1 // SPDX-License-Identifier: GPL-2.0-only
3 * Copyright (C) 2009 Red Hat, Inc.
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9 #include <linux/sched.h>
10 #include <linux/sched/mm.h>
11 #include <linux/sched/coredump.h>
12 #include <linux/sched/numa_balancing.h>
13 #include <linux/highmem.h>
14 #include <linux/hugetlb.h>
15 #include <linux/mmu_notifier.h>
16 #include <linux/rmap.h>
17 #include <linux/swap.h>
18 #include <linux/shrinker.h>
19 #include <linux/mm_inline.h>
20 #include <linux/swapops.h>
21 #include <linux/backing-dev.h>
22 #include <linux/dax.h>
23 #include <linux/khugepaged.h>
24 #include <linux/freezer.h>
25 #include <linux/pfn_t.h>
26 #include <linux/mman.h>
27 #include <linux/memremap.h>
28 #include <linux/pagemap.h>
29 #include <linux/debugfs.h>
30 #include <linux/migrate.h>
31 #include <linux/hashtable.h>
32 #include <linux/userfaultfd_k.h>
33 #include <linux/page_idle.h>
34 #include <linux/shmem_fs.h>
35 #include <linux/oom.h>
36 #include <linux/numa.h>
37 #include <linux/page_owner.h>
38 #include <linux/sched/sysctl.h>
41 #include <asm/pgalloc.h>
45 #define CREATE_TRACE_POINTS
46 #include <trace/events/thp.h>
49 * By default, transparent hugepage support is disabled in order to avoid
50 * risking an increased memory footprint for applications that are not
51 * guaranteed to benefit from it. When transparent hugepage support is
52 * enabled, it is for all mappings, and khugepaged scans all mappings.
53 * Defrag is invoked by khugepaged hugepage allocations and by page faults
54 * for all hugepage allocations.
56 unsigned long transparent_hugepage_flags __read_mostly =
57 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
58 (1<<TRANSPARENT_HUGEPAGE_FLAG)|
60 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
61 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
63 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
64 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
65 (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
67 static struct shrinker deferred_split_shrinker;
69 static atomic_t huge_zero_refcount;
70 struct page *huge_zero_page __read_mostly;
71 unsigned long huge_zero_pfn __read_mostly = ~0UL;
73 bool hugepage_vma_check(struct vm_area_struct *vma,
74 unsigned long vm_flags,
75 bool smaps, bool in_pf)
77 if (!vma->vm_mm) /* vdso */
81 * Explicitly disabled through madvise or prctl, or some
82 * architectures may disable THP for some mappings, for
85 if ((vm_flags & VM_NOHUGEPAGE) ||
86 test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))
89 * If the hardware/firmware marked hugepage support disabled.
91 if (transparent_hugepage_flags & (1 << TRANSPARENT_HUGEPAGE_NEVER_DAX))
94 /* khugepaged doesn't collapse DAX vma, but page fault is fine. */
99 * Special VMA and hugetlb VMA.
100 * Must be checked after dax since some dax mappings may have
103 if (vm_flags & VM_NO_KHUGEPAGED)
107 * Check alignment for file vma and size for both file and anon vma.
109 * Skip the check for page fault. Huge fault does the check in fault
110 * handlers. And this check is not suitable for huge PUD fault.
113 !transhuge_vma_suitable(vma, (vma->vm_end - HPAGE_PMD_SIZE)))
117 * Enabled via shmem mount options or sysfs settings.
118 * Must be done before hugepage flags check since shmem has its
121 if (!in_pf && shmem_file(vma->vm_file))
122 return shmem_huge_enabled(vma);
124 if (!hugepage_flags_enabled())
127 /* THP settings require madvise. */
128 if (!(vm_flags & VM_HUGEPAGE) && !hugepage_flags_always())
131 /* Only regular file is valid */
132 if (!in_pf && file_thp_enabled(vma))
135 if (!vma_is_anonymous(vma))
138 if (vma_is_temporary_stack(vma))
142 * THPeligible bit of smaps should show 1 for proper VMAs even
143 * though anon_vma is not initialized yet.
145 * Allow page fault since anon_vma may be not initialized until
146 * the first page fault.
149 return (smaps || in_pf);
154 static bool get_huge_zero_page(void)
156 struct page *zero_page;
158 if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
161 zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
164 count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
167 count_vm_event(THP_ZERO_PAGE_ALLOC);
169 if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
171 __free_pages(zero_page, compound_order(zero_page));
174 WRITE_ONCE(huge_zero_pfn, page_to_pfn(zero_page));
176 /* We take additional reference here. It will be put back by shrinker */
177 atomic_set(&huge_zero_refcount, 2);
182 static void put_huge_zero_page(void)
185 * Counter should never go to zero here. Only shrinker can put
188 BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
191 struct page *mm_get_huge_zero_page(struct mm_struct *mm)
193 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
194 return READ_ONCE(huge_zero_page);
196 if (!get_huge_zero_page())
199 if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
200 put_huge_zero_page();
202 return READ_ONCE(huge_zero_page);
205 void mm_put_huge_zero_page(struct mm_struct *mm)
207 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
208 put_huge_zero_page();
211 static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
212 struct shrink_control *sc)
214 /* we can free zero page only if last reference remains */
215 return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
218 static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
219 struct shrink_control *sc)
221 if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
222 struct page *zero_page = xchg(&huge_zero_page, NULL);
223 BUG_ON(zero_page == NULL);
224 WRITE_ONCE(huge_zero_pfn, ~0UL);
225 __free_pages(zero_page, compound_order(zero_page));
232 static struct shrinker huge_zero_page_shrinker = {
233 .count_objects = shrink_huge_zero_page_count,
234 .scan_objects = shrink_huge_zero_page_scan,
235 .seeks = DEFAULT_SEEKS,
239 static ssize_t enabled_show(struct kobject *kobj,
240 struct kobj_attribute *attr, char *buf)
244 if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
245 output = "[always] madvise never";
246 else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
247 &transparent_hugepage_flags))
248 output = "always [madvise] never";
250 output = "always madvise [never]";
252 return sysfs_emit(buf, "%s\n", output);
255 static ssize_t enabled_store(struct kobject *kobj,
256 struct kobj_attribute *attr,
257 const char *buf, size_t count)
261 if (sysfs_streq(buf, "always")) {
262 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
263 set_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
264 } else if (sysfs_streq(buf, "madvise")) {
265 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
266 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
267 } else if (sysfs_streq(buf, "never")) {
268 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
269 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
274 int err = start_stop_khugepaged();
281 static struct kobj_attribute enabled_attr = __ATTR_RW(enabled);
283 ssize_t single_hugepage_flag_show(struct kobject *kobj,
284 struct kobj_attribute *attr, char *buf,
285 enum transparent_hugepage_flag flag)
287 return sysfs_emit(buf, "%d\n",
288 !!test_bit(flag, &transparent_hugepage_flags));
291 ssize_t single_hugepage_flag_store(struct kobject *kobj,
292 struct kobj_attribute *attr,
293 const char *buf, size_t count,
294 enum transparent_hugepage_flag flag)
299 ret = kstrtoul(buf, 10, &value);
306 set_bit(flag, &transparent_hugepage_flags);
308 clear_bit(flag, &transparent_hugepage_flags);
313 static ssize_t defrag_show(struct kobject *kobj,
314 struct kobj_attribute *attr, char *buf)
318 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG,
319 &transparent_hugepage_flags))
320 output = "[always] defer defer+madvise madvise never";
321 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG,
322 &transparent_hugepage_flags))
323 output = "always [defer] defer+madvise madvise never";
324 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG,
325 &transparent_hugepage_flags))
326 output = "always defer [defer+madvise] madvise never";
327 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG,
328 &transparent_hugepage_flags))
329 output = "always defer defer+madvise [madvise] never";
331 output = "always defer defer+madvise madvise [never]";
333 return sysfs_emit(buf, "%s\n", output);
336 static ssize_t defrag_store(struct kobject *kobj,
337 struct kobj_attribute *attr,
338 const char *buf, size_t count)
340 if (sysfs_streq(buf, "always")) {
341 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
342 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
343 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
344 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
345 } else if (sysfs_streq(buf, "defer+madvise")) {
346 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
347 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
348 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
349 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
350 } else if (sysfs_streq(buf, "defer")) {
351 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
352 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
353 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
354 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
355 } else if (sysfs_streq(buf, "madvise")) {
356 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
357 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
358 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
359 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
360 } else if (sysfs_streq(buf, "never")) {
361 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
362 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
363 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
364 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
370 static struct kobj_attribute defrag_attr = __ATTR_RW(defrag);
372 static ssize_t use_zero_page_show(struct kobject *kobj,
373 struct kobj_attribute *attr, char *buf)
375 return single_hugepage_flag_show(kobj, attr, buf,
376 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
378 static ssize_t use_zero_page_store(struct kobject *kobj,
379 struct kobj_attribute *attr, const char *buf, size_t count)
381 return single_hugepage_flag_store(kobj, attr, buf, count,
382 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
384 static struct kobj_attribute use_zero_page_attr = __ATTR_RW(use_zero_page);
386 static ssize_t hpage_pmd_size_show(struct kobject *kobj,
387 struct kobj_attribute *attr, char *buf)
389 return sysfs_emit(buf, "%lu\n", HPAGE_PMD_SIZE);
391 static struct kobj_attribute hpage_pmd_size_attr =
392 __ATTR_RO(hpage_pmd_size);
394 static struct attribute *hugepage_attr[] = {
397 &use_zero_page_attr.attr,
398 &hpage_pmd_size_attr.attr,
400 &shmem_enabled_attr.attr,
405 static const struct attribute_group hugepage_attr_group = {
406 .attrs = hugepage_attr,
409 static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
413 *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
414 if (unlikely(!*hugepage_kobj)) {
415 pr_err("failed to create transparent hugepage kobject\n");
419 err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
421 pr_err("failed to register transparent hugepage group\n");
425 err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
427 pr_err("failed to register transparent hugepage group\n");
428 goto remove_hp_group;
434 sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
436 kobject_put(*hugepage_kobj);
440 static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
442 sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
443 sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
444 kobject_put(hugepage_kobj);
447 static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
452 static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
455 #endif /* CONFIG_SYSFS */
457 static int __init hugepage_init(void)
460 struct kobject *hugepage_kobj;
462 if (!has_transparent_hugepage()) {
464 * Hardware doesn't support hugepages, hence disable
467 transparent_hugepage_flags = 1 << TRANSPARENT_HUGEPAGE_NEVER_DAX;
472 * hugepages can't be allocated by the buddy allocator
474 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER);
476 * we use page->mapping and page->index in second tail page
477 * as list_head: assuming THP order >= 2
479 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);
481 err = hugepage_init_sysfs(&hugepage_kobj);
485 err = khugepaged_init();
489 err = register_shrinker(&huge_zero_page_shrinker, "thp-zero");
491 goto err_hzp_shrinker;
492 err = register_shrinker(&deferred_split_shrinker, "thp-deferred_split");
494 goto err_split_shrinker;
497 * By default disable transparent hugepages on smaller systems,
498 * where the extra memory used could hurt more than TLB overhead
499 * is likely to save. The admin can still enable it through /sys.
