Merge remote-tracking branch 'stable/linux-5.10.y' into rpi-5.10.y
[platform/kernel/linux-rpi.git] / mm / huge_memory.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  Copyright (C) 2009  Red Hat, Inc.
4  */
5
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7
8 #include <linux/mm.h>
9 #include <linux/sched.h>
10 #include <linux/sched/coredump.h>
11 #include <linux/sched/numa_balancing.h>
12 #include <linux/highmem.h>
13 #include <linux/hugetlb.h>
14 #include <linux/mmu_notifier.h>
15 #include <linux/rmap.h>
16 #include <linux/swap.h>
17 #include <linux/shrinker.h>
18 #include <linux/mm_inline.h>
19 #include <linux/swapops.h>
20 #include <linux/dax.h>
21 #include <linux/khugepaged.h>
22 #include <linux/freezer.h>
23 #include <linux/pfn_t.h>
24 #include <linux/mman.h>
25 #include <linux/memremap.h>
26 #include <linux/pagemap.h>
27 #include <linux/debugfs.h>
28 #include <linux/migrate.h>
29 #include <linux/hashtable.h>
30 #include <linux/userfaultfd_k.h>
31 #include <linux/page_idle.h>
32 #include <linux/shmem_fs.h>
33 #include <linux/oom.h>
34 #include <linux/numa.h>
35 #include <linux/page_owner.h>
36
37 #include <asm/tlb.h>
38 #include <asm/pgalloc.h>
39 #include "internal.h"
40
41 /*
42  * By default, transparent hugepage support is disabled in order to avoid
43  * risking an increased memory footprint for applications that are not
44  * guaranteed to benefit from it. When transparent hugepage support is
45  * enabled, it is for all mappings, and khugepaged scans all mappings.
46  * Defrag is invoked by khugepaged hugepage allocations and by page faults
47  * for all hugepage allocations.
48  */
49 unsigned long transparent_hugepage_flags __read_mostly =
50 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
51         (1<<TRANSPARENT_HUGEPAGE_FLAG)|
52 #endif
53 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
54         (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
55 #endif
56         (1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
57         (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
58         (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
59
60 static struct shrinker deferred_split_shrinker;
61
62 static atomic_t huge_zero_refcount;
63 struct page *huge_zero_page __read_mostly;
64
65 bool transparent_hugepage_enabled(struct vm_area_struct *vma)
66 {
67         /* The addr is used to check if the vma size fits */
68         unsigned long addr = (vma->vm_end & HPAGE_PMD_MASK) - HPAGE_PMD_SIZE;
69
70         if (!transhuge_vma_suitable(vma, addr))
71                 return false;
72         if (vma_is_anonymous(vma))
73                 return __transparent_hugepage_enabled(vma);
74         if (vma_is_shmem(vma))
75                 return shmem_huge_enabled(vma);
76
77         return false;
78 }
79
80 static struct page *get_huge_zero_page(void)
81 {
82         struct page *zero_page;
83 retry:
84         if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
85                 return READ_ONCE(huge_zero_page);
86
87         zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
88                         HPAGE_PMD_ORDER);
89         if (!zero_page) {
90                 count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
91                 return NULL;
92         }
93         count_vm_event(THP_ZERO_PAGE_ALLOC);
94         preempt_disable();
95         if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
96                 preempt_enable();
97                 __free_pages(zero_page, compound_order(zero_page));
98                 goto retry;
99         }
100
101         /* We take additional reference here. It will be put back by shrinker */
102         atomic_set(&huge_zero_refcount, 2);
103         preempt_enable();
104         return READ_ONCE(huge_zero_page);
105 }
106
107 static void put_huge_zero_page(void)
108 {
109         /*
110          * Counter should never go to zero here. Only shrinker can put
111          * last reference.
112          */
113         BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
114 }
115
116 struct page *mm_get_huge_zero_page(struct mm_struct *mm)
117 {
118         if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
119                 return READ_ONCE(huge_zero_page);
120
121         if (!get_huge_zero_page())
122                 return NULL;
123
124         if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
125                 put_huge_zero_page();
126
127         return READ_ONCE(huge_zero_page);
128 }
129
130 void mm_put_huge_zero_page(struct mm_struct *mm)
131 {
132         if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
133                 put_huge_zero_page();
134 }
135
136 static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
137                                         struct shrink_control *sc)
138 {
139         /* we can free zero page only if last reference remains */
140         return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
141 }
142
143 static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
144                                        struct shrink_control *sc)
145 {
146         if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
147                 struct page *zero_page = xchg(&huge_zero_page, NULL);
148                 BUG_ON(zero_page == NULL);
149                 __free_pages(zero_page, compound_order(zero_page));
150                 return HPAGE_PMD_NR;
151         }
152
153         return 0;
154 }
155
156 static struct shrinker huge_zero_page_shrinker = {
157         .count_objects = shrink_huge_zero_page_count,
158         .scan_objects = shrink_huge_zero_page_scan,
159         .seeks = DEFAULT_SEEKS,
160 };
161
162 #ifdef CONFIG_SYSFS
163 static ssize_t enabled_show(struct kobject *kobj,
164                             struct kobj_attribute *attr, char *buf)
165 {
166         if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
167                 return sprintf(buf, "[always] madvise never\n");
168         else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags))
169                 return sprintf(buf, "always [madvise] never\n");
170         else
171                 return sprintf(buf, "always madvise [never]\n");
172 }
173
174 static ssize_t enabled_store(struct kobject *kobj,
175                              struct kobj_attribute *attr,
176                              const char *buf, size_t count)
177 {
178         ssize_t ret = count;
179
180         if (sysfs_streq(buf, "always")) {
181                 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
182                 set_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
183         } else if (sysfs_streq(buf, "madvise")) {
184                 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
185                 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
186         } else if (sysfs_streq(buf, "never")) {
187                 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
188                 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
189         } else
190                 ret = -EINVAL;
191
192         if (ret > 0) {
193                 int err = start_stop_khugepaged();
194                 if (err)
195                         ret = err;
196         }
197         return ret;
198 }
199 static struct kobj_attribute enabled_attr =
200         __ATTR(enabled, 0644, enabled_show, enabled_store);
201
202 ssize_t single_hugepage_flag_show(struct kobject *kobj,
203                                 struct kobj_attribute *attr, char *buf,
204                                 enum transparent_hugepage_flag flag)
205 {
206         return sprintf(buf, "%d\n",
207                        !!test_bit(flag, &transparent_hugepage_flags));
208 }
209
210 ssize_t single_hugepage_flag_store(struct kobject *kobj,
211                                  struct kobj_attribute *attr,
