Merge branch 'for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jack/linux-fs
[platform/adaptation/renesas_rcar/renesas_kernel.git] / mm / huge_memory.c
1 /*
2  *  Copyright (C) 2009  Red Hat, Inc.
3  *
4  *  This work is licensed under the terms of the GNU GPL, version 2. See
5  *  the COPYING file in the top-level directory.
6  */
7
8 #include <linux/mm.h>
9 #include <linux/sched.h>
10 #include <linux/highmem.h>
11 #include <linux/hugetlb.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/rmap.h>
14 #include <linux/swap.h>
15 #include <linux/shrinker.h>
16 #include <linux/mm_inline.h>
17 #include <linux/kthread.h>
18 #include <linux/khugepaged.h>
19 #include <linux/freezer.h>
20 #include <linux/mman.h>
21 #include <linux/pagemap.h>
22 #include <linux/migrate.h>
23 #include <linux/hashtable.h>
24
25 #include <asm/tlb.h>
26 #include <asm/pgalloc.h>
27 #include "internal.h"
28
29 /*
30  * By default transparent hugepage support is enabled for all mappings
31  * and khugepaged scans all mappings. Defrag is only invoked by
32  * khugepaged hugepage allocations and by page faults inside
33  * MADV_HUGEPAGE regions to avoid the risk of slowing down short lived
34  * allocations.
35  */
36 unsigned long transparent_hugepage_flags __read_mostly =
37 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
38         (1<<TRANSPARENT_HUGEPAGE_FLAG)|
39 #endif
40 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
41         (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
42 #endif
43         (1<<TRANSPARENT_HUGEPAGE_DEFRAG_FLAG)|
44         (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
45         (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
46
47 /* default scan 8*512 pte (or vmas) every 30 second */
48 static unsigned int khugepaged_pages_to_scan __read_mostly = HPAGE_PMD_NR*8;
49 static unsigned int khugepaged_pages_collapsed;
50 static unsigned int khugepaged_full_scans;
51 static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
52 /* during fragmentation poll the hugepage allocator once every minute */
53 static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
54 static struct task_struct *khugepaged_thread __read_mostly;
55 static DEFINE_MUTEX(khugepaged_mutex);
56 static DEFINE_SPINLOCK(khugepaged_mm_lock);
57 static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
58 /*
59  * default collapse hugepages if there is at least one pte mapped like
60  * it would have happened if the vma was large enough during page
61  * fault.
62  */
63 static unsigned int khugepaged_max_ptes_none __read_mostly = HPAGE_PMD_NR-1;
64
65 static int khugepaged(void *none);
66 static int khugepaged_slab_init(void);
67
68 #define MM_SLOTS_HASH_BITS 10
69 static __read_mostly DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
70
71 static struct kmem_cache *mm_slot_cache __read_mostly;
72
73 /**
74  * struct mm_slot - hash lookup from mm to mm_slot
75  * @hash: hash collision list
76  * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
77  * @mm: the mm that this information is valid for
78  */
79 struct mm_slot {
80         struct hlist_node hash;
81         struct list_head mm_node;
82         struct mm_struct *mm;
83 };
84
85 /**
86  * struct khugepaged_scan - cursor for scanning
87  * @mm_head: the head of the mm list to scan
88  * @mm_slot: the current mm_slot we are scanning
89  * @address: the next address inside that to be scanned
90  *
91  * There is only the one khugepaged_scan instance of this cursor structure.
92  */
93 struct khugepaged_scan {
94         struct list_head mm_head;
95         struct mm_slot *mm_slot;
96         unsigned long address;
97 };
98 static struct khugepaged_scan khugepaged_scan = {
99         .mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
100 };
101
102
103 static int set_recommended_min_free_kbytes(void)
104 {
105         struct zone *zone;
106         int nr_zones = 0;
107         unsigned long recommended_min;
108
109         if (!khugepaged_enabled())
110                 return 0;
111
112         for_each_populated_zone(zone)
113                 nr_zones++;
114
115         /* Make sure at least 2 hugepages are free for MIGRATE_RESERVE */
116         recommended_min = pageblock_nr_pages * nr_zones * 2;
117
118         /*
119          * Make sure that on average at least two pageblocks are almost free
120          * of another type, one for a migratetype to fall back to and a
121          * second to avoid subsequent fallbacks of other types There are 3
122          * MIGRATE_TYPES we care about.
123          */
124         recommended_min += pageblock_nr_pages * nr_zones *
125                            MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
126
127         /* don't ever allow to reserve more than 5% of the lowmem */
128         recommended_min = min(recommended_min,
129                               (unsigned long) nr_free_buffer_pages() / 20);
130         recommended_min <<= (PAGE_SHIFT-10);
131
132         if (recommended_min > min_free_kbytes)
133                 min_free_kbytes = recommended_min;
134         setup_per_zone_wmarks();
135         return 0;
136 }
137 late_initcall(set_recommended_min_free_kbytes);
138
139 static int start_khugepaged(void)
140 {
141         int err = 0;
142         if (khugepaged_enabled()) {
143                 if (!khugepaged_thread)
144                         khugepaged_thread = kthread_run(khugepaged, NULL,
145                                                         "khugepaged");
146                 if (unlikely(IS_ERR(khugepaged_thread))) {
147                         printk(KERN_ERR
148                                "khugepaged: kthread_run(khugepaged) failed\n");
149                         err = PTR_ERR(khugepaged_thread);
150                         khugepaged_thread = NULL;
151                 }
152
153                 if (!list_empty(&khugepaged_scan.mm_head))
154                         wake_up_interruptible(&khugepaged_wait);
155
156                 set_recommended_min_free_kbytes();
157         } else if (khugepaged_thread) {
158                 kthread_stop(khugepaged_thread);
159                 khugepaged_thread = NULL;
160         }
161
162         return err;
163 }
164
165 static atomic_t huge_zero_refcount;
166 static struct page *huge_zero_page __read_mostly;
167
168 static inline bool is_huge_zero_page(struct page *page)
169 {
170         return ACCESS_ONCE(huge_zero_page) == page;
171 }
172
173 static inline bool is_huge_zero_pmd(pmd_t pmd)
174 {
175         return is_huge_zero_page(pmd_page(pmd));
176 }
177
178 static struct page *get_huge_zero_page(void)
179 {
180         struct page *zero_page;
181 retry:
182         if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
183                 return ACCESS_ONCE(huge_zero_page);
184
185         zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
186                         HPAGE_PMD_ORDER);
187         if (!zero_page) {
188                 count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
189                 return NULL;
190         }
191         count_vm_event(THP_ZERO_PAGE_ALLOC);
192         preempt_disable();
193         if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
194                 preempt_enable();
195                 __free_page(zero_page);
196                 goto retry;
197         }
198
199         /* We take additional reference here. It will be put back by shrinker */
200         atomic_set(&huge_zero_refcount, 2);
201         preempt_enable();
202         return ACCESS_ONCE(huge_zero_page);
203 }
204
205 static void put_huge_zero_page(void)
206 {
207         /*
208          * Counter should never go to zero here. Only shrinker can put
209          * last reference.
210          */
211         BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
212 }
213
214 static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
215                                         struct shrink_control *sc)
216 {
217         /* we can free zero page only if last reference remains */
218         return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
219 }
220
221 static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
222                                        struct shrink_control *sc)
223 {
224         if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
225                 struct page *zero_page = xchg(&huge_zero_page, NULL);
226                 BUG_ON(zero_page == NULL);
227                 __free_page(zero_page);
228                 return HPAGE_PMD_NR;
229         }
230
231         return 0;
232 }
233
234 static struct shrinker huge_zero_page_shrinker = {
235         .count_objects = shrink_huge_zero_page_count,
236         .scan_objects = shrink_huge_zero_page_scan,
237         .seeks = DEFAULT_SEEKS,
238 };
239
240 #ifdef CONFIG_SYSFS
241
242 static ssize_t double_flag_show(struct kobject *kobj,
243                                 struct kobj_attribute *attr, char *buf,
244                                 enum transparent_hugepage_flag enabled,
245                                 enum transparent_hugepage_flag req_madv)
246 {
247         if (test_bit(enabled, &transparent_hugepage_flags)) {
248                 VM_BUG_ON(test_bit(req_madv, &transparent_hugepage_flags));
249                 return sprintf(buf, "[always] madvise never\n");
250         } else if (test_bit(req_madv, &transparent_hugepage_flags))
251                 return sprintf(buf, "always [madvise] never\n");
252         else
253                 return sprintf(buf, "always madvise [never]\n");
254 }
255 static ssize_t double_flag_store(struct kobject *kobj,
256                                  struct kobj_attribute *attr,
257                                  const char *buf, size_t count,
258                                  enum transparent_hugepage_flag enabled,
259                                  enum transparent_hugepage_flag req_madv)
260 {
261         if (!memcmp("always", buf,
262                     min(sizeof("always")-1, count))) {
263                 set_bit(enabled, &transparent_hugepage_flags);
264                 clear_bit(req_madv, &transparent_hugepage_flags);
265         } else if (!memcmp("madvise", buf,
266                            min(sizeof("madvise")-1, count))) {
267                 clear_bit(enabled, &transparent_hugepage_flags);
268                 set_bit(req_madv, &transparent_hugepage_flags);
269         } else if (!memcmp("never", buf,
270                            min(sizeof("never")-1, count))) {
271                 clear_bit(enabled, &transparent_hugepage_flags);
272                 clear_bit(req_madv, &transparent_hugepage_flags);
273         } else
274                 return -EINVAL;
275
276         return count;
277 }
278
279 static ssize_t enabled_show(struct kobject *kobj,
280                             struct kobj_attribute *attr, char *buf)
281 {
282         return double_flag_show(kobj, attr, buf,
283                                 TRANSPARENT_HUGEPAGE_FLAG,
284                                 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
285 }
286 static ssize_t enabled_store(struct kobject *kobj,
287                              struct kobj_attribute *attr,
288                              const char *buf, size_t count)
289 {
290         ssize_t ret;
291
292         ret = double_flag_store(kobj, attr, buf, count,
293                                 TRANSPARENT_HUGEPAGE_FLAG,
294                                 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
295
296         if (ret > 0) {
297                 int err;
298
299                 mutex_lock(&khugepaged_mutex);
300                 err = start_khugepaged();
301                 mutex_unlock(&khugepaged_mutex);
302
303                 if (err)
304                         ret = err;
305         }
306
307         return ret;
308 }
309 static struct kobj_attribute enabled_attr =
310         __ATTR(enabled, 0644, enabled_show, enabled_store);
311
312 static ssize_t single_flag_show(struct kobject *kobj,
313                                 struct kobj_attribute *attr, char *buf,
314                                 enum transparent_hugepage_flag flag)
315 {
316         return sprintf(buf, "%d\n",
317                        !!test_bit(flag, &transparent_hugepage_flags));
318 }
319
320 static ssize_t single_flag_store(struct kobject *kobj,
321                                  struct kobj_attribute *attr,
322                                  const char *buf, size_t count,
323                                  enum transparent_hugepage_flag flag)
324 {
325         unsigned long value;
326         int ret;
327
328         ret = kstrtoul(buf, 10, &value);
329         if (ret < 0)
330                 return ret;
331         if (value > 1)
332                 return -EINVAL;
333
334         if (value)
335                 set_bit(flag, &transparent_hugepage_flags);
336         else
337                 clear_bit(flag, &transparent_hugepage_flags);
338
339         return count;
340 }
341
342 /*
343  * Currently defrag only disables __GFP_NOWAIT for allocation. A blind
344  * __GFP_REPEAT is too aggressive, it's never worth swapping tons of
345  * memory just to allocate one more hugepage.
