1 // SPDX-License-Identifier: GPL-2.0-only
3 * Copyright (C) 2009 Red Hat, Inc.
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9 #include <linux/sched.h>
10 #include <linux/sched/mm.h>
11 #include <linux/sched/coredump.h>
12 #include <linux/sched/numa_balancing.h>
13 #include <linux/highmem.h>
14 #include <linux/hugetlb.h>
15 #include <linux/mmu_notifier.h>
16 #include <linux/rmap.h>
17 #include <linux/swap.h>
18 #include <linux/shrinker.h>
19 #include <linux/mm_inline.h>
20 #include <linux/swapops.h>
21 #include <linux/dax.h>
22 #include <linux/khugepaged.h>
23 #include <linux/freezer.h>
24 #include <linux/pfn_t.h>
25 #include <linux/mman.h>
26 #include <linux/memremap.h>
27 #include <linux/pagemap.h>
28 #include <linux/debugfs.h>
29 #include <linux/migrate.h>
30 #include <linux/hashtable.h>
31 #include <linux/userfaultfd_k.h>
32 #include <linux/page_idle.h>
33 #include <linux/shmem_fs.h>
34 #include <linux/oom.h>
35 #include <linux/numa.h>
36 #include <linux/page_owner.h>
39 #include <asm/pgalloc.h>
43 * By default, transparent hugepage support is disabled in order to avoid
44 * risking an increased memory footprint for applications that are not
45 * guaranteed to benefit from it. When transparent hugepage support is
46 * enabled, it is for all mappings, and khugepaged scans all mappings.
47 * Defrag is invoked by khugepaged hugepage allocations and by page faults
48 * for all hugepage allocations.
50 unsigned long transparent_hugepage_flags __read_mostly =
51 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
52 (1<<TRANSPARENT_HUGEPAGE_FLAG)|
54 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
55 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
57 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
58 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
59 (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
61 static struct shrinker deferred_split_shrinker;
63 static atomic_t huge_zero_refcount;
64 struct page *huge_zero_page __read_mostly;
65 unsigned long huge_zero_pfn __read_mostly = ~0UL;
67 bool transparent_hugepage_enabled(struct vm_area_struct *vma)
69 /* The addr is used to check if the vma size fits */
70 unsigned long addr = (vma->vm_end & HPAGE_PMD_MASK) - HPAGE_PMD_SIZE;
72 if (!transhuge_vma_suitable(vma, addr))
74 if (vma_is_anonymous(vma))
75 return __transparent_hugepage_enabled(vma);
76 if (vma_is_shmem(vma))
77 return shmem_huge_enabled(vma);
82 static bool get_huge_zero_page(void)
84 struct page *zero_page;
86 if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
89 zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
92 count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
95 count_vm_event(THP_ZERO_PAGE_ALLOC);
97 if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
99 __free_pages(zero_page, compound_order(zero_page));
102 WRITE_ONCE(huge_zero_pfn, page_to_pfn(zero_page));
104 /* We take additional reference here. It will be put back by shrinker */
105 atomic_set(&huge_zero_refcount, 2);
110 static void put_huge_zero_page(void)
113 * Counter should never go to zero here. Only shrinker can put
116 BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
119 struct page *mm_get_huge_zero_page(struct mm_struct *mm)
121 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
122 return READ_ONCE(huge_zero_page);
124 if (!get_huge_zero_page())
127 if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
128 put_huge_zero_page();
130 return READ_ONCE(huge_zero_page);
133 void mm_put_huge_zero_page(struct mm_struct *mm)
135 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
136 put_huge_zero_page();
139 static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
140 struct shrink_control *sc)
142 /* we can free zero page only if last reference remains */
143 return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
146 static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
147 struct shrink_control *sc)
149 if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
150 struct page *zero_page = xchg(&huge_zero_page, NULL);
151 BUG_ON(zero_page == NULL);
152 WRITE_ONCE(huge_zero_pfn, ~0UL);
153 __free_pages(zero_page, compound_order(zero_page));
160 static struct shrinker huge_zero_page_shrinker = {
161 .count_objects = shrink_huge_zero_page_count,
162 .scan_objects = shrink_huge_zero_page_scan,
163 .seeks = DEFAULT_SEEKS,
167 static ssize_t enabled_show(struct kobject *kobj,
168 struct kobj_attribute *attr, char *buf)
172 if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
173 output = "[always] madvise never";
174 else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
175 &transparent_hugepage_flags))
176 output = "always [madvise] never";
178 output = "always madvise [never]";
180 return sysfs_emit(buf, "%s\n", output);
183 static ssize_t enabled_store(struct kobject *kobj,
184 struct kobj_attribute *attr,
185 const char *buf, size_t count)
189 if (sysfs_streq(buf, "always")) {
190 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
191 set_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
192 } else if (sysfs_streq(buf, "madvise")) {
193 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
194 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
195 } else if (sysfs_streq(buf, "never")) {
196 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
197 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
202 int err = start_stop_khugepaged();
208 static struct kobj_attribute enabled_attr =
209 __ATTR(enabled, 0644, enabled_show, enabled_store);
211 ssize_t single_hugepage_flag_show(struct kobject *kobj,
212 struct kobj_attribute *attr, char *buf,
213 enum transparent_hugepage_flag flag)
215 return sysfs_emit(buf, "%d\n",
216 !!test_bit(flag, &transparent_hugepage_flags));
219 ssize_t single_hugepage_flag_store(struct kobject *kobj,
220 struct kobj_attribute *attr,
221 const char *buf, size_t count,
222 enum transparent_hugepage_flag flag)
227 ret = kstrtoul(buf, 10, &value);
234 set_bit(flag, &transparent_hugepage_flags);
236 clear_bit(flag, &transparent_hugepage_flags);
241 static ssize_t defrag_show(struct kobject *kobj,
242 struct kobj_attribute *attr, char *buf)
246 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG,
247 &transparent_hugepage_flags))
248 output = "[always] defer defer+madvise madvise never";
249 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG,
250 &transparent_hugepage_flags))
251 output = "always [defer] defer+madvise madvise never";
252 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG,
253 &transparent_hugepage_flags))
254 output = "always defer [defer+madvise] madvise never";
255 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG,
256 &transparent_hugepage_flags))
257 output = "always defer defer+madvise [madvise] never";
259 output = "always defer defer+madvise madvise [never]";
261 return sysfs_emit(buf, "%s\n", output);
264 static ssize_t defrag_store(struct kobject *kobj,
265 struct kobj_attribute *attr,
266 const char *buf, size_t count)
268 if (sysfs_streq(buf, "always")) {
269 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
270 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
271 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
272 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
273 } else if (sysfs_streq(buf, "defer+madvise")) {
274 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
275 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
276 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
277 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
278 } else if (sysfs_streq(buf, "defer")) {
279 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
280 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
281 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
282 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
283 } else if (sysfs_streq(buf, "madvise")) {
284 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
285 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
286 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
287 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
288 } else if (sysfs_streq(buf, "never")) {
289 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
290 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
291 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
292 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
298 static struct kobj_attribute defrag_attr =
299 __ATTR(defrag, 0644, defrag_show, defrag_store);
301 static ssize_t use_zero_page_show(struct kobject *kobj,
302 struct kobj_attribute *attr, char *buf)
304 return single_hugepage_flag_show(kobj, attr, buf,
305 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
307 static ssize_t use_zero_page_store(struct kobject *kobj,
308 struct kobj_attribute *attr, const char *buf, size_t count)
310 return single_hugepage_flag_store(kobj, attr, buf, count,
311 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
313 static struct kobj_attribute use_zero_page_attr =
314 __ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
316 static ssize_t hpage_pmd_size_show(struct kobject *kobj,
317 struct kobj_attribute *attr, char *buf)
319 return sysfs_emit(buf, "%lu\n", HPAGE_PMD_SIZE);
321 static struct kobj_attribute hpage_pmd_size_attr =
322 __ATTR_RO(hpage_pmd_size);
324 static struct attribute *hugepage_attr[] = {
327 &use_zero_page_attr.attr,
328 &hpage_pmd_size_attr.attr,
330 &shmem_enabled_attr.attr,
335 static const struct attribute_group hugepage_attr_group = {
336 .attrs = hugepage_attr,
339 static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
343 *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
344 if (unlikely(!*hugepage_kobj)) {
345 pr_err("failed to create transparent hugepage kobject\n");
349 err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
351 pr_err("failed to register transparent hugepage group\n");
355 err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
357 pr_err("failed to register transparent hugepage group\n");
358 goto remove_hp_group;
364 sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
366 kobject_put(*hugepage_kobj);
370 static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
372 sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
373 sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
374 kobject_put(hugepage_kobj);
377 static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
382 static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
385 #endif /* CONFIG_SYSFS */
387 static int __init hugepage_init(void)
390 struct kobject *hugepage_kobj;
392 if (!has_transparent_hugepage()) {
394 * Hardware doesn't support hugepages, hence disable
397 transparent_hugepage_flags = 1 << TRANSPARENT_HUGEPAGE_NEVER_DAX;
402 * hugepages can't be allocated by the buddy allocator
404 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER);
406 * we use page->mapping and page->index in second tail page
407 * as list_head: assuming THP order >= 2
409 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);
411 err = hugepage_init_sysfs(&hugepage_kobj);
415 err = khugepaged_init();
419 err = register_shrinker(&huge_zero_page_shrinker);
421 goto err_hzp_shrinker;
422 err = register_shrinker(&deferred_split_shrinker);
424 goto err_split_shrinker;
427 * By default disable transparent hugepages on smaller systems,
428 * where the extra memory used could hurt more than TLB overhead
429 * is likely to save. The admin can still enable it through /sys.