501 if (totalram_pages() < (512 << (20 - PAGE_SHIFT))) {
502 transparent_hugepage_flags = 0;
506 err = start_stop_khugepaged();
512 unregister_shrinker(&deferred_split_shrinker);
514 unregister_shrinker(&huge_zero_page_shrinker);
516 khugepaged_destroy();
518 hugepage_exit_sysfs(hugepage_kobj);
522 subsys_initcall(hugepage_init);
524 static int __init setup_transparent_hugepage(char *str)
529 if (!strcmp(str, "always")) {
530 set_bit(TRANSPARENT_HUGEPAGE_FLAG,
531 &transparent_hugepage_flags);
532 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
533 &transparent_hugepage_flags);
535 } else if (!strcmp(str, "madvise")) {
536 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
537 &transparent_hugepage_flags);
538 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
539 &transparent_hugepage_flags);
541 } else if (!strcmp(str, "never")) {
542 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
543 &transparent_hugepage_flags);
544 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
545 &transparent_hugepage_flags);
550 pr_warn("transparent_hugepage= cannot parse, ignored\n");
553 __setup("transparent_hugepage=", setup_transparent_hugepage);
555 pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
557 if (likely(vma->vm_flags & VM_WRITE))
558 pmd = pmd_mkwrite(pmd);
563 static inline struct deferred_split *get_deferred_split_queue(struct page *page)
565 struct mem_cgroup *memcg = page_memcg(compound_head(page));
566 struct pglist_data *pgdat = NODE_DATA(page_to_nid(page));
569 return &memcg->deferred_split_queue;
571 return &pgdat->deferred_split_queue;
574 static inline struct deferred_split *get_deferred_split_queue(struct page *page)
576 struct pglist_data *pgdat = NODE_DATA(page_to_nid(page));
578 return &pgdat->deferred_split_queue;
582 void prep_transhuge_page(struct page *page)
585 * we use page->mapping and page->index in second tail page
586 * as list_head: assuming THP order >= 2
589 INIT_LIST_HEAD(page_deferred_list(page));
590 set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR);
593 static inline bool is_transparent_hugepage(struct page *page)
595 if (!PageCompound(page))
598 page = compound_head(page);
599 return is_huge_zero_page(page) ||
600 page[1].compound_dtor == TRANSHUGE_PAGE_DTOR;
603 static unsigned long __thp_get_unmapped_area(struct file *filp,
604 unsigned long addr, unsigned long len,
605 loff_t off, unsigned long flags, unsigned long size)
607 loff_t off_end = off + len;
608 loff_t off_align = round_up(off, size);
609 unsigned long len_pad, ret;
611 if (off_end <= off_align || (off_end - off_align) < size)
614 len_pad = len + size;
615 if (len_pad < len || (off + len_pad) < off)
618 ret = current->mm->get_unmapped_area(filp, addr, len_pad,
619 off >> PAGE_SHIFT, flags);
622 * The failure might be due to length padding. The caller will retry
623 * without the padding.
625 if (IS_ERR_VALUE(ret))
629 * Do not try to align to THP boundary if allocation at the address
635 ret += (off - ret) & (size - 1);
639 unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr,
640 unsigned long len, unsigned long pgoff, unsigned long flags)
643 loff_t off = (loff_t)pgoff << PAGE_SHIFT;
645 ret = __thp_get_unmapped_area(filp, addr, len, off, flags, PMD_SIZE);
649 return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags);
651 EXPORT_SYMBOL_GPL(thp_get_unmapped_area);
653 static vm_fault_t __do_huge_pmd_anonymous_page(struct vm_fault *vmf,
654 struct page *page, gfp_t gfp)
656 struct vm_area_struct *vma = vmf->vma;
658 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
661 VM_BUG_ON_PAGE(!PageCompound(page), page);
663 if (mem_cgroup_charge(page_folio(page), vma->vm_mm, gfp)) {
665 count_vm_event(THP_FAULT_FALLBACK);
666 count_vm_event(THP_FAULT_FALLBACK_CHARGE);
667 return VM_FAULT_FALLBACK;
669 cgroup_throttle_swaprate(page, gfp);
671 pgtable = pte_alloc_one(vma->vm_mm);
672 if (unlikely(!pgtable)) {
677 clear_huge_page(page, vmf->address, HPAGE_PMD_NR);
679 * The memory barrier inside __SetPageUptodate makes sure that
680 * clear_huge_page writes become visible before the set_pmd_at()
683 __SetPageUptodate(page);
685 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
686 if (unlikely(!pmd_none(*vmf->pmd))) {
691 ret = check_stable_address_space(vma->vm_mm);
695 /* Deliver the page fault to userland */
696 if (userfaultfd_missing(vma)) {
697 spin_unlock(vmf->ptl);
699 pte_free(vma->vm_mm, pgtable);
700 ret = handle_userfault(vmf, VM_UFFD_MISSING);
701 VM_BUG_ON(ret & VM_FAULT_FALLBACK);
705 entry = mk_huge_pmd(page, vma->vm_page_prot);
706 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
707 page_add_new_anon_rmap(page, vma, haddr);
708 lru_cache_add_inactive_or_unevictable(page, vma);
709 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
710 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
711 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
712 add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
713 mm_inc_nr_ptes(vma->vm_mm);
714 spin_unlock(vmf->ptl);
715 count_vm_event(THP_FAULT_ALLOC);
716 count_memcg_event_mm(vma->vm_mm, THP_FAULT_ALLOC);
721 spin_unlock(vmf->ptl);
724 pte_free(vma->vm_mm, pgtable);
731 * always: directly stall for all thp allocations
732 * defer: wake kswapd and fail if not immediately available
733 * defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise
734 * fail if not immediately available
735 * madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately
737 * never: never stall for any thp allocation
739 gfp_t vma_thp_gfp_mask(struct vm_area_struct *vma)
741 const bool vma_madvised = vma && (vma->vm_flags & VM_HUGEPAGE);
743 /* Always do synchronous compaction */
744 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
745 return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY);
747 /* Kick kcompactd and fail quickly */
748 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
749 return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM;
751 /* Synchronous compaction if madvised, otherwise kick kcompactd */
752 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
753 return GFP_TRANSHUGE_LIGHT |
754 (vma_madvised ? __GFP_DIRECT_RECLAIM :
755 __GFP_KSWAPD_RECLAIM);
757 /* Only do synchronous compaction if madvised */
758 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
759 return GFP_TRANSHUGE_LIGHT |
760 (vma_madvised ? __GFP_DIRECT_RECLAIM : 0);
762 return GFP_TRANSHUGE_LIGHT;
765 /* Caller must hold page table lock. */
766 static void set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
767 struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
768 struct page *zero_page)
773 entry = mk_pmd(zero_page, vma->vm_page_prot);
774 entry = pmd_mkhuge(entry);
776 pgtable_trans_huge_deposit(mm, pmd, pgtable);
777 set_pmd_at(mm, haddr, pmd, entry);
781 vm_fault_t do_huge_pmd_anonymous_page(struct vm_fault *vmf)
783 struct vm_area_struct *vma = vmf->vma;
786 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
788 if (!transhuge_vma_suitable(vma, haddr))
789 return VM_FAULT_FALLBACK;
790 if (unlikely(anon_vma_prepare(vma)))
792 khugepaged_enter_vma(vma, vma->vm_flags);
794 if (!(vmf->flags & FAULT_FLAG_WRITE) &&
795 !mm_forbids_zeropage(vma->vm_mm) &&
796 transparent_hugepage_use_zero_page()) {
798 struct page *zero_page;
800 pgtable = pte_alloc_one(vma->vm_mm);
801 if (unlikely(!pgtable))
803 zero_page = mm_get_huge_zero_page(vma->vm_mm);
804 if (unlikely(!zero_page)) {
805 pte_free(vma->vm_mm, pgtable);
806 count_vm_event(THP_FAULT_FALLBACK);
807 return VM_FAULT_FALLBACK;
809 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
811 if (pmd_none(*vmf->pmd)) {
812 ret = check_stable_address_space(vma->vm_mm);
814 spin_unlock(vmf->ptl);
815 pte_free(vma->vm_mm, pgtable);
816 } else if (userfaultfd_missing(vma)) {
817 spin_unlock(vmf->ptl);
818 pte_free(vma->vm_mm, pgtable);
819 ret = handle_userfault(vmf, VM_UFFD_MISSING);
820 VM_BUG_ON(ret & VM_FAULT_FALLBACK);
822 set_huge_zero_page(pgtable, vma->vm_mm, vma,
823 haddr, vmf->pmd, zero_page);
824 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
825 spin_unlock(vmf->ptl);
828 spin_unlock(vmf->ptl);
829 pte_free(vma->vm_mm, pgtable);
833 gfp = vma_thp_gfp_mask(vma);
834 folio = vma_alloc_folio(gfp, HPAGE_PMD_ORDER, vma, haddr, true);
835 if (unlikely(!folio)) {
836 count_vm_event(THP_FAULT_FALLBACK);
837 return VM_FAULT_FALLBACK;
839 return __do_huge_pmd_anonymous_page(vmf, &folio->page, gfp);
842 static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
843 pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write,
846 struct mm_struct *mm = vma->vm_mm;
850 ptl = pmd_lock(mm, pmd);
851 if (!pmd_none(*pmd)) {
853 if (pmd_pfn(*pmd) != pfn_t_to_pfn(pfn)) {
854 WARN_ON_ONCE(!is_huge_zero_pmd(*pmd));
857 entry = pmd_mkyoung(*pmd);
858 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
859 if (pmdp_set_access_flags(vma, addr, pmd, entry, 1))
860 update_mmu_cache_pmd(vma, addr, pmd);
866 entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
867 if (pfn_t_devmap(pfn))
868 entry = pmd_mkdevmap(entry);
870 entry = pmd_mkyoung(pmd_mkdirty(entry));
871 entry = maybe_pmd_mkwrite(entry, vma);
875 pgtable_trans_huge_deposit(mm, pmd, pgtable);
880 set_pmd_at(mm, addr, pmd, entry);
881 update_mmu_cache_pmd(vma, addr, pmd);
886 pte_free(mm, pgtable);
890 * vmf_insert_pfn_pmd_prot - insert a pmd size pfn
891 * @vmf: Structure describing the fault
892 * @pfn: pfn to insert
893 * @pgprot: page protection to use
894 * @write: whether it's a write fault
896 * Insert a pmd size pfn. See vmf_insert_pfn() for additional info and
897 * also consult the vmf_insert_mixed_prot() documentation when
898 * @pgprot != @vmf->vma->vm_page_prot.