212                                  const char *buf, size_t count,
213                                  enum transparent_hugepage_flag flag)
214 {
215         unsigned long value;
216         int ret;
217
218         ret = kstrtoul(buf, 10, &value);
219         if (ret < 0)
220                 return ret;
221         if (value > 1)
222                 return -EINVAL;
223
224         if (value)
225                 set_bit(flag, &transparent_hugepage_flags);
226         else
227                 clear_bit(flag, &transparent_hugepage_flags);
228
229         return count;
230 }
231
232 static ssize_t defrag_show(struct kobject *kobj,
233                            struct kobj_attribute *attr, char *buf)
234 {
235         if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
236                 return sprintf(buf, "[always] defer defer+madvise madvise never\n");
237         if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
238                 return sprintf(buf, "always [defer] defer+madvise madvise never\n");
239         if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
240                 return sprintf(buf, "always defer [defer+madvise] madvise never\n");
241         if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
242                 return sprintf(buf, "always defer defer+madvise [madvise] never\n");
243         return sprintf(buf, "always defer defer+madvise madvise [never]\n");
244 }
245
246 static ssize_t defrag_store(struct kobject *kobj,
247                             struct kobj_attribute *attr,
248                             const char *buf, size_t count)
249 {
250         if (sysfs_streq(buf, "always")) {
251                 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
252                 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
253                 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
254                 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
255         } else if (sysfs_streq(buf, "defer+madvise")) {
256                 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
257                 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
258                 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
259                 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
260         } else if (sysfs_streq(buf, "defer")) {
261                 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
262                 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
263                 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
264                 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
265         } else if (sysfs_streq(buf, "madvise")) {
266                 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
267                 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
268                 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
269                 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
270         } else if (sysfs_streq(buf, "never")) {
271                 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
272                 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
273                 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
274                 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
275         } else
276                 return -EINVAL;
277
278         return count;
279 }
280 static struct kobj_attribute defrag_attr =
281         __ATTR(defrag, 0644, defrag_show, defrag_store);
282
283 static ssize_t use_zero_page_show(struct kobject *kobj,
284                 struct kobj_attribute *attr, char *buf)
285 {
286         return single_hugepage_flag_show(kobj, attr, buf,
287                                 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
288 }
289 static ssize_t use_zero_page_store(struct kobject *kobj,
290                 struct kobj_attribute *attr, const char *buf, size_t count)
291 {
292         return single_hugepage_flag_store(kobj, attr, buf, count,
293                                  TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
294 }
295 static struct kobj_attribute use_zero_page_attr =
296         __ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
297
298 static ssize_t hpage_pmd_size_show(struct kobject *kobj,
299                 struct kobj_attribute *attr, char *buf)
300 {
301         return sprintf(buf, "%lu\n", HPAGE_PMD_SIZE);
302 }
303 static struct kobj_attribute hpage_pmd_size_attr =
304         __ATTR_RO(hpage_pmd_size);
305
306 static struct attribute *hugepage_attr[] = {
307         &enabled_attr.attr,
308         &defrag_attr.attr,
309         &use_zero_page_attr.attr,
310         &hpage_pmd_size_attr.attr,
311 #ifdef CONFIG_SHMEM
312         &shmem_enabled_attr.attr,
313 #endif
314         NULL,
315 };
316
317 static const struct attribute_group hugepage_attr_group = {
318         .attrs = hugepage_attr,
319 };
320
321 static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
322 {
323         int err;
324
325         *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
326         if (unlikely(!*hugepage_kobj)) {
327                 pr_err("failed to create transparent hugepage kobject\n");
328                 return -ENOMEM;
329         }
330
331         err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
332         if (err) {
333                 pr_err("failed to register transparent hugepage group\n");
334                 goto delete_obj;
335         }
336
337         err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
338         if (err) {
339                 pr_err("failed to register transparent hugepage group\n");
340                 goto remove_hp_group;
341         }
342
343         return 0;
344
345 remove_hp_group:
346         sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
347 delete_obj:
348         kobject_put(*hugepage_kobj);
349         return err;
350 }
351
352 static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
353 {
354         sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
355         sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
356         kobject_put(hugepage_kobj);
357 }
358 #else
359 static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
360 {
361         return 0;
362 }
363
364 static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
365 {
366 }
367 #endif /* CONFIG_SYSFS */
368
369 static int __init hugepage_init(void)
370 {
371         int err;
372         struct kobject *hugepage_kobj;
373
374         if (!has_transparent_hugepage()) {
375                 transparent_hugepage_flags = 0;
376                 return -EINVAL;
377         }
378
379         /*
380          * hugepages can't be allocated by the buddy allocator
381          */
382         MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER);
383         /*
384          * we use page->mapping and page->index in second tail page
385          * as list_head: assuming THP order >= 2
386          */
387         MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);
388
389         err = hugepage_init_sysfs(&hugepage_kobj);
390         if (err)
391                 goto err_sysfs;
392
393         err = khugepaged_init();
394         if (err)
395                 goto err_slab;
396
397         err = register_shrinker(&huge_zero_page_shrinker);
398         if (err)
399                 goto err_hzp_shrinker;
400         err = register_shrinker(&deferred_split_shrinker);
401         if (err)
402                 goto err_split_shrinker;
403
404         /*
405          * By default disable transparent hugepages on smaller systems,
406          * where the extra memory used could hurt more than TLB overhead
407          * is likely to save.  The admin can still enable it through /sys.
