgroup_uncharge_page(new_page);
1204 entry = mk_huge_pmd(new_page, vma->vm_page_prot);
1205 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1206 pmdp_clear_flush(vma, haddr, pmd);
1207 page_add_new_anon_rmap(new_page, vma, haddr);
1208 set_pmd_at(mm, haddr, pmd, entry);
1209 update_mmu_cache_pmd(vma, address, pmd);
1211 add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
1212 put_huge_zero_page();
1214 VM_BUG_ON(!PageHead(page));
1215 page_remove_rmap(page);
1218 ret |= VM_FAULT_WRITE;
1222 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1230 struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1235 struct mm_struct *mm = vma->vm_mm;
1236 struct page *page = NULL;
1238 assert_spin_locked(pmd_lockptr(mm, pmd));
1240 if (flags & FOLL_WRITE && !pmd_write(*pmd))
1243 /* Avoid dumping huge zero page */
1244 if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1245 return ERR_PTR(-EFAULT);
1247 /* Full NUMA hinting faults to serialise migration in fault paths */
1248 if ((flags & FOLL_NUMA) && pmd_numa(*pmd))
1251 page = pmd_page(*pmd);
1252 VM_BUG_ON(!PageHead(page));
1253 if (flags & FOLL_TOUCH) {
1256 * We should set the dirty bit only for FOLL_WRITE but
1257 * for now the dirty bit in the pmd is meaningless.
1258 * And if the dirty bit will become meaningful and
1259 * we'll only set it with FOLL_WRITE, an atomic
1260 * set_bit will be required on the pmd to set the
1261 * young bit, instead of the current set_pmd_at.
1263 _pmd = pmd_mkyoung(pmd_mkdirty(*pmd));
1264 if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
1266 update_mmu_cache_pmd(vma, addr, pmd);
1268 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1269 if (page->mapping && trylock_page(page)) {
1272 mlock_vma_page(page);
1276 page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1277 VM_BUG_ON(!PageCompound(page));
1278 if (flags & FOLL_GET)
1279 get_page_foll(page);
1285 /* NUMA hinting page fault entry point for trans huge pmds */
1286 int do_huge_pmd_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
1287 unsigned long addr, pmd_t pmd, pmd_t *pmdp)
1290 struct anon_vma *anon_vma = NULL;
1292 unsigned long haddr = addr & HPAGE_PMD_MASK;
1293 int page_nid = -1, this_nid = numa_node_id();
1294 int target_nid, last_cpupid = -1;
1296 bool migrated = false;
1299 ptl = pmd_lock(mm, pmdp);
1300 if (unlikely(!pmd_same(pmd, *pmdp)))
1304 * If there are potential migrations, wait for completion and retry
1305 * without disrupting NUMA hinting information. Do not relock and
1306 * check_same as the page may no longer be mapped.
1308 if (unlikely(pmd_trans_migrating(*pmdp))) {
1310 wait_migrate_huge_page(vma->anon_vma, pmdp);
1314 page = pmd_page(pmd);
1315 BUG_ON(is_huge_zero_page(page));
1316 page_nid = page_to_nid(page);
1317 last_cpupid = page_cpupid_last(page);
1318 count_vm_numa_event(NUMA_HINT_FAULTS);
1319 if (page_nid == this_nid) {
1320 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
1321 flags |= TNF_FAULT_LOCAL;
1325 * Avoid grouping on DSO/COW pages in specific and RO pages
1326 * in general, RO pages shouldn't hurt as much anyway since
1327 * they can be in shared cache state.
1329 if (!pmd_write(pmd))
1330 flags |= TNF_NO_GROUP;
1333 * Acquire the page lock to serialise THP migrations but avoid dropping
1334 * page_table_lock if at all possible
1336 page_locked = trylock_page(page);
1337 target_nid = mpol_misplaced(page, vma, haddr);
1338 if (target_nid == -1) {
1339 /* If the page was locked, there are no parallel migrations */
1344 /* Migration could have started since the pmd_trans_migrating check */
1347 wait_on_page_locked(page);
1353 * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
1354 * to serialises splits
1358 anon_vma = page_lock_anon_vma_read(page);
1360 /* Confirm the PMD did not change while page_table_lock was released */
1362 if (unlikely(!pmd_same(pmd, *pmdp))) {
1369 /* Bail if we fail to protect against THP splits for any reason */
1370 if (unlikely(!anon_vma)) {
1377 * Migrate the THP to the requested node, returns with page unlocked
1378 * and pmd_numa cleared.
1381 migrated = migrate_misplaced_transhuge_page(mm, vma,
1382 pmdp, pmd, addr, page, target_nid);
1384 flags |= TNF_MIGRATED;
1385 page_nid = target_nid;
1390 BUG_ON(!PageLocked(page));
1391 pmd = pmd_mknonnuma(pmd);
1392 set_pmd_at(mm, haddr, pmdp, pmd);
1393 VM_BUG_ON(pmd_numa(*pmdp));
1394 update_mmu_cache_pmd(vma, addr, pmdp);
1401 page_unlock_anon_vma_read(anon_vma);
1404 task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR, flags);
1409 int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1410 pmd_t *pmd, unsigned long addr)
1415 if (__pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
1420 * For architectures like ppc64 we look at deposited pgtable
1421 * when calling pmdp_get_and_clear. So do the
1422 * pgtable_trans_huge_withdraw after finishing pmdp related
1425 orig_pmd = pmdp_get_and_clear(tlb->mm, addr, pmd);
1426 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1427 pgtable = pgtable_trans_huge_withdraw(tlb->mm, pmd);
1428 if (is_huge_zero_pmd(orig_pmd)) {
1429 atomic_long_dec(&tlb->mm->nr_ptes);
1431 put_huge_zero_page();
1433 page = pmd_page(orig_pmd);
1434 page_remove_rmap(page);
1435 VM_BUG_ON(page_mapcount(page) < 0);
1436 add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1437 VM_BUG_ON(!PageHead(page));
1438 atomic_long_dec(&tlb->mm->nr_ptes);
1440 tlb_remove_page(tlb, page);
1442 pte_free(tlb->mm, pgtable);
1448 int mincore_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1449 unsigned long addr, unsigned long end,
1455 if (__pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
1457 * All logical pages in the range are present
1458 * if backed by a huge page.
