ath10k: avoid possible string overflow
[platform/kernel/linux-exynos.git] / mm / huge_memory.c
1 /*
2  *  Copyright (C) 2009  Red Hat, Inc.
3  *
4  *  This work is licensed under the terms of the GNU GPL, version 2. See
5  *  the COPYING file in the top-level directory.
6  */
7
8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9
10 #include <linux/mm.h>
11 #include <linux/sched.h>
12 #include <linux/sched/coredump.h>
13 #include <linux/sched/numa_balancing.h>
14 #include <linux/highmem.h>
15 #include <linux/hugetlb.h>
16 #include <linux/mmu_notifier.h>
17 #include <linux/rmap.h>
18 #include <linux/swap.h>
19 #include <linux/shrinker.h>
20 #include <linux/mm_inline.h>
21 #include <linux/swapops.h>
22 #include <linux/dax.h>
23 #include <linux/khugepaged.h>
24 #include <linux/freezer.h>
25 #include <linux/pfn_t.h>
26 #include <linux/mman.h>
27 #include <linux/memremap.h>
28 #include <linux/pagemap.h>
29 #include <linux/debugfs.h>
30 #include <linux/migrate.h>
31 #include <linux/hashtable.h>
32 #include <linux/userfaultfd_k.h>
33 #include <linux/page_idle.h>
34 #include <linux/shmem_fs.h>
35 #include <linux/oom.h>
36
37 #include <asm/tlb.h>
38 #include <asm/pgalloc.h>
39 #include "internal.h"
40
41 /*
42  * By default transparent hugepage support is disabled in order that avoid
43  * to risk increase the memory footprint of applications without a guaranteed
44  * benefit. When transparent hugepage support is enabled, is for all mappings,
45  * and khugepaged scans all mappings.
46  * Defrag is invoked by khugepaged hugepage allocations and by page faults
47  * for all hugepage allocations.
48  */
49 unsigned long transparent_hugepage_flags __read_mostly =
50 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
51         (1<<TRANSPARENT_HUGEPAGE_FLAG)|
52 #endif
53 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
54         (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
55 #endif
56         (1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
57         (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
58         (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
59
60 static struct shrinker deferred_split_shrinker;
61
62 static atomic_t huge_zero_refcount;
63 struct page *huge_zero_page __read_mostly;
64
65 static struct page *get_huge_zero_page(void)
66 {
67         struct page *zero_page;
68 retry:
69         if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
70                 return READ_ONCE(huge_zero_page);
71
72         zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
73                         HPAGE_PMD_ORDER);
74         if (!zero_page) {
75                 count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
76                 return NULL;
77         }
78         count_vm_event(THP_ZERO_PAGE_ALLOC);
79         preempt_disable();
80         if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
81                 preempt_enable();
82                 __free_pages(zero_page, compound_order(zero_page));
83                 goto retry;
84         }
85
86         /* We take additional reference here. It will be put back by shrinker */
87         atomic_set(&huge_zero_refcount, 2);
88         preempt_enable();
89         return READ_ONCE(huge_zero_page);
90 }
91
92 static void put_huge_zero_page(void)
93 {
94         /*
95          * Counter should never go to zero here. Only shrinker can put
96          * last reference.
97          */
98         BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
99 }
100
101 struct page *mm_get_huge_zero_page(struct mm_struct *mm)
102 {
103         if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
104                 return READ_ONCE(huge_zero_page);
105
106         if (!get_huge_zero_page())
107                 return NULL;
108
109         if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
110                 put_huge_zero_page();
111
112         return READ_ONCE(huge_zero_page);
113 }
114
115 void mm_put_huge_zero_page(struct mm_struct *mm)
116 {
117         if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
118                 put_huge_zero_page();
119 }
120
121 static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
122                                         struct shrink_control *sc)
123 {
124         /* we can free zero page only if last reference remains */
125         return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
126 }
127
128 static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
129                                        struct shrink_control *sc)
130 {
131         if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
132                 struct page *zero_page = xchg(&huge_zero_page, NULL);
133                 BUG_ON(zero_page == NULL);
134                 __free_pages(zero_page, compound_order(zero_page));
135                 return HPAGE_PMD_NR;
136         }
137
138         return 0;
139 }
140
141 static struct shrinker huge_zero_page_shrinker = {
142         .count_objects = shrink_huge_zero_page_count,
143         .scan_objects = shrink_huge_zero_page_scan,
144         .seeks = DEFAULT_SEEKS,
145 };
146
147 #ifdef CONFIG_SYSFS
148 static ssize_t enabled_show(struct kobject *kobj,
149                             struct kobj_attribute *attr, char *buf)
150 {
151         if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
152                 return sprintf(buf, "[always] madvise never\n");
153         else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags))
154                 return sprintf(buf, "always [madvise] never\n");
155         else
156                 return sprintf(buf, "always madvise [never]\n");
157 }
158
159 static ssize_t enabled_store(struct kobject *kobj,
160                              struct kobj_attribute *attr,
161                              const char *buf, size_t count)
162 {
163         ssize_t ret = count;
164
165         if (!memcmp("always", buf,
166                     min(sizeof("always")-1, count))) {
167                 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
168                 set_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
169         } else if (!memcmp("madvise", buf,
170                            min(sizeof("madvise")-1, count))) {
171                 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
172                 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
173         } else if (!memcmp("never", buf,
174                            min(sizeof("never")-1, count))) {
175                 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
176                 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
177         } else
178                 ret = -EINVAL;
179
180         if (ret > 0) {
181                 int err = start_stop_khugepaged();
182                 if (err)
183                         ret = err;
184         }
185         return ret;
186 }
187 static struct kobj_attribute enabled_attr =
188         __ATTR(enabled, 0644, enabled_show, enabled_store);
189
190 ssize_t single_hugepage_flag_show(struct kobject *kobj,
191                                 struct kobj_attribute *attr, char *buf,
192                                 enum transparent_hugepage_flag flag)
193 {
194         return sprintf(buf, "%d\n",
195                        !!test_bit(flag, &transparent_hugepage_flags));
196 }
197
198 ssize_t single_hugepage_flag_store(struct kobject *kobj,
199                                  struct kobj_attribute *attr,
200                                  const char *buf, size_t count,
201                                  enum transparent_hugepage_flag flag)
202 {
203         unsigned long value;
204         int ret;
205
206         ret = kstrtoul(buf, 10, &value);
207         if (ret < 0)
208                 return ret;
209         if (value > 1)
210                 return -EINVAL;
211
212         if (value)
213                 set_bit(flag, &transparent_hugepage_flags);
214         else
215                 clear_bit(flag, &transparent_hugepage_flags);
216
217         return count;
218 }
219
220 static ssize_t defrag_show(struct kobject *kobj,
221                            struct kobj_attribute *attr, char *buf)
222 {
223         if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
224                 return sprintf(buf, "[always] defer defer+madvise madvise never\n");
225         if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
226                 return sprintf(buf, "always [defer] defer+madvise madvise never\n");
227         if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
228                 return sprintf(buf, "always defer [defer+madvise] madvise never\n");
229         if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
230                 return sprintf(buf, "always defer defer+madvise [madvise] never\n");
231         return sprintf(buf, "always defer defer+madvise madvise [never]\n");
232 }
233
234 static ssize_t defrag_store(struct kobject *kobj,
235                             struct kobj_attribute *attr,
236                             const char *buf, size_t count)
237 {
238         if (!memcmp("always", buf,
239                     min(sizeof("always")-1, count))) {
240                 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
241                 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
242                 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
243                 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
244         } else if (!memcmp("defer+madvise", buf,
245                     min(sizeof("defer+madvise")-1, count))) {
246                 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
247                 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
248                 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
249                 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
250         } else if (!memcmp("defer", buf,
251                     min(sizeof("defer")-1, count))) {
252                 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
253                 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
254                 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
255                 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
256         } else if (!memcmp("madvise", buf,
257                            min(sizeof("madvise")-1, count))) {
258                 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
259                 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
260                 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
261                 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
262         } else if (!memcmp("never", buf,
263                            min(sizeof("never")-1, count))) {
264                 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
265                 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
266                 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
267                 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
268         } else
269                 return -EINVAL;
270
271         return count;
272 }
273 static struct kobj_attribute defrag_attr =
274         __ATTR(defrag, 0644, defrag_show, defrag_store);
275
276 static ssize_t use_zero_page_show(struct kobject *kobj,
277                 struct kobj_attribute *attr, char *buf)
278 {
279         return single_hugepage_flag_show(kobj, attr, buf,
280                                 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
281 }
282 static ssize_t use_zero_page_store(struct kobject *kobj,
283                 struct kobj_attribute *attr, const char *buf, size_t count)
284 {
285         return single_hugepage_flag_store(kobj, attr, buf, count,
286                                  TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
287 }
288 static struct kobj_attribute use_zero_page_attr =
289         __ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
290
291 static ssize_t hpage_pmd_size_show(struct kobject *kobj,
292                 struct kobj_attribute *attr, char *buf)
293 {
294         return sprintf(buf, "%lu\n", HPAGE_PMD_SIZE);
295 }
296 static struct kobj_attribute hpage_pmd_size_attr =
297         __ATTR_RO(hpage_pmd_size);
298
299 #ifdef CONFIG_DEBUG_VM
300 static ssize_t debug_cow_show(struct kobject *kobj,
301                                 struct kobj_attribute *attr, char *buf)
302 {
303         return single_hugepage_flag_show(kobj, attr, buf,
304                                 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
305 }
306 static ssize_t debug_cow_store(struct kobject *kobj,
307                                struct kobj_attribute *attr,
308                                const char *buf, size_t count)
309 {
310         return single_hugepage_flag_store(kobj, attr, buf, count,
311                                  TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
312 }
313 static struct kobj_attribute debug_cow_attr =
314         __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
315 #endif /* CONFIG_DEBUG_VM */
316
317 static struct attribute *hugepage_attr[] = {
318         &enabled_attr.attr,
319         &defrag_attr.attr,
320         &use_zero_page_attr.attr,
321         &hpage_pmd_size_attr.attr,
322 #if defined(CONFIG_SHMEM) && defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE)
323         &shmem_enabled_attr.attr,
324 #endif
325 #ifdef CONFIG_DEBUG_VM
326         &debug_cow_attr.attr,
327 #endif
328         NULL,
329 };
330
331 static const struct attribute_group hugepage_attr_group = {
332         .attrs = hugepage_attr,
333 };
334
335 static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
336 {
337         int err;
338
339         *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
340         if (unlikely(!*hugepage_kobj)) {
341                 pr_err("failed to create transparent hugepage kobject\n");
342                 return -ENOMEM;
343         }
344
345         err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
346         if (err) {
347                 pr_err("failed to register transparent hugepage group\n");
348                 goto delete_obj;
349         }
350
351         err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
352         if (err) {
353                 pr_err("failed to register transparent hugepage group\n");
354                 goto remove_hp_group;
355         }
356
357         return 0;
358
359 remove_hp_group:
360         sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
361 delete_obj:
362         kobject_put(*hugepage_kobj);
363         return err;
364 }
365
366 static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
367 {
368         sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
369         sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
370         kobject_put(hugepage_kobj);
371 }
372 #else
373 static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
374 {
375         return 0;
376 }
377
378 static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
379 {
380 }
381 #endif /* CONFIG_SYSFS */
382
383 static int __init hugepage_init(void)
384 {
385         int err;
386         struct kobject *hugepage_kobj;
387
388         if (!has_transparent_hugepage()) {
389                 transparent_hugepage_flags = 0;
390                 return -EINVAL;
391         }
392
393         /*
394          * hugepages can't be allocated by the buddy allocator
395          */
396         MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER);
397         /*
398          * we use page->mapping and page->index in second tail page
399          * as list_head: assuming THP order >= 2
400          */
401         MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);
402
403         err = hugepage_init_sysfs(&hugepage_kobj);
404         if (err)
405                 goto err_sysfs;
406
407         err = khugepaged_init();
408         if (err)
409                 goto err_slab;
410
411         err = register_shrinker(&huge_zero_page_shrinker);
412         if (err)
413                 goto err_hzp_shrinker;
414         err = register_shrinker(&deferred_split_shrinker);
415         if (err)
416                 goto err_split_shrinker;
417
418         /*
419          * By default disable transparent hugepages on smaller systems,
420          * where the extra memory used could hurt more than TLB overhead
421          * is likely to save.  The admin can still enable it through /sys.
