1 // SPDX-License-Identifier: GPL-2.0-only
3 * Copyright (C) 2009 Red Hat, Inc.
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9 #include <linux/sched.h>
10 #include <linux/sched/coredump.h>
11 #include <linux/sched/numa_balancing.h>
12 #include <linux/highmem.h>
13 #include <linux/hugetlb.h>
14 #include <linux/mmu_notifier.h>
15 #include <linux/rmap.h>
16 #include <linux/swap.h>
17 #include <linux/shrinker.h>
18 #include <linux/mm_inline.h>
19 #include <linux/swapops.h>
20 #include <linux/dax.h>
21 #include <linux/khugepaged.h>
22 #include <linux/freezer.h>
23 #include <linux/pfn_t.h>
24 #include <linux/mman.h>
25 #include <linux/memremap.h>
26 #include <linux/pagemap.h>
27 #include <linux/debugfs.h>
28 #include <linux/migrate.h>
29 #include <linux/hashtable.h>
30 #include <linux/userfaultfd_k.h>
31 #include <linux/page_idle.h>
32 #include <linux/shmem_fs.h>
33 #include <linux/oom.h>
34 #include <linux/numa.h>
35 #include <linux/page_owner.h>
38 #include <asm/pgalloc.h>
42 * By default, transparent hugepage support is disabled in order to avoid
43 * risking an increased memory footprint for applications that are not
44 * guaranteed to benefit from it. When transparent hugepage support is
45 * enabled, it is for all mappings, and khugepaged scans all mappings.
46 * Defrag is invoked by khugepaged hugepage allocations and by page faults
47 * for all hugepage allocations.
49 unsigned long transparent_hugepage_flags __read_mostly =
50 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
51 (1<<TRANSPARENT_HUGEPAGE_FLAG)|
53 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
54 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
56 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
57 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
58 (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
60 static struct shrinker deferred_split_shrinker;
62 static atomic_t huge_zero_refcount;
63 struct page *huge_zero_page __read_mostly;
65 bool transparent_hugepage_enabled(struct vm_area_struct *vma)
67 /* The addr is used to check if the vma size fits */
68 unsigned long addr = (vma->vm_end & HPAGE_PMD_MASK) - HPAGE_PMD_SIZE;
70 if (!transhuge_vma_suitable(vma, addr))
72 if (vma_is_anonymous(vma))
73 return __transparent_hugepage_enabled(vma);
74 if (vma_is_shmem(vma))
75 return shmem_huge_enabled(vma);
80 static struct page *get_huge_zero_page(void)
82 struct page *zero_page;
84 if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
85 return READ_ONCE(huge_zero_page);
87 zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
90 count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
93 count_vm_event(THP_ZERO_PAGE_ALLOC);
95 if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
97 __free_pages(zero_page, compound_order(zero_page));
101 /* We take additional reference here. It will be put back by shrinker */
102 atomic_set(&huge_zero_refcount, 2);
104 return READ_ONCE(huge_zero_page);
107 static void put_huge_zero_page(void)
110 * Counter should never go to zero here. Only shrinker can put
113 BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
116 struct page *mm_get_huge_zero_page(struct mm_struct *mm)
118 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
119 return READ_ONCE(huge_zero_page);
121 if (!get_huge_zero_page())
124 if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
125 put_huge_zero_page();
127 return READ_ONCE(huge_zero_page);
130 void mm_put_huge_zero_page(struct mm_struct *mm)
132 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
133 put_huge_zero_page();
136 static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
137 struct shrink_control *sc)
139 /* we can free zero page only if last reference remains */
140 return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
143 static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
144 struct shrink_control *sc)
146 if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
147 struct page *zero_page = xchg(&huge_zero_page, NULL);
148 BUG_ON(zero_page == NULL);
149 __free_pages(zero_page, compound_order(zero_page));
156 static struct shrinker huge_zero_page_shrinker = {
157 .count_objects = shrink_huge_zero_page_count,
158 .scan_objects = shrink_huge_zero_page_scan,
159 .seeks = DEFAULT_SEEKS,
163 static ssize_t enabled_show(struct kobject *kobj,
164 struct kobj_attribute *attr, char *buf)
166 if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
167 return sprintf(buf, "[always] madvise never\n");
168 else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags))
169 return sprintf(buf, "always [madvise] never\n");
171 return sprintf(buf, "always madvise [never]\n");
174 static ssize_t enabled_store(struct kobject *kobj,
175 struct kobj_attribute *attr,
176 const char *buf, size_t count)
180 if (!memcmp("always", buf,
181 min(sizeof("always")-1, count))) {
182 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
183 set_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
184 } else if (!memcmp("madvise", buf,
185 min(sizeof("madvise")-1, count))) {
186 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
187 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
188 } else if (!memcmp("never", buf,
189 min(sizeof("never")-1, count))) {
190 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
191 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
196 int err = start_stop_khugepaged();
202 static struct kobj_attribute enabled_attr =
203 __ATTR(enabled, 0644, enabled_show, enabled_store);
205 ssize_t single_hugepage_flag_show(struct kobject *kobj,
206 struct kobj_attribute *attr, char *buf,
207 enum transparent_hugepage_flag flag)
209 return sprintf(buf, "%d\n",
210 !!test_bit(flag, &transparent_hugepage_flags));
213 ssize_t single_hugepage_flag_store(struct kobject *kobj,
214 struct kobj_attribute *attr,
215 const char *buf, size_t count,
216 enum transparent_hugepage_flag flag)
221 ret = kstrtoul(buf, 10, &value);
228 set_bit(flag, &transparent_hugepage_flags);
230 clear_bit(flag, &transparent_hugepage_flags);
235 static ssize_t defrag_show(struct kobject *kobj,
236 struct kobj_attribute *attr, char *buf)
238 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
239 return sprintf(buf, "[always] defer defer+madvise madvise never\n");
240 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
241 return sprintf(buf, "always [defer] defer+madvise madvise never\n");
242 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
243 return sprintf(buf, "always defer [defer+madvise] madvise never\n");
244 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
245 return sprintf(buf, "always defer defer+madvise [madvise] never\n");
246 return sprintf(buf, "always defer defer+madvise madvise [never]\n");
249 static ssize_t defrag_store(struct kobject *kobj,
250 struct kobj_attribute *attr,
251 const char *buf, size_t count)
253 if (!memcmp("always", buf,
254 min(sizeof("always")-1, count))) {
255 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
256 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
257 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
258 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
259 } else if (!memcmp("defer+madvise", buf,
260 min(sizeof("defer+madvise")-1, count))) {
261 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
262 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
263 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
264 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
265 } else if (!memcmp("defer", buf,
266 min(sizeof("defer")-1, count))) {
267 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
268 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
269 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
270 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
271 } else if (!memcmp("madvise", buf,
272 min(sizeof("madvise")-1, count))) {
273 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
274 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
275 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
276 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
277 } else if (!memcmp("never", buf,
278 min(sizeof("never")-1, count))) {
279 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
280 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
281 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
282 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
288 static struct kobj_attribute defrag_attr =
289 __ATTR(defrag, 0644, defrag_show, defrag_store);
291 static ssize_t use_zero_page_show(struct kobject *kobj,
292 struct kobj_attribute *attr, char *buf)
294 return single_hugepage_flag_show(kobj, attr, buf,
295 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
297 static ssize_t use_zero_page_store(struct kobject *kobj,
298 struct kobj_attribute *attr, const char *buf, size_t count)
300 return single_hugepage_flag_store(kobj, attr, buf, count,
301 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
303 static struct kobj_attribute use_zero_page_attr =
304 __ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
306 static ssize_t hpage_pmd_size_show(struct kobject *kobj,
307 struct kobj_attribute *attr, char *buf)
309 return sprintf(buf, "%lu\n", HPAGE_PMD_SIZE);
311 static struct kobj_attribute hpage_pmd_size_attr =
312 __ATTR_RO(hpage_pmd_size);
314 #ifdef CONFIG_DEBUG_VM
315 static ssize_t debug_cow_show(struct kobject *kobj,
316 struct kobj_attribute *attr, char *buf)
318 return single_hugepage_flag_show(kobj, attr, buf,
319 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
321 static ssize_t debug_cow_store(struct kobject *kobj,
322 struct kobj_attribute *attr,
323 const char *buf, size_t count)
325 return single_hugepage_flag_store(kobj, attr, buf, count,
326 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
328 static struct kobj_attribute debug_cow_attr =
329 __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
330 #endif /* CONFIG_DEBUG_VM */
332 static struct attribute *hugepage_attr[] = {
335 &use_zero_page_attr.attr,
336 &hpage_pmd_size_attr.attr,
337 #if defined(CONFIG_SHMEM) && defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE)
338 &shmem_enabled_attr.attr,
340 #ifdef CONFIG_DEBUG_VM
341 &debug_cow_attr.attr,
346 static const struct attribute_group hugepage_attr_group = {
347 .attrs = hugepage_attr,
350 static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
354 *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
355 if (unlikely(!*hugepage_kobj)) {
356 pr_err("failed to create transparent hugepage kobject\n");
360 err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
362 pr_err("failed to register transparent hugepage group\n");
366 err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
368 pr_err("failed to register transparent hugepage group\n");
369 goto remove_hp_group;
375 sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
377 kobject_put(*hugepage_kobj);
381 static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
383 sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
384 sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
385 kobject_put(hugepage_kobj);
388 static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
393 static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
396 #endif /* CONFIG_SYSFS */
398 static int __init hugepage_init(void)
401 struct kobject *hugepage_kobj;
403 if (!has_transparent_hugepage()) {
404 transparent_hugepage_flags = 0;
409 * hugepages can't be allocated by the buddy allocator
411 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER);
413 * we use page->mapping and page->index in second tail page
414 * as list_head: assuming THP order >= 2
416 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);
418 err = hugepage_init_sysfs(&hugepage_kobj);
422 err = khugepaged_init();
426 err = register_shrinker(&huge_zero_page_shrinker);
428 goto err_hzp_shrinker;
429 err = register_shrinker(&deferred_split_shrinker);
431 goto err_split_shrinker;
434 * By default disable transparent hugepages on smaller systems,
435 * where the extra memory used could hurt more than TLB overhead
436 * is likely to save. The admin can still enable it through /sys.