346  */
347 static ssize_t defrag_show(struct kobject *kobj,
348                            struct kobj_attribute *attr, char *buf)
349 {
350         return double_flag_show(kobj, attr, buf,
351                                 TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
352                                 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
353 }
354 static ssize_t defrag_store(struct kobject *kobj,
355                             struct kobj_attribute *attr,
356                             const char *buf, size_t count)
357 {
358         return double_flag_store(kobj, attr, buf, count,
359                                  TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
360                                  TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
361 }
362 static struct kobj_attribute defrag_attr =
363         __ATTR(defrag, 0644, defrag_show, defrag_store);
364
365 static ssize_t use_zero_page_show(struct kobject *kobj,
366                 struct kobj_attribute *attr, char *buf)
367 {
368         return single_flag_show(kobj, attr, buf,
369                                 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
370 }
371 static ssize_t use_zero_page_store(struct kobject *kobj,
372                 struct kobj_attribute *attr, const char *buf, size_t count)
373 {
374         return single_flag_store(kobj, attr, buf, count,
375                                  TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
376 }
377 static struct kobj_attribute use_zero_page_attr =
378         __ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
379 #ifdef CONFIG_DEBUG_VM
380 static ssize_t debug_cow_show(struct kobject *kobj,
381                                 struct kobj_attribute *attr, char *buf)
382 {
383         return single_flag_show(kobj, attr, buf,
384                                 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
385 }
386 static ssize_t debug_cow_store(struct kobject *kobj,
387                                struct kobj_attribute *attr,
388                                const char *buf, size_t count)
389 {
390         return single_flag_store(kobj, attr, buf, count,
391                                  TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
392 }
393 static struct kobj_attribute debug_cow_attr =
394         __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
395 #endif /* CONFIG_DEBUG_VM */
396
397 static struct attribute *hugepage_attr[] = {
398         &enabled_attr.attr,
399         &defrag_attr.attr,
400         &use_zero_page_attr.attr,
401 #ifdef CONFIG_DEBUG_VM
402         &debug_cow_attr.attr,
403 #endif
404         NULL,
405 };
406
407 static struct attribute_group hugepage_attr_group = {
408         .attrs = hugepage_attr,
409 };
410
411 static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
412                                          struct kobj_attribute *attr,
413                                          char *buf)
414 {
415         return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs);
416 }
417
418 static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
419                                           struct kobj_attribute *attr,
420                                           const char *buf, size_t count)
421 {
422         unsigned long msecs;
423         int err;
424
425         err = kstrtoul(buf, 10, &msecs);
426         if (err || msecs > UINT_MAX)
427                 return -EINVAL;
428
429         khugepaged_scan_sleep_millisecs = msecs;
430         wake_up_interruptible(&khugepaged_wait);
431
432         return count;
433 }
434 static struct kobj_attribute scan_sleep_millisecs_attr =
435         __ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
436                scan_sleep_millisecs_store);
437
438 static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
439                                           struct kobj_attribute *attr,
440                                           char *buf)
441 {
442         return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
443 }
444
445 static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
446                                            struct kobj_attribute *attr,
447                                            const char *buf, size_t count)
448 {
449         unsigned long msecs;
450         int err;
451
452         err = kstrtoul(buf, 10, &msecs);
453         if (err || msecs > UINT_MAX)
454                 return -EINVAL;
455
456         khugepaged_alloc_sleep_millisecs = msecs;
457         wake_up_interruptible(&khugepaged_wait);
458
459         return count;
460 }
461 static struct kobj_attribute alloc_sleep_millisecs_attr =
462         __ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
463                alloc_sleep_millisecs_store);
464
465 static ssize_t pages_to_scan_show(struct kobject *kobj,
466                                   struct kobj_attribute *attr,
467                                   char *buf)
468 {
469         return sprintf(buf, "%u\n", khugepaged_pages_to_scan);
470 }
471 static ssize_t pages_to_scan_store(struct kobject *kobj,
472                                    struct kobj_attribute *attr,
473                                    const char *buf, size_t count)
474 {
475         int err;
476         unsigned long pages;
477
478         err = kstrtoul(buf, 10, &pages);
479         if (err || !pages || pages > UINT_MAX)
480                 return -EINVAL;
481
482         khugepaged_pages_to_scan = pages;
483
484         return count;
485 }
486 static struct kobj_attribute pages_to_scan_attr =
487         __ATTR(pages_to_scan, 0644, pages_to_scan_show,
488                pages_to_scan_store);
489
490 static ssize_t pages_collapsed_show(struct kobject *kobj,
491                                     struct kobj_attribute *attr,
492                                     char *buf)
493 {
494         return sprintf(buf, "%u\n", khugepaged_pages_collapsed);
495 }
496 static struct kobj_attribute pages_collapsed_attr =
497         __ATTR_RO(pages_collapsed);
498
499 static ssize_t full_scans_show(struct kobject *kobj,
500                                struct kobj_attribute *attr,
501                                char *buf)
502 {
503         return sprintf(buf, "%u\n", khugepaged_full_scans);
504 }
505 static struct kobj_attribute full_scans_attr =
506         __ATTR_RO(full_scans);
507
508 static ssize_t khugepaged_defrag_show(struct kobject *kobj,
509                                       struct kobj_attribute *attr, char *buf)
510 {
511         return single_flag_show(kobj, attr, buf,
512                                 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
513 }
514 static ssize_t khugepaged_defrag_store(struct kobject *kobj,
515                                        struct kobj_attribute *attr,
516                                        const char *buf, size_t count)
517 {
518         return single_flag_store(kobj, attr, buf, count,
519                                  TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
520 }
521 static struct kobj_attribute khugepaged_defrag_attr =
522         __ATTR(defrag, 0644, khugepaged_defrag_show,
523                khugepaged_defrag_store);
524
525 /*
526  * max_ptes_none controls if khugepaged should collapse hugepages over
527  * any unmapped ptes in turn potentially increasing the memory
528  * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
529  * reduce the available free memory in the system as it
530  * runs. Increasing max_ptes_none will instead potentially reduce the
531  * free memory in the system during the khugepaged scan.
532  */
533 static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
534                                              struct kobj_attribute *attr,
535                                              char *buf)
536 {
537         return sprintf(buf, "%u\n", khugepaged_max_ptes_none);
538 }
539 static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
540                                               struct kobj_attribute *attr,
541                                               const char *buf, size_t count)
542 {
543         int err;
544         unsigned long max_ptes_none;
545
546         err = kstrtoul(buf, 10, &max_ptes_none);
547         if (err || max_ptes_none > HPAGE_PMD_NR-1)
548                 return -EINVAL;
549
550         khugepaged_max_ptes_none = max_ptes_none;
551
552         return count;
553 }
554 static struct kobj_attribute khugepaged_max_ptes_none_attr =
555         __ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
556                khugepaged_max_ptes_none_store);
557
558 static struct attribute *khugepaged_attr[] = {
559         &khugepaged_defrag_attr.attr,
560         &khugepaged_max_ptes_none_attr.attr,
561         &pages_to_scan_attr.attr,
562         &pages_collapsed_attr.attr,
563         &full_scans_attr.attr,
564         &scan_sleep_millisecs_attr.attr,
565         &alloc_sleep_millisecs_attr.attr,
566         NULL,
567 };
568
569 static struct attribute_group khugepaged_attr_group = {
570         .attrs = khugepaged_attr,
571         .name = "khugepaged",
572 };
573
574 static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
575 {
576         int err;
577
578         *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
579         if (unlikely(!*hugepage_kobj)) {
580                 printk(KERN_ERR "hugepage: failed to create transparent hugepage kobject\n");
581                 return -ENOMEM;
582         }
583
584         err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
585         if (err) {
586                 printk(KERN_ERR "hugepage: failed to register transparent hugepage group\n");
587                 goto delete_obj;
588         }
589
590         err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
591         if (err) {
592                 printk(KERN_ERR "hugepage: failed to register transparent hugepage group\n");
593                 goto remove_hp_group;
594         }
595
596         return 0;
597
598 remove_hp_group:
599         sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
600 delete_obj:
601         kobject_put(*hugepage_kobj);
602         return err;
603 }
604
605 static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
606 {
607         sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
608         sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
609         kobject_put(hugepage_kobj);
610 }
611 #else
612 static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
613 {
614         return 0;
615 }
616
617 static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
618 {
619 }
620 #endif /* CONFIG_SYSFS */
621
622 static int __init hugepage_init(void)
623 {
624         int err;
625         struct kobject *hugepage_kobj;
626
627         if (!has_transparent_hugepage()) {
628                 transparent_hugepage_flags = 0;
629                 return -EINVAL;
630         }
631
632         err = hugepage_init_sysfs(&hugepage_kobj);
633         if (err)
634                 return err;
635
636         err = khugepaged_slab_init();
637         if (err)
638                 goto out;
639
640         register_shrinker(&huge_zero_page_shrinker);
641
642         /*
643          * By default disable transparent hugepages on smaller systems,
644          * where the extra memory used could hurt more than TLB overhead
645          * is likely to save.  The admin can still enable it through /sys.
646          */
647         if (totalram_pages < (512 << (20 - PAGE_SHIFT)))
648                 transparent_hugepage_flags = 0;
649
650         start_khugepaged();
651
652         return 0;
653 out:
654         hugepage_exit_sysfs(hugepage_kobj);
655         return err;
656 }
657 module_init(hugepage_init)
658
659 static int __init setup_transparent_hugepage(char *str)
660 {
661         int ret = 0;
662         if (!str)
663                 goto out;
664         if (!strcmp(str, "always")) {
665                 set_bit(TRANSPARENT_HUGEPAGE_FLAG,
666                         &transparent_hugepage_flags);
667                 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
668                           &transparent_hugepage_flags);
669                 ret = 1;
670         } else if (!strcmp(str, "madvise")) {
671                 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
672                           &transparent_hugepage_flags);
673                 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
674                         &transparent_hugepage_flags);
675                 ret = 1;
676         } else if (!strcmp(str, "never")) {
677                 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
678                           &transparent_hugepage_flags);
679                 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
680                           &transparent_hugepage_flags);
681                 ret = 1;
682         }
683 out:
684         if (!ret)
685                 printk(KERN_WARNING
686                        "transparent_hugepage= cannot parse, ignored\n");
687         return ret;
688 }
689 __setup("transparent_hugepage=", setup_transparent_hugepage);
690
691 pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
692 {
693         if (likely(vma->vm_flags & VM_WRITE))
694                 pmd = pmd_mkwrite(pmd);
695         return pmd;
696 }
697
698 static inline pmd_t mk_huge_pmd(struct page *page, pgprot_t prot)
699 {
700         pmd_t entry;
701         entry = mk_pmd(page, prot);
702         entry = pmd_mkhuge(entry);
703         return entry;
704 }
705
706 static int __do_huge_pmd_anonymous_page(struct mm_struct *mm,
707                                         struct vm_area_struct *vma,
708                                         unsigned long haddr, pmd_t *pmd,
709                                         struct page *page)
710 {
711         pgtable_t pgtable;
712
713         VM_BUG_ON(!PageCompound(page));
714         pgtable = pte_alloc_one(mm, haddr);
715         if (unlikely(!pgtable))
716                 return VM_FAULT_OOM;
717
718         clear_huge_page(page, haddr, HPAGE_PMD_NR);
719         /*
720          * The memory barrier inside __SetPageUptodate makes sure that
721          * clear_huge_page writes become visible before the set_pmd_at()
722          * write.