422          */
423         if (totalram_pages < (512 << (20 - PAGE_SHIFT))) {
424                 transparent_hugepage_flags = 0;
425                 return 0;
426         }
427
428         err = start_stop_khugepaged();
429         if (err)
430                 goto err_khugepaged;
431
432         return 0;
433 err_khugepaged:
434         unregister_shrinker(&deferred_split_shrinker);
435 err_split_shrinker:
436         unregister_shrinker(&huge_zero_page_shrinker);
437 err_hzp_shrinker:
438         khugepaged_destroy();
439 err_slab:
440         hugepage_exit_sysfs(hugepage_kobj);
441 err_sysfs:
442         return err;
443 }
444 subsys_initcall(hugepage_init);
445
446 static int __init setup_transparent_hugepage(char *str)
447 {
448         int ret = 0;
449         if (!str)
450                 goto out;
451         if (!strcmp(str, "always")) {
452                 set_bit(TRANSPARENT_HUGEPAGE_FLAG,
453                         &transparent_hugepage_flags);
454                 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
455                           &transparent_hugepage_flags);
456                 ret = 1;
457         } else if (!strcmp(str, "madvise")) {
458                 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
459                           &transparent_hugepage_flags);
460                 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
461                         &transparent_hugepage_flags);
462                 ret = 1;
463         } else if (!strcmp(str, "never")) {
464                 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
465                           &transparent_hugepage_flags);
466                 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
467                           &transparent_hugepage_flags);
468                 ret = 1;
469         }
470 out:
471         if (!ret)
472                 pr_warn("transparent_hugepage= cannot parse, ignored\n");
473         return ret;
474 }
475 __setup("transparent_hugepage=", setup_transparent_hugepage);
476
477 pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
478 {
479         if (likely(vma->vm_flags & VM_WRITE))
480                 pmd = pmd_mkwrite(pmd);
481         return pmd;
482 }
483
484 static inline struct list_head *page_deferred_list(struct page *page)
485 {
486         /*
487          * ->lru in the tail pages is occupied by compound_head.
488          * Let's use ->mapping + ->index in the second tail page as list_head.
489          */
490         return (struct list_head *)&page[2].mapping;
491 }
492
493 void prep_transhuge_page(struct page *page)
494 {
495         /*
496          * we use page->mapping and page->indexlru in second tail page
497          * as list_head: assuming THP order >= 2
498          */
499
500         INIT_LIST_HEAD(page_deferred_list(page));
501         set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR);
502 }
503
504 unsigned long __thp_get_unmapped_area(struct file *filp, unsigned long len,
505                 loff_t off, unsigned long flags, unsigned long size)
506 {
507         unsigned long addr;
508         loff_t off_end = off + len;
509         loff_t off_align = round_up(off, size);
510         unsigned long len_pad;
511
512         if (off_end <= off_align || (off_end - off_align) < size)
513                 return 0;
514
515         len_pad = len + size;
516         if (len_pad < len || (off + len_pad) < off)
517                 return 0;
518
519         addr = current->mm->get_unmapped_area(filp, 0, len_pad,
520                                               off >> PAGE_SHIFT, flags);
521         if (IS_ERR_VALUE(addr))
522                 return 0;
523
524         addr += (off - addr) & (size - 1);
525         return addr;
526 }
527
528 unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr,
529                 unsigned long len, unsigned long pgoff, unsigned long flags)
530 {
531         loff_t off = (loff_t)pgoff << PAGE_SHIFT;
532
533         if (addr)
534                 goto out;
535         if (!IS_DAX(filp->f_mapping->host) || !IS_ENABLED(CONFIG_FS_DAX_PMD))
536                 goto out;
537
538         addr = __thp_get_unmapped_area(filp, len, off, flags, PMD_SIZE);
539         if (addr)
540                 return addr;
541
542  out:
543         return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags);
544 }
545 EXPORT_SYMBOL_GPL(thp_get_unmapped_area);
546
547 static int __do_huge_pmd_anonymous_page(struct vm_fault *vmf, struct page *page,
548                 gfp_t gfp)
549 {
550         struct vm_area_struct *vma = vmf->vma;
551         struct mem_cgroup *memcg;
552         pgtable_t pgtable;
553         unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
554         int ret = 0;
555
556         VM_BUG_ON_PAGE(!PageCompound(page), page);
557
558         if (mem_cgroup_try_charge(page, vma->vm_mm, gfp | __GFP_NORETRY, &memcg,
559                                   true)) {
560                 put_page(page);
561                 count_vm_event(THP_FAULT_FALLBACK);
562                 return VM_FAULT_FALLBACK;
563         }
564
565         pgtable = pte_alloc_one(vma->vm_mm, haddr);
566         if (unlikely(!pgtable)) {
567                 ret = VM_FAULT_OOM;
568                 goto release;
569         }
570
571         clear_huge_page(page, vmf->address, HPAGE_PMD_NR);
572         /*
573          * The memory barrier inside __SetPageUptodate makes sure that
574          * clear_huge_page writes become visible before the set_pmd_at()
575          * write.
576          */
577         __SetPageUptodate(page);
578
579         vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
580         if (unlikely(!pmd_none(*vmf->pmd))) {
581                 goto unlock_release;
582         } else {
583                 pmd_t entry;
584
585                 ret = check_stable_address_space(vma->vm_mm);
586                 if (ret)
587                         goto unlock_release;
588
589                 /* Deliver the page fault to userland */
590                 if (userfaultfd_missing(vma)) {
591                         int ret;
592
593                         spin_unlock(vmf->ptl);
594                         mem_cgroup_cancel_charge(page, memcg, true);
595                         put_page(page);
596                         pte_free(vma->vm_mm, pgtable);
597                         ret = handle_userfault(vmf, VM_UFFD_MISSING);
598                         VM_BUG_ON(ret & VM_FAULT_FALLBACK);
599                         return ret;
600                 }
601
602                 entry = mk_huge_pmd(page, vma->vm_page_prot);
603                 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
604                 page_add_new_anon_rmap(page, vma, haddr, true);
605                 mem_cgroup_commit_charge(page, memcg, false, true);
606                 lru_cache_add_active_or_unevictable(page, vma);
607                 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
608                 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
609                 add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
610                 atomic_long_inc(&vma->vm_mm->nr_ptes);
611                 spin_unlock(vmf->ptl);
612                 count_vm_event(THP_FAULT_ALLOC);
613         }
614
615         return 0;
616 unlock_release:
617         spin_unlock(vmf->ptl);
618 release:
619         if (pgtable)
620                 pte_free(vma->vm_mm, pgtable);
621         mem_cgroup_cancel_charge(page, memcg, true);
622         put_page(page);
623         return ret;
624
625 }
626
627 /*
628  * always: directly stall for all thp allocations
629  * defer: wake kswapd and fail if not immediately available
630  * defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise
631  *                fail if not immediately available
632  * madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately
633  *          available
634  * never: never stall for any thp allocation
635  */
636 static inline gfp_t alloc_hugepage_direct_gfpmask(struct vm_area_struct *vma)
637 {
638         const bool vma_madvised = !!(vma->vm_flags & VM_HUGEPAGE);
639
640         if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
641                 return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY);
642         if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
643                 return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM;
644         if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
645                 return GFP_TRANSHUGE_LIGHT | (vma_madvised ? __GFP_DIRECT_RECLAIM :
646                                                              __GFP_KSWAPD_RECLAIM);
647         if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
648                 return GFP_TRANSHUGE_LIGHT | (vma_madvised ? __GFP_DIRECT_RECLAIM :
649                                                              0);
650         return GFP_TRANSHUGE_LIGHT;
651 }
652
653 /* Caller must hold page table lock. */
654 static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
655                 struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
656                 struct page *zero_page)
657 {
658         pmd_t entry;
659         if (!pmd_none(*pmd))
660                 return false;
661         entry = mk_pmd(zero_page, vma->vm_page_prot);
662         entry = pmd_mkhuge(entry);
663         if (pgtable)
664                 pgtable_trans_huge_deposit(mm, pmd, pgtable);
665         set_pmd_at(mm, haddr, pmd, entry);
666         atomic_long_inc(&mm->nr_ptes);
667         return true;
668 }
669
670 int do_huge_pmd_anonymous_page(struct vm_fault *vmf)
671 {
672         struct vm_area_struct *vma = vmf->vma;
673         gfp_t gfp;
674         struct page *page;
675         unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
676
677         if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
678                 return VM_FAULT_FALLBACK;
679         if (unlikely(anon_vma_prepare(vma)))
680                 return VM_FAULT_OOM;
681         if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
682                 return VM_FAULT_OOM;
683         if (!(vmf->flags & FAULT_FLAG_WRITE) &&
684                         !mm_forbids_zeropage(vma->vm_mm) &&
685                         transparent_hugepage_use_zero_page()) {
686                 pgtable_t pgtable;
687                 struct page *zero_page;
688                 bool set;
689                 int ret;
690                 pgtable = pte_alloc_one(vma->vm_mm, haddr);
691                 if (unlikely(!pgtable))
692                         return VM_FAULT_OOM;
693                 zero_page = mm_get_huge_zero_page(vma->vm_mm);
694                 if (unlikely(!zero_page)) {
695                         pte_free(vma->vm_mm, pgtable);
696                         count_vm_event(THP_FAULT_FALLBACK);
697                         return VM_FAULT_FALLBACK;
698                 }
699                 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
700                 ret = 0;
701                 set = false;
702                 if (pmd_none(*vmf->pmd)) {
703                         ret = check_stable_address_space(vma->vm_mm);
704                         if (ret) {
705                                 spin_unlock(vmf->ptl);
706                         } else if (userfaultfd_missing(vma)) {
707                                 spin_unlock(vmf->ptl);
708                                 ret = handle_userfault(vmf, VM_UFFD_MISSING);
709                                 VM_BUG_ON(ret & VM_FAULT_FALLBACK);
710                         } else {
711                                 set_huge_zero_page(pgtable, vma->vm_mm, vma,
712                                                    haddr, vmf->pmd, zero_page);
713                                 spin_unlock(vmf->ptl);
714                                 set = true;
715                         }
716                 } else
717                         spin_unlock(vmf->ptl);
718                 if (!set)
719                         pte_free(vma->vm_mm, pgtable);
720                 return ret;
721         }
722         gfp = alloc_hugepage_direct_gfpmask(vma);
723         page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER);
724         if (unlikely(!page)) {
725                 count_vm_event(THP_FAULT_FALLBACK);
726                 return VM_FAULT_FALLBACK;
727         }
728         prep_transhuge_page(page);
729         return __do_huge_pmd_anonymous_page(vmf, page, gfp);
730 }
731
732 static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
733                 pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write,
734                 pgtable_t pgtable)
735 {
736         struct mm_struct *mm = vma->vm_mm;
737         pmd_t entry;
738         spinlock_t *ptl;
739
740         ptl = pmd_lock(mm, pmd);
741         entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
742         if (pfn_t_devmap(pfn))
743                 entry = pmd_mkdevmap(entry);
744         if (write) {
745                 entry = pmd_mkyoung(pmd_mkdirty(entry));
746                 entry = maybe_pmd_mkwrite(entry, vma);
747         }
748
749         if (pgtable) {
750                 pgtable_trans_huge_deposit(mm, pmd, pgtable);
751                 atomic_long_inc(&mm->nr_ptes);
752         }
753
754         set_pmd_at(mm, addr, pmd, entry);
755         update_mmu_cache_pmd(vma, addr, pmd);
756         spin_unlock(ptl);
757 }
758
759 int vmf_insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
760                         pmd_t *pmd, pfn_t pfn, bool write)
761 {
762         pgprot_t pgprot = vma->vm_page_prot;
763         pgtable_t pgtable = NULL;
764         /*
765          * If we had pmd_special, we could avoid all these restrictions,
766          * but we need to be consistent with PTEs and architectures that
767          * can't support a 'special' bit.
768          */
769         BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
770         BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
771                                                 (VM_PFNMAP|VM_MIXEDMAP));
772         BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
773         BUG_ON(!pfn_t_devmap(pfn));
774
775         if (addr < vma->vm_start || addr >= vma->vm_end)
776                 return VM_FAULT_SIGBUS;
777
778         if (arch_needs_pgtable_deposit()) {
779                 pgtable = pte_alloc_one(vma->vm_mm, addr);
780                 if (!pgtable)
781                         return VM_FAULT_OOM;
782         }
783
784         track_pfn_insert(vma, &pgprot, pfn);
785
786         insert_pfn_pmd(vma, addr, pmd, pfn, pgprot, write, pgtable);
787         return VM_FAULT_NOPAGE;
788 }
789 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd);
790
791 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
792 static pud_t maybe_pud_mkwrite(pud_t pud, struct vm_area_struct *vma)
793 {
794         if (likely(vma->vm_flags & VM_WRITE))
795                 pud = pud_mkwrite(pud);
796         return pud;
797 }
798
799 static void insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
800                 pud_t *pud, pfn_t pfn, pgprot_t prot, bool write)
801 {
802         struct mm_struct *mm = vma->vm_mm;
803         pud_t entry;
804         spinlock_t *ptl;
805
806         ptl = pud_lock(mm, pud);
807         entry = pud_mkhuge(pfn_t_pud(pfn, prot));
808         if (pfn_t_devmap(pfn))
809                 entry = pud_mkdevmap(entry);
810         if (write) {
811                 entry = pud_mkyoung(pud_mkdirty(entry));
812                 entry = maybe_pud_mkwrite(entry, vma);
813         }
814         set_pud_at(mm, addr, pud, entry);
815         update_mmu_cache_pud(vma, addr, pud);
816         spin_unlock(ptl);
817 }
818
819 int vmf_insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
820                         pud_t *pud, pfn_t pfn, bool write)
821 {
822         pgprot_t pgprot = vma->vm_page_prot;
823         /*
824          * If we had pud_special, we could avoid all these restrictions,
825          * but we need to be consistent with PTEs and architectures that
826          * can't support a 'special' bit.