438 if (totalram_pages() < (512 << (20 - PAGE_SHIFT))) {
439 transparent_hugepage_flags = 0;
443 err = start_stop_khugepaged();
449 unregister_shrinker(&deferred_split_shrinker);
451 unregister_shrinker(&huge_zero_page_shrinker);
453 khugepaged_destroy();
455 hugepage_exit_sysfs(hugepage_kobj);
459 subsys_initcall(hugepage_init);
461 static int __init setup_transparent_hugepage(char *str)
466 if (!strcmp(str, "always")) {
467 set_bit(TRANSPARENT_HUGEPAGE_FLAG,
468 &transparent_hugepage_flags);
469 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
470 &transparent_hugepage_flags);
472 } else if (!strcmp(str, "madvise")) {
473 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
474 &transparent_hugepage_flags);
475 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
476 &transparent_hugepage_flags);
478 } else if (!strcmp(str, "never")) {
479 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
480 &transparent_hugepage_flags);
481 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
482 &transparent_hugepage_flags);
487 pr_warn("transparent_hugepage= cannot parse, ignored\n");
490 __setup("transparent_hugepage=", setup_transparent_hugepage);
492 pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
494 if (likely(vma->vm_flags & VM_WRITE))
495 pmd = pmd_mkwrite(pmd);
500 static inline struct deferred_split *get_deferred_split_queue(struct page *page)
502 struct mem_cgroup *memcg = compound_head(page)->mem_cgroup;
503 struct pglist_data *pgdat = NODE_DATA(page_to_nid(page));
506 return &memcg->deferred_split_queue;
508 return &pgdat->deferred_split_queue;
511 static inline struct deferred_split *get_deferred_split_queue(struct page *page)
513 struct pglist_data *pgdat = NODE_DATA(page_to_nid(page));
515 return &pgdat->deferred_split_queue;
519 void prep_transhuge_page(struct page *page)
522 * we use page->mapping and page->indexlru in second tail page
523 * as list_head: assuming THP order >= 2
526 INIT_LIST_HEAD(page_deferred_list(page));
527 set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR);
530 static unsigned long __thp_get_unmapped_area(struct file *filp, unsigned long len,
531 loff_t off, unsigned long flags, unsigned long size)
534 loff_t off_end = off + len;
535 loff_t off_align = round_up(off, size);
536 unsigned long len_pad;
538 if (off_end <= off_align || (off_end - off_align) < size)
541 len_pad = len + size;
542 if (len_pad < len || (off + len_pad) < off)
545 addr = current->mm->get_unmapped_area(filp, 0, len_pad,
546 off >> PAGE_SHIFT, flags);
547 if (IS_ERR_VALUE(addr))
550 addr += (off - addr) & (size - 1);
554 unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr,
555 unsigned long len, unsigned long pgoff, unsigned long flags)
557 loff_t off = (loff_t)pgoff << PAGE_SHIFT;
561 if (!IS_DAX(filp->f_mapping->host) || !IS_ENABLED(CONFIG_FS_DAX_PMD))
564 addr = __thp_get_unmapped_area(filp, len, off, flags, PMD_SIZE);
569 return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags);
571 EXPORT_SYMBOL_GPL(thp_get_unmapped_area);
573 static vm_fault_t __do_huge_pmd_anonymous_page(struct vm_fault *vmf,
574 struct page *page, gfp_t gfp)
576 struct vm_area_struct *vma = vmf->vma;
577 struct mem_cgroup *memcg;
579 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
582 VM_BUG_ON_PAGE(!PageCompound(page), page);
584 if (mem_cgroup_try_charge_delay(page, vma->vm_mm, gfp, &memcg, true)) {
586 count_vm_event(THP_FAULT_FALLBACK);
587 return VM_FAULT_FALLBACK;
590 pgtable = pte_alloc_one(vma->vm_mm);
591 if (unlikely(!pgtable)) {
596 clear_huge_page(page, vmf->address, HPAGE_PMD_NR);
598 * The memory barrier inside __SetPageUptodate makes sure that
599 * clear_huge_page writes become visible before the set_pmd_at()
602 __SetPageUptodate(page);
604 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
605 if (unlikely(!pmd_none(*vmf->pmd))) {
610 ret = check_stable_address_space(vma->vm_mm);
614 /* Deliver the page fault to userland */
615 if (userfaultfd_missing(vma)) {
618 spin_unlock(vmf->ptl);
619 mem_cgroup_cancel_charge(page, memcg, true);
621 pte_free(vma->vm_mm, pgtable);
622 ret2 = handle_userfault(vmf, VM_UFFD_MISSING);
623 VM_BUG_ON(ret2 & VM_FAULT_FALLBACK);
627 entry = mk_huge_pmd(page, vma->vm_page_prot);
628 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
629 page_add_new_anon_rmap(page, vma, haddr, true);
630 mem_cgroup_commit_charge(page, memcg, false, true);
631 lru_cache_add_active_or_unevictable(page, vma);
632 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
633 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
634 add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
635 mm_inc_nr_ptes(vma->vm_mm);
636 spin_unlock(vmf->ptl);
637 count_vm_event(THP_FAULT_ALLOC);
638 count_memcg_events(memcg, THP_FAULT_ALLOC, 1);
643 spin_unlock(vmf->ptl);
646 pte_free(vma->vm_mm, pgtable);
647 mem_cgroup_cancel_charge(page, memcg, true);
654 * always: directly stall for all thp allocations
655 * defer: wake kswapd and fail if not immediately available
656 * defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise
657 * fail if not immediately available
658 * madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately
660 * never: never stall for any thp allocation
662 static inline gfp_t alloc_hugepage_direct_gfpmask(struct vm_area_struct *vma, unsigned long addr)
664 const bool vma_madvised = !!(vma->vm_flags & VM_HUGEPAGE);
668 struct mempolicy *pol;
670 * __GFP_THISNODE is used only when __GFP_DIRECT_RECLAIM is not
671 * specified, to express a general desire to stay on the current
672 * node for optimistic allocation attempts. If the defrag mode
673 * and/or madvise hint requires the direct reclaim then we prefer
674 * to fallback to other node rather than node reclaim because that
675 * can lead to excessive reclaim even though there is free memory
676 * on other nodes. We expect that NUMA preferences are specified
677 * by memory policies.
679 pol = get_vma_policy(vma, addr);
680 if (pol->mode != MPOL_BIND)
681 this_node = __GFP_THISNODE;
685 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
686 return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY);
687 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
688 return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM | this_node;
689 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
690 return GFP_TRANSHUGE_LIGHT | (vma_madvised ? __GFP_DIRECT_RECLAIM :
691 __GFP_KSWAPD_RECLAIM | this_node);
692 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
693 return GFP_TRANSHUGE_LIGHT | (vma_madvised ? __GFP_DIRECT_RECLAIM :
695 return GFP_TRANSHUGE_LIGHT | this_node;
698 /* Caller must hold page table lock. */
699 static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
700 struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
701 struct page *zero_page)
706 entry = mk_pmd(zero_page, vma->vm_page_prot);
707 entry = pmd_mkhuge(entry);
709 pgtable_trans_huge_deposit(mm, pmd, pgtable);
710 set_pmd_at(mm, haddr, pmd, entry);
715 vm_fault_t do_huge_pmd_anonymous_page(struct vm_fault *vmf)
717 struct vm_area_struct *vma = vmf->vma;
720 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
722 if (!transhuge_vma_suitable(vma, haddr))
723 return VM_FAULT_FALLBACK;
724 if (unlikely(anon_vma_prepare(vma)))
726 if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
728 if (!(vmf->flags & FAULT_FLAG_WRITE) &&
729 !mm_forbids_zeropage(vma->vm_mm) &&
730 transparent_hugepage_use_zero_page()) {
732 struct page *zero_page;
735 pgtable = pte_alloc_one(vma->vm_mm);
736 if (unlikely(!pgtable))
738 zero_page = mm_get_huge_zero_page(vma->vm_mm);
739 if (unlikely(!zero_page)) {
740 pte_free(vma->vm_mm, pgtable);
741 count_vm_event(THP_FAULT_FALLBACK);
742 return VM_FAULT_FALLBACK;
744 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
747 if (pmd_none(*vmf->pmd)) {
748 ret = check_stable_address_space(vma->vm_mm);
750 spin_unlock(vmf->ptl);
751 } else if (userfaultfd_missing(vma)) {
752 spin_unlock(vmf->ptl);
753 ret = handle_userfault(vmf, VM_UFFD_MISSING);
754 VM_BUG_ON(ret & VM_FAULT_FALLBACK);
756 set_huge_zero_page(pgtable, vma->vm_mm, vma,
757 haddr, vmf->pmd, zero_page);
758 spin_unlock(vmf->ptl);
762 spin_unlock(vmf->ptl);
764 pte_free(vma->vm_mm, pgtable);
767 gfp = alloc_hugepage_direct_gfpmask(vma, haddr);
768 page = alloc_pages_vma(gfp, HPAGE_PMD_ORDER, vma, haddr, numa_node_id());
769 if (unlikely(!page)) {
770 count_vm_event(THP_FAULT_FALLBACK);
771 return VM_FAULT_FALLBACK;
773 prep_transhuge_page(page);
774 return __do_huge_pmd_anonymous_page(vmf, page, gfp);
777 static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
778 pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write,
781 struct mm_struct *mm = vma->vm_mm;
785 ptl = pmd_lock(mm, pmd);
786 if (!pmd_none(*pmd)) {
788 if (pmd_pfn(*pmd) != pfn_t_to_pfn(pfn)) {
789 WARN_ON_ONCE(!is_huge_zero_pmd(*pmd));
792 entry = pmd_mkyoung(*pmd);
793 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
794 if (pmdp_set_access_flags(vma, addr, pmd, entry, 1))
795 update_mmu_cache_pmd(vma, addr, pmd);
801 entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
802 if (pfn_t_devmap(pfn))
803 entry = pmd_mkdevmap(entry);
805 entry = pmd_mkyoung(pmd_mkdirty(entry));
806 entry = maybe_pmd_mkwrite(entry, vma);
810 pgtable_trans_huge_deposit(mm, pmd, pgtable);
815 set_pmd_at(mm, addr, pmd, entry);
816 update_mmu_cache_pmd(vma, addr, pmd);
821 pte_free(mm, pgtable);
824 vm_fault_t vmf_insert_pfn_pmd(struct vm_fault *vmf, pfn_t pfn, bool write)
826 unsigned long addr = vmf->address & PMD_MASK;
827 struct vm_area_struct *vma = vmf->vma;
828 pgprot_t pgprot = vma->vm_page_prot;
829 pgtable_t pgtable = NULL;
832 * If we had pmd_special, we could avoid all these restrictions,
833 * but we need to be consistent with PTEs and architectures that
834 * can't support a 'special' bit.