431 if (totalram_pages() < (512 << (20 - PAGE_SHIFT))) {
432 transparent_hugepage_flags = 0;
436 err = start_stop_khugepaged();
442 unregister_shrinker(&deferred_split_shrinker);
444 unregister_shrinker(&huge_zero_page_shrinker);
446 khugepaged_destroy();
448 hugepage_exit_sysfs(hugepage_kobj);
452 subsys_initcall(hugepage_init);
454 static int __init setup_transparent_hugepage(char *str)
459 if (!strcmp(str, "always")) {
460 set_bit(TRANSPARENT_HUGEPAGE_FLAG,
461 &transparent_hugepage_flags);
462 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
463 &transparent_hugepage_flags);
465 } else if (!strcmp(str, "madvise")) {
466 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
467 &transparent_hugepage_flags);
468 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
469 &transparent_hugepage_flags);
471 } else if (!strcmp(str, "never")) {
472 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
473 &transparent_hugepage_flags);
474 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
475 &transparent_hugepage_flags);
480 pr_warn("transparent_hugepage= cannot parse, ignored\n");
483 __setup("transparent_hugepage=", setup_transparent_hugepage);
485 pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
487 if (likely(vma->vm_flags & VM_WRITE))
488 pmd = pmd_mkwrite(pmd);
493 static inline struct deferred_split *get_deferred_split_queue(struct page *page)
495 struct mem_cgroup *memcg = page_memcg(compound_head(page));
496 struct pglist_data *pgdat = NODE_DATA(page_to_nid(page));
499 return &memcg->deferred_split_queue;
501 return &pgdat->deferred_split_queue;
504 static inline struct deferred_split *get_deferred_split_queue(struct page *page)
506 struct pglist_data *pgdat = NODE_DATA(page_to_nid(page));
508 return &pgdat->deferred_split_queue;
512 void prep_transhuge_page(struct page *page)
515 * we use page->mapping and page->indexlru in second tail page
516 * as list_head: assuming THP order >= 2
519 INIT_LIST_HEAD(page_deferred_list(page));
520 set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR);
523 bool is_transparent_hugepage(struct page *page)
525 if (!PageCompound(page))
528 page = compound_head(page);
529 return is_huge_zero_page(page) ||
530 page[1].compound_dtor == TRANSHUGE_PAGE_DTOR;
532 EXPORT_SYMBOL_GPL(is_transparent_hugepage);
534 static unsigned long __thp_get_unmapped_area(struct file *filp,
535 unsigned long addr, unsigned long len,
536 loff_t off, unsigned long flags, unsigned long size)
538 loff_t off_end = off + len;
539 loff_t off_align = round_up(off, size);
540 unsigned long len_pad, ret;
542 if (off_end <= off_align || (off_end - off_align) < size)
545 len_pad = len + size;
546 if (len_pad < len || (off + len_pad) < off)
549 ret = current->mm->get_unmapped_area(filp, addr, len_pad,
550 off >> PAGE_SHIFT, flags);
553 * The failure might be due to length padding. The caller will retry
554 * without the padding.
556 if (IS_ERR_VALUE(ret))
560 * Do not try to align to THP boundary if allocation at the address
566 ret += (off - ret) & (size - 1);
570 unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr,
571 unsigned long len, unsigned long pgoff, unsigned long flags)
574 loff_t off = (loff_t)pgoff << PAGE_SHIFT;
576 if (!IS_DAX(filp->f_mapping->host) || !IS_ENABLED(CONFIG_FS_DAX_PMD))
579 ret = __thp_get_unmapped_area(filp, addr, len, off, flags, PMD_SIZE);
583 return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags);
585 EXPORT_SYMBOL_GPL(thp_get_unmapped_area);
587 static vm_fault_t __do_huge_pmd_anonymous_page(struct vm_fault *vmf,
588 struct page *page, gfp_t gfp)
590 struct vm_area_struct *vma = vmf->vma;
592 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
595 VM_BUG_ON_PAGE(!PageCompound(page), page);
597 if (mem_cgroup_charge(page, vma->vm_mm, gfp)) {
599 count_vm_event(THP_FAULT_FALLBACK);
600 count_vm_event(THP_FAULT_FALLBACK_CHARGE);
601 return VM_FAULT_FALLBACK;
603 cgroup_throttle_swaprate(page, gfp);
605 pgtable = pte_alloc_one(vma->vm_mm);
606 if (unlikely(!pgtable)) {
611 clear_huge_page(page, vmf->address, HPAGE_PMD_NR);
613 * The memory barrier inside __SetPageUptodate makes sure that
614 * clear_huge_page writes become visible before the set_pmd_at()
617 __SetPageUptodate(page);
619 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
620 if (unlikely(!pmd_none(*vmf->pmd))) {
625 ret = check_stable_address_space(vma->vm_mm);
629 /* Deliver the page fault to userland */
630 if (userfaultfd_missing(vma)) {
631 spin_unlock(vmf->ptl);
633 pte_free(vma->vm_mm, pgtable);
634 ret = handle_userfault(vmf, VM_UFFD_MISSING);
635 VM_BUG_ON(ret & VM_FAULT_FALLBACK);
639 entry = mk_huge_pmd(page, vma->vm_page_prot);
640 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
641 page_add_new_anon_rmap(page, vma, haddr, true);
642 lru_cache_add_inactive_or_unevictable(page, vma);
643 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
644 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
645 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
646 add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
647 mm_inc_nr_ptes(vma->vm_mm);
648 spin_unlock(vmf->ptl);
649 count_vm_event(THP_FAULT_ALLOC);
650 count_memcg_event_mm(vma->vm_mm, THP_FAULT_ALLOC);
655 spin_unlock(vmf->ptl);
658 pte_free(vma->vm_mm, pgtable);
665 * always: directly stall for all thp allocations
666 * defer: wake kswapd and fail if not immediately available
667 * defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise
668 * fail if not immediately available
669 * madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately
671 * never: never stall for any thp allocation
673 gfp_t vma_thp_gfp_mask(struct vm_area_struct *vma)
675 const bool vma_madvised = vma && (vma->vm_flags & VM_HUGEPAGE);
677 /* Always do synchronous compaction */
678 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
679 return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY);
681 /* Kick kcompactd and fail quickly */
682 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
683 return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM;
685 /* Synchronous compaction if madvised, otherwise kick kcompactd */
686 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
687 return GFP_TRANSHUGE_LIGHT |
688 (vma_madvised ? __GFP_DIRECT_RECLAIM :
689 __GFP_KSWAPD_RECLAIM);
691 /* Only do synchronous compaction if madvised */
692 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
693 return GFP_TRANSHUGE_LIGHT |
694 (vma_madvised ? __GFP_DIRECT_RECLAIM : 0);
696 return GFP_TRANSHUGE_LIGHT;
699 /* Caller must hold page table lock. */
700 static void set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
701 struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
702 struct page *zero_page)
707 entry = mk_pmd(zero_page, vma->vm_page_prot);
708 entry = pmd_mkhuge(entry);
710 pgtable_trans_huge_deposit(mm, pmd, pgtable);
711 set_pmd_at(mm, haddr, pmd, entry);
715 vm_fault_t do_huge_pmd_anonymous_page(struct vm_fault *vmf)
717 struct vm_area_struct *vma = vmf->vma;
720 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
722 if (!transhuge_vma_suitable(vma, haddr))
723 return VM_FAULT_FALLBACK;
724 if (unlikely(anon_vma_prepare(vma)))
726 if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
728 if (!(vmf->flags & FAULT_FLAG_WRITE) &&
729 !mm_forbids_zeropage(vma->vm_mm) &&
730 transparent_hugepage_use_zero_page()) {
732 struct page *zero_page;
734 pgtable = pte_alloc_one(vma->vm_mm);
735 if (unlikely(!pgtable))
737 zero_page = mm_get_huge_zero_page(vma->vm_mm);
738 if (unlikely(!zero_page)) {
739 pte_free(vma->vm_mm, pgtable);
740 count_vm_event(THP_FAULT_FALLBACK);
741 return VM_FAULT_FALLBACK;
743 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
745 if (pmd_none(*vmf->pmd)) {
746 ret = check_stable_address_space(vma->vm_mm);
748 spin_unlock(vmf->ptl);
749 pte_free(vma->vm_mm, pgtable);
750 } else if (userfaultfd_missing(vma)) {
751 spin_unlock(vmf->ptl);
752 pte_free(vma->vm_mm, pgtable);
753 ret = handle_userfault(vmf, VM_UFFD_MISSING);
754 VM_BUG_ON(ret & VM_FAULT_FALLBACK);
756 set_huge_zero_page(pgtable, vma->vm_mm, vma,
757 haddr, vmf->pmd, zero_page);
758 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
759 spin_unlock(vmf->ptl);
762 spin_unlock(vmf->ptl);
763 pte_free(vma->vm_mm, pgtable);
767 gfp = vma_thp_gfp_mask(vma);
768 page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER);
769 if (unlikely(!page)) {
770 count_vm_event(THP_FAULT_FALLBACK);
771 return VM_FAULT_FALLBACK;
773 prep_transhuge_page(page);
774 return __do_huge_pmd_anonymous_page(vmf, page, gfp);
777 static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
778 pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write,
781 struct mm_struct *mm = vma->vm_mm;
785 ptl = pmd_lock(mm, pmd);
786 if (!pmd_none(*pmd)) {
788 if (pmd_pfn(*pmd) != pfn_t_to_pfn(pfn)) {
789 WARN_ON_ONCE(!is_huge_zero_pmd(*pmd));
792 entry = pmd_mkyoung(*pmd);
793 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
794 if (pmdp_set_access_flags(vma, addr, pmd, entry, 1))
795 update_mmu_cache_pmd(vma, addr, pmd);
801 entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
802 if (pfn_t_devmap(pfn))
803 entry = pmd_mkdevmap(entry);
805 entry = pmd_mkyoung(pmd_mkdirty(entry));
806 entry = maybe_pmd_mkwrite(entry, vma);
810 pgtable_trans_huge_deposit(mm, pmd, pgtable);
815 set_pmd_at(mm, addr, pmd, entry);
816 update_mmu_cache_pmd(vma, addr, pmd);
821 pte_free(mm, pgtable);
825 * vmf_insert_pfn_pmd_prot - insert a pmd size pfn
826 * @vmf: Structure describing the fault
827 * @pfn: pfn to insert
828 * @pgprot: page protection to use
829 * @write: whether it's a write fault
831 * Insert a pmd size pfn. See vmf_insert_pfn() for additional info and
832 * also consult the vmf_insert_mixed_prot() documentation when
833 * @pgprot != @vmf->vma->vm_page_prot.
835 * Return: vm_fault_t value.
837 vm_fault_t vmf_insert_pfn_pmd_prot(struct vm_fault *vmf, pfn_t pfn,
838 pgprot_t pgprot, bool write)
840 unsigned long addr = vmf->address & PMD_MASK;
841 struct vm_area_struct *vma = vmf->vma;
842 pgtable_t pgtable = NULL;
845 * If we had pmd_special, we could avoid all these restrictions,
846 * but we need to be consistent with PTEs and architectures that
847 * can't support a 'special' bit.
849 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
851 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
852 (VM_PFNMAP|VM_MIXEDMAP));
853 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
855 if (addr < vma->vm_start || addr >= vma->vm_end)
856 return VM_FAULT_SIGBUS;
858 if (arch_needs_pgtable_deposit()) {
859 pgtable = pte_alloc_one(vma->vm_mm);
864 track_pfn_insert(vma, &pgprot, pfn);
866 insert_pfn_pmd(vma, addr, vmf->pmd, pfn, pgprot, write, pgtable);
867 return VM_FAULT_NOPAGE;
869 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd_prot);
871 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
872 static pud_t maybe_pud_mkwrite(pud_t pud, struct vm_area_struct *vma)
874 if (likely(vma->vm_flags & VM_WRITE))
875 pud = pud_mkwrite(pud);
879 static void insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
880 pud_t *pud, pfn_t pfn, pgprot_t prot, bool write)
882 struct mm_struct *mm = vma->vm_mm;
886 ptl = pud_lock(mm, pud);
887 if (!pud_none(*pud)) {
889 if (pud_pfn(*pud) != pfn_t_to_pfn(pfn)) {
890 WARN_ON_ONCE(!is_huge_zero_pud(*pud));
893 entry = pud_mkyoung(*pud);
894 entry = maybe_pud_mkwrite(pud_mkdirty(entry), vma);
895 if (pudp_set_access_flags(vma, addr, pud, entry, 1))
896 update_mmu_cache_pud(vma, addr, pud);
901 entry = pud_mkhuge(pfn_t_pud(pfn, prot));
902 if (pfn_t_devmap(pfn))
903 entry = pud_mkdevmap(entry);
905 entry = pud_mkyoung(pud_mkdirty(entry));
906 entry = maybe_pud_mkwrite(entry, vma);
908 set_pud_at(mm, addr, pud, entry);
909 update_mmu_cache_pud(vma, addr, pud);
916 * vmf_insert_pfn_pud_prot - insert a pud size pfn
917 * @vmf: Structure describing the fault
918 * @pfn: pfn to insert
919 * @pgprot: page protection to use
920 * @write: whether it's a write fault
922 * Insert a pud size pfn. See vmf_insert_pfn() for additional info and
923 * also consult the vmf_insert_mixed_prot() documentation when
924 * @pgprot != @vmf->vma->vm_page_prot.