900 * Return: vm_fault_t value.
902 vm_fault_t vmf_insert_pfn_pmd_prot(struct vm_fault *vmf, pfn_t pfn,
903 pgprot_t pgprot, bool write)
905 unsigned long addr = vmf->address & PMD_MASK;
906 struct vm_area_struct *vma = vmf->vma;
907 pgtable_t pgtable = NULL;
910 * If we had pmd_special, we could avoid all these restrictions,
911 * but we need to be consistent with PTEs and architectures that
912 * can't support a 'special' bit.
914 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
916 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
917 (VM_PFNMAP|VM_MIXEDMAP));
918 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
920 if (addr < vma->vm_start || addr >= vma->vm_end)
921 return VM_FAULT_SIGBUS;
923 if (arch_needs_pgtable_deposit()) {
924 pgtable = pte_alloc_one(vma->vm_mm);
929 track_pfn_insert(vma, &pgprot, pfn);
931 insert_pfn_pmd(vma, addr, vmf->pmd, pfn, pgprot, write, pgtable);
932 return VM_FAULT_NOPAGE;
934 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd_prot);
936 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
937 static pud_t maybe_pud_mkwrite(pud_t pud, struct vm_area_struct *vma)
939 if (likely(vma->vm_flags & VM_WRITE))
940 pud = pud_mkwrite(pud);
944 static void insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
945 pud_t *pud, pfn_t pfn, pgprot_t prot, bool write)
947 struct mm_struct *mm = vma->vm_mm;
951 ptl = pud_lock(mm, pud);
952 if (!pud_none(*pud)) {
954 if (pud_pfn(*pud) != pfn_t_to_pfn(pfn)) {
955 WARN_ON_ONCE(!is_huge_zero_pud(*pud));
958 entry = pud_mkyoung(*pud);
959 entry = maybe_pud_mkwrite(pud_mkdirty(entry), vma);
960 if (pudp_set_access_flags(vma, addr, pud, entry, 1))
961 update_mmu_cache_pud(vma, addr, pud);
966 entry = pud_mkhuge(pfn_t_pud(pfn, prot));
967 if (pfn_t_devmap(pfn))
968 entry = pud_mkdevmap(entry);
970 entry = pud_mkyoung(pud_mkdirty(entry));
971 entry = maybe_pud_mkwrite(entry, vma);
973 set_pud_at(mm, addr, pud, entry);
974 update_mmu_cache_pud(vma, addr, pud);
981 * vmf_insert_pfn_pud_prot - insert a pud size pfn
982 * @vmf: Structure describing the fault
983 * @pfn: pfn to insert
984 * @pgprot: page protection to use
985 * @write: whether it's a write fault
987 * Insert a pud size pfn. See vmf_insert_pfn() for additional info and
988 * also consult the vmf_insert_mixed_prot() documentation when
989 * @pgprot != @vmf->vma->vm_page_prot.
991 * Return: vm_fault_t value.
993 vm_fault_t vmf_insert_pfn_pud_prot(struct vm_fault *vmf, pfn_t pfn,
994 pgprot_t pgprot, bool write)
996 unsigned long addr = vmf->address & PUD_MASK;
997 struct vm_area_struct *vma = vmf->vma;
1000 * If we had pud_special, we could avoid all these restrictions,
1001 * but we need to be consistent with PTEs and architectures that
1002 * can't support a 'special' bit.
1004 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
1005 !pfn_t_devmap(pfn));
1006 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1007 (VM_PFNMAP|VM_MIXEDMAP));
1008 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1010 if (addr < vma->vm_start || addr >= vma->vm_end)
1011 return VM_FAULT_SIGBUS;
1013 track_pfn_insert(vma, &pgprot, pfn);
1015 insert_pfn_pud(vma, addr, vmf->pud, pfn, pgprot, write);
1016 return VM_FAULT_NOPAGE;
1018 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud_prot);
1019 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1021 static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
1022 pmd_t *pmd, bool write)
1026 _pmd = pmd_mkyoung(*pmd);
1028 _pmd = pmd_mkdirty(_pmd);
1029 if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
1031 update_mmu_cache_pmd(vma, addr, pmd);
1034 struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
1035 pmd_t *pmd, int flags, struct dev_pagemap **pgmap)
1037 unsigned long pfn = pmd_pfn(*pmd);
1038 struct mm_struct *mm = vma->vm_mm;
1041 assert_spin_locked(pmd_lockptr(mm, pmd));
1044 * When we COW a devmap PMD entry, we split it into PTEs, so we should
1045 * not be in this function with `flags & FOLL_COW` set.
1047 WARN_ONCE(flags & FOLL_COW, "mm: In follow_devmap_pmd with FOLL_COW set");
1049 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
1050 if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
1051 (FOLL_PIN | FOLL_GET)))
1054 if (flags & FOLL_WRITE && !pmd_write(*pmd))
1057 if (pmd_present(*pmd) && pmd_devmap(*pmd))
1062 if (flags & FOLL_TOUCH)
1063 touch_pmd(vma, addr, pmd, flags & FOLL_WRITE);
1066 * device mapped pages can only be returned if the
1067 * caller will manage the page reference count.
1069 if (!(flags & (FOLL_GET | FOLL_PIN)))
1070 return ERR_PTR(-EEXIST);
1072 pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
1073 *pgmap = get_dev_pagemap(pfn, *pgmap);
1075 return ERR_PTR(-EFAULT);
1076 page = pfn_to_page(pfn);
1077 if (!try_grab_page(page, flags))
1078 page = ERR_PTR(-ENOMEM);
1083 int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1084 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
1085 struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1087 spinlock_t *dst_ptl, *src_ptl;
1088 struct page *src_page;
1090 pgtable_t pgtable = NULL;
1093 /* Skip if can be re-fill on fault */
1094 if (!vma_is_anonymous(dst_vma))
1097 pgtable = pte_alloc_one(dst_mm);
1098 if (unlikely(!pgtable))
1101 dst_ptl = pmd_lock(dst_mm, dst_pmd);
1102 src_ptl = pmd_lockptr(src_mm, src_pmd);
1103 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1108 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1109 if (unlikely(is_swap_pmd(pmd))) {
1110 swp_entry_t entry = pmd_to_swp_entry(pmd);
1112 VM_BUG_ON(!is_pmd_migration_entry(pmd));
1113 if (!is_readable_migration_entry(entry)) {
1114 entry = make_readable_migration_entry(
1116 pmd = swp_entry_to_pmd(entry);
1117 if (pmd_swp_soft_dirty(*src_pmd))
1118 pmd = pmd_swp_mksoft_dirty(pmd);
1119 if (pmd_swp_uffd_wp(*src_pmd))
1120 pmd = pmd_swp_mkuffd_wp(pmd);
1121 set_pmd_at(src_mm, addr, src_pmd, pmd);
1123 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1124 mm_inc_nr_ptes(dst_mm);
1125 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1126 if (!userfaultfd_wp(dst_vma))
1127 pmd = pmd_swp_clear_uffd_wp(pmd);
1128 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
1134 if (unlikely(!pmd_trans_huge(pmd))) {
1135 pte_free(dst_mm, pgtable);
1139 * When page table lock is held, the huge zero pmd should not be
1140 * under splitting since we don't split the page itself, only pmd to
1143 if (is_huge_zero_pmd(pmd)) {
1145 * get_huge_zero_page() will never allocate a new page here,
1146 * since we already have a zero page to copy. It just takes a
1149 mm_get_huge_zero_page(dst_mm);
1153 src_page = pmd_page(pmd);
1154 VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
1157 if (unlikely(page_try_dup_anon_rmap(src_page, true, src_vma))) {
1158 /* Page maybe pinned: split and retry the fault on PTEs. */
1160 pte_free(dst_mm, pgtable);
1161 spin_unlock(src_ptl);
1162 spin_unlock(dst_ptl);
1163 __split_huge_pmd(src_vma, src_pmd, addr, false, NULL);
1166 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1168 mm_inc_nr_ptes(dst_mm);
1169 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1170 pmdp_set_wrprotect(src_mm, addr, src_pmd);
1171 if (!userfaultfd_wp(dst_vma))
1172 pmd = pmd_clear_uffd_wp(pmd);
1173 pmd = pmd_mkold(pmd_wrprotect(pmd));
1174 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
1178 spin_unlock(src_ptl);
1179 spin_unlock(dst_ptl);
1184 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1185 static void touch_pud(struct vm_area_struct *vma, unsigned long addr,
1186 pud_t *pud, bool write)
1190 _pud = pud_mkyoung(*pud);
1192 _pud = pud_mkdirty(_pud);
1193 if (pudp_set_access_flags(vma, addr & HPAGE_PUD_MASK,
1195 update_mmu_cache_pud(vma, addr, pud);
1198 struct page *follow_devmap_pud(struct vm_area_struct *vma, unsigned long addr,
1199 pud_t *pud, int flags, struct dev_pagemap **pgmap)
1201 unsigned long pfn = pud_pfn(*pud);
1202 struct mm_struct *mm = vma->vm_mm;
1205 assert_spin_locked(pud_lockptr(mm, pud));
1207 if (flags & FOLL_WRITE && !pud_write(*pud))
1210 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
1211 if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
1212 (FOLL_PIN | FOLL_GET)))
1215 if (pud_present(*pud) && pud_devmap(*pud))
1220 if (flags & FOLL_TOUCH)
1221 touch_pud(vma, addr, pud, flags & FOLL_WRITE);
1224 * device mapped pages can only be returned if the
1225 * caller will manage the page reference count.
1227 * At least one of FOLL_GET | FOLL_PIN must be set, so assert that here:
1229 if (!(flags & (FOLL_GET | FOLL_PIN)))
1230 return ERR_PTR(-EEXIST);
1232 pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT;
1233 *pgmap = get_dev_pagemap(pfn, *pgmap);
1235 return ERR_PTR(-EFAULT);
1236 page = pfn_to_page(pfn);
1237 if (!try_grab_page(page, flags))
1238 page = ERR_PTR(-ENOMEM);
1243 int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1244 pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1245 struct vm_area_struct *vma)
1247 spinlock_t *dst_ptl, *src_ptl;
1251 dst_ptl = pud_lock(dst_mm, dst_pud);
1252 src_ptl = pud_lockptr(src_mm, src_pud);
1253 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1257 if (unlikely(!pud_trans_huge(pud) && !pud_devmap(pud)))
1261 * When page table lock is held, the huge zero pud should not be
1262 * under splitting since we don't split the page itself, only pud to
1265 if (is_huge_zero_pud(pud)) {
1266 /* No huge zero pud yet */
1270 * TODO: once we support anonymous pages, use page_try_dup_anon_rmap()
1271 * and split if duplicating fails.