723          */
724         __SetPageUptodate(page);
725
726         spin_lock(&mm->page_table_lock);
727         if (unlikely(!pmd_none(*pmd))) {
728                 spin_unlock(&mm->page_table_lock);
729                 mem_cgroup_uncharge_page(page);
730                 put_page(page);
731                 pte_free(mm, pgtable);
732         } else {
733                 pmd_t entry;
734                 entry = mk_huge_pmd(page, vma->vm_page_prot);
735                 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
736                 page_add_new_anon_rmap(page, vma, haddr);
737                 pgtable_trans_huge_deposit(mm, pmd, pgtable);
738                 set_pmd_at(mm, haddr, pmd, entry);
739                 add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
740                 mm->nr_ptes++;
741                 spin_unlock(&mm->page_table_lock);
742         }
743
744         return 0;
745 }
746
747 static inline gfp_t alloc_hugepage_gfpmask(int defrag, gfp_t extra_gfp)
748 {
749         return (GFP_TRANSHUGE & ~(defrag ? 0 : __GFP_WAIT)) | extra_gfp;
750 }
751
752 static inline struct page *alloc_hugepage_vma(int defrag,
753                                               struct vm_area_struct *vma,
754                                               unsigned long haddr, int nd,
755                                               gfp_t extra_gfp)
756 {
757         return alloc_pages_vma(alloc_hugepage_gfpmask(defrag, extra_gfp),
758                                HPAGE_PMD_ORDER, vma, haddr, nd);
759 }
760
761 #ifndef CONFIG_NUMA
762 static inline struct page *alloc_hugepage(int defrag)
763 {
764         return alloc_pages(alloc_hugepage_gfpmask(defrag, 0),
765                            HPAGE_PMD_ORDER);
766 }
767 #endif
768
769 static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
770                 struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
771                 struct page *zero_page)
772 {
773         pmd_t entry;
774         if (!pmd_none(*pmd))
775                 return false;
776         entry = mk_pmd(zero_page, vma->vm_page_prot);
777         entry = pmd_wrprotect(entry);
778         entry = pmd_mkhuge(entry);
779         pgtable_trans_huge_deposit(mm, pmd, pgtable);
780         set_pmd_at(mm, haddr, pmd, entry);
781         mm->nr_ptes++;
782         return true;
783 }
784
785 int do_huge_pmd_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
786                                unsigned long address, pmd_t *pmd,
787                                unsigned int flags)
788 {
789         struct page *page;
790         unsigned long haddr = address & HPAGE_PMD_MASK;
791
792         if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
793                 return VM_FAULT_FALLBACK;
794         if (unlikely(anon_vma_prepare(vma)))
795                 return VM_FAULT_OOM;
796         if (unlikely(khugepaged_enter(vma)))
797                 return VM_FAULT_OOM;
798         if (!(flags & FAULT_FLAG_WRITE) &&
799                         transparent_hugepage_use_zero_page()) {
800                 pgtable_t pgtable;
801                 struct page *zero_page;
802                 bool set;
803                 pgtable = pte_alloc_one(mm, haddr);
804                 if (unlikely(!pgtable))
805                         return VM_FAULT_OOM;
806                 zero_page = get_huge_zero_page();
807                 if (unlikely(!zero_page)) {
808                         pte_free(mm, pgtable);
809                         count_vm_event(THP_FAULT_FALLBACK);
810                         return VM_FAULT_FALLBACK;
811                 }
812                 spin_lock(&mm->page_table_lock);
813                 set = set_huge_zero_page(pgtable, mm, vma, haddr, pmd,
814                                 zero_page);
815                 spin_unlock(&mm->page_table_lock);
816                 if (!set) {
817                         pte_free(mm, pgtable);
818                         put_huge_zero_page();
819                 }
820                 return 0;
821         }
822         page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
823                         vma, haddr, numa_node_id(), 0);
824         if (unlikely(!page)) {
825                 count_vm_event(THP_FAULT_FALLBACK);
826                 return VM_FAULT_FALLBACK;
827         }
828         if (unlikely(mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))) {
829                 put_page(page);
830                 count_vm_event(THP_FAULT_FALLBACK);
831                 return VM_FAULT_FALLBACK;
832         }
833         if (unlikely(__do_huge_pmd_anonymous_page(mm, vma, haddr, pmd, page))) {
834                 mem_cgroup_uncharge_page(page);
835                 put_page(page);
836                 count_vm_event(THP_FAULT_FALLBACK);
837                 return VM_FAULT_FALLBACK;
838         }
839
840         count_vm_event(THP_FAULT_ALLOC);
841         return 0;
842 }
843
844 int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
845                   pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
846                   struct vm_area_struct *vma)
847 {
848         struct page *src_page;
849         pmd_t pmd;
850         pgtable_t pgtable;
851         int ret;
852
853         ret = -ENOMEM;
854         pgtable = pte_alloc_one(dst_mm, addr);
855         if (unlikely(!pgtable))
856                 goto out;
857
858         spin_lock(&dst_mm->page_table_lock);
859         spin_lock_nested(&src_mm->page_table_lock, SINGLE_DEPTH_NESTING);
860
861         ret = -EAGAIN;
862         pmd = *src_pmd;
863         if (unlikely(!pmd_trans_huge(pmd))) {
864                 pte_free(dst_mm, pgtable);
865                 goto out_unlock;
866         }
867         /*
868          * mm->page_table_lock is enough to be sure that huge zero pmd is not
869          * under splitting since we don't split the page itself, only pmd to
870          * a page table.
871          */
872         if (is_huge_zero_pmd(pmd)) {
873                 struct page *zero_page;
874                 bool set;
875                 /*
876                  * get_huge_zero_page() will never allocate a new page here,
877                  * since we already have a zero page to copy. It just takes a
878                  * reference.
879                  */
880                 zero_page = get_huge_zero_page();
881                 set = set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
882                                 zero_page);
883                 BUG_ON(!set); /* unexpected !pmd_none(dst_pmd) */
884                 ret = 0;
885                 goto out_unlock;
886         }
887         if (unlikely(pmd_trans_splitting(pmd))) {
888                 /* split huge page running from under us */
889                 spin_unlock(&src_mm->page_table_lock);
890                 spin_unlock(&dst_mm->page_table_lock);
891                 pte_free(dst_mm, pgtable);
892
893                 wait_split_huge_page(vma->anon_vma, src_pmd); /* src_vma */
894                 goto out;
895         }
896         src_page = pmd_page(pmd);
897         VM_BUG_ON(!PageHead(src_page));
898         get_page(src_page);
899         page_dup_rmap(src_page);
900         add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
901
902         pmdp_set_wrprotect(src_mm, addr, src_pmd);
903         pmd = pmd_mkold(pmd_wrprotect(pmd));
904         pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
905         set_pmd_at(dst_mm, addr, dst_pmd, pmd);
906         dst_mm->nr_ptes++;
907
908         ret = 0;
909 out_unlock:
910         spin_unlock(&src_mm->page_table_lock);
911         spin_unlock(&dst_mm->page_table_lock);
912 out:
913         return ret;
914 }
915
916 void huge_pmd_set_accessed(struct mm_struct *mm,
917                            struct vm_area_struct *vma,
918                            unsigned long address,
919                            pmd_t *pmd, pmd_t orig_pmd,
920                            int dirty)
921 {
922         pmd_t entry;
923         unsigned long haddr;
924
925         spin_lock(&mm->page_table_lock);
926         if (unlikely(!pmd_same(*pmd, orig_pmd)))
927                 goto unlock;
928
929         entry = pmd_mkyoung(orig_pmd);
930         haddr = address & HPAGE_PMD_MASK;
931         if (pmdp_set_access_flags(vma, haddr, pmd, entry, dirty))
932                 update_mmu_cache_pmd(vma, address, pmd);
933
934 unlock:
935         spin_unlock(&mm->page_table_lock);
936 }
937
938 static int do_huge_pmd_wp_zero_page_fallback(struct mm_struct *mm,
939                 struct vm_area_struct *vma, unsigned long address,
940                 pmd_t *pmd, pmd_t orig_pmd, unsigned long haddr)
941 {
942         pgtable_t pgtable;
943         pmd_t _pmd;
944         struct page *page;
945         int i, ret = 0;
946         unsigned long mmun_start;       /* For mmu_notifiers */
947         unsigned long mmun_end;         /* For mmu_notifiers */
948
949         page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
950         if (!page) {
951                 ret |= VM_FAULT_OOM;
952                 goto out;
953         }
954
955         if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL)) {
956                 put_page(page);
957                 ret |= VM_FAULT_OOM;
958                 goto out;
959         }
960
961         clear_user_highpage(page, address);
962         __SetPageUptodate(page);
963
964         mmun_start = haddr;
965         mmun_end   = haddr + HPAGE_PMD_SIZE;
966         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
967
968         spin_lock(&mm->page_table_lock);
969         if (unlikely(!pmd_same(*pmd, orig_pmd)))
970                 goto out_free_page;
971
972         pmdp_clear_flush(vma, haddr, pmd);
973         /* leave pmd empty until pte is filled */
974
975         pgtable = pgtable_trans_huge_withdraw(mm, pmd);
976         pmd_populate(mm, &_pmd, pgtable);
977
978         for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
979                 pte_t *pte, entry;
980                 if (haddr == (address & PAGE_MASK)) {
981                         entry = mk_pte(page, vma->vm_page_prot);
982                         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
983                         page_add_new_anon_rmap(page, vma, haddr);
984                 } else {
985                         entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
986                         entry = pte_mkspecial(entry);
987                 }
988                 pte = pte_offset_map(&_pmd, haddr);
989                 VM_BUG_ON(!pte_none(*pte));
990                 set_pte_at(mm, haddr, pte, entry);
991                 pte_unmap(pte);
992         }
993         smp_wmb(); /* make pte visible before pmd */
994         pmd_populate(mm, pmd, pgtable);
995         spin_unlock(&mm->page_table_lock);
996         put_huge_zero_page();
997         inc_mm_counter(mm, MM_ANONPAGES);
998
999         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1000
1001         ret |= VM_FAULT_WRITE;
1002 out:
1003         return ret;
1004 out_free_page:
1005         spin_unlock(&mm->page_table_lock);
1006         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1007         mem_cgroup_uncharge_page(page);
1008         put_page(page);
1009         goto out;
1010 }
1011
1012 static int do_huge_pmd_wp_page_fallback(struct mm_struct *mm,
1013                                         struct vm_area_struct *vma,
1014                                         unsigned long address,
1015                                         pmd_t *pmd, pmd_t orig_pmd,
1016                                         struct page *page,
1017                                         unsigned long haddr)
1018 {
1019         pgtable_t pgtable;
1020         pmd_t _pmd;
1021         int ret = 0, i;
1022         struct page **pages;
1023         unsigned long mmun_start;       /* For mmu_notifiers */
1024         unsigned long mmun_end;         /* For mmu_notifiers */
1025
1026         pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
1027                         GFP_KERNEL);
1028         if (unlikely(!pages)) {
1029                 ret |= VM_FAULT_OOM;
1030                 goto out;
1031         }
1032
1033         for (i = 0; i < HPAGE_PMD_NR; i++) {
1034                 pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE |
1035                                                __GFP_OTHER_NODE,
1036                                                vma, address, page_to_nid(page));
1037                 if (unlikely(!pages[i] ||
1038                              mem_cgroup_newpage_charge(pages[i], mm,
1039                                                        GFP_KERNEL))) {
1040                         if (pages[i])
1041                                 put_page(pages[i]);
1042                         mem_cgroup_uncharge_start();
1043                         while (--i >= 0) {
1044                                 mem_cgroup_uncharge_page(pages[i]);
1045                                 put_page(pages[i]);
1046                         }
1047                         mem_cgroup_uncharge_end();
1048                         kfree(pages);
1049                         ret |= VM_FAULT_OOM;
1050                         goto out;
1051                 }
1052         }
1053
1054         for (i = 0; i < HPAGE_PMD_NR; i++) {
1055                 copy_user_highpage(pages[i], page + i,
1056                                    haddr + PAGE_SIZE * i, vma);
1057                 __SetPageUptodate(pages[i]);
1058                 cond_resched();
1059         }
1060
1061         mmun_start = haddr;
1062         mmun_end   = haddr + HPAGE_PMD_SIZE;
1063         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1064
1065         spin_lock(&mm->page_table_lock);
1066         if (unlikely(!pmd_same(*pmd, orig_pmd)))
1067                 goto out_free_pages;
1068         VM_BUG_ON(!PageHead(page));
1069
1070         pmdp_clear_flush(vma, haddr, pmd);
1071         /* leave pmd empty until pte is filled */
1072
1073         pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1074         pmd_populate(mm, &_pmd, pgtable);
1075
1076         for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1077                 pte_t *pte, entry;
1078                 entry = mk_pte(pages[i], vma->vm_page_prot);
1079                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1080                 page_add_new_anon_rmap(pages[i], vma, haddr);
1081                 pte = pte_offset_map(&_pmd, haddr);
1082                 VM_BUG_ON(!pte_none(*pte));
1083                 set_pte_at(mm, haddr, pte, entry);
1084                 pte_unmap(pte);
1085         }
1086         kfree(pages);
1087
1088         smp_wmb(); /* make pte visible before pmd */
1089         pmd_populate(mm, pmd, pgtable);
1090         page_remove_rmap(page);
1091         spin_unlock(&mm->page_table_lock);
1092