827          */
828         BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
829         BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
830                                                 (VM_PFNMAP|VM_MIXEDMAP));
831         BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
832         BUG_ON(!pfn_t_devmap(pfn));
833
834         if (addr < vma->vm_start || addr >= vma->vm_end)
835                 return VM_FAULT_SIGBUS;
836
837         track_pfn_insert(vma, &pgprot, pfn);
838
839         insert_pfn_pud(vma, addr, pud, pfn, pgprot, write);
840         return VM_FAULT_NOPAGE;
841 }
842 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud);
843 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
844
845 static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
846                 pmd_t *pmd, int flags)
847 {
848         pmd_t _pmd;
849
850         _pmd = pmd_mkyoung(*pmd);
851         if (flags & FOLL_WRITE)
852                 _pmd = pmd_mkdirty(_pmd);
853         if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
854                                 pmd, _pmd, flags & FOLL_WRITE))
855                 update_mmu_cache_pmd(vma, addr, pmd);
856 }
857
858 struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
859                 pmd_t *pmd, int flags)
860 {
861         unsigned long pfn = pmd_pfn(*pmd);
862         struct mm_struct *mm = vma->vm_mm;
863         struct dev_pagemap *pgmap;
864         struct page *page;
865
866         assert_spin_locked(pmd_lockptr(mm, pmd));
867
868         /*
869          * When we COW a devmap PMD entry, we split it into PTEs, so we should
870          * not be in this function with `flags & FOLL_COW` set.
871          */
872         WARN_ONCE(flags & FOLL_COW, "mm: In follow_devmap_pmd with FOLL_COW set");
873
874         if (flags & FOLL_WRITE && !pmd_write(*pmd))
875                 return NULL;
876
877         if (pmd_present(*pmd) && pmd_devmap(*pmd))
878                 /* pass */;
879         else
880                 return NULL;
881
882         if (flags & FOLL_TOUCH)
883                 touch_pmd(vma, addr, pmd, flags);
884
885         /*
886          * device mapped pages can only be returned if the
887          * caller will manage the page reference count.
888          */
889         if (!(flags & FOLL_GET))
890                 return ERR_PTR(-EEXIST);
891
892         pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
893         pgmap = get_dev_pagemap(pfn, NULL);
894         if (!pgmap)
895                 return ERR_PTR(-EFAULT);
896         page = pfn_to_page(pfn);
897         get_page(page);
898         put_dev_pagemap(pgmap);
899
900         return page;
901 }
902
903 int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
904                   pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
905                   struct vm_area_struct *vma)
906 {
907         spinlock_t *dst_ptl, *src_ptl;
908         struct page *src_page;
909         pmd_t pmd;
910         pgtable_t pgtable = NULL;
911         int ret = -ENOMEM;
912
913         /* Skip if can be re-fill on fault */
914         if (!vma_is_anonymous(vma))
915                 return 0;
916
917         pgtable = pte_alloc_one(dst_mm, addr);
918         if (unlikely(!pgtable))
919                 goto out;
920
921         dst_ptl = pmd_lock(dst_mm, dst_pmd);
922         src_ptl = pmd_lockptr(src_mm, src_pmd);
923         spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
924
925         ret = -EAGAIN;
926         pmd = *src_pmd;
927
928 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
929         if (unlikely(is_swap_pmd(pmd))) {
930                 swp_entry_t entry = pmd_to_swp_entry(pmd);
931
932                 VM_BUG_ON(!is_pmd_migration_entry(pmd));
933                 if (is_write_migration_entry(entry)) {
934                         make_migration_entry_read(&entry);
935                         pmd = swp_entry_to_pmd(entry);
936                         if (pmd_swp_soft_dirty(*src_pmd))
937                                 pmd = pmd_swp_mksoft_dirty(pmd);
938                         set_pmd_at(src_mm, addr, src_pmd, pmd);
939                 }
940                 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
941                 atomic_long_inc(&dst_mm->nr_ptes);
942                 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
943                 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
944                 ret = 0;
945                 goto out_unlock;
946         }
947 #endif
948
949         if (unlikely(!pmd_trans_huge(pmd))) {
950                 pte_free(dst_mm, pgtable);
951                 goto out_unlock;
952         }
953         /*
954          * When page table lock is held, the huge zero pmd should not be
955          * under splitting since we don't split the page itself, only pmd to
956          * a page table.
957          */
958         if (is_huge_zero_pmd(pmd)) {
959                 struct page *zero_page;
960                 /*
961                  * get_huge_zero_page() will never allocate a new page here,
962                  * since we already have a zero page to copy. It just takes a
963                  * reference.
964                  */
965                 zero_page = mm_get_huge_zero_page(dst_mm);
966                 set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
967                                 zero_page);
968                 ret = 0;
969                 goto out_unlock;
970         }
971
972         src_page = pmd_page(pmd);
973         VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
974         get_page(src_page);
975         page_dup_rmap(src_page, true);
976         add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
977         atomic_long_inc(&dst_mm->nr_ptes);
978         pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
979
980         pmdp_set_wrprotect(src_mm, addr, src_pmd);
981         pmd = pmd_mkold(pmd_wrprotect(pmd));
982         set_pmd_at(dst_mm, addr, dst_pmd, pmd);
983
984         ret = 0;
985 out_unlock:
986         spin_unlock(src_ptl);
987         spin_unlock(dst_ptl);
988 out:
989         return ret;
990 }
991
992 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
993 static void touch_pud(struct vm_area_struct *vma, unsigned long addr,
994                 pud_t *pud, int flags)
995 {
996         pud_t _pud;
997
998         _pud = pud_mkyoung(*pud);
999         if (flags & FOLL_WRITE)
1000                 _pud = pud_mkdirty(_pud);
1001         if (pudp_set_access_flags(vma, addr & HPAGE_PUD_MASK,
1002                                 pud, _pud, flags & FOLL_WRITE))
1003                 update_mmu_cache_pud(vma, addr, pud);
1004 }
1005
1006 struct page *follow_devmap_pud(struct vm_area_struct *vma, unsigned long addr,
1007                 pud_t *pud, int flags)
1008 {
1009         unsigned long pfn = pud_pfn(*pud);
1010         struct mm_struct *mm = vma->vm_mm;
1011         struct dev_pagemap *pgmap;
1012         struct page *page;
1013
1014         assert_spin_locked(pud_lockptr(mm, pud));
1015
1016         if (flags & FOLL_WRITE && !pud_write(*pud))
1017                 return NULL;
1018
1019         if (pud_present(*pud) && pud_devmap(*pud))
1020                 /* pass */;
1021         else
1022                 return NULL;
1023
1024         if (flags & FOLL_TOUCH)
1025                 touch_pud(vma, addr, pud, flags);
1026
1027         /*
1028          * device mapped pages can only be returned if the
1029          * caller will manage the page reference count.
1030          */
1031         if (!(flags & FOLL_GET))
1032                 return ERR_PTR(-EEXIST);
1033
1034         pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT;
1035         pgmap = get_dev_pagemap(pfn, NULL);
1036         if (!pgmap)
1037                 return ERR_PTR(-EFAULT);
1038         page = pfn_to_page(pfn);
1039         get_page(page);
1040         put_dev_pagemap(pgmap);
1041
1042         return page;
1043 }
1044
1045 int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1046                   pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1047                   struct vm_area_struct *vma)
1048 {
1049         spinlock_t *dst_ptl, *src_ptl;
1050         pud_t pud;
1051         int ret;
1052
1053         dst_ptl = pud_lock(dst_mm, dst_pud);
1054         src_ptl = pud_lockptr(src_mm, src_pud);
1055         spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1056
1057         ret = -EAGAIN;
1058         pud = *src_pud;
1059         if (unlikely(!pud_trans_huge(pud) && !pud_devmap(pud)))
1060                 goto out_unlock;
1061
1062         /*
1063          * When page table lock is held, the huge zero pud should not be
1064          * under splitting since we don't split the page itself, only pud to
1065          * a page table.
1066          */
1067         if (is_huge_zero_pud(pud)) {
1068                 /* No huge zero pud yet */
1069         }
1070
1071         pudp_set_wrprotect(src_mm, addr, src_pud);
1072         pud = pud_mkold(pud_wrprotect(pud));
1073         set_pud_at(dst_mm, addr, dst_pud, pud);
1074
1075         ret = 0;
1076 out_unlock:
1077         spin_unlock(src_ptl);
1078         spin_unlock(dst_ptl);
1079         return ret;
1080 }
1081
1082 void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud)
1083 {
1084         pud_t entry;
1085         unsigned long haddr;
1086         bool write = vmf->flags & FAULT_FLAG_WRITE;
1087
1088         vmf->ptl = pud_lock(vmf->vma->vm_mm, vmf->pud);
1089         if (unlikely(!pud_same(*vmf->pud, orig_pud)))
1090                 goto unlock;
1091
1092         entry = pud_mkyoung(orig_pud);
1093         if (write)
1094                 entry = pud_mkdirty(entry);
1095         haddr = vmf->address & HPAGE_PUD_MASK;
1096         if (pudp_set_access_flags(vmf->vma, haddr, vmf->pud, entry, write))
1097                 update_mmu_cache_pud(vmf->vma, vmf->address, vmf->pud);
1098
1099 unlock:
1100         spin_unlock(vmf->ptl);
1101 }
1102 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1103
1104 void huge_pmd_set_accessed(struct vm_fault *vmf, pmd_t orig_pmd)
1105 {
1106         pmd_t entry;
1107         unsigned long haddr;
1108         bool write = vmf->flags & FAULT_FLAG_WRITE;
1109
1110         vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1111         if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1112                 goto unlock;
1113
1114         entry = pmd_mkyoung(orig_pmd);
1115         if (write)
1116                 entry = pmd_mkdirty(entry);
1117         haddr = vmf->address & HPAGE_PMD_MASK;
1118         if (pmdp_set_access_flags(vmf->vma, haddr, vmf->pmd, entry, write))
1119                 update_mmu_cache_pmd(vmf->vma, vmf->address, vmf->pmd);
1120
1121 unlock:
1122         spin_unlock(vmf->ptl);
1123 }
1124
1125 static int do_huge_pmd_wp_page_fallback(struct vm_fault *vmf, pmd_t orig_pmd,
1126                 struct page *page)
1127 {
1128         struct vm_area_struct *vma = vmf->vma;
1129         unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1130         struct mem_cgroup *memcg;
1131         pgtable_t pgtable;
1132         pmd_t _pmd;
1133         int ret = 0, i;
1134         struct page **pages;
1135         unsigned long mmun_start;       /* For mmu_notifiers */
1136         unsigned long mmun_end;         /* For mmu_notifiers */
1137
1138         pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
1139                         GFP_KERNEL);
1140         if (unlikely(!pages)) {
1141                 ret |= VM_FAULT_OOM;
1142                 goto out;
1143         }
1144
1145         for (i = 0; i < HPAGE_PMD_NR; i++) {
1146                 pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE, vma,
1147                                                vmf->address, page_to_nid(page));
1148                 if (unlikely(!pages[i] ||
1149                              mem_cgroup_try_charge(pages[i], vma->vm_mm,
1150                                      GFP_KERNEL, &memcg, false))) {
1151                         if (pages[i])
1152                                 put_page(pages[i]);
1153                         while (--i >= 0) {
1154                                 memcg = (void *)page_private(pages[i]);
1155                                 set_page_private(pages[i], 0);
1156                                 mem_cgroup_cancel_charge(pages[i], memcg,
1157                                                 false);
1158                                 put_page(pages[i]);
1159                         }
1160                         kfree(pages);
1161                         ret |= VM_FAULT_OOM;
1162                         goto out;
1163                 }
1164                 set_page_private(pages[i], (unsigned long)memcg);
1165         }
1166
1167         for (i = 0; i < HPAGE_PMD_NR; i++) {
1168                 copy_user_highpage(pages[i], page + i,
1169                                    haddr + PAGE_SIZE * i, vma);
1170                 __SetPageUptodate(pages[i]);
1171                 cond_resched();
1172         }
1173
1174         mmun_start = haddr;
1175         mmun_end   = haddr + HPAGE_PMD_SIZE;
1176         mmu_notifier_invalidate_range_start(vma->vm_mm, mmun_start, mmun_end);
1177
1178         vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1179         if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1180                 goto out_free_pages;
1181         VM_BUG_ON_PAGE(!PageHead(page), page);
1182
1183         pmdp_huge_clear_flush_notify(vma, haddr, vmf->pmd);
1184         /* leave pmd empty until pte is filled */
1185
1186         pgtable = pgtable_trans_huge_withdraw(vma->vm_mm, vmf->pmd);
1187         pmd_populate(vma->vm_mm, &_pmd, pgtable);
1188
1189         for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1190                 pte_t entry;
1191                 entry = mk_pte(pages[i], vma->vm_page_prot);
1192                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1193                 memcg = (void *)page_private(pages[i]);
1194                 set_page_private(pages[i], 0);
1195                 page_add_new_anon_rmap(pages[i], vmf->vma, haddr, false);
1196                 mem_cgroup_commit_charge(pages[i], memcg, false, false);
1197                 lru_cache_add_active_or_unevictable(pages[i], vma);
1198                 vmf->pte = pte_offset_map(&_pmd, haddr);
1199                 VM_BUG_ON(!pte_none(*vmf->pte));
1200                 set_pte_at(vma->vm_mm, haddr, vmf->pte, entry);
1201                 pte_unmap(vmf->pte);
1202         }
1203         kfree(pages);
1204
1205         smp_wmb(); /* make pte visible before pmd */
1206         pmd_populate(vma->vm_mm, vmf->pmd, pgtable);
1207         page_remove_rmap(page, true);
1208         spin_unlock(vmf->ptl);
1209
1210         mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end);
1211
1212         ret |= VM_FAULT_WRITE;
1213         put_page(page);
1214
1215 out:
1216         return ret;
1217
1218 out_free_pages:
1219         spin_unlock(vmf->ptl);
1220         mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end);
1221         for (i = 0; i < HPAGE_PMD_NR; i++) {
1222                 memcg = (void *)page_private(pages[i]);
1223                 set_page_private(pages[i], 0);
1224                 mem_cgroup_cancel_charge(pages[i], memcg, false);
1225                 put_page(pages[i]);
1226         }
1227         kfree(pages);
1228         goto out;
1229 }
1230
1231 int do_huge_pmd_wp_page(struct vm_fault *vmf, pmd_t orig_pmd)
1232 {
1233         struct vm_area_struct *vma = vmf->vma;
1234         struct page *page = NULL, *new_page;
1235         struct mem_cgroup *memcg;
1236         unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1237         unsigned long mmun_start;       /* For mmu_notifiers */
1238         unsigned long mmun_end;         /* For mmu_notifiers */
1239         gfp_t huge_gfp;                 /* for allocation and charge */
1240         int ret = 0;
1241
1242         vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd);
1243         VM_BUG_ON_VMA(!vma->anon_vma, vma);
1244         if (is_huge_zero_pmd(orig_pmd))
1245                 goto alloc;
1246         spin_lock(vmf->ptl);
1247         if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1248                 goto out_unlock;
1249
1250         page = pmd_page(orig_pmd);
1251         VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page);
1252         /*
1253          * We can only reuse the page if nobody else maps the huge page or it's
1254          * part.