408          */
409         if (totalram_pages() < (512 << (20 - PAGE_SHIFT))) {
410                 transparent_hugepage_flags = 0;
411                 return 0;
412         }
413
414         err = start_stop_khugepaged();
415         if (err)
416                 goto err_khugepaged;
417
418         return 0;
419 err_khugepaged:
420         unregister_shrinker(&deferred_split_shrinker);
421 err_split_shrinker:
422         unregister_shrinker(&huge_zero_page_shrinker);
423 err_hzp_shrinker:
424         khugepaged_destroy();
425 err_slab:
426         hugepage_exit_sysfs(hugepage_kobj);
427 err_sysfs:
428         return err;
429 }
430 subsys_initcall(hugepage_init);
431
432 static int __init setup_transparent_hugepage(char *str)
433 {
434         int ret = 0;
435         if (!str)
436                 goto out;
437         if (!strcmp(str, "always")) {
438                 set_bit(TRANSPARENT_HUGEPAGE_FLAG,
439                         &transparent_hugepage_flags);
440                 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
441                           &transparent_hugepage_flags);
442                 ret = 1;
443         } else if (!strcmp(str, "madvise")) {
444                 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
445                           &transparent_hugepage_flags);
446                 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
447                         &transparent_hugepage_flags);
448                 ret = 1;
449         } else if (!strcmp(str, "never")) {
450                 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
451                           &transparent_hugepage_flags);
452                 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
453                           &transparent_hugepage_flags);
454                 ret = 1;
455         }
456 out:
457         if (!ret)
458                 pr_warn("transparent_hugepage= cannot parse, ignored\n");
459         return ret;
460 }
461 __setup("transparent_hugepage=", setup_transparent_hugepage);
462
463 pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
464 {
465         if (likely(vma->vm_flags & VM_WRITE))
466                 pmd = pmd_mkwrite(pmd);
467         return pmd;
468 }
469
470 #ifdef CONFIG_MEMCG
471 static inline struct deferred_split *get_deferred_split_queue(struct page *page)
472 {
473         struct mem_cgroup *memcg = compound_head(page)->mem_cgroup;
474         struct pglist_data *pgdat = NODE_DATA(page_to_nid(page));
475
476         if (memcg)
477                 return &memcg->deferred_split_queue;
478         else
479                 return &pgdat->deferred_split_queue;
480 }
481 #else
482 static inline struct deferred_split *get_deferred_split_queue(struct page *page)
483 {
484         struct pglist_data *pgdat = NODE_DATA(page_to_nid(page));
485
486         return &pgdat->deferred_split_queue;
487 }
488 #endif
489
490 void prep_transhuge_page(struct page *page)
491 {
492         /*
493          * we use page->mapping and page->indexlru in second tail page
494          * as list_head: assuming THP order >= 2
495          */
496
497         INIT_LIST_HEAD(page_deferred_list(page));
498         set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR);
499 }
500
501 bool is_transparent_hugepage(struct page *page)
502 {
503         if (!PageCompound(page))
504                 return false;
505
506         page = compound_head(page);
507         return is_huge_zero_page(page) ||
508                page[1].compound_dtor == TRANSHUGE_PAGE_DTOR;
509 }
510 EXPORT_SYMBOL_GPL(is_transparent_hugepage);
511
512 static unsigned long __thp_get_unmapped_area(struct file *filp,
513                 unsigned long addr, unsigned long len,
514                 loff_t off, unsigned long flags, unsigned long size)
515 {
516         loff_t off_end = off + len;
517         loff_t off_align = round_up(off, size);
518         unsigned long len_pad, ret;
519
520         if (off_end <= off_align || (off_end - off_align) < size)
521                 return 0;
522
523         len_pad = len + size;
524         if (len_pad < len || (off + len_pad) < off)
525                 return 0;
526
527         ret = current->mm->get_unmapped_area(filp, addr, len_pad,
528                                               off >> PAGE_SHIFT, flags);
529
530         /*
531          * The failure might be due to length padding. The caller will retry
532          * without the padding.
533          */
534         if (IS_ERR_VALUE(ret))
535                 return 0;
536
537         /*
538          * Do not try to align to THP boundary if allocation at the address
539          * hint succeeds.
540          */
541         if (ret == addr)
542                 return addr;
543
544         ret += (off - ret) & (size - 1);
545         return ret;
546 }
547
548 unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr,
549                 unsigned long len, unsigned long pgoff, unsigned long flags)
550 {
551         unsigned long ret;
552         loff_t off = (loff_t)pgoff << PAGE_SHIFT;
553
554         if (!IS_DAX(filp->f_mapping->host) || !IS_ENABLED(CONFIG_FS_DAX_PMD))
555                 goto out;
556
557         ret = __thp_get_unmapped_area(filp, addr, len, off, flags, PMD_SIZE);
558         if (ret)
559                 return ret;
560 out:
561         return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags);
562 }
563 EXPORT_SYMBOL_GPL(thp_get_unmapped_area);
564
565 static vm_fault_t __do_huge_pmd_anonymous_page(struct vm_fault *vmf,
566                         struct page *page, gfp_t gfp)
567 {
568         struct vm_area_struct *vma = vmf->vma;
569         pgtable_t pgtable;
570         unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
571         vm_fault_t ret = 0;
572
573         VM_BUG_ON_PAGE(!PageCompound(page), page);
574
575         if (mem_cgroup_charge(page, vma->vm_mm, gfp)) {
576                 put_page(page);
577                 count_vm_event(THP_FAULT_FALLBACK);
578                 count_vm_event(THP_FAULT_FALLBACK_CHARGE);
579                 return VM_FAULT_FALLBACK;
580         }
581         cgroup_throttle_swaprate(page, gfp);
582
583         pgtable = pte_alloc_one(vma->vm_mm);
584         if (unlikely(!pgtable)) {
585                 ret = VM_FAULT_OOM;
586                 goto release;
587         }
588
589         clear_huge_page(page, vmf->address, HPAGE_PMD_NR);
590         /*
591          * The memory barrier inside __SetPageUptodate makes sure that
592          * clear_huge_page writes become visible before the set_pmd_at()
593          * write.
