1 // SPDX-License-Identifier: GPL-2.0-only
3 * Copyright (C) 2009 Red Hat, Inc.
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9 #include <linux/sched.h>
10 #include <linux/sched/mm.h>
11 #include <linux/sched/coredump.h>
12 #include <linux/sched/numa_balancing.h>
13 #include <linux/highmem.h>
14 #include <linux/hugetlb.h>
15 #include <linux/mmu_notifier.h>
16 #include <linux/rmap.h>
17 #include <linux/swap.h>
18 #include <linux/shrinker.h>
19 #include <linux/mm_inline.h>
20 #include <linux/swapops.h>
21 #include <linux/backing-dev.h>
22 #include <linux/dax.h>
23 #include <linux/khugepaged.h>
24 #include <linux/freezer.h>
25 #include <linux/pfn_t.h>
26 #include <linux/mman.h>
27 #include <linux/memremap.h>
28 #include <linux/pagemap.h>
29 #include <linux/debugfs.h>
30 #include <linux/migrate.h>
31 #include <linux/hashtable.h>
32 #include <linux/userfaultfd_k.h>
33 #include <linux/page_idle.h>
34 #include <linux/shmem_fs.h>
35 #include <linux/oom.h>
36 #include <linux/numa.h>
37 #include <linux/page_owner.h>
38 #include <linux/sched/sysctl.h>
39 #include <linux/memory-tiers.h>
42 #include <asm/pgalloc.h>
46 #define CREATE_TRACE_POINTS
47 #include <trace/events/thp.h>
50 * By default, transparent hugepage support is disabled in order to avoid
51 * risking an increased memory footprint for applications that are not
52 * guaranteed to benefit from it. When transparent hugepage support is
53 * enabled, it is for all mappings, and khugepaged scans all mappings.
54 * Defrag is invoked by khugepaged hugepage allocations and by page faults
55 * for all hugepage allocations.
57 unsigned long transparent_hugepage_flags __read_mostly =
58 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
59 (1<<TRANSPARENT_HUGEPAGE_FLAG)|
61 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
62 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
64 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
65 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
66 (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
68 static struct shrinker deferred_split_shrinker;
70 static atomic_t huge_zero_refcount;
71 struct page *huge_zero_page __read_mostly;
72 unsigned long huge_zero_pfn __read_mostly = ~0UL;
74 bool hugepage_vma_check(struct vm_area_struct *vma, unsigned long vm_flags,
75 bool smaps, bool in_pf, bool enforce_sysfs)
77 if (!vma->vm_mm) /* vdso */
81 * Explicitly disabled through madvise or prctl, or some
82 * architectures may disable THP for some mappings, for
85 if ((vm_flags & VM_NOHUGEPAGE) ||
86 test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))
89 * If the hardware/firmware marked hugepage support disabled.
91 if (transparent_hugepage_flags & (1 << TRANSPARENT_HUGEPAGE_UNSUPPORTED))
94 /* khugepaged doesn't collapse DAX vma, but page fault is fine. */
99 * Special VMA and hugetlb VMA.
100 * Must be checked after dax since some dax mappings may have
103 if (vm_flags & VM_NO_KHUGEPAGED)
107 * Check alignment for file vma and size for both file and anon vma.
109 * Skip the check for page fault. Huge fault does the check in fault
110 * handlers. And this check is not suitable for huge PUD fault.
113 !transhuge_vma_suitable(vma, (vma->vm_end - HPAGE_PMD_SIZE)))
117 * Enabled via shmem mount options or sysfs settings.
118 * Must be done before hugepage flags check since shmem has its
121 if (!in_pf && shmem_file(vma->vm_file))
122 return shmem_is_huge(file_inode(vma->vm_file), vma->vm_pgoff,
123 !enforce_sysfs, vma->vm_mm, vm_flags);
125 /* Enforce sysfs THP requirements as necessary */
127 (!hugepage_flags_enabled() || (!(vm_flags & VM_HUGEPAGE) &&
128 !hugepage_flags_always())))
131 /* Only regular file is valid */
132 if (!in_pf && file_thp_enabled(vma))
135 if (!vma_is_anonymous(vma))
138 if (vma_is_temporary_stack(vma))
142 * THPeligible bit of smaps should show 1 for proper VMAs even
143 * though anon_vma is not initialized yet.
145 * Allow page fault since anon_vma may be not initialized until
146 * the first page fault.
149 return (smaps || in_pf);
154 static bool get_huge_zero_page(void)
156 struct page *zero_page;
158 if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
161 zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
164 count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
168 if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
170 __free_pages(zero_page, compound_order(zero_page));
173 WRITE_ONCE(huge_zero_pfn, page_to_pfn(zero_page));
175 /* We take additional reference here. It will be put back by shrinker */
176 atomic_set(&huge_zero_refcount, 2);
178 count_vm_event(THP_ZERO_PAGE_ALLOC);
182 static void put_huge_zero_page(void)
185 * Counter should never go to zero here. Only shrinker can put
188 BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
191 struct page *mm_get_huge_zero_page(struct mm_struct *mm)
193 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
194 return READ_ONCE(huge_zero_page);
196 if (!get_huge_zero_page())
199 if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
200 put_huge_zero_page();
202 return READ_ONCE(huge_zero_page);
205 void mm_put_huge_zero_page(struct mm_struct *mm)
207 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
208 put_huge_zero_page();
211 static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
212 struct shrink_control *sc)
214 /* we can free zero page only if last reference remains */
215 return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
218 static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
219 struct shrink_control *sc)
221 if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
222 struct page *zero_page = xchg(&huge_zero_page, NULL);
223 BUG_ON(zero_page == NULL);
224 WRITE_ONCE(huge_zero_pfn, ~0UL);
225 __free_pages(zero_page, compound_order(zero_page));
232 static struct shrinker huge_zero_page_shrinker = {
233 .count_objects = shrink_huge_zero_page_count,
234 .scan_objects = shrink_huge_zero_page_scan,
235 .seeks = DEFAULT_SEEKS,
239 static ssize_t enabled_show(struct kobject *kobj,
240 struct kobj_attribute *attr, char *buf)
244 if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
245 output = "[always] madvise never";
246 else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
247 &transparent_hugepage_flags))
248 output = "always [madvise] never";
250 output = "always madvise [never]";
252 return sysfs_emit(buf, "%s\n", output);
255 static ssize_t enabled_store(struct kobject *kobj,
256 struct kobj_attribute *attr,
257 const char *buf, size_t count)
261 if (sysfs_streq(buf, "always")) {
262 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
263 set_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
264 } else if (sysfs_streq(buf, "madvise")) {
265 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
266 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
267 } else if (sysfs_streq(buf, "never")) {
268 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
269 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
274 int err = start_stop_khugepaged();
281 static struct kobj_attribute enabled_attr = __ATTR_RW(enabled);
283 ssize_t single_hugepage_flag_show(struct kobject *kobj,
284 struct kobj_attribute *attr, char *buf,
285 enum transparent_hugepage_flag flag)
287 return sysfs_emit(buf, "%d\n",
288 !!test_bit(flag, &transparent_hugepage_flags));
291 ssize_t single_hugepage_flag_store(struct kobject *kobj,
292 struct kobj_attribute *attr,
293 const char *buf, size_t count,
294 enum transparent_hugepage_flag flag)
299 ret = kstrtoul(buf, 10, &value);
306 set_bit(flag, &transparent_hugepage_flags);
308 clear_bit(flag, &transparent_hugepage_flags);
313 static ssize_t defrag_show(struct kobject *kobj,
314 struct kobj_attribute *attr, char *buf)
318 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG,
319 &transparent_hugepage_flags))
320 output = "[always] defer defer+madvise madvise never";
321 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG,
322 &transparent_hugepage_flags))
323 output = "always [defer] defer+madvise madvise never";
324 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG,
325 &transparent_hugepage_flags))
326 output = "always defer [defer+madvise] madvise never";
327 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG,
328 &transparent_hugepage_flags))
329 output = "always defer defer+madvise [madvise] never";
331 output = "always defer defer+madvise madvise [never]";
333 return sysfs_emit(buf, "%s\n", output);
336 static ssize_t defrag_store(struct kobject *kobj,
337 struct kobj_attribute *attr,
338 const char *buf, size_t count)
340 if (sysfs_streq(buf, "always")) {
341 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
342 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
343 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
344 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
345 } else if (sysfs_streq(buf, "defer+madvise")) {
346 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
347 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
348 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
349 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
350 } else if (sysfs_streq(buf, "defer")) {
351 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
352 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
353 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
354 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
355 } else if (sysfs_streq(buf, "madvise")) {
356 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
357 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
358 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
359 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
360 } else if (sysfs_streq(buf, "never")) {
361 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
362 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
363 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
364 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
370 static struct kobj_attribute defrag_attr = __ATTR_RW(defrag);
372 static ssize_t use_zero_page_show(struct kobject *kobj,
373 struct kobj_attribute *attr, char *buf)
375 return single_hugepage_flag_show(kobj, attr, buf,
376 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
378 static ssize_t use_zero_page_store(struct kobject *kobj,
379 struct kobj_attribute *attr, const char *buf, size_t count)
381 return single_hugepage_flag_store(kobj, attr, buf, count,
382 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
384 static struct kobj_attribute use_zero_page_attr = __ATTR_RW(use_zero_page);
386 static ssize_t hpage_pmd_size_show(struct kobject *kobj,
387 struct kobj_attribute *attr, char *buf)
389 return sysfs_emit(buf, "%lu\n", HPAGE_PMD_SIZE);
391 static struct kobj_attribute hpage_pmd_size_attr =
392 __ATTR_RO(hpage_pmd_size);
394 static struct attribute *hugepage_attr[] = {
397 &use_zero_page_attr.attr,
398 &hpage_pmd_size_attr.attr,
400 &shmem_enabled_attr.attr,
405 static const struct attribute_group hugepage_attr_group = {
406 .attrs = hugepage_attr,
409 static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
413 *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
414 if (unlikely(!*hugepage_kobj)) {
415 pr_err("failed to create transparent hugepage kobject\n");
419 err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
421 pr_err("failed to register transparent hugepage group\n");
425 err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
427 pr_err("failed to register transparent hugepage group\n");
428 goto remove_hp_group;
434 sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
436 kobject_put(*hugepage_kobj);
440 static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
442 sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
443 sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
444 kobject_put(hugepage_kobj);
447 static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
452 static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
455 #endif /* CONFIG_SYSFS */
457 static int __init hugepage_init(void)
460 struct kobject *hugepage_kobj;
462 if (!has_transparent_hugepage()) {
463 transparent_hugepage_flags = 1 << TRANSPARENT_HUGEPAGE_UNSUPPORTED;
468 * hugepages can't be allocated by the buddy allocator
470 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER > MAX_ORDER);
472 * we use page->mapping and page->index in second tail page
473 * as list_head: assuming THP order >= 2
475 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);
477 err = hugepage_init_sysfs(&hugepage_kobj);
481 err = khugepaged_init();
485 err = register_shrinker(&huge_zero_page_shrinker, "thp-zero");
487 goto err_hzp_shrinker;
488 err = register_shrinker(&deferred_split_shrinker, "thp-deferred_split");
490 goto err_split_shrinker;
493 * By default disable transparent hugepages on smaller systems,
494 * where the extra memory used could hurt more than TLB overhead
495 * is likely to save. The admin can still enable it through /sys.