1093         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1094
1095         ret |= VM_FAULT_WRITE;
1096         put_page(page);
1097
1098 out:
1099         return ret;
1100
1101 out_free_pages:
1102         spin_unlock(&mm->page_table_lock);
1103         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1104         mem_cgroup_uncharge_start();
1105         for (i = 0; i < HPAGE_PMD_NR; i++) {
1106                 mem_cgroup_uncharge_page(pages[i]);
1107                 put_page(pages[i]);
1108         }
1109         mem_cgroup_uncharge_end();
1110         kfree(pages);
1111         goto out;
1112 }
1113
1114 int do_huge_pmd_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
1115                         unsigned long address, pmd_t *pmd, pmd_t orig_pmd)
1116 {
1117         int ret = 0;
1118         struct page *page = NULL, *new_page;
1119         unsigned long haddr;
1120         unsigned long mmun_start;       /* For mmu_notifiers */
1121         unsigned long mmun_end;         /* For mmu_notifiers */
1122
1123         VM_BUG_ON(!vma->anon_vma);
1124         haddr = address & HPAGE_PMD_MASK;
1125         if (is_huge_zero_pmd(orig_pmd))
1126                 goto alloc;
1127         spin_lock(&mm->page_table_lock);
1128         if (unlikely(!pmd_same(*pmd, orig_pmd)))
1129                 goto out_unlock;
1130
1131         page = pmd_page(orig_pmd);
1132         VM_BUG_ON(!PageCompound(page) || !PageHead(page));
1133         if (page_mapcount(page) == 1) {
1134                 pmd_t entry;
1135                 entry = pmd_mkyoung(orig_pmd);
1136                 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1137                 if (pmdp_set_access_flags(vma, haddr, pmd, entry,  1))
1138                         update_mmu_cache_pmd(vma, address, pmd);
1139                 ret |= VM_FAULT_WRITE;
1140                 goto out_unlock;
1141         }
1142         get_page(page);
1143         spin_unlock(&mm->page_table_lock);
1144 alloc:
1145         if (transparent_hugepage_enabled(vma) &&
1146             !transparent_hugepage_debug_cow())
1147                 new_page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
1148                                               vma, haddr, numa_node_id(), 0);
1149         else
1150                 new_page = NULL;
1151
1152         if (unlikely(!new_page)) {
1153                 if (is_huge_zero_pmd(orig_pmd)) {
1154                         ret = do_huge_pmd_wp_zero_page_fallback(mm, vma,
1155                                         address, pmd, orig_pmd, haddr);
1156                 } else {
1157                         ret = do_huge_pmd_wp_page_fallback(mm, vma, address,
1158                                         pmd, orig_pmd, page, haddr);
1159                         if (ret & VM_FAULT_OOM)
1160                                 split_huge_page(page);
1161                         put_page(page);
1162                 }
1163                 count_vm_event(THP_FAULT_FALLBACK);
1164                 goto out;
1165         }
1166
1167         if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))) {
1168                 put_page(new_page);
1169                 if (page) {
1170                         split_huge_page(page);
1171                         put_page(page);
1172                 }
1173                 count_vm_event(THP_FAULT_FALLBACK);
1174                 ret |= VM_FAULT_OOM;
1175                 goto out;
1176         }
1177
1178         count_vm_event(THP_FAULT_ALLOC);
1179
1180         if (is_huge_zero_pmd(orig_pmd))
1181                 clear_huge_page(new_page, haddr, HPAGE_PMD_NR);
1182         else
1183                 copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
1184         __SetPageUptodate(new_page);
1185
1186         mmun_start = haddr;
1187         mmun_end   = haddr + HPAGE_PMD_SIZE;
1188         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1189
1190         spin_lock(&mm->page_table_lock);
1191         if (page)
1192                 put_page(page);
1193         if (unlikely(!pmd_same(*pmd, orig_pmd))) {
1194                 spin_unlock(&mm->page_table_lock);
1195                 mem_cgroup_uncharge_page(new_page);
1196                 put_page(new_page);
1197                 goto out_mn;
1198         } else {
1199                 pmd_t entry;
1200                 entry = mk_huge_pmd(new_page, vma->vm_page_prot);
1201                 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1202                 pmdp_clear_flush(vma, haddr, pmd);
1203                 page_add_new_anon_rmap(new_page, vma, haddr);
1204                 set_pmd_at(mm, haddr, pmd, entry);
1205                 update_mmu_cache_pmd(vma, address, pmd);
1206                 if (is_huge_zero_pmd(orig_pmd)) {
1207                         add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
1208                         put_huge_zero_page();
1209                 } else {
1210                         VM_BUG_ON(!PageHead(page));
1211                         page_remove_rmap(page);
1212                         put_page(page);
1213                 }
1214                 ret |= VM_FAULT_WRITE;
1215         }
1216         spin_unlock(&mm->page_table_lock);
1217 out_mn:
1218         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1219 out:
1220         return ret;
1221 out_unlock:
1222         spin_unlock(&mm->page_table_lock);
1223         return ret;
1224 }
1225
1226 struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1227                                    unsigned long addr,
1228                                    pmd_t *pmd,
1229                                    unsigned int flags)
1230 {
1231         struct mm_struct *mm = vma->vm_mm;
1232         struct page *page = NULL;
1233
1234         assert_spin_locked(&mm->page_table_lock);
1235
1236         if (flags & FOLL_WRITE && !pmd_write(*pmd))
1237                 goto out;
1238
1239         /* Avoid dumping huge zero page */
1240         if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1241                 return ERR_PTR(-EFAULT);
1242
1243         page = pmd_page(*pmd);
1244         VM_BUG_ON(!PageHead(page));
1245         if (flags & FOLL_TOUCH) {
1246                 pmd_t _pmd;
1247                 /*
1248                  * We should set the dirty bit only for FOLL_WRITE but
1249                  * for now the dirty bit in the pmd is meaningless.
1250                  * And if the dirty bit will become meaningful and
1251                  * we'll only set it with FOLL_WRITE, an atomic
1252                  * set_bit will be required on the pmd to set the
1253                  * young bit, instead of the current set_pmd_at.
1254                  */
1255                 _pmd = pmd_mkyoung(pmd_mkdirty(*pmd));
1256                 if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
1257                                           pmd, _pmd,  1))
1258                         update_mmu_cache_pmd(vma, addr, pmd);
1259         }
1260         if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1261                 if (page->mapping && trylock_page(page)) {
1262                         lru_add_drain();
1263                         if (page->mapping)
1264                                 mlock_vma_page(page);
1265                         unlock_page(page);
1266                 }
1267         }
1268         page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1269         VM_BUG_ON(!PageCompound(page));
1270         if (flags & FOLL_GET)
1271                 get_page_foll(page);
1272
1273 out:
1274         return page;
1275 }
1276
1277 /* NUMA hinting page fault entry point for trans huge pmds */
1278 int do_huge_pmd_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
1279                                 unsigned long addr, pmd_t pmd, pmd_t *pmdp)
1280 {
1281         struct page *page;
1282         unsigned long haddr = addr & HPAGE_PMD_MASK;
1283         int target_nid;
1284         int current_nid = -1;
1285         bool migrated;
1286
1287         spin_lock(&mm->page_table_lock);
1288         if (unlikely(!pmd_same(pmd, *pmdp)))
1289                 goto out_unlock;
1290
1291         page = pmd_page(pmd);
1292         get_page(page);
1293         current_nid = page_to_nid(page);
1294         count_vm_numa_event(NUMA_HINT_FAULTS);
1295         if (current_nid == numa_node_id())
1296                 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
1297
1298         target_nid = mpol_misplaced(page, vma, haddr);
1299         if (target_nid == -1) {
1300                 put_page(page);
1301                 goto clear_pmdnuma;
1302         }
1303
1304         /* Acquire the page lock to serialise THP migrations */
1305         spin_unlock(&mm->page_table_lock);
1306         lock_page(page);
1307
1308         /* Confirm the PTE did not while locked */
1309         spin_lock(&mm->page_table_lock);
1310         if (unlikely(!pmd_same(pmd, *pmdp))) {
1311                 unlock_page(page);
1312                 put_page(page);
1313                 goto out_unlock;
1314         }
1315         spin_unlock(&mm->page_table_lock);
1316
1317         /* Migrate the THP to the requested node */
1318         migrated = migrate_misplaced_transhuge_page(mm, vma,
1319                                 pmdp, pmd, addr, page, target_nid);
1320         if (!migrated)
1321                 goto check_same;
1322
1323         task_numa_fault(target_nid, HPAGE_PMD_NR, true);
1324         return 0;
1325
1326 check_same:
1327         spin_lock(&mm->page_table_lock);
1328         if (unlikely(!pmd_same(pmd, *pmdp)))
1329                 goto out_unlock;
1330 clear_pmdnuma:
1331         pmd = pmd_mknonnuma(pmd);
1332         set_pmd_at(mm, haddr, pmdp, pmd);
1333         VM_BUG_ON(pmd_numa(*pmdp));
1334         update_mmu_cache_pmd(vma, addr, pmdp);
1335 out_unlock:
1336         spin_unlock(&mm->page_table_lock);
1337         if (current_nid != -1)
1338                 task_numa_fault(current_nid, HPAGE_PMD_NR, false);
1339         return 0;
1340 }
1341
1342 int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1343                  pmd_t *pmd, unsigned long addr)
1344 {
1345         int ret = 0;
1346
1347         if (__pmd_trans_huge_lock(pmd, vma) == 1) {
1348                 struct page *page;
1349                 pgtable_t pgtable;
1350                 pmd_t orig_pmd;
1351                 /*
1352                  * For architectures like ppc64 we look at deposited pgtable
1353                  * when calling pmdp_get_and_clear. So do the
1354                  * pgtable_trans_huge_withdraw after finishing pmdp related
1355                  * operations.
1356                  */
1357                 orig_pmd = pmdp_get_and_clear(tlb->mm, addr, pmd);
1358                 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1359                 pgtable = pgtable_trans_huge_withdraw(tlb->mm, pmd);
1360                 if (is_huge_zero_pmd(orig_pmd)) {
1361                         tlb->mm->nr_ptes--;
1362                         spin_unlock(&tlb->mm->page_table_lock);
1363                         put_huge_zero_page();
1364                 } else {
1365                         page = pmd_page(orig_pmd);
1366                         page_remove_rmap(page);
1367                         VM_BUG_ON(page_mapcount(page) < 0);
1368                         add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1369                         VM_BUG_ON(!PageHead(page));
1370                         tlb->mm->nr_ptes--;
1371                         spin_unlock(&tlb->mm->page_table_lock);
1372                         tlb_remove_page(tlb, page);
1373                 }
1374                 pte_free(tlb->mm, pgtable);
1375                 ret = 1;
1376         }
1377         return ret;
1378 }
1379
1380 int mincore_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1381                 unsigned long addr, unsigned long end,
1382                 unsigned char *vec)
1383 {
1384         int ret = 0;
1385
1386         if (__pmd_trans_huge_lock(pmd, vma) == 1) {
1387                 /*
1388                  * All logical pages in the range are present
1389                  * if backed by a huge page.
1390                  */
1391                 spin_unlock(&vma->vm_mm->page_table_lock);
1392                 memset(vec, 1, (end - addr) >> PAGE_SHIFT);
1393                 ret = 1;
1394         }
1395
1396         return ret;
1397 }
1398
1399 int move_huge_pmd(struct vm_area_struct *vma, struct vm_area_struct *new_vma,
1400                   unsigned long old_addr,
1401                   unsigned long new_addr, unsigned long old_end,
1402                   pmd_t *old_pmd, pmd_t *new_pmd)
1403 {
1404         int ret = 0;
1405         pmd_t pmd;
1406
1407         struct mm_struct *mm = vma->vm_mm;
1408
1409         if ((old_addr & ~HPAGE_PMD_MASK) ||
1410             (new_addr & ~HPAGE_PMD_MASK) ||
1411             old_end - old_addr < HPAGE_PMD_SIZE ||
1412             (new_vma->vm_flags & VM_NOHUGEPAGE))
1413                 goto out;
1414
1415         /*
1416          * The destination pmd shouldn't be established, free_pgtables()
1417          * should have release it.
1418          */
1419         if (WARN_ON(!pmd_none(*new_pmd))) {
1420                 VM_BUG_ON(pmd_trans_huge(*new_pmd));
1421                 goto out;
1422         }
1423
1424         ret = __pmd_trans_huge_lock(old_pmd, vma);
1425         if (ret == 1) {
1426                 pmd = pmdp_get_and_clear(mm, old_addr, old_pmd);
1427                 VM_BUG_ON(!pmd_none(*new_pmd));
1428                 set_pmd_at(mm, new_addr, new_pmd, pmd_mksoft_dirty(pmd));
1429                 spin_unlock(&mm->page_table_lock);
1430         }
1431 out:
1432         return ret;
1433 }
1434
1435 int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1436                 unsigned long addr, pgprot_t newprot, int prot_numa)
1437 {
1438         struct mm_struct *mm = vma->vm_mm;
1439         int ret = 0;
1440
1441         if (__pmd_trans_huge_lock(pmd, vma) == 1) {
1442                 pmd_t entry;
1443                 entry = pmdp_get_and_clear(mm, addr, pmd);
1444                 if (!prot_numa) {
1445                         entry = pmd_modify(entry, newprot);
1446                         BUG_ON(pmd_write(entry));
1447                 } else {
1448                         struct page *page = pmd_page(*pmd);
1449
1450                         /* only check non-shared pages */
1451                         if (page_mapcount(page) == 1 &&
1452                             !pmd_numa(*pmd)) {
1453                                 entry = pmd_mknuma(entry);
1454                         }
1455                 }
1456                 set_pmd_at(mm, addr, pmd, entry);
1457                 spin_unlock(&vma->vm_mm->page_table_lock);
1458                 ret = 1;
1459         }
1460
1461         return ret;
1462 }
1463
1464 /*
1465  * Returns 1 if a given pmd maps a stable (not under splitting) thp.