594          */
595         __SetPageUptodate(page);
596
597         vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
598         if (unlikely(!pmd_none(*vmf->pmd))) {
599                 goto unlock_release;
600         } else {
601                 pmd_t entry;
602
603                 ret = check_stable_address_space(vma->vm_mm);
604                 if (ret)
605                         goto unlock_release;
606
607                 /* Deliver the page fault to userland */
608                 if (userfaultfd_missing(vma)) {
609                         vm_fault_t ret2;
610
611                         spin_unlock(vmf->ptl);
612                         put_page(page);
613                         pte_free(vma->vm_mm, pgtable);
614                         ret2 = handle_userfault(vmf, VM_UFFD_MISSING);
615                         VM_BUG_ON(ret2 & VM_FAULT_FALLBACK);
616                         return ret2;
617                 }
618
619                 entry = mk_huge_pmd(page, vma->vm_page_prot);
620                 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
621                 page_add_new_anon_rmap(page, vma, haddr, true);
622                 lru_cache_add_inactive_or_unevictable(page, vma);
623                 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
624                 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
625                 add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
626                 mm_inc_nr_ptes(vma->vm_mm);
627                 spin_unlock(vmf->ptl);
628                 count_vm_event(THP_FAULT_ALLOC);
629                 count_memcg_event_mm(vma->vm_mm, THP_FAULT_ALLOC);
630         }
631
632         return 0;
633 unlock_release:
634         spin_unlock(vmf->ptl);
635 release:
636         if (pgtable)
637                 pte_free(vma->vm_mm, pgtable);
638         put_page(page);
639         return ret;
640
641 }
642
643 /*
644  * always: directly stall for all thp allocations
645  * defer: wake kswapd and fail if not immediately available
646  * defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise
647  *                fail if not immediately available
648  * madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately
649  *          available
650  * never: never stall for any thp allocation
651  */
652 static inline gfp_t alloc_hugepage_direct_gfpmask(struct vm_area_struct *vma)
653 {
654         const bool vma_madvised = !!(vma->vm_flags & VM_HUGEPAGE);
655
656         /* Always do synchronous compaction */
657         if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
658                 return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY);
659
660         /* Kick kcompactd and fail quickly */
661         if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
662                 return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM;
663
664         /* Synchronous compaction if madvised, otherwise kick kcompactd */
665         if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
666                 return GFP_TRANSHUGE_LIGHT |
667                         (vma_madvised ? __GFP_DIRECT_RECLAIM :
668                                         __GFP_KSWAPD_RECLAIM);
669
670         /* Only do synchronous compaction if madvised */
671         if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
672                 return GFP_TRANSHUGE_LIGHT |
673                        (vma_madvised ? __GFP_DIRECT_RECLAIM : 0);
674
675         return GFP_TRANSHUGE_LIGHT;
676 }
677
678 /* Caller must hold page table lock. */
679 static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
680                 struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
681                 struct page *zero_page)
682 {
683         pmd_t entry;
684         if (!pmd_none(*pmd))
685                 return false;
686         entry = mk_pmd(zero_page, vma->vm_page_prot);
687         entry = pmd_mkhuge(entry);
688         if (pgtable)
689                 pgtable_trans_huge_deposit(mm, pmd, pgtable);
690         set_pmd_at(mm, haddr, pmd, entry);
691         mm_inc_nr_ptes(mm);
692         return true;
693 }
694
695 vm_fault_t do_huge_pmd_anonymous_page(struct vm_fault *vmf)
696 {
697         struct vm_area_struct *vma = vmf->vma;
698         gfp_t gfp;
699         struct page *page;
700         unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
701
702         if (!transhuge_vma_suitable(vma, haddr))
703                 return VM_FAULT_FALLBACK;
704         if (unlikely(anon_vma_prepare(vma)))
705                 return VM_FAULT_OOM;
706         if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
707                 return VM_FAULT_OOM;
708         if (!(vmf->flags & FAULT_FLAG_WRITE) &&
709                         !mm_forbids_zeropage(vma->vm_mm) &&
710                         transparent_hugepage_use_zero_page()) {
711                 pgtable_t pgtable;
712                 struct page *zero_page;
713                 vm_fault_t ret;
714                 pgtable = pte_alloc_one(vma->vm_mm);
715                 if (unlikely(!pgtable))
716                         return VM_FAULT_OOM;
717                 zero_page = mm_get_huge_zero_page(vma->vm_mm);
718                 if (unlikely(!zero_page)) {
719                         pte_free(vma->vm_mm, pgtable);
720                         count_vm_event(THP_FAULT_FALLBACK);
721                         return VM_FAULT_FALLBACK;
722                 }
723                 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
724                 ret = 0;
725                 if (pmd_none(*vmf->pmd)) {
726                         ret = check_stable_address_space(vma->vm_mm);
727                         if (ret) {
728                                 spin_unlock(vmf->ptl);
729                                 pte_free(vma->vm_mm, pgtable);
730                         } else if (userfaultfd_missing(vma)) {
731                                 spin_unlock(vmf->ptl);
732                                 pte_free(vma->vm_mm, pgtable);
733                                 ret = handle_userfault(vmf, VM_UFFD_MISSING);
734                                 VM_BUG_ON(ret & VM_FAULT_FALLBACK);
735                         } else {
736                                 set_huge_zero_page(pgtable, vma->vm_mm, vma,
737                                                    haddr, vmf->pmd, zero_page);
738                                 spin_unlock(vmf->ptl);
739                         }
740                 } else {
741                         spin_unlock(vmf->ptl);
742                         pte_free(vma->vm_mm, pgtable);
743                 }