1255          */
1256         if (!trylock_page(page)) {
1257                 get_page(page);
1258                 spin_unlock(vmf->ptl);
1259                 lock_page(page);
1260                 spin_lock(vmf->ptl);
1261                 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1262                         unlock_page(page);
1263                         put_page(page);
1264                         goto out_unlock;
1265                 }
1266                 put_page(page);
1267         }
1268         if (reuse_swap_page(page, NULL)) {
1269                 pmd_t entry;
1270                 entry = pmd_mkyoung(orig_pmd);
1271                 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1272                 if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry,  1))
1273                         update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1274                 ret |= VM_FAULT_WRITE;
1275                 unlock_page(page);
1276                 goto out_unlock;
1277         }
1278         unlock_page(page);
1279         get_page(page);
1280         spin_unlock(vmf->ptl);
1281 alloc:
1282         if (transparent_hugepage_enabled(vma) &&
1283             !transparent_hugepage_debug_cow()) {
1284                 huge_gfp = alloc_hugepage_direct_gfpmask(vma);
1285                 new_page = alloc_hugepage_vma(huge_gfp, vma, haddr, HPAGE_PMD_ORDER);
1286         } else
1287                 new_page = NULL;
1288
1289         if (likely(new_page)) {
1290                 prep_transhuge_page(new_page);
1291         } else {
1292                 if (!page) {
1293                         split_huge_pmd(vma, vmf->pmd, vmf->address);
1294                         ret |= VM_FAULT_FALLBACK;
1295                 } else {
1296                         ret = do_huge_pmd_wp_page_fallback(vmf, orig_pmd, page);
1297                         if (ret & VM_FAULT_OOM) {
1298                                 split_huge_pmd(vma, vmf->pmd, vmf->address);
1299                                 ret |= VM_FAULT_FALLBACK;
1300                         }
1301                         put_page(page);
1302                 }
1303                 count_vm_event(THP_FAULT_FALLBACK);
1304                 goto out;
1305         }
1306
1307         if (unlikely(mem_cgroup_try_charge(new_page, vma->vm_mm,
1308                                 huge_gfp | __GFP_NORETRY, &memcg, true))) {
1309                 put_page(new_page);
1310                 split_huge_pmd(vma, vmf->pmd, vmf->address);
1311                 if (page)
1312                         put_page(page);
1313                 ret |= VM_FAULT_FALLBACK;
1314                 count_vm_event(THP_FAULT_FALLBACK);
1315                 goto out;
1316         }
1317
1318         count_vm_event(THP_FAULT_ALLOC);
1319
1320         if (!page)
1321                 clear_huge_page(new_page, vmf->address, HPAGE_PMD_NR);
1322         else
1323                 copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
1324         __SetPageUptodate(new_page);
1325
1326         mmun_start = haddr;
1327         mmun_end   = haddr + HPAGE_PMD_SIZE;
1328         mmu_notifier_invalidate_range_start(vma->vm_mm, mmun_start, mmun_end);
1329
1330         spin_lock(vmf->ptl);
1331         if (page)
1332                 put_page(page);
1333         if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1334                 spin_unlock(vmf->ptl);
1335                 mem_cgroup_cancel_charge(new_page, memcg, true);
1336                 put_page(new_page);
1337                 goto out_mn;
1338         } else {
1339                 pmd_t entry;
1340                 entry = mk_huge_pmd(new_page, vma->vm_page_prot);
1341                 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1342                 pmdp_huge_clear_flush_notify(vma, haddr, vmf->pmd);
1343                 page_add_new_anon_rmap(new_page, vma, haddr, true);
1344                 mem_cgroup_commit_charge(new_page, memcg, false, true);
1345                 lru_cache_add_active_or_unevictable(new_page, vma);
1346                 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
1347                 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1348                 if (!page) {
1349                         add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1350                 } else {
1351                         VM_BUG_ON_PAGE(!PageHead(page), page);
1352                         page_remove_rmap(page, true);
1353                         put_page(page);
1354                 }
1355                 ret |= VM_FAULT_WRITE;
1356         }
1357         spin_unlock(vmf->ptl);
1358 out_mn:
1359         mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end);
1360 out:
1361         return ret;
1362 out_unlock:
1363         spin_unlock(vmf->ptl);
1364         return ret;
1365 }
1366
1367 /*
1368  * FOLL_FORCE can write to even unwritable pmd's, but only
1369  * after we've gone through a COW cycle and they are dirty.
1370  */
1371 static inline bool can_follow_write_pmd(pmd_t pmd, unsigned int flags)
1372 {
1373         return pmd_write(pmd) ||
1374                ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pmd_dirty(pmd));
1375 }
1376
1377 struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1378                                    unsigned long addr,
1379                                    pmd_t *pmd,
1380                                    unsigned int flags)
1381 {
1382         struct mm_struct *mm = vma->vm_mm;
1383         struct page *page = NULL;
1384
1385         assert_spin_locked(pmd_lockptr(mm, pmd));
1386
1387         if (flags & FOLL_WRITE && !can_follow_write_pmd(*pmd, flags))
1388                 goto out;
1389
1390         /* Avoid dumping huge zero page */
1391         if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1392                 return ERR_PTR(-EFAULT);
1393
1394         /* Full NUMA hinting faults to serialise migration in fault paths */
1395         if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
1396                 goto out;
1397
1398         page = pmd_page(*pmd);
1399         VM_BUG_ON_PAGE(!PageHead(page) && !is_zone_device_page(page), page);
1400         if (flags & FOLL_TOUCH)
1401                 touch_pmd(vma, addr, pmd, flags);
1402         if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1403                 /*
1404                  * We don't mlock() pte-mapped THPs. This way we can avoid
1405                  * leaking mlocked pages into non-VM_LOCKED VMAs.
1406                  *
1407                  * For anon THP:
1408                  *
1409                  * In most cases the pmd is the only mapping of the page as we
1410                  * break COW for the mlock() -- see gup_flags |= FOLL_WRITE for
1411                  * writable private mappings in populate_vma_page_range().
1412                  *
1413                  * The only scenario when we have the page shared here is if we
1414                  * mlocking read-only mapping shared over fork(). We skip
1415                  * mlocking such pages.
1416                  *
1417                  * For file THP:
1418                  *
1419                  * We can expect PageDoubleMap() to be stable under page lock:
1420                  * for file pages we set it in page_add_file_rmap(), which
1421                  * requires page to be locked.
1422                  */
1423
1424                 if (PageAnon(page) && compound_mapcount(page) != 1)
1425                         goto skip_mlock;
1426                 if (PageDoubleMap(page) || !page->mapping)
1427                         goto skip_mlock;
1428                 if (!trylock_page(page))
1429                         goto skip_mlock;
1430                 lru_add_drain();
1431                 if (page->mapping && !PageDoubleMap(page))
1432                         mlock_vma_page(page);
1433                 unlock_page(page);
1434         }
1435 skip_mlock:
1436         page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1437         VM_BUG_ON_PAGE(!PageCompound(page) && !is_zone_device_page(page), page);
1438         if (flags & FOLL_GET)
1439                 get_page(page);
1440
1441 out:
1442         return page;
1443 }
1444
1445 /* NUMA hinting page fault entry point for trans huge pmds */
1446 int do_huge_pmd_numa_page(struct vm_fault *vmf, pmd_t pmd)
1447 {
1448         struct vm_area_struct *vma = vmf->vma;
1449         struct anon_vma *anon_vma = NULL;
1450         struct page *page;
1451         unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1452         int page_nid = -1, this_nid = numa_node_id();
1453         int target_nid, last_cpupid = -1;
1454         bool page_locked;
1455         bool migrated = false;
1456         bool was_writable;
1457         int flags = 0;
1458
1459         vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1460         if (unlikely(!pmd_same(pmd, *vmf->pmd)))
1461                 goto out_unlock;
1462
1463         /*
1464          * If there are potential migrations, wait for completion and retry
1465          * without disrupting NUMA hinting information. Do not relock and
1466          * check_same as the page may no longer be mapped.
1467          */
1468         if (unlikely(pmd_trans_migrating(*vmf->pmd))) {
1469                 page = pmd_page(*vmf->pmd);
1470                 if (!get_page_unless_zero(page))
1471                         goto out_unlock;
1472                 spin_unlock(vmf->ptl);
1473                 wait_on_page_locked(page);
1474                 put_page(page);
1475                 goto out;
1476         }
1477
1478         page = pmd_page(pmd);
1479         BUG_ON(is_huge_zero_page(page));
1480         page_nid = page_to_nid(page);
1481         last_cpupid = page_cpupid_last(page);
1482         count_vm_numa_event(NUMA_HINT_FAULTS);
1483         if (page_nid == this_nid) {
1484                 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
1485                 flags |= TNF_FAULT_LOCAL;
1486         }
1487
1488         /* See similar comment in do_numa_page for explanation */
1489         if (!pmd_savedwrite(pmd))
1490                 flags |= TNF_NO_GROUP;
1491
1492         /*
1493          * Acquire the page lock to serialise THP migrations but avoid dropping
1494          * page_table_lock if at all possible
1495          */
1496         page_locked = trylock_page(page);
1497         target_nid = mpol_misplaced(page, vma, haddr);
1498         if (target_nid == -1) {
1499                 /* If the page was locked, there are no parallel migrations */
1500                 if (page_locked)
1501                         goto clear_pmdnuma;
1502         }
1503
1504         /* Migration could have started since the pmd_trans_migrating check */
1505         if (!page_locked) {
1506                 page_nid = -1;
1507                 if (!get_page_unless_zero(page))
1508                         goto out_unlock;
1509                 spin_unlock(vmf->ptl);
1510                 wait_on_page_locked(page);
1511                 put_page(page);
1512                 goto out;
1513         }
1514
1515         /*
1516          * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
1517          * to serialises splits
1518          */
1519         get_page(page);
1520         spin_unlock(vmf->ptl);
1521         anon_vma = page_lock_anon_vma_read(page);
1522
1523         /* Confirm the PMD did not change while page_table_lock was released */
1524         spin_lock(vmf->ptl);
1525         if (unlikely(!pmd_same(pmd, *vmf->pmd))) {
1526                 unlock_page(page);
1527                 put_page(page);
1528                 page_nid = -1;
1529                 goto out_unlock;
1530         }
1531
1532         /* Bail if we fail to protect against THP splits for any reason */
1533         if (unlikely(!anon_vma)) {
1534                 put_page(page);
1535                 page_nid = -1;
1536                 goto clear_pmdnuma;
1537         }
1538
1539         /*
1540          * Since we took the NUMA fault, we must have observed the !accessible
1541          * bit. Make sure all other CPUs agree with that, to avoid them
1542          * modifying the page we're about to migrate.