926 * Return: vm_fault_t value.
928 vm_fault_t vmf_insert_pfn_pud_prot(struct vm_fault *vmf, pfn_t pfn,
929 pgprot_t pgprot, bool write)
931 unsigned long addr = vmf->address & PUD_MASK;
932 struct vm_area_struct *vma = vmf->vma;
935 * If we had pud_special, we could avoid all these restrictions,
936 * but we need to be consistent with PTEs and architectures that
937 * can't support a 'special' bit.
939 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
941 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
942 (VM_PFNMAP|VM_MIXEDMAP));
943 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
945 if (addr < vma->vm_start || addr >= vma->vm_end)
946 return VM_FAULT_SIGBUS;
948 track_pfn_insert(vma, &pgprot, pfn);
950 insert_pfn_pud(vma, addr, vmf->pud, pfn, pgprot, write);
951 return VM_FAULT_NOPAGE;
953 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud_prot);
954 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
956 static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
957 pmd_t *pmd, int flags)
961 _pmd = pmd_mkyoung(*pmd);
962 if (flags & FOLL_WRITE)
963 _pmd = pmd_mkdirty(_pmd);
964 if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
965 pmd, _pmd, flags & FOLL_WRITE))
966 update_mmu_cache_pmd(vma, addr, pmd);
969 struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
970 pmd_t *pmd, int flags, struct dev_pagemap **pgmap)
972 unsigned long pfn = pmd_pfn(*pmd);
973 struct mm_struct *mm = vma->vm_mm;
976 assert_spin_locked(pmd_lockptr(mm, pmd));
979 * When we COW a devmap PMD entry, we split it into PTEs, so we should
980 * not be in this function with `flags & FOLL_COW` set.
982 WARN_ONCE(flags & FOLL_COW, "mm: In follow_devmap_pmd with FOLL_COW set");
984 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
985 if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
986 (FOLL_PIN | FOLL_GET)))
989 if (flags & FOLL_WRITE && !pmd_write(*pmd))
992 if (pmd_present(*pmd) && pmd_devmap(*pmd))
997 if (flags & FOLL_TOUCH)
998 touch_pmd(vma, addr, pmd, flags);
1001 * device mapped pages can only be returned if the
1002 * caller will manage the page reference count.
1004 if (!(flags & (FOLL_GET | FOLL_PIN)))
1005 return ERR_PTR(-EEXIST);
1007 pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
1008 *pgmap = get_dev_pagemap(pfn, *pgmap);
1010 return ERR_PTR(-EFAULT);
1011 page = pfn_to_page(pfn);
1012 if (!try_grab_page(page, flags))
1013 page = ERR_PTR(-ENOMEM);
1018 int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1019 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
1020 struct vm_area_struct *vma)
1022 spinlock_t *dst_ptl, *src_ptl;
1023 struct page *src_page;
1025 pgtable_t pgtable = NULL;
1028 /* Skip if can be re-fill on fault */
1029 if (!vma_is_anonymous(vma))
1032 pgtable = pte_alloc_one(dst_mm);
1033 if (unlikely(!pgtable))
1036 dst_ptl = pmd_lock(dst_mm, dst_pmd);
1037 src_ptl = pmd_lockptr(src_mm, src_pmd);
1038 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1044 * Make sure the _PAGE_UFFD_WP bit is cleared if the new VMA
1045 * does not have the VM_UFFD_WP, which means that the uffd
1046 * fork event is not enabled.
1048 if (!(vma->vm_flags & VM_UFFD_WP))
1049 pmd = pmd_clear_uffd_wp(pmd);
1051 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1052 if (unlikely(is_swap_pmd(pmd))) {
1053 swp_entry_t entry = pmd_to_swp_entry(pmd);
1055 VM_BUG_ON(!is_pmd_migration_entry(pmd));
1056 if (is_write_migration_entry(entry)) {
1057 make_migration_entry_read(&entry);
1058 pmd = swp_entry_to_pmd(entry);
1059 if (pmd_swp_soft_dirty(*src_pmd))
1060 pmd = pmd_swp_mksoft_dirty(pmd);
1061 set_pmd_at(src_mm, addr, src_pmd, pmd);
1063 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1064 mm_inc_nr_ptes(dst_mm);
1065 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1066 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
1072 if (unlikely(!pmd_trans_huge(pmd))) {
1073 pte_free(dst_mm, pgtable);
1077 * When page table lock is held, the huge zero pmd should not be
1078 * under splitting since we don't split the page itself, only pmd to
1081 if (is_huge_zero_pmd(pmd)) {
1082 struct page *zero_page;
1084 * get_huge_zero_page() will never allocate a new page here,
1085 * since we already have a zero page to copy. It just takes a
1088 zero_page = mm_get_huge_zero_page(dst_mm);
1089 set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
1095 src_page = pmd_page(pmd);
1096 VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
1099 * If this page is a potentially pinned page, split and retry the fault
1100 * with smaller page size. Normally this should not happen because the
1101 * userspace should use MADV_DONTFORK upon pinned regions. This is a
1102 * best effort that the pinned pages won't be replaced by another
1103 * random page during the coming copy-on-write.
1105 if (unlikely(page_needs_cow_for_dma(vma, src_page))) {
1106 pte_free(dst_mm, pgtable);
1107 spin_unlock(src_ptl);
1108 spin_unlock(dst_ptl);
1109 __split_huge_pmd(vma, src_pmd, addr, false, NULL);
1114 page_dup_rmap(src_page, true);
1115 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1116 mm_inc_nr_ptes(dst_mm);
1117 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1119 pmdp_set_wrprotect(src_mm, addr, src_pmd);
1120 pmd = pmd_mkold(pmd_wrprotect(pmd));
1121 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
1125 spin_unlock(src_ptl);
1126 spin_unlock(dst_ptl);
1131 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1132 static void touch_pud(struct vm_area_struct *vma, unsigned long addr,
1133 pud_t *pud, int flags)
1137 _pud = pud_mkyoung(*pud);
1138 if (flags & FOLL_WRITE)
1139 _pud = pud_mkdirty(_pud);
1140 if (pudp_set_access_flags(vma, addr & HPAGE_PUD_MASK,
1141 pud, _pud, flags & FOLL_WRITE))
1142 update_mmu_cache_pud(vma, addr, pud);
1145 struct page *follow_devmap_pud(struct vm_area_struct *vma, unsigned long addr,
1146 pud_t *pud, int flags, struct dev_pagemap **pgmap)
1148 unsigned long pfn = pud_pfn(*pud);
1149 struct mm_struct *mm = vma->vm_mm;
1152 assert_spin_locked(pud_lockptr(mm, pud));
1154 if (flags & FOLL_WRITE && !pud_write(*pud))
1157 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
1158 if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
1159 (FOLL_PIN | FOLL_GET)))
1162 if (pud_present(*pud) && pud_devmap(*pud))
1167 if (flags & FOLL_TOUCH)
1168 touch_pud(vma, addr, pud, flags);
1171 * device mapped pages can only be returned if the
1172 * caller will manage the page reference count.
1174 * At least one of FOLL_GET | FOLL_PIN must be set, so assert that here:
1176 if (!(flags & (FOLL_GET | FOLL_PIN)))
1177 return ERR_PTR(-EEXIST);
1179 pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT;
1180 *pgmap = get_dev_pagemap(pfn, *pgmap);
1182 return ERR_PTR(-EFAULT);
1183 page = pfn_to_page(pfn);
1184 if (!try_grab_page(page, flags))
1185 page = ERR_PTR(-ENOMEM);
1190 int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1191 pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1192 struct vm_area_struct *vma)
1194 spinlock_t *dst_ptl, *src_ptl;
1198 dst_ptl = pud_lock(dst_mm, dst_pud);
1199 src_ptl = pud_lockptr(src_mm, src_pud);
1200 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1204 if (unlikely(!pud_trans_huge(pud) && !pud_devmap(pud)))
1208 * When page table lock is held, the huge zero pud should not be
1209 * under splitting since we don't split the page itself, only pud to
1212 if (is_huge_zero_pud(pud)) {
1213 /* No huge zero pud yet */
1216 /* Please refer to comments in copy_huge_pmd() */
1217 if (unlikely(page_needs_cow_for_dma(vma, pud_page(pud)))) {
1218 spin_unlock(src_ptl);
1219 spin_unlock(dst_ptl);
1220 __split_huge_pud(vma, src_pud, addr);
1224 pudp_set_wrprotect(src_mm, addr, src_pud);
1225 pud = pud_mkold(pud_wrprotect(pud));
1226 set_pud_at(dst_mm, addr, dst_pud, pud);
1230 spin_unlock(src_ptl);
1231 spin_unlock(dst_ptl);
1235 void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud)
1238 unsigned long haddr;
1239 bool write = vmf->flags & FAULT_FLAG_WRITE;
1241 vmf->ptl = pud_lock(vmf->vma->vm_mm, vmf->pud);
1242 if (unlikely(!pud_same(*vmf->pud, orig_pud)))
1245 entry = pud_mkyoung(orig_pud);
1247 entry = pud_mkdirty(entry);
1248 haddr = vmf->address & HPAGE_PUD_MASK;
1249 if (pudp_set_access_flags(vmf->vma, haddr, vmf->pud, entry, write))
1250 update_mmu_cache_pud(vmf->vma, vmf->address, vmf->pud);
1253 spin_unlock(vmf->ptl);
1255 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1257 void huge_pmd_set_accessed(struct vm_fault *vmf, pmd_t orig_pmd)
1260 unsigned long haddr;
1261 bool write = vmf->flags & FAULT_FLAG_WRITE;
1263 vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1264 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1267 entry = pmd_mkyoung(orig_pmd);
1269 entry = pmd_mkdirty(entry);
1270 haddr = vmf->address & HPAGE_PMD_MASK;
1271 if (pmdp_set_access_flags(vmf->vma, haddr, vmf->pmd, entry, write))
1272 update_mmu_cache_pmd(vmf->vma, vmf->address, vmf->pmd);
1275 spin_unlock(vmf->ptl);
1278 vm_fault_t do_huge_pmd_wp_page(struct vm_fault *vmf, pmd_t orig_pmd)
1280 struct vm_area_struct *vma = vmf->vma;
1282 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1284 vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd);
1285 VM_BUG_ON_VMA(!vma->anon_vma, vma);
1287 if (is_huge_zero_pmd(orig_pmd))
1290 spin_lock(vmf->ptl);
1292 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1293 spin_unlock(vmf->ptl);
1297 page = pmd_page(orig_pmd);
1298 VM_BUG_ON_PAGE(!PageHead(page), page);
1300 /* Lock page for reuse_swap_page() */
1301 if (!trylock_page(page)) {
1303 spin_unlock(vmf->ptl);
1305 spin_lock(vmf->ptl);
1306 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1307 spin_unlock(vmf->ptl);
1316 * We can only reuse the page if nobody else maps the huge page or it's
1319 if (reuse_swap_page(page, NULL)) {
1321 entry = pmd_mkyoung(orig_pmd);
1322 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1323 if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry, 1))
1324 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1326 spin_unlock(vmf->ptl);
1327 return VM_FAULT_WRITE;
1331 spin_unlock(vmf->ptl);
1333 __split_huge_pmd(vma, vmf->pmd, vmf->address, false, NULL);
1334 return VM_FAULT_FALLBACK;
1338 * FOLL_FORCE can write to even unwritable pmd's, but only
1339 * after we've gone through a COW cycle and they are dirty.