1461 memset(vec, 1, (end - addr) >> PAGE_SHIFT);
1468 int move_huge_pmd(struct vm_area_struct *vma, struct vm_area_struct *new_vma,
1469 unsigned long old_addr,
1470 unsigned long new_addr, unsigned long old_end,
1471 pmd_t *old_pmd, pmd_t *new_pmd)
1473 spinlock_t *old_ptl, *new_ptl;
1477 struct mm_struct *mm = vma->vm_mm;
1479 if ((old_addr & ~HPAGE_PMD_MASK) ||
1480 (new_addr & ~HPAGE_PMD_MASK) ||
1481 old_end - old_addr < HPAGE_PMD_SIZE ||
1482 (new_vma->vm_flags & VM_NOHUGEPAGE))
1486 * The destination pmd shouldn't be established, free_pgtables()
1487 * should have release it.
1489 if (WARN_ON(!pmd_none(*new_pmd))) {
1490 VM_BUG_ON(pmd_trans_huge(*new_pmd));
1495 * We don't have to worry about the ordering of src and dst
1496 * ptlocks because exclusive mmap_sem prevents deadlock.
1498 ret = __pmd_trans_huge_lock(old_pmd, vma, &old_ptl);
1500 new_ptl = pmd_lockptr(mm, new_pmd);
1501 if (new_ptl != old_ptl)
1502 spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
1503 pmd = pmdp_get_and_clear(mm, old_addr, old_pmd);
1504 VM_BUG_ON(!pmd_none(*new_pmd));
1505 set_pmd_at(mm, new_addr, new_pmd, pmd_mksoft_dirty(pmd));
1506 if (new_ptl != old_ptl) {
1510 * Move preallocated PTE page table if new_pmd is on
1511 * different PMD page table.
1513 pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1514 pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
1516 spin_unlock(new_ptl);
1518 spin_unlock(old_ptl);
1526 * - 0 if PMD could not be locked
1527 * - 1 if PMD was locked but protections unchange and TLB flush unnecessary
1528 * - HPAGE_PMD_NR is protections changed and TLB flush necessary
1530 int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1531 unsigned long addr, pgprot_t newprot, int prot_numa)
1533 struct mm_struct *mm = vma->vm_mm;
1537 if (__pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
1541 entry = pmdp_get_and_clear(mm, addr, pmd);
1542 if (pmd_numa(entry))
1543 entry = pmd_mknonnuma(entry);
1544 entry = pmd_modify(entry, newprot);
1546 BUG_ON(pmd_write(entry));
1548 struct page *page = pmd_page(*pmd);
1551 * Do not trap faults against the zero page. The
1552 * read-only data is likely to be read-cached on the
1553 * local CPU cache and it is less useful to know about
1554 * local vs remote hits on the zero page.
1556 if (!is_huge_zero_page(page) &&
1559 entry = pmd_mknuma(entry);
1564 /* Set PMD if cleared earlier */
1565 if (ret == HPAGE_PMD_NR)
1566 set_pmd_at(mm, addr, pmd, entry);
1575 * Returns 1 if a given pmd maps a stable (not under splitting) thp.
1576 * Returns -1 if it maps a thp under splitting. Returns 0 otherwise.
1578 * Note that if it returns 1, this routine returns without unlocking page
1579 * table locks. So callers must unlock them.
1581 int __pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma,
1584 *ptl = pmd_lock(vma->vm_mm, pmd);
1585 if (likely(pmd_trans_huge(*pmd))) {
1586 if (unlikely(pmd_trans_splitting(*pmd))) {
1588 wait_split_huge_page(vma->anon_vma, pmd);
1591 /* Thp mapped by 'pmd' is stable, so we can
1592 * handle it as it is. */
1601 * This function returns whether a given @page is mapped onto the @address
1602 * in the virtual space of @mm.
1604 * When it's true, this function returns *pmd with holding the page table lock
1605 * and passing it back to the caller via @ptl.
1606 * If it's false, returns NULL without holding the page table lock.
1608 pmd_t *page_check_address_pmd(struct page *page,
1609 struct mm_struct *mm,
1610 unsigned long address,
1611 enum page_check_address_pmd_flag flag,
1616 if (address & ~HPAGE_PMD_MASK)
1619 pmd = mm_find_pmd(mm, address);
1622 *ptl = pmd_lock(mm, pmd);
1625 if (pmd_page(*pmd) != page)
1628 * split_vma() may create temporary aliased mappings. There is
1629 * no risk as long as all huge pmd are found and have their
1630 * splitting bit set before __split_huge_page_refcount
1631 * runs. Finding the same huge pmd more than once during the
1632 * same rmap walk is not a problem.
1634 if (flag == PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG &&
1635 pmd_trans_splitting(*pmd))
1637 if (pmd_trans_huge(*pmd)) {
1638 VM_BUG_ON(flag == PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG &&
1639 !pmd_trans_splitting(*pmd));
1647 static int __split_huge_page_splitting(struct page *page,
1648 struct vm_area_struct *vma,
1649 unsigned long address)
1651 struct mm_struct *mm = vma->vm_mm;
1655 /* For mmu_notifiers */
1656 const unsigned long mmun_start = address;
1657 const unsigned long mmun_end = address + HPAGE_PMD_SIZE;
1659 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1660 pmd = page_check_address_pmd(page, mm, address,
1661 PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG, &ptl);
1664 * We can't temporarily set the pmd to null in order
1665 * to split it, the pmd must remain marked huge at all
1666 * times or the VM won't take the pmd_trans_huge paths
1667 * and it won't wait on the anon_vma->root->rwsem to
1668 * serialize against split_huge_page*.