744                 return ret;
745         }
746         gfp = alloc_hugepage_direct_gfpmask(vma);
747         page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER);
748         if (unlikely(!page)) {
749                 count_vm_event(THP_FAULT_FALLBACK);
750                 return VM_FAULT_FALLBACK;
751         }
752         prep_transhuge_page(page);
753         return __do_huge_pmd_anonymous_page(vmf, page, gfp);
754 }
755
756 static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
757                 pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write,
758                 pgtable_t pgtable)
759 {
760         struct mm_struct *mm = vma->vm_mm;
761         pmd_t entry;
762         spinlock_t *ptl;
763
764         ptl = pmd_lock(mm, pmd);
765         if (!pmd_none(*pmd)) {
766                 if (write) {
767                         if (pmd_pfn(*pmd) != pfn_t_to_pfn(pfn)) {
768                                 WARN_ON_ONCE(!is_huge_zero_pmd(*pmd));
769                                 goto out_unlock;
770                         }
771                         entry = pmd_mkyoung(*pmd);
772                         entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
773                         if (pmdp_set_access_flags(vma, addr, pmd, entry, 1))
774                                 update_mmu_cache_pmd(vma, addr, pmd);
775                 }
776
777                 goto out_unlock;
778         }
779
780         entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
781         if (pfn_t_devmap(pfn))
782                 entry = pmd_mkdevmap(entry);
783         if (write) {
784                 entry = pmd_mkyoung(pmd_mkdirty(entry));
785                 entry = maybe_pmd_mkwrite(entry, vma);
786         }
787
788         if (pgtable) {
789                 pgtable_trans_huge_deposit(mm, pmd, pgtable);
790                 mm_inc_nr_ptes(mm);
791                 pgtable = NULL;
792         }
793
794         set_pmd_at(mm, addr, pmd, entry);
795         update_mmu_cache_pmd(vma, addr, pmd);
796
797 out_unlock:
798         spin_unlock(ptl);
799         if (pgtable)
800                 pte_free(mm, pgtable);
801 }
802
803 /**
804  * vmf_insert_pfn_pmd_prot - insert a pmd size pfn
805  * @vmf: Structure describing the fault
806  * @pfn: pfn to insert
807  * @pgprot: page protection to use
808  * @write: whether it's a write fault
809  *
810  * Insert a pmd size pfn. See vmf_insert_pfn() for additional info and
811  * also consult the vmf_insert_mixed_prot() documentation when
812  * @pgprot != @vmf->vma->vm_page_prot.
813  *
814  * Return: vm_fault_t value.
815  */
816 vm_fault_t vmf_insert_pfn_pmd_prot(struct vm_fault *vmf, pfn_t pfn,
817                                    pgprot_t pgprot, bool write)
818 {
819         unsigned long addr = vmf->address & PMD_MASK;
820         struct vm_area_struct *vma = vmf->vma;
821         pgtable_t pgtable = NULL;
822
823         /*
824          * If we had pmd_special, we could avoid all these restrictions,
825          * but we need to be consistent with PTEs and architectures that
826          * can't support a 'special' bit.
827          */
828         BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
829                         !pfn_t_devmap(pfn));
830         BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
831                                                 (VM_PFNMAP|VM_MIXEDMAP));
832         BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
833
834         if (addr < vma->vm_start || addr >= vma->vm_end)
835                 return VM_FAULT_SIGBUS;
836
837         if (arch_needs_pgtable_deposit()) {
838                 pgtable = pte_alloc_one(vma->vm_mm);
839                 if (!pgtable)
840                         return VM_FAULT_OOM;
841         }
842
843         track_pfn_insert(vma, &pgprot, pfn);
844
845         insert_pfn_pmd(vma, addr, vmf->pmd, pfn, pgprot, write, pgtable);
846         return VM_FAULT_NOPAGE;
847 }
848 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd_prot);
849
850 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
851 static pud_t maybe_pud_mkwrite(pud_t pud, struct vm_area_struct *vma)
852 {
853         if (likely(vma->vm_flags & VM_WRITE))
854                 pud = pud_mkwrite(pud);
855         return pud;
856 }
857
858 static void insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
859                 pud_t *pud, pfn_t pfn, pgprot_t prot, bool write)
860 {
861         struct mm_struct *mm = vma->vm_mm;
862         pud_t entry;
863         spinlock_t *ptl;
864
865         ptl = pud_lock(mm, pud);
866         if (!pud_none(*pud)) {
867                 if (write) {
868                         if (pud_pfn(*pud) != pfn_t_to_pfn(pfn)) {
869                                 WARN_ON_ONCE(!is_huge_zero_pud(*pud));
870                                 goto out_unlock;
871                         }
872                         entry = pud_mkyoung(*pud);
873                         entry = maybe_pud_mkwrite(pud_mkdirty(entry), vma);
874                         if (pudp_set_access_flags(vma, addr, pud, entry, 1))
875                                 update_mmu_cache_pud(vma, addr, pud);
876                 }
877                 goto out_unlock;
878         }
879
880         entry = pud_mkhuge(pfn_t_pud(pfn, prot));
881         if (pfn_t_devmap(pfn))
882                 entry = pud_mkdevmap(entry);
883         if (write) {
884                 entry = pud_mkyoung(pud_mkdirty(entry));
885                 entry = maybe_pud_mkwrite(entry, vma);
886         }
887         set_pud_at(mm, addr, pud, entry);
888         update_mmu_cache_pud(vma, addr, pud);
889
890 out_unlock:
891         spin_unlock(ptl);
892 }
893
894 /**
895  * vmf_insert_pfn_pud_prot - insert a pud size pfn
896  * @vmf: Structure describing the fault
897  * @pfn: pfn to insert
898  * @pgprot: page protection to use
899  * @write: whether it's a write fault
900  *
901  * Insert a pud size pfn. See vmf_insert_pfn() for additional info and
902  * also consult the vmf_insert_mixed_prot() documentation when
903  * @pgprot != @vmf->vma->vm_page_prot.
904  *
905  * Return: vm_fault_t value.
906  */
907 vm_fault_t vmf_insert_pfn_pud_prot(struct vm_fault *vmf, pfn_t pfn,
908                                    pgprot_t pgprot, bool write)
909 {
910         unsigned long addr = vmf->address & PUD_MASK;
911         struct vm_area_struct *vma = vmf->vma;
912
913         /*
914          * If we had pud_special, we could avoid all these restrictions,
915          * but we need to be consistent with PTEs and architectures that
916          * can't support a 'special' bit.