497 if (totalram_pages() < (512 << (20 - PAGE_SHIFT))) {
498 transparent_hugepage_flags = 0;
502 err = start_stop_khugepaged();
508 unregister_shrinker(&deferred_split_shrinker);
510 unregister_shrinker(&huge_zero_page_shrinker);
512 khugepaged_destroy();
514 hugepage_exit_sysfs(hugepage_kobj);
518 subsys_initcall(hugepage_init);
520 static int __init setup_transparent_hugepage(char *str)
525 if (!strcmp(str, "always")) {
526 set_bit(TRANSPARENT_HUGEPAGE_FLAG,
527 &transparent_hugepage_flags);
528 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
529 &transparent_hugepage_flags);
531 } else if (!strcmp(str, "madvise")) {
532 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
533 &transparent_hugepage_flags);
534 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
535 &transparent_hugepage_flags);
537 } else if (!strcmp(str, "never")) {
538 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
539 &transparent_hugepage_flags);
540 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
541 &transparent_hugepage_flags);
546 pr_warn("transparent_hugepage= cannot parse, ignored\n");
549 __setup("transparent_hugepage=", setup_transparent_hugepage);
551 pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
553 if (likely(vma->vm_flags & VM_WRITE))
554 pmd = pmd_mkwrite(pmd, vma);
560 struct deferred_split *get_deferred_split_queue(struct folio *folio)
562 struct mem_cgroup *memcg = folio_memcg(folio);
563 struct pglist_data *pgdat = NODE_DATA(folio_nid(folio));
566 return &memcg->deferred_split_queue;
568 return &pgdat->deferred_split_queue;
572 struct deferred_split *get_deferred_split_queue(struct folio *folio)
574 struct pglist_data *pgdat = NODE_DATA(folio_nid(folio));
576 return &pgdat->deferred_split_queue;
580 void folio_prep_large_rmappable(struct folio *folio)
582 VM_BUG_ON_FOLIO(folio_order(folio) < 2, folio);
583 INIT_LIST_HEAD(&folio->_deferred_list);
584 folio_set_large_rmappable(folio);
587 static inline bool is_transparent_hugepage(struct folio *folio)
589 if (!folio_test_large(folio))
592 return is_huge_zero_page(&folio->page) ||
593 folio_test_large_rmappable(folio);
596 static unsigned long __thp_get_unmapped_area(struct file *filp,
597 unsigned long addr, unsigned long len,
598 loff_t off, unsigned long flags, unsigned long size)
600 loff_t off_end = off + len;
601 loff_t off_align = round_up(off, size);
602 unsigned long len_pad, ret;
604 if (off_end <= off_align || (off_end - off_align) < size)
607 len_pad = len + size;
608 if (len_pad < len || (off + len_pad) < off)
611 ret = current->mm->get_unmapped_area(filp, addr, len_pad,
612 off >> PAGE_SHIFT, flags);
615 * The failure might be due to length padding. The caller will retry
616 * without the padding.
618 if (IS_ERR_VALUE(ret))
622 * Do not try to align to THP boundary if allocation at the address
628 ret += (off - ret) & (size - 1);
632 unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr,
633 unsigned long len, unsigned long pgoff, unsigned long flags)
636 loff_t off = (loff_t)pgoff << PAGE_SHIFT;
638 ret = __thp_get_unmapped_area(filp, addr, len, off, flags, PMD_SIZE);
642 return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags);
644 EXPORT_SYMBOL_GPL(thp_get_unmapped_area);
646 static vm_fault_t __do_huge_pmd_anonymous_page(struct vm_fault *vmf,
647 struct page *page, gfp_t gfp)
649 struct vm_area_struct *vma = vmf->vma;
650 struct folio *folio = page_folio(page);
652 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
655 VM_BUG_ON_FOLIO(!folio_test_large(folio), folio);
657 if (mem_cgroup_charge(folio, vma->vm_mm, gfp)) {
659 count_vm_event(THP_FAULT_FALLBACK);
660 count_vm_event(THP_FAULT_FALLBACK_CHARGE);
661 return VM_FAULT_FALLBACK;
663 folio_throttle_swaprate(folio, gfp);
665 pgtable = pte_alloc_one(vma->vm_mm);
666 if (unlikely(!pgtable)) {
671 clear_huge_page(page, vmf->address, HPAGE_PMD_NR);
673 * The memory barrier inside __folio_mark_uptodate makes sure that
674 * clear_huge_page writes become visible before the set_pmd_at()
677 __folio_mark_uptodate(folio);
679 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
680 if (unlikely(!pmd_none(*vmf->pmd))) {
685 ret = check_stable_address_space(vma->vm_mm);
689 /* Deliver the page fault to userland */
690 if (userfaultfd_missing(vma)) {
691 spin_unlock(vmf->ptl);
693 pte_free(vma->vm_mm, pgtable);
694 ret = handle_userfault(vmf, VM_UFFD_MISSING);
695 VM_BUG_ON(ret & VM_FAULT_FALLBACK);
699 entry = mk_huge_pmd(page, vma->vm_page_prot);
700 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
701 folio_add_new_anon_rmap(folio, vma, haddr);
702 folio_add_lru_vma(folio, vma);
703 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
704 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
705 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
706 add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
707 mm_inc_nr_ptes(vma->vm_mm);
708 spin_unlock(vmf->ptl);
709 count_vm_event(THP_FAULT_ALLOC);
710 count_memcg_event_mm(vma->vm_mm, THP_FAULT_ALLOC);
715 spin_unlock(vmf->ptl);
718 pte_free(vma->vm_mm, pgtable);
725 * always: directly stall for all thp allocations
726 * defer: wake kswapd and fail if not immediately available
727 * defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise
728 * fail if not immediately available
729 * madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately
731 * never: never stall for any thp allocation
733 gfp_t vma_thp_gfp_mask(struct vm_area_struct *vma)
735 const bool vma_madvised = vma && (vma->vm_flags & VM_HUGEPAGE);
737 /* Always do synchronous compaction */
738 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
739 return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY);
741 /* Kick kcompactd and fail quickly */
742 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
743 return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM;
745 /* Synchronous compaction if madvised, otherwise kick kcompactd */
746 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
747 return GFP_TRANSHUGE_LIGHT |
748 (vma_madvised ? __GFP_DIRECT_RECLAIM :
749 __GFP_KSWAPD_RECLAIM);
751 /* Only do synchronous compaction if madvised */
752 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
753 return GFP_TRANSHUGE_LIGHT |
754 (vma_madvised ? __GFP_DIRECT_RECLAIM : 0);
756 return GFP_TRANSHUGE_LIGHT;
759 /* Caller must hold page table lock. */
760 static void set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
761 struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
762 struct page *zero_page)
767 entry = mk_pmd(zero_page, vma->vm_page_prot);
768 entry = pmd_mkhuge(entry);
769 pgtable_trans_huge_deposit(mm, pmd, pgtable);
770 set_pmd_at(mm, haddr, pmd, entry);
774 vm_fault_t do_huge_pmd_anonymous_page(struct vm_fault *vmf)
776 struct vm_area_struct *vma = vmf->vma;
779 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
781 if (!transhuge_vma_suitable(vma, haddr))
782 return VM_FAULT_FALLBACK;
783 if (unlikely(anon_vma_prepare(vma)))
785 khugepaged_enter_vma(vma, vma->vm_flags);
787 if (!(vmf->flags & FAULT_FLAG_WRITE) &&
788 !mm_forbids_zeropage(vma->vm_mm) &&
789 transparent_hugepage_use_zero_page()) {
791 struct page *zero_page;
793 pgtable = pte_alloc_one(vma->vm_mm);
794 if (unlikely(!pgtable))
796 zero_page = mm_get_huge_zero_page(vma->vm_mm);
797 if (unlikely(!zero_page)) {
798 pte_free(vma->vm_mm, pgtable);
799 count_vm_event(THP_FAULT_FALLBACK);
800 return VM_FAULT_FALLBACK;
802 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
804 if (pmd_none(*vmf->pmd)) {
805 ret = check_stable_address_space(vma->vm_mm);
807 spin_unlock(vmf->ptl);
808 pte_free(vma->vm_mm, pgtable);
809 } else if (userfaultfd_missing(vma)) {
810 spin_unlock(vmf->ptl);
811 pte_free(vma->vm_mm, pgtable);
812 ret = handle_userfault(vmf, VM_UFFD_MISSING);
813 VM_BUG_ON(ret & VM_FAULT_FALLBACK);
815 set_huge_zero_page(pgtable, vma->vm_mm, vma,
816 haddr, vmf->pmd, zero_page);
817 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
818 spin_unlock(vmf->ptl);
821 spin_unlock(vmf->ptl);
822 pte_free(vma->vm_mm, pgtable);
826 gfp = vma_thp_gfp_mask(vma);
827 folio = vma_alloc_folio(gfp, HPAGE_PMD_ORDER, vma, haddr, true);
828 if (unlikely(!folio)) {
829 count_vm_event(THP_FAULT_FALLBACK);
830 return VM_FAULT_FALLBACK;
832 return __do_huge_pmd_anonymous_page(vmf, &folio->page, gfp);
835 static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
836 pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write,
839 struct mm_struct *mm = vma->vm_mm;
843 ptl = pmd_lock(mm, pmd);
844 if (!pmd_none(*pmd)) {
846 if (pmd_pfn(*pmd) != pfn_t_to_pfn(pfn)) {
847 WARN_ON_ONCE(!is_huge_zero_pmd(*pmd));
850 entry = pmd_mkyoung(*pmd);
851 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
852 if (pmdp_set_access_flags(vma, addr, pmd, entry, 1))
853 update_mmu_cache_pmd(vma, addr, pmd);
859 entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
860 if (pfn_t_devmap(pfn))
861 entry = pmd_mkdevmap(entry);
863 entry = pmd_mkyoung(pmd_mkdirty(entry));
864 entry = maybe_pmd_mkwrite(entry, vma);
868 pgtable_trans_huge_deposit(mm, pmd, pgtable);
873 set_pmd_at(mm, addr, pmd, entry);
874 update_mmu_cache_pmd(vma, addr, pmd);
879 pte_free(mm, pgtable);
883 * vmf_insert_pfn_pmd - insert a pmd size pfn
884 * @vmf: Structure describing the fault
885 * @pfn: pfn to insert
886 * @write: whether it's a write fault
888 * Insert a pmd size pfn. See vmf_insert_pfn() for additional info.
890 * Return: vm_fault_t value.
892 vm_fault_t vmf_insert_pfn_pmd(struct vm_fault *vmf, pfn_t pfn, bool write)
894 unsigned long addr = vmf->address & PMD_MASK;
895 struct vm_area_struct *vma = vmf->vma;
896 pgprot_t pgprot = vma->vm_page_prot;
897 pgtable_t pgtable = NULL;
900 * If we had pmd_special, we could avoid all these restrictions,
901 * but we need to be consistent with PTEs and architectures that
902 * can't support a 'special' bit.