1341 static inline bool can_follow_write_pmd(pmd_t pmd, unsigned int flags)
1343 return pmd_write(pmd) ||
1344 ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pmd_dirty(pmd));
1347 struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1352 struct mm_struct *mm = vma->vm_mm;
1353 struct page *page = NULL;
1355 assert_spin_locked(pmd_lockptr(mm, pmd));
1357 if (flags & FOLL_WRITE && !can_follow_write_pmd(*pmd, flags))
1360 /* Avoid dumping huge zero page */
1361 if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1362 return ERR_PTR(-EFAULT);
1364 /* Full NUMA hinting faults to serialise migration in fault paths */
1365 if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
1368 page = pmd_page(*pmd);
1369 VM_BUG_ON_PAGE(!PageHead(page) && !is_zone_device_page(page), page);
1371 if (!try_grab_page(page, flags))
1372 return ERR_PTR(-ENOMEM);
1374 if (flags & FOLL_TOUCH)
1375 touch_pmd(vma, addr, pmd, flags);
1377 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1379 * We don't mlock() pte-mapped THPs. This way we can avoid
1380 * leaking mlocked pages into non-VM_LOCKED VMAs.
1384 * In most cases the pmd is the only mapping of the page as we
1385 * break COW for the mlock() -- see gup_flags |= FOLL_WRITE for
1386 * writable private mappings in populate_vma_page_range().
1388 * The only scenario when we have the page shared here is if we
1389 * mlocking read-only mapping shared over fork(). We skip
1390 * mlocking such pages.
1394 * We can expect PageDoubleMap() to be stable under page lock:
1395 * for file pages we set it in page_add_file_rmap(), which
1396 * requires page to be locked.
1399 if (PageAnon(page) && compound_mapcount(page) != 1)
1401 if (PageDoubleMap(page) || !page->mapping)
1403 if (!trylock_page(page))
1405 if (page->mapping && !PageDoubleMap(page))
1406 mlock_vma_page(page);
1410 page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1411 VM_BUG_ON_PAGE(!PageCompound(page) && !is_zone_device_page(page), page);
1417 /* NUMA hinting page fault entry point for trans huge pmds */
1418 vm_fault_t do_huge_pmd_numa_page(struct vm_fault *vmf, pmd_t pmd)
1420 struct vm_area_struct *vma = vmf->vma;
1421 struct anon_vma *anon_vma = NULL;
1423 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1424 int page_nid = NUMA_NO_NODE, this_nid = numa_node_id();
1425 int target_nid, last_cpupid = -1;
1427 bool migrated = false;
1431 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1432 if (unlikely(!pmd_same(pmd, *vmf->pmd)))
1436 * If there are potential migrations, wait for completion and retry
1437 * without disrupting NUMA hinting information. Do not relock and
1438 * check_same as the page may no longer be mapped.
1440 if (unlikely(pmd_trans_migrating(*vmf->pmd))) {
1441 page = pmd_page(*vmf->pmd);
1442 if (!get_page_unless_zero(page))
1444 spin_unlock(vmf->ptl);
1445 put_and_wait_on_page_locked(page, TASK_UNINTERRUPTIBLE);
1449 page = pmd_page(pmd);
1450 BUG_ON(is_huge_zero_page(page));
1451 page_nid = page_to_nid(page);
1452 last_cpupid = page_cpupid_last(page);
1453 count_vm_numa_event(NUMA_HINT_FAULTS);
1454 if (page_nid == this_nid) {
1455 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
1456 flags |= TNF_FAULT_LOCAL;
1459 /* See similar comment in do_numa_page for explanation */
1460 if (!pmd_savedwrite(pmd))
1461 flags |= TNF_NO_GROUP;
1464 * Acquire the page lock to serialise THP migrations but avoid dropping
1465 * page_table_lock if at all possible
1467 page_locked = trylock_page(page);
1468 target_nid = mpol_misplaced(page, vma, haddr);
1469 /* Migration could have started since the pmd_trans_migrating check */
1471 page_nid = NUMA_NO_NODE;
1472 if (!get_page_unless_zero(page))
1474 spin_unlock(vmf->ptl);
1475 put_and_wait_on_page_locked(page, TASK_UNINTERRUPTIBLE);
1477 } else if (target_nid == NUMA_NO_NODE) {
1478 /* There are no parallel migrations and page is in the right
1479 * node. Clear the numa hinting info in this pmd.
1485 * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
1486 * to serialises splits
1489 spin_unlock(vmf->ptl);
1490 anon_vma = page_lock_anon_vma_read(page);
1492 /* Confirm the PMD did not change while page_table_lock was released */
1493 spin_lock(vmf->ptl);
1494 if (unlikely(!pmd_same(pmd, *vmf->pmd))) {
1497 page_nid = NUMA_NO_NODE;
1501 /* Bail if we fail to protect against THP splits for any reason */
1502 if (unlikely(!anon_vma)) {
1504 page_nid = NUMA_NO_NODE;
1509 * Since we took the NUMA fault, we must have observed the !accessible
1510 * bit. Make sure all other CPUs agree with that, to avoid them
1511 * modifying the page we're about to migrate.
1513 * Must be done under PTL such that we'll observe the relevant
1514 * inc_tlb_flush_pending().
1516 * We are not sure a pending tlb flush here is for a huge page
1517 * mapping or not. Hence use the tlb range variant
1519 if (mm_tlb_flush_pending(vma->vm_mm)) {
1520 flush_tlb_range(vma, haddr, haddr + HPAGE_PMD_SIZE);
1522 * change_huge_pmd() released the pmd lock before
1523 * invalidating the secondary MMUs sharing the primary
1524 * MMU pagetables (with ->invalidate_range()). The
1525 * mmu_notifier_invalidate_range_end() (which
1526 * internally calls ->invalidate_range()) in
1527 * change_pmd_range() will run after us, so we can't
1528 * rely on it here and we need an explicit invalidate.
1530 mmu_notifier_invalidate_range(vma->vm_mm, haddr,
1531 haddr + HPAGE_PMD_SIZE);
1535 * Migrate the THP to the requested node, returns with page unlocked
1536 * and access rights restored.
1538 spin_unlock(vmf->ptl);
1540 migrated = migrate_misplaced_transhuge_page(vma->vm_mm, vma,
1541 vmf->pmd, pmd, vmf->address, page, target_nid);
1543 flags |= TNF_MIGRATED;
1544 page_nid = target_nid;
1546 flags |= TNF_MIGRATE_FAIL;
1550 BUG_ON(!PageLocked(page));
1551 was_writable = pmd_savedwrite(pmd);
1552 pmd = pmd_modify(pmd, vma->vm_page_prot);
1553 pmd = pmd_mkyoung(pmd);
1555 pmd = pmd_mkwrite(pmd);
1556 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd);
1557 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1560 spin_unlock(vmf->ptl);
1564 page_unlock_anon_vma_read(anon_vma);
1566 if (page_nid != NUMA_NO_NODE)
1567 task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR,
1574 * Return true if we do MADV_FREE successfully on entire pmd page.
1575 * Otherwise, return false.
1577 bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1578 pmd_t *pmd, unsigned long addr, unsigned long next)
1583 struct mm_struct *mm = tlb->mm;
1586 tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
1588 ptl = pmd_trans_huge_lock(pmd, vma);
1593 if (is_huge_zero_pmd(orig_pmd))
1596 if (unlikely(!pmd_present(orig_pmd))) {
1597 VM_BUG_ON(thp_migration_supported() &&
1598 !is_pmd_migration_entry(orig_pmd));
1602 page = pmd_page(orig_pmd);
1604 * If other processes are mapping this page, we couldn't discard
1605 * the page unless they all do MADV_FREE so let's skip the page.
1607 if (page_mapcount(page) != 1)
1610 if (!trylock_page(page))
1614 * If user want to discard part-pages of THP, split it so MADV_FREE
1615 * will deactivate only them.
1617 if (next - addr != HPAGE_PMD_SIZE) {
1620 split_huge_page(page);
1626 if (PageDirty(page))
1627 ClearPageDirty(page);
1630 if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
1631 pmdp_invalidate(vma, addr, pmd);
1632 orig_pmd = pmd_mkold(orig_pmd);
1633 orig_pmd = pmd_mkclean(orig_pmd);
1635 set_pmd_at(mm, addr, pmd, orig_pmd);
1636 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1639 mark_page_lazyfree(page);
1647 static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd)
1651 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1652 pte_free(mm, pgtable);
1656 int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1657 pmd_t *pmd, unsigned long addr)
1662 tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
1664 ptl = __pmd_trans_huge_lock(pmd, vma);
1668 * For architectures like ppc64 we look at deposited pgtable
1669 * when calling pmdp_huge_get_and_clear. So do the
1670 * pgtable_trans_huge_withdraw after finishing pmdp related
1673 orig_pmd = pmdp_huge_get_and_clear_full(vma, addr, pmd,
1675 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1676 if (vma_is_special_huge(vma)) {
1677 if (arch_needs_pgtable_deposit())
1678 zap_deposited_table(tlb->mm, pmd);
1680 if (is_huge_zero_pmd(orig_pmd))
1681 tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
1682 } else if (is_huge_zero_pmd(orig_pmd)) {
1683 zap_deposited_table(tlb->mm, pmd);
1685 tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
1687 struct page *page = NULL;
1688 int flush_needed = 1;
1690 if (pmd_present(orig_pmd)) {
1691 page = pmd_page(orig_pmd);
1692 page_remove_rmap(page, true);
1693 VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
1694 VM_BUG_ON_PAGE(!PageHead(page), page);
1695 } else if (thp_migration_supported()) {
1698 VM_BUG_ON(!is_pmd_migration_entry(orig_pmd));
1699 entry = pmd_to_swp_entry(orig_pmd);
1700 page = migration_entry_to_page(entry);
1703 WARN_ONCE(1, "Non present huge pmd without pmd migration enabled!");
1705 if (PageAnon(page)) {
1706 zap_deposited_table(tlb->mm, pmd);
1707 add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1709 if (arch_needs_pgtable_deposit())
1710 zap_deposited_table(tlb->mm, pmd);
1711 add_mm_counter(tlb->mm, mm_counter_file(page), -HPAGE_PMD_NR);
1716 tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE);
1721 #ifndef pmd_move_must_withdraw
1722 static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl,
1723 spinlock_t *old_pmd_ptl,
1724 struct vm_area_struct *vma)
1727 * With split pmd lock we also need to move preallocated
1728 * PTE page table if new_pmd is on different PMD page table.