1543          *
1544          * Must be done under PTL such that we'll observe the relevant
1545          * inc_tlb_flush_pending().
1546          *
1547          * We are not sure a pending tlb flush here is for a huge page
1548          * mapping or not. Hence use the tlb range variant
1549          */
1550         if (mm_tlb_flush_pending(vma->vm_mm))
1551                 flush_tlb_range(vma, haddr, haddr + HPAGE_PMD_SIZE);
1552
1553         /*
1554          * Migrate the THP to the requested node, returns with page unlocked
1555          * and access rights restored.
1556          */
1557         spin_unlock(vmf->ptl);
1558
1559         migrated = migrate_misplaced_transhuge_page(vma->vm_mm, vma,
1560                                 vmf->pmd, pmd, vmf->address, page, target_nid);
1561         if (migrated) {
1562                 flags |= TNF_MIGRATED;
1563                 page_nid = target_nid;
1564         } else
1565                 flags |= TNF_MIGRATE_FAIL;
1566
1567         goto out;
1568 clear_pmdnuma:
1569         BUG_ON(!PageLocked(page));
1570         was_writable = pmd_savedwrite(pmd);
1571         pmd = pmd_modify(pmd, vma->vm_page_prot);
1572         pmd = pmd_mkyoung(pmd);
1573         if (was_writable)
1574                 pmd = pmd_mkwrite(pmd);
1575         set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd);
1576         update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1577         unlock_page(page);
1578 out_unlock:
1579         spin_unlock(vmf->ptl);
1580
1581 out:
1582         if (anon_vma)
1583                 page_unlock_anon_vma_read(anon_vma);
1584
1585         if (page_nid != -1)
1586                 task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR,
1587                                 flags);
1588
1589         return 0;
1590 }
1591
1592 /*
1593  * Return true if we do MADV_FREE successfully on entire pmd page.
1594  * Otherwise, return false.
1595  */
1596 bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1597                 pmd_t *pmd, unsigned long addr, unsigned long next)
1598 {
1599         spinlock_t *ptl;
1600         pmd_t orig_pmd;
1601         struct page *page;
1602         struct mm_struct *mm = tlb->mm;
1603         bool ret = false;
1604
1605         tlb_remove_check_page_size_change(tlb, HPAGE_PMD_SIZE);
1606
1607         ptl = pmd_trans_huge_lock(pmd, vma);
1608         if (!ptl)
1609                 goto out_unlocked;
1610
1611         orig_pmd = *pmd;
1612         if (is_huge_zero_pmd(orig_pmd))
1613                 goto out;
1614
1615         if (unlikely(!pmd_present(orig_pmd))) {
1616                 VM_BUG_ON(thp_migration_supported() &&
1617                                   !is_pmd_migration_entry(orig_pmd));
1618                 goto out;
1619         }
1620
1621         page = pmd_page(orig_pmd);
1622         /*
1623          * If other processes are mapping this page, we couldn't discard
1624          * the page unless they all do MADV_FREE so let's skip the page.
1625          */
1626         if (page_mapcount(page) != 1)
1627                 goto out;
1628
1629         if (!trylock_page(page))
1630                 goto out;
1631
1632         /*
1633          * If user want to discard part-pages of THP, split it so MADV_FREE
1634          * will deactivate only them.
1635          */
1636         if (next - addr != HPAGE_PMD_SIZE) {
1637                 get_page(page);
1638                 spin_unlock(ptl);
1639                 split_huge_page(page);
1640                 unlock_page(page);
1641                 put_page(page);
1642                 goto out_unlocked;
1643         }
1644
1645         if (PageDirty(page))
1646                 ClearPageDirty(page);
1647         unlock_page(page);
1648
1649         if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
1650                 pmdp_invalidate(vma, addr, pmd);
1651                 orig_pmd = pmd_mkold(orig_pmd);
1652                 orig_pmd = pmd_mkclean(orig_pmd);
1653
1654                 set_pmd_at(mm, addr, pmd, orig_pmd);
1655                 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1656         }
1657
1658         mark_page_lazyfree(page);
1659         ret = true;
1660 out:
1661         spin_unlock(ptl);
1662 out_unlocked:
1663         return ret;
1664 }
1665
1666 static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd)
1667 {
1668         pgtable_t pgtable;
1669
1670         pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1671         pte_free(mm, pgtable);
1672         atomic_long_dec(&mm->nr_ptes);
1673 }
1674
1675 int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1676                  pmd_t *pmd, unsigned long addr)
1677 {
1678         pmd_t orig_pmd;
1679         spinlock_t *ptl;
1680
1681         tlb_remove_check_page_size_change(tlb, HPAGE_PMD_SIZE);
1682
1683         ptl = __pmd_trans_huge_lock(pmd, vma);
1684         if (!ptl)
1685                 return 0;
1686         /*
1687          * For architectures like ppc64 we look at deposited pgtable
1688          * when calling pmdp_huge_get_and_clear. So do the
1689          * pgtable_trans_huge_withdraw after finishing pmdp related
1690          * operations.
1691          */
1692         orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
1693                         tlb->fullmm);
1694         tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1695         if (vma_is_dax(vma)) {
1696                 if (arch_needs_pgtable_deposit())
1697                         zap_deposited_table(tlb->mm, pmd);
1698                 spin_unlock(ptl);
1699                 if (is_huge_zero_pmd(orig_pmd))
1700                         tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
1701         } else if (is_huge_zero_pmd(orig_pmd)) {
1702                 zap_deposited_table(tlb->mm, pmd);
1703                 spin_unlock(ptl);
1704                 tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
1705         } else {
1706                 struct page *page = NULL;
1707                 int flush_needed = 1;
1708
1709                 if (pmd_present(orig_pmd)) {
1710                         page = pmd_page(orig_pmd);
1711                         page_remove_rmap(page, true);
1712                         VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
1713                         VM_BUG_ON_PAGE(!PageHead(page), page);
1714                 } else if (thp_migration_supported()) {
1715                         swp_entry_t entry;
1716
1717                         VM_BUG_ON(!is_pmd_migration_entry(orig_pmd));
1718                         entry = pmd_to_swp_entry(orig_pmd);
1719                         page = pfn_to_page(swp_offset(entry));
1720                         flush_needed = 0;
1721                 } else
1722                         WARN_ONCE(1, "Non present huge pmd without pmd migration enabled!");
1723
1724                 if (PageAnon(page)) {
1725                         zap_deposited_table(tlb->mm, pmd);
1726                         add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1727                 } else {
1728                         if (arch_needs_pgtable_deposit())
1729                                 zap_deposited_table(tlb->mm, pmd);
1730                         add_mm_counter(tlb->mm, MM_FILEPAGES, -HPAGE_PMD_NR);
1731                 }
1732
1733                 spin_unlock(ptl);
1734                 if (flush_needed)
1735                         tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE);
1736         }
1737         return 1;
1738 }
1739
1740 #ifndef pmd_move_must_withdraw
1741 static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl,
1742                                          spinlock_t *old_pmd_ptl,
1743                                          struct vm_area_struct *vma)
1744 {
1745         /*
1746          * With split pmd lock we also need to move preallocated
1747          * PTE page table if new_pmd is on different PMD page table.
1748          *
1749          * We also don't deposit and withdraw tables for file pages.
1750          */
1751         return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma);
1752 }
1753 #endif
1754
1755 static pmd_t move_soft_dirty_pmd(pmd_t pmd)
1756 {
1757 #ifdef CONFIG_MEM_SOFT_DIRTY
1758         if (unlikely(is_pmd_migration_entry(pmd)))
1759                 pmd = pmd_swp_mksoft_dirty(pmd);
1760         else if (pmd_present(pmd))
1761                 pmd = pmd_mksoft_dirty(pmd);
1762 #endif
1763         return pmd;
1764 }
1765
1766 bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
1767                   unsigned long new_addr, unsigned long old_end,
1768                   pmd_t *old_pmd, pmd_t *new_pmd)
1769 {
1770         spinlock_t *old_ptl, *new_ptl;
1771         pmd_t pmd;
1772         struct mm_struct *mm = vma->vm_mm;
1773         bool force_flush = false;
1774
1775         if ((old_addr & ~HPAGE_PMD_MASK) ||
1776             (new_addr & ~HPAGE_PMD_MASK) ||
1777             old_end - old_addr < HPAGE_PMD_SIZE)
1778                 return false;
1779
1780         /*
1781          * The destination pmd shouldn't be established, free_pgtables()
1782          * should have release it.
1783          */
1784         if (WARN_ON(!pmd_none(*new_pmd))) {
1785                 VM_BUG_ON(pmd_trans_huge(*new_pmd));
1786                 return false;
1787         }
1788
1789         /*
1790          * We don't have to worry about the ordering of src and dst
1791          * ptlocks because exclusive mmap_sem prevents deadlock.
1792          */
1793         old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
1794         if (old_ptl) {
1795                 new_ptl = pmd_lockptr(mm, new_pmd);
1796                 if (new_ptl != old_ptl)
1797                         spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
1798                 pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
1799                 if (pmd_present(pmd))
1800                         force_flush = true;
1801                 VM_BUG_ON(!pmd_none(*new_pmd));
1802
1803                 if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) {
1804                         pgtable_t pgtable;
1805                         pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1806                         pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
1807                 }
1808                 pmd = move_soft_dirty_pmd(pmd);
1809                 set_pmd_at(mm, new_addr, new_pmd, pmd);
1810                 if (force_flush)
1811                         flush_tlb_range(vma, old_addr, old_addr + PMD_SIZE);
1812                 if (new_ptl != old_ptl)
1813                         spin_unlock(new_ptl);
1814                 spin_unlock(old_ptl);
1815                 return true;
1816         }
1817         return false;
1818 }
1819
1820 /*
1821  * Returns
1822  *  - 0 if PMD could not be locked
1823  *  - 1 if PMD was locked but protections unchange and TLB flush unnecessary
1824  *  - HPAGE_PMD_NR is protections changed and TLB flush necessary
1825  */
1826 int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1827                 unsigned long addr, pgprot_t newprot, int prot_numa)
1828 {
1829         struct mm_struct *mm = vma->vm_mm;
1830         spinlock_t *ptl;
1831         pmd_t entry;
1832         bool preserve_write;
1833         int ret;
1834
1835         ptl = __pmd_trans_huge_lock(pmd, vma);
1836         if (!ptl)
1837                 return 0;
1838
1839         preserve_write = prot_numa && pmd_write(*pmd);
1840         ret = 1;
1841
1842 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1843         if (is_swap_pmd(*pmd)) {
1844                 swp_entry_t entry = pmd_to_swp_entry(*pmd);
1845
1846                 VM_BUG_ON(!is_pmd_migration_entry(*pmd));
1847                 if (is_write_migration_entry(entry)) {
1848                         pmd_t newpmd;
1849                         /*
1850                          * A protection check is difficult so
1851                          * just be safe and disable write
1852                          */
1853                         make_migration_entry_read(&entry);
1854                         newpmd = swp_entry_to_pmd(entry);
1855                         if (pmd_swp_soft_dirty(*pmd))
1856                                 newpmd = pmd_swp_mksoft_dirty(newpmd);
1857                         set_pmd_at(mm, addr, pmd, newpmd);
1858                 }
1859                 goto unlock;
1860         }
1861 #endif
1862
1863         /*
1864          * Avoid trapping faults against the zero page. The read-only
1865          * data is likely to be read-cached on the local CPU and
1866          * local/remote hits to the zero page are not interesting.