904 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
906 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
907 (VM_PFNMAP|VM_MIXEDMAP));
908 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
910 if (addr < vma->vm_start || addr >= vma->vm_end)
911 return VM_FAULT_SIGBUS;
913 if (arch_needs_pgtable_deposit()) {
914 pgtable = pte_alloc_one(vma->vm_mm);
919 track_pfn_insert(vma, &pgprot, pfn);
921 insert_pfn_pmd(vma, addr, vmf->pmd, pfn, pgprot, write, pgtable);
922 return VM_FAULT_NOPAGE;
924 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd);
926 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
927 static pud_t maybe_pud_mkwrite(pud_t pud, struct vm_area_struct *vma)
929 if (likely(vma->vm_flags & VM_WRITE))
930 pud = pud_mkwrite(pud);
934 static void insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
935 pud_t *pud, pfn_t pfn, bool write)
937 struct mm_struct *mm = vma->vm_mm;
938 pgprot_t prot = vma->vm_page_prot;
942 ptl = pud_lock(mm, pud);
943 if (!pud_none(*pud)) {
945 if (pud_pfn(*pud) != pfn_t_to_pfn(pfn)) {
946 WARN_ON_ONCE(!is_huge_zero_pud(*pud));
949 entry = pud_mkyoung(*pud);
950 entry = maybe_pud_mkwrite(pud_mkdirty(entry), vma);
951 if (pudp_set_access_flags(vma, addr, pud, entry, 1))
952 update_mmu_cache_pud(vma, addr, pud);
957 entry = pud_mkhuge(pfn_t_pud(pfn, prot));
958 if (pfn_t_devmap(pfn))
959 entry = pud_mkdevmap(entry);
961 entry = pud_mkyoung(pud_mkdirty(entry));
962 entry = maybe_pud_mkwrite(entry, vma);
964 set_pud_at(mm, addr, pud, entry);
965 update_mmu_cache_pud(vma, addr, pud);
972 * vmf_insert_pfn_pud - insert a pud size pfn
973 * @vmf: Structure describing the fault
974 * @pfn: pfn to insert
975 * @write: whether it's a write fault
977 * Insert a pud size pfn. See vmf_insert_pfn() for additional info.
979 * Return: vm_fault_t value.
981 vm_fault_t vmf_insert_pfn_pud(struct vm_fault *vmf, pfn_t pfn, bool write)
983 unsigned long addr = vmf->address & PUD_MASK;
984 struct vm_area_struct *vma = vmf->vma;
985 pgprot_t pgprot = vma->vm_page_prot;
988 * If we had pud_special, we could avoid all these restrictions,
989 * but we need to be consistent with PTEs and architectures that
990 * can't support a 'special' bit.
992 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
994 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
995 (VM_PFNMAP|VM_MIXEDMAP));
996 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
998 if (addr < vma->vm_start || addr >= vma->vm_end)
999 return VM_FAULT_SIGBUS;
1001 track_pfn_insert(vma, &pgprot, pfn);
1003 insert_pfn_pud(vma, addr, vmf->pud, pfn, write);
1004 return VM_FAULT_NOPAGE;
1006 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud);
1007 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1009 static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
1010 pmd_t *pmd, bool write)
1014 _pmd = pmd_mkyoung(*pmd);
1016 _pmd = pmd_mkdirty(_pmd);
1017 if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
1019 update_mmu_cache_pmd(vma, addr, pmd);
1022 struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
1023 pmd_t *pmd, int flags, struct dev_pagemap **pgmap)
1025 unsigned long pfn = pmd_pfn(*pmd);
1026 struct mm_struct *mm = vma->vm_mm;
1030 assert_spin_locked(pmd_lockptr(mm, pmd));
1032 if (flags & FOLL_WRITE && !pmd_write(*pmd))
1035 if (pmd_present(*pmd) && pmd_devmap(*pmd))
1040 if (flags & FOLL_TOUCH)
1041 touch_pmd(vma, addr, pmd, flags & FOLL_WRITE);
1044 * device mapped pages can only be returned if the
1045 * caller will manage the page reference count.
1047 if (!(flags & (FOLL_GET | FOLL_PIN)))
1048 return ERR_PTR(-EEXIST);
1050 pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
1051 *pgmap = get_dev_pagemap(pfn, *pgmap);
1053 return ERR_PTR(-EFAULT);
1054 page = pfn_to_page(pfn);
1055 ret = try_grab_page(page, flags);
1057 page = ERR_PTR(ret);
1062 int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1063 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
1064 struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1066 spinlock_t *dst_ptl, *src_ptl;
1067 struct page *src_page;
1069 pgtable_t pgtable = NULL;
1072 /* Skip if can be re-fill on fault */
1073 if (!vma_is_anonymous(dst_vma))
1076 pgtable = pte_alloc_one(dst_mm);
1077 if (unlikely(!pgtable))
1080 dst_ptl = pmd_lock(dst_mm, dst_pmd);
1081 src_ptl = pmd_lockptr(src_mm, src_pmd);
1082 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1087 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1088 if (unlikely(is_swap_pmd(pmd))) {
1089 swp_entry_t entry = pmd_to_swp_entry(pmd);
1091 VM_BUG_ON(!is_pmd_migration_entry(pmd));
1092 if (!is_readable_migration_entry(entry)) {
1093 entry = make_readable_migration_entry(
1095 pmd = swp_entry_to_pmd(entry);
1096 if (pmd_swp_soft_dirty(*src_pmd))
1097 pmd = pmd_swp_mksoft_dirty(pmd);
1098 if (pmd_swp_uffd_wp(*src_pmd))
1099 pmd = pmd_swp_mkuffd_wp(pmd);
1100 set_pmd_at(src_mm, addr, src_pmd, pmd);
1102 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1103 mm_inc_nr_ptes(dst_mm);
1104 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1105 if (!userfaultfd_wp(dst_vma))
1106 pmd = pmd_swp_clear_uffd_wp(pmd);
1107 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
1113 if (unlikely(!pmd_trans_huge(pmd))) {
1114 pte_free(dst_mm, pgtable);
1118 * When page table lock is held, the huge zero pmd should not be
1119 * under splitting since we don't split the page itself, only pmd to
1122 if (is_huge_zero_pmd(pmd)) {
1124 * get_huge_zero_page() will never allocate a new page here,
1125 * since we already have a zero page to copy. It just takes a
1128 mm_get_huge_zero_page(dst_mm);
1132 src_page = pmd_page(pmd);
1133 VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
1136 if (unlikely(page_try_dup_anon_rmap(src_page, true, src_vma))) {
1137 /* Page maybe pinned: split and retry the fault on PTEs. */
1139 pte_free(dst_mm, pgtable);
1140 spin_unlock(src_ptl);
1141 spin_unlock(dst_ptl);
1142 __split_huge_pmd(src_vma, src_pmd, addr, false, NULL);
1145 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1147 mm_inc_nr_ptes(dst_mm);
1148 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1149 pmdp_set_wrprotect(src_mm, addr, src_pmd);
1150 if (!userfaultfd_wp(dst_vma))
1151 pmd = pmd_clear_uffd_wp(pmd);
1152 pmd = pmd_mkold(pmd_wrprotect(pmd));
1153 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
1157 spin_unlock(src_ptl);
1158 spin_unlock(dst_ptl);
1163 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1164 static void touch_pud(struct vm_area_struct *vma, unsigned long addr,
1165 pud_t *pud, bool write)
1169 _pud = pud_mkyoung(*pud);
1171 _pud = pud_mkdirty(_pud);
1172 if (pudp_set_access_flags(vma, addr & HPAGE_PUD_MASK,
1174 update_mmu_cache_pud(vma, addr, pud);
1177 struct page *follow_devmap_pud(struct vm_area_struct *vma, unsigned long addr,
1178 pud_t *pud, int flags, struct dev_pagemap **pgmap)
1180 unsigned long pfn = pud_pfn(*pud);
1181 struct mm_struct *mm = vma->vm_mm;
1185 assert_spin_locked(pud_lockptr(mm, pud));
1187 if (flags & FOLL_WRITE && !pud_write(*pud))
1190 if (pud_present(*pud) && pud_devmap(*pud))
1195 if (flags & FOLL_TOUCH)
1196 touch_pud(vma, addr, pud, flags & FOLL_WRITE);
1199 * device mapped pages can only be returned if the
1200 * caller will manage the page reference count.
1202 * At least one of FOLL_GET | FOLL_PIN must be set, so assert that here:
1204 if (!(flags & (FOLL_GET | FOLL_PIN)))
1205 return ERR_PTR(-EEXIST);
1207 pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT;
1208 *pgmap = get_dev_pagemap(pfn, *pgmap);
1210 return ERR_PTR(-EFAULT);
1211 page = pfn_to_page(pfn);
1213 ret = try_grab_page(page, flags);
1215 page = ERR_PTR(ret);
1220 int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1221 pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1222 struct vm_area_struct *vma)
1224 spinlock_t *dst_ptl, *src_ptl;
1228 dst_ptl = pud_lock(dst_mm, dst_pud);
1229 src_ptl = pud_lockptr(src_mm, src_pud);
1230 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1234 if (unlikely(!pud_trans_huge(pud) && !pud_devmap(pud)))
1238 * When page table lock is held, the huge zero pud should not be
1239 * under splitting since we don't split the page itself, only pud to
1242 if (is_huge_zero_pud(pud)) {
1243 /* No huge zero pud yet */
1247 * TODO: once we support anonymous pages, use page_try_dup_anon_rmap()
1248 * and split if duplicating fails.
1250 pudp_set_wrprotect(src_mm, addr, src_pud);
1251 pud = pud_mkold(pud_wrprotect(pud));
1252 set_pud_at(dst_mm, addr, dst_pud, pud);
1256 spin_unlock(src_ptl);
1257 spin_unlock(dst_ptl);
1261 void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud)
1263 bool write = vmf->flags & FAULT_FLAG_WRITE;
1265 vmf->ptl = pud_lock(vmf->vma->vm_mm, vmf->pud);
1266 if (unlikely(!pud_same(*vmf->pud, orig_pud)))
1269 touch_pud(vmf->vma, vmf->address, vmf->pud, write);
1271 spin_unlock(vmf->ptl);
1273 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1275 void huge_pmd_set_accessed(struct vm_fault *vmf)
1277 bool write = vmf->flags & FAULT_FLAG_WRITE;
1279 vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1280 if (unlikely(!pmd_same(*vmf->pmd, vmf->orig_pmd)))
1283 touch_pmd(vmf->vma, vmf->address, vmf->pmd, write);
1286 spin_unlock(vmf->ptl);
1289 vm_fault_t do_huge_pmd_wp_page(struct vm_fault *vmf)
1291 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
1292 struct vm_area_struct *vma = vmf->vma;
1293 struct folio *folio;
1295 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1296 pmd_t orig_pmd = vmf->orig_pmd;
1298 vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd);
1299 VM_BUG_ON_VMA(!vma->anon_vma, vma);
1301 if (is_huge_zero_pmd(orig_pmd))
1304 spin_lock(vmf->ptl);
1306 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1307 spin_unlock(vmf->ptl);
1311 page = pmd_page(orig_pmd);
1312 folio = page_folio(page);
1313 VM_BUG_ON_PAGE(!PageHead(page), page);
1315 /* Early check when only holding the PT lock. */
1316 if (PageAnonExclusive(page))
1319 if (!folio_trylock(folio)) {
1321 spin_unlock(vmf->ptl);
1323 spin_lock(vmf->ptl);
1324 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1325 spin_unlock(vmf->ptl);
1326 folio_unlock(folio);
1333 /* Recheck after temporarily dropping the PT lock. */
1334 if (PageAnonExclusive(page)) {
1335 folio_unlock(folio);
1340 * See do_wp_page(): we can only reuse the folio exclusively if
1341 * there are no additional references. Note that we always drain
1342 * the LRU cache immediately after adding a THP.