1670 pmdp_splitting_flush(vma, address, pmd);
1674 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1679 static void __split_huge_page_refcount(struct page *page,
1680 struct list_head *list)
1683 struct zone *zone = page_zone(page);
1684 struct lruvec *lruvec;
1687 /* prevent PageLRU to go away from under us, and freeze lru stats */
1688 spin_lock_irq(&zone->lru_lock);
1689 lruvec = mem_cgroup_page_lruvec(page, zone);
1691 compound_lock(page);
1692 /* complete memcg works before add pages to LRU */
1693 mem_cgroup_split_huge_fixup(page);
1695 for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
1696 struct page *page_tail = page + i;
1698 /* tail_page->_mapcount cannot change */
1699 BUG_ON(page_mapcount(page_tail) < 0);
1700 tail_count += page_mapcount(page_tail);
1701 /* check for overflow */
1702 BUG_ON(tail_count < 0);
1703 BUG_ON(atomic_read(&page_tail->_count) != 0);
1705 * tail_page->_count is zero and not changing from
1706 * under us. But get_page_unless_zero() may be running
1707 * from under us on the tail_page. If we used
1708 * atomic_set() below instead of atomic_add(), we
1709 * would then run atomic_set() concurrently with
1710 * get_page_unless_zero(), and atomic_set() is
1711 * implemented in C not using locked ops. spin_unlock
1712 * on x86 sometime uses locked ops because of PPro
1713 * errata 66, 92, so unless somebody can guarantee
1714 * atomic_set() here would be safe on all archs (and
1715 * not only on x86), it's safer to use atomic_add().
1717 atomic_add(page_mapcount(page) + page_mapcount(page_tail) + 1,
1718 &page_tail->_count);
1720 /* after clearing PageTail the gup refcount can be released */
1724 * retain hwpoison flag of the poisoned tail page:
1725 * fix for the unsuitable process killed on Guest Machine(KVM)
1726 * by the memory-failure.
1728 page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP | __PG_HWPOISON;
1729 page_tail->flags |= (page->flags &
1730 ((1L << PG_referenced) |
1731 (1L << PG_swapbacked) |
1732 (1L << PG_mlocked) |
1733 (1L << PG_uptodate) |
1735 (1L << PG_unevictable)));
1736 page_tail->flags |= (1L << PG_dirty);
1738 /* clear PageTail before overwriting first_page */
1742 * __split_huge_page_splitting() already set the
1743 * splitting bit in all pmd that could map this
1744 * hugepage, that will ensure no CPU can alter the
1745 * mapcount on the head page. The mapcount is only
1746 * accounted in the head page and it has to be
1747 * transferred to all tail pages in the below code. So
1748 * for this code to be safe, the split the mapcount
1749 * can't change. But that doesn't mean userland can't
1750 * keep changing and reading the page contents while
1751 * we transfer the mapcount, so the pmd splitting
1752 * status is achieved setting a reserved bit in the
1753 * pmd, not by clearing the present bit.
1755 page_tail->_mapcount = page->_mapcount;
1757 BUG_ON(page_tail->mapping);
1758 page_tail->mapping = page->mapping;
1760 page_tail->index = page->index + i;
1761 page_cpupid_xchg_last(page_tail, page_cpupid_last(page));
1763 BUG_ON(!PageAnon(page_tail));
1764 BUG_ON(!PageUptodate(page_tail));
1765 BUG_ON(!PageDirty(page_tail));
1766 BUG_ON(!PageSwapBacked(page_tail));
1768 lru_add_page_tail(page, page_tail, lruvec, list);
1770 atomic_sub(tail_count, &page->_count);
1771 BUG_ON(atomic_read(&page->_count) <= 0);
1773 __mod_zone_page_state(zone, NR_ANON_TRANSPARENT_HUGEPAGES, -1);
1775 ClearPageCompound(page);
1776 compound_unlock(page);
1777 spin_unlock_irq(&zone->lru_lock);
1779 for (i = 1; i < HPAGE_PMD_NR; i++) {
1780 struct page *page_tail = page + i;
1781 BUG_ON(page_count(page_tail) <= 0);
1783 * Tail pages may be freed if there wasn't any mapping
1784 * like if add_to_swap() is running on a lru page that
1785 * had its mapping zapped. And freeing these pages
1786 * requires taking the lru_lock so we do the put_page
1787 * of the tail pages after the split is complete.
1789 put_page(page_tail);
1793 * Only the head page (now become a regular page) is required
1794 * to be pinned by the caller.
1796 BUG_ON(page_count(page) <= 0);
1799 static int __split_huge_page_map(struct page *page,
1800 struct vm_area_struct *vma,
1801 unsigned long address)
1803 struct mm_struct *mm = vma->vm_mm;
1808 unsigned long haddr;
1810 pmd = page_check_address_pmd(page, mm, address,
1811 PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG, &ptl);
1813 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1814 pmd_populate(mm, &_pmd, pgtable);
1817 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1819 BUG_ON(PageCompound(page+i));
1820 entry = mk_pte(page + i, vma->vm_page_prot);
1821 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1822 if (!pmd_write(*pmd))
1823 entry = pte_wrprotect(entry);
1825 BUG_ON(page_mapcount(page) != 1);
1826 if (!pmd_young(*pmd))
1827 entry = pte_mkold(entry);
1829 entry = pte_mknuma(entry);
1830 pte = pte_offset_map(&_pmd, haddr);
1831 BUG_ON(!pte_none(*pte));
1832 set_pte_at(mm, haddr, pte, entry);
1836 smp_wmb(); /* make pte visible before pmd */
1838 * Up to this point the pmd is present and huge and
1839 * userland has the whole access to the hugepage
1840 * during the split (which happens in place). If we
1841 * overwrite the pmd with the not-huge version
1842 * pointing to the pte here (which of course we could
1843 * if all CPUs were bug free), userland could trigger
1844 * a small page size TLB miss on the small sized TLB
1845 * while the hugepage TLB entry is still established
1846 * in the huge TLB. Some CPU doesn't like that. See
1847 * http://support.amd.com/us/Processor_TechDocs/41322.pdf,
1848 * Erratum 383 on page 93. Intel should be safe but is
1849 * also warns that it's only safe if the permission
1850 * and cache attributes of the two entries loaded in
1851 * the two TLB is identical (which should be the case
1852 * here). But it is generally safer to never allow
1853 * small and huge TLB entries for the same virtual
1854 * address to be loaded simultaneously. So instead of
1855 * doing "pmd_populate(); flush_tlb_range();" we first
1856 * mark the current pmd notpresent (atomically because
1857 * here the pmd_trans_huge and pmd_trans_splitting
1858 * must remain set at all times on the pmd until the
1859 * split is complete for this pmd), then we flush the
1860 * SMP TLB and finally we write the non-huge version
1861 * of the pmd entry with pmd_populate.