1273 pudp_set_wrprotect(src_mm, addr, src_pud);
1274 pud = pud_mkold(pud_wrprotect(pud));
1275 set_pud_at(dst_mm, addr, dst_pud, pud);
1279 spin_unlock(src_ptl);
1280 spin_unlock(dst_ptl);
1284 void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud)
1286 bool write = vmf->flags & FAULT_FLAG_WRITE;
1288 vmf->ptl = pud_lock(vmf->vma->vm_mm, vmf->pud);
1289 if (unlikely(!pud_same(*vmf->pud, orig_pud)))
1292 touch_pud(vmf->vma, vmf->address, vmf->pud, write);
1294 spin_unlock(vmf->ptl);
1296 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1298 void huge_pmd_set_accessed(struct vm_fault *vmf)
1300 bool write = vmf->flags & FAULT_FLAG_WRITE;
1302 vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1303 if (unlikely(!pmd_same(*vmf->pmd, vmf->orig_pmd)))
1306 touch_pmd(vmf->vma, vmf->address, vmf->pmd, write);
1309 spin_unlock(vmf->ptl);
1312 vm_fault_t do_huge_pmd_wp_page(struct vm_fault *vmf)
1314 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
1315 struct vm_area_struct *vma = vmf->vma;
1317 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1318 pmd_t orig_pmd = vmf->orig_pmd;
1320 vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd);
1321 VM_BUG_ON_VMA(!vma->anon_vma, vma);
1323 VM_BUG_ON(unshare && (vmf->flags & FAULT_FLAG_WRITE));
1324 VM_BUG_ON(!unshare && !(vmf->flags & FAULT_FLAG_WRITE));
1326 if (is_huge_zero_pmd(orig_pmd))
1329 spin_lock(vmf->ptl);
1331 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1332 spin_unlock(vmf->ptl);
1336 page = pmd_page(orig_pmd);
1337 VM_BUG_ON_PAGE(!PageHead(page), page);
1339 /* Early check when only holding the PT lock. */
1340 if (PageAnonExclusive(page))
1343 if (!trylock_page(page)) {
1345 spin_unlock(vmf->ptl);
1347 spin_lock(vmf->ptl);
1348 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1349 spin_unlock(vmf->ptl);
1357 /* Recheck after temporarily dropping the PT lock. */
1358 if (PageAnonExclusive(page)) {
1364 * See do_wp_page(): we can only reuse the page exclusively if there are
1365 * no additional references. Note that we always drain the LRU
1366 * pagevecs immediately after adding a THP.
1368 if (page_count(page) > 1 + PageSwapCache(page) * thp_nr_pages(page))
1369 goto unlock_fallback;
1370 if (PageSwapCache(page))
1371 try_to_free_swap(page);
1372 if (page_count(page) == 1) {
1375 page_move_anon_rmap(page, vma);
1378 if (unlikely(unshare)) {
1379 spin_unlock(vmf->ptl);
1382 entry = pmd_mkyoung(orig_pmd);
1383 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1384 if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry, 1))
1385 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1386 spin_unlock(vmf->ptl);
1387 return VM_FAULT_WRITE;
1392 spin_unlock(vmf->ptl);
1394 __split_huge_pmd(vma, vmf->pmd, vmf->address, false, NULL);
1395 return VM_FAULT_FALLBACK;
1399 * FOLL_FORCE can write to even unwritable pmd's, but only
1400 * after we've gone through a COW cycle and they are dirty.
1402 static inline bool can_follow_write_pmd(pmd_t pmd, unsigned int flags)
1404 return pmd_write(pmd) ||
1405 ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pmd_dirty(pmd));
1408 struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1413 struct mm_struct *mm = vma->vm_mm;
1414 struct page *page = NULL;
1416 assert_spin_locked(pmd_lockptr(mm, pmd));
1418 if (flags & FOLL_WRITE && !can_follow_write_pmd(*pmd, flags))
1421 /* Avoid dumping huge zero page */
1422 if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1423 return ERR_PTR(-EFAULT);
1425 /* Full NUMA hinting faults to serialise migration in fault paths */
1426 if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
1429 page = pmd_page(*pmd);
1430 VM_BUG_ON_PAGE(!PageHead(page) && !is_zone_device_page(page), page);
1432 if (!pmd_write(*pmd) && gup_must_unshare(flags, page))
1433 return ERR_PTR(-EMLINK);
1435 VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) &&
1436 !PageAnonExclusive(page), page);
1438 if (!try_grab_page(page, flags))
1439 return ERR_PTR(-ENOMEM);
1441 if (flags & FOLL_TOUCH)
1442 touch_pmd(vma, addr, pmd, flags & FOLL_WRITE);
1444 page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1445 VM_BUG_ON_PAGE(!PageCompound(page) && !is_zone_device_page(page), page);
1451 /* NUMA hinting page fault entry point for trans huge pmds */
1452 vm_fault_t do_huge_pmd_numa_page(struct vm_fault *vmf)
1454 struct vm_area_struct *vma = vmf->vma;
1455 pmd_t oldpmd = vmf->orig_pmd;
1458 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1459 int page_nid = NUMA_NO_NODE;
1460 int target_nid, last_cpupid = -1;
1461 bool migrated = false;
1462 bool was_writable = pmd_savedwrite(oldpmd);
1465 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1466 if (unlikely(!pmd_same(oldpmd, *vmf->pmd))) {
1467 spin_unlock(vmf->ptl);
1471 pmd = pmd_modify(oldpmd, vma->vm_page_prot);
1472 page = vm_normal_page_pmd(vma, haddr, pmd);
1476 /* See similar comment in do_numa_page for explanation */
1478 flags |= TNF_NO_GROUP;
1480 page_nid = page_to_nid(page);
1481 last_cpupid = page_cpupid_last(page);
1482 target_nid = numa_migrate_prep(page, vma, haddr, page_nid,
1485 if (target_nid == NUMA_NO_NODE) {
1490 spin_unlock(vmf->ptl);
1492 migrated = migrate_misplaced_page(page, vma, target_nid);
1494 flags |= TNF_MIGRATED;
1495 page_nid = target_nid;
1497 flags |= TNF_MIGRATE_FAIL;
1498 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1499 if (unlikely(!pmd_same(oldpmd, *vmf->pmd))) {
1500 spin_unlock(vmf->ptl);
1507 if (page_nid != NUMA_NO_NODE)
1508 task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR,
1514 /* Restore the PMD */
1515 pmd = pmd_modify(oldpmd, vma->vm_page_prot);
1516 pmd = pmd_mkyoung(pmd);
1518 pmd = pmd_mkwrite(pmd);
1519 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd);
1520 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1521 spin_unlock(vmf->ptl);
1526 * Return true if we do MADV_FREE successfully on entire pmd page.
1527 * Otherwise, return false.
1529 bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1530 pmd_t *pmd, unsigned long addr, unsigned long next)
1535 struct mm_struct *mm = tlb->mm;
1538 tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
1540 ptl = pmd_trans_huge_lock(pmd, vma);
1545 if (is_huge_zero_pmd(orig_pmd))
1548 if (unlikely(!pmd_present(orig_pmd))) {
1549 VM_BUG_ON(thp_migration_supported() &&
1550 !is_pmd_migration_entry(orig_pmd));
1554 page = pmd_page(orig_pmd);
1556 * If other processes are mapping this page, we couldn't discard
1557 * the page unless they all do MADV_FREE so let's skip the page.
1559 if (total_mapcount(page) != 1)
1562 if (!trylock_page(page))
1566 * If user want to discard part-pages of THP, split it so MADV_FREE
1567 * will deactivate only them.
1569 if (next - addr != HPAGE_PMD_SIZE) {
1572 split_huge_page(page);
1578 if (PageDirty(page))
1579 ClearPageDirty(page);
1582 if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
1583 pmdp_invalidate(vma, addr, pmd);
1584 orig_pmd = pmd_mkold(orig_pmd);
1585 orig_pmd = pmd_mkclean(orig_pmd);
1587 set_pmd_at(mm, addr, pmd, orig_pmd);
1588 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1591 mark_page_lazyfree(page);
1599 static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd)
1603 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1604 pte_free(mm, pgtable);
1608 int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1609 pmd_t *pmd, unsigned long addr)
1614 tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
1616 ptl = __pmd_trans_huge_lock(pmd, vma);
1620 * For architectures like ppc64 we look at deposited pgtable
1621 * when calling pmdp_huge_get_and_clear. So do the
1622 * pgtable_trans_huge_withdraw after finishing pmdp related
1625 orig_pmd = pmdp_huge_get_and_clear_full(vma, addr, pmd,
1627 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1628 if (vma_is_special_huge(vma)) {
1629 if (arch_needs_pgtable_deposit())
1630 zap_deposited_table(tlb->mm, pmd);
1632 } else if (is_huge_zero_pmd(orig_pmd)) {
1633 zap_deposited_table(tlb->mm, pmd);
1636 struct page *page = NULL;
1637 int flush_needed = 1;
1639 if (pmd_present(orig_pmd)) {
1640 page = pmd_page(orig_pmd);
1641 page_remove_rmap(page, vma, true);
1642 VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
1643 VM_BUG_ON_PAGE(!PageHead(page), page);
1644 } else if (thp_migration_supported()) {
1647 VM_BUG_ON(!is_pmd_migration_entry(orig_pmd));
1648 entry = pmd_to_swp_entry(orig_pmd);
1649 page = pfn_swap_entry_to_page(entry);
1652 WARN_ONCE(1, "Non present huge pmd without pmd migration enabled!");
1654 if (PageAnon(page)) {
1655 zap_deposited_table(tlb->mm, pmd);
1656 add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1658 if (arch_needs_pgtable_deposit())
1659 zap_deposited_table(tlb->mm, pmd);
1660 add_mm_counter(tlb->mm, mm_counter_file(page), -HPAGE_PMD_NR);
1665 tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE);
1670 #ifndef pmd_move_must_withdraw
1671 static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl,
1672 spinlock_t *old_pmd_ptl,
1673 struct vm_area_struct *vma)
1676 * With split pmd lock we also need to move preallocated
1677 * PTE page table if new_pmd is on different PMD page table.
1679 * We also don't deposit and withdraw tables for file pages.
1681 return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma);
1685 static pmd_t move_soft_dirty_pmd(pmd_t pmd)
1687 #ifdef CONFIG_MEM_SOFT_DIRTY
1688 if (unlikely(is_pmd_migration_entry(pmd)))
1689 pmd = pmd_swp_mksoft_dirty(pmd);
1690 else if (pmd_present(pmd))
1691 pmd = pmd_mksoft_dirty(pmd);
1696 bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
1697 unsigned long new_addr, pmd_t *old_pmd, pmd_t *new_pmd)
1699 spinlock_t *old_ptl, *new_ptl;
1701 struct mm_struct *mm = vma->vm_mm;
1702 bool force_flush = false;
1705 * The destination pmd shouldn't be established, free_pgtables()
1706 * should have release it.