1344 if (folio_ref_count(folio) >
1345 1 + folio_test_swapcache(folio) * folio_nr_pages(folio))
1346 goto unlock_fallback;
1347 if (folio_test_swapcache(folio))
1348 folio_free_swap(folio);
1349 if (folio_ref_count(folio) == 1) {
1352 page_move_anon_rmap(page, vma);
1353 folio_unlock(folio);
1355 if (unlikely(unshare)) {
1356 spin_unlock(vmf->ptl);
1359 entry = pmd_mkyoung(orig_pmd);
1360 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1361 if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry, 1))
1362 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1363 spin_unlock(vmf->ptl);
1368 folio_unlock(folio);
1369 spin_unlock(vmf->ptl);
1371 __split_huge_pmd(vma, vmf->pmd, vmf->address, false, NULL);
1372 return VM_FAULT_FALLBACK;
1375 static inline bool can_change_pmd_writable(struct vm_area_struct *vma,
1376 unsigned long addr, pmd_t pmd)
1380 if (WARN_ON_ONCE(!(vma->vm_flags & VM_WRITE)))
1383 /* Don't touch entries that are not even readable (NUMA hinting). */
1384 if (pmd_protnone(pmd))
1387 /* Do we need write faults for softdirty tracking? */
1388 if (vma_soft_dirty_enabled(vma) && !pmd_soft_dirty(pmd))
1391 /* Do we need write faults for uffd-wp tracking? */
1392 if (userfaultfd_huge_pmd_wp(vma, pmd))
1395 if (!(vma->vm_flags & VM_SHARED)) {
1396 /* See can_change_pte_writable(). */
1397 page = vm_normal_page_pmd(vma, addr, pmd);
1398 return page && PageAnon(page) && PageAnonExclusive(page);
1401 /* See can_change_pte_writable(). */
1402 return pmd_dirty(pmd);
1405 /* FOLL_FORCE can write to even unwritable PMDs in COW mappings. */
1406 static inline bool can_follow_write_pmd(pmd_t pmd, struct page *page,
1407 struct vm_area_struct *vma,
1410 /* If the pmd is writable, we can write to the page. */
1414 /* Maybe FOLL_FORCE is set to override it? */
1415 if (!(flags & FOLL_FORCE))
1418 /* But FOLL_FORCE has no effect on shared mappings */
1419 if (vma->vm_flags & (VM_MAYSHARE | VM_SHARED))
1422 /* ... or read-only private ones */
1423 if (!(vma->vm_flags & VM_MAYWRITE))
1426 /* ... or already writable ones that just need to take a write fault */
1427 if (vma->vm_flags & VM_WRITE)
1431 * See can_change_pte_writable(): we broke COW and could map the page
1432 * writable if we have an exclusive anonymous page ...
1434 if (!page || !PageAnon(page) || !PageAnonExclusive(page))
1437 /* ... and a write-fault isn't required for other reasons. */
1438 if (vma_soft_dirty_enabled(vma) && !pmd_soft_dirty(pmd))
1440 return !userfaultfd_huge_pmd_wp(vma, pmd);
1443 struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1448 struct mm_struct *mm = vma->vm_mm;
1452 assert_spin_locked(pmd_lockptr(mm, pmd));
1454 page = pmd_page(*pmd);
1455 VM_BUG_ON_PAGE(!PageHead(page) && !is_zone_device_page(page), page);
1457 if ((flags & FOLL_WRITE) &&
1458 !can_follow_write_pmd(*pmd, page, vma, flags))
1461 /* Avoid dumping huge zero page */
1462 if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1463 return ERR_PTR(-EFAULT);
1465 if (pmd_protnone(*pmd) && !gup_can_follow_protnone(vma, flags))
1468 if (!pmd_write(*pmd) && gup_must_unshare(vma, flags, page))
1469 return ERR_PTR(-EMLINK);
1471 VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) &&
1472 !PageAnonExclusive(page), page);
1474 ret = try_grab_page(page, flags);
1476 return ERR_PTR(ret);
1478 if (flags & FOLL_TOUCH)
1479 touch_pmd(vma, addr, pmd, flags & FOLL_WRITE);
1481 page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1482 VM_BUG_ON_PAGE(!PageCompound(page) && !is_zone_device_page(page), page);
1487 /* NUMA hinting page fault entry point for trans huge pmds */
1488 vm_fault_t do_huge_pmd_numa_page(struct vm_fault *vmf)
1490 struct vm_area_struct *vma = vmf->vma;
1491 pmd_t oldpmd = vmf->orig_pmd;
1494 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1495 int page_nid = NUMA_NO_NODE;
1496 int target_nid, last_cpupid = (-1 & LAST_CPUPID_MASK);
1497 bool migrated = false, writable = false;
1500 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1501 if (unlikely(!pmd_same(oldpmd, *vmf->pmd))) {
1502 spin_unlock(vmf->ptl);
1506 pmd = pmd_modify(oldpmd, vma->vm_page_prot);
1509 * Detect now whether the PMD could be writable; this information
1510 * is only valid while holding the PT lock.
1512 writable = pmd_write(pmd);
1513 if (!writable && vma_wants_manual_pte_write_upgrade(vma) &&
1514 can_change_pmd_writable(vma, vmf->address, pmd))
1517 page = vm_normal_page_pmd(vma, haddr, pmd);
1521 /* See similar comment in do_numa_page for explanation */
1523 flags |= TNF_NO_GROUP;
1525 page_nid = page_to_nid(page);
1527 * For memory tiering mode, cpupid of slow memory page is used
1528 * to record page access time. So use default value.
1530 if (node_is_toptier(page_nid))
1531 last_cpupid = page_cpupid_last(page);
1532 target_nid = numa_migrate_prep(page, vma, haddr, page_nid,
1535 if (target_nid == NUMA_NO_NODE) {
1540 spin_unlock(vmf->ptl);
1543 migrated = migrate_misplaced_page(page, vma, target_nid);
1545 flags |= TNF_MIGRATED;
1546 page_nid = target_nid;
1548 flags |= TNF_MIGRATE_FAIL;
1549 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1550 if (unlikely(!pmd_same(oldpmd, *vmf->pmd))) {
1551 spin_unlock(vmf->ptl);
1558 if (page_nid != NUMA_NO_NODE)
1559 task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR,
1565 /* Restore the PMD */
1566 pmd = pmd_modify(oldpmd, vma->vm_page_prot);
1567 pmd = pmd_mkyoung(pmd);
1569 pmd = pmd_mkwrite(pmd, vma);
1570 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd);
1571 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1572 spin_unlock(vmf->ptl);
1577 * Return true if we do MADV_FREE successfully on entire pmd page.
1578 * Otherwise, return false.
1580 bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1581 pmd_t *pmd, unsigned long addr, unsigned long next)
1585 struct folio *folio;
1586 struct mm_struct *mm = tlb->mm;
1589 tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
1591 ptl = pmd_trans_huge_lock(pmd, vma);
1596 if (is_huge_zero_pmd(orig_pmd))
1599 if (unlikely(!pmd_present(orig_pmd))) {
1600 VM_BUG_ON(thp_migration_supported() &&
1601 !is_pmd_migration_entry(orig_pmd));
1605 folio = pfn_folio(pmd_pfn(orig_pmd));
1607 * If other processes are mapping this folio, we couldn't discard
1608 * the folio unless they all do MADV_FREE so let's skip the folio.
1610 if (folio_estimated_sharers(folio) != 1)
1613 if (!folio_trylock(folio))
1617 * If user want to discard part-pages of THP, split it so MADV_FREE
1618 * will deactivate only them.
1620 if (next - addr != HPAGE_PMD_SIZE) {
1624 folio_unlock(folio);
1629 if (folio_test_dirty(folio))
1630 folio_clear_dirty(folio);
1631 folio_unlock(folio);
1633 if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
1634 pmdp_invalidate(vma, addr, pmd);
1635 orig_pmd = pmd_mkold(orig_pmd);
1636 orig_pmd = pmd_mkclean(orig_pmd);
1638 set_pmd_at(mm, addr, pmd, orig_pmd);
1639 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1642 folio_mark_lazyfree(folio);
1650 static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd)
1654 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1655 pte_free(mm, pgtable);
1659 int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1660 pmd_t *pmd, unsigned long addr)
1665 tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
1667 ptl = __pmd_trans_huge_lock(pmd, vma);
1671 * For architectures like ppc64 we look at deposited pgtable
1672 * when calling pmdp_huge_get_and_clear. So do the
1673 * pgtable_trans_huge_withdraw after finishing pmdp related
1676 orig_pmd = pmdp_huge_get_and_clear_full(vma, addr, pmd,
1678 arch_check_zapped_pmd(vma, orig_pmd);
1679 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1680 if (vma_is_special_huge(vma)) {
1681 if (arch_needs_pgtable_deposit())
1682 zap_deposited_table(tlb->mm, pmd);
1684 } else if (is_huge_zero_pmd(orig_pmd)) {
1685 zap_deposited_table(tlb->mm, pmd);
1688 struct page *page = NULL;
1689 int flush_needed = 1;
1691 if (pmd_present(orig_pmd)) {
1692 page = pmd_page(orig_pmd);
1693 page_remove_rmap(page, vma, true);
1694 VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
1695 VM_BUG_ON_PAGE(!PageHead(page), page);
1696 } else if (thp_migration_supported()) {
1699 VM_BUG_ON(!is_pmd_migration_entry(orig_pmd));
1700 entry = pmd_to_swp_entry(orig_pmd);
1701 page = pfn_swap_entry_to_page(entry);
1704 WARN_ONCE(1, "Non present huge pmd without pmd migration enabled!");
1706 if (PageAnon(page)) {
1707 zap_deposited_table(tlb->mm, pmd);
1708 add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1710 if (arch_needs_pgtable_deposit())
1711 zap_deposited_table(tlb->mm, pmd);
1712 add_mm_counter(tlb->mm, mm_counter_file(page), -HPAGE_PMD_NR);
1717 tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE);
1722 #ifndef pmd_move_must_withdraw
1723 static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl,
1724 spinlock_t *old_pmd_ptl,
1725 struct vm_area_struct *vma)
1728 * With split pmd lock we also need to move preallocated
1729 * PTE page table if new_pmd is on different PMD page table.