1466  * Returns -1 if it maps a thp under splitting. Returns 0 otherwise.
1467  *
1468  * Note that if it returns 1, this routine returns without unlocking page
1469  * table locks. So callers must unlock them.
1470  */
1471 int __pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
1472 {
1473         spin_lock(&vma->vm_mm->page_table_lock);
1474         if (likely(pmd_trans_huge(*pmd))) {
1475                 if (unlikely(pmd_trans_splitting(*pmd))) {
1476                         spin_unlock(&vma->vm_mm->page_table_lock);
1477                         wait_split_huge_page(vma->anon_vma, pmd);
1478                         return -1;
1479                 } else {
1480                         /* Thp mapped by 'pmd' is stable, so we can
1481                          * handle it as it is. */
1482                         return 1;
1483                 }
1484         }
1485         spin_unlock(&vma->vm_mm->page_table_lock);
1486         return 0;
1487 }
1488
1489 pmd_t *page_check_address_pmd(struct page *page,
1490                               struct mm_struct *mm,
1491                               unsigned long address,
1492                               enum page_check_address_pmd_flag flag)
1493 {
1494         pmd_t *pmd, *ret = NULL;
1495
1496         if (address & ~HPAGE_PMD_MASK)
1497                 goto out;
1498
1499         pmd = mm_find_pmd(mm, address);
1500         if (!pmd)
1501                 goto out;
1502         if (pmd_none(*pmd))
1503                 goto out;
1504         if (pmd_page(*pmd) != page)
1505                 goto out;
1506         /*
1507          * split_vma() may create temporary aliased mappings. There is
1508          * no risk as long as all huge pmd are found and have their
1509          * splitting bit set before __split_huge_page_refcount
1510          * runs. Finding the same huge pmd more than once during the
1511          * same rmap walk is not a problem.
1512          */
1513         if (flag == PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG &&
1514             pmd_trans_splitting(*pmd))
1515                 goto out;
1516         if (pmd_trans_huge(*pmd)) {
1517                 VM_BUG_ON(flag == PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG &&
1518                           !pmd_trans_splitting(*pmd));
1519                 ret = pmd;
1520         }
1521 out:
1522         return ret;
1523 }
1524
1525 static int __split_huge_page_splitting(struct page *page,
1526                                        struct vm_area_struct *vma,
1527                                        unsigned long address)
1528 {
1529         struct mm_struct *mm = vma->vm_mm;
1530         pmd_t *pmd;
1531         int ret = 0;
1532         /* For mmu_notifiers */
1533         const unsigned long mmun_start = address;
1534         const unsigned long mmun_end   = address + HPAGE_PMD_SIZE;
1535
1536         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1537         spin_lock(&mm->page_table_lock);
1538         pmd = page_check_address_pmd(page, mm, address,
1539                                      PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG);
1540         if (pmd) {
1541                 /*
1542                  * We can't temporarily set the pmd to null in order
1543                  * to split it, the pmd must remain marked huge at all
1544                  * times or the VM won't take the pmd_trans_huge paths
1545                  * and it won't wait on the anon_vma->root->rwsem to
1546                  * serialize against split_huge_page*.
1547                  */
1548                 pmdp_splitting_flush(vma, address, pmd);
1549                 ret = 1;
1550         }
1551         spin_unlock(&mm->page_table_lock);
1552         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1553
1554         return ret;
1555 }
1556
1557 static void __split_huge_page_refcount(struct page *page,
1558                                        struct list_head *list)
1559 {
1560         int i;
1561         struct zone *zone = page_zone(page);
1562         struct lruvec *lruvec;
1563         int tail_count = 0;
1564
1565         /* prevent PageLRU to go away from under us, and freeze lru stats */
1566         spin_lock_irq(&zone->lru_lock);
1567         lruvec = mem_cgroup_page_lruvec(page, zone);
1568
1569         compound_lock(page);
1570         /* complete memcg works before add pages to LRU */
1571         mem_cgroup_split_huge_fixup(page);
1572
1573         for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
1574                 struct page *page_tail = page + i;
1575
1576                 /* tail_page->_mapcount cannot change */
1577                 BUG_ON(page_mapcount(page_tail) < 0);
1578                 tail_count += page_mapcount(page_tail);
1579                 /* check for overflow */
1580                 BUG_ON(tail_count < 0);
1581                 BUG_ON(atomic_read(&page_tail->_count) != 0);
1582                 /*
1583                  * tail_page->_count is zero and not changing from
1584                  * under us. But get_page_unless_zero() may be running
1585                  * from under us on the tail_page. If we used
1586                  * atomic_set() below instead of atomic_add(), we
1587                  * would then run atomic_set() concurrently with
1588                  * get_page_unless_zero(), and atomic_set() is
1589                  * implemented in C not using locked ops. spin_unlock
1590                  * on x86 sometime uses locked ops because of PPro
1591                  * errata 66, 92, so unless somebody can guarantee
1592                  * atomic_set() here would be safe on all archs (and
1593                  * not only on x86), it's safer to use atomic_add().
1594                  */
1595                 atomic_add(page_mapcount(page) + page_mapcount(page_tail) + 1,
1596                            &page_tail->_count);
1597
1598                 /* after clearing PageTail the gup refcount can be released */
1599                 smp_mb();
1600
1601                 /*
1602                  * retain hwpoison flag of the poisoned tail page:
1603                  *   fix for the unsuitable process killed on Guest Machine(KVM)
1604                  *   by the memory-failure.
1605                  */
1606                 page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP | __PG_HWPOISON;
1607                 page_tail->flags |= (page->flags &
1608                                      ((1L << PG_referenced) |
1609                                       (1L << PG_swapbacked) |
1610                                       (1L << PG_mlocked) |
1611                                       (1L << PG_uptodate) |
1612                                       (1L << PG_active) |
1613                                       (1L << PG_unevictable)));
1614                 page_tail->flags |= (1L << PG_dirty);
1615
1616                 /* clear PageTail before overwriting first_page */
1617                 smp_wmb();
1618
1619                 /*
1620                  * __split_huge_page_splitting() already set the
1621                  * splitting bit in all pmd that could map this
1622                  * hugepage, that will ensure no CPU can alter the
1623                  * mapcount on the head page. The mapcount is only
1624                  * accounted in the head page and it has to be
1625                  * transferred to all tail pages in the below code. So
1626                  * for this code to be safe, the split the mapcount
1627                  * can't change. But that doesn't mean userland can't
1628                  * keep changing and reading the page contents while
1629                  * we transfer the mapcount, so the pmd splitting
1630                  * status is achieved setting a reserved bit in the
1631                  * pmd, not by clearing the present bit.
1632                 */
1633                 page_tail->_mapcount = page->_mapcount;
1634
1635                 BUG_ON(page_tail->mapping);
1636                 page_tail->mapping = page->mapping;
1637
1638                 page_tail->index = page->index + i;
1639                 page_nid_xchg_last(page_tail, page_nid_last(page));
1640
1641                 BUG_ON(!PageAnon(page_tail));
1642                 BUG_ON(!PageUptodate(page_tail));
1643                 BUG_ON(!PageDirty(page_tail));
1644                 BUG_ON(!PageSwapBacked(page_tail));
1645
1646                 lru_add_page_tail(page, page_tail, lruvec, list);
1647         }
1648         atomic_sub(tail_count, &page->_count);
1649         BUG_ON(atomic_read(&page->_count) <= 0);
1650
1651         __mod_zone_page_state(zone, NR_ANON_TRANSPARENT_HUGEPAGES, -1);
1652
1653         ClearPageCompound(page);
1654         compound_unlock(page);
1655         spin_unlock_irq(&zone->lru_lock);
1656
1657         for (i = 1; i < HPAGE_PMD_NR; i++) {
1658                 struct page *page_tail = page + i;
1659                 BUG_ON(page_count(page_tail) <= 0);
1660                 /*
1661                  * Tail pages may be freed if there wasn't any mapping
1662                  * like if add_to_swap() is running on a lru page that
1663                  * had its mapping zapped. And freeing these pages
1664                  * requires taking the lru_lock so we do the put_page
1665                  * of the tail pages after the split is complete.
1666                  */
1667                 put_page(page_tail);
1668         }
1669
1670         /*
1671          * Only the head page (now become a regular page) is required
1672          * to be pinned by the caller.
1673          */
1674         BUG_ON(page_count(page) <= 0);
1675 }
1676
1677 static int __split_huge_page_map(struct page *page,
1678                                  struct vm_area_struct *vma,
1679                                  unsigned long address)
1680 {
1681         struct mm_struct *mm = vma->vm_mm;
1682         pmd_t *pmd, _pmd;
1683         int ret = 0, i;
1684         pgtable_t pgtable;
1685         unsigned long haddr;
1686
1687         spin_lock(&mm->page_table_lock);
1688         pmd = page_check_address_pmd(page, mm, address,
1689                                      PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG);
1690         if (pmd) {
1691                 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1692                 pmd_populate(mm, &_pmd, pgtable);
1693
1694                 haddr = address;
1695                 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1696                         pte_t *pte, entry;
1697                         BUG_ON(PageCompound(page+i));
1698                         entry = mk_pte(page + i, vma->vm_page_prot);
1699                         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1700                         if (!pmd_write(*pmd))
1701                                 entry = pte_wrprotect(entry);
1702                         else
1703                                 BUG_ON(page_mapcount(page) != 1);
1704                         if (!pmd_young(*pmd))
1705                                 entry = pte_mkold(entry);
1706                         if (pmd_numa(*pmd))
1707                                 entry = pte_mknuma(entry);
1708                         pte = pte_offset_map(&_pmd, haddr);
1709                         BUG_ON(!pte_none(*pte));
1710                         set_pte_at(mm, haddr, pte, entry);
1711                         pte_unmap(pte);
1712                 }
1713
1714                 smp_wmb(); /* make pte visible before pmd */
1715                 /*
1716                  * Up to this point the pmd is present and huge and
1717                  * userland has the whole access to the hugepage
1718                  * during the split (which happens in place). If we
1719                  * overwrite the pmd with the not-huge version
1720                  * pointing to the pte here (which of course we could
1721                  * if all CPUs were bug free), userland could trigger
1722                  * a small page size TLB miss on the small sized TLB
1723                  * while the hugepage TLB entry is still established
1724                  * in the huge TLB. Some CPU doesn't like that. See
1725                  * http://support.amd.com/us/Processor_TechDocs/41322.pdf,
1726                  * Erratum 383 on page 93. Intel should be safe but is
1727                  * also warns that it's only safe if the permission
1728                  * and cache attributes of the two entries loaded in
1729                  * the two TLB is identical (which should be the case
1730                  * here). But it is generally safer to never allow
1731                  * small and huge TLB entries for the same virtual
1732                  * address to be loaded simultaneously. So instead of
1733                  * doing "pmd_populate(); flush_tlb_range();" we first
1734                  * mark the current pmd notpresent (atomically because
1735                  * here the pmd_trans_huge and pmd_trans_splitting
1736                  * must remain set at all times on the pmd until the
1737                  * split is complete for this pmd), then we flush the
1738                  * SMP TLB and finally we write the non-huge version
1739                  * of the pmd entry with pmd_populate.