1708 if (WARN_ON(!pmd_none(*new_pmd))) {
1709 VM_BUG_ON(pmd_trans_huge(*new_pmd));
1714 * We don't have to worry about the ordering of src and dst
1715 * ptlocks because exclusive mmap_lock prevents deadlock.
1717 old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
1719 new_ptl = pmd_lockptr(mm, new_pmd);
1720 if (new_ptl != old_ptl)
1721 spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
1722 pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
1723 if (pmd_present(pmd))
1725 VM_BUG_ON(!pmd_none(*new_pmd));
1727 if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) {
1729 pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1730 pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
1732 pmd = move_soft_dirty_pmd(pmd);
1733 set_pmd_at(mm, new_addr, new_pmd, pmd);
1735 flush_pmd_tlb_range(vma, old_addr, old_addr + PMD_SIZE);
1736 if (new_ptl != old_ptl)
1737 spin_unlock(new_ptl);
1738 spin_unlock(old_ptl);
1746 * - 0 if PMD could not be locked
1747 * - 1 if PMD was locked but protections unchanged and TLB flush unnecessary
1748 * or if prot_numa but THP migration is not supported
1749 * - HPAGE_PMD_NR if protections changed and TLB flush necessary
1751 int change_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1752 pmd_t *pmd, unsigned long addr, pgprot_t newprot,
1753 unsigned long cp_flags)
1755 struct mm_struct *mm = vma->vm_mm;
1757 pmd_t oldpmd, entry;
1758 bool preserve_write;
1760 bool prot_numa = cp_flags & MM_CP_PROT_NUMA;
1761 bool uffd_wp = cp_flags & MM_CP_UFFD_WP;
1762 bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE;
1764 tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
1766 if (prot_numa && !thp_migration_supported())
1769 ptl = __pmd_trans_huge_lock(pmd, vma);
1773 preserve_write = prot_numa && pmd_write(*pmd);
1776 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1777 if (is_swap_pmd(*pmd)) {
1778 swp_entry_t entry = pmd_to_swp_entry(*pmd);
1779 struct page *page = pfn_swap_entry_to_page(entry);
1781 VM_BUG_ON(!is_pmd_migration_entry(*pmd));
1782 if (is_writable_migration_entry(entry)) {
1785 * A protection check is difficult so
1786 * just be safe and disable write
1789 entry = make_readable_exclusive_migration_entry(swp_offset(entry));
1791 entry = make_readable_migration_entry(swp_offset(entry));
1792 newpmd = swp_entry_to_pmd(entry);
1793 if (pmd_swp_soft_dirty(*pmd))
1794 newpmd = pmd_swp_mksoft_dirty(newpmd);
1795 if (pmd_swp_uffd_wp(*pmd))
1796 newpmd = pmd_swp_mkuffd_wp(newpmd);
1797 set_pmd_at(mm, addr, pmd, newpmd);
1806 * Avoid trapping faults against the zero page. The read-only
1807 * data is likely to be read-cached on the local CPU and
1808 * local/remote hits to the zero page are not interesting.
1810 if (is_huge_zero_pmd(*pmd))
1813 if (pmd_protnone(*pmd))
1816 page = pmd_page(*pmd);
1818 * Skip scanning top tier node if normal numa
1819 * balancing is disabled
1821 if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_NORMAL) &&
1822 node_is_toptier(page_to_nid(page)))
1826 * In case prot_numa, we are under mmap_read_lock(mm). It's critical
1827 * to not clear pmd intermittently to avoid race with MADV_DONTNEED
1828 * which is also under mmap_read_lock(mm):
1831 * change_huge_pmd(prot_numa=1)
1832 * pmdp_huge_get_and_clear_notify()
1833 * madvise_dontneed()
1835 * pmd_trans_huge(*pmd) == 0 (without ptl)
1838 * // pmd is re-established
1840 * The race makes MADV_DONTNEED miss the huge pmd and don't clear it
1841 * which may break userspace.
1843 * pmdp_invalidate_ad() is required to make sure we don't miss
1844 * dirty/young flags set by hardware.
1846 oldpmd = pmdp_invalidate_ad(vma, addr, pmd);
1848 entry = pmd_modify(oldpmd, newprot);
1850 entry = pmd_mk_savedwrite(entry);
1852 entry = pmd_wrprotect(entry);
1853 entry = pmd_mkuffd_wp(entry);
1854 } else if (uffd_wp_resolve) {
1856 * Leave the write bit to be handled by PF interrupt
1857 * handler, then things like COW could be properly
1860 entry = pmd_clear_uffd_wp(entry);
1863 set_pmd_at(mm, addr, pmd, entry);
1865 if (huge_pmd_needs_flush(oldpmd, entry))
1866 tlb_flush_pmd_range(tlb, addr, HPAGE_PMD_SIZE);
1868 BUG_ON(vma_is_anonymous(vma) && !preserve_write && pmd_write(entry));
1875 * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise.
1877 * Note that if it returns page table lock pointer, this routine returns without
1878 * unlocking page table lock. So callers must unlock it.
1880 spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
1883 ptl = pmd_lock(vma->vm_mm, pmd);
1884 if (likely(is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) ||
1892 * Returns page table lock pointer if a given pud maps a thp, NULL otherwise.
1894 * Note that if it returns page table lock pointer, this routine returns without
1895 * unlocking page table lock. So callers must unlock it.
1897 spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma)
1901 ptl = pud_lock(vma->vm_mm, pud);
1902 if (likely(pud_trans_huge(*pud) || pud_devmap(*pud)))
1908 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1909 int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma,
1910 pud_t *pud, unsigned long addr)
1914 ptl = __pud_trans_huge_lock(pud, vma);
1918 pudp_huge_get_and_clear_full(tlb->mm, addr, pud, tlb->fullmm);
1919 tlb_remove_pud_tlb_entry(tlb, pud, addr);
1920 if (vma_is_special_huge(vma)) {
1922 /* No zero page support yet */
1924 /* No support for anonymous PUD pages yet */
1930 static void __split_huge_pud_locked(struct vm_area_struct *vma, pud_t *pud,
1931 unsigned long haddr)
1933 VM_BUG_ON(haddr & ~HPAGE_PUD_MASK);
1934 VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
1935 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PUD_SIZE, vma);
1936 VM_BUG_ON(!pud_trans_huge(*pud) && !pud_devmap(*pud));
1938 count_vm_event(THP_SPLIT_PUD);
1940 pudp_huge_clear_flush_notify(vma, haddr, pud);
1943 void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud,
1944 unsigned long address)
1947 struct mmu_notifier_range range;
1949 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1950 address & HPAGE_PUD_MASK,
1951 (address & HPAGE_PUD_MASK) + HPAGE_PUD_SIZE);
1952 mmu_notifier_invalidate_range_start(&range);
1953 ptl = pud_lock(vma->vm_mm, pud);
1954 if (unlikely(!pud_trans_huge(*pud) && !pud_devmap(*pud)))
1956 __split_huge_pud_locked(vma, pud, range.start);
1961 * No need to double call mmu_notifier->invalidate_range() callback as
1962 * the above pudp_huge_clear_flush_notify() did already call it.
1964 mmu_notifier_invalidate_range_only_end(&range);
1966 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1968 static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
1969 unsigned long haddr, pmd_t *pmd)
1971 struct mm_struct *mm = vma->vm_mm;
1977 * Leave pmd empty until pte is filled note that it is fine to delay
1978 * notification until mmu_notifier_invalidate_range_end() as we are
1979 * replacing a zero pmd write protected page with a zero pte write
1982 * See Documentation/mm/mmu_notifier.rst
1984 pmdp_huge_clear_flush(vma, haddr, pmd);
1986 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1987 pmd_populate(mm, &_pmd, pgtable);
1989 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1991 entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
1992 entry = pte_mkspecial(entry);
1993 pte = pte_offset_map(&_pmd, haddr);
1994 VM_BUG_ON(!pte_none(*pte));
1995 set_pte_at(mm, haddr, pte, entry);
1998 smp_wmb(); /* make pte visible before pmd */
1999 pmd_populate(mm, pmd, pgtable);
2002 static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
2003 unsigned long haddr, bool freeze)
2005 struct mm_struct *mm = vma->vm_mm;
2008 pmd_t old_pmd, _pmd;
2009 bool young, write, soft_dirty, pmd_migration = false, uffd_wp = false;
2010 bool anon_exclusive = false;
2014 VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
2015 VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2016 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
2017 VM_BUG_ON(!is_pmd_migration_entry(*pmd) && !pmd_trans_huge(*pmd)
2018 && !pmd_devmap(*pmd));
2020 count_vm_event(THP_SPLIT_PMD);
2022 if (!vma_is_anonymous(vma)) {
2023 old_pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
2025 * We are going to unmap this huge page. So
2026 * just go ahead and zap it
2028 if (arch_needs_pgtable_deposit())
2029 zap_deposited_table(mm, pmd);
2030 if (vma_is_special_huge(vma))
2032 if (unlikely(is_pmd_migration_entry(old_pmd))) {
2035 entry = pmd_to_swp_entry(old_pmd);
2036 page = pfn_swap_entry_to_page(entry);
2038 page = pmd_page(old_pmd);
2039 if (!PageDirty(page) && pmd_dirty(old_pmd))
2040 set_page_dirty(page);
2041 if (!PageReferenced(page) && pmd_young(old_pmd))
2042 SetPageReferenced(page);
2043 page_remove_rmap(page, vma, true);
2046 add_mm_counter(mm, mm_counter_file(page), -HPAGE_PMD_NR);
2050 if (is_huge_zero_pmd(*pmd)) {
2052 * FIXME: Do we want to invalidate secondary mmu by calling
2053 * mmu_notifier_invalidate_range() see comments below inside
2054 * __split_huge_pmd() ?
2056 * We are going from a zero huge page write protected to zero
2057 * small page also write protected so it does not seems useful
2058 * to invalidate secondary mmu at this time.
2060 return __split_huge_zero_page_pmd(vma, haddr, pmd);
2064 * Up to this point the pmd is present and huge and userland has the
2065 * whole access to the hugepage during the split (which happens in
2066 * place). If we overwrite the pmd with the not-huge version pointing
2067 * to the pte here (which of course we could if all CPUs were bug
2068 * free), userland could trigger a small page size TLB miss on the
2069 * small sized TLB while the hugepage TLB entry is still established in
2070 * the huge TLB. Some CPU doesn't like that.