917          */
918         BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
919                         !pfn_t_devmap(pfn));
920         BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
921                                                 (VM_PFNMAP|VM_MIXEDMAP));
922         BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
923
924         if (addr < vma->vm_start || addr >= vma->vm_end)
925                 return VM_FAULT_SIGBUS;
926
927         track_pfn_insert(vma, &pgprot, pfn);
928
929         insert_pfn_pud(vma, addr, vmf->pud, pfn, pgprot, write);
930         return VM_FAULT_NOPAGE;
931 }
932 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud_prot);
933 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
934
935 static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
936                 pmd_t *pmd, int flags)
937 {
938         pmd_t _pmd;
939
940         _pmd = pmd_mkyoung(*pmd);
941         if (flags & FOLL_WRITE)
942                 _pmd = pmd_mkdirty(_pmd);
943         if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
944                                 pmd, _pmd, flags & FOLL_WRITE))
945                 update_mmu_cache_pmd(vma, addr, pmd);
946 }
947
948 struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
949                 pmd_t *pmd, int flags, struct dev_pagemap **pgmap)
950 {
951         unsigned long pfn = pmd_pfn(*pmd);
952         struct mm_struct *mm = vma->vm_mm;
953         struct page *page;
954
955         assert_spin_locked(pmd_lockptr(mm, pmd));
956
957         /*
958          * When we COW a devmap PMD entry, we split it into PTEs, so we should
959          * not be in this function with `flags & FOLL_COW` set.
960          */
961         WARN_ONCE(flags & FOLL_COW, "mm: In follow_devmap_pmd with FOLL_COW set");
962
963         /* FOLL_GET and FOLL_PIN are mutually exclusive. */
964         if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
965                          (FOLL_PIN | FOLL_GET)))
966                 return NULL;
967
968         if (flags & FOLL_WRITE && !pmd_write(*pmd))
969                 return NULL;
970
971         if (pmd_present(*pmd) && pmd_devmap(*pmd))
972                 /* pass */;
973         else
974                 return NULL;
975
976         if (flags & FOLL_TOUCH)
977                 touch_pmd(vma, addr, pmd, flags);
978
979         /*
980          * device mapped pages can only be returned if the
981          * caller will manage the page reference count.
982          */
983         if (!(flags & (FOLL_GET | FOLL_PIN)))
984                 return ERR_PTR(-EEXIST);
985
986         pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
987         *pgmap = get_dev_pagemap(pfn, *pgmap);
988         if (!*pgmap)
989                 return ERR_PTR(-EFAULT);
990         page = pfn_to_page(pfn);
991         if (!try_grab_page(page, flags))
992                 page = ERR_PTR(-ENOMEM);
993
994         return page;
995 }
996
997 int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
998                   pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
999                   struct vm_area_struct *vma)
1000 {
1001         spinlock_t *dst_ptl, *src_ptl;
1002         struct page *src_page;
1003         pmd_t pmd;
1004         pgtable_t pgtable = NULL;
1005         int ret = -ENOMEM;
1006
1007         /* Skip if can be re-fill on fault */
1008         if (!vma_is_anonymous(vma))
1009                 return 0;
1010
1011         pgtable = pte_alloc_one(dst_mm);
1012         if (unlikely(!pgtable))
1013                 goto out;
1014
1015         dst_ptl = pmd_lock(dst_mm, dst_pmd);
1016         src_ptl = pmd_lockptr(src_mm, src_pmd);
1017         spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1018
1019         ret = -EAGAIN;
1020         pmd = *src_pmd;
1021
1022         /*
1023          * Make sure the _PAGE_UFFD_WP bit is cleared if the new VMA
1024          * does not have the VM_UFFD_WP, which means that the uffd
1025          * fork event is not enabled.
1026          */
1027         if (!(vma->vm_flags & VM_UFFD_WP))
1028                 pmd = pmd_clear_uffd_wp(pmd);
1029
1030 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1031         if (unlikely(is_swap_pmd(pmd))) {
1032                 swp_entry_t entry = pmd_to_swp_entry(pmd);
1033
1034                 VM_BUG_ON(!is_pmd_migration_entry(pmd));
1035                 if (is_write_migration_entry(entry)) {
1036                         make_migration_entry_read(&entry);
1037                         pmd = swp_entry_to_pmd(entry);
1038                         if (pmd_swp_soft_dirty(*src_pmd))
1039                                 pmd = pmd_swp_mksoft_dirty(pmd);
1040                         set_pmd_at(src_mm, addr, src_pmd, pmd);
1041                 }
1042                 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1043                 mm_inc_nr_ptes(dst_mm);
1044                 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1045                 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
1046                 ret = 0;
1047                 goto out_unlock;
1048         }
1049 #endif
1050
1051         if (unlikely(!pmd_trans_huge(pmd))) {
1052                 pte_free(dst_mm, pgtable);
1053                 goto out_unlock;
1054         }
1055         /*
1056          * When page table lock is held, the huge zero pmd should not be
1057          * under splitting since we don't split the page itself, only pmd to
1058          * a page table.
1059          */
1060         if (is_huge_zero_pmd(pmd)) {
1061                 struct page *zero_page;
1062                 /*
1063                  * get_huge_zero_page() will never allocate a new page here,
1064                  * since we already have a zero page to copy. It just takes a
1065                  * reference.
1066                  */
1067                 zero_page = mm_get_huge_zero_page(dst_mm);
1068                 set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
1069                                 zero_page);
1070                 ret = 0;
1071                 goto out_unlock;
1072         }
1073
1074         src_page = pmd_page(pmd);
1075         VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
1076
1077         /*
1078          * If this page is a potentially pinned page, split and retry the fault
1079          * with smaller page size.  Normally this should not happen because the
1080          * userspace should use MADV_DONTFORK upon pinned regions.  This is a
1081          * best effort that the pinned pages won't be replaced by another
1082          * random page during the coming copy-on-write.