1740                  */
1741                 pmdp_invalidate(vma, address, pmd);
1742                 pmd_populate(mm, pmd, pgtable);
1743                 ret = 1;
1744         }
1745         spin_unlock(&mm->page_table_lock);
1746
1747         return ret;
1748 }
1749
1750 /* must be called with anon_vma->root->rwsem held */
1751 static void __split_huge_page(struct page *page,
1752                               struct anon_vma *anon_vma,
1753                               struct list_head *list)
1754 {
1755         int mapcount, mapcount2;
1756         pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1757         struct anon_vma_chain *avc;
1758
1759         BUG_ON(!PageHead(page));
1760         BUG_ON(PageTail(page));
1761
1762         mapcount = 0;
1763         anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
1764                 struct vm_area_struct *vma = avc->vma;
1765                 unsigned long addr = vma_address(page, vma);
1766                 BUG_ON(is_vma_temporary_stack(vma));
1767                 mapcount += __split_huge_page_splitting(page, vma, addr);
1768         }
1769         /*
1770          * It is critical that new vmas are added to the tail of the
1771          * anon_vma list. This guarantes that if copy_huge_pmd() runs
1772          * and establishes a child pmd before
1773          * __split_huge_page_splitting() freezes the parent pmd (so if
1774          * we fail to prevent copy_huge_pmd() from running until the
1775          * whole __split_huge_page() is complete), we will still see
1776          * the newly established pmd of the child later during the
1777          * walk, to be able to set it as pmd_trans_splitting too.
1778          */
1779         if (mapcount != page_mapcount(page))
1780                 printk(KERN_ERR "mapcount %d page_mapcount %d\n",
1781                        mapcount, page_mapcount(page));
1782         BUG_ON(mapcount != page_mapcount(page));
1783
1784         __split_huge_page_refcount(page, list);
1785
1786         mapcount2 = 0;
1787         anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
1788                 struct vm_area_struct *vma = avc->vma;
1789                 unsigned long addr = vma_address(page, vma);
1790                 BUG_ON(is_vma_temporary_stack(vma));
1791                 mapcount2 += __split_huge_page_map(page, vma, addr);
1792         }
1793         if (mapcount != mapcount2)
1794                 printk(KERN_ERR "mapcount %d mapcount2 %d page_mapcount %d\n",
1795                        mapcount, mapcount2, page_mapcount(page));
1796         BUG_ON(mapcount != mapcount2);
1797 }
1798
1799 /*
1800  * Split a hugepage into normal pages. This doesn't change the position of head
1801  * page. If @list is null, tail pages will be added to LRU list, otherwise, to
1802  * @list. Both head page and tail pages will inherit mapping, flags, and so on
1803  * from the hugepage.
1804  * Return 0 if the hugepage is split successfully otherwise return 1.
1805  */
1806 int split_huge_page_to_list(struct page *page, struct list_head *list)
1807 {
1808         struct anon_vma *anon_vma;
1809         int ret = 1;
1810
1811         BUG_ON(is_huge_zero_page(page));
1812         BUG_ON(!PageAnon(page));
1813
1814         /*
1815          * The caller does not necessarily hold an mmap_sem that would prevent
1816          * the anon_vma disappearing so we first we take a reference to it
1817          * and then lock the anon_vma for write. This is similar to
1818          * page_lock_anon_vma_read except the write lock is taken to serialise
1819          * against parallel split or collapse operations.
1820          */
1821         anon_vma = page_get_anon_vma(page);
1822         if (!anon_vma)
1823                 goto out;
1824         anon_vma_lock_write(anon_vma);
1825
1826         ret = 0;
1827         if (!PageCompound(page))
1828                 goto out_unlock;
1829
1830         BUG_ON(!PageSwapBacked(page));
1831         __split_huge_page(page, anon_vma, list);
1832         count_vm_event(THP_SPLIT);
1833
1834         BUG_ON(PageCompound(page));
1835 out_unlock:
1836         anon_vma_unlock_write(anon_vma);
1837         put_anon_vma(anon_vma);
1838 out:
1839         return ret;
1840 }
1841
1842 #define VM_NO_THP (VM_SPECIAL|VM_MIXEDMAP|VM_HUGETLB|VM_SHARED|VM_MAYSHARE)
1843
1844 int hugepage_madvise(struct vm_area_struct *vma,
1845                      unsigned long *vm_flags, int advice)
1846 {
1847         struct mm_struct *mm = vma->vm_mm;
1848
1849         switch (advice) {
1850         case MADV_HUGEPAGE:
1851                 /*
1852                  * Be somewhat over-protective like KSM for now!
1853                  */
1854                 if (*vm_flags & (VM_HUGEPAGE | VM_NO_THP))
1855                         return -EINVAL;
1856                 if (mm->def_flags & VM_NOHUGEPAGE)
1857                         return -EINVAL;
1858                 *vm_flags &= ~VM_NOHUGEPAGE;
1859                 *vm_flags |= VM_HUGEPAGE;
1860                 /*
1861                  * If the vma become good for khugepaged to scan,
1862                  * register it here without waiting a page fault that
1863                  * may not happen any time soon.
1864                  */
1865                 if (unlikely(khugepaged_enter_vma_merge(vma)))
1866                         return -ENOMEM;
1867                 break;
1868         case MADV_NOHUGEPAGE:
1869                 /*
1870                  * Be somewhat over-protective like KSM for now!
1871                  */
1872                 if (*vm_flags & (VM_NOHUGEPAGE | VM_NO_THP))
1873                         return -EINVAL;
1874                 *vm_flags &= ~VM_HUGEPAGE;
1875                 *vm_flags |= VM_NOHUGEPAGE;
1876                 /*
1877                  * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
1878                  * this vma even if we leave the mm registered in khugepaged if
1879                  * it got registered before VM_NOHUGEPAGE was set.
1880                  */
1881                 break;
1882         }
1883
1884         return 0;
1885 }
1886
1887 static int __init khugepaged_slab_init(void)
1888 {
1889         mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
1890                                           sizeof(struct mm_slot),
1891                                           __alignof__(struct mm_slot), 0, NULL);
1892         if (!mm_slot_cache)
1893                 return -ENOMEM;
1894
1895         return 0;
1896 }
1897
1898 static inline struct mm_slot *alloc_mm_slot(void)
1899 {
1900         if (!mm_slot_cache)     /* initialization failed */
1901                 return NULL;
1902         return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
1903 }
1904
1905 static inline void free_mm_slot(struct mm_slot *mm_slot)
1906 {
1907         kmem_cache_free(mm_slot_cache, mm_slot);
1908 }
1909
1910 static struct mm_slot *get_mm_slot(struct mm_struct *mm)
1911 {
1912         struct mm_slot *mm_slot;
1913
1914         hash_for_each_possible(mm_slots_hash, mm_slot, hash, (unsigned long)mm)
1915                 if (mm == mm_slot->mm)
1916                         return mm_slot;
1917
1918         return NULL;
1919 }
1920
1921 static void insert_to_mm_slots_hash(struct mm_struct *mm,
1922                                     struct mm_slot *mm_slot)
1923 {
1924         mm_slot->mm = mm;
1925         hash_add(mm_slots_hash, &mm_slot->hash, (long)mm);
1926 }
1927
1928 static inline int khugepaged_test_exit(struct mm_struct *mm)
1929 {
1930         return atomic_read(&mm->mm_users) == 0;
1931 }
1932
1933 int __khugepaged_enter(struct mm_struct *mm)
1934 {
1935         struct mm_slot *mm_slot;
1936         int wakeup;
1937
1938         mm_slot = alloc_mm_slot();
1939         if (!mm_slot)
1940                 return -ENOMEM;
1941
1942         /* __khugepaged_exit() must not run from under us */
1943         VM_BUG_ON(khugepaged_test_exit(mm));
1944         if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
1945                 free_mm_slot(mm_slot);
1946                 return 0;
1947         }
1948
1949         spin_lock(&khugepaged_mm_lock);
1950         insert_to_mm_slots_hash(mm, mm_slot);
1951         /*
1952          * Insert just behind the scanning cursor, to let the area settle
1953          * down a little.
1954          */
1955         wakeup = list_empty(&khugepaged_scan.mm_head);
1956         list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
1957         spin_unlock(&khugepaged_mm_lock);
1958
1959         atomic_inc(&mm->mm_count);
1960         if (wakeup)
1961                 wake_up_interruptible(&khugepaged_wait);
1962
1963         return 0;
1964 }
1965
1966 int khugepaged_enter_vma_merge(struct vm_area_struct *vma)
1967 {
1968         unsigned long hstart, hend;
1969         if (!vma->anon_vma)
1970                 /*
1971                  * Not yet faulted in so we will register later in the
1972                  * page fault if needed.
1973                  */
1974                 return 0;
1975         if (vma->vm_ops)
1976                 /* khugepaged not yet working on file or special mappings */
1977                 return 0;
1978         VM_BUG_ON(vma->vm_flags & VM_NO_THP);
1979         hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
1980         hend = vma->vm_end & HPAGE_PMD_MASK;
1981         if (hstart < hend)
1982                 return khugepaged_enter(vma);
1983         return 0;
1984 }
1985
1986 void __khugepaged_exit(struct mm_struct *mm)
1987 {
1988         struct mm_slot *mm_slot;
1989         int free = 0;
1990
1991         spin_lock(&khugepaged_mm_lock);
1992         mm_slot = get_mm_slot(mm);
1993         if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
1994                 hash_del(&mm_slot->hash);
1995                 list_del(&mm_slot->mm_node);
1996                 free = 1;
1997         }
1998         spin_unlock(&khugepaged_mm_lock);
1999
2000         if (free) {
2001                 clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
2002                 free_mm_slot(mm_slot);
2003                 mmdrop(mm);
2004         } else if (mm_slot) {
2005                 /*
2006                  * This is required to serialize against
2007                  * khugepaged_test_exit() (which is guaranteed to run
2008                  * under mmap sem read mode). Stop here (after we
2009                  * return all pagetables will be destroyed) until
2010                  * khugepaged has finished working on the pagetables
2011                  * under the mmap_sem.
2012                  */
2013                 down_write(&mm->mmap_sem);
2014                 up_write(&mm->mmap_sem);
2015         }
2016 }
2017
2018 static void release_pte_page(struct page *page)
2019 {
2020         /* 0 stands for page_is_file_cache(page) == false */
2021         dec_zone_page_state(page, NR_ISOLATED_ANON + 0);
2022         unlock_page(page);
2023         putback_lru_page(page);
2024 }
2025
2026 static void release_pte_pages(pte_t *pte, pte_t *_pte)
2027 {
2028         while (--_pte >= pte) {
2029                 pte_t pteval = *_pte;
2030                 if (!pte_none(pteval))
2031                         release_pte_page(pte_page(pteval));
2032         }
2033 }
2034
2035 static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
2036                                         unsigned long address,
2037                                         pte_t *pte)
2038 {
2039         struct page *page;
2040         pte_t *_pte;
2041         int referenced = 0, none = 0;
2042         for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
2043              _pte++, address += PAGE_SIZE) {
2044                 pte_t pteval = *_pte;
2045                 if (pte_none(pteval)) {
2046                         if (++none <= khugepaged_max_ptes_none)
2047                                 continue;
2048                         else
2049                                 goto out;
2050                 }
2051                 if (!pte_present(pteval) || !pte_write(pteval))
2052                         goto out;
2053                 page = vm_normal_page(vma, address, pteval);
2054                 if (unlikely(!page))
2055                         goto out;
2056
2057                 VM_BUG_ON(PageCompound(page));
2058                 BUG_ON(!PageAnon(page));
2059                 VM_BUG_ON(!PageSwapBacked(page));
2060
2061                 /* cannot use mapcount: can't collapse if there's a gup pin */
2062                 if (page_count(page) != 1)
2063                         goto out;
2064                 /*
2065                  * We can do it before isolate_lru_page because the
2066                  * page can't be freed from under us. NOTE: PG_lock
2067                  * is needed to serialize against split_huge_page
2068                  * when invoked from the VM.
2069                  */
2070                 if (!trylock_page(page))
2071                         goto out;
2072                 /*
2073                  * Isolate the page to avoid collapsing an hugepage
2074                  * currently in use by the VM.