836 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
838 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
839 (VM_PFNMAP|VM_MIXEDMAP));
840 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
842 if (addr < vma->vm_start || addr >= vma->vm_end)
843 return VM_FAULT_SIGBUS;
845 if (arch_needs_pgtable_deposit()) {
846 pgtable = pte_alloc_one(vma->vm_mm);
851 track_pfn_insert(vma, &pgprot, pfn);
853 insert_pfn_pmd(vma, addr, vmf->pmd, pfn, pgprot, write, pgtable);
854 return VM_FAULT_NOPAGE;
856 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd);
858 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
859 static pud_t maybe_pud_mkwrite(pud_t pud, struct vm_area_struct *vma)
861 if (likely(vma->vm_flags & VM_WRITE))
862 pud = pud_mkwrite(pud);
866 static void insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
867 pud_t *pud, pfn_t pfn, pgprot_t prot, bool write)
869 struct mm_struct *mm = vma->vm_mm;
873 ptl = pud_lock(mm, pud);
874 if (!pud_none(*pud)) {
876 if (pud_pfn(*pud) != pfn_t_to_pfn(pfn)) {
877 WARN_ON_ONCE(!is_huge_zero_pud(*pud));
880 entry = pud_mkyoung(*pud);
881 entry = maybe_pud_mkwrite(pud_mkdirty(entry), vma);
882 if (pudp_set_access_flags(vma, addr, pud, entry, 1))
883 update_mmu_cache_pud(vma, addr, pud);
888 entry = pud_mkhuge(pfn_t_pud(pfn, prot));
889 if (pfn_t_devmap(pfn))
890 entry = pud_mkdevmap(entry);
892 entry = pud_mkyoung(pud_mkdirty(entry));
893 entry = maybe_pud_mkwrite(entry, vma);
895 set_pud_at(mm, addr, pud, entry);
896 update_mmu_cache_pud(vma, addr, pud);
902 vm_fault_t vmf_insert_pfn_pud(struct vm_fault *vmf, pfn_t pfn, bool write)
904 unsigned long addr = vmf->address & PUD_MASK;
905 struct vm_area_struct *vma = vmf->vma;
906 pgprot_t pgprot = vma->vm_page_prot;
909 * If we had pud_special, we could avoid all these restrictions,
910 * but we need to be consistent with PTEs and architectures that
911 * can't support a 'special' bit.
913 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
915 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
916 (VM_PFNMAP|VM_MIXEDMAP));
917 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
919 if (addr < vma->vm_start || addr >= vma->vm_end)
920 return VM_FAULT_SIGBUS;
922 track_pfn_insert(vma, &pgprot, pfn);
924 insert_pfn_pud(vma, addr, vmf->pud, pfn, pgprot, write);
925 return VM_FAULT_NOPAGE;
927 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud);
928 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
930 static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
931 pmd_t *pmd, int flags)
935 _pmd = pmd_mkyoung(*pmd);
936 if (flags & FOLL_WRITE)
937 _pmd = pmd_mkdirty(_pmd);
938 if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
939 pmd, _pmd, flags & FOLL_WRITE))
940 update_mmu_cache_pmd(vma, addr, pmd);
943 struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
944 pmd_t *pmd, int flags, struct dev_pagemap **pgmap)
946 unsigned long pfn = pmd_pfn(*pmd);
947 struct mm_struct *mm = vma->vm_mm;
950 assert_spin_locked(pmd_lockptr(mm, pmd));
953 * When we COW a devmap PMD entry, we split it into PTEs, so we should
954 * not be in this function with `flags & FOLL_COW` set.
956 WARN_ONCE(flags & FOLL_COW, "mm: In follow_devmap_pmd with FOLL_COW set");
958 if (flags & FOLL_WRITE && !pmd_write(*pmd))
961 if (pmd_present(*pmd) && pmd_devmap(*pmd))
966 if (flags & FOLL_TOUCH)
967 touch_pmd(vma, addr, pmd, flags);
970 * device mapped pages can only be returned if the
971 * caller will manage the page reference count.
973 if (!(flags & FOLL_GET))
974 return ERR_PTR(-EEXIST);
976 pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
977 *pgmap = get_dev_pagemap(pfn, *pgmap);
979 return ERR_PTR(-EFAULT);
980 page = pfn_to_page(pfn);
986 int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
987 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
988 struct vm_area_struct *vma)
990 spinlock_t *dst_ptl, *src_ptl;
991 struct page *src_page;
993 pgtable_t pgtable = NULL;
996 /* Skip if can be re-fill on fault */
997 if (!vma_is_anonymous(vma))
1000 pgtable = pte_alloc_one(dst_mm);
1001 if (unlikely(!pgtable))
1004 dst_ptl = pmd_lock(dst_mm, dst_pmd);
1005 src_ptl = pmd_lockptr(src_mm, src_pmd);
1006 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1011 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1012 if (unlikely(is_swap_pmd(pmd))) {
1013 swp_entry_t entry = pmd_to_swp_entry(pmd);
1015 VM_BUG_ON(!is_pmd_migration_entry(pmd));
1016 if (is_write_migration_entry(entry)) {
1017 make_migration_entry_read(&entry);
1018 pmd = swp_entry_to_pmd(entry);
1019 if (pmd_swp_soft_dirty(*src_pmd))
1020 pmd = pmd_swp_mksoft_dirty(pmd);
1021 set_pmd_at(src_mm, addr, src_pmd, pmd);
1023 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1024 mm_inc_nr_ptes(dst_mm);
1025 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1026 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
1032 if (unlikely(!pmd_trans_huge(pmd))) {
1033 pte_free(dst_mm, pgtable);
1037 * When page table lock is held, the huge zero pmd should not be
1038 * under splitting since we don't split the page itself, only pmd to
1041 if (is_huge_zero_pmd(pmd)) {
1042 struct page *zero_page;
1044 * get_huge_zero_page() will never allocate a new page here,
1045 * since we already have a zero page to copy. It just takes a
1048 zero_page = mm_get_huge_zero_page(dst_mm);
1049 set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
1055 src_page = pmd_page(pmd);
1056 VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
1058 page_dup_rmap(src_page, true);
1059 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1060 mm_inc_nr_ptes(dst_mm);
1061 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1063 pmdp_set_wrprotect(src_mm, addr, src_pmd);
1064 pmd = pmd_mkold(pmd_wrprotect(pmd));
1065 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
1069 spin_unlock(src_ptl);
1070 spin_unlock(dst_ptl);
1075 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1076 static void touch_pud(struct vm_area_struct *vma, unsigned long addr,
1077 pud_t *pud, int flags)
1081 _pud = pud_mkyoung(*pud);
1082 if (flags & FOLL_WRITE)
1083 _pud = pud_mkdirty(_pud);
1084 if (pudp_set_access_flags(vma, addr & HPAGE_PUD_MASK,
1085 pud, _pud, flags & FOLL_WRITE))
1086 update_mmu_cache_pud(vma, addr, pud);
1089 struct page *follow_devmap_pud(struct vm_area_struct *vma, unsigned long addr,
1090 pud_t *pud, int flags, struct dev_pagemap **pgmap)
1092 unsigned long pfn = pud_pfn(*pud);
1093 struct mm_struct *mm = vma->vm_mm;
1096 assert_spin_locked(pud_lockptr(mm, pud));
1098 if (flags & FOLL_WRITE && !pud_write(*pud))
1101 if (pud_present(*pud) && pud_devmap(*pud))
1106 if (flags & FOLL_TOUCH)
1107 touch_pud(vma, addr, pud, flags);
1110 * device mapped pages can only be returned if the
1111 * caller will manage the page reference count.
1113 if (!(flags & FOLL_GET))
1114 return ERR_PTR(-EEXIST);
1116 pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT;
1117 *pgmap = get_dev_pagemap(pfn, *pgmap);
1119 return ERR_PTR(-EFAULT);
1120 page = pfn_to_page(pfn);
1126 int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1127 pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1128 struct vm_area_struct *vma)
1130 spinlock_t *dst_ptl, *src_ptl;
1134 dst_ptl = pud_lock(dst_mm, dst_pud);
1135 src_ptl = pud_lockptr(src_mm, src_pud);
1136 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1140 if (unlikely(!pud_trans_huge(pud) && !pud_devmap(pud)))
1144 * When page table lock is held, the huge zero pud should not be
1145 * under splitting since we don't split the page itself, only pud to
1148 if (is_huge_zero_pud(pud)) {
1149 /* No huge zero pud yet */
1152 pudp_set_wrprotect(src_mm, addr, src_pud);
1153 pud = pud_mkold(pud_wrprotect(pud));
1154 set_pud_at(dst_mm, addr, dst_pud, pud);
1158 spin_unlock(src_ptl);
1159 spin_unlock(dst_ptl);
1163 void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud)
1166 unsigned long haddr;
1167 bool write = vmf->flags & FAULT_FLAG_WRITE;
1169 vmf->ptl = pud_lock(vmf->vma->vm_mm, vmf->pud);
1170 if (unlikely(!pud_same(*vmf->pud, orig_pud)))
1173 entry = pud_mkyoung(orig_pud);
1175 entry = pud_mkdirty(entry);
1176 haddr = vmf->address & HPAGE_PUD_MASK;
1177 if (pudp_set_access_flags(vmf->vma, haddr, vmf->pud, entry, write))
1178 update_mmu_cache_pud(vmf->vma, vmf->address, vmf->pud);
1181 spin_unlock(vmf->ptl);
1183 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1185 void huge_pmd_set_accessed(struct vm_fault *vmf, pmd_t orig_pmd)
1188 unsigned long haddr;
1189 bool write = vmf->flags & FAULT_FLAG_WRITE;
1191 vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1192 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1195 entry = pmd_mkyoung(orig_pmd);
1197 entry = pmd_mkdirty(entry);
1198 haddr = vmf->address & HPAGE_PMD_MASK;
1199 if (pmdp_set_access_flags(vmf->vma, haddr, vmf->pmd, entry, write))
1200 update_mmu_cache_pmd(vmf->vma, vmf->address, vmf->pmd);
1203 spin_unlock(vmf->ptl);
1206 static vm_fault_t do_huge_pmd_wp_page_fallback(struct vm_fault *vmf,
1207 pmd_t orig_pmd, struct page *page)
1209 struct vm_area_struct *vma = vmf->vma;
1210 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1211 struct mem_cgroup *memcg;
1216 struct page **pages;
1217 struct mmu_notifier_range range;
1219 pages = kmalloc_array(HPAGE_PMD_NR, sizeof(struct page *),
1221 if (unlikely(!pages)) {
1222 ret |= VM_FAULT_OOM;
1226 for (i = 0; i < HPAGE_PMD_NR; i++) {
1227 pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE, vma,
1228 vmf->address, page_to_nid(page));
1229 if (unlikely(!pages[i] ||
1230 mem_cgroup_try_charge_delay(pages[i], vma->vm_mm,
1231 GFP_KERNEL, &memcg, false))) {
1235 memcg = (void *)page_private(pages[i]);
1236 set_page_private(pages[i], 0);
1237 mem_cgroup_cancel_charge(pages[i], memcg,
1242 ret |= VM_FAULT_OOM;
1245 set_page_private(pages[i], (unsigned long)memcg);
1248 for (i = 0; i < HPAGE_PMD_NR; i++) {
1249 copy_user_highpage(pages[i], page + i,
1250 haddr + PAGE_SIZE * i, vma);
1251 __SetPageUptodate(pages[i]);
1255 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1256 haddr, haddr + HPAGE_PMD_SIZE);
1257 mmu_notifier_invalidate_range_start(&range);
1259 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1260 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1261 goto out_free_pages;
1262 VM_BUG_ON_PAGE(!PageHead(page), page);
1265 * Leave pmd empty until pte is filled note we must notify here as
1266 * concurrent CPU thread might write to new page before the call to
1267 * mmu_notifier_invalidate_range_end() happens which can lead to a
1268 * device seeing memory write in different order than CPU.