2071 * See http://support.amd.com/TechDocs/41322_10h_Rev_Gd.pdf, Erratum
2072 * 383 on page 105. Intel should be safe but is also warns that it's
2073 * only safe if the permission and cache attributes of the two entries
2074 * loaded in the two TLB is identical (which should be the case here).
2075 * But it is generally safer to never allow small and huge TLB entries
2076 * for the same virtual address to be loaded simultaneously. So instead
2077 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
2078 * current pmd notpresent (atomically because here the pmd_trans_huge
2079 * must remain set at all times on the pmd until the split is complete
2080 * for this pmd), then we flush the SMP TLB and finally we write the
2081 * non-huge version of the pmd entry with pmd_populate.
2083 old_pmd = pmdp_invalidate(vma, haddr, pmd);
2085 pmd_migration = is_pmd_migration_entry(old_pmd);
2086 if (unlikely(pmd_migration)) {
2089 entry = pmd_to_swp_entry(old_pmd);
2090 page = pfn_swap_entry_to_page(entry);
2091 write = is_writable_migration_entry(entry);
2093 anon_exclusive = is_readable_exclusive_migration_entry(entry);
2095 soft_dirty = pmd_swp_soft_dirty(old_pmd);
2096 uffd_wp = pmd_swp_uffd_wp(old_pmd);
2098 page = pmd_page(old_pmd);
2099 if (pmd_dirty(old_pmd))
2101 write = pmd_write(old_pmd);
2102 young = pmd_young(old_pmd);
2103 soft_dirty = pmd_soft_dirty(old_pmd);
2104 uffd_wp = pmd_uffd_wp(old_pmd);
2106 VM_BUG_ON_PAGE(!page_count(page), page);
2107 page_ref_add(page, HPAGE_PMD_NR - 1);
2110 * Without "freeze", we'll simply split the PMD, propagating the
2111 * PageAnonExclusive() flag for each PTE by setting it for
2112 * each subpage -- no need to (temporarily) clear.
2114 * With "freeze" we want to replace mapped pages by
2115 * migration entries right away. This is only possible if we
2116 * managed to clear PageAnonExclusive() -- see
2117 * set_pmd_migration_entry().
2119 * In case we cannot clear PageAnonExclusive(), split the PMD
2120 * only and let try_to_migrate_one() fail later.
2122 anon_exclusive = PageAnon(page) && PageAnonExclusive(page);
2123 if (freeze && anon_exclusive && page_try_share_anon_rmap(page))
2128 * Withdraw the table only after we mark the pmd entry invalid.
2129 * This's critical for some architectures (Power).
2131 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2132 pmd_populate(mm, &_pmd, pgtable);
2134 for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
2137 * Note that NUMA hinting access restrictions are not
2138 * transferred to avoid any possibility of altering
2139 * permissions across VMAs.
2141 if (freeze || pmd_migration) {
2142 swp_entry_t swp_entry;
2144 swp_entry = make_writable_migration_entry(
2145 page_to_pfn(page + i));
2146 else if (anon_exclusive)
2147 swp_entry = make_readable_exclusive_migration_entry(
2148 page_to_pfn(page + i));
2150 swp_entry = make_readable_migration_entry(
2151 page_to_pfn(page + i));
2152 entry = swp_entry_to_pte(swp_entry);
2154 entry = pte_swp_mksoft_dirty(entry);
2156 entry = pte_swp_mkuffd_wp(entry);
2158 entry = mk_pte(page + i, READ_ONCE(vma->vm_page_prot));
2159 entry = maybe_mkwrite(entry, vma);
2161 SetPageAnonExclusive(page + i);
2163 entry = pte_wrprotect(entry);
2165 entry = pte_mkold(entry);
2167 entry = pte_mksoft_dirty(entry);
2169 entry = pte_mkuffd_wp(entry);
2171 pte = pte_offset_map(&_pmd, addr);
2172 BUG_ON(!pte_none(*pte));
2173 set_pte_at(mm, addr, pte, entry);
2175 atomic_inc(&page[i]._mapcount);
2179 if (!pmd_migration) {
2181 * Set PG_double_map before dropping compound_mapcount to avoid
2182 * false-negative page_mapped().
2184 if (compound_mapcount(page) > 1 &&
2185 !TestSetPageDoubleMap(page)) {
2186 for (i = 0; i < HPAGE_PMD_NR; i++)
2187 atomic_inc(&page[i]._mapcount);
2190 lock_page_memcg(page);
2191 if (atomic_add_negative(-1, compound_mapcount_ptr(page))) {
2192 /* Last compound_mapcount is gone. */
2193 __mod_lruvec_page_state(page, NR_ANON_THPS,
2195 if (TestClearPageDoubleMap(page)) {
2196 /* No need in mapcount reference anymore */
2197 for (i = 0; i < HPAGE_PMD_NR; i++)
2198 atomic_dec(&page[i]._mapcount);
2201 unlock_page_memcg(page);
2203 /* Above is effectively page_remove_rmap(page, vma, true) */
2204 munlock_vma_page(page, vma, true);
2207 smp_wmb(); /* make pte visible before pmd */
2208 pmd_populate(mm, pmd, pgtable);
2211 for (i = 0; i < HPAGE_PMD_NR; i++) {
2212 page_remove_rmap(page + i, vma, false);
2218 void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
2219 unsigned long address, bool freeze, struct folio *folio)
2222 struct mmu_notifier_range range;
2224 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
2225 address & HPAGE_PMD_MASK,
2226 (address & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE);
2227 mmu_notifier_invalidate_range_start(&range);
2228 ptl = pmd_lock(vma->vm_mm, pmd);
2231 * If caller asks to setup a migration entry, we need a folio to check
2232 * pmd against. Otherwise we can end up replacing wrong folio.
2234 VM_BUG_ON(freeze && !folio);
2235 VM_WARN_ON_ONCE(folio && !folio_test_locked(folio));
2237 if (pmd_trans_huge(*pmd) || pmd_devmap(*pmd) ||
2238 is_pmd_migration_entry(*pmd)) {
2240 * It's safe to call pmd_page when folio is set because it's
2241 * guaranteed that pmd is present.
2243 if (folio && folio != page_folio(pmd_page(*pmd)))
2245 __split_huge_pmd_locked(vma, pmd, range.start, freeze);
2251 * No need to double call mmu_notifier->invalidate_range() callback.
2252 * They are 3 cases to consider inside __split_huge_pmd_locked():
2253 * 1) pmdp_huge_clear_flush_notify() call invalidate_range() obvious
2254 * 2) __split_huge_zero_page_pmd() read only zero page and any write
2255 * fault will trigger a flush_notify before pointing to a new page
2256 * (it is fine if the secondary mmu keeps pointing to the old zero
2257 * page in the meantime)
2258 * 3) Split a huge pmd into pte pointing to the same page. No need
2259 * to invalidate secondary tlb entry they are all still valid.
2260 * any further changes to individual pte will notify. So no need
2261 * to call mmu_notifier->invalidate_range()
2263 mmu_notifier_invalidate_range_only_end(&range);
2266 void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
2267 bool freeze, struct folio *folio)
2274 pgd = pgd_offset(vma->vm_mm, address);
2275 if (!pgd_present(*pgd))
2278 p4d = p4d_offset(pgd, address);
2279 if (!p4d_present(*p4d))
2282 pud = pud_offset(p4d, address);
2283 if (!pud_present(*pud))
2286 pmd = pmd_offset(pud, address);
2288 __split_huge_pmd(vma, pmd, address, freeze, folio);
2291 static inline void split_huge_pmd_if_needed(struct vm_area_struct *vma, unsigned long address)
2294 * If the new address isn't hpage aligned and it could previously
2295 * contain an hugepage: check if we need to split an huge pmd.
2297 if (!IS_ALIGNED(address, HPAGE_PMD_SIZE) &&
2298 range_in_vma(vma, ALIGN_DOWN(address, HPAGE_PMD_SIZE),
2299 ALIGN(address, HPAGE_PMD_SIZE)))
2300 split_huge_pmd_address(vma, address, false, NULL);
2303 void vma_adjust_trans_huge(struct vm_area_struct *vma,
2304 unsigned long start,
2308 /* Check if we need to split start first. */
2309 split_huge_pmd_if_needed(vma, start);
2311 /* Check if we need to split end next. */
2312 split_huge_pmd_if_needed(vma, end);
2315 * If we're also updating the vma->vm_next->vm_start,
2316 * check if we need to split it.
2318 if (adjust_next > 0) {
2319 struct vm_area_struct *next = vma->vm_next;
2320 unsigned long nstart = next->vm_start;
2321 nstart += adjust_next;
2322 split_huge_pmd_if_needed(next, nstart);
2326 static void unmap_page(struct page *page)
2328 struct folio *folio = page_folio(page);
2329 enum ttu_flags ttu_flags = TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD |
2332 VM_BUG_ON_PAGE(!PageHead(page), page);
2335 * Anon pages need migration entries to preserve them, but file
2336 * pages can simply be left unmapped, then faulted back on demand.
2337 * If that is ever changed (perhaps for mlock), update remap_page().
2339 if (folio_test_anon(folio))
2340 try_to_migrate(folio, ttu_flags);
2342 try_to_unmap(folio, ttu_flags | TTU_IGNORE_MLOCK);
2345 static void remap_page(struct folio *folio, unsigned long nr)
2349 /* If unmap_page() uses try_to_migrate() on file, remove this check */
2350 if (!folio_test_anon(folio))
2353 remove_migration_ptes(folio, folio, true);
2354 i += folio_nr_pages(folio);
2357 folio = folio_next(folio);
2361 static void lru_add_page_tail(struct page *head, struct page *tail,
2362 struct lruvec *lruvec, struct list_head *list)
2364 VM_BUG_ON_PAGE(!PageHead(head), head);
2365 VM_BUG_ON_PAGE(PageCompound(tail), head);
2366 VM_BUG_ON_PAGE(PageLRU(tail), head);
2367 lockdep_assert_held(&lruvec->lru_lock);
2370 /* page reclaim is reclaiming a huge page */
2371 VM_WARN_ON(PageLRU(head));
2373 list_add_tail(&tail->lru, list);
2375 /* head is still on lru (and we have it frozen) */
2376 VM_WARN_ON(!PageLRU(head));
2377 if (PageUnevictable(tail))
2378 tail->mlock_count = 0;
2380 list_add_tail(&tail->lru, &head->lru);
2385 static void __split_huge_page_tail(struct page *head, int tail,
2386 struct lruvec *lruvec, struct list_head *list)
2388 struct page *page_tail = head + tail;
2390 VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
2393 * Clone page flags before unfreezing refcount.
2395 * After successful get_page_unless_zero() might follow flags change,
2396 * for example lock_page() which set PG_waiters.
2398 * Note that for mapped sub-pages of an anonymous THP,
2399 * PG_anon_exclusive has been cleared in unmap_page() and is stored in
2400 * the migration entry instead from where remap_page() will restore it.