1863 pmdp_invalidate(vma, address, pmd);
1864 pmd_populate(mm, pmd, pgtable);
1872 /* must be called with anon_vma->root->rwsem held */
1873 static void __split_huge_page(struct page *page,
1874 struct anon_vma *anon_vma,
1875 struct list_head *list)
1877 int mapcount, mapcount2;
1878 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1879 struct anon_vma_chain *avc;
1881 BUG_ON(!PageHead(page));
1882 BUG_ON(PageTail(page));
1885 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
1886 struct vm_area_struct *vma = avc->vma;
1887 unsigned long addr = vma_address(page, vma);
1888 BUG_ON(is_vma_temporary_stack(vma));
1889 mapcount += __split_huge_page_splitting(page, vma, addr);
1892 * It is critical that new vmas are added to the tail of the
1893 * anon_vma list. This guarantes that if copy_huge_pmd() runs
1894 * and establishes a child pmd before
1895 * __split_huge_page_splitting() freezes the parent pmd (so if
1896 * we fail to prevent copy_huge_pmd() from running until the
1897 * whole __split_huge_page() is complete), we will still see
1898 * the newly established pmd of the child later during the
1899 * walk, to be able to set it as pmd_trans_splitting too.
1901 if (mapcount != page_mapcount(page))
1902 printk(KERN_ERR "mapcount %d page_mapcount %d\n",
1903 mapcount, page_mapcount(page));
1904 BUG_ON(mapcount != page_mapcount(page));
1906 __split_huge_page_refcount(page, list);
1909 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
1910 struct vm_area_struct *vma = avc->vma;
1911 unsigned long addr = vma_address(page, vma);
1912 BUG_ON(is_vma_temporary_stack(vma));
1913 mapcount2 += __split_huge_page_map(page, vma, addr);
1915 if (mapcount != mapcount2)
1916 printk(KERN_ERR "mapcount %d mapcount2 %d page_mapcount %d\n",
1917 mapcount, mapcount2, page_mapcount(page));
1918 BUG_ON(mapcount != mapcount2);
1922 * Split a hugepage into normal pages. This doesn't change the position of head
1923 * page. If @list is null, tail pages will be added to LRU list, otherwise, to
1924 * @list. Both head page and tail pages will inherit mapping, flags, and so on
1925 * from the hugepage.
1926 * Return 0 if the hugepage is split successfully otherwise return 1.
1928 int split_huge_page_to_list(struct page *page, struct list_head *list)
1930 struct anon_vma *anon_vma;
1933 BUG_ON(is_huge_zero_page(page));
1934 BUG_ON(!PageAnon(page));
1937 * The caller does not necessarily hold an mmap_sem that would prevent
1938 * the anon_vma disappearing so we first we take a reference to it
1939 * and then lock the anon_vma for write. This is similar to
1940 * page_lock_anon_vma_read except the write lock is taken to serialise
1941 * against parallel split or collapse operations.
1943 anon_vma = page_get_anon_vma(page);
1946 anon_vma_lock_write(anon_vma);
1949 if (!PageCompound(page))
1952 BUG_ON(!PageSwapBacked(page));
1953 __split_huge_page(page, anon_vma, list);
1954 count_vm_event(THP_SPLIT);
1956 BUG_ON(PageCompound(page));
1958 anon_vma_unlock_write(anon_vma);
1959 put_anon_vma(anon_vma);
1964 #define VM_NO_THP (VM_SPECIAL|VM_MIXEDMAP|VM_HUGETLB|VM_SHARED|VM_MAYSHARE)
1966 int hugepage_madvise(struct vm_area_struct *vma,
1967 unsigned long *vm_flags, int advice)
1969 struct mm_struct *mm = vma->vm_mm;
1974 * Be somewhat over-protective like KSM for now!
1976 if (*vm_flags & (VM_HUGEPAGE | VM_NO_THP))
1978 if (mm->def_flags & VM_NOHUGEPAGE)
1980 *vm_flags &= ~VM_NOHUGEPAGE;
1981 *vm_flags |= VM_HUGEPAGE;
1983 * If the vma become good for khugepaged to scan,
1984 * register it here without waiting a page fault that
1985 * may not happen any time soon.
1987 if (unlikely(khugepaged_enter_vma_merge(vma)))
1990 case MADV_NOHUGEPAGE:
1992 * Be somewhat over-protective like KSM for now!
1994 if (*vm_flags & (VM_NOHUGEPAGE | VM_NO_THP))
1996 *vm_flags &= ~VM_HUGEPAGE;
1997 *vm_flags |= VM_NOHUGEPAGE;
1999 * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
2000 * this vma even if we leave the mm registered in khugepaged if
2001 * it got registered before VM_NOHUGEPAGE was set.