1270 * See Documentation/vm/mmu_notifier.rst
1272 pmdp_huge_clear_flush_notify(vma, haddr, vmf->pmd);
1274 pgtable = pgtable_trans_huge_withdraw(vma->vm_mm, vmf->pmd);
1275 pmd_populate(vma->vm_mm, &_pmd, pgtable);
1277 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1279 entry = mk_pte(pages[i], vma->vm_page_prot);
1280 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1281 memcg = (void *)page_private(pages[i]);
1282 set_page_private(pages[i], 0);
1283 page_add_new_anon_rmap(pages[i], vmf->vma, haddr, false);
1284 mem_cgroup_commit_charge(pages[i], memcg, false, false);
1285 lru_cache_add_active_or_unevictable(pages[i], vma);
1286 vmf->pte = pte_offset_map(&_pmd, haddr);
1287 VM_BUG_ON(!pte_none(*vmf->pte));
1288 set_pte_at(vma->vm_mm, haddr, vmf->pte, entry);
1289 pte_unmap(vmf->pte);
1293 smp_wmb(); /* make pte visible before pmd */
1294 pmd_populate(vma->vm_mm, vmf->pmd, pgtable);
1295 page_remove_rmap(page, true);
1296 spin_unlock(vmf->ptl);
1299 * No need to double call mmu_notifier->invalidate_range() callback as
1300 * the above pmdp_huge_clear_flush_notify() did already call it.
1302 mmu_notifier_invalidate_range_only_end(&range);
1304 ret |= VM_FAULT_WRITE;
1311 spin_unlock(vmf->ptl);
1312 mmu_notifier_invalidate_range_end(&range);
1313 for (i = 0; i < HPAGE_PMD_NR; i++) {
1314 memcg = (void *)page_private(pages[i]);
1315 set_page_private(pages[i], 0);
1316 mem_cgroup_cancel_charge(pages[i], memcg, false);
1323 vm_fault_t do_huge_pmd_wp_page(struct vm_fault *vmf, pmd_t orig_pmd)
1325 struct vm_area_struct *vma = vmf->vma;
1326 struct page *page = NULL, *new_page;
1327 struct mem_cgroup *memcg;
1328 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1329 struct mmu_notifier_range range;
1330 gfp_t huge_gfp; /* for allocation and charge */
1333 vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd);
1334 VM_BUG_ON_VMA(!vma->anon_vma, vma);
1335 if (is_huge_zero_pmd(orig_pmd))
1337 spin_lock(vmf->ptl);
1338 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1341 page = pmd_page(orig_pmd);
1342 VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page);
1344 * We can only reuse the page if nobody else maps the huge page or it's
1347 if (!trylock_page(page)) {
1349 spin_unlock(vmf->ptl);
1351 spin_lock(vmf->ptl);
1352 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1359 if (reuse_swap_page(page, NULL)) {
1361 entry = pmd_mkyoung(orig_pmd);
1362 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1363 if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry, 1))
1364 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1365 ret |= VM_FAULT_WRITE;
1371 spin_unlock(vmf->ptl);
1373 if (__transparent_hugepage_enabled(vma) &&
1374 !transparent_hugepage_debug_cow()) {
1375 huge_gfp = alloc_hugepage_direct_gfpmask(vma, haddr);
1376 new_page = alloc_pages_vma(huge_gfp, HPAGE_PMD_ORDER, vma,
1377 haddr, numa_node_id());
1381 if (likely(new_page)) {
1382 prep_transhuge_page(new_page);
1385 split_huge_pmd(vma, vmf->pmd, vmf->address);
1386 ret |= VM_FAULT_FALLBACK;
1388 ret = do_huge_pmd_wp_page_fallback(vmf, orig_pmd, page);
1389 if (ret & VM_FAULT_OOM) {
1390 split_huge_pmd(vma, vmf->pmd, vmf->address);
1391 ret |= VM_FAULT_FALLBACK;
1395 count_vm_event(THP_FAULT_FALLBACK);
1399 if (unlikely(mem_cgroup_try_charge_delay(new_page, vma->vm_mm,
1400 huge_gfp, &memcg, true))) {
1402 split_huge_pmd(vma, vmf->pmd, vmf->address);
1405 ret |= VM_FAULT_FALLBACK;
1406 count_vm_event(THP_FAULT_FALLBACK);
1410 count_vm_event(THP_FAULT_ALLOC);
1411 count_memcg_events(memcg, THP_FAULT_ALLOC, 1);
1414 clear_huge_page(new_page, vmf->address, HPAGE_PMD_NR);
1416 copy_user_huge_page(new_page, page, vmf->address,
1418 __SetPageUptodate(new_page);
1420 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1421 haddr, haddr + HPAGE_PMD_SIZE);
1422 mmu_notifier_invalidate_range_start(&range);
1424 spin_lock(vmf->ptl);
1427 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1428 spin_unlock(vmf->ptl);
1429 mem_cgroup_cancel_charge(new_page, memcg, true);
1434 entry = mk_huge_pmd(new_page, vma->vm_page_prot);
1435 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1436 pmdp_huge_clear_flush_notify(vma, haddr, vmf->pmd);
1437 page_add_new_anon_rmap(new_page, vma, haddr, true);
1438 mem_cgroup_commit_charge(new_page, memcg, false, true);
1439 lru_cache_add_active_or_unevictable(new_page, vma);
1440 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
1441 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1443 add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1445 VM_BUG_ON_PAGE(!PageHead(page), page);
1446 page_remove_rmap(page, true);
1449 ret |= VM_FAULT_WRITE;
1451 spin_unlock(vmf->ptl);
1454 * No need to double call mmu_notifier->invalidate_range() callback as
1455 * the above pmdp_huge_clear_flush_notify() did already call it.
1457 mmu_notifier_invalidate_range_only_end(&range);
1461 spin_unlock(vmf->ptl);
1466 * FOLL_FORCE can write to even unwritable pmd's, but only
1467 * after we've gone through a COW cycle and they are dirty.
1469 static inline bool can_follow_write_pmd(pmd_t pmd, unsigned int flags)
1471 return pmd_write(pmd) ||
1472 ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pmd_dirty(pmd));
1475 struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1480 struct mm_struct *mm = vma->vm_mm;
1481 struct page *page = NULL;
1483 assert_spin_locked(pmd_lockptr(mm, pmd));
1485 if (flags & FOLL_WRITE && !can_follow_write_pmd(*pmd, flags))
1488 /* Avoid dumping huge zero page */
1489 if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1490 return ERR_PTR(-EFAULT);
1492 /* Full NUMA hinting faults to serialise migration in fault paths */
1493 if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
1496 page = pmd_page(*pmd);
1497 VM_BUG_ON_PAGE(!PageHead(page) && !is_zone_device_page(page), page);
1498 if (flags & FOLL_TOUCH)
1499 touch_pmd(vma, addr, pmd, flags);
1500 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1502 * We don't mlock() pte-mapped THPs. This way we can avoid
1503 * leaking mlocked pages into non-VM_LOCKED VMAs.
1507 * In most cases the pmd is the only mapping of the page as we
1508 * break COW for the mlock() -- see gup_flags |= FOLL_WRITE for
1509 * writable private mappings in populate_vma_page_range().
1511 * The only scenario when we have the page shared here is if we
1512 * mlocking read-only mapping shared over fork(). We skip
1513 * mlocking such pages.
1517 * We can expect PageDoubleMap() to be stable under page lock:
1518 * for file pages we set it in page_add_file_rmap(), which
1519 * requires page to be locked.
1522 if (PageAnon(page) && compound_mapcount(page) != 1)
1524 if (PageDoubleMap(page) || !page->mapping)
1526 if (!trylock_page(page))
1529 if (page->mapping && !PageDoubleMap(page))
1530 mlock_vma_page(page);
1534 page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1535 VM_BUG_ON_PAGE(!PageCompound(page) && !is_zone_device_page(page), page);
1536 if (flags & FOLL_GET)
1543 /* NUMA hinting page fault entry point for trans huge pmds */
1544 vm_fault_t do_huge_pmd_numa_page(struct vm_fault *vmf, pmd_t pmd)
1546 struct vm_area_struct *vma = vmf->vma;
1547 struct anon_vma *anon_vma = NULL;
1549 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1550 int page_nid = NUMA_NO_NODE, this_nid = numa_node_id();
1551 int target_nid, last_cpupid = -1;
1553 bool migrated = false;
1557 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1558 if (unlikely(!pmd_same(pmd, *vmf->pmd)))
1562 * If there are potential migrations, wait for completion and retry
1563 * without disrupting NUMA hinting information. Do not relock and
1564 * check_same as the page may no longer be mapped.