1730 * We also don't deposit and withdraw tables for file pages.
1732 return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma);
1736 static pmd_t move_soft_dirty_pmd(pmd_t pmd)
1738 #ifdef CONFIG_MEM_SOFT_DIRTY
1739 if (unlikely(is_pmd_migration_entry(pmd)))
1740 pmd = pmd_swp_mksoft_dirty(pmd);
1741 else if (pmd_present(pmd))
1742 pmd = pmd_mksoft_dirty(pmd);
1747 bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
1748 unsigned long new_addr, pmd_t *old_pmd, pmd_t *new_pmd)
1750 spinlock_t *old_ptl, *new_ptl;
1752 struct mm_struct *mm = vma->vm_mm;
1753 bool force_flush = false;
1756 * The destination pmd shouldn't be established, free_pgtables()
1757 * should have release it.
1759 if (WARN_ON(!pmd_none(*new_pmd))) {
1760 VM_BUG_ON(pmd_trans_huge(*new_pmd));
1765 * We don't have to worry about the ordering of src and dst
1766 * ptlocks because exclusive mmap_lock prevents deadlock.
1768 old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
1770 new_ptl = pmd_lockptr(mm, new_pmd);
1771 if (new_ptl != old_ptl)
1772 spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
1773 pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
1774 if (pmd_present(pmd))
1776 VM_BUG_ON(!pmd_none(*new_pmd));
1778 if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) {
1780 pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1781 pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
1783 pmd = move_soft_dirty_pmd(pmd);
1784 set_pmd_at(mm, new_addr, new_pmd, pmd);
1786 flush_tlb_range(vma, old_addr, old_addr + PMD_SIZE);
1787 if (new_ptl != old_ptl)
1788 spin_unlock(new_ptl);
1789 spin_unlock(old_ptl);
1797 * - 0 if PMD could not be locked
1798 * - 1 if PMD was locked but protections unchanged and TLB flush unnecessary
1799 * - HPAGE_PMD_NR if protections changed and TLB flush necessary
1801 int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1802 unsigned long addr, pgprot_t newprot, unsigned long cp_flags)
1804 struct mm_struct *mm = vma->vm_mm;
1807 bool preserve_write;
1809 bool prot_numa = cp_flags & MM_CP_PROT_NUMA;
1810 bool uffd_wp = cp_flags & MM_CP_UFFD_WP;
1811 bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE;
1813 ptl = __pmd_trans_huge_lock(pmd, vma);
1817 preserve_write = prot_numa && pmd_write(*pmd);
1820 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1821 if (is_swap_pmd(*pmd)) {
1822 swp_entry_t entry = pmd_to_swp_entry(*pmd);
1824 VM_BUG_ON(!is_pmd_migration_entry(*pmd));
1825 if (is_write_migration_entry(entry)) {
1828 * A protection check is difficult so
1829 * just be safe and disable write
1831 make_migration_entry_read(&entry);
1832 newpmd = swp_entry_to_pmd(entry);
1833 if (pmd_swp_soft_dirty(*pmd))
1834 newpmd = pmd_swp_mksoft_dirty(newpmd);
1835 set_pmd_at(mm, addr, pmd, newpmd);
1842 * Avoid trapping faults against the zero page. The read-only
1843 * data is likely to be read-cached on the local CPU and
1844 * local/remote hits to the zero page are not interesting.
1846 if (prot_numa && is_huge_zero_pmd(*pmd))
1849 if (prot_numa && pmd_protnone(*pmd))
1853 * In case prot_numa, we are under mmap_read_lock(mm). It's critical
1854 * to not clear pmd intermittently to avoid race with MADV_DONTNEED
1855 * which is also under mmap_read_lock(mm):
1858 * change_huge_pmd(prot_numa=1)
1859 * pmdp_huge_get_and_clear_notify()
1860 * madvise_dontneed()
1862 * pmd_trans_huge(*pmd) == 0 (without ptl)
1865 * // pmd is re-established
1867 * The race makes MADV_DONTNEED miss the huge pmd and don't clear it
1868 * which may break userspace.
1870 * pmdp_invalidate() is required to make sure we don't miss
1871 * dirty/young flags set by hardware.
1873 entry = pmdp_invalidate(vma, addr, pmd);
1875 entry = pmd_modify(entry, newprot);
1877 entry = pmd_mk_savedwrite(entry);
1879 entry = pmd_wrprotect(entry);
1880 entry = pmd_mkuffd_wp(entry);
1881 } else if (uffd_wp_resolve) {
1883 * Leave the write bit to be handled by PF interrupt
1884 * handler, then things like COW could be properly
1887 entry = pmd_clear_uffd_wp(entry);
1890 set_pmd_at(mm, addr, pmd, entry);
1891 BUG_ON(vma_is_anonymous(vma) && !preserve_write && pmd_write(entry));
1898 * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise.
1900 * Note that if it returns page table lock pointer, this routine returns without
1901 * unlocking page table lock. So callers must unlock it.
1903 spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
1906 ptl = pmd_lock(vma->vm_mm, pmd);
1907 if (likely(is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) ||
1915 * Returns true if a given pud maps a thp, false otherwise.
1917 * Note that if it returns true, this routine returns without unlocking page
1918 * table lock. So callers must unlock it.
1920 spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma)
1924 ptl = pud_lock(vma->vm_mm, pud);
1925 if (likely(pud_trans_huge(*pud) || pud_devmap(*pud)))
1931 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1932 int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma,
1933 pud_t *pud, unsigned long addr)
1937 ptl = __pud_trans_huge_lock(pud, vma);
1941 * For architectures like ppc64 we look at deposited pgtable
1942 * when calling pudp_huge_get_and_clear. So do the
1943 * pgtable_trans_huge_withdraw after finishing pudp related
1946 pudp_huge_get_and_clear_full(tlb->mm, addr, pud, tlb->fullmm);
1947 tlb_remove_pud_tlb_entry(tlb, pud, addr);
1948 if (vma_is_special_huge(vma)) {
1950 /* No zero page support yet */
1952 /* No support for anonymous PUD pages yet */
1958 static void __split_huge_pud_locked(struct vm_area_struct *vma, pud_t *pud,
1959 unsigned long haddr)
1961 VM_BUG_ON(haddr & ~HPAGE_PUD_MASK);
1962 VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
1963 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PUD_SIZE, vma);
1964 VM_BUG_ON(!pud_trans_huge(*pud) && !pud_devmap(*pud));
1966 count_vm_event(THP_SPLIT_PUD);
1968 pudp_huge_clear_flush_notify(vma, haddr, pud);
1971 void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud,
1972 unsigned long address)
1975 struct mmu_notifier_range range;
1977 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1978 address & HPAGE_PUD_MASK,
1979 (address & HPAGE_PUD_MASK) + HPAGE_PUD_SIZE);
1980 mmu_notifier_invalidate_range_start(&range);
1981 ptl = pud_lock(vma->vm_mm, pud);
1982 if (unlikely(!pud_trans_huge(*pud) && !pud_devmap(*pud)))
1984 __split_huge_pud_locked(vma, pud, range.start);
1989 * No need to double call mmu_notifier->invalidate_range() callback as
1990 * the above pudp_huge_clear_flush_notify() did already call it.
1992 mmu_notifier_invalidate_range_only_end(&range);
1994 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1996 static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
1997 unsigned long haddr, pmd_t *pmd)
1999 struct mm_struct *mm = vma->vm_mm;
2005 * Leave pmd empty until pte is filled note that it is fine to delay
2006 * notification until mmu_notifier_invalidate_range_end() as we are
2007 * replacing a zero pmd write protected page with a zero pte write
2010 * See Documentation/vm/mmu_notifier.rst
2012 pmdp_huge_clear_flush(vma, haddr, pmd);
2014 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2015 pmd_populate(mm, &_pmd, pgtable);
2017 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
2019 entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
2020 entry = pte_mkspecial(entry);
2021 pte = pte_offset_map(&_pmd, haddr);
2022 VM_BUG_ON(!pte_none(*pte));
2023 set_pte_at(mm, haddr, pte, entry);
2026 smp_wmb(); /* make pte visible before pmd */
2027 pmd_populate(mm, pmd, pgtable);
2030 static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
2031 unsigned long haddr, bool freeze)
2033 struct mm_struct *mm = vma->vm_mm;
2036 pmd_t old_pmd, _pmd;
2037 bool young, write, soft_dirty, pmd_migration = false, uffd_wp = false;
2041 VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
2042 VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2043 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
2044 VM_BUG_ON(!is_pmd_migration_entry(*pmd) && !pmd_trans_huge(*pmd)
2045 && !pmd_devmap(*pmd));
2047 count_vm_event(THP_SPLIT_PMD);
2049 if (!vma_is_anonymous(vma)) {
2050 old_pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
2052 * We are going to unmap this huge page. So
2053 * just go ahead and zap it
2055 if (arch_needs_pgtable_deposit())
2056 zap_deposited_table(mm, pmd);
2057 if (vma_is_special_huge(vma))
2059 if (unlikely(is_pmd_migration_entry(old_pmd))) {
2062 entry = pmd_to_swp_entry(old_pmd);
2063 page = migration_entry_to_page(entry);
2065 page = pmd_page(old_pmd);
2066 if (!PageDirty(page) && pmd_dirty(old_pmd))
2067 set_page_dirty(page);
2068 if (!PageReferenced(page) && pmd_young(old_pmd))
2069 SetPageReferenced(page);
2070 page_remove_rmap(page, true);
2073 add_mm_counter(mm, mm_counter_file(page), -HPAGE_PMD_NR);
2077 if (is_huge_zero_pmd(*pmd)) {
2079 * FIXME: Do we want to invalidate secondary mmu by calling
2080 * mmu_notifier_invalidate_range() see comments below inside
2081 * __split_huge_pmd() ?
2083 * We are going from a zero huge page write protected to zero
2084 * small page also write protected so it does not seems useful
2085 * to invalidate secondary mmu at this time.