1731 * We also don't deposit and withdraw tables for file pages.
1733 return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma);
1737 static pmd_t move_soft_dirty_pmd(pmd_t pmd)
1739 #ifdef CONFIG_MEM_SOFT_DIRTY
1740 if (unlikely(is_pmd_migration_entry(pmd)))
1741 pmd = pmd_swp_mksoft_dirty(pmd);
1742 else if (pmd_present(pmd))
1743 pmd = pmd_mksoft_dirty(pmd);
1748 bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
1749 unsigned long new_addr, pmd_t *old_pmd, pmd_t *new_pmd)
1751 spinlock_t *old_ptl, *new_ptl;
1753 struct mm_struct *mm = vma->vm_mm;
1754 bool force_flush = false;
1757 * The destination pmd shouldn't be established, free_pgtables()
1758 * should have released it; but move_page_tables() might have already
1759 * inserted a page table, if racing against shmem/file collapse.
1761 if (!pmd_none(*new_pmd)) {
1762 VM_BUG_ON(pmd_trans_huge(*new_pmd));
1767 * We don't have to worry about the ordering of src and dst
1768 * ptlocks because exclusive mmap_lock prevents deadlock.
1770 old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
1772 new_ptl = pmd_lockptr(mm, new_pmd);
1773 if (new_ptl != old_ptl)
1774 spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
1775 pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
1776 if (pmd_present(pmd))
1778 VM_BUG_ON(!pmd_none(*new_pmd));
1780 if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) {
1782 pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1783 pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
1785 pmd = move_soft_dirty_pmd(pmd);
1786 set_pmd_at(mm, new_addr, new_pmd, pmd);
1788 flush_pmd_tlb_range(vma, old_addr, old_addr + PMD_SIZE);
1789 if (new_ptl != old_ptl)
1790 spin_unlock(new_ptl);
1791 spin_unlock(old_ptl);
1799 * - 0 if PMD could not be locked
1800 * - 1 if PMD was locked but protections unchanged and TLB flush unnecessary
1801 * or if prot_numa but THP migration is not supported
1802 * - HPAGE_PMD_NR if protections changed and TLB flush necessary
1804 int change_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1805 pmd_t *pmd, unsigned long addr, pgprot_t newprot,
1806 unsigned long cp_flags)
1808 struct mm_struct *mm = vma->vm_mm;
1810 pmd_t oldpmd, entry;
1811 bool prot_numa = cp_flags & MM_CP_PROT_NUMA;
1812 bool uffd_wp = cp_flags & MM_CP_UFFD_WP;
1813 bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE;
1816 tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
1818 if (prot_numa && !thp_migration_supported())
1821 ptl = __pmd_trans_huge_lock(pmd, vma);
1825 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1826 if (is_swap_pmd(*pmd)) {
1827 swp_entry_t entry = pmd_to_swp_entry(*pmd);
1828 struct page *page = pfn_swap_entry_to_page(entry);
1831 VM_BUG_ON(!is_pmd_migration_entry(*pmd));
1832 if (is_writable_migration_entry(entry)) {
1834 * A protection check is difficult so
1835 * just be safe and disable write
1838 entry = make_readable_exclusive_migration_entry(swp_offset(entry));
1840 entry = make_readable_migration_entry(swp_offset(entry));
1841 newpmd = swp_entry_to_pmd(entry);
1842 if (pmd_swp_soft_dirty(*pmd))
1843 newpmd = pmd_swp_mksoft_dirty(newpmd);
1849 newpmd = pmd_swp_mkuffd_wp(newpmd);
1850 else if (uffd_wp_resolve)
1851 newpmd = pmd_swp_clear_uffd_wp(newpmd);
1852 if (!pmd_same(*pmd, newpmd))
1853 set_pmd_at(mm, addr, pmd, newpmd);
1862 * Avoid trapping faults against the zero page. The read-only
1863 * data is likely to be read-cached on the local CPU and
1864 * local/remote hits to the zero page are not interesting.
1866 if (is_huge_zero_pmd(*pmd))
1869 if (pmd_protnone(*pmd))
1872 page = pmd_page(*pmd);
1873 toptier = node_is_toptier(page_to_nid(page));
1875 * Skip scanning top tier node if normal numa
1876 * balancing is disabled
1878 if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_NORMAL) &&
1882 if (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING &&
1884 xchg_page_access_time(page, jiffies_to_msecs(jiffies));
1887 * In case prot_numa, we are under mmap_read_lock(mm). It's critical
1888 * to not clear pmd intermittently to avoid race with MADV_DONTNEED
1889 * which is also under mmap_read_lock(mm):
1892 * change_huge_pmd(prot_numa=1)
1893 * pmdp_huge_get_and_clear_notify()
1894 * madvise_dontneed()
1896 * pmd_trans_huge(*pmd) == 0 (without ptl)
1899 * // pmd is re-established
1901 * The race makes MADV_DONTNEED miss the huge pmd and don't clear it
1902 * which may break userspace.
1904 * pmdp_invalidate_ad() is required to make sure we don't miss
1905 * dirty/young flags set by hardware.
1907 oldpmd = pmdp_invalidate_ad(vma, addr, pmd);
1909 entry = pmd_modify(oldpmd, newprot);
1911 entry = pmd_mkuffd_wp(entry);
1912 else if (uffd_wp_resolve)
1914 * Leave the write bit to be handled by PF interrupt
1915 * handler, then things like COW could be properly
1918 entry = pmd_clear_uffd_wp(entry);
1920 /* See change_pte_range(). */
1921 if ((cp_flags & MM_CP_TRY_CHANGE_WRITABLE) && !pmd_write(entry) &&
1922 can_change_pmd_writable(vma, addr, entry))
1923 entry = pmd_mkwrite(entry, vma);
1926 set_pmd_at(mm, addr, pmd, entry);
1928 if (huge_pmd_needs_flush(oldpmd, entry))
1929 tlb_flush_pmd_range(tlb, addr, HPAGE_PMD_SIZE);
1936 * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise.
1938 * Note that if it returns page table lock pointer, this routine returns without
1939 * unlocking page table lock. So callers must unlock it.
1941 spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
1944 ptl = pmd_lock(vma->vm_mm, pmd);
1945 if (likely(is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) ||
1953 * Returns page table lock pointer if a given pud maps a thp, NULL otherwise.
1955 * Note that if it returns page table lock pointer, this routine returns without
1956 * unlocking page table lock. So callers must unlock it.
1958 spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma)
1962 ptl = pud_lock(vma->vm_mm, pud);
1963 if (likely(pud_trans_huge(*pud) || pud_devmap(*pud)))
1969 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1970 int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma,
1971 pud_t *pud, unsigned long addr)
1975 ptl = __pud_trans_huge_lock(pud, vma);
1979 pudp_huge_get_and_clear_full(vma, addr, pud, tlb->fullmm);
1980 tlb_remove_pud_tlb_entry(tlb, pud, addr);
1981 if (vma_is_special_huge(vma)) {
1983 /* No zero page support yet */
1985 /* No support for anonymous PUD pages yet */
1991 static void __split_huge_pud_locked(struct vm_area_struct *vma, pud_t *pud,
1992 unsigned long haddr)
1994 VM_BUG_ON(haddr & ~HPAGE_PUD_MASK);
1995 VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
1996 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PUD_SIZE, vma);
1997 VM_BUG_ON(!pud_trans_huge(*pud) && !pud_devmap(*pud));
1999 count_vm_event(THP_SPLIT_PUD);
2001 pudp_huge_clear_flush(vma, haddr, pud);
2004 void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud,
2005 unsigned long address)
2008 struct mmu_notifier_range range;
2010 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
2011 address & HPAGE_PUD_MASK,
2012 (address & HPAGE_PUD_MASK) + HPAGE_PUD_SIZE);
2013 mmu_notifier_invalidate_range_start(&range);
2014 ptl = pud_lock(vma->vm_mm, pud);
2015 if (unlikely(!pud_trans_huge(*pud) && !pud_devmap(*pud)))
2017 __split_huge_pud_locked(vma, pud, range.start);
2021 mmu_notifier_invalidate_range_end(&range);
2023 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
2025 static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
2026 unsigned long haddr, pmd_t *pmd)
2028 struct mm_struct *mm = vma->vm_mm;
2030 pmd_t _pmd, old_pmd;
2036 * Leave pmd empty until pte is filled note that it is fine to delay
2037 * notification until mmu_notifier_invalidate_range_end() as we are
2038 * replacing a zero pmd write protected page with a zero pte write
2041 * See Documentation/mm/mmu_notifier.rst
2043 old_pmd = pmdp_huge_clear_flush(vma, haddr, pmd);
2045 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2046 pmd_populate(mm, &_pmd, pgtable);
2048 pte = pte_offset_map(&_pmd, haddr);
2050 for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
2053 entry = pfn_pte(my_zero_pfn(addr), vma->vm_page_prot);
2054 entry = pte_mkspecial(entry);
2055 if (pmd_uffd_wp(old_pmd))
2056 entry = pte_mkuffd_wp(entry);
2057 VM_BUG_ON(!pte_none(ptep_get(pte)));
2058 set_pte_at(mm, addr, pte, entry);
2062 smp_wmb(); /* make pte visible before pmd */
2063 pmd_populate(mm, pmd, pgtable);
2066 static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
2067 unsigned long haddr, bool freeze)
2069 struct mm_struct *mm = vma->vm_mm;
2072 pmd_t old_pmd, _pmd;
2073 bool young, write, soft_dirty, pmd_migration = false, uffd_wp = false;
2074 bool anon_exclusive = false, dirty = false;
2079 VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
2080 VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2081 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
2082 VM_BUG_ON(!is_pmd_migration_entry(*pmd) && !pmd_trans_huge(*pmd)
2083 && !pmd_devmap(*pmd));
2085 count_vm_event(THP_SPLIT_PMD);
2087 if (!vma_is_anonymous(vma)) {
2088 old_pmd = pmdp_huge_clear_flush(vma, haddr, pmd);
2090 * We are going to unmap this huge page. So
2091 * just go ahead and zap it
2093 if (arch_needs_pgtable_deposit())
2094 zap_deposited_table(mm, pmd);
2095 if (vma_is_special_huge(vma))
2097 if (unlikely(is_pmd_migration_entry(old_pmd))) {
2100 entry = pmd_to_swp_entry(old_pmd);
2101 page = pfn_swap_entry_to_page(entry);
2103 page = pmd_page(old_pmd);
2104 if (!PageDirty(page) && pmd_dirty(old_pmd))
2105 set_page_dirty(page);
2106 if (!PageReferenced(page) && pmd_young(old_pmd))
2107 SetPageReferenced(page);
2108 page_remove_rmap(page, vma, true);
2111 add_mm_counter(mm, mm_counter_file(page), -HPAGE_PMD_NR);
2115 if (is_huge_zero_pmd(*pmd)) {
2117 * FIXME: Do we want to invalidate secondary mmu by calling
2118 * mmu_notifier_arch_invalidate_secondary_tlbs() see comments below
2119 * inside __split_huge_pmd() ?