2401 * We can still have PG_anon_exclusive set on effectively unmapped and
2402 * unreferenced sub-pages of an anonymous THP: we can simply drop
2403 * PG_anon_exclusive (-> PG_mappedtodisk) for these here.
2405 page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
2406 page_tail->flags |= (head->flags &
2407 ((1L << PG_referenced) |
2408 (1L << PG_swapbacked) |
2409 (1L << PG_swapcache) |
2410 (1L << PG_mlocked) |
2411 (1L << PG_uptodate) |
2413 (1L << PG_workingset) |
2415 (1L << PG_unevictable) |
2421 /* ->mapping in first tail page is compound_mapcount */
2422 VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
2424 page_tail->mapping = head->mapping;
2425 page_tail->index = head->index + tail;
2426 page_tail->private = 0;
2428 /* Page flags must be visible before we make the page non-compound. */
2432 * Clear PageTail before unfreezing page refcount.
2434 * After successful get_page_unless_zero() might follow put_page()
2435 * which needs correct compound_head().
2437 clear_compound_head(page_tail);
2439 /* Finally unfreeze refcount. Additional reference from page cache. */
2440 page_ref_unfreeze(page_tail, 1 + (!PageAnon(head) ||
2441 PageSwapCache(head)));
2443 if (page_is_young(head))
2444 set_page_young(page_tail);
2445 if (page_is_idle(head))
2446 set_page_idle(page_tail);
2448 page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
2451 * always add to the tail because some iterators expect new
2452 * pages to show after the currently processed elements - e.g.
2455 lru_add_page_tail(head, page_tail, lruvec, list);
2458 static void __split_huge_page(struct page *page, struct list_head *list,
2461 struct folio *folio = page_folio(page);
2462 struct page *head = &folio->page;
2463 struct lruvec *lruvec;
2464 struct address_space *swap_cache = NULL;
2465 unsigned long offset = 0;
2466 unsigned int nr = thp_nr_pages(head);
2469 /* complete memcg works before add pages to LRU */
2470 split_page_memcg(head, nr);
2472 if (PageAnon(head) && PageSwapCache(head)) {
2473 swp_entry_t entry = { .val = page_private(head) };
2475 offset = swp_offset(entry);
2476 swap_cache = swap_address_space(entry);
2477 xa_lock(&swap_cache->i_pages);
2480 /* lock lru list/PageCompound, ref frozen by page_ref_freeze */
2481 lruvec = folio_lruvec_lock(folio);
2483 ClearPageHasHWPoisoned(head);
2485 for (i = nr - 1; i >= 1; i--) {
2486 __split_huge_page_tail(head, i, lruvec, list);
2487 /* Some pages can be beyond EOF: drop them from page cache */
2488 if (head[i].index >= end) {
2489 struct folio *tail = page_folio(head + i);
2491 if (shmem_mapping(head->mapping))
2492 shmem_uncharge(head->mapping->host, 1);
2493 else if (folio_test_clear_dirty(tail))
2494 folio_account_cleaned(tail,
2495 inode_to_wb(folio->mapping->host));
2496 __filemap_remove_folio(tail, NULL);
2498 } else if (!PageAnon(page)) {
2499 __xa_store(&head->mapping->i_pages, head[i].index,
2501 } else if (swap_cache) {
2502 __xa_store(&swap_cache->i_pages, offset + i,
2507 ClearPageCompound(head);
2508 unlock_page_lruvec(lruvec);
2509 /* Caller disabled irqs, so they are still disabled here */
2511 split_page_owner(head, nr);
2513 /* See comment in __split_huge_page_tail() */
2514 if (PageAnon(head)) {
2515 /* Additional pin to swap cache */
2516 if (PageSwapCache(head)) {
2517 page_ref_add(head, 2);
2518 xa_unlock(&swap_cache->i_pages);
2523 /* Additional pin to page cache */
2524 page_ref_add(head, 2);
2525 xa_unlock(&head->mapping->i_pages);
2529 remap_page(folio, nr);
2531 if (PageSwapCache(head)) {
2532 swp_entry_t entry = { .val = page_private(head) };
2534 split_swap_cluster(entry);
2537 for (i = 0; i < nr; i++) {
2538 struct page *subpage = head + i;
2539 if (subpage == page)
2541 unlock_page(subpage);
2544 * Subpages may be freed if there wasn't any mapping
2545 * like if add_to_swap() is running on a lru page that
2546 * had its mapping zapped. And freeing these pages
2547 * requires taking the lru_lock so we do the put_page
2548 * of the tail pages after the split is complete.
2550 free_page_and_swap_cache(subpage);
2554 /* Racy check whether the huge page can be split */
2555 bool can_split_folio(struct folio *folio, int *pextra_pins)
2559 /* Additional pins from page cache */
2560 if (folio_test_anon(folio))
2561 extra_pins = folio_test_swapcache(folio) ?
2562 folio_nr_pages(folio) : 0;
2564 extra_pins = folio_nr_pages(folio);
2566 *pextra_pins = extra_pins;
2567 return folio_mapcount(folio) == folio_ref_count(folio) - extra_pins - 1;
2571 * This function splits huge page into normal pages. @page can point to any
2572 * subpage of huge page to split. Split doesn't change the position of @page.
2574 * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
2575 * The huge page must be locked.
2577 * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
2579 * Both head page and tail pages will inherit mapping, flags, and so on from
2582 * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
2583 * they are not mapped.
2585 * Returns 0 if the hugepage is split successfully.
2586 * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
2589 int split_huge_page_to_list(struct page *page, struct list_head *list)
2591 struct folio *folio = page_folio(page);
2592 struct page *head = &folio->page;
2593 struct deferred_split *ds_queue = get_deferred_split_queue(head);
2594 XA_STATE(xas, &head->mapping->i_pages, head->index);
2595 struct anon_vma *anon_vma = NULL;
2596 struct address_space *mapping = NULL;
2597 int extra_pins, ret;
2601 VM_BUG_ON_PAGE(!PageLocked(head), head);
2602 VM_BUG_ON_PAGE(!PageCompound(head), head);
2604 is_hzp = is_huge_zero_page(head);
2605 VM_WARN_ON_ONCE_PAGE(is_hzp, head);
2609 if (PageWriteback(head))
2612 if (PageAnon(head)) {
2614 * The caller does not necessarily hold an mmap_lock that would
2615 * prevent the anon_vma disappearing so we first we take a
2616 * reference to it and then lock the anon_vma for write. This
2617 * is similar to folio_lock_anon_vma_read except the write lock
2618 * is taken to serialise against parallel split or collapse
2621 anon_vma = page_get_anon_vma(head);
2628 anon_vma_lock_write(anon_vma);
2630 mapping = head->mapping;
2638 xas_split_alloc(&xas, head, compound_order(head),
2639 mapping_gfp_mask(mapping) & GFP_RECLAIM_MASK);
2640 if (xas_error(&xas)) {
2641 ret = xas_error(&xas);
2646 i_mmap_lock_read(mapping);
2649 *__split_huge_page() may need to trim off pages beyond EOF:
2650 * but on 32-bit, i_size_read() takes an irq-unsafe seqlock,
2651 * which cannot be nested inside the page tree lock. So note
2652 * end now: i_size itself may be changed at any moment, but
2653 * head page lock is good enough to serialize the trimming.
2655 end = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
2656 if (shmem_mapping(mapping))
2657 end = shmem_fallocend(mapping->host, end);
2661 * Racy check if we can split the page, before unmap_page() will
2664 if (!can_split_folio(folio, &extra_pins)) {
2671 /* block interrupt reentry in xa_lock and spinlock */
2672 local_irq_disable();
2675 * Check if the head page is present in page cache.
2676 * We assume all tail are present too, if head is there.
2680 if (xas_load(&xas) != head)
2684 /* Prevent deferred_split_scan() touching ->_refcount */
2685 spin_lock(&ds_queue->split_queue_lock);
2686 if (page_ref_freeze(head, 1 + extra_pins)) {
2687 if (!list_empty(page_deferred_list(head))) {
2688 ds_queue->split_queue_len--;
2689 list_del(page_deferred_list(head));
2691 spin_unlock(&ds_queue->split_queue_lock);
2693 int nr = thp_nr_pages(head);
2695 xas_split(&xas, head, thp_order(head));
2696 if (PageSwapBacked(head)) {
2697 __mod_lruvec_page_state(head, NR_SHMEM_THPS,
2700 __mod_lruvec_page_state(head, NR_FILE_THPS,
2702 filemap_nr_thps_dec(mapping);
2706 __split_huge_page(page, list, end);
2709 spin_unlock(&ds_queue->split_queue_lock);
2714 remap_page(folio, folio_nr_pages(folio));
2720 anon_vma_unlock_write(anon_vma);
2721 put_anon_vma(anon_vma);
2724 i_mmap_unlock_read(mapping);
2727 count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
2731 void free_transhuge_page(struct page *page)
2733 struct deferred_split *ds_queue = get_deferred_split_queue(page);
2734 unsigned long flags;
2736 spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2737 if (!list_empty(page_deferred_list(page))) {
2738 ds_queue->split_queue_len--;
2739 list_del(page_deferred_list(page));
2741 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2742 free_compound_page(page);
2745 void deferred_split_huge_page(struct page *page)
2747 struct deferred_split *ds_queue = get_deferred_split_queue(page);
2749 struct mem_cgroup *memcg = page_memcg(compound_head(page));
2751 unsigned long flags;
2753 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
2756 * The try_to_unmap() in page reclaim path might reach here too,
2757 * this may cause a race condition to corrupt deferred split queue.
2758 * And, if page reclaim is already handling the same page, it is
2759 * unnecessary to handle it again in shrinker.
2761 * Check PageSwapCache to determine if the page is being
2762 * handled by page reclaim since THP swap would add the page into
2763 * swap cache before calling try_to_unmap().