2087 return __split_huge_zero_page_pmd(vma, haddr, pmd);
2091 * Up to this point the pmd is present and huge and userland has the
2092 * whole access to the hugepage during the split (which happens in
2093 * place). If we overwrite the pmd with the not-huge version pointing
2094 * to the pte here (which of course we could if all CPUs were bug
2095 * free), userland could trigger a small page size TLB miss on the
2096 * small sized TLB while the hugepage TLB entry is still established in
2097 * the huge TLB. Some CPU doesn't like that.
2098 * See http://support.amd.com/TechDocs/41322_10h_Rev_Gd.pdf, Erratum
2099 * 383 on page 105. Intel should be safe but is also warns that it's
2100 * only safe if the permission and cache attributes of the two entries
2101 * loaded in the two TLB is identical (which should be the case here).
2102 * But it is generally safer to never allow small and huge TLB entries
2103 * for the same virtual address to be loaded simultaneously. So instead
2104 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
2105 * current pmd notpresent (atomically because here the pmd_trans_huge
2106 * must remain set at all times on the pmd until the split is complete
2107 * for this pmd), then we flush the SMP TLB and finally we write the
2108 * non-huge version of the pmd entry with pmd_populate.
2110 old_pmd = pmdp_invalidate(vma, haddr, pmd);
2112 pmd_migration = is_pmd_migration_entry(old_pmd);
2113 if (unlikely(pmd_migration)) {
2116 entry = pmd_to_swp_entry(old_pmd);
2117 page = migration_entry_to_page(entry);
2118 write = is_write_migration_entry(entry);
2120 soft_dirty = pmd_swp_soft_dirty(old_pmd);
2121 uffd_wp = pmd_swp_uffd_wp(old_pmd);
2123 page = pmd_page(old_pmd);
2124 if (pmd_dirty(old_pmd))
2126 write = pmd_write(old_pmd);
2127 young = pmd_young(old_pmd);
2128 soft_dirty = pmd_soft_dirty(old_pmd);
2129 uffd_wp = pmd_uffd_wp(old_pmd);
2131 VM_BUG_ON_PAGE(!page_count(page), page);
2132 page_ref_add(page, HPAGE_PMD_NR - 1);
2135 * Withdraw the table only after we mark the pmd entry invalid.
2136 * This's critical for some architectures (Power).
2138 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2139 pmd_populate(mm, &_pmd, pgtable);
2141 for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
2144 * Note that NUMA hinting access restrictions are not
2145 * transferred to avoid any possibility of altering
2146 * permissions across VMAs.
2148 if (freeze || pmd_migration) {
2149 swp_entry_t swp_entry;
2150 swp_entry = make_migration_entry(page + i, write);
2151 entry = swp_entry_to_pte(swp_entry);
2153 entry = pte_swp_mksoft_dirty(entry);
2155 entry = pte_swp_mkuffd_wp(entry);
2157 entry = mk_pte(page + i, READ_ONCE(vma->vm_page_prot));
2158 entry = maybe_mkwrite(entry, vma);
2160 entry = pte_wrprotect(entry);
2162 entry = pte_mkold(entry);
2164 entry = pte_mksoft_dirty(entry);
2166 entry = pte_mkuffd_wp(entry);
2168 pte = pte_offset_map(&_pmd, addr);
2169 BUG_ON(!pte_none(*pte));
2170 set_pte_at(mm, addr, pte, entry);
2172 atomic_inc(&page[i]._mapcount);
2176 if (!pmd_migration) {
2178 * Set PG_double_map before dropping compound_mapcount to avoid
2179 * false-negative page_mapped().
2181 if (compound_mapcount(page) > 1 &&
2182 !TestSetPageDoubleMap(page)) {
2183 for (i = 0; i < HPAGE_PMD_NR; i++)
2184 atomic_inc(&page[i]._mapcount);
2187 lock_page_memcg(page);
2188 if (atomic_add_negative(-1, compound_mapcount_ptr(page))) {
2189 /* Last compound_mapcount is gone. */
2190 __mod_lruvec_page_state(page, NR_ANON_THPS,
2192 if (TestClearPageDoubleMap(page)) {
2193 /* No need in mapcount reference anymore */
2194 for (i = 0; i < HPAGE_PMD_NR; i++)
2195 atomic_dec(&page[i]._mapcount);
2198 unlock_page_memcg(page);
2201 smp_wmb(); /* make pte visible before pmd */
2202 pmd_populate(mm, pmd, pgtable);
2205 for (i = 0; i < HPAGE_PMD_NR; i++) {
2206 page_remove_rmap(page + i, false);
2212 void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
2213 unsigned long address, bool freeze, struct page *page)
2216 struct mmu_notifier_range range;
2217 bool do_unlock_page = false;
2220 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
2221 address & HPAGE_PMD_MASK,
2222 (address & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE);
2223 mmu_notifier_invalidate_range_start(&range);
2224 ptl = pmd_lock(vma->vm_mm, pmd);
2227 * If caller asks to setup a migration entries, we need a page to check
2228 * pmd against. Otherwise we can end up replacing wrong page.
2230 VM_BUG_ON(freeze && !page);
2232 VM_WARN_ON_ONCE(!PageLocked(page));
2233 if (page != pmd_page(*pmd))
2238 if (pmd_trans_huge(*pmd)) {
2240 page = pmd_page(*pmd);
2242 * An anonymous page must be locked, to ensure that a
2243 * concurrent reuse_swap_page() sees stable mapcount;
2244 * but reuse_swap_page() is not used on shmem or file,
2245 * and page lock must not be taken when zap_pmd_range()
2246 * calls __split_huge_pmd() while i_mmap_lock is held.
2248 if (PageAnon(page)) {
2249 if (unlikely(!trylock_page(page))) {
2255 if (unlikely(!pmd_same(*pmd, _pmd))) {
2263 do_unlock_page = true;
2266 if (PageMlocked(page))
2267 clear_page_mlock(page);
2268 } else if (!(pmd_devmap(*pmd) || is_pmd_migration_entry(*pmd)))
2270 __split_huge_pmd_locked(vma, pmd, range.start, freeze);
2276 * No need to double call mmu_notifier->invalidate_range() callback.
2277 * They are 3 cases to consider inside __split_huge_pmd_locked():
2278 * 1) pmdp_huge_clear_flush_notify() call invalidate_range() obvious
2279 * 2) __split_huge_zero_page_pmd() read only zero page and any write
2280 * fault will trigger a flush_notify before pointing to a new page
2281 * (it is fine if the secondary mmu keeps pointing to the old zero
2282 * page in the meantime)
2283 * 3) Split a huge pmd into pte pointing to the same page. No need
2284 * to invalidate secondary tlb entry they are all still valid.
2285 * any further changes to individual pte will notify. So no need
2286 * to call mmu_notifier->invalidate_range()
2288 mmu_notifier_invalidate_range_only_end(&range);
2291 void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
2292 bool freeze, struct page *page)
2299 pgd = pgd_offset(vma->vm_mm, address);
2300 if (!pgd_present(*pgd))
2303 p4d = p4d_offset(pgd, address);
2304 if (!p4d_present(*p4d))
2307 pud = pud_offset(p4d, address);
2308 if (!pud_present(*pud))
2311 pmd = pmd_offset(pud, address);
2313 __split_huge_pmd(vma, pmd, address, freeze, page);
2316 static inline void split_huge_pmd_if_needed(struct vm_area_struct *vma, unsigned long address)
2319 * If the new address isn't hpage aligned and it could previously
2320 * contain an hugepage: check if we need to split an huge pmd.
2322 if (!IS_ALIGNED(address, HPAGE_PMD_SIZE) &&
2323 range_in_vma(vma, ALIGN_DOWN(address, HPAGE_PMD_SIZE),
2324 ALIGN(address, HPAGE_PMD_SIZE)))
2325 split_huge_pmd_address(vma, address, false, NULL);
2328 void vma_adjust_trans_huge(struct vm_area_struct *vma,
2329 unsigned long start,
2333 /* Check if we need to split start first. */
2334 split_huge_pmd_if_needed(vma, start);
2336 /* Check if we need to split end next. */
2337 split_huge_pmd_if_needed(vma, end);
2340 * If we're also updating the vma->vm_next->vm_start,
2341 * check if we need to split it.
2343 if (adjust_next > 0) {
2344 struct vm_area_struct *next = vma->vm_next;
2345 unsigned long nstart = next->vm_start;
2346 nstart += adjust_next;
2347 split_huge_pmd_if_needed(next, nstart);
2351 static void unmap_page(struct page *page)
2353 enum ttu_flags ttu_flags = TTU_IGNORE_MLOCK | TTU_SYNC |
2354 TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD;
2357 VM_BUG_ON_PAGE(!PageHead(page), page);
2360 ttu_flags |= TTU_SPLIT_FREEZE;
2362 unmap_success = try_to_unmap(page, ttu_flags);
2363 VM_BUG_ON_PAGE(!unmap_success, page);
2366 static void remap_page(struct page *page, unsigned int nr)
2369 if (PageTransHuge(page)) {
2370 remove_migration_ptes(page, page, true);
2372 for (i = 0; i < nr; i++)
2373 remove_migration_ptes(page + i, page + i, true);
2377 static void lru_add_page_tail(struct page *head, struct page *tail,
2378 struct lruvec *lruvec, struct list_head *list)
2380 VM_BUG_ON_PAGE(!PageHead(head), head);
2381 VM_BUG_ON_PAGE(PageCompound(tail), head);
2382 VM_BUG_ON_PAGE(PageLRU(tail), head);
2383 lockdep_assert_held(&lruvec->lru_lock);
2386 /* page reclaim is reclaiming a huge page */
2387 VM_WARN_ON(PageLRU(head));
2389 list_add_tail(&tail->lru, list);
2391 /* head is still on lru (and we have it frozen) */
2392 VM_WARN_ON(!PageLRU(head));
2394 list_add_tail(&tail->lru, &head->lru);
2398 static void __split_huge_page_tail(struct page *head, int tail,
2399 struct lruvec *lruvec, struct list_head *list)
2401 struct page *page_tail = head + tail;
2403 VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
2406 * Clone page flags before unfreezing refcount.
2408 * After successful get_page_unless_zero() might follow flags change,
2409 * for example lock_page() which set PG_waiters.
2411 page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
2412 page_tail->flags |= (head->flags &
2413 ((1L << PG_referenced) |
2414 (1L << PG_swapbacked) |
2415 (1L << PG_swapcache) |
2416 (1L << PG_mlocked) |
2417 (1L << PG_uptodate) |
2419 (1L << PG_workingset) |
2421 (1L << PG_unevictable) |
2427 /* ->mapping in first tail page is compound_mapcount */
2428 VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
2430 page_tail->mapping = head->mapping;
2431 page_tail->index = head->index + tail;
2433 /* Page flags must be visible before we make the page non-compound. */
2437 * Clear PageTail before unfreezing page refcount.