2121 * We are going from a zero huge page write protected to zero
2122 * small page also write protected so it does not seems useful
2123 * to invalidate secondary mmu at this time.
2125 return __split_huge_zero_page_pmd(vma, haddr, pmd);
2129 * Up to this point the pmd is present and huge and userland has the
2130 * whole access to the hugepage during the split (which happens in
2131 * place). If we overwrite the pmd with the not-huge version pointing
2132 * to the pte here (which of course we could if all CPUs were bug
2133 * free), userland could trigger a small page size TLB miss on the
2134 * small sized TLB while the hugepage TLB entry is still established in
2135 * the huge TLB. Some CPU doesn't like that.
2136 * See http://support.amd.com/TechDocs/41322_10h_Rev_Gd.pdf, Erratum
2137 * 383 on page 105. Intel should be safe but is also warns that it's
2138 * only safe if the permission and cache attributes of the two entries
2139 * loaded in the two TLB is identical (which should be the case here).
2140 * But it is generally safer to never allow small and huge TLB entries
2141 * for the same virtual address to be loaded simultaneously. So instead
2142 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
2143 * current pmd notpresent (atomically because here the pmd_trans_huge
2144 * must remain set at all times on the pmd until the split is complete
2145 * for this pmd), then we flush the SMP TLB and finally we write the
2146 * non-huge version of the pmd entry with pmd_populate.
2148 old_pmd = pmdp_invalidate(vma, haddr, pmd);
2150 pmd_migration = is_pmd_migration_entry(old_pmd);
2151 if (unlikely(pmd_migration)) {
2154 entry = pmd_to_swp_entry(old_pmd);
2155 page = pfn_swap_entry_to_page(entry);
2156 write = is_writable_migration_entry(entry);
2158 anon_exclusive = is_readable_exclusive_migration_entry(entry);
2159 young = is_migration_entry_young(entry);
2160 dirty = is_migration_entry_dirty(entry);
2161 soft_dirty = pmd_swp_soft_dirty(old_pmd);
2162 uffd_wp = pmd_swp_uffd_wp(old_pmd);
2164 page = pmd_page(old_pmd);
2165 if (pmd_dirty(old_pmd)) {
2169 write = pmd_write(old_pmd);
2170 young = pmd_young(old_pmd);
2171 soft_dirty = pmd_soft_dirty(old_pmd);
2172 uffd_wp = pmd_uffd_wp(old_pmd);
2174 VM_BUG_ON_PAGE(!page_count(page), page);
2177 * Without "freeze", we'll simply split the PMD, propagating the
2178 * PageAnonExclusive() flag for each PTE by setting it for
2179 * each subpage -- no need to (temporarily) clear.
2181 * With "freeze" we want to replace mapped pages by
2182 * migration entries right away. This is only possible if we
2183 * managed to clear PageAnonExclusive() -- see
2184 * set_pmd_migration_entry().
2186 * In case we cannot clear PageAnonExclusive(), split the PMD
2187 * only and let try_to_migrate_one() fail later.
2189 * See page_try_share_anon_rmap(): invalidate PMD first.
2191 anon_exclusive = PageAnon(page) && PageAnonExclusive(page);
2192 if (freeze && anon_exclusive && page_try_share_anon_rmap(page))
2195 page_ref_add(page, HPAGE_PMD_NR - 1);
2199 * Withdraw the table only after we mark the pmd entry invalid.
2200 * This's critical for some architectures (Power).
2202 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2203 pmd_populate(mm, &_pmd, pgtable);
2205 pte = pte_offset_map(&_pmd, haddr);
2207 for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
2210 * Note that NUMA hinting access restrictions are not
2211 * transferred to avoid any possibility of altering
2212 * permissions across VMAs.
2214 if (freeze || pmd_migration) {
2215 swp_entry_t swp_entry;
2217 swp_entry = make_writable_migration_entry(
2218 page_to_pfn(page + i));
2219 else if (anon_exclusive)
2220 swp_entry = make_readable_exclusive_migration_entry(
2221 page_to_pfn(page + i));
2223 swp_entry = make_readable_migration_entry(
2224 page_to_pfn(page + i));
2226 swp_entry = make_migration_entry_young(swp_entry);
2228 swp_entry = make_migration_entry_dirty(swp_entry);
2229 entry = swp_entry_to_pte(swp_entry);
2231 entry = pte_swp_mksoft_dirty(entry);
2233 entry = pte_swp_mkuffd_wp(entry);
2235 entry = mk_pte(page + i, READ_ONCE(vma->vm_page_prot));
2237 entry = pte_mkwrite(entry, vma);
2239 SetPageAnonExclusive(page + i);
2241 entry = pte_mkold(entry);
2242 /* NOTE: this may set soft-dirty too on some archs */
2244 entry = pte_mkdirty(entry);
2246 entry = pte_mksoft_dirty(entry);
2248 entry = pte_mkuffd_wp(entry);
2249 page_add_anon_rmap(page + i, vma, addr, RMAP_NONE);
2251 VM_BUG_ON(!pte_none(ptep_get(pte)));
2252 set_pte_at(mm, addr, pte, entry);
2258 page_remove_rmap(page, vma, true);
2262 smp_wmb(); /* make pte visible before pmd */
2263 pmd_populate(mm, pmd, pgtable);
2266 void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
2267 unsigned long address, bool freeze, struct folio *folio)
2270 struct mmu_notifier_range range;
2272 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
2273 address & HPAGE_PMD_MASK,
2274 (address & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE);
2275 mmu_notifier_invalidate_range_start(&range);
2276 ptl = pmd_lock(vma->vm_mm, pmd);
2279 * If caller asks to setup a migration entry, we need a folio to check
2280 * pmd against. Otherwise we can end up replacing wrong folio.
2282 VM_BUG_ON(freeze && !folio);
2283 VM_WARN_ON_ONCE(folio && !folio_test_locked(folio));
2285 if (pmd_trans_huge(*pmd) || pmd_devmap(*pmd) ||
2286 is_pmd_migration_entry(*pmd)) {
2288 * It's safe to call pmd_page when folio is set because it's
2289 * guaranteed that pmd is present.
2291 if (folio && folio != page_folio(pmd_page(*pmd)))
2293 __split_huge_pmd_locked(vma, pmd, range.start, freeze);
2298 mmu_notifier_invalidate_range_end(&range);
2301 void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
2302 bool freeze, struct folio *folio)
2304 pmd_t *pmd = mm_find_pmd(vma->vm_mm, address);
2309 __split_huge_pmd(vma, pmd, address, freeze, folio);
2312 static inline void split_huge_pmd_if_needed(struct vm_area_struct *vma, unsigned long address)
2315 * If the new address isn't hpage aligned and it could previously
2316 * contain an hugepage: check if we need to split an huge pmd.
2318 if (!IS_ALIGNED(address, HPAGE_PMD_SIZE) &&
2319 range_in_vma(vma, ALIGN_DOWN(address, HPAGE_PMD_SIZE),
2320 ALIGN(address, HPAGE_PMD_SIZE)))
2321 split_huge_pmd_address(vma, address, false, NULL);
2324 void vma_adjust_trans_huge(struct vm_area_struct *vma,
2325 unsigned long start,
2329 /* Check if we need to split start first. */
2330 split_huge_pmd_if_needed(vma, start);
2332 /* Check if we need to split end next. */
2333 split_huge_pmd_if_needed(vma, end);
2336 * If we're also updating the next vma vm_start,
2337 * check if we need to split it.
2339 if (adjust_next > 0) {
2340 struct vm_area_struct *next = find_vma(vma->vm_mm, vma->vm_end);
2341 unsigned long nstart = next->vm_start;
2342 nstart += adjust_next;
2343 split_huge_pmd_if_needed(next, nstart);
2347 static void unmap_folio(struct folio *folio)
2349 enum ttu_flags ttu_flags = TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD |
2352 VM_BUG_ON_FOLIO(!folio_test_large(folio), folio);
2355 * Anon pages need migration entries to preserve them, but file
2356 * pages can simply be left unmapped, then faulted back on demand.
2357 * If that is ever changed (perhaps for mlock), update remap_page().
2359 if (folio_test_anon(folio))
2360 try_to_migrate(folio, ttu_flags);
2362 try_to_unmap(folio, ttu_flags | TTU_IGNORE_MLOCK);
2365 static void remap_page(struct folio *folio, unsigned long nr)
2369 /* If unmap_folio() uses try_to_migrate() on file, remove this check */
2370 if (!folio_test_anon(folio))
2373 remove_migration_ptes(folio, folio, true);
2374 i += folio_nr_pages(folio);
2377 folio = folio_next(folio);
2381 static void lru_add_page_tail(struct page *head, struct page *tail,
2382 struct lruvec *lruvec, struct list_head *list)
2384 VM_BUG_ON_PAGE(!PageHead(head), head);
2385 VM_BUG_ON_PAGE(PageCompound(tail), head);
2386 VM_BUG_ON_PAGE(PageLRU(tail), head);
2387 lockdep_assert_held(&lruvec->lru_lock);
2390 /* page reclaim is reclaiming a huge page */
2391 VM_WARN_ON(PageLRU(head));
2393 list_add_tail(&tail->lru, list);
2395 /* head is still on lru (and we have it frozen) */
2396 VM_WARN_ON(!PageLRU(head));
2397 if (PageUnevictable(tail))
2398 tail->mlock_count = 0;
2400 list_add_tail(&tail->lru, &head->lru);
2405 static void __split_huge_page_tail(struct folio *folio, int tail,
2406 struct lruvec *lruvec, struct list_head *list)
2408 struct page *head = &folio->page;
2409 struct page *page_tail = head + tail;
2411 * Careful: new_folio is not a "real" folio before we cleared PageTail.
2412 * Don't pass it around before clear_compound_head().
2414 struct folio *new_folio = (struct folio *)page_tail;
2416 VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
2419 * Clone page flags before unfreezing refcount.
2421 * After successful get_page_unless_zero() might follow flags change,
2422 * for example lock_page() which set PG_waiters.
2424 * Note that for mapped sub-pages of an anonymous THP,
2425 * PG_anon_exclusive has been cleared in unmap_folio() and is stored in
2426 * the migration entry instead from where remap_page() will restore it.
2427 * We can still have PG_anon_exclusive set on effectively unmapped and
2428 * unreferenced sub-pages of an anonymous THP: we can simply drop
2429 * PG_anon_exclusive (-> PG_mappedtodisk) for these here.
2431 page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
2432 page_tail->flags |= (head->flags &
2433 ((1L << PG_referenced) |
2434 (1L << PG_swapbacked) |
2435 (1L << PG_swapcache) |
2436 (1L << PG_mlocked) |
2437 (1L << PG_uptodate) |
2439 (1L << PG_workingset) |
2441 (1L << PG_unevictable) |
2442 #ifdef CONFIG_ARCH_USES_PG_ARCH_X
2447 LRU_GEN_MASK | LRU_REFS_MASK));
2449 /* ->mapping in first and second tail page is replaced by other uses */
2450 VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
2452 page_tail->mapping = head->mapping;
2453 page_tail->index = head->index + tail;
2456 * page->private should not be set in tail pages. Fix up and warn once
2457 * if private is unexpectedly set.