1566 if (unlikely(pmd_trans_migrating(*vmf->pmd))) {
1567 page = pmd_page(*vmf->pmd);
1568 if (!get_page_unless_zero(page))
1570 spin_unlock(vmf->ptl);
1571 put_and_wait_on_page_locked(page);
1575 page = pmd_page(pmd);
1576 BUG_ON(is_huge_zero_page(page));
1577 page_nid = page_to_nid(page);
1578 last_cpupid = page_cpupid_last(page);
1579 count_vm_numa_event(NUMA_HINT_FAULTS);
1580 if (page_nid == this_nid) {
1581 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
1582 flags |= TNF_FAULT_LOCAL;
1585 /* See similar comment in do_numa_page for explanation */
1586 if (!pmd_savedwrite(pmd))
1587 flags |= TNF_NO_GROUP;
1590 * Acquire the page lock to serialise THP migrations but avoid dropping
1591 * page_table_lock if at all possible
1593 page_locked = trylock_page(page);
1594 target_nid = mpol_misplaced(page, vma, haddr);
1595 if (target_nid == NUMA_NO_NODE) {
1596 /* If the page was locked, there are no parallel migrations */
1601 /* Migration could have started since the pmd_trans_migrating check */
1603 page_nid = NUMA_NO_NODE;
1604 if (!get_page_unless_zero(page))
1606 spin_unlock(vmf->ptl);
1607 put_and_wait_on_page_locked(page);
1612 * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
1613 * to serialises splits
1616 spin_unlock(vmf->ptl);
1617 anon_vma = page_lock_anon_vma_read(page);
1619 /* Confirm the PMD did not change while page_table_lock was released */
1620 spin_lock(vmf->ptl);
1621 if (unlikely(!pmd_same(pmd, *vmf->pmd))) {
1624 page_nid = NUMA_NO_NODE;
1628 /* Bail if we fail to protect against THP splits for any reason */
1629 if (unlikely(!anon_vma)) {
1631 page_nid = NUMA_NO_NODE;
1636 * Since we took the NUMA fault, we must have observed the !accessible
1637 * bit. Make sure all other CPUs agree with that, to avoid them
1638 * modifying the page we're about to migrate.
1640 * Must be done under PTL such that we'll observe the relevant
1641 * inc_tlb_flush_pending().
1643 * We are not sure a pending tlb flush here is for a huge page
1644 * mapping or not. Hence use the tlb range variant
1646 if (mm_tlb_flush_pending(vma->vm_mm)) {
1647 flush_tlb_range(vma, haddr, haddr + HPAGE_PMD_SIZE);
1649 * change_huge_pmd() released the pmd lock before
1650 * invalidating the secondary MMUs sharing the primary
1651 * MMU pagetables (with ->invalidate_range()). The
1652 * mmu_notifier_invalidate_range_end() (which
1653 * internally calls ->invalidate_range()) in
1654 * change_pmd_range() will run after us, so we can't
1655 * rely on it here and we need an explicit invalidate.
1657 mmu_notifier_invalidate_range(vma->vm_mm, haddr,
1658 haddr + HPAGE_PMD_SIZE);
1662 * Migrate the THP to the requested node, returns with page unlocked
1663 * and access rights restored.
1665 spin_unlock(vmf->ptl);
1667 migrated = migrate_misplaced_transhuge_page(vma->vm_mm, vma,
1668 vmf->pmd, pmd, vmf->address, page, target_nid);
1670 flags |= TNF_MIGRATED;
1671 page_nid = target_nid;
1673 flags |= TNF_MIGRATE_FAIL;
1677 BUG_ON(!PageLocked(page));
1678 was_writable = pmd_savedwrite(pmd);
1679 pmd = pmd_modify(pmd, vma->vm_page_prot);
1680 pmd = pmd_mkyoung(pmd);
1682 pmd = pmd_mkwrite(pmd);
1683 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd);
1684 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1687 spin_unlock(vmf->ptl);
1691 page_unlock_anon_vma_read(anon_vma);
1693 if (page_nid != NUMA_NO_NODE)
1694 task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR,
1701 * Return true if we do MADV_FREE successfully on entire pmd page.
1702 * Otherwise, return false.
1704 bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1705 pmd_t *pmd, unsigned long addr, unsigned long next)
1710 struct mm_struct *mm = tlb->mm;
1713 tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
1715 ptl = pmd_trans_huge_lock(pmd, vma);
1720 if (is_huge_zero_pmd(orig_pmd))
1723 if (unlikely(!pmd_present(orig_pmd))) {
1724 VM_BUG_ON(thp_migration_supported() &&
1725 !is_pmd_migration_entry(orig_pmd));
1729 page = pmd_page(orig_pmd);
1731 * If other processes are mapping this page, we couldn't discard
1732 * the page unless they all do MADV_FREE so let's skip the page.
1734 if (page_mapcount(page) != 1)
1737 if (!trylock_page(page))
1741 * If user want to discard part-pages of THP, split it so MADV_FREE
1742 * will deactivate only them.
1744 if (next - addr != HPAGE_PMD_SIZE) {
1747 split_huge_page(page);
1753 if (PageDirty(page))
1754 ClearPageDirty(page);
1757 if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
1758 pmdp_invalidate(vma, addr, pmd);
1759 orig_pmd = pmd_mkold(orig_pmd);
1760 orig_pmd = pmd_mkclean(orig_pmd);
1762 set_pmd_at(mm, addr, pmd, orig_pmd);
1763 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1766 mark_page_lazyfree(page);
1774 static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd)
1778 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1779 pte_free(mm, pgtable);
1783 int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1784 pmd_t *pmd, unsigned long addr)
1789 tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
1791 ptl = __pmd_trans_huge_lock(pmd, vma);
1795 * For architectures like ppc64 we look at deposited pgtable
1796 * when calling pmdp_huge_get_and_clear. So do the
1797 * pgtable_trans_huge_withdraw after finishing pmdp related
1800 orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
1802 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1803 if (vma_is_dax(vma)) {
1804 if (arch_needs_pgtable_deposit())
1805 zap_deposited_table(tlb->mm, pmd);
1807 if (is_huge_zero_pmd(orig_pmd))
1808 tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
1809 } else if (is_huge_zero_pmd(orig_pmd)) {
1810 zap_deposited_table(tlb->mm, pmd);
1812 tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
1814 struct page *page = NULL;
1815 int flush_needed = 1;
1817 if (pmd_present(orig_pmd)) {
1818 page = pmd_page(orig_pmd);
1819 page_remove_rmap(page, true);
1820 VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
1821 VM_BUG_ON_PAGE(!PageHead(page), page);
1822 } else if (thp_migration_supported()) {
1825 VM_BUG_ON(!is_pmd_migration_entry(orig_pmd));
1826 entry = pmd_to_swp_entry(orig_pmd);
1827 page = pfn_to_page(swp_offset(entry));
1830 WARN_ONCE(1, "Non present huge pmd without pmd migration enabled!");
1832 if (PageAnon(page)) {
1833 zap_deposited_table(tlb->mm, pmd);
1834 add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1836 if (arch_needs_pgtable_deposit())
1837 zap_deposited_table(tlb->mm, pmd);
1838 add_mm_counter(tlb->mm, mm_counter_file(page), -HPAGE_PMD_NR);
1843 tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE);
1848 #ifndef pmd_move_must_withdraw
1849 static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl,
1850 spinlock_t *old_pmd_ptl,
1851 struct vm_area_struct *vma)
1854 * With split pmd lock we also need to move preallocated
1855 * PTE page table if new_pmd is on different PMD page table.
1857 * We also don't deposit and withdraw tables for file pages.
1859 return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma);
1863 static pmd_t move_soft_dirty_pmd(pmd_t pmd)
1865 #ifdef CONFIG_MEM_SOFT_DIRTY
1866 if (unlikely(is_pmd_migration_entry(pmd)))
1867 pmd = pmd_swp_mksoft_dirty(pmd);
1868 else if (pmd_present(pmd))
1869 pmd = pmd_mksoft_dirty(pmd);
1874 bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
1875 unsigned long new_addr, unsigned long old_end,
1876 pmd_t *old_pmd, pmd_t *new_pmd)
1878 spinlock_t *old_ptl, *new_ptl;
1880 struct mm_struct *mm = vma->vm_mm;
1881 bool force_flush = false;
1883 if ((old_addr & ~HPAGE_PMD_MASK) ||
1884 (new_addr & ~HPAGE_PMD_MASK) ||
1885 old_end - old_addr < HPAGE_PMD_SIZE)
1889 * The destination pmd shouldn't be established, free_pgtables()
1890 * should have release it.
1892 if (WARN_ON(!pmd_none(*new_pmd))) {
1893 VM_BUG_ON(pmd_trans_huge(*new_pmd));
1898 * We don't have to worry about the ordering of src and dst
1899 * ptlocks because exclusive mmap_sem prevents deadlock.
1901 old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
1903 new_ptl = pmd_lockptr(mm, new_pmd);
1904 if (new_ptl != old_ptl)
1905 spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
1906 pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
1907 if (pmd_present(pmd))
1909 VM_BUG_ON(!pmd_none(*new_pmd));
1911 if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) {
1913 pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1914 pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
1916 pmd = move_soft_dirty_pmd(pmd);
1917 set_pmd_at(mm, new_addr, new_pmd, pmd);
1919 flush_tlb_range(vma, old_addr, old_addr + PMD_SIZE);
1920 if (new_ptl != old_ptl)
1921 spin_unlock(new_ptl);
1922 spin_unlock(old_ptl);
1930 * - 0 if PMD could not be locked
1931 * - 1 if PMD was locked but protections unchange and TLB flush unnecessary
1932 * - HPAGE_PMD_NR is protections changed and TLB flush necessary
1934 int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1935 unsigned long addr, pgprot_t newprot, int prot_numa)
1937 struct mm_struct *mm = vma->vm_mm;
1940 bool preserve_write;
1943 ptl = __pmd_trans_huge_lock(pmd, vma);
1947 preserve_write = prot_numa && pmd_write(*pmd);
1950 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1951 if (is_swap_pmd(*pmd)) {
1952 swp_entry_t entry = pmd_to_swp_entry(*pmd);
1954 VM_BUG_ON(!is_pmd_migration_entry(*pmd));
1955 if (is_write_migration_entry(entry)) {
1958 * A protection check is difficult so
1959 * just be safe and disable write
1961 make_migration_entry_read(&entry);
1962 newpmd = swp_entry_to_pmd(entry);
1963 if (pmd_swp_soft_dirty(*pmd))
1964 newpmd = pmd_swp_mksoft_dirty(newpmd);
1965 set_pmd_at(mm, addr, pmd, newpmd);
1972 * Avoid trapping faults against the zero page. The read-only
1973 * data is likely to be read-cached on the local CPU and
1974 * local/remote hits to the zero page are not interesting.
1976 if (prot_numa && is_huge_zero_pmd(*pmd))
1979 if (prot_numa && pmd_protnone(*pmd))
1983 * In case prot_numa, we are under down_read(mmap_sem). It's critical
1984 * to not clear pmd intermittently to avoid race with MADV_DONTNEED
1985 * which is also under down_read(mmap_sem):
1988 * change_huge_pmd(prot_numa=1)
1989 * pmdp_huge_get_and_clear_notify()
1990 * madvise_dontneed()
1992 * pmd_trans_huge(*pmd) == 0 (without ptl)
1995 * // pmd is re-established
1997 * The race makes MADV_DONTNEED miss the huge pmd and don't clear it
1998 * which may break userspace.