2439 * After successful get_page_unless_zero() might follow put_page()
2440 * which needs correct compound_head().
2442 clear_compound_head(page_tail);
2444 /* Finally unfreeze refcount. Additional reference from page cache. */
2445 page_ref_unfreeze(page_tail, 1 + (!PageAnon(head) ||
2446 PageSwapCache(head)));
2448 if (page_is_young(head))
2449 set_page_young(page_tail);
2450 if (page_is_idle(head))
2451 set_page_idle(page_tail);
2453 page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
2456 * always add to the tail because some iterators expect new
2457 * pages to show after the currently processed elements - e.g.
2460 lru_add_page_tail(head, page_tail, lruvec, list);
2463 static void __split_huge_page(struct page *page, struct list_head *list,
2466 struct page *head = compound_head(page);
2467 struct lruvec *lruvec;
2468 struct address_space *swap_cache = NULL;
2469 unsigned long offset = 0;
2470 unsigned int nr = thp_nr_pages(head);
2473 /* complete memcg works before add pages to LRU */
2474 split_page_memcg(head, nr);
2476 if (PageAnon(head) && PageSwapCache(head)) {
2477 swp_entry_t entry = { .val = page_private(head) };
2479 offset = swp_offset(entry);
2480 swap_cache = swap_address_space(entry);
2481 xa_lock(&swap_cache->i_pages);
2484 /* lock lru list/PageCompound, ref frozen by page_ref_freeze */
2485 lruvec = lock_page_lruvec(head);
2487 for (i = nr - 1; i >= 1; i--) {
2488 __split_huge_page_tail(head, i, lruvec, list);
2489 /* Some pages can be beyond i_size: drop them from page cache */
2490 if (head[i].index >= end) {
2491 ClearPageDirty(head + i);
2492 __delete_from_page_cache(head + i, NULL);
2493 if (IS_ENABLED(CONFIG_SHMEM) && PageSwapBacked(head))
2494 shmem_uncharge(head->mapping->host, 1);
2496 } else if (!PageAnon(page)) {
2497 __xa_store(&head->mapping->i_pages, head[i].index,
2499 } else if (swap_cache) {
2500 __xa_store(&swap_cache->i_pages, offset + i,
2505 ClearPageCompound(head);
2506 unlock_page_lruvec(lruvec);
2507 /* Caller disabled irqs, so they are still disabled here */
2509 split_page_owner(head, nr);
2511 /* See comment in __split_huge_page_tail() */
2512 if (PageAnon(head)) {
2513 /* Additional pin to swap cache */
2514 if (PageSwapCache(head)) {
2515 page_ref_add(head, 2);
2516 xa_unlock(&swap_cache->i_pages);
2521 /* Additional pin to page cache */
2522 page_ref_add(head, 2);
2523 xa_unlock(&head->mapping->i_pages);
2527 remap_page(head, nr);
2529 if (PageSwapCache(head)) {
2530 swp_entry_t entry = { .val = page_private(head) };
2532 split_swap_cluster(entry);
2535 for (i = 0; i < nr; i++) {
2536 struct page *subpage = head + i;
2537 if (subpage == page)
2539 unlock_page(subpage);
2542 * Subpages may be freed if there wasn't any mapping
2543 * like if add_to_swap() is running on a lru page that
2544 * had its mapping zapped. And freeing these pages
2545 * requires taking the lru_lock so we do the put_page
2546 * of the tail pages after the split is complete.
2552 int total_mapcount(struct page *page)
2554 int i, compound, nr, ret;
2556 VM_BUG_ON_PAGE(PageTail(page), page);
2558 if (likely(!PageCompound(page)))
2559 return atomic_read(&page->_mapcount) + 1;
2561 compound = compound_mapcount(page);
2562 nr = compound_nr(page);
2566 for (i = 0; i < nr; i++)
2567 ret += atomic_read(&page[i]._mapcount) + 1;
2568 /* File pages has compound_mapcount included in _mapcount */
2569 if (!PageAnon(page))
2570 return ret - compound * nr;
2571 if (PageDoubleMap(page))
2577 * This calculates accurately how many mappings a transparent hugepage
2578 * has (unlike page_mapcount() which isn't fully accurate). This full
2579 * accuracy is primarily needed to know if copy-on-write faults can
2580 * reuse the page and change the mapping to read-write instead of
2581 * copying them. At the same time this returns the total_mapcount too.
2583 * The function returns the highest mapcount any one of the subpages
2584 * has. If the return value is one, even if different processes are
2585 * mapping different subpages of the transparent hugepage, they can
2586 * all reuse it, because each process is reusing a different subpage.
2588 * The total_mapcount is instead counting all virtual mappings of the
2589 * subpages. If the total_mapcount is equal to "one", it tells the
2590 * caller all mappings belong to the same "mm" and in turn the
2591 * anon_vma of the transparent hugepage can become the vma->anon_vma
2592 * local one as no other process may be mapping any of the subpages.
2594 * It would be more accurate to replace page_mapcount() with
2595 * page_trans_huge_mapcount(), however we only use
2596 * page_trans_huge_mapcount() in the copy-on-write faults where we
2597 * need full accuracy to avoid breaking page pinning, because
2598 * page_trans_huge_mapcount() is slower than page_mapcount().
2600 int page_trans_huge_mapcount(struct page *page, int *total_mapcount)
2602 int i, ret, _total_mapcount, mapcount;
2604 /* hugetlbfs shouldn't call it */
2605 VM_BUG_ON_PAGE(PageHuge(page), page);
2607 if (likely(!PageTransCompound(page))) {
2608 mapcount = atomic_read(&page->_mapcount) + 1;
2610 *total_mapcount = mapcount;
2614 page = compound_head(page);
2616 _total_mapcount = ret = 0;
2617 for (i = 0; i < thp_nr_pages(page); i++) {
2618 mapcount = atomic_read(&page[i]._mapcount) + 1;
2619 ret = max(ret, mapcount);
2620 _total_mapcount += mapcount;
2622 if (PageDoubleMap(page)) {
2624 _total_mapcount -= thp_nr_pages(page);
2626 mapcount = compound_mapcount(page);
2628 _total_mapcount += mapcount;
2630 *total_mapcount = _total_mapcount;
2634 /* Racy check whether the huge page can be split */
2635 bool can_split_huge_page(struct page *page, int *pextra_pins)
2639 /* Additional pins from page cache */
2641 extra_pins = PageSwapCache(page) ? thp_nr_pages(page) : 0;
2643 extra_pins = thp_nr_pages(page);
2645 *pextra_pins = extra_pins;
2646 return total_mapcount(page) == page_count(page) - extra_pins - 1;
2650 * This function splits huge page into normal pages. @page can point to any
2651 * subpage of huge page to split. Split doesn't change the position of @page.
2653 * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
2654 * The huge page must be locked.
2656 * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
2658 * Both head page and tail pages will inherit mapping, flags, and so on from
2661 * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
2662 * they are not mapped.
2664 * Returns 0 if the hugepage is split successfully.
2665 * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
2668 int split_huge_page_to_list(struct page *page, struct list_head *list)
2670 struct page *head = compound_head(page);
2671 struct deferred_split *ds_queue = get_deferred_split_queue(head);
2672 struct anon_vma *anon_vma = NULL;
2673 struct address_space *mapping = NULL;
2674 int count, mapcount, extra_pins, ret;
2677 VM_BUG_ON_PAGE(is_huge_zero_page(head), head);
2678 VM_BUG_ON_PAGE(!PageLocked(head), head);
2679 VM_BUG_ON_PAGE(!PageCompound(head), head);
2681 if (PageWriteback(head))
2684 if (PageAnon(head)) {
2686 * The caller does not necessarily hold an mmap_lock that would
2687 * prevent the anon_vma disappearing so we first we take a
2688 * reference to it and then lock the anon_vma for write. This
2689 * is similar to page_lock_anon_vma_read except the write lock
2690 * is taken to serialise against parallel split or collapse
2693 anon_vma = page_get_anon_vma(head);
2700 anon_vma_lock_write(anon_vma);
2702 mapping = head->mapping;
2711 i_mmap_lock_read(mapping);
2714 *__split_huge_page() may need to trim off pages beyond EOF:
2715 * but on 32-bit, i_size_read() takes an irq-unsafe seqlock,
2716 * which cannot be nested inside the page tree lock. So note
2717 * end now: i_size itself may be changed at any moment, but
2718 * head page lock is good enough to serialize the trimming.
2720 end = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
2724 * Racy check if we can split the page, before unmap_page() will
2727 if (!can_split_huge_page(head, &extra_pins)) {
2733 VM_BUG_ON_PAGE(compound_mapcount(head), head);
2735 /* block interrupt reentry in xa_lock and spinlock */
2736 local_irq_disable();
2738 XA_STATE(xas, &mapping->i_pages, page_index(head));
2741 * Check if the head page is present in page cache.
2742 * We assume all tail are present too, if head is there.
2744 xa_lock(&mapping->i_pages);
2745 if (xas_load(&xas) != head)
2749 /* Prevent deferred_split_scan() touching ->_refcount */
2750 spin_lock(&ds_queue->split_queue_lock);
2751 count = page_count(head);
2752 mapcount = total_mapcount(head);
2753 if (!mapcount && page_ref_freeze(head, 1 + extra_pins)) {
2754 if (!list_empty(page_deferred_list(head))) {
2755 ds_queue->split_queue_len--;
2756 list_del(page_deferred_list(head));
2758 spin_unlock(&ds_queue->split_queue_lock);
2760 int nr = thp_nr_pages(head);
2762 if (PageSwapBacked(head))
2763 __mod_lruvec_page_state(head, NR_SHMEM_THPS,
2766 __mod_lruvec_page_state(head, NR_FILE_THPS,
2770 __split_huge_page(page, list, end);
2773 if (IS_ENABLED(CONFIG_DEBUG_VM) && mapcount) {
2774 pr_alert("total_mapcount: %u, page_count(): %u\n",
2777 dump_page(head, NULL);
2778 dump_page(page, "total_mapcount(head) > 0");
2781 spin_unlock(&ds_queue->split_queue_lock);
2783 xa_unlock(&mapping->i_pages);
2785 remap_page(head, thp_nr_pages(head));
2791 anon_vma_unlock_write(anon_vma);
2792 put_anon_vma(anon_vma);
2795 i_mmap_unlock_read(mapping);
2797 count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
2801 void free_transhuge_page(struct page *page)
2803 struct deferred_split *ds_queue = get_deferred_split_queue(page);
2804 unsigned long flags;
2806 spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2807 if (!list_empty(page_deferred_list(page))) {
2808 ds_queue->split_queue_len--;
2809 list_del(page_deferred_list(page));
2811 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2812 free_compound_page(page);
2815 void deferred_split_huge_page(struct page *page)
2817 struct deferred_split *ds_queue = get_deferred_split_queue(page);
2819 struct mem_cgroup *memcg = page_memcg(compound_head(page));
2821 unsigned long flags;
2823 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
2826 * The try_to_unmap() in page reclaim path might reach here too,
2827 * this may cause a race condition to corrupt deferred split queue.