2459 if (unlikely(page_tail->private)) {
2460 VM_WARN_ON_ONCE_PAGE(true, page_tail);
2461 page_tail->private = 0;
2463 if (folio_test_swapcache(folio))
2464 new_folio->swap.val = folio->swap.val + tail;
2466 /* Page flags must be visible before we make the page non-compound. */
2470 * Clear PageTail before unfreezing page refcount.
2472 * After successful get_page_unless_zero() might follow put_page()
2473 * which needs correct compound_head().
2475 clear_compound_head(page_tail);
2477 /* Finally unfreeze refcount. Additional reference from page cache. */
2478 page_ref_unfreeze(page_tail, 1 + (!PageAnon(head) ||
2479 PageSwapCache(head)));
2481 if (page_is_young(head))
2482 set_page_young(page_tail);
2483 if (page_is_idle(head))
2484 set_page_idle(page_tail);
2486 page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
2489 * always add to the tail because some iterators expect new
2490 * pages to show after the currently processed elements - e.g.
2493 lru_add_page_tail(head, page_tail, lruvec, list);
2496 static void __split_huge_page(struct page *page, struct list_head *list,
2499 struct folio *folio = page_folio(page);
2500 struct page *head = &folio->page;
2501 struct lruvec *lruvec;
2502 struct address_space *swap_cache = NULL;
2503 unsigned long offset = 0;
2504 unsigned int nr = thp_nr_pages(head);
2505 int i, nr_dropped = 0;
2507 /* complete memcg works before add pages to LRU */
2508 split_page_memcg(head, nr);
2510 if (folio_test_anon(folio) && folio_test_swapcache(folio)) {
2511 offset = swp_offset(folio->swap);
2512 swap_cache = swap_address_space(folio->swap);
2513 xa_lock(&swap_cache->i_pages);
2516 /* lock lru list/PageCompound, ref frozen by page_ref_freeze */
2517 lruvec = folio_lruvec_lock(folio);
2519 ClearPageHasHWPoisoned(head);
2521 for (i = nr - 1; i >= 1; i--) {
2522 __split_huge_page_tail(folio, i, lruvec, list);
2523 /* Some pages can be beyond EOF: drop them from page cache */
2524 if (head[i].index >= end) {
2525 struct folio *tail = page_folio(head + i);
2527 if (shmem_mapping(head->mapping))
2529 else if (folio_test_clear_dirty(tail))
2530 folio_account_cleaned(tail,
2531 inode_to_wb(folio->mapping->host));
2532 __filemap_remove_folio(tail, NULL);
2534 } else if (!PageAnon(page)) {
2535 __xa_store(&head->mapping->i_pages, head[i].index,
2537 } else if (swap_cache) {
2538 __xa_store(&swap_cache->i_pages, offset + i,
2543 ClearPageCompound(head);
2544 unlock_page_lruvec(lruvec);
2545 /* Caller disabled irqs, so they are still disabled here */
2547 split_page_owner(head, nr);
2549 /* See comment in __split_huge_page_tail() */
2550 if (PageAnon(head)) {
2551 /* Additional pin to swap cache */
2552 if (PageSwapCache(head)) {
2553 page_ref_add(head, 2);
2554 xa_unlock(&swap_cache->i_pages);
2559 /* Additional pin to page cache */
2560 page_ref_add(head, 2);
2561 xa_unlock(&head->mapping->i_pages);
2566 shmem_uncharge(head->mapping->host, nr_dropped);
2567 remap_page(folio, nr);
2569 if (folio_test_swapcache(folio))
2570 split_swap_cluster(folio->swap);
2572 for (i = 0; i < nr; i++) {
2573 struct page *subpage = head + i;
2574 if (subpage == page)
2576 unlock_page(subpage);
2579 * Subpages may be freed if there wasn't any mapping
2580 * like if add_to_swap() is running on a lru page that
2581 * had its mapping zapped. And freeing these pages
2582 * requires taking the lru_lock so we do the put_page
2583 * of the tail pages after the split is complete.
2585 free_page_and_swap_cache(subpage);
2589 /* Racy check whether the huge page can be split */
2590 bool can_split_folio(struct folio *folio, int *pextra_pins)
2594 /* Additional pins from page cache */
2595 if (folio_test_anon(folio))
2596 extra_pins = folio_test_swapcache(folio) ?
2597 folio_nr_pages(folio) : 0;
2599 extra_pins = folio_nr_pages(folio);
2601 *pextra_pins = extra_pins;
2602 return folio_mapcount(folio) == folio_ref_count(folio) - extra_pins - 1;
2606 * This function splits huge page into normal pages. @page can point to any
2607 * subpage of huge page to split. Split doesn't change the position of @page.
2609 * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
2610 * The huge page must be locked.
2612 * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
2614 * Both head page and tail pages will inherit mapping, flags, and so on from
2617 * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
2618 * they are not mapped.
2620 * Returns 0 if the hugepage is split successfully.
2621 * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
2624 int split_huge_page_to_list(struct page *page, struct list_head *list)
2626 struct folio *folio = page_folio(page);
2627 struct deferred_split *ds_queue = get_deferred_split_queue(folio);
2628 XA_STATE(xas, &folio->mapping->i_pages, folio->index);
2629 struct anon_vma *anon_vma = NULL;
2630 struct address_space *mapping = NULL;
2631 int extra_pins, ret;
2635 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
2636 VM_BUG_ON_FOLIO(!folio_test_large(folio), folio);
2638 is_hzp = is_huge_zero_page(&folio->page);
2640 pr_warn_ratelimited("Called split_huge_page for huge zero page\n");
2644 if (folio_test_writeback(folio))
2647 if (folio_test_anon(folio)) {
2649 * The caller does not necessarily hold an mmap_lock that would
2650 * prevent the anon_vma disappearing so we first we take a
2651 * reference to it and then lock the anon_vma for write. This
2652 * is similar to folio_lock_anon_vma_read except the write lock
2653 * is taken to serialise against parallel split or collapse
2656 anon_vma = folio_get_anon_vma(folio);
2663 anon_vma_lock_write(anon_vma);
2667 mapping = folio->mapping;
2675 gfp = current_gfp_context(mapping_gfp_mask(mapping) &
2678 if (!filemap_release_folio(folio, gfp)) {
2683 xas_split_alloc(&xas, folio, folio_order(folio), gfp);
2684 if (xas_error(&xas)) {
2685 ret = xas_error(&xas);
2690 i_mmap_lock_read(mapping);
2693 *__split_huge_page() may need to trim off pages beyond EOF:
2694 * but on 32-bit, i_size_read() takes an irq-unsafe seqlock,
2695 * which cannot be nested inside the page tree lock. So note
2696 * end now: i_size itself may be changed at any moment, but
2697 * folio lock is good enough to serialize the trimming.
2699 end = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
2700 if (shmem_mapping(mapping))
2701 end = shmem_fallocend(mapping->host, end);
2705 * Racy check if we can split the page, before unmap_folio() will
2708 if (!can_split_folio(folio, &extra_pins)) {
2715 /* block interrupt reentry in xa_lock and spinlock */
2716 local_irq_disable();
2719 * Check if the folio is present in page cache.
2720 * We assume all tail are present too, if folio is there.
2724 if (xas_load(&xas) != folio)
2728 /* Prevent deferred_split_scan() touching ->_refcount */
2729 spin_lock(&ds_queue->split_queue_lock);
2730 if (folio_ref_freeze(folio, 1 + extra_pins)) {
2731 if (!list_empty(&folio->_deferred_list)) {
2732 ds_queue->split_queue_len--;
2733 list_del(&folio->_deferred_list);
2735 spin_unlock(&ds_queue->split_queue_lock);
2737 int nr = folio_nr_pages(folio);
2739 xas_split(&xas, folio, folio_order(folio));
2740 if (folio_test_pmd_mappable(folio)) {
2741 if (folio_test_swapbacked(folio)) {
2742 __lruvec_stat_mod_folio(folio,
2743 NR_SHMEM_THPS, -nr);
2745 __lruvec_stat_mod_folio(folio,
2747 filemap_nr_thps_dec(mapping);
2752 __split_huge_page(page, list, end);
2755 spin_unlock(&ds_queue->split_queue_lock);
2760 remap_page(folio, folio_nr_pages(folio));
2766 anon_vma_unlock_write(anon_vma);
2767 put_anon_vma(anon_vma);
2770 i_mmap_unlock_read(mapping);
2773 count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
2777 void folio_undo_large_rmappable(struct folio *folio)
2779 struct deferred_split *ds_queue;
2780 unsigned long flags;
2783 * At this point, there is no one trying to add the folio to
2784 * deferred_list. If folio is not in deferred_list, it's safe
2785 * to check without acquiring the split_queue_lock.
2787 if (data_race(list_empty(&folio->_deferred_list)))
2790 ds_queue = get_deferred_split_queue(folio);
2791 spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2792 if (!list_empty(&folio->_deferred_list)) {
2793 ds_queue->split_queue_len--;
2794 list_del(&folio->_deferred_list);
2796 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2799 void deferred_split_folio(struct folio *folio)
2801 struct deferred_split *ds_queue = get_deferred_split_queue(folio);
2803 struct mem_cgroup *memcg = folio_memcg(folio);
2805 unsigned long flags;
2807 VM_BUG_ON_FOLIO(folio_order(folio) < 2, folio);
2810 * The try_to_unmap() in page reclaim path might reach here too,
2811 * this may cause a race condition to corrupt deferred split queue.
2812 * And, if page reclaim is already handling the same folio, it is
2813 * unnecessary to handle it again in shrinker.
2815 * Check the swapcache flag to determine if the folio is being
2816 * handled by page reclaim since THP swap would add the folio into
2817 * swap cache before calling try_to_unmap().
2819 if (folio_test_swapcache(folio))
2822 if (!list_empty(&folio->_deferred_list))
2825 spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2826 if (list_empty(&folio->_deferred_list)) {
2827 count_vm_event(THP_DEFERRED_SPLIT_PAGE);
2828 list_add_tail(&folio->_deferred_list, &ds_queue->split_queue);
2829 ds_queue->split_queue_len++;
2832 set_shrinker_bit(memcg, folio_nid(folio),
2833 deferred_split_shrinker.id);
2836 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2839 static unsigned long deferred_split_count(struct shrinker *shrink,
2840 struct shrink_control *sc)
2842 struct pglist_data *pgdata = NODE_DATA(sc->nid);
2843 struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
2847 ds_queue = &sc->memcg->deferred_split_queue;
2849 return READ_ONCE(ds_queue->split_queue_len);
2852 static unsigned long deferred_split_scan(struct shrinker *shrink,
2853 struct shrink_control *sc)
2855 struct pglist_data *pgdata = NODE_DATA(sc->nid);
2856 struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
2857 unsigned long flags;
2859 struct folio *folio, *next;
2864 ds_queue = &sc->memcg->deferred_split_queue;
2867 spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2868 /* Take pin on all head pages to avoid freeing them under us */
2869 list_for_each_entry_safe(folio, next, &ds_queue->split_queue,
2871 if (folio_try_get(folio)) {
2872 list_move(&folio->_deferred_list, &list);
2874 /* We lost race with folio_put() */
2875 list_del_init(&folio->_deferred_list);
2876 ds_queue->split_queue_len--;
2878 if (!--sc->nr_to_scan)
2881 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2883 list_for_each_entry_safe(folio, next, &list, _deferred_list) {
2884 if (!folio_trylock(folio))
2886 /* split_huge_page() removes page from list on success */
2887 if (!split_folio(folio))
2889 folio_unlock(folio);
2894 spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2895 list_splice_tail(&list, &ds_queue->split_queue);
2896 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2899 * Stop shrinker if we didn't split any page, but the queue is empty.