1867          */
1868         if (prot_numa && is_huge_zero_pmd(*pmd))
1869                 goto unlock;
1870
1871         if (prot_numa && pmd_protnone(*pmd))
1872                 goto unlock;
1873
1874         /*
1875          * In case prot_numa, we are under down_read(mmap_sem). It's critical
1876          * to not clear pmd intermittently to avoid race with MADV_DONTNEED
1877          * which is also under down_read(mmap_sem):
1878          *
1879          *      CPU0:                           CPU1:
1880          *                              change_huge_pmd(prot_numa=1)
1881          *                               pmdp_huge_get_and_clear_notify()
1882          * madvise_dontneed()
1883          *  zap_pmd_range()
1884          *   pmd_trans_huge(*pmd) == 0 (without ptl)
1885          *   // skip the pmd
1886          *                               set_pmd_at();
1887          *                               // pmd is re-established
1888          *
1889          * The race makes MADV_DONTNEED miss the huge pmd and don't clear it
1890          * which may break userspace.
1891          *
1892          * pmdp_invalidate() is required to make sure we don't miss
1893          * dirty/young flags set by hardware.
1894          */
1895         entry = *pmd;
1896         pmdp_invalidate(vma, addr, pmd);
1897
1898         /*
1899          * Recover dirty/young flags.  It relies on pmdp_invalidate to not
1900          * corrupt them.
1901          */
1902         if (pmd_dirty(*pmd))
1903                 entry = pmd_mkdirty(entry);
1904         if (pmd_young(*pmd))
1905                 entry = pmd_mkyoung(entry);
1906
1907         entry = pmd_modify(entry, newprot);
1908         if (preserve_write)
1909                 entry = pmd_mk_savedwrite(entry);
1910         ret = HPAGE_PMD_NR;
1911         set_pmd_at(mm, addr, pmd, entry);
1912         BUG_ON(vma_is_anonymous(vma) && !preserve_write && pmd_write(entry));
1913 unlock:
1914         spin_unlock(ptl);
1915         return ret;
1916 }
1917
1918 /*
1919  * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise.
1920  *
1921  * Note that if it returns page table lock pointer, this routine returns without
1922  * unlocking page table lock. So callers must unlock it.
1923  */
1924 spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
1925 {
1926         spinlock_t *ptl;
1927         ptl = pmd_lock(vma->vm_mm, pmd);
1928         if (likely(is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) ||
1929                         pmd_devmap(*pmd)))
1930                 return ptl;
1931         spin_unlock(ptl);
1932         return NULL;
1933 }
1934
1935 /*
1936  * Returns true if a given pud maps a thp, false otherwise.
1937  *
1938  * Note that if it returns true, this routine returns without unlocking page
1939  * table lock. So callers must unlock it.
1940  */
1941 spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma)
1942 {
1943         spinlock_t *ptl;
1944
1945         ptl = pud_lock(vma->vm_mm, pud);
1946         if (likely(pud_trans_huge(*pud) || pud_devmap(*pud)))
1947                 return ptl;
1948         spin_unlock(ptl);
1949         return NULL;
1950 }
1951
1952 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1953 int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma,
1954                  pud_t *pud, unsigned long addr)
1955 {
1956         pud_t orig_pud;
1957         spinlock_t *ptl;
1958
1959         ptl = __pud_trans_huge_lock(pud, vma);
1960         if (!ptl)
1961                 return 0;
1962         /*
1963          * For architectures like ppc64 we look at deposited pgtable
1964          * when calling pudp_huge_get_and_clear. So do the
1965          * pgtable_trans_huge_withdraw after finishing pudp related
1966          * operations.
1967          */
1968         orig_pud = pudp_huge_get_and_clear_full(tlb->mm, addr, pud,
1969                         tlb->fullmm);
1970         tlb_remove_pud_tlb_entry(tlb, pud, addr);
1971         if (vma_is_dax(vma)) {
1972                 spin_unlock(ptl);
1973                 /* No zero page support yet */
1974         } else {
1975                 /* No support for anonymous PUD pages yet */
1976                 BUG();
1977         }
1978         return 1;
1979 }
1980
1981 static void __split_huge_pud_locked(struct vm_area_struct *vma, pud_t *pud,
1982                 unsigned long haddr)
1983 {
1984         VM_BUG_ON(haddr & ~HPAGE_PUD_MASK);
1985         VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
1986         VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PUD_SIZE, vma);
1987         VM_BUG_ON(!pud_trans_huge(*pud) && !pud_devmap(*pud));
1988
1989         count_vm_event(THP_SPLIT_PUD);
1990
1991         pudp_huge_clear_flush_notify(vma, haddr, pud);
1992 }
1993
1994 void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud,
1995                 unsigned long address)
1996 {
1997         spinlock_t *ptl;
1998         struct mm_struct *mm = vma->vm_mm;
1999         unsigned long haddr = address & HPAGE_PUD_MASK;
2000
2001         mmu_notifier_invalidate_range_start(mm, haddr, haddr + HPAGE_PUD_SIZE);
2002         ptl = pud_lock(mm, pud);
2003         if (unlikely(!pud_trans_huge(*pud) && !pud_devmap(*pud)))
2004                 goto out;
2005         __split_huge_pud_locked(vma, pud, haddr);
2006
2007 out:
2008         spin_unlock(ptl);
2009         mmu_notifier_invalidate_range_end(mm, haddr, haddr + HPAGE_PUD_SIZE);
2010 }
2011 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
2012
2013 static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
2014                 unsigned long haddr, pmd_t *pmd)
2015 {
2016         struct mm_struct *mm = vma->vm_mm;
2017         pgtable_t pgtable;
2018         pmd_t _pmd;
2019         int i;
2020
2021         /* leave pmd empty until pte is filled */
2022         pmdp_huge_clear_flush_notify(vma, haddr, pmd);
2023
2024         pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2025         pmd_populate(mm, &_pmd, pgtable);
2026
2027         for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
2028                 pte_t *pte, entry;
2029                 entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
2030                 entry = pte_mkspecial(entry);
2031                 pte = pte_offset_map(&_pmd, haddr);
2032                 VM_BUG_ON(!pte_none(*pte));
2033                 set_pte_at(mm, haddr, pte, entry);
2034                 pte_unmap(pte);
2035         }
2036         smp_wmb(); /* make pte visible before pmd */
2037         pmd_populate(mm, pmd, pgtable);
2038 }
2039
2040 static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
2041                 unsigned long haddr, bool freeze)
2042 {
2043         struct mm_struct *mm = vma->vm_mm;
2044         struct page *page;
2045         pgtable_t pgtable;
2046         pmd_t _pmd;
2047         bool young, write, dirty, soft_dirty, pmd_migration = false;
2048         unsigned long addr;
2049         int i;
2050
2051         VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
2052         VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2053         VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
2054         VM_BUG_ON(!is_pmd_migration_entry(*pmd) && !pmd_trans_huge(*pmd)
2055                                 && !pmd_devmap(*pmd));
2056
2057         count_vm_event(THP_SPLIT_PMD);
2058
2059         if (!vma_is_anonymous(vma)) {
2060                 _pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
2061                 /*
2062                  * We are going to unmap this huge page. So
2063                  * just go ahead and zap it
2064                  */
2065                 if (arch_needs_pgtable_deposit())
2066                         zap_deposited_table(mm, pmd);
2067                 if (vma_is_dax(vma))
2068                         return;
2069                 page = pmd_page(_pmd);
2070                 if (!PageDirty(page) && pmd_dirty(_pmd))
2071                         set_page_dirty(page);
2072                 if (!PageReferenced(page) && pmd_young(_pmd))
2073                         SetPageReferenced(page);
2074                 page_remove_rmap(page, true);
2075                 put_page(page);
2076                 add_mm_counter(mm, MM_FILEPAGES, -HPAGE_PMD_NR);
2077                 return;
2078         } else if (is_huge_zero_pmd(*pmd)) {
2079                 return __split_huge_zero_page_pmd(vma, haddr, pmd);
2080         }
2081
2082 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
2083         pmd_migration = is_pmd_migration_entry(*pmd);
2084         if (pmd_migration) {
2085                 swp_entry_t entry;
2086
2087                 entry = pmd_to_swp_entry(*pmd);
2088                 page = pfn_to_page(swp_offset(entry));
2089         } else
2090 #endif
2091                 page = pmd_page(*pmd);
2092         VM_BUG_ON_PAGE(!page_count(page), page);
2093         page_ref_add(page, HPAGE_PMD_NR - 1);
2094         write = pmd_write(*pmd);
2095         young = pmd_young(*pmd);
2096         dirty = pmd_dirty(*pmd);
2097         soft_dirty = pmd_soft_dirty(*pmd);
2098
2099         pmdp_huge_split_prepare(vma, haddr, pmd);
2100         pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2101         pmd_populate(mm, &_pmd, pgtable);
2102
2103         for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
2104                 pte_t entry, *pte;
2105                 /*
2106                  * Note that NUMA hinting access restrictions are not
2107                  * transferred to avoid any possibility of altering
2108                  * permissions across VMAs.
2109                  */
2110                 if (freeze || pmd_migration) {
2111                         swp_entry_t swp_entry;
2112                         swp_entry = make_migration_entry(page + i, write);
2113                         entry = swp_entry_to_pte(swp_entry);
2114                         if (soft_dirty)
2115                                 entry = pte_swp_mksoft_dirty(entry);
2116                 } else {
2117                         entry = mk_pte(page + i, READ_ONCE(vma->vm_page_prot));
2118                         entry = maybe_mkwrite(entry, vma);
2119                         if (!write)
2120                                 entry = pte_wrprotect(entry);
2121                         if (!young)
2122                                 entry = pte_mkold(entry);
2123                         if (soft_dirty)
2124                                 entry = pte_mksoft_dirty(entry);
2125                 }
2126                 if (dirty)
2127                         SetPageDirty(page + i);
2128                 pte = pte_offset_map(&_pmd, addr);
2129                 BUG_ON(!pte_none(*pte));
2130                 set_pte_at(mm, addr, pte, entry);
2131                 atomic_inc(&page[i]._mapcount);
2132                 pte_unmap(pte);
2133         }
2134
2135         /*
2136          * Set PG_double_map before dropping compound_mapcount to avoid
2137          * false-negative page_mapped().
2138          */
2139         if (compound_mapcount(page) > 1 && !TestSetPageDoubleMap(page)) {
2140                 for (i = 0; i < HPAGE_PMD_NR; i++)
2141                         atomic_inc(&page[i]._mapcount);
2142         }
2143
2144         if (atomic_add_negative(-1, compound_mapcount_ptr(page))) {
2145                 /* Last compound_mapcount is gone. */
2146                 __dec_node_page_state(page, NR_ANON_THPS);
2147                 if (TestClearPageDoubleMap(page)) {
2148                         /* No need in mapcount reference anymore */
2149                         for (i = 0; i < HPAGE_PMD_NR; i++)
2150                                 atomic_dec(&page[i]._mapcount);
2151                 }
2152         }
2153
2154         smp_wmb(); /* make pte visible before pmd */
2155         /*
2156          * Up to this point the pmd is present and huge and userland has the
2157          * whole access to the hugepage during the split (which happens in
2158          * place). If we overwrite the pmd with the not-huge version pointing
2159          * to the pte here (which of course we could if all CPUs were bug
2160          * free), userland could trigger a small page size TLB miss on the
2161          * small sized TLB while the hugepage TLB entry is still established in
2162          * the huge TLB. Some CPU doesn't like that.
2163          * See http://support.amd.com/us/Processor_TechDocs/41322.pdf, Erratum
2164          * 383 on page 93. Intel should be safe but is also warns that it's
2165          * only safe if the permission and cache attributes of the two entries
2166          * loaded in the two TLB is identical (which should be the case here).
2167          * But it is generally safer to never allow small and huge TLB entries
2168          * for the same virtual address to be loaded simultaneously. So instead
2169          * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
2170          * current pmd notpresent (atomically because here the pmd_trans_huge
2171          * and pmd_trans_splitting must remain set at all times on the pmd
2172          * until the split is complete for this pmd), then we flush the SMP TLB
2173          * and finally we write the non-huge version of the pmd entry with
2174          * pmd_populate.
2175          */
2176         pmdp_invalidate(vma, haddr, pmd);
2177         pmd_populate(mm, pmd, pgtable);
2178
2179         if (freeze) {
2180                 for (i = 0; i < HPAGE_PMD_NR; i++) {
2181                         page_remove_rmap(page + i, false);
2182                         put_page(page + i);
2183                 }
2184         }
2185 }
2186
2187 void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
2188                 unsigned long address, bool freeze, struct page *page)
2189 {
2190         spinlock_t *ptl;
2191         struct mm_struct *mm = vma->vm_mm;
2192         unsigned long haddr = address & HPAGE_PMD_MASK;
2193
2194         mmu_notifier_invalidate_range_start(mm, haddr, haddr + HPAGE_PMD_SIZE);
2195         ptl = pmd_lock(mm, pmd);
2196
2197         /*
2198          * If caller asks to setup a migration entries, we need a page to check
2199          * pmd against. Otherwise we can end up replacing wrong page.