1083          */
1084         if (unlikely(is_cow_mapping(vma->vm_flags) &&
1085                      atomic_read(&src_mm->has_pinned) &&
1086                      page_maybe_dma_pinned(src_page))) {
1087                 pte_free(dst_mm, pgtable);
1088                 spin_unlock(src_ptl);
1089                 spin_unlock(dst_ptl);
1090                 __split_huge_pmd(vma, src_pmd, addr, false, NULL);
1091                 return -EAGAIN;
1092         }
1093
1094         get_page(src_page);
1095         page_dup_rmap(src_page, true);
1096         add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1097         mm_inc_nr_ptes(dst_mm);
1098         pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1099
1100         pmdp_set_wrprotect(src_mm, addr, src_pmd);
1101         pmd = pmd_mkold(pmd_wrprotect(pmd));
1102         set_pmd_at(dst_mm, addr, dst_pmd, pmd);
1103
1104         ret = 0;
1105 out_unlock:
1106         spin_unlock(src_ptl);
1107         spin_unlock(dst_ptl);
1108 out:
1109         return ret;
1110 }
1111
1112 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1113 static void touch_pud(struct vm_area_struct *vma, unsigned long addr,
1114                 pud_t *pud, int flags)
1115 {
1116         pud_t _pud;
1117
1118         _pud = pud_mkyoung(*pud);
1119         if (flags & FOLL_WRITE)
1120                 _pud = pud_mkdirty(_pud);
1121         if (pudp_set_access_flags(vma, addr & HPAGE_PUD_MASK,
1122                                 pud, _pud, flags & FOLL_WRITE))
1123                 update_mmu_cache_pud(vma, addr, pud);
1124 }
1125
1126 struct page *follow_devmap_pud(struct vm_area_struct *vma, unsigned long addr,
1127                 pud_t *pud, int flags, struct dev_pagemap **pgmap)
1128 {
1129         unsigned long pfn = pud_pfn(*pud);
1130         struct mm_struct *mm = vma->vm_mm;
1131         struct page *page;
1132
1133         assert_spin_locked(pud_lockptr(mm, pud));
1134
1135         if (flags & FOLL_WRITE && !pud_write(*pud))
1136                 return NULL;
1137
1138         /* FOLL_GET and FOLL_PIN are mutually exclusive. */
1139         if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
1140                          (FOLL_PIN | FOLL_GET)))
1141                 return NULL;
1142
1143         if (pud_present(*pud) && pud_devmap(*pud))
1144                 /* pass */;
1145         else
1146                 return NULL;
1147
1148         if (flags & FOLL_TOUCH)
1149                 touch_pud(vma, addr, pud, flags);
1150
1151         /*
1152          * device mapped pages can only be returned if the
1153          * caller will manage the page reference count.
1154          *
1155          * At least one of FOLL_GET | FOLL_PIN must be set, so assert that here:
1156          */
1157         if (!(flags & (FOLL_GET | FOLL_PIN)))
1158                 return ERR_PTR(-EEXIST);
1159
1160         pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT;
1161         *pgmap = get_dev_pagemap(pfn, *pgmap);
1162         if (!*pgmap)
1163                 return ERR_PTR(-EFAULT);
1164         page = pfn_to_page(pfn);
1165         if (!try_grab_page(page, flags))
1166                 page = ERR_PTR(-ENOMEM);
1167
1168         return page;
1169 }
1170
1171 int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1172                   pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1173                   struct vm_area_struct *vma)
1174 {
1175         spinlock_t *dst_ptl, *src_ptl;
1176         pud_t pud;
1177         int ret;
1178
1179         dst_ptl = pud_lock(dst_mm, dst_pud);
1180         src_ptl = pud_lockptr(src_mm, src_pud);
1181         spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1182
1183         ret = -EAGAIN;
1184         pud = *src_pud;
1185         if (unlikely(!pud_trans_huge(pud) && !pud_devmap(pud)))
1186                 goto out_unlock;
1187
1188         /*
1189          * When page table lock is held, the huge zero pud should not be
1190          * under splitting since we don't split the page itself, only pud to
1191          * a page table.
1192          */
1193         if (is_huge_zero_pud(pud)) {
1194                 /* No huge zero pud yet */
1195         }
1196
1197         /* Please refer to comments in copy_huge_pmd() */
1198         if (unlikely(is_cow_mapping(vma->vm_flags) &&
1199                      atomic_read(&src_mm->has_pinned) &&
1200                      page_maybe_dma_pinned(pud_page(pud)))) {
1201                 spin_unlock(src_ptl);
1202                 spin_unlock(dst_ptl);
1203                 __split_huge_pud(vma, src_pud, addr);
1204                 return -EAGAIN;
1205         }
1206
1207         pudp_set_wrprotect(src_mm, addr, src_pud);
1208         pud = pud_mkold(pud_wrprotect(pud));
1209         set_pud_at(dst_mm, addr, dst_pud, pud);
1210
1211         ret = 0;
1212 out_unlock:
1213         spin_unlock(src_ptl);
1214         spin_unlock(dst_ptl);
1215         return ret;
1216 }
1217
1218 void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud)
1219 {
1220         pud_t entry;
1221         unsigned long haddr;
1222         bool write = vmf->flags & FAULT_FLAG_WRITE;
1223
1224         vmf->ptl = pud_lock(vmf->vma->vm_mm, vmf->pud);
1225         if (unlikely(!pud_same(*vmf->pud, orig_pud)))
1226                 goto unlock;
1227
1228         entry = pud_mkyoung(orig_pud);
1229         if (write)
1230                 entry = pud_mkdirty(entry);
1231         haddr = vmf->address & HPAGE_PUD_MASK;
1232         if (pudp_set_access_flags(vmf->vma, haddr, vmf->pud, entry, write))
1233                 update_mmu_cache_pud(vmf->vma, vmf->address, vmf->pud);
1234
1235 unlock:
1236         spin_unlock(vmf->ptl);
1237 }
1238 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1239
1240 void huge_pmd_set_accessed(struct vm_fault *vmf, pmd_t orig_pmd)
1241 {
1242         pmd_t entry;
1243         unsigned long haddr;
1244         bool write = vmf->flags & FAULT_FLAG_WRITE;
1245
1246         vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1247         if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1248                 goto unlock;
1249
1250         entry = pmd_mkyoung(orig_pmd);
1251         if (write)
1252                 entry = pmd_mkdirty(entry);
1253         haddr = vmf->address & HPAGE_PMD_MASK;
1254         if (pmdp_set_access_flags(vmf->vma, haddr, vmf->pmd, entry, write))
1255                 update_mmu_cache_pmd(vmf->vma, vmf->address, vmf->pmd);
1256
1257 unlock:
1258         spin_unlock(vmf->ptl);
1259 }
1260
1261 vm_fault_t do_huge_pmd_wp_page(struct vm_fault *vmf, pmd_t orig_pmd)
1262 {
1263         struct vm_area_struct *vma = vmf->vma;
1264         struct page *page;
1265         unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1266
1267         vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd);
1268         VM_BUG_ON_VMA(!vma->anon_vma, vma);
1269
1270         if (is_huge_zero_pmd(orig_pmd))
1271                 goto fallback;
1272
1273         spin_lock(vmf->ptl);
1274
1275         if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1276                 spin_unlock(vmf->ptl);
1277                 return 0;
1278         }
1279
1280         page = pmd_page(orig_pmd);
1281         VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page);
1282
1283         /* Lock page for reuse_swap_page() */
1284         if (!trylock_page(page)) {
1285                 get_page(page);
1286                 spin_unlock(vmf->ptl);
1287                 lock_page(page);
1288                 spin_lock(vmf->ptl);
1289                 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1290                         spin_unlock(vmf->ptl);
1291                         unlock_page(page);
1292                         put_page(page);
1293                         return 0;
1294                 }
1295                 put_page(page);
1296         }
1297
1298         /*
1299          * We can only reuse the page if nobody else maps the huge page or it's
1300          * part.