2000 * pmdp_invalidate() is required to make sure we don't miss
2001 * dirty/young flags set by hardware.
2003 entry = pmdp_invalidate(vma, addr, pmd);
2005 entry = pmd_modify(entry, newprot);
2007 entry = pmd_mk_savedwrite(entry);
2009 set_pmd_at(mm, addr, pmd, entry);
2010 BUG_ON(vma_is_anonymous(vma) && !preserve_write && pmd_write(entry));
2017 * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise.
2019 * Note that if it returns page table lock pointer, this routine returns without
2020 * unlocking page table lock. So callers must unlock it.
2022 spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
2025 ptl = pmd_lock(vma->vm_mm, pmd);
2026 if (likely(is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) ||
2034 * Returns true if a given pud maps a thp, false otherwise.
2036 * Note that if it returns true, this routine returns without unlocking page
2037 * table lock. So callers must unlock it.
2039 spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma)
2043 ptl = pud_lock(vma->vm_mm, pud);
2044 if (likely(pud_trans_huge(*pud) || pud_devmap(*pud)))
2050 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
2051 int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma,
2052 pud_t *pud, unsigned long addr)
2056 ptl = __pud_trans_huge_lock(pud, vma);
2060 * For architectures like ppc64 we look at deposited pgtable
2061 * when calling pudp_huge_get_and_clear. So do the
2062 * pgtable_trans_huge_withdraw after finishing pudp related
2065 pudp_huge_get_and_clear_full(tlb->mm, addr, pud, tlb->fullmm);
2066 tlb_remove_pud_tlb_entry(tlb, pud, addr);
2067 if (vma_is_dax(vma)) {
2069 /* No zero page support yet */
2071 /* No support for anonymous PUD pages yet */
2077 static void __split_huge_pud_locked(struct vm_area_struct *vma, pud_t *pud,
2078 unsigned long haddr)
2080 VM_BUG_ON(haddr & ~HPAGE_PUD_MASK);
2081 VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2082 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PUD_SIZE, vma);
2083 VM_BUG_ON(!pud_trans_huge(*pud) && !pud_devmap(*pud));
2085 count_vm_event(THP_SPLIT_PUD);
2087 pudp_huge_clear_flush_notify(vma, haddr, pud);
2090 void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud,
2091 unsigned long address)
2094 struct mmu_notifier_range range;
2096 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
2097 address & HPAGE_PUD_MASK,
2098 (address & HPAGE_PUD_MASK) + HPAGE_PUD_SIZE);
2099 mmu_notifier_invalidate_range_start(&range);
2100 ptl = pud_lock(vma->vm_mm, pud);
2101 if (unlikely(!pud_trans_huge(*pud) && !pud_devmap(*pud)))
2103 __split_huge_pud_locked(vma, pud, range.start);
2108 * No need to double call mmu_notifier->invalidate_range() callback as
2109 * the above pudp_huge_clear_flush_notify() did already call it.
2111 mmu_notifier_invalidate_range_only_end(&range);
2113 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
2115 static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
2116 unsigned long haddr, pmd_t *pmd)
2118 struct mm_struct *mm = vma->vm_mm;
2124 * Leave pmd empty until pte is filled note that it is fine to delay
2125 * notification until mmu_notifier_invalidate_range_end() as we are
2126 * replacing a zero pmd write protected page with a zero pte write
2129 * See Documentation/vm/mmu_notifier.rst
2131 pmdp_huge_clear_flush(vma, haddr, pmd);
2133 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2134 pmd_populate(mm, &_pmd, pgtable);
2136 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
2138 entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
2139 entry = pte_mkspecial(entry);
2140 pte = pte_offset_map(&_pmd, haddr);
2141 VM_BUG_ON(!pte_none(*pte));
2142 set_pte_at(mm, haddr, pte, entry);
2145 smp_wmb(); /* make pte visible before pmd */
2146 pmd_populate(mm, pmd, pgtable);
2149 static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
2150 unsigned long haddr, bool freeze)
2152 struct mm_struct *mm = vma->vm_mm;
2155 pmd_t old_pmd, _pmd;
2156 bool young, write, soft_dirty, pmd_migration = false;
2160 VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
2161 VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2162 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
2163 VM_BUG_ON(!is_pmd_migration_entry(*pmd) && !pmd_trans_huge(*pmd)
2164 && !pmd_devmap(*pmd));
2166 count_vm_event(THP_SPLIT_PMD);
2168 if (!vma_is_anonymous(vma)) {
2169 _pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
2171 * We are going to unmap this huge page. So
2172 * just go ahead and zap it
2174 if (arch_needs_pgtable_deposit())
2175 zap_deposited_table(mm, pmd);
2176 if (vma_is_dax(vma))
2178 page = pmd_page(_pmd);
2179 if (!PageDirty(page) && pmd_dirty(_pmd))
2180 set_page_dirty(page);
2181 if (!PageReferenced(page) && pmd_young(_pmd))
2182 SetPageReferenced(page);
2183 page_remove_rmap(page, true);
2185 add_mm_counter(mm, mm_counter_file(page), -HPAGE_PMD_NR);
2187 } else if (is_huge_zero_pmd(*pmd)) {
2189 * FIXME: Do we want to invalidate secondary mmu by calling
2190 * mmu_notifier_invalidate_range() see comments below inside
2191 * __split_huge_pmd() ?
2193 * We are going from a zero huge page write protected to zero
2194 * small page also write protected so it does not seems useful
2195 * to invalidate secondary mmu at this time.
2197 return __split_huge_zero_page_pmd(vma, haddr, pmd);
2201 * Up to this point the pmd is present and huge and userland has the
2202 * whole access to the hugepage during the split (which happens in
2203 * place). If we overwrite the pmd with the not-huge version pointing
2204 * to the pte here (which of course we could if all CPUs were bug
2205 * free), userland could trigger a small page size TLB miss on the
2206 * small sized TLB while the hugepage TLB entry is still established in
2207 * the huge TLB. Some CPU doesn't like that.
2208 * See http://support.amd.com/us/Processor_TechDocs/41322.pdf, Erratum
2209 * 383 on page 93. Intel should be safe but is also warns that it's
2210 * only safe if the permission and cache attributes of the two entries
2211 * loaded in the two TLB is identical (which should be the case here).
2212 * But it is generally safer to never allow small and huge TLB entries
2213 * for the same virtual address to be loaded simultaneously. So instead
2214 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
2215 * current pmd notpresent (atomically because here the pmd_trans_huge
2216 * must remain set at all times on the pmd until the split is complete
2217 * for this pmd), then we flush the SMP TLB and finally we write the
2218 * non-huge version of the pmd entry with pmd_populate.
2220 old_pmd = pmdp_invalidate(vma, haddr, pmd);
2222 pmd_migration = is_pmd_migration_entry(old_pmd);
2223 if (unlikely(pmd_migration)) {
2226 entry = pmd_to_swp_entry(old_pmd);
2227 page = pfn_to_page(swp_offset(entry));
2228 write = is_write_migration_entry(entry);
2230 soft_dirty = pmd_swp_soft_dirty(old_pmd);
2232 page = pmd_page(old_pmd);
2233 if (pmd_dirty(old_pmd))
2235 write = pmd_write(old_pmd);
2236 young = pmd_young(old_pmd);
2237 soft_dirty = pmd_soft_dirty(old_pmd);
2239 VM_BUG_ON_PAGE(!page_count(page), page);
2240 page_ref_add(page, HPAGE_PMD_NR - 1);
2243 * Withdraw the table only after we mark the pmd entry invalid.
2244 * This's critical for some architectures (Power).
2246 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2247 pmd_populate(mm, &_pmd, pgtable);
2249 for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
2252 * Note that NUMA hinting access restrictions are not
2253 * transferred to avoid any possibility of altering
2254 * permissions across VMAs.
2256 if (freeze || pmd_migration) {
2257 swp_entry_t swp_entry;
2258 swp_entry = make_migration_entry(page + i, write);
2259 entry = swp_entry_to_pte(swp_entry);
2261 entry = pte_swp_mksoft_dirty(entry);
2263 entry = mk_pte(page + i, READ_ONCE(vma->vm_page_prot));
2264 entry = maybe_mkwrite(entry, vma);
2266 entry = pte_wrprotect(entry);
2268 entry = pte_mkold(entry);
2270 entry = pte_mksoft_dirty(entry);
2272 pte = pte_offset_map(&_pmd, addr);
2273 BUG_ON(!pte_none(*pte));
2274 set_pte_at(mm, addr, pte, entry);
2275 atomic_inc(&page[i]._mapcount);
2280 * Set PG_double_map before dropping compound_mapcount to avoid
2281 * false-negative page_mapped().
2283 if (compound_mapcount(page) > 1 && !TestSetPageDoubleMap(page)) {
2284 for (i = 0; i < HPAGE_PMD_NR; i++)
2285 atomic_inc(&page[i]._mapcount);
2288 if (atomic_add_negative(-1, compound_mapcount_ptr(page))) {
2289 /* Last compound_mapcount is gone. */
2290 __dec_node_page_state(page, NR_ANON_THPS);
2291 if (TestClearPageDoubleMap(page)) {
2292 /* No need in mapcount reference anymore */
2293 for (i = 0; i < HPAGE_PMD_NR; i++)
2294 atomic_dec(&page[i]._mapcount);
2298 smp_wmb(); /* make pte visible before pmd */
2299 pmd_populate(mm, pmd, pgtable);
2302 for (i = 0; i < HPAGE_PMD_NR; i++) {
2303 page_remove_rmap(page + i, false);
2309 void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
2310 unsigned long address, bool freeze, struct page *page)
2313 struct mmu_notifier_range range;
2315 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
2316 address & HPAGE_PMD_MASK,
2317 (address & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE);
2318 mmu_notifier_invalidate_range_start(&range);
2319 ptl = pmd_lock(vma->vm_mm, pmd);
2322 * If caller asks to setup a migration entries, we need a page to check
2323 * pmd against. Otherwise we can end up replacing wrong page.
2325 VM_BUG_ON(freeze && !page);
2326 if (page && page != pmd_page(*pmd))
2329 if (pmd_trans_huge(*pmd)) {
2330 page = pmd_page(*pmd);
2331 if (PageMlocked(page))
2332 clear_page_mlock(page);
2333 } else if (!(pmd_devmap(*pmd) || is_pmd_migration_entry(*pmd)))
2335 __split_huge_pmd_locked(vma, pmd, range.start, freeze);
2339 * No need to double call mmu_notifier->invalidate_range() callback.