2009 static int __init khugepaged_slab_init(void)
2011 mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
2012 sizeof(struct mm_slot),
2013 __alignof__(struct mm_slot), 0, NULL);
2020 static inline struct mm_slot *alloc_mm_slot(void)
2022 if (!mm_slot_cache) /* initialization failed */
2024 return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
2027 static inline void free_mm_slot(struct mm_slot *mm_slot)
2029 kmem_cache_free(mm_slot_cache, mm_slot);
2032 static struct mm_slot *get_mm_slot(struct mm_struct *mm)
2034 struct mm_slot *mm_slot;
2036 hash_for_each_possible(mm_slots_hash, mm_slot, hash, (unsigned long)mm)
2037 if (mm == mm_slot->mm)
2043 static void insert_to_mm_slots_hash(struct mm_struct *mm,
2044 struct mm_slot *mm_slot)
2047 hash_add(mm_slots_hash, &mm_slot->hash, (long)mm);
2050 static inline int khugepaged_test_exit(struct mm_struct *mm)
2052 return atomic_read(&mm->mm_users) == 0;
2055 int __khugepaged_enter(struct mm_struct *mm)
2057 struct mm_slot *mm_slot;
2060 mm_slot = alloc_mm_slot();
2064 /* __khugepaged_exit() must not run from under us */
2065 VM_BUG_ON(khugepaged_test_exit(mm));
2066 if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
2067 free_mm_slot(mm_slot);
2071 spin_lock(&khugepaged_mm_lock);
2072 insert_to_mm_slots_hash(mm, mm_slot);
2074 * Insert just behind the scanning cursor, to let the area settle
2077 wakeup = list_empty(&khugepaged_scan.mm_head);
2078 list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
2079 spin_unlock(&khugepaged_mm_lock);
2081 atomic_inc(&mm->mm_count);
2083 wake_up_interruptible(&khugepaged_wait);
2088 int khugepaged_enter_vma_merge(struct vm_area_struct *vma)
2090 unsigned long hstart, hend;
2093 * Not yet faulted in so we will register later in the
2094 * page fault if needed.
2098 /* khugepaged not yet working on file or special mappings */
2100 VM_BUG_ON(vma->vm_flags & VM_NO_THP);
2101 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2102 hend = vma->vm_end & HPAGE_PMD_MASK;
2104 return khugepaged_enter(vma);
2108 void __khugepaged_exit(struct mm_struct *mm)
2110 struct mm_slot *mm_slot;
2113 spin_lock(&khugepaged_mm_lock);
2114 mm_slot = get_mm_slot(mm);
2115 if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
2116 hash_del(&mm_slot->hash);
2117 list_del(&mm_slot->mm_node);
2120 spin_unlock(&khugepaged_mm_lock);
2123 clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
2124 free_mm_slot(mm_slot);
2126 } else if (mm_slot) {
2128 * This is required to serialize against
2129 * khugepaged_test_exit() (which is guaranteed to run
2130 * under mmap sem read mode). Stop here (after we
2131 * return all pagetables will be destroyed) until
2132 * khugepaged has finished working on the pagetables
2133 * under the mmap_sem.
2135 down_write(&mm->mmap_sem);
2136 up_write(&mm->mmap_sem);
2140 static void release_pte_page(struct page *page)
2142 /* 0 stands for page_is_file_cache(page) == false */
2143 dec_zone_page_state(page, NR_ISOLATED_ANON + 0);
2145 putback_lru_page(page);
2148 static void release_pte_pages(pte_t *pte, pte_t *_pte)
2150 while (--_pte >= pte) {
2151 pte_t pteval = *_pte;
2152 if (!pte_none(pteval))
2153 release_pte_page(pte_page(pteval));
2157 static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
2158 unsigned long address,
2163 int referenced = 0, none = 0;
2164 for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
2165 _pte++, address += PAGE_SIZE) {
2166 pte_t pteval = *_pte;
2167 if (pte_none(pteval)) {
2168 if (++none <= khugepaged_max_ptes_none)
2173 if (!pte_present(pteval) || !pte_write(pteval))
2175 page = vm_normal_page(vma, address, pteval);
2176 if (unlikely(!page))
2179 VM_BUG_ON(PageCompound(page));
2180 BUG_ON(!PageAnon(page));
2181 VM_BUG_ON(!PageSwapBacked(page));
2183 /* cannot use mapcount: can't collapse if there's a gup pin */
2184 if (page_count(page) != 1)
2187 * We can do it before isolate_lru_page because the
2188 * page can't be freed from under us. NOTE: PG_lock
2189 * is needed to serialize against split_huge_page
2190 * when invoked from the VM.
2192 if (!trylock_page(page))
2195 * Isolate the page to avoid collapsing an hugepage
2196 * currently in use by the VM.
2198 if (isolate_lru_page(page)) {
2202 /* 0 stands for page_is_file_cache(page) == false */
2203 inc_zone_page_state(page, NR_ISOLATED_ANON + 0);
2204 VM_BUG_ON(!PageLocked(page));
2205 VM_BUG_ON(PageLRU(page));
2207 /* If there is no mapped pte young don't collapse the page */
2208 if (pte_young(pteval) || PageReferenced(page) ||
2209 mmu_notifier_test_young(vma->vm_mm, address))
2212 if (likely(referenced))
2215 release_pte_pages(pte, _pte);
2219 static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
2220 struct vm_area_struct *vma,
2221 unsigned long address,
2225 for (_pte = pte; _pte < pte+HPAGE_PMD_NR; _pte++) {
2226 pte_t pteval = *_pte;
2227 struct page *src_page;
2229 if (pte_none(pteval)) {
2230 clear_user_highpage(page, address);
2231 add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
2233 src_page = pte_page(pteval);
2234 copy_user_highpage(page, src_page, address, vma);
2235 VM_BUG_ON(page_mapcount(src_page) != 1);
2236 release_pte_page(src_page);
2238 * ptl mostly unnecessary, but preempt has to
2239 * be disabled to update the per-cpu stats
2240 * inside page_remove_rmap().