2900 * This can happen if pages were freed under us.
2902 if (!split && list_empty(&ds_queue->split_queue))
2907 static struct shrinker deferred_split_shrinker = {
2908 .count_objects = deferred_split_count,
2909 .scan_objects = deferred_split_scan,
2910 .seeks = DEFAULT_SEEKS,
2911 .flags = SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE |
2915 #ifdef CONFIG_DEBUG_FS
2916 static void split_huge_pages_all(void)
2920 struct folio *folio;
2921 unsigned long pfn, max_zone_pfn;
2922 unsigned long total = 0, split = 0;
2924 pr_debug("Split all THPs\n");
2925 for_each_zone(zone) {
2926 if (!managed_zone(zone))
2928 max_zone_pfn = zone_end_pfn(zone);
2929 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
2932 page = pfn_to_online_page(pfn);
2933 if (!page || PageTail(page))
2935 folio = page_folio(page);
2936 if (!folio_try_get(folio))
2939 if (unlikely(page_folio(page) != folio))
2942 if (zone != folio_zone(folio))
2945 if (!folio_test_large(folio)
2946 || folio_test_hugetlb(folio)
2947 || !folio_test_lru(folio))
2952 nr_pages = folio_nr_pages(folio);
2953 if (!split_folio(folio))
2955 pfn += nr_pages - 1;
2956 folio_unlock(folio);
2963 pr_debug("%lu of %lu THP split\n", split, total);
2966 static inline bool vma_not_suitable_for_thp_split(struct vm_area_struct *vma)
2968 return vma_is_special_huge(vma) || (vma->vm_flags & VM_IO) ||
2969 is_vm_hugetlb_page(vma);
2972 static int split_huge_pages_pid(int pid, unsigned long vaddr_start,
2973 unsigned long vaddr_end)
2976 struct task_struct *task;
2977 struct mm_struct *mm;
2978 unsigned long total = 0, split = 0;
2981 vaddr_start &= PAGE_MASK;
2982 vaddr_end &= PAGE_MASK;
2984 /* Find the task_struct from pid */
2986 task = find_task_by_vpid(pid);
2992 get_task_struct(task);
2995 /* Find the mm_struct */
2996 mm = get_task_mm(task);
2997 put_task_struct(task);
3004 pr_debug("Split huge pages in pid: %d, vaddr: [0x%lx - 0x%lx]\n",
3005 pid, vaddr_start, vaddr_end);
3009 * always increase addr by PAGE_SIZE, since we could have a PTE page
3010 * table filled with PTE-mapped THPs, each of which is distinct.
3012 for (addr = vaddr_start; addr < vaddr_end; addr += PAGE_SIZE) {
3013 struct vm_area_struct *vma = vma_lookup(mm, addr);
3015 struct folio *folio;
3020 /* skip special VMA and hugetlb VMA */
3021 if (vma_not_suitable_for_thp_split(vma)) {
3026 /* FOLL_DUMP to ignore special (like zero) pages */
3027 page = follow_page(vma, addr, FOLL_GET | FOLL_DUMP);
3029 if (IS_ERR_OR_NULL(page))
3032 folio = page_folio(page);
3033 if (!is_transparent_hugepage(folio))
3037 if (!can_split_folio(folio, NULL))
3040 if (!folio_trylock(folio))
3043 if (!split_folio(folio))
3046 folio_unlock(folio);
3051 mmap_read_unlock(mm);
3054 pr_debug("%lu of %lu THP split\n", split, total);
3060 static int split_huge_pages_in_file(const char *file_path, pgoff_t off_start,
3063 struct filename *file;
3064 struct file *candidate;
3065 struct address_space *mapping;
3069 unsigned long total = 0, split = 0;
3071 file = getname_kernel(file_path);
3075 candidate = file_open_name(file, O_RDONLY, 0);
3076 if (IS_ERR(candidate))
3079 pr_debug("split file-backed THPs in file: %s, page offset: [0x%lx - 0x%lx]\n",
3080 file_path, off_start, off_end);
3082 mapping = candidate->f_mapping;
3084 for (index = off_start; index < off_end; index += nr_pages) {
3085 struct folio *folio = filemap_get_folio(mapping, index);
3091 if (!folio_test_large(folio))
3095 nr_pages = folio_nr_pages(folio);
3097 if (!folio_trylock(folio))
3100 if (!split_folio(folio))
3103 folio_unlock(folio);
3109 filp_close(candidate, NULL);
3112 pr_debug("%lu of %lu file-backed THP split\n", split, total);
3118 #define MAX_INPUT_BUF_SZ 255
3120 static ssize_t split_huge_pages_write(struct file *file, const char __user *buf,
3121 size_t count, loff_t *ppops)
3123 static DEFINE_MUTEX(split_debug_mutex);
3125 /* hold pid, start_vaddr, end_vaddr or file_path, off_start, off_end */
3126 char input_buf[MAX_INPUT_BUF_SZ];
3128 unsigned long vaddr_start, vaddr_end;
3130 ret = mutex_lock_interruptible(&split_debug_mutex);
3136 memset(input_buf, 0, MAX_INPUT_BUF_SZ);
3137 if (copy_from_user(input_buf, buf, min_t(size_t, count, MAX_INPUT_BUF_SZ)))
3140 input_buf[MAX_INPUT_BUF_SZ - 1] = '\0';
3142 if (input_buf[0] == '/') {
3144 char *buf = input_buf;
3145 char file_path[MAX_INPUT_BUF_SZ];
3146 pgoff_t off_start = 0, off_end = 0;
3147 size_t input_len = strlen(input_buf);
3149 tok = strsep(&buf, ",");
3151 strcpy(file_path, tok);
3157 ret = sscanf(buf, "0x%lx,0x%lx", &off_start, &off_end);
3162 ret = split_huge_pages_in_file(file_path, off_start, off_end);
3169 ret = sscanf(input_buf, "%d,0x%lx,0x%lx", &pid, &vaddr_start, &vaddr_end);
3170 if (ret == 1 && pid == 1) {
3171 split_huge_pages_all();
3172 ret = strlen(input_buf);
3174 } else if (ret != 3) {
3179 ret = split_huge_pages_pid(pid, vaddr_start, vaddr_end);
3181 ret = strlen(input_buf);
3183 mutex_unlock(&split_debug_mutex);
3188 static const struct file_operations split_huge_pages_fops = {
3189 .owner = THIS_MODULE,
3190 .write = split_huge_pages_write,
3191 .llseek = no_llseek,
3194 static int __init split_huge_pages_debugfs(void)
3196 debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
3197 &split_huge_pages_fops);
3200 late_initcall(split_huge_pages_debugfs);
3203 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
3204 int set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw,
3207 struct vm_area_struct *vma = pvmw->vma;
3208 struct mm_struct *mm = vma->vm_mm;
3209 unsigned long address = pvmw->address;
3210 bool anon_exclusive;
3215 if (!(pvmw->pmd && !pvmw->pte))
3218 flush_cache_range(vma, address, address + HPAGE_PMD_SIZE);
3219 pmdval = pmdp_invalidate(vma, address, pvmw->pmd);
3221 /* See page_try_share_anon_rmap(): invalidate PMD first. */
3222 anon_exclusive = PageAnon(page) && PageAnonExclusive(page);
3223 if (anon_exclusive && page_try_share_anon_rmap(page)) {
3224 set_pmd_at(mm, address, pvmw->pmd, pmdval);
3228 if (pmd_dirty(pmdval))
3229 set_page_dirty(page);
3230 if (pmd_write(pmdval))
3231 entry = make_writable_migration_entry(page_to_pfn(page));
3232 else if (anon_exclusive)
3233 entry = make_readable_exclusive_migration_entry(page_to_pfn(page));
3235 entry = make_readable_migration_entry(page_to_pfn(page));
3236 if (pmd_young(pmdval))
3237 entry = make_migration_entry_young(entry);
3238 if (pmd_dirty(pmdval))
3239 entry = make_migration_entry_dirty(entry);
3240 pmdswp = swp_entry_to_pmd(entry);
3241 if (pmd_soft_dirty(pmdval))
3242 pmdswp = pmd_swp_mksoft_dirty(pmdswp);
3243 if (pmd_uffd_wp(pmdval))
3244 pmdswp = pmd_swp_mkuffd_wp(pmdswp);
3245 set_pmd_at(mm, address, pvmw->pmd, pmdswp);
3246 page_remove_rmap(page, vma, true);
3248 trace_set_migration_pmd(address, pmd_val(pmdswp));
3253 void remove_migration_pmd(struct page_vma_mapped_walk *pvmw, struct page *new)
3255 struct vm_area_struct *vma = pvmw->vma;
3256 struct mm_struct *mm = vma->vm_mm;
3257 unsigned long address = pvmw->address;
3258 unsigned long haddr = address & HPAGE_PMD_MASK;
3262 if (!(pvmw->pmd && !pvmw->pte))
3265 entry = pmd_to_swp_entry(*pvmw->pmd);
3267 pmde = mk_huge_pmd(new, READ_ONCE(vma->vm_page_prot));
3268 if (pmd_swp_soft_dirty(*pvmw->pmd))
3269 pmde = pmd_mksoft_dirty(pmde);
3270 if (is_writable_migration_entry(entry))
3271 pmde = pmd_mkwrite(pmde, vma);
3272 if (pmd_swp_uffd_wp(*pvmw->pmd))
3273 pmde = pmd_mkuffd_wp(pmde);
3274 if (!is_migration_entry_young(entry))
3275 pmde = pmd_mkold(pmde);
3276 /* NOTE: this may contain setting soft-dirty on some archs */
3277 if (PageDirty(new) && is_migration_entry_dirty(entry))
3278 pmde = pmd_mkdirty(pmde);
3280 if (PageAnon(new)) {
3281 rmap_t rmap_flags = RMAP_COMPOUND;
3283 if (!is_readable_migration_entry(entry))
3284 rmap_flags |= RMAP_EXCLUSIVE;
3286 page_add_anon_rmap(new, vma, haddr, rmap_flags);
3288 page_add_file_rmap(new, vma, true);
3290 VM_BUG_ON(pmd_write(pmde) && PageAnon(new) && !PageAnonExclusive(new));
3291 set_pmd_at(mm, haddr, pvmw->pmd, pmde);
3293 /* No need to invalidate - it was non-present before */
3294 update_mmu_cache_pmd(vma, address, pvmw->pmd);
3295 trace_remove_migration_pmd(address, pmd_val(pmde));