2200          */
2201         VM_BUG_ON(freeze && !page);
2202         if (page && page != pmd_page(*pmd))
2203                 goto out;
2204
2205         if (pmd_trans_huge(*pmd)) {
2206                 page = pmd_page(*pmd);
2207                 if (PageMlocked(page))
2208                         clear_page_mlock(page);
2209         } else if (!(pmd_devmap(*pmd) || is_pmd_migration_entry(*pmd)))
2210                 goto out;
2211         __split_huge_pmd_locked(vma, pmd, haddr, freeze);
2212 out:
2213         spin_unlock(ptl);
2214         mmu_notifier_invalidate_range_end(mm, haddr, haddr + HPAGE_PMD_SIZE);
2215 }
2216
2217 void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
2218                 bool freeze, struct page *page)
2219 {
2220         pgd_t *pgd;
2221         p4d_t *p4d;
2222         pud_t *pud;
2223         pmd_t *pmd;
2224
2225         pgd = pgd_offset(vma->vm_mm, address);
2226         if (!pgd_present(*pgd))
2227                 return;
2228
2229         p4d = p4d_offset(pgd, address);
2230         if (!p4d_present(*p4d))
2231                 return;
2232
2233         pud = pud_offset(p4d, address);
2234         if (!pud_present(*pud))
2235                 return;
2236
2237         pmd = pmd_offset(pud, address);
2238
2239         __split_huge_pmd(vma, pmd, address, freeze, page);
2240 }
2241
2242 void vma_adjust_trans_huge(struct vm_area_struct *vma,
2243                              unsigned long start,
2244                              unsigned long end,
2245                              long adjust_next)
2246 {
2247         /*
2248          * If the new start address isn't hpage aligned and it could
2249          * previously contain an hugepage: check if we need to split
2250          * an huge pmd.
2251          */
2252         if (start & ~HPAGE_PMD_MASK &&
2253             (start & HPAGE_PMD_MASK) >= vma->vm_start &&
2254             (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2255                 split_huge_pmd_address(vma, start, false, NULL);
2256
2257         /*
2258          * If the new end address isn't hpage aligned and it could
2259          * previously contain an hugepage: check if we need to split
2260          * an huge pmd.
2261          */
2262         if (end & ~HPAGE_PMD_MASK &&
2263             (end & HPAGE_PMD_MASK) >= vma->vm_start &&
2264             (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2265                 split_huge_pmd_address(vma, end, false, NULL);
2266
2267         /*
2268          * If we're also updating the vma->vm_next->vm_start, if the new
2269          * vm_next->vm_start isn't page aligned and it could previously
2270          * contain an hugepage: check if we need to split an huge pmd.
2271          */
2272         if (adjust_next > 0) {
2273                 struct vm_area_struct *next = vma->vm_next;
2274                 unsigned long nstart = next->vm_start;
2275                 nstart += adjust_next << PAGE_SHIFT;
2276                 if (nstart & ~HPAGE_PMD_MASK &&
2277                     (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
2278                     (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
2279                         split_huge_pmd_address(next, nstart, false, NULL);
2280         }
2281 }
2282
2283 static void unmap_page(struct page *page)
2284 {
2285         enum ttu_flags ttu_flags = TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS |
2286                 TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD;
2287         bool unmap_success;
2288
2289         VM_BUG_ON_PAGE(!PageHead(page), page);
2290
2291         if (PageAnon(page))
2292                 ttu_flags |= TTU_SPLIT_FREEZE;
2293
2294         unmap_success = try_to_unmap(page, ttu_flags);
2295         VM_BUG_ON_PAGE(!unmap_success, page);
2296 }
2297
2298 static void remap_page(struct page *page)
2299 {
2300         int i;
2301         if (PageTransHuge(page)) {
2302                 remove_migration_ptes(page, page, true);
2303         } else {
2304                 for (i = 0; i < HPAGE_PMD_NR; i++)
2305                         remove_migration_ptes(page + i, page + i, true);
2306         }
2307 }
2308
2309 static void __split_huge_page_tail(struct page *head, int tail,
2310                 struct lruvec *lruvec, struct list_head *list)
2311 {
2312         struct page *page_tail = head + tail;
2313
2314         VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
2315
2316         /*
2317          * Clone page flags before unfreezing refcount.
2318          *
2319          * After successful get_page_unless_zero() might follow flags change,
2320          * for exmaple lock_page() which set PG_waiters.
2321          */
2322         page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
2323         page_tail->flags |= (head->flags &
2324                         ((1L << PG_referenced) |
2325                          (1L << PG_swapbacked) |
2326                          (1L << PG_swapcache) |
2327                          (1L << PG_mlocked) |
2328                          (1L << PG_uptodate) |
2329                          (1L << PG_active) |
2330                          (1L << PG_locked) |
2331                          (1L << PG_unevictable) |
2332                          (1L << PG_dirty)));
2333
2334         /* ->mapping in first tail page is compound_mapcount */
2335         VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
2336                         page_tail);
2337         page_tail->mapping = head->mapping;
2338         page_tail->index = head->index + tail;
2339
2340         /* Page flags must be visible before we make the page non-compound. */
2341         smp_wmb();
2342
2343         /*
2344          * Clear PageTail before unfreezing page refcount.
2345          *
2346          * After successful get_page_unless_zero() might follow put_page()
2347          * which needs correct compound_head().
2348          */
2349         clear_compound_head(page_tail);
2350
2351         /* Finally unfreeze refcount. Additional reference from page cache. */
2352         page_ref_unfreeze(page_tail, 1 + (!PageAnon(head) ||
2353                                           PageSwapCache(head)));
2354
2355         if (page_is_young(head))
2356                 set_page_young(page_tail);
2357         if (page_is_idle(head))
2358                 set_page_idle(page_tail);
2359
2360         page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
2361         lru_add_page_tail(head, page_tail, lruvec, list);
2362 }
2363
2364 static void __split_huge_page(struct page *page, struct list_head *list,
2365                 pgoff_t end, unsigned long flags)
2366 {
2367         struct page *head = compound_head(page);
2368         struct zone *zone = page_zone(head);
2369         struct lruvec *lruvec;
2370         int i;
2371
2372         lruvec = mem_cgroup_page_lruvec(head, zone->zone_pgdat);
2373
2374         /* complete memcg works before add pages to LRU */
2375         mem_cgroup_split_huge_fixup(head);
2376
2377         for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
2378                 __split_huge_page_tail(head, i, lruvec, list);
2379                 /* Some pages can be beyond i_size: drop them from page cache */
2380                 if (head[i].index >= end) {
2381                         ClearPageDirty(head + i);
2382                         __delete_from_page_cache(head + i, NULL);
2383                         if (IS_ENABLED(CONFIG_SHMEM) && PageSwapBacked(head))
2384                                 shmem_uncharge(head->mapping->host, 1);
2385                         put_page(head + i);
2386                 }
2387         }
2388
2389         ClearPageCompound(head);
2390         /* See comment in __split_huge_page_tail() */
2391         if (PageAnon(head)) {
2392                 /* Additional pin to radix tree of swap cache */
2393                 if (PageSwapCache(head))
2394                         page_ref_add(head, 2);
2395                 else
2396                         page_ref_inc(head);
2397         } else {
2398                 /* Additional pin to radix tree */
2399                 page_ref_add(head, 2);
2400                 spin_unlock(&head->mapping->tree_lock);
2401         }
2402
2403         spin_unlock_irqrestore(zone_lru_lock(page_zone(head)), flags);
2404
2405         remap_page(head);
2406
2407         for (i = 0; i < HPAGE_PMD_NR; i++) {
2408                 struct page *subpage = head + i;
2409                 if (subpage == page)
2410                         continue;
2411                 unlock_page(subpage);
2412
2413                 /*
2414                  * Subpages may be freed if there wasn't any mapping
2415                  * like if add_to_swap() is running on a lru page that
2416                  * had its mapping zapped. And freeing these pages
2417                  * requires taking the lru_lock so we do the put_page
2418                  * of the tail pages after the split is complete.
2419                  */
2420                 put_page(subpage);
2421         }
2422 }
2423
2424 int total_mapcount(struct page *page)
2425 {
2426         int i, compound, ret;
2427
2428         VM_BUG_ON_PAGE(PageTail(page), page);
2429
2430         if (likely(!PageCompound(page)))
2431                 return atomic_read(&page->_mapcount) + 1;
2432
2433         compound = compound_mapcount(page);
2434         if (PageHuge(page))
2435                 return compound;
2436         ret = compound;
2437         for (i = 0; i < HPAGE_PMD_NR; i++)
2438                 ret += atomic_read(&page[i]._mapcount) + 1;
2439         /* File pages has compound_mapcount included in _mapcount */
2440         if (!PageAnon(page))
2441                 return ret - compound * HPAGE_PMD_NR;
2442         if (PageDoubleMap(page))
2443                 ret -= HPAGE_PMD_NR;
2444         return ret;
2445 }
2446
2447 /*
2448  * This calculates accurately how many mappings a transparent hugepage
2449  * has (unlike page_mapcount() which isn't fully accurate). This full
2450  * accuracy is primarily needed to know if copy-on-write faults can
2451  * reuse the page and change the mapping to read-write instead of
2452  * copying them. At the same time this returns the total_mapcount too.
2453  *
2454  * The function returns the highest mapcount any one of the subpages
2455  * has. If the return value is one, even if different processes are
2456  * mapping different subpages of the transparent hugepage, they can
2457  * all reuse it, because each process is reusing a different subpage.
2458  *
2459  * The total_mapcount is instead counting all virtual mappings of the
2460  * subpages. If the total_mapcount is equal to "one", it tells the
2461  * caller all mappings belong to the same "mm" and in turn the
2462  * anon_vma of the transparent hugepage can become the vma->anon_vma
2463  * local one as no other process may be mapping any of the subpages.
2464  *
2465  * It would be more accurate to replace page_mapcount() with
2466  * page_trans_huge_mapcount(), however we only use
2467  * page_trans_huge_mapcount() in the copy-on-write faults where we
2468  * need full accuracy to avoid breaking page pinning, because
2469  * page_trans_huge_mapcount() is slower than page_mapcount().
2470  */
2471 int page_trans_huge_mapcount(struct page *page, int *total_mapcount)
2472 {
2473         int i, ret, _total_mapcount, mapcount;
2474
2475         /* hugetlbfs shouldn't call it */
2476         VM_BUG_ON_PAGE(PageHuge(page), page);
2477
2478         if (likely(!PageTransCompound(page))) {
2479                 mapcount = atomic_read(&page->_mapcount) + 1;
2480                 if (total_mapcount)
2481                         *total_mapcount = mapcount;
2482                 return mapcount;
2483         }
2484
2485         page = compound_head(page);
2486
2487         _total_mapcount = ret = 0;
2488         for (i = 0; i < HPAGE_PMD_NR; i++) {
2489                 mapcount = atomic_read(&page[i]._mapcount) + 1;
2490                 ret = max(ret, mapcount);
2491                 _total_mapcount += mapcount;
2492         }
2493         if (PageDoubleMap(page)) {
2494                 ret -= 1;
2495                 _total_mapcount -= HPAGE_PMD_NR;
2496         }
2497         mapcount = compound_mapcount(page);
2498         ret += mapcount;
2499         _total_mapcount += mapcount;
2500         if (total_mapcount)
2501                 *total_mapcount = _total_mapcount;
2502         return ret;
2503 }
2504
2505 /* Racy check whether the huge page can be split */
2506 bool can_split_huge_page(struct page *page, int *pextra_pins)
2507 {
2508         int extra_pins;
2509
2510         /* Additional pins from radix tree */
2511         if (PageAnon(page))
2512                 extra_pins = PageSwapCache(page) ? HPAGE_PMD_NR : 0;
2513         else
2514                 extra_pins = HPAGE_PMD_NR;
2515         if (pextra_pins)
2516                 *pextra_pins = extra_pins;
2517         return total_mapcount(page) == page_count(page) - extra_pins - 1;
2518 }
2519
2520 /*
2521  * This function splits huge page into normal pages. @page can point to any
2522  * subpage of huge page to split. Split doesn't change the position of @page.
2523  *
2524  * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
2525  * The huge page must be locked.
2526  *
2527  * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
2528  *
2529  * Both head page and tail pages will inherit mapping, flags, and so on from
2530  * the hugepage.
2531  *
2532  * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
2533  * they are not mapped.
2534  *
2535  * Returns 0 if the hugepage is split successfully.
2536  * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
2537  * us.