2075                  */
2076                 if (isolate_lru_page(page)) {
2077                         unlock_page(page);
2078                         goto out;
2079                 }
2080                 /* 0 stands for page_is_file_cache(page) == false */
2081                 inc_zone_page_state(page, NR_ISOLATED_ANON + 0);
2082                 VM_BUG_ON(!PageLocked(page));
2083                 VM_BUG_ON(PageLRU(page));
2084
2085                 /* If there is no mapped pte young don't collapse the page */
2086                 if (pte_young(pteval) || PageReferenced(page) ||
2087                     mmu_notifier_test_young(vma->vm_mm, address))
2088                         referenced = 1;
2089         }
2090         if (likely(referenced))
2091                 return 1;
2092 out:
2093         release_pte_pages(pte, _pte);
2094         return 0;
2095 }
2096
2097 static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
2098                                       struct vm_area_struct *vma,
2099                                       unsigned long address,
2100                                       spinlock_t *ptl)
2101 {
2102         pte_t *_pte;
2103         for (_pte = pte; _pte < pte+HPAGE_PMD_NR; _pte++) {
2104                 pte_t pteval = *_pte;
2105                 struct page *src_page;
2106
2107                 if (pte_none(pteval)) {
2108                         clear_user_highpage(page, address);
2109                         add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
2110                 } else {
2111                         src_page = pte_page(pteval);
2112                         copy_user_highpage(page, src_page, address, vma);
2113                         VM_BUG_ON(page_mapcount(src_page) != 1);
2114                         release_pte_page(src_page);
2115                         /*
2116                          * ptl mostly unnecessary, but preempt has to
2117                          * be disabled to update the per-cpu stats
2118                          * inside page_remove_rmap().
2119                          */
2120                         spin_lock(ptl);
2121                         /*
2122                          * paravirt calls inside pte_clear here are
2123                          * superfluous.
2124                          */
2125                         pte_clear(vma->vm_mm, address, _pte);
2126                         page_remove_rmap(src_page);
2127                         spin_unlock(ptl);
2128                         free_page_and_swap_cache(src_page);
2129                 }
2130
2131                 address += PAGE_SIZE;
2132                 page++;
2133         }
2134 }
2135
2136 static void khugepaged_alloc_sleep(void)
2137 {
2138         wait_event_freezable_timeout(khugepaged_wait, false,
2139                         msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
2140 }
2141
2142 #ifdef CONFIG_NUMA
2143 static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
2144 {
2145         if (IS_ERR(*hpage)) {
2146                 if (!*wait)
2147                         return false;
2148
2149                 *wait = false;
2150                 *hpage = NULL;
2151                 khugepaged_alloc_sleep();
2152         } else if (*hpage) {
2153                 put_page(*hpage);
2154                 *hpage = NULL;
2155         }
2156
2157         return true;
2158 }
2159
2160 static struct page
2161 *khugepaged_alloc_page(struct page **hpage, struct mm_struct *mm,
2162                        struct vm_area_struct *vma, unsigned long address,
2163                        int node)
2164 {
2165         VM_BUG_ON(*hpage);
2166         /*
2167          * Allocate the page while the vma is still valid and under
2168          * the mmap_sem read mode so there is no memory allocation
2169          * later when we take the mmap_sem in write mode. This is more
2170          * friendly behavior (OTOH it may actually hide bugs) to
2171          * filesystems in userland with daemons allocating memory in
2172          * the userland I/O paths.  Allocating memory with the
2173          * mmap_sem in read mode is good idea also to allow greater
2174          * scalability.
2175          */
2176         *hpage  = alloc_hugepage_vma(khugepaged_defrag(), vma, address,
2177                                       node, __GFP_OTHER_NODE);
2178
2179         /*
2180          * After allocating the hugepage, release the mmap_sem read lock in
2181          * preparation for taking it in write mode.
2182          */
2183         up_read(&mm->mmap_sem);
2184         if (unlikely(!*hpage)) {
2185                 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
2186                 *hpage = ERR_PTR(-ENOMEM);
2187                 return NULL;
2188         }
2189
2190         count_vm_event(THP_COLLAPSE_ALLOC);
2191         return *hpage;
2192 }
2193 #else
2194 static struct page *khugepaged_alloc_hugepage(bool *wait)
2195 {
2196         struct page *hpage;
2197
2198         do {
2199                 hpage = alloc_hugepage(khugepaged_defrag());
2200                 if (!hpage) {
2201                         count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
2202                         if (!*wait)
2203                                 return NULL;
2204
2205                         *wait = false;
2206                         khugepaged_alloc_sleep();
2207                 } else
2208                         count_vm_event(THP_COLLAPSE_ALLOC);
2209         } while (unlikely(!hpage) && likely(khugepaged_enabled()));
2210
2211         return hpage;
2212 }
2213
2214 static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
2215 {
2216         if (!*hpage)
2217                 *hpage = khugepaged_alloc_hugepage(wait);
2218
2219         if (unlikely(!*hpage))
2220                 return false;
2221
2222         return true;
2223 }
2224
2225 static struct page
2226 *khugepaged_alloc_page(struct page **hpage, struct mm_struct *mm,
2227                        struct vm_area_struct *vma, unsigned long address,
2228                        int node)
2229 {
2230         up_read(&mm->mmap_sem);
2231         VM_BUG_ON(!*hpage);
2232         return  *hpage;
2233 }
2234 #endif
2235
2236 static bool hugepage_vma_check(struct vm_area_struct *vma)
2237 {
2238         if ((!(vma->vm_flags & VM_HUGEPAGE) && !khugepaged_always()) ||
2239             (vma->vm_flags & VM_NOHUGEPAGE))
2240                 return false;
2241
2242         if (!vma->anon_vma || vma->vm_ops)
2243                 return false;
2244         if (is_vma_temporary_stack(vma))
2245                 return false;
2246         VM_BUG_ON(vma->vm_flags & VM_NO_THP);
2247         return true;
2248 }
2249
2250 static void collapse_huge_page(struct mm_struct *mm,
2251                                    unsigned long address,
2252                                    struct page **hpage,
2253                                    struct vm_area_struct *vma,
2254                                    int node)
2255 {
2256         pmd_t *pmd, _pmd;
2257         pte_t *pte;
2258         pgtable_t pgtable;
2259         struct page *new_page;
2260         spinlock_t *ptl;
2261         int isolated;
2262         unsigned long hstart, hend;
2263         unsigned long mmun_start;       /* For mmu_notifiers */
2264         unsigned long mmun_end;         /* For mmu_notifiers */
2265
2266         VM_BUG_ON(address & ~HPAGE_PMD_MASK);
2267
2268         /* release the mmap_sem read lock. */
2269         new_page = khugepaged_alloc_page(hpage, mm, vma, address, node);
2270         if (!new_page)
2271                 return;
2272
2273         if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL)))
2274                 return;
2275
2276         /*
2277          * Prevent all access to pagetables with the exception of
2278          * gup_fast later hanlded by the ptep_clear_flush and the VM
2279          * handled by the anon_vma lock + PG_lock.
2280          */
2281         down_write(&mm->mmap_sem);
2282         if (unlikely(khugepaged_test_exit(mm)))
2283                 goto out;
2284
2285         vma = find_vma(mm, address);
2286         if (!vma)
2287                 goto out;
2288         hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2289         hend = vma->vm_end & HPAGE_PMD_MASK;
2290         if (address < hstart || address + HPAGE_PMD_SIZE > hend)
2291                 goto out;
2292         if (!hugepage_vma_check(vma))
2293                 goto out;
2294         pmd = mm_find_pmd(mm, address);
2295         if (!pmd)
2296                 goto out;
2297         if (pmd_trans_huge(*pmd))
2298                 goto out;
2299
2300         anon_vma_lock_write(vma->anon_vma);
2301
2302         pte = pte_offset_map(pmd, address);
2303         ptl = pte_lockptr(mm, pmd);
2304
2305         mmun_start = address;
2306         mmun_end   = address + HPAGE_PMD_SIZE;
2307         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2308         spin_lock(&mm->page_table_lock); /* probably unnecessary */
2309         /*
2310          * After this gup_fast can't run anymore. This also removes
2311          * any huge TLB entry from the CPU so we won't allow
2312          * huge and small TLB entries for the same virtual address
2313          * to avoid the risk of CPU bugs in that area.
2314          */
2315         _pmd = pmdp_clear_flush(vma, address, pmd);
2316         spin_unlock(&mm->page_table_lock);
2317         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2318
2319         spin_lock(ptl);
2320         isolated = __collapse_huge_page_isolate(vma, address, pte);
2321         spin_unlock(ptl);
2322
2323         if (unlikely(!isolated)) {
2324                 pte_unmap(pte);
2325                 spin_lock(&mm->page_table_lock);
2326                 BUG_ON(!pmd_none(*pmd));
2327                 /*
2328                  * We can only use set_pmd_at when establishing
2329                  * hugepmds and never for establishing regular pmds that
2330                  * points to regular pagetables. Use pmd_populate for that
2331                  */
2332                 pmd_populate(mm, pmd, pmd_pgtable(_pmd));
2333                 spin_unlock(&mm->page_table_lock);
2334                 anon_vma_unlock_write(vma->anon_vma);
2335                 goto out;
2336         }
2337
2338         /*
2339          * All pages are isolated and locked so anon_vma rmap
2340          * can't run anymore.
2341          */
2342         anon_vma_unlock_write(vma->anon_vma);
2343
2344         __collapse_huge_page_copy(pte, new_page, vma, address, ptl);
2345         pte_unmap(pte);
2346         __SetPageUptodate(new_page);
2347         pgtable = pmd_pgtable(_pmd);
2348
2349         _pmd = mk_huge_pmd(new_page, vma->vm_page_prot);
2350         _pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
2351
2352         /*
2353          * spin_lock() below is not the equivalent of smp_wmb(), so
2354          * this is needed to avoid the copy_huge_page writes to become
2355          * visible after the set_pmd_at() write.
2356          */
2357         smp_wmb();
2358
2359         spin_lock(&mm->page_table_lock);
2360         BUG_ON(!pmd_none(*pmd));
2361         page_add_new_anon_rmap(new_page, vma, address);
2362         pgtable_trans_huge_deposit(mm, pmd, pgtable);
2363         set_pmd_at(mm, address, pmd, _pmd);
2364         update_mmu_cache_pmd(vma, address, pmd);
2365         spin_unlock(&mm->page_table_lock);
2366
2367         *hpage = NULL;
2368
2369         khugepaged_pages_collapsed++;
2370 out_up_write:
2371         up_write(&mm->mmap_sem);
2372         return;
2373
2374 out:
2375         mem_cgroup_uncharge_page(new_page);
2376         goto out_up_write;
2377 }
2378
2379 static int khugepaged_scan_pmd(struct mm_struct *mm,
2380                                struct vm_area_struct *vma,
2381                                unsigned long address,
2382                                struct page **hpage)
2383 {
2384         pmd_t *pmd;
2385         pte_t *pte, *_pte;
2386         int ret = 0, referenced = 0, none = 0;
2387         struct page *page;
2388         unsigned long _address;
2389         spinlock_t *ptl;
2390         int node = NUMA_NO_NODE;
2391
2392         VM_BUG_ON(address & ~HPAGE_PMD_MASK);
2393
2394         pmd = mm_find_pmd(mm, address);
2395         if (!pmd)
2396                 goto out;
2397         if (pmd_trans_huge(*pmd))
2398                 goto out;
2399
2400         pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2401         for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
2402              _pte++, _address += PAGE_SIZE) {
2403                 pte_t pteval = *_pte;
2404                 if (pte_none(pteval)) {
2405                         if (++none <= khugepaged_max_ptes_none)
2406                                 continue;
2407                         else
2408                                 goto out_unmap;
2409                 }
2410                 if (!pte_present(pteval) || !pte_write(pteval))
2411                         goto out_unmap;
2412                 page = vm_normal_page(vma, _address, pteval);
2413                 if (unlikely(!page))
2414                         goto out_unmap;
2415                 /*
2416                  * Chose the node of the first page. This could
2417                  * be more sophisticated and look at more pages,
2418                  * but isn't for now.
2419                  */
2420                 if (node == NUMA_NO_NODE)
2421                         node = page_to_nid(page);
2422                 VM_BUG_ON(PageCompound(page));
2423                 if (!PageLRU(page) || PageLocked(page) || !PageAnon(page))
2424                         goto out_unmap;
2425                 /* cannot use mapcount: can't collapse if there's a gup pin */
2426                 if (page_count(page) != 1)
2427                         goto out_unmap;
2428                 if (pte_young(pteval) || PageReferenced(page) ||
2429                     mmu_notifier_test_young(vma->vm_mm, address))
2430                         referenced = 1;
2431         }
2432         if (referenced)
2433                 ret = 1;
2434 out_unmap:
2435         pte_unmap_unlock(pte, ptl);
2436         if (ret)
2437                 /* collapse_huge_page will return with the mmap_sem released */
2438                 collapse_huge_page(mm, address, hpage, vma, node);
2439 out:
2440         return ret;
2441 }
2442
2443 static void collect_mm_slot(struct mm_slot *mm_slot)
2444 {
2445         struct mm_struct *mm = mm_slot->mm;
2446
2447         VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
2448
2449         if (khugepaged_test_exit(mm)) {
2450                 /* free mm_slot */
2451                 hash_del(&mm_slot->hash);
2452                 list_del(&mm_slot->mm_node);
2453
2454                 /*
2455                  * Not strictly needed because the mm exited already.