2765 if (PageSwapCache(page))
2768 spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2769 if (list_empty(page_deferred_list(page))) {
2770 count_vm_event(THP_DEFERRED_SPLIT_PAGE);
2771 list_add_tail(page_deferred_list(page), &ds_queue->split_queue);
2772 ds_queue->split_queue_len++;
2775 set_shrinker_bit(memcg, page_to_nid(page),
2776 deferred_split_shrinker.id);
2779 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2782 static unsigned long deferred_split_count(struct shrinker *shrink,
2783 struct shrink_control *sc)
2785 struct pglist_data *pgdata = NODE_DATA(sc->nid);
2786 struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
2790 ds_queue = &sc->memcg->deferred_split_queue;
2792 return READ_ONCE(ds_queue->split_queue_len);
2795 static unsigned long deferred_split_scan(struct shrinker *shrink,
2796 struct shrink_control *sc)
2798 struct pglist_data *pgdata = NODE_DATA(sc->nid);
2799 struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
2800 unsigned long flags;
2801 LIST_HEAD(list), *pos, *next;
2807 ds_queue = &sc->memcg->deferred_split_queue;
2810 spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2811 /* Take pin on all head pages to avoid freeing them under us */
2812 list_for_each_safe(pos, next, &ds_queue->split_queue) {
2813 page = list_entry((void *)pos, struct page, deferred_list);
2814 page = compound_head(page);
2815 if (get_page_unless_zero(page)) {
2816 list_move(page_deferred_list(page), &list);
2818 /* We lost race with put_compound_page() */
2819 list_del_init(page_deferred_list(page));
2820 ds_queue->split_queue_len--;
2822 if (!--sc->nr_to_scan)
2825 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2827 list_for_each_safe(pos, next, &list) {
2828 page = list_entry((void *)pos, struct page, deferred_list);
2829 if (!trylock_page(page))
2831 /* split_huge_page() removes page from list on success */
2832 if (!split_huge_page(page))
2839 spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2840 list_splice_tail(&list, &ds_queue->split_queue);
2841 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2844 * Stop shrinker if we didn't split any page, but the queue is empty.
2845 * This can happen if pages were freed under us.
2847 if (!split && list_empty(&ds_queue->split_queue))
2852 static struct shrinker deferred_split_shrinker = {
2853 .count_objects = deferred_split_count,
2854 .scan_objects = deferred_split_scan,
2855 .seeks = DEFAULT_SEEKS,
2856 .flags = SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE |
2860 #ifdef CONFIG_DEBUG_FS
2861 static void split_huge_pages_all(void)
2865 unsigned long pfn, max_zone_pfn;
2866 unsigned long total = 0, split = 0;
2868 pr_debug("Split all THPs\n");
2869 for_each_zone(zone) {
2870 if (!managed_zone(zone))
2872 max_zone_pfn = zone_end_pfn(zone);
2873 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
2875 if (!pfn_valid(pfn))
2878 page = pfn_to_page(pfn);
2879 if (!get_page_unless_zero(page))
2882 if (zone != page_zone(page))
2885 if (!PageHead(page) || PageHuge(page) || !PageLRU(page))
2890 nr_pages = thp_nr_pages(page);
2891 if (!split_huge_page(page))
2893 pfn += nr_pages - 1;
2901 pr_debug("%lu of %lu THP split\n", split, total);
2904 static inline bool vma_not_suitable_for_thp_split(struct vm_area_struct *vma)
2906 return vma_is_special_huge(vma) || (vma->vm_flags & VM_IO) ||
2907 is_vm_hugetlb_page(vma);
2910 static int split_huge_pages_pid(int pid, unsigned long vaddr_start,
2911 unsigned long vaddr_end)
2914 struct task_struct *task;
2915 struct mm_struct *mm;
2916 unsigned long total = 0, split = 0;
2919 vaddr_start &= PAGE_MASK;
2920 vaddr_end &= PAGE_MASK;
2922 /* Find the task_struct from pid */
2924 task = find_task_by_vpid(pid);
2930 get_task_struct(task);
2933 /* Find the mm_struct */
2934 mm = get_task_mm(task);
2935 put_task_struct(task);
2942 pr_debug("Split huge pages in pid: %d, vaddr: [0x%lx - 0x%lx]\n",
2943 pid, vaddr_start, vaddr_end);
2947 * always increase addr by PAGE_SIZE, since we could have a PTE page
2948 * table filled with PTE-mapped THPs, each of which is distinct.
2950 for (addr = vaddr_start; addr < vaddr_end; addr += PAGE_SIZE) {
2951 struct vm_area_struct *vma = vma_lookup(mm, addr);
2957 /* skip special VMA and hugetlb VMA */
2958 if (vma_not_suitable_for_thp_split(vma)) {
2963 /* FOLL_DUMP to ignore special (like zero) pages */
2964 page = follow_page(vma, addr, FOLL_GET | FOLL_DUMP);
2966 if (IS_ERR_OR_NULL(page) || is_zone_device_page(page))
2969 if (!is_transparent_hugepage(page))
2973 if (!can_split_folio(page_folio(page), NULL))
2976 if (!trylock_page(page))
2979 if (!split_huge_page(page))
2987 mmap_read_unlock(mm);
2990 pr_debug("%lu of %lu THP split\n", split, total);
2996 static int split_huge_pages_in_file(const char *file_path, pgoff_t off_start,
2999 struct filename *file;
3000 struct file *candidate;
3001 struct address_space *mapping;
3005 unsigned long total = 0, split = 0;
3007 file = getname_kernel(file_path);
3011 candidate = file_open_name(file, O_RDONLY, 0);
3012 if (IS_ERR(candidate))
3015 pr_debug("split file-backed THPs in file: %s, page offset: [0x%lx - 0x%lx]\n",
3016 file_path, off_start, off_end);
3018 mapping = candidate->f_mapping;
3020 for (index = off_start; index < off_end; index += nr_pages) {
3021 struct page *fpage = pagecache_get_page(mapping, index,
3022 FGP_ENTRY | FGP_HEAD, 0);
3025 if (xa_is_value(fpage) || !fpage)
3028 if (!is_transparent_hugepage(fpage))
3032 nr_pages = thp_nr_pages(fpage);
3034 if (!trylock_page(fpage))
3037 if (!split_huge_page(fpage))
3046 filp_close(candidate, NULL);
3049 pr_debug("%lu of %lu file-backed THP split\n", split, total);
3055 #define MAX_INPUT_BUF_SZ 255
3057 static ssize_t split_huge_pages_write(struct file *file, const char __user *buf,
3058 size_t count, loff_t *ppops)
3060 static DEFINE_MUTEX(split_debug_mutex);
3062 /* hold pid, start_vaddr, end_vaddr or file_path, off_start, off_end */
3063 char input_buf[MAX_INPUT_BUF_SZ];
3065 unsigned long vaddr_start, vaddr_end;
3067 ret = mutex_lock_interruptible(&split_debug_mutex);
3073 memset(input_buf, 0, MAX_INPUT_BUF_SZ);
3074 if (copy_from_user(input_buf, buf, min_t(size_t, count, MAX_INPUT_BUF_SZ)))
3077 input_buf[MAX_INPUT_BUF_SZ - 1] = '\0';
3079 if (input_buf[0] == '/') {
3081 char *buf = input_buf;
3082 char file_path[MAX_INPUT_BUF_SZ];
3083 pgoff_t off_start = 0, off_end = 0;
3084 size_t input_len = strlen(input_buf);
3086 tok = strsep(&buf, ",");
3088 strcpy(file_path, tok);
3094 ret = sscanf(buf, "0x%lx,0x%lx", &off_start, &off_end);
3099 ret = split_huge_pages_in_file(file_path, off_start, off_end);
3106 ret = sscanf(input_buf, "%d,0x%lx,0x%lx", &pid, &vaddr_start, &vaddr_end);
3107 if (ret == 1 && pid == 1) {
3108 split_huge_pages_all();
3109 ret = strlen(input_buf);
3111 } else if (ret != 3) {
3116 ret = split_huge_pages_pid(pid, vaddr_start, vaddr_end);
3118 ret = strlen(input_buf);
3120 mutex_unlock(&split_debug_mutex);
3125 static const struct file_operations split_huge_pages_fops = {
3126 .owner = THIS_MODULE,
3127 .write = split_huge_pages_write,
3128 .llseek = no_llseek,
3131 static int __init split_huge_pages_debugfs(void)
3133 debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
3134 &split_huge_pages_fops);
3137 late_initcall(split_huge_pages_debugfs);
3140 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
3141 int set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw,
3144 struct vm_area_struct *vma = pvmw->vma;
3145 struct mm_struct *mm = vma->vm_mm;
3146 unsigned long address = pvmw->address;
3147 bool anon_exclusive;
3152 if (!(pvmw->pmd && !pvmw->pte))
3155 flush_cache_range(vma, address, address + HPAGE_PMD_SIZE);
3156 pmdval = pmdp_invalidate(vma, address, pvmw->pmd);
3158 anon_exclusive = PageAnon(page) && PageAnonExclusive(page);
3159 if (anon_exclusive && page_try_share_anon_rmap(page)) {
3160 set_pmd_at(mm, address, pvmw->pmd, pmdval);
3164 if (pmd_dirty(pmdval))
3165 set_page_dirty(page);
3166 if (pmd_write(pmdval))
3167 entry = make_writable_migration_entry(page_to_pfn(page));
3168 else if (anon_exclusive)
3169 entry = make_readable_exclusive_migration_entry(page_to_pfn(page));
3171 entry = make_readable_migration_entry(page_to_pfn(page));
3172 pmdswp = swp_entry_to_pmd(entry);
3173 if (pmd_soft_dirty(pmdval))
3174 pmdswp = pmd_swp_mksoft_dirty(pmdswp);
3175 set_pmd_at(mm, address, pvmw->pmd, pmdswp);
3176 page_remove_rmap(page, vma, true);
3178 trace_set_migration_pmd(address, pmd_val(pmdswp));
3183 void remove_migration_pmd(struct page_vma_mapped_walk *pvmw, struct page *new)
3185 struct vm_area_struct *vma = pvmw->vma;
3186 struct mm_struct *mm = vma->vm_mm;
3187 unsigned long address = pvmw->address;
3188 unsigned long haddr = address & HPAGE_PMD_MASK;
3192 if (!(pvmw->pmd && !pvmw->pte))
3195 entry = pmd_to_swp_entry(*pvmw->pmd);
3197 pmde = pmd_mkold(mk_huge_pmd(new, READ_ONCE(vma->vm_page_prot)));
3198 if (pmd_swp_soft_dirty(*pvmw->pmd))
3199 pmde = pmd_mksoft_dirty(pmde);
3200 if (is_writable_migration_entry(entry))
3201 pmde = maybe_pmd_mkwrite(pmde, vma);
3202 if (pmd_swp_uffd_wp(*pvmw->pmd))
3203 pmde = pmd_wrprotect(pmd_mkuffd_wp(pmde));
3205 if (PageAnon(new)) {
3206 rmap_t rmap_flags = RMAP_COMPOUND;
3208 if (!is_readable_migration_entry(entry))
3209 rmap_flags |= RMAP_EXCLUSIVE;
3211 page_add_anon_rmap(new, vma, haddr, rmap_flags);
3213 page_add_file_rmap(new, vma, true);
3215 VM_BUG_ON(pmd_write(pmde) && PageAnon(new) && !PageAnonExclusive(new));
3216 set_pmd_at(mm, haddr, pvmw->pmd, pmde);
3218 /* No need to invalidate - it was non-present before */
3219 update_mmu_cache_pmd(vma, address, pvmw->pmd);
3220 trace_remove_migration_pmd(address, pmd_val(pmde));