2244 * paravirt calls inside pte_clear here are
2247 pte_clear(vma->vm_mm, address, _pte);
2248 page_remove_rmap(src_page);
2250 free_page_and_swap_cache(src_page);
2253 address += PAGE_SIZE;
2258 static void khugepaged_alloc_sleep(void)
2260 wait_event_freezable_timeout(khugepaged_wait, false,
2261 msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
2264 static int khugepaged_node_load[MAX_NUMNODES];
2267 static int khugepaged_find_target_node(void)
2269 static int last_khugepaged_target_node = NUMA_NO_NODE;
2270 int nid, target_node = 0, max_value = 0;
2272 /* find first node with max normal pages hit */
2273 for (nid = 0; nid < MAX_NUMNODES; nid++)
2274 if (khugepaged_node_load[nid] > max_value) {
2275 max_value = khugepaged_node_load[nid];
2279 /* do some balance if several nodes have the same hit record */
2280 if (target_node <= last_khugepaged_target_node)
2281 for (nid = last_khugepaged_target_node + 1; nid < MAX_NUMNODES;
2283 if (max_value == khugepaged_node_load[nid]) {
2288 last_khugepaged_target_node = target_node;
2292 static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
2294 if (IS_ERR(*hpage)) {
2300 khugepaged_alloc_sleep();
2301 } else if (*hpage) {
2310 *khugepaged_alloc_page(struct page **hpage, struct mm_struct *mm,
2311 struct vm_area_struct *vma, unsigned long address,
2316 * Allocate the page while the vma is still valid and under
2317 * the mmap_sem read mode so there is no memory allocation
2318 * later when we take the mmap_sem in write mode. This is more
2319 * friendly behavior (OTOH it may actually hide bugs) to
2320 * filesystems in userland with daemons allocating memory in
2321 * the userland I/O paths. Allocating memory with the
2322 * mmap_sem in read mode is good idea also to allow greater
2325 *hpage = alloc_pages_exact_node(node, alloc_hugepage_gfpmask(
2326 khugepaged_defrag(), __GFP_OTHER_NODE), HPAGE_PMD_ORDER);
2328 * After allocating the hugepage, release the mmap_sem read lock in
2329 * preparation for taking it in write mode.
2331 up_read(&mm->mmap_sem);
2332 if (unlikely(!*hpage)) {
2333 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
2334 *hpage = ERR_PTR(-ENOMEM);
2338 count_vm_event(THP_COLLAPSE_ALLOC);
2342 static int khugepaged_find_target_node(void)
2347 static inline struct page *alloc_hugepage(int defrag)
2349 return alloc_pages(alloc_hugepage_gfpmask(defrag, 0),
2353 static struct page *khugepaged_alloc_hugepage(bool *wait)
2358 hpage = alloc_hugepage(khugepaged_defrag());
2360 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
2365 khugepaged_alloc_sleep();
2367 count_vm_event(THP_COLLAPSE_ALLOC);
2368 } while (unlikely(!hpage) && likely(khugepaged_enabled()));
2373 static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
2376 *hpage = khugepaged_alloc_hugepage(wait);
2378 if (unlikely(!*hpage))
2385 *khugepaged_alloc_page(struct page **hpage, struct mm_struct *mm,
2386 struct vm_area_struct *vma, unsigned long address,
2389 up_read(&mm->mmap_sem);
2395 static bool hugepage_vma_check(struct vm_area_struct *vma)
2397 if ((!(vma->vm_flags & VM_HUGEPAGE) && !khugepaged_always()) ||
2398 (vma->vm_flags & VM_NOHUGEPAGE))
2401 if (!vma->anon_vma || vma->vm_ops)
2403 if (is_vma_temporary_stack(vma))
2405 VM_BUG_ON(vma->vm_flags & VM_NO_THP);
2409 static void collapse_huge_page(struct mm_struct *mm,
2410 unsigned long address,
2411 struct page **hpage,
2412 struct vm_area_struct *vma,
2418 struct page *new_page;
2419 spinlock_t *pmd_ptl, *pte_ptl;
2421 unsigned long hstart, hend;
2422 unsigned long mmun_start; /* For mmu_notifiers */
2423 unsigned long mmun_end; /* For mmu_notifiers */
2425 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
2427 /* release the mmap_sem read lock. */
2428 new_page = khugepaged_alloc_page(hpage, mm, vma, address, node);
2432 if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL)))
2436 * Prevent all access to pagetables with the exception of
2437 * gup_fast later hanlded by the ptep_clear_flush and the VM
2438 * handled by the anon_vma lock + PG_lock.
2440 down_write(&mm->mmap_sem);
2441 if (unlikely(khugepaged_test_exit(mm)))
2444 vma = find_vma(mm, address);
2447 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2448 hend = vma->vm_end & HPAGE_PMD_MASK;
2449 if (address < hstart || address + HPAGE_PMD_SIZE > hend)
2451 if (!hugepage_vma_check(vma))
2453 pmd = mm_find_pmd(mm, address);
2456 if (pmd_trans_huge(*pmd))
2459 anon_vma_lock_write(vma->anon_vma);
2461 pte = pte_offset_map(pmd, address);
2462 pte_ptl = pte_lockptr(mm, pmd);
2464 mmun_start = address;
2465 mmun_end = address + HPAGE_PMD_SIZE;
2466 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2467 pmd_ptl = pmd_lock(mm, pmd); /* probably unnecessary */
2469 * After this gup_fast can't run anymore. This also removes
2470 * any huge TLB entry from the CPU so we won't allow
2471 * huge and small TLB entries for the same virtual address
2472 * to avoid the risk of CPU bugs in that area.
2474 _pmd = pmdp_clear_flush(vma, address, pmd);
2475 spin_unlock(pmd_ptl);
2476 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2479 isolated = __collapse_huge_page_isolate(vma, address, pte);
2480 spin_unlock(pte_ptl);
2482 if (unlikely(!isolated)) {
2485 BUG_ON(!pmd_none(*pmd));
2487 * We can only use set_pmd_at when establishing
2488 * hugepmds and never for establishing regular pmds that
2489 * points to regular pagetables. Use pmd_populate for that
2491 pmd_populate(mm, pmd, pmd_pgtable(_pmd));
2492 spin_unlock(pmd_ptl);
2493 anon_vma_unlock_write(vma->anon_vma);
2498 * All pages are isolated and locked so anon_vma rmap
2499 * can't run anymore.
2501 anon_vma_unlock_write(vma->anon_vma);
2503 __collapse_huge_page_copy(pte, new_page, vma, address, pte_ptl);
2505 __SetPageUptodate(new_page);
2506 pgtable = pmd_pgtable(_pmd);
2508 _pmd = mk_huge_pmd(new_page, vma->vm_page_prot);
2509 _pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
2512 * spin_lock() below is not the equivalent of smp_wmb(), so
2513 * this is needed to avoid the copy_huge_page writes to become
2514 * visible after the set_pmd_at() write.