2340 * They are 3 cases to consider inside __split_huge_pmd_locked():
2341 * 1) pmdp_huge_clear_flush_notify() call invalidate_range() obvious
2342 * 2) __split_huge_zero_page_pmd() read only zero page and any write
2343 * fault will trigger a flush_notify before pointing to a new page
2344 * (it is fine if the secondary mmu keeps pointing to the old zero
2345 * page in the meantime)
2346 * 3) Split a huge pmd into pte pointing to the same page. No need
2347 * to invalidate secondary tlb entry they are all still valid.
2348 * any further changes to individual pte will notify. So no need
2349 * to call mmu_notifier->invalidate_range()
2351 mmu_notifier_invalidate_range_only_end(&range);
2354 void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
2355 bool freeze, struct page *page)
2362 pgd = pgd_offset(vma->vm_mm, address);
2363 if (!pgd_present(*pgd))
2366 p4d = p4d_offset(pgd, address);
2367 if (!p4d_present(*p4d))
2370 pud = pud_offset(p4d, address);
2371 if (!pud_present(*pud))
2374 pmd = pmd_offset(pud, address);
2376 __split_huge_pmd(vma, pmd, address, freeze, page);
2379 void vma_adjust_trans_huge(struct vm_area_struct *vma,
2380 unsigned long start,
2385 * If the new start address isn't hpage aligned and it could
2386 * previously contain an hugepage: check if we need to split
2389 if (start & ~HPAGE_PMD_MASK &&
2390 (start & HPAGE_PMD_MASK) >= vma->vm_start &&
2391 (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2392 split_huge_pmd_address(vma, start, false, NULL);
2395 * If the new end address isn't hpage aligned and it could
2396 * previously contain an hugepage: check if we need to split
2399 if (end & ~HPAGE_PMD_MASK &&
2400 (end & HPAGE_PMD_MASK) >= vma->vm_start &&
2401 (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2402 split_huge_pmd_address(vma, end, false, NULL);
2405 * If we're also updating the vma->vm_next->vm_start, if the new
2406 * vm_next->vm_start isn't page aligned and it could previously
2407 * contain an hugepage: check if we need to split an huge pmd.
2409 if (adjust_next > 0) {
2410 struct vm_area_struct *next = vma->vm_next;
2411 unsigned long nstart = next->vm_start;
2412 nstart += adjust_next << PAGE_SHIFT;
2413 if (nstart & ~HPAGE_PMD_MASK &&
2414 (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
2415 (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
2416 split_huge_pmd_address(next, nstart, false, NULL);
2420 static void unmap_page(struct page *page)
2422 enum ttu_flags ttu_flags = TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS |
2423 TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD;
2426 VM_BUG_ON_PAGE(!PageHead(page), page);
2429 ttu_flags |= TTU_SPLIT_FREEZE;
2431 unmap_success = try_to_unmap(page, ttu_flags);
2432 VM_BUG_ON_PAGE(!unmap_success, page);
2435 static void remap_page(struct page *page)
2438 if (PageTransHuge(page)) {
2439 remove_migration_ptes(page, page, true);
2441 for (i = 0; i < HPAGE_PMD_NR; i++)
2442 remove_migration_ptes(page + i, page + i, true);
2446 static void __split_huge_page_tail(struct page *head, int tail,
2447 struct lruvec *lruvec, struct list_head *list)
2449 struct page *page_tail = head + tail;
2451 VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
2454 * Clone page flags before unfreezing refcount.
2456 * After successful get_page_unless_zero() might follow flags change,
2457 * for exmaple lock_page() which set PG_waiters.
2459 page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
2460 page_tail->flags |= (head->flags &
2461 ((1L << PG_referenced) |
2462 (1L << PG_swapbacked) |
2463 (1L << PG_swapcache) |
2464 (1L << PG_mlocked) |
2465 (1L << PG_uptodate) |
2467 (1L << PG_workingset) |
2469 (1L << PG_unevictable) |
2472 /* ->mapping in first tail page is compound_mapcount */
2473 VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
2475 page_tail->mapping = head->mapping;
2476 page_tail->index = head->index + tail;
2478 /* Page flags must be visible before we make the page non-compound. */
2482 * Clear PageTail before unfreezing page refcount.
2484 * After successful get_page_unless_zero() might follow put_page()
2485 * which needs correct compound_head().
2487 clear_compound_head(page_tail);
2489 /* Finally unfreeze refcount. Additional reference from page cache. */
2490 page_ref_unfreeze(page_tail, 1 + (!PageAnon(head) ||
2491 PageSwapCache(head)));
2493 if (page_is_young(head))
2494 set_page_young(page_tail);
2495 if (page_is_idle(head))
2496 set_page_idle(page_tail);
2498 page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
2501 * always add to the tail because some iterators expect new
2502 * pages to show after the currently processed elements - e.g.
2505 lru_add_page_tail(head, page_tail, lruvec, list);
2508 static void __split_huge_page(struct page *page, struct list_head *list,
2509 pgoff_t end, unsigned long flags)
2511 struct page *head = compound_head(page);
2512 pg_data_t *pgdat = page_pgdat(head);
2513 struct lruvec *lruvec;
2514 struct address_space *swap_cache = NULL;
2515 unsigned long offset = 0;
2518 lruvec = mem_cgroup_page_lruvec(head, pgdat);
2520 /* complete memcg works before add pages to LRU */
2521 mem_cgroup_split_huge_fixup(head);
2523 if (PageAnon(head) && PageSwapCache(head)) {
2524 swp_entry_t entry = { .val = page_private(head) };
2526 offset = swp_offset(entry);
2527 swap_cache = swap_address_space(entry);
2528 xa_lock(&swap_cache->i_pages);
2531 for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
2532 __split_huge_page_tail(head, i, lruvec, list);
2533 /* Some pages can be beyond i_size: drop them from page cache */
2534 if (head[i].index >= end) {
2535 ClearPageDirty(head + i);
2536 __delete_from_page_cache(head + i, NULL);
2537 if (IS_ENABLED(CONFIG_SHMEM) && PageSwapBacked(head))
2538 shmem_uncharge(head->mapping->host, 1);
2540 } else if (!PageAnon(page)) {
2541 __xa_store(&head->mapping->i_pages, head[i].index,
2543 } else if (swap_cache) {
2544 __xa_store(&swap_cache->i_pages, offset + i,
2549 ClearPageCompound(head);
2551 split_page_owner(head, HPAGE_PMD_ORDER);
2553 /* See comment in __split_huge_page_tail() */
2554 if (PageAnon(head)) {
2555 /* Additional pin to swap cache */
2556 if (PageSwapCache(head)) {
2557 page_ref_add(head, 2);
2558 xa_unlock(&swap_cache->i_pages);
2563 /* Additional pin to page cache */
2564 page_ref_add(head, 2);
2565 xa_unlock(&head->mapping->i_pages);
2568 spin_unlock_irqrestore(&pgdat->lru_lock, flags);
2572 for (i = 0; i < HPAGE_PMD_NR; i++) {
2573 struct page *subpage = head + i;
2574 if (subpage == page)
2576 unlock_page(subpage);
2579 * Subpages may be freed if there wasn't any mapping
2580 * like if add_to_swap() is running on a lru page that
2581 * had its mapping zapped. And freeing these pages
2582 * requires taking the lru_lock so we do the put_page
2583 * of the tail pages after the split is complete.
2589 int total_mapcount(struct page *page)
2591 int i, compound, ret;
2593 VM_BUG_ON_PAGE(PageTail(page), page);
2595 if (likely(!PageCompound(page)))
2596 return atomic_read(&page->_mapcount) + 1;
2598 compound = compound_mapcount(page);
2602 for (i = 0; i < HPAGE_PMD_NR; i++)
2603 ret += atomic_read(&page[i]._mapcount) + 1;
2604 /* File pages has compound_mapcount included in _mapcount */
2605 if (!PageAnon(page))
2606 return ret - compound * HPAGE_PMD_NR;
2607 if (PageDoubleMap(page))
2608 ret -= HPAGE_PMD_NR;
2613 * This calculates accurately how many mappings a transparent hugepage
2614 * has (unlike page_mapcount() which isn't fully accurate). This full
2615 * accuracy is primarily needed to know if copy-on-write faults can
2616 * reuse the page and change the mapping to read-write instead of
2617 * copying them. At the same time this returns the total_mapcount too.
2619 * The function returns the highest mapcount any one of the subpages
2620 * has. If the return value is one, even if different processes are
2621 * mapping different subpages of the transparent hugepage, they can
2622 * all reuse it, because each process is reusing a different subpage.
2624 * The total_mapcount is instead counting all virtual mappings of the
2625 * subpages. If the total_mapcount is equal to "one", it tells the
2626 * caller all mappings belong to the same "mm" and in turn the
2627 * anon_vma of the transparent hugepage can become the vma->anon_vma
2628 * local one as no other process may be mapping any of the subpages.
2630 * It would be more accurate to replace page_mapcount() with
2631 * page_trans_huge_mapcount(), however we only use
2632 * page_trans_huge_mapcount() in the copy-on-write faults where we
2633 * need full accuracy to avoid breaking page pinning, because
2634 * page_trans_huge_mapcount() is slower than page_mapcount().
2636 int page_trans_huge_mapcount(struct page *page, int *total_mapcount)
2638 int i, ret, _total_mapcount, mapcount;
2640 /* hugetlbfs shouldn't call it */
2641 VM_BUG_ON_PAGE(PageHuge(page), page);
2643 if (likely(!PageTransCompound(page))) {
2644 mapcount = atomic_read(&page->_mapcount) + 1;
2646 *total_mapcount = mapcount;
2650 page = compound_head(page);
2652 _total_mapcount = ret = 0;
2653 for (i = 0; i < HPAGE_PMD_NR; i++) {
2654 mapcount = atomic_read(&page[i]._mapcount) + 1;
2655 ret = max(ret, mapcount);
2656 _total_mapcount += mapcount;
2658 if (PageDoubleMap(page)) {
2660 _total_mapcount -= HPAGE_PMD_NR;
2662 mapcount = compound_mapcount(page);
2664 _total_mapcount += mapcount;
2666 *total_mapcount = _total_mapcount;
2670 /* Racy check whether the huge page can be split */
2671 bool can_split_huge_page(struct page *page, int *pextra_pins)
2675 /* Additional pins from page cache */
2677 extra_pins = PageSwapCache(page) ? HPAGE_PMD_NR : 0;
2679 extra_pins = HPAGE_PMD_NR;
2681 *pextra_pins = extra_pins;
2682 return total_mapcount(page) == page_count(page) - extra_pins - 1;
2686 * This function splits huge page into normal pages. @page can point to any
2687 * subpage of huge page to split. Split doesn't change the position of @page.