2828 * And, if page reclaim is already handling the same page, it is
2829 * unnecessary to handle it again in shrinker.
2831 * Check PageSwapCache to determine if the page is being
2832 * handled by page reclaim since THP swap would add the page into
2833 * swap cache before calling try_to_unmap().
2835 if (PageSwapCache(page))
2838 spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2839 if (list_empty(page_deferred_list(page))) {
2840 count_vm_event(THP_DEFERRED_SPLIT_PAGE);
2841 list_add_tail(page_deferred_list(page), &ds_queue->split_queue);
2842 ds_queue->split_queue_len++;
2845 set_shrinker_bit(memcg, page_to_nid(page),
2846 deferred_split_shrinker.id);
2849 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2852 static unsigned long deferred_split_count(struct shrinker *shrink,
2853 struct shrink_control *sc)
2855 struct pglist_data *pgdata = NODE_DATA(sc->nid);
2856 struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
2860 ds_queue = &sc->memcg->deferred_split_queue;
2862 return READ_ONCE(ds_queue->split_queue_len);
2865 static unsigned long deferred_split_scan(struct shrinker *shrink,
2866 struct shrink_control *sc)
2868 struct pglist_data *pgdata = NODE_DATA(sc->nid);
2869 struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
2870 unsigned long flags;
2871 LIST_HEAD(list), *pos, *next;
2877 ds_queue = &sc->memcg->deferred_split_queue;
2880 spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2881 /* Take pin on all head pages to avoid freeing them under us */
2882 list_for_each_safe(pos, next, &ds_queue->split_queue) {
2883 page = list_entry((void *)pos, struct page, mapping);
2884 page = compound_head(page);
2885 if (get_page_unless_zero(page)) {
2886 list_move(page_deferred_list(page), &list);
2888 /* We lost race with put_compound_page() */
2889 list_del_init(page_deferred_list(page));
2890 ds_queue->split_queue_len--;
2892 if (!--sc->nr_to_scan)
2895 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2897 list_for_each_safe(pos, next, &list) {
2898 page = list_entry((void *)pos, struct page, mapping);
2899 if (!trylock_page(page))
2901 /* split_huge_page() removes page from list on success */
2902 if (!split_huge_page(page))
2909 spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2910 list_splice_tail(&list, &ds_queue->split_queue);
2911 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2914 * Stop shrinker if we didn't split any page, but the queue is empty.
2915 * This can happen if pages were freed under us.
2917 if (!split && list_empty(&ds_queue->split_queue))
2922 static struct shrinker deferred_split_shrinker = {
2923 .count_objects = deferred_split_count,
2924 .scan_objects = deferred_split_scan,
2925 .seeks = DEFAULT_SEEKS,
2926 .flags = SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE |
2930 #ifdef CONFIG_DEBUG_FS
2931 static void split_huge_pages_all(void)
2935 unsigned long pfn, max_zone_pfn;
2936 unsigned long total = 0, split = 0;
2938 pr_debug("Split all THPs\n");
2939 for_each_populated_zone(zone) {
2940 max_zone_pfn = zone_end_pfn(zone);
2941 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
2942 if (!pfn_valid(pfn))
2945 page = pfn_to_page(pfn);
2946 if (!get_page_unless_zero(page))
2949 if (zone != page_zone(page))
2952 if (!PageHead(page) || PageHuge(page) || !PageLRU(page))
2957 if (!split_huge_page(page))
2966 pr_debug("%lu of %lu THP split\n", split, total);
2969 static inline bool vma_not_suitable_for_thp_split(struct vm_area_struct *vma)
2971 return vma_is_special_huge(vma) || (vma->vm_flags & VM_IO) ||
2972 is_vm_hugetlb_page(vma);
2975 static int split_huge_pages_pid(int pid, unsigned long vaddr_start,
2976 unsigned long vaddr_end)
2979 struct task_struct *task;
2980 struct mm_struct *mm;
2981 unsigned long total = 0, split = 0;
2984 vaddr_start &= PAGE_MASK;
2985 vaddr_end &= PAGE_MASK;
2987 /* Find the task_struct from pid */
2989 task = find_task_by_vpid(pid);
2995 get_task_struct(task);
2998 /* Find the mm_struct */
2999 mm = get_task_mm(task);
3000 put_task_struct(task);
3007 pr_debug("Split huge pages in pid: %d, vaddr: [0x%lx - 0x%lx]\n",
3008 pid, vaddr_start, vaddr_end);
3012 * always increase addr by PAGE_SIZE, since we could have a PTE page
3013 * table filled with PTE-mapped THPs, each of which is distinct.
3015 for (addr = vaddr_start; addr < vaddr_end; addr += PAGE_SIZE) {
3016 struct vm_area_struct *vma = find_vma(mm, addr);
3017 unsigned int follflags;
3020 if (!vma || addr < vma->vm_start)
3023 /* skip special VMA and hugetlb VMA */
3024 if (vma_not_suitable_for_thp_split(vma)) {
3029 /* FOLL_DUMP to ignore special (like zero) pages */
3030 follflags = FOLL_GET | FOLL_DUMP;
3031 page = follow_page(vma, addr, follflags);
3038 if (!is_transparent_hugepage(page))
3042 if (!can_split_huge_page(compound_head(page), NULL))
3045 if (!trylock_page(page))
3048 if (!split_huge_page(page))
3056 mmap_read_unlock(mm);
3059 pr_debug("%lu of %lu THP split\n", split, total);
3065 static int split_huge_pages_in_file(const char *file_path, pgoff_t off_start,
3068 struct filename *file;
3069 struct file *candidate;
3070 struct address_space *mapping;
3074 unsigned long total = 0, split = 0;
3076 file = getname_kernel(file_path);
3080 candidate = file_open_name(file, O_RDONLY, 0);
3081 if (IS_ERR(candidate))
3084 pr_debug("split file-backed THPs in file: %s, page offset: [0x%lx - 0x%lx]\n",
3085 file_path, off_start, off_end);
3087 mapping = candidate->f_mapping;
3089 for (index = off_start; index < off_end; index += nr_pages) {
3090 struct page *fpage = pagecache_get_page(mapping, index,
3091 FGP_ENTRY | FGP_HEAD, 0);
3094 if (xa_is_value(fpage) || !fpage)
3097 if (!is_transparent_hugepage(fpage))
3101 nr_pages = thp_nr_pages(fpage);
3103 if (!trylock_page(fpage))
3106 if (!split_huge_page(fpage))
3115 filp_close(candidate, NULL);
3118 pr_debug("%lu of %lu file-backed THP split\n", split, total);
3124 #define MAX_INPUT_BUF_SZ 255
3126 static ssize_t split_huge_pages_write(struct file *file, const char __user *buf,
3127 size_t count, loff_t *ppops)
3129 static DEFINE_MUTEX(split_debug_mutex);
3131 /* hold pid, start_vaddr, end_vaddr or file_path, off_start, off_end */
3132 char input_buf[MAX_INPUT_BUF_SZ];
3134 unsigned long vaddr_start, vaddr_end;
3136 ret = mutex_lock_interruptible(&split_debug_mutex);
3142 memset(input_buf, 0, MAX_INPUT_BUF_SZ);
3143 if (copy_from_user(input_buf, buf, min_t(size_t, count, MAX_INPUT_BUF_SZ)))
3146 input_buf[MAX_INPUT_BUF_SZ - 1] = '\0';
3148 if (input_buf[0] == '/') {
3150 char *buf = input_buf;
3151 char file_path[MAX_INPUT_BUF_SZ];
3152 pgoff_t off_start = 0, off_end = 0;
3153 size_t input_len = strlen(input_buf);
3155 tok = strsep(&buf, ",");
3157 strncpy(file_path, tok, MAX_INPUT_BUF_SZ);
3163 ret = sscanf(buf, "0x%lx,0x%lx", &off_start, &off_end);
3168 ret = split_huge_pages_in_file(file_path, off_start, off_end);
3175 ret = sscanf(input_buf, "%d,0x%lx,0x%lx", &pid, &vaddr_start, &vaddr_end);
3176 if (ret == 1 && pid == 1) {
3177 split_huge_pages_all();
3178 ret = strlen(input_buf);
3180 } else if (ret != 3) {
3185 ret = split_huge_pages_pid(pid, vaddr_start, vaddr_end);
3187 ret = strlen(input_buf);
3189 mutex_unlock(&split_debug_mutex);
3194 static const struct file_operations split_huge_pages_fops = {
3195 .owner = THIS_MODULE,
3196 .write = split_huge_pages_write,
3197 .llseek = no_llseek,
3200 static int __init split_huge_pages_debugfs(void)
3202 debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
3203 &split_huge_pages_fops);
3206 late_initcall(split_huge_pages_debugfs);
3209 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
3210 void set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw,
3213 struct vm_area_struct *vma = pvmw->vma;
3214 struct mm_struct *mm = vma->vm_mm;
3215 unsigned long address = pvmw->address;
3220 if (!(pvmw->pmd && !pvmw->pte))
3223 flush_cache_range(vma, address, address + HPAGE_PMD_SIZE);
3224 pmdval = pmdp_invalidate(vma, address, pvmw->pmd);
3225 if (pmd_dirty(pmdval))
3226 set_page_dirty(page);
3227 entry = make_migration_entry(page, pmd_write(pmdval));
3228 pmdswp = swp_entry_to_pmd(entry);
3229 if (pmd_soft_dirty(pmdval))
3230 pmdswp = pmd_swp_mksoft_dirty(pmdswp);
3231 set_pmd_at(mm, address, pvmw->pmd, pmdswp);
3232 page_remove_rmap(page, true);
3236 void remove_migration_pmd(struct page_vma_mapped_walk *pvmw, struct page *new)
3238 struct vm_area_struct *vma = pvmw->vma;
3239 struct mm_struct *mm = vma->vm_mm;
3240 unsigned long address = pvmw->address;
3241 unsigned long mmun_start = address & HPAGE_PMD_MASK;
3245 if (!(pvmw->pmd && !pvmw->pte))
3248 entry = pmd_to_swp_entry(*pvmw->pmd);
3250 pmde = pmd_mkold(mk_huge_pmd(new, vma->vm_page_prot));
3251 if (pmd_swp_soft_dirty(*pvmw->pmd))
3252 pmde = pmd_mksoft_dirty(pmde);
3253 if (is_write_migration_entry(entry))
3254 pmde = maybe_pmd_mkwrite(pmde, vma);
3256 flush_cache_range(vma, mmun_start, mmun_start + HPAGE_PMD_SIZE);
3258 page_add_anon_rmap(new, vma, mmun_start, true);
3260 page_add_file_rmap(new, true);
3261 set_pmd_at(mm, mmun_start, pvmw->pmd, pmde);
3262 if ((vma->vm_flags & VM_LOCKED) && !PageDoubleMap(new))
3263 mlock_vma_page(new);
3264 update_mmu_cache_pmd(vma, address, pvmw->pmd);