2538  */
2539 int split_huge_page_to_list(struct page *page, struct list_head *list)
2540 {
2541         struct page *head = compound_head(page);
2542         struct pglist_data *pgdata = NODE_DATA(page_to_nid(head));
2543         struct anon_vma *anon_vma = NULL;
2544         struct address_space *mapping = NULL;
2545         int count, mapcount, extra_pins, ret;
2546         bool mlocked;
2547         unsigned long flags;
2548         pgoff_t end;
2549
2550         VM_BUG_ON_PAGE(is_huge_zero_page(page), page);
2551         VM_BUG_ON_PAGE(!PageLocked(page), page);
2552         VM_BUG_ON_PAGE(!PageCompound(page), page);
2553
2554         if (PageWriteback(page))
2555                 return -EBUSY;
2556
2557         if (PageAnon(head)) {
2558                 /*
2559                  * The caller does not necessarily hold an mmap_sem that would
2560                  * prevent the anon_vma disappearing so we first we take a
2561                  * reference to it and then lock the anon_vma for write. This
2562                  * is similar to page_lock_anon_vma_read except the write lock
2563                  * is taken to serialise against parallel split or collapse
2564                  * operations.
2565                  */
2566                 anon_vma = page_get_anon_vma(head);
2567                 if (!anon_vma) {
2568                         ret = -EBUSY;
2569                         goto out;
2570                 }
2571                 end = -1;
2572                 mapping = NULL;
2573                 anon_vma_lock_write(anon_vma);
2574         } else {
2575                 mapping = head->mapping;
2576
2577                 /* Truncated ? */
2578                 if (!mapping) {
2579                         ret = -EBUSY;
2580                         goto out;
2581                 }
2582
2583                 anon_vma = NULL;
2584                 i_mmap_lock_read(mapping);
2585
2586                 /*
2587                  *__split_huge_page() may need to trim off pages beyond EOF:
2588                  * but on 32-bit, i_size_read() takes an irq-unsafe seqlock,
2589                  * which cannot be nested inside the page tree lock. So note
2590                  * end now: i_size itself may be changed at any moment, but
2591                  * head page lock is good enough to serialize the trimming.
2592                  */
2593                 end = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
2594         }
2595
2596         /*
2597          * Racy check if we can split the page, before unmap_page() will
2598          * split PMDs
2599          */
2600         if (!can_split_huge_page(head, &extra_pins)) {
2601                 ret = -EBUSY;
2602                 goto out_unlock;
2603         }
2604
2605         mlocked = PageMlocked(page);
2606         unmap_page(head);
2607         VM_BUG_ON_PAGE(compound_mapcount(head), head);
2608
2609         /* Make sure the page is not on per-CPU pagevec as it takes pin */
2610         if (mlocked)
2611                 lru_add_drain();
2612
2613         /* prevent PageLRU to go away from under us, and freeze lru stats */
2614         spin_lock_irqsave(zone_lru_lock(page_zone(head)), flags);
2615
2616         if (mapping) {
2617                 void **pslot;
2618
2619                 spin_lock(&mapping->tree_lock);
2620                 pslot = radix_tree_lookup_slot(&mapping->page_tree,
2621                                 page_index(head));
2622                 /*
2623                  * Check if the head page is present in radix tree.
2624                  * We assume all tail are present too, if head is there.
2625                  */
2626                 if (radix_tree_deref_slot_protected(pslot,
2627                                         &mapping->tree_lock) != head)
2628                         goto fail;
2629         }
2630
2631         /* Prevent deferred_split_scan() touching ->_refcount */
2632         spin_lock(&pgdata->split_queue_lock);
2633         count = page_count(head);
2634         mapcount = total_mapcount(head);
2635         if (!mapcount && page_ref_freeze(head, 1 + extra_pins)) {
2636                 if (!list_empty(page_deferred_list(head))) {
2637                         pgdata->split_queue_len--;
2638                         list_del(page_deferred_list(head));
2639                 }
2640                 if (mapping)
2641                         __dec_node_page_state(page, NR_SHMEM_THPS);
2642                 spin_unlock(&pgdata->split_queue_lock);
2643                 __split_huge_page(page, list, end, flags);
2644                 if (PageSwapCache(head)) {
2645                         swp_entry_t entry = { .val = page_private(head) };
2646
2647                         ret = split_swap_cluster(entry);
2648                 } else
2649                         ret = 0;
2650         } else {
2651                 if (IS_ENABLED(CONFIG_DEBUG_VM) && mapcount) {
2652                         pr_alert("total_mapcount: %u, page_count(): %u\n",
2653                                         mapcount, count);
2654                         if (PageTail(page))
2655                                 dump_page(head, NULL);
2656                         dump_page(page, "total_mapcount(head) > 0");
2657                         BUG();
2658                 }
2659                 spin_unlock(&pgdata->split_queue_lock);
2660 fail:           if (mapping)
2661                         spin_unlock(&mapping->tree_lock);
2662                 spin_unlock_irqrestore(zone_lru_lock(page_zone(head)), flags);
2663                 remap_page(head);
2664                 ret = -EBUSY;
2665         }
2666
2667 out_unlock:
2668         if (anon_vma) {
2669                 anon_vma_unlock_write(anon_vma);
2670                 put_anon_vma(anon_vma);
2671         }
2672         if (mapping)
2673                 i_mmap_unlock_read(mapping);
2674 out:
2675         count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
2676         return ret;
2677 }
2678
2679 void free_transhuge_page(struct page *page)
2680 {
2681         struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
2682         unsigned long flags;
2683
2684         spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2685         if (!list_empty(page_deferred_list(page))) {
2686                 pgdata->split_queue_len--;
2687                 list_del(page_deferred_list(page));
2688         }
2689         spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2690         free_compound_page(page);
2691 }
2692
2693 void deferred_split_huge_page(struct page *page)
2694 {
2695         struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
2696         unsigned long flags;
2697
2698         VM_BUG_ON_PAGE(!PageTransHuge(page), page);
2699
2700         spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2701         if (list_empty(page_deferred_list(page))) {
2702                 count_vm_event(THP_DEFERRED_SPLIT_PAGE);
2703                 list_add_tail(page_deferred_list(page), &pgdata->split_queue);
2704                 pgdata->split_queue_len++;
2705         }
2706         spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2707 }
2708
2709 static unsigned long deferred_split_count(struct shrinker *shrink,
2710                 struct shrink_control *sc)
2711 {
2712         struct pglist_data *pgdata = NODE_DATA(sc->nid);
2713         return ACCESS_ONCE(pgdata->split_queue_len);
2714 }
2715
2716 static unsigned long deferred_split_scan(struct shrinker *shrink,
2717                 struct shrink_control *sc)
2718 {
2719         struct pglist_data *pgdata = NODE_DATA(sc->nid);
2720         unsigned long flags;
2721         LIST_HEAD(list), *pos, *next;
2722         struct page *page;
2723         int split = 0;
2724
2725         spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2726         /* Take pin on all head pages to avoid freeing them under us */
2727         list_for_each_safe(pos, next, &pgdata->split_queue) {
2728                 page = list_entry((void *)pos, struct page, mapping);
2729                 page = compound_head(page);
2730                 if (get_page_unless_zero(page)) {
2731                         list_move(page_deferred_list(page), &list);
2732                 } else {
2733                         /* We lost race with put_compound_page() */
2734                         list_del_init(page_deferred_list(page));
2735                         pgdata->split_queue_len--;
2736                 }
2737                 if (!--sc->nr_to_scan)
2738                         break;
2739         }
2740         spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2741
2742         list_for_each_safe(pos, next, &list) {
2743                 page = list_entry((void *)pos, struct page, mapping);
2744                 if (!trylock_page(page))
2745                         goto next;
2746                 /* split_huge_page() removes page from list on success */
2747                 if (!split_huge_page(page))
2748                         split++;
2749                 unlock_page(page);
2750 next:
2751                 put_page(page);
2752         }
2753
2754         spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2755         list_splice_tail(&list, &pgdata->split_queue);
2756         spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2757
2758         /*
2759          * Stop shrinker if we didn't split any page, but the queue is empty.
2760          * This can happen if pages were freed under us.
2761          */
2762         if (!split && list_empty(&pgdata->split_queue))
2763                 return SHRINK_STOP;
2764         return split;
2765 }
2766
2767 static struct shrinker deferred_split_shrinker = {
2768         .count_objects = deferred_split_count,
2769         .scan_objects = deferred_split_scan,
2770         .seeks = DEFAULT_SEEKS,
2771         .flags = SHRINKER_NUMA_AWARE,
2772 };
2773
2774 #ifdef CONFIG_DEBUG_FS
2775 static int split_huge_pages_set(void *data, u64 val)
2776 {
2777         struct zone *zone;
2778         struct page *page;
2779         unsigned long pfn, max_zone_pfn;
2780         unsigned long total = 0, split = 0;
2781
2782         if (val != 1)
2783                 return -EINVAL;
2784
2785         for_each_populated_zone(zone) {
2786                 max_zone_pfn = zone_end_pfn(zone);
2787                 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
2788                         if (!pfn_valid(pfn))
2789                                 continue;
2790
2791                         page = pfn_to_page(pfn);
2792                         if (!get_page_unless_zero(page))
2793                                 continue;
2794
2795                         if (zone != page_zone(page))
2796                                 goto next;
2797
2798                         if (!PageHead(page) || PageHuge(page) || !PageLRU(page))
2799                                 goto next;
2800
2801                         total++;
2802                         lock_page(page);
2803                         if (!split_huge_page(page))
2804                                 split++;
2805                         unlock_page(page);
2806 next:
2807                         put_page(page);
2808                 }
2809         }
2810
2811         pr_info("%lu of %lu THP split\n", split, total);
2812
2813         return 0;
2814 }
2815 DEFINE_SIMPLE_ATTRIBUTE(split_huge_pages_fops, NULL, split_huge_pages_set,
2816                 "%llu\n");
2817
2818 static int __init split_huge_pages_debugfs(void)
2819 {
2820         void *ret;
2821
2822         ret = debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
2823                         &split_huge_pages_fops);
2824         if (!ret)
2825                 pr_warn("Failed to create split_huge_pages in debugfs");
2826         return 0;
2827 }
2828 late_initcall(split_huge_pages_debugfs);
2829 #endif
2830
2831 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
2832 void set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw,
2833                 struct page *page)
2834 {
2835         struct vm_area_struct *vma = pvmw->vma;
2836         struct mm_struct *mm = vma->vm_mm;
2837         unsigned long address = pvmw->address;
2838         pmd_t pmdval;
2839         swp_entry_t entry;
2840         pmd_t pmdswp;
2841
2842         if (!(pvmw->pmd && !pvmw->pte))
2843                 return;
2844
2845         flush_cache_range(vma, address, address + HPAGE_PMD_SIZE);
2846         pmdval = *pvmw->pmd;
2847         pmdp_invalidate(vma, address, pvmw->pmd);
2848         if (pmd_dirty(pmdval))
2849                 set_page_dirty(page);
2850         entry = make_migration_entry(page, pmd_write(pmdval));
2851         pmdswp = swp_entry_to_pmd(entry);
2852         if (pmd_soft_dirty(pmdval))
2853                 pmdswp = pmd_swp_mksoft_dirty(pmdswp);
2854         set_pmd_at(mm, address, pvmw->pmd, pmdswp);
2855         page_remove_rmap(page, true);
2856         put_page(page);
2857 }
2858
2859 void remove_migration_pmd(struct page_vma_mapped_walk *pvmw, struct page *new)
2860 {
2861         struct vm_area_struct *vma = pvmw->vma;
2862         struct mm_struct *mm = vma->vm_mm;
2863         unsigned long address = pvmw->address;
2864         unsigned long mmun_start = address & HPAGE_PMD_MASK;
2865         pmd_t pmde;
2866         swp_entry_t entry;
2867
2868         if (!(pvmw->pmd && !pvmw->pte))
2869                 return;
2870
2871         entry = pmd_to_swp_entry(*pvmw->pmd);
2872         get_page(new);
2873         pmde = pmd_mkold(mk_huge_pmd(new, vma->vm_page_prot));
2874         if (pmd_swp_soft_dirty(*pvmw->pmd))
2875                 pmde = pmd_mksoft_dirty(pmde);
2876         if (is_write_migration_entry(entry))
2877                 pmde = maybe_pmd_mkwrite(pmde, vma);
2878
2879         flush_cache_range(vma, mmun_start, mmun_start + HPAGE_PMD_SIZE);
2880         page_add_anon_rmap(new, vma, mmun_start, true);
2881         set_pmd_at(mm, mmun_start, pvmw->pmd, pmde);
2882         if ((vma->vm_flags & VM_LOCKED) && !PageDoubleMap(new))
2883                 mlock_vma_page(new);
2884         update_mmu_cache_pmd(vma, address, pvmw->pmd);
2885 }
2886 #endif