2519 BUG_ON(!pmd_none(*pmd));
2520 page_add_new_anon_rmap(new_page, vma, address);
2521 pgtable_trans_huge_deposit(mm, pmd, pgtable);
2522 set_pmd_at(mm, address, pmd, _pmd);
2523 update_mmu_cache_pmd(vma, address, pmd);
2524 spin_unlock(pmd_ptl);
2528 khugepaged_pages_collapsed++;
2530 up_write(&mm->mmap_sem);
2534 mem_cgroup_uncharge_page(new_page);
2538 static int khugepaged_scan_pmd(struct mm_struct *mm,
2539 struct vm_area_struct *vma,
2540 unsigned long address,
2541 struct page **hpage)
2545 int ret = 0, referenced = 0, none = 0;
2547 unsigned long _address;
2549 int node = NUMA_NO_NODE;
2551 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
2553 pmd = mm_find_pmd(mm, address);
2556 if (pmd_trans_huge(*pmd))
2559 memset(khugepaged_node_load, 0, sizeof(khugepaged_node_load));
2560 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2561 for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
2562 _pte++, _address += PAGE_SIZE) {
2563 pte_t pteval = *_pte;
2564 if (pte_none(pteval)) {
2565 if (++none <= khugepaged_max_ptes_none)
2570 if (!pte_present(pteval) || !pte_write(pteval))
2572 page = vm_normal_page(vma, _address, pteval);
2573 if (unlikely(!page))
2576 * Record which node the original page is from and save this
2577 * information to khugepaged_node_load[].
2578 * Khupaged will allocate hugepage from the node has the max
2581 node = page_to_nid(page);
2582 khugepaged_node_load[node]++;
2583 VM_BUG_ON(PageCompound(page));
2584 if (!PageLRU(page) || PageLocked(page) || !PageAnon(page))
2586 /* cannot use mapcount: can't collapse if there's a gup pin */
2587 if (page_count(page) != 1)
2589 if (pte_young(pteval) || PageReferenced(page) ||
2590 mmu_notifier_test_young(vma->vm_mm, address))
2596 pte_unmap_unlock(pte, ptl);
2598 node = khugepaged_find_target_node();
2599 /* collapse_huge_page will return with the mmap_sem released */
2600 collapse_huge_page(mm, address, hpage, vma, node);
2606 static void collect_mm_slot(struct mm_slot *mm_slot)
2608 struct mm_struct *mm = mm_slot->mm;
2610 VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
2612 if (khugepaged_test_exit(mm)) {
2614 hash_del(&mm_slot->hash);
2615 list_del(&mm_slot->mm_node);
2618 * Not strictly needed because the mm exited already.
2620 * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
2623 /* khugepaged_mm_lock actually not necessary for the below */
2624 free_mm_slot(mm_slot);
2629 static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
2630 struct page **hpage)
2631 __releases(&khugepaged_mm_lock)
2632 __acquires(&khugepaged_mm_lock)
2634 struct mm_slot *mm_slot;
2635 struct mm_struct *mm;
2636 struct vm_area_struct *vma;
2640 VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
2642 if (khugepaged_scan.mm_slot)
2643 mm_slot = khugepaged_scan.mm_slot;
2645 mm_slot = list_entry(khugepaged_scan.mm_head.next,
2646 struct mm_slot, mm_node);
2647 khugepaged_scan.address = 0;
2648 khugepaged_scan.mm_slot = mm_slot;
2650 spin_unlock(&khugepaged_mm_lock);
2653 down_read(&mm->mmap_sem);
2654 if (unlikely(khugepaged_test_exit(mm)))
2657 vma = find_vma(mm, khugepaged_scan.address);
2660 for (; vma; vma = vma->vm_next) {
2661 unsigned long hstart, hend;
2664 if (unlikely(khugepaged_test_exit(mm))) {
2668 if (!hugepage_vma_check(vma)) {
2673 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2674 hend = vma->vm_end & HPAGE_PMD_MASK;
2677 if (khugepaged_scan.address > hend)
2679 if (khugepaged_scan.address < hstart)
2680 khugepaged_scan.address = hstart;
2681 VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
2683 while (khugepaged_scan.address < hend) {
2686 if (unlikely(khugepaged_test_exit(mm)))
2687 goto breakouterloop;
2689 VM_BUG_ON(khugepaged_scan.address < hstart ||
2690 khugepaged_scan.address + HPAGE_PMD_SIZE >
2692 ret = khugepaged_scan_pmd(mm, vma,
2693 khugepaged_scan.address,
2695 /* move to next address */
2696 khugepaged_scan.address += HPAGE_PMD_SIZE;
2697 progress += HPAGE_PMD_NR;
2699 /* we released mmap_sem so break loop */
2700 goto breakouterloop_mmap_sem;
2701 if (progress >= pages)
2702 goto breakouterloop;
2706 up_read(&mm->mmap_sem); /* exit_mmap will destroy ptes after this */
2707 breakouterloop_mmap_sem:
2709 spin_lock(&khugepaged_mm_lock);
2710 VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
2712 * Release the current mm_slot if this mm is about to die, or
2713 * if we scanned all vmas of this mm.
2715 if (khugepaged_test_exit(mm) || !vma) {
2717 * Make sure that if mm_users is reaching zero while
2718 * khugepaged runs here, khugepaged_exit will find
2719 * mm_slot not pointing to the exiting mm.