2689 * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
2690 * The huge page must be locked.
2692 * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
2694 * Both head page and tail pages will inherit mapping, flags, and so on from
2697 * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
2698 * they are not mapped.
2700 * Returns 0 if the hugepage is split successfully.
2701 * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
2704 int split_huge_page_to_list(struct page *page, struct list_head *list)
2706 struct page *head = compound_head(page);
2707 struct pglist_data *pgdata = NODE_DATA(page_to_nid(head));
2708 struct deferred_split *ds_queue = get_deferred_split_queue(page);
2709 struct anon_vma *anon_vma = NULL;
2710 struct address_space *mapping = NULL;
2711 int count, mapcount, extra_pins, ret;
2713 unsigned long flags;
2716 VM_BUG_ON_PAGE(is_huge_zero_page(page), page);
2717 VM_BUG_ON_PAGE(!PageLocked(page), page);
2718 VM_BUG_ON_PAGE(!PageCompound(page), page);
2720 if (PageWriteback(page))
2723 if (PageAnon(head)) {
2725 * The caller does not necessarily hold an mmap_sem that would
2726 * prevent the anon_vma disappearing so we first we take a
2727 * reference to it and then lock the anon_vma for write. This
2728 * is similar to page_lock_anon_vma_read except the write lock
2729 * is taken to serialise against parallel split or collapse
2732 anon_vma = page_get_anon_vma(head);
2739 anon_vma_lock_write(anon_vma);
2741 mapping = head->mapping;
2750 i_mmap_lock_read(mapping);
2753 *__split_huge_page() may need to trim off pages beyond EOF:
2754 * but on 32-bit, i_size_read() takes an irq-unsafe seqlock,
2755 * which cannot be nested inside the page tree lock. So note
2756 * end now: i_size itself may be changed at any moment, but
2757 * head page lock is good enough to serialize the trimming.
2759 end = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
2763 * Racy check if we can split the page, before unmap_page() will
2766 if (!can_split_huge_page(head, &extra_pins)) {
2771 mlocked = PageMlocked(page);
2773 VM_BUG_ON_PAGE(compound_mapcount(head), head);
2775 /* Make sure the page is not on per-CPU pagevec as it takes pin */
2779 /* prevent PageLRU to go away from under us, and freeze lru stats */
2780 spin_lock_irqsave(&pgdata->lru_lock, flags);
2783 XA_STATE(xas, &mapping->i_pages, page_index(head));
2786 * Check if the head page is present in page cache.
2787 * We assume all tail are present too, if head is there.
2789 xa_lock(&mapping->i_pages);
2790 if (xas_load(&xas) != head)
2794 /* Prevent deferred_split_scan() touching ->_refcount */
2795 spin_lock(&ds_queue->split_queue_lock);
2796 count = page_count(head);
2797 mapcount = total_mapcount(head);
2798 if (!mapcount && page_ref_freeze(head, 1 + extra_pins)) {
2799 if (!list_empty(page_deferred_list(head))) {
2800 ds_queue->split_queue_len--;
2801 list_del(page_deferred_list(head));
2804 __dec_node_page_state(page, NR_SHMEM_THPS);
2805 spin_unlock(&ds_queue->split_queue_lock);
2806 __split_huge_page(page, list, end, flags);
2807 if (PageSwapCache(head)) {
2808 swp_entry_t entry = { .val = page_private(head) };
2810 ret = split_swap_cluster(entry);
2814 if (IS_ENABLED(CONFIG_DEBUG_VM) && mapcount) {
2815 pr_alert("total_mapcount: %u, page_count(): %u\n",
2818 dump_page(head, NULL);
2819 dump_page(page, "total_mapcount(head) > 0");
2822 spin_unlock(&ds_queue->split_queue_lock);
2824 xa_unlock(&mapping->i_pages);
2825 spin_unlock_irqrestore(&pgdata->lru_lock, flags);
2832 anon_vma_unlock_write(anon_vma);
2833 put_anon_vma(anon_vma);
2836 i_mmap_unlock_read(mapping);
2838 count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
2842 void free_transhuge_page(struct page *page)
2844 struct deferred_split *ds_queue = get_deferred_split_queue(page);
2845 unsigned long flags;
2847 spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2848 if (!list_empty(page_deferred_list(page))) {
2849 ds_queue->split_queue_len--;
2850 list_del(page_deferred_list(page));
2852 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2853 free_compound_page(page);
2856 void deferred_split_huge_page(struct page *page)
2858 struct deferred_split *ds_queue = get_deferred_split_queue(page);
2860 struct mem_cgroup *memcg = compound_head(page)->mem_cgroup;
2862 unsigned long flags;
2864 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
2867 * The try_to_unmap() in page reclaim path might reach here too,
2868 * this may cause a race condition to corrupt deferred split queue.
2869 * And, if page reclaim is already handling the same page, it is
2870 * unnecessary to handle it again in shrinker.
2872 * Check PageSwapCache to determine if the page is being
2873 * handled by page reclaim since THP swap would add the page into
2874 * swap cache before calling try_to_unmap().
2876 if (PageSwapCache(page))
2879 spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2880 if (list_empty(page_deferred_list(page))) {
2881 count_vm_event(THP_DEFERRED_SPLIT_PAGE);
2882 list_add_tail(page_deferred_list(page), &ds_queue->split_queue);
2883 ds_queue->split_queue_len++;
2886 memcg_set_shrinker_bit(memcg, page_to_nid(page),
2887 deferred_split_shrinker.id);
2890 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2893 static unsigned long deferred_split_count(struct shrinker *shrink,
2894 struct shrink_control *sc)
2896 struct pglist_data *pgdata = NODE_DATA(sc->nid);
2897 struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
2901 ds_queue = &sc->memcg->deferred_split_queue;
2903 return READ_ONCE(ds_queue->split_queue_len);
2906 static unsigned long deferred_split_scan(struct shrinker *shrink,
2907 struct shrink_control *sc)
2909 struct pglist_data *pgdata = NODE_DATA(sc->nid);
2910 struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
2911 unsigned long flags;
2912 LIST_HEAD(list), *pos, *next;
2918 ds_queue = &sc->memcg->deferred_split_queue;
2921 spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2922 /* Take pin on all head pages to avoid freeing them under us */
2923 list_for_each_safe(pos, next, &ds_queue->split_queue) {
2924 page = list_entry((void *)pos, struct page, mapping);
2925 page = compound_head(page);
2926 if (get_page_unless_zero(page)) {
2927 list_move(page_deferred_list(page), &list);
2929 /* We lost race with put_compound_page() */
2930 list_del_init(page_deferred_list(page));
2931 ds_queue->split_queue_len--;
2933 if (!--sc->nr_to_scan)
2936 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2938 list_for_each_safe(pos, next, &list) {
2939 page = list_entry((void *)pos, struct page, mapping);
2940 if (!trylock_page(page))
2942 /* split_huge_page() removes page from list on success */
2943 if (!split_huge_page(page))
2950 spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2951 list_splice_tail(&list, &ds_queue->split_queue);
2952 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2955 * Stop shrinker if we didn't split any page, but the queue is empty.
2956 * This can happen if pages were freed under us.
2958 if (!split && list_empty(&ds_queue->split_queue))
2963 static struct shrinker deferred_split_shrinker = {
2964 .count_objects = deferred_split_count,
2965 .scan_objects = deferred_split_scan,
2966 .seeks = DEFAULT_SEEKS,
2967 .flags = SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE |
2971 #ifdef CONFIG_DEBUG_FS
2972 static int split_huge_pages_set(void *data, u64 val)
2976 unsigned long pfn, max_zone_pfn;
2977 unsigned long total = 0, split = 0;
2982 for_each_populated_zone(zone) {
2983 max_zone_pfn = zone_end_pfn(zone);
2984 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
2985 if (!pfn_valid(pfn))
2988 page = pfn_to_page(pfn);
2989 if (!get_page_unless_zero(page))
2992 if (zone != page_zone(page))
2995 if (!PageHead(page) || PageHuge(page) || !PageLRU(page))
3000 if (!split_huge_page(page))
3008 pr_info("%lu of %lu THP split\n", split, total);
3012 DEFINE_SIMPLE_ATTRIBUTE(split_huge_pages_fops, NULL, split_huge_pages_set,
3015 static int __init split_huge_pages_debugfs(void)
3017 debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
3018 &split_huge_pages_fops);
3021 late_initcall(split_huge_pages_debugfs);
3024 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
3025 void set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw,
3028 struct vm_area_struct *vma = pvmw->vma;
3029 struct mm_struct *mm = vma->vm_mm;
3030 unsigned long address = pvmw->address;
3035 if (!(pvmw->pmd && !pvmw->pte))
3038 flush_cache_range(vma, address, address + HPAGE_PMD_SIZE);
3039 pmdval = *pvmw->pmd;
3040 pmdp_invalidate(vma, address, pvmw->pmd);
3041 if (pmd_dirty(pmdval))
3042 set_page_dirty(page);
3043 entry = make_migration_entry(page, pmd_write(pmdval));
3044 pmdswp = swp_entry_to_pmd(entry);
3045 if (pmd_soft_dirty(pmdval))
3046 pmdswp = pmd_swp_mksoft_dirty(pmdswp);
3047 set_pmd_at(mm, address, pvmw->pmd, pmdswp);
3048 page_remove_rmap(page, true);
3052 void remove_migration_pmd(struct page_vma_mapped_walk *pvmw, struct page *new)
3054 struct vm_area_struct *vma = pvmw->vma;
3055 struct mm_struct *mm = vma->vm_mm;
3056 unsigned long address = pvmw->address;
3057 unsigned long mmun_start = address & HPAGE_PMD_MASK;
3061 if (!(pvmw->pmd && !pvmw->pte))
3064 entry = pmd_to_swp_entry(*pvmw->pmd);
3066 pmde = pmd_mkold(mk_huge_pmd(new, vma->vm_page_prot));
3067 if (pmd_swp_soft_dirty(*pvmw->pmd))
3068 pmde = pmd_mksoft_dirty(pmde);
3069 if (is_write_migration_entry(entry))
3070 pmde = maybe_pmd_mkwrite(pmde, vma);
3072 flush_cache_range(vma, mmun_start, mmun_start + HPAGE_PMD_SIZE);
3074 page_add_anon_rmap(new, vma, mmun_start, true);
3076 page_add_file_rmap(new, true);
3077 set_pmd_at(mm, mmun_start, pvmw->pmd, pmde);
3078 if ((vma->vm_flags & VM_LOCKED) && !PageDoubleMap(new))
3079 mlock_vma_page(new);
3080 update_mmu_cache_pmd(vma, address, pvmw->pmd);