2456                  *
2457                  * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
2458                  */
2459
2460                 /* khugepaged_mm_lock actually not necessary for the below */
2461                 free_mm_slot(mm_slot);
2462                 mmdrop(mm);
2463         }
2464 }
2465
2466 static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
2467                                             struct page **hpage)
2468         __releases(&khugepaged_mm_lock)
2469         __acquires(&khugepaged_mm_lock)
2470 {
2471         struct mm_slot *mm_slot;
2472         struct mm_struct *mm;
2473         struct vm_area_struct *vma;
2474         int progress = 0;
2475
2476         VM_BUG_ON(!pages);
2477         VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
2478
2479         if (khugepaged_scan.mm_slot)
2480                 mm_slot = khugepaged_scan.mm_slot;
2481         else {
2482                 mm_slot = list_entry(khugepaged_scan.mm_head.next,
2483                                      struct mm_slot, mm_node);
2484                 khugepaged_scan.address = 0;
2485                 khugepaged_scan.mm_slot = mm_slot;
2486         }
2487         spin_unlock(&khugepaged_mm_lock);
2488
2489         mm = mm_slot->mm;
2490         down_read(&mm->mmap_sem);
2491         if (unlikely(khugepaged_test_exit(mm)))
2492                 vma = NULL;
2493         else
2494                 vma = find_vma(mm, khugepaged_scan.address);
2495
2496         progress++;
2497         for (; vma; vma = vma->vm_next) {
2498                 unsigned long hstart, hend;
2499
2500                 cond_resched();
2501                 if (unlikely(khugepaged_test_exit(mm))) {
2502                         progress++;
2503                         break;
2504                 }
2505                 if (!hugepage_vma_check(vma)) {
2506 skip:
2507                         progress++;
2508                         continue;
2509                 }
2510                 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2511                 hend = vma->vm_end & HPAGE_PMD_MASK;
2512                 if (hstart >= hend)
2513                         goto skip;
2514                 if (khugepaged_scan.address > hend)
2515                         goto skip;
2516                 if (khugepaged_scan.address < hstart)
2517                         khugepaged_scan.address = hstart;
2518                 VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
2519
2520                 while (khugepaged_scan.address < hend) {
2521                         int ret;
2522                         cond_resched();
2523                         if (unlikely(khugepaged_test_exit(mm)))
2524                                 goto breakouterloop;
2525
2526                         VM_BUG_ON(khugepaged_scan.address < hstart ||
2527                                   khugepaged_scan.address + HPAGE_PMD_SIZE >
2528                                   hend);
2529                         ret = khugepaged_scan_pmd(mm, vma,
2530                                                   khugepaged_scan.address,
2531                                                   hpage);
2532                         /* move to next address */
2533                         khugepaged_scan.address += HPAGE_PMD_SIZE;
2534                         progress += HPAGE_PMD_NR;
2535                         if (ret)
2536                                 /* we released mmap_sem so break loop */
2537                                 goto breakouterloop_mmap_sem;
2538                         if (progress >= pages)
2539                                 goto breakouterloop;
2540                 }
2541         }
2542 breakouterloop:
2543         up_read(&mm->mmap_sem); /* exit_mmap will destroy ptes after this */
2544 breakouterloop_mmap_sem:
2545
2546         spin_lock(&khugepaged_mm_lock);
2547         VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
2548         /*
2549          * Release the current mm_slot if this mm is about to die, or
2550          * if we scanned all vmas of this mm.
2551          */
2552         if (khugepaged_test_exit(mm) || !vma) {
2553                 /*
2554                  * Make sure that if mm_users is reaching zero while
2555                  * khugepaged runs here, khugepaged_exit will find
2556                  * mm_slot not pointing to the exiting mm.
2557                  */
2558                 if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
2559                         khugepaged_scan.mm_slot = list_entry(
2560                                 mm_slot->mm_node.next,
2561                                 struct mm_slot, mm_node);
2562                         khugepaged_scan.address = 0;
2563                 } else {
2564                         khugepaged_scan.mm_slot = NULL;
2565                         khugepaged_full_scans++;
2566                 }
2567
2568                 collect_mm_slot(mm_slot);
2569         }
2570
2571         return progress;
2572 }
2573
2574 static int khugepaged_has_work(void)
2575 {
2576         return !list_empty(&khugepaged_scan.mm_head) &&
2577                 khugepaged_enabled();
2578 }
2579
2580 static int khugepaged_wait_event(void)
2581 {
2582         return !list_empty(&khugepaged_scan.mm_head) ||
2583                 kthread_should_stop();
2584 }
2585
2586 static void khugepaged_do_scan(void)
2587 {
2588         struct page *hpage = NULL;
2589         unsigned int progress = 0, pass_through_head = 0;
2590         unsigned int pages = khugepaged_pages_to_scan;
2591         bool wait = true;
2592
2593         barrier(); /* write khugepaged_pages_to_scan to local stack */
2594
2595         while (progress < pages) {
2596                 if (!khugepaged_prealloc_page(&hpage, &wait))
2597                         break;
2598
2599                 cond_resched();
2600
2601                 if (unlikely(kthread_should_stop() || freezing(current)))
2602                         break;
2603
2604                 spin_lock(&khugepaged_mm_lock);
2605                 if (!khugepaged_scan.mm_slot)
2606                         pass_through_head++;
2607                 if (khugepaged_has_work() &&
2608                     pass_through_head < 2)
2609                         progress += khugepaged_scan_mm_slot(pages - progress,
2610                                                             &hpage);
2611                 else
2612                         progress = pages;
2613                 spin_unlock(&khugepaged_mm_lock);
2614         }
2615
2616         if (!IS_ERR_OR_NULL(hpage))
2617                 put_page(hpage);
2618 }
2619
2620 static void khugepaged_wait_work(void)
2621 {
2622         try_to_freeze();
2623
2624         if (khugepaged_has_work()) {
2625                 if (!khugepaged_scan_sleep_millisecs)
2626                         return;
2627
2628                 wait_event_freezable_timeout(khugepaged_wait,
2629                                              kthread_should_stop(),
2630                         msecs_to_jiffies(khugepaged_scan_sleep_millisecs));
2631                 return;
2632         }
2633
2634         if (khugepaged_enabled())
2635                 wait_event_freezable(khugepaged_wait, khugepaged_wait_event());
2636 }
2637
2638 static int khugepaged(void *none)
2639 {
2640         struct mm_slot *mm_slot;
2641
2642         set_freezable();
2643         set_user_nice(current, 19);
2644
2645         while (!kthread_should_stop()) {
2646                 khugepaged_do_scan();
2647                 khugepaged_wait_work();
2648         }
2649
2650         spin_lock(&khugepaged_mm_lock);
2651         mm_slot = khugepaged_scan.mm_slot;
2652         khugepaged_scan.mm_slot = NULL;
2653         if (mm_slot)
2654                 collect_mm_slot(mm_slot);
2655         spin_unlock(&khugepaged_mm_lock);
2656         return 0;
2657 }
2658
2659 static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
2660                 unsigned long haddr, pmd_t *pmd)
2661 {
2662         struct mm_struct *mm = vma->vm_mm;
2663         pgtable_t pgtable;
2664         pmd_t _pmd;
2665         int i;
2666
2667         pmdp_clear_flush(vma, haddr, pmd);
2668         /* leave pmd empty until pte is filled */
2669
2670         pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2671         pmd_populate(mm, &_pmd, pgtable);
2672
2673         for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
2674                 pte_t *pte, entry;
2675                 entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
2676                 entry = pte_mkspecial(entry);
2677                 pte = pte_offset_map(&_pmd, haddr);
2678                 VM_BUG_ON(!pte_none(*pte));
2679                 set_pte_at(mm, haddr, pte, entry);
2680                 pte_unmap(pte);
2681         }
2682         smp_wmb(); /* make pte visible before pmd */
2683         pmd_populate(mm, pmd, pgtable);
2684         put_huge_zero_page();
2685 }
2686
2687 void __split_huge_page_pmd(struct vm_area_struct *vma, unsigned long address,
2688                 pmd_t *pmd)
2689 {
2690         struct page *page;
2691         struct mm_struct *mm = vma->vm_mm;
2692         unsigned long haddr = address & HPAGE_PMD_MASK;
2693         unsigned long mmun_start;       /* For mmu_notifiers */
2694         unsigned long mmun_end;         /* For mmu_notifiers */
2695
2696         BUG_ON(vma->vm_start > haddr || vma->vm_end < haddr + HPAGE_PMD_SIZE);
2697
2698         mmun_start = haddr;
2699         mmun_end   = haddr + HPAGE_PMD_SIZE;
2700         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2701         spin_lock(&mm->page_table_lock);
2702         if (unlikely(!pmd_trans_huge(*pmd))) {
2703                 spin_unlock(&mm->page_table_lock);
2704                 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2705                 return;
2706         }
2707         if (is_huge_zero_pmd(*pmd)) {
2708                 __split_huge_zero_page_pmd(vma, haddr, pmd);
2709                 spin_unlock(&mm->page_table_lock);
2710                 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2711                 return;
2712         }
2713         page = pmd_page(*pmd);
2714         VM_BUG_ON(!page_count(page));
2715         get_page(page);
2716         spin_unlock(&mm->page_table_lock);
2717         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2718
2719         split_huge_page(page);
2720
2721         put_page(page);
2722         BUG_ON(pmd_trans_huge(*pmd));
2723 }
2724
2725 void split_huge_page_pmd_mm(struct mm_struct *mm, unsigned long address,
2726                 pmd_t *pmd)
2727 {
2728         struct vm_area_struct *vma;
2729
2730         vma = find_vma(mm, address);
2731         BUG_ON(vma == NULL);
2732         split_huge_page_pmd(vma, address, pmd);
2733 }
2734
2735 static void split_huge_page_address(struct mm_struct *mm,
2736                                     unsigned long address)
2737 {
2738         pmd_t *pmd;
2739
2740         VM_BUG_ON(!(address & ~HPAGE_PMD_MASK));
2741
2742         pmd = mm_find_pmd(mm, address);
2743         if (!pmd)
2744                 return;
2745         /*
2746          * Caller holds the mmap_sem write mode, so a huge pmd cannot
2747          * materialize from under us.
2748          */
2749         split_huge_page_pmd_mm(mm, address, pmd);
2750 }
2751
2752 void __vma_adjust_trans_huge(struct vm_area_struct *vma,
2753                              unsigned long start,
2754                              unsigned long end,
2755                              long adjust_next)
2756 {
2757         /*
2758          * If the new start address isn't hpage aligned and it could
2759          * previously contain an hugepage: check if we need to split
2760          * an huge pmd.
2761          */
2762         if (start & ~HPAGE_PMD_MASK &&
2763             (start & HPAGE_PMD_MASK) >= vma->vm_start &&
2764             (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2765                 split_huge_page_address(vma->vm_mm, start);
2766
2767         /*
2768          * If the new end address isn't hpage aligned and it could
2769          * previously contain an hugepage: check if we need to split
2770          * an huge pmd.
2771          */
2772         if (end & ~HPAGE_PMD_MASK &&
2773             (end & HPAGE_PMD_MASK) >= vma->vm_start &&
2774             (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2775                 split_huge_page_address(vma->vm_mm, end);
2776
2777         /*
2778          * If we're also updating the vma->vm_next->vm_start, if the new
2779          * vm_next->vm_start isn't page aligned and it could previously
2780          * contain an hugepage: check if we need to split an huge pmd.
2781          */
2782         if (adjust_next > 0) {
2783                 struct vm_area_struct *next = vma->vm_next;
2784                 unsigned long nstart = next->vm_start;
2785                 nstart += adjust_next << PAGE_SHIFT;
2786                 if (nstart & ~HPAGE_PMD_MASK &&
2787                     (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
2788                     (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
2789                         split_huge_page_address(next->vm_mm, nstart);
2790         }
2791 }