2721 if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
2722 khugepaged_scan.mm_slot = list_entry(
2723 mm_slot->mm_node.next,
2724 struct mm_slot, mm_node);
2725 khugepaged_scan.address = 0;
2727 khugepaged_scan.mm_slot = NULL;
2728 khugepaged_full_scans++;
2731 collect_mm_slot(mm_slot);
2737 static int khugepaged_has_work(void)
2739 return !list_empty(&khugepaged_scan.mm_head) &&
2740 khugepaged_enabled();
2743 static int khugepaged_wait_event(void)
2745 return !list_empty(&khugepaged_scan.mm_head) ||
2746 kthread_should_stop();
2749 static void khugepaged_do_scan(void)
2751 struct page *hpage = NULL;
2752 unsigned int progress = 0, pass_through_head = 0;
2753 unsigned int pages = khugepaged_pages_to_scan;
2756 barrier(); /* write khugepaged_pages_to_scan to local stack */
2758 while (progress < pages) {
2759 if (!khugepaged_prealloc_page(&hpage, &wait))
2764 if (unlikely(kthread_should_stop() || freezing(current)))
2767 spin_lock(&khugepaged_mm_lock);
2768 if (!khugepaged_scan.mm_slot)
2769 pass_through_head++;
2770 if (khugepaged_has_work() &&
2771 pass_through_head < 2)
2772 progress += khugepaged_scan_mm_slot(pages - progress,
2776 spin_unlock(&khugepaged_mm_lock);
2779 if (!IS_ERR_OR_NULL(hpage))
2783 static void khugepaged_wait_work(void)
2787 if (khugepaged_has_work()) {
2788 if (!khugepaged_scan_sleep_millisecs)
2791 wait_event_freezable_timeout(khugepaged_wait,
2792 kthread_should_stop(),
2793 msecs_to_jiffies(khugepaged_scan_sleep_millisecs));
2797 if (khugepaged_enabled())
2798 wait_event_freezable(khugepaged_wait, khugepaged_wait_event());
2801 static int khugepaged(void *none)
2803 struct mm_slot *mm_slot;
2806 set_user_nice(current, 19);
2808 while (!kthread_should_stop()) {
2809 khugepaged_do_scan();
2810 khugepaged_wait_work();
2813 spin_lock(&khugepaged_mm_lock);
2814 mm_slot = khugepaged_scan.mm_slot;
2815 khugepaged_scan.mm_slot = NULL;
2817 collect_mm_slot(mm_slot);
2818 spin_unlock(&khugepaged_mm_lock);
2822 static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
2823 unsigned long haddr, pmd_t *pmd)
2825 struct mm_struct *mm = vma->vm_mm;
2830 pmdp_clear_flush(vma, haddr, pmd);
2831 /* leave pmd empty until pte is filled */
2833 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2834 pmd_populate(mm, &_pmd, pgtable);
2836 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
2838 entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
2839 entry = pte_mkspecial(entry);
2840 pte = pte_offset_map(&_pmd, haddr);
2841 VM_BUG_ON(!pte_none(*pte));
2842 set_pte_at(mm, haddr, pte, entry);
2845 smp_wmb(); /* make pte visible before pmd */
2846 pmd_populate(mm, pmd, pgtable);
2847 put_huge_zero_page();
2850 void __split_huge_page_pmd(struct vm_area_struct *vma, unsigned long address,
2855 struct mm_struct *mm = vma->vm_mm;
2856 unsigned long haddr = address & HPAGE_PMD_MASK;
2857 unsigned long mmun_start; /* For mmu_notifiers */
2858 unsigned long mmun_end; /* For mmu_notifiers */
2860 BUG_ON(vma->vm_start > haddr || vma->vm_end < haddr + HPAGE_PMD_SIZE);
2863 mmun_end = haddr + HPAGE_PMD_SIZE;
2865 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2866 ptl = pmd_lock(mm, pmd);
2867 if (unlikely(!pmd_trans_huge(*pmd))) {
2869 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2872 if (is_huge_zero_pmd(*pmd)) {
2873 __split_huge_zero_page_pmd(vma, haddr, pmd);
2875 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2878 page = pmd_page(*pmd);
2879 VM_BUG_ON(!page_count(page));
2882 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2884 split_huge_page(page);
2889 * We don't always have down_write of mmap_sem here: a racing
2890 * do_huge_pmd_wp_page() might have copied-on-write to another
2891 * huge page before our split_huge_page() got the anon_vma lock.
2893 if (unlikely(pmd_trans_huge(*pmd)))
2897 void split_huge_page_pmd_mm(struct mm_struct *mm, unsigned long address,
2900 struct vm_area_struct *vma;
2902 vma = find_vma(mm, address);
2903 BUG_ON(vma == NULL);
2904 split_huge_page_pmd(vma, address, pmd);
2907 static void split_huge_page_address(struct mm_struct *mm,
2908 unsigned long address)
2912 VM_BUG_ON(!(address & ~HPAGE_PMD_MASK));
2914 pmd = mm_find_pmd(mm, address);
2918 * Caller holds the mmap_sem write mode, so a huge pmd cannot
2919 * materialize from under us.
2921 split_huge_page_pmd_mm(mm, address, pmd);
2924 void __vma_adjust_trans_huge(struct vm_area_struct *vma,
2925 unsigned long start,
2930 * If the new start address isn't hpage aligned and it could
2931 * previously contain an hugepage: check if we need to split
2934 if (start & ~HPAGE_PMD_MASK &&
2935 (start & HPAGE_PMD_MASK) >= vma->vm_start &&
2936 (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2937 split_huge_page_address(vma->vm_mm, start);
2940 * If the new end address isn't hpage aligned and it could
2941 * previously contain an hugepage: check if we need to split
2944 if (end & ~HPAGE_PMD_MASK &&
2945 (end & HPAGE_PMD_MASK) >= vma->vm_start &&
2946 (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2947 split_huge_page_address(vma->vm_mm, end);
2950 * If we're also updating the vma->vm_next->vm_start, if the new
2951 * vm_next->vm_start isn't page aligned and it could previously
2952 * contain an hugepage: check if we need to split an huge pmd.
2954 if (adjust_next > 0) {
2955 struct vm_area_struct *next = vma->vm_next;
2956 unsigned long nstart = next->vm_start;
2957 nstart += adjust_next << PAGE_SHIFT;
2958 if (nstart & ~HPAGE_PMD_MASK &&
2959 (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
2960 (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
2961 split_huge_page_address(next->vm_mm, nstart);