1301          */
1302         if (reuse_swap_page(page, NULL)) {
1303                 pmd_t entry;
1304                 entry = pmd_mkyoung(orig_pmd);
1305                 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1306                 if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry, 1))
1307                         update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1308                 unlock_page(page);
1309                 spin_unlock(vmf->ptl);
1310                 return VM_FAULT_WRITE;
1311         }
1312
1313         unlock_page(page);
1314         spin_unlock(vmf->ptl);
1315 fallback:
1316         __split_huge_pmd(vma, vmf->pmd, vmf->address, false, NULL);
1317         return VM_FAULT_FALLBACK;
1318 }
1319
1320 /*
1321  * FOLL_FORCE can write to even unwritable pmd's, but only
1322  * after we've gone through a COW cycle and they are dirty.
1323  */
1324 static inline bool can_follow_write_pmd(pmd_t pmd, unsigned int flags)
1325 {
1326         return pmd_write(pmd) ||
1327                ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pmd_dirty(pmd));
1328 }
1329
1330 struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1331                                    unsigned long addr,
1332                                    pmd_t *pmd,
1333                                    unsigned int flags)
1334 {
1335         struct mm_struct *mm = vma->vm_mm;
1336         struct page *page = NULL;
1337
1338         assert_spin_locked(pmd_lockptr(mm, pmd));
1339
1340         if (flags & FOLL_WRITE && !can_follow_write_pmd(*pmd, flags))
1341                 goto out;
1342
1343         /* Avoid dumping huge zero page */
1344         if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1345                 return ERR_PTR(-EFAULT);
1346
1347         /* Full NUMA hinting faults to serialise migration in fault paths */
1348         if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
1349                 goto out;
1350
1351         page = pmd_page(*pmd);
1352         VM_BUG_ON_PAGE(!PageHead(page) && !is_zone_device_page(page), page);
1353
1354         if (!try_grab_page(page, flags))
1355                 return ERR_PTR(-ENOMEM);
1356
1357         if (flags & FOLL_TOUCH)
1358                 touch_pmd(vma, addr, pmd, flags);
1359
1360         if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1361                 /*
1362                  * We don't mlock() pte-mapped THPs. This way we can avoid
1363                  * leaking mlocked pages into non-VM_LOCKED VMAs.
1364                  *
1365                  * For anon THP:
1366                  *
1367                  * In most cases the pmd is the only mapping of the page as we
1368                  * break COW for the mlock() -- see gup_flags |= FOLL_WRITE for
1369                  * writable private mappings in populate_vma_page_range().
1370                  *
1371                  * The only scenario when we have the page shared here is if we
1372                  * mlocking read-only mapping shared over fork(). We skip
1373                  * mlocking such pages.
1374                  *
1375                  * For file THP:
1376                  *
1377                  * We can expect PageDoubleMap() to be stable under page lock:
1378                  * for file pages we set it in page_add_file_rmap(), which
1379                  * requires page to be locked.
1380                  */
1381
1382                 if (PageAnon(page) && compound_mapcount(page) != 1)
1383                         goto skip_mlock;
1384                 if (PageDoubleMap(page) || !page->mapping)
1385                         goto skip_mlock;
1386                 if (!trylock_page(page))
1387                         goto skip_mlock;
1388                 if (page->mapping && !PageDoubleMap(page))
1389                         mlock_vma_page(page);
1390                 unlock_page(page);
1391         }
1392 skip_mlock:
1393         page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1394         VM_BUG_ON_PAGE(!PageCompound(page) && !is_zone_device_page(page), page);
1395
1396 out:
1397         return page;
1398 }
1399
1400 /* NUMA hinting page fault entry point for trans huge pmds */
1401 vm_fault_t do_huge_pmd_numa_page(struct vm_fault *vmf, pmd_t pmd)
1402 {
1403         struct vm_area_struct *vma = vmf->vma;
1404         struct anon_vma *anon_vma = NULL;
1405         struct page *page;
1406         unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1407         int page_nid = NUMA_NO_NODE, this_nid = numa_node_id();
1408         int target_nid, last_cpupid = -1;
1409         bool page_locked;
1410         bool migrated = false;
1411         bool was_writable;
1412         int flags = 0;
1413
1414         vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1415         if (unlikely(!pmd_same(pmd, *vmf->pmd)))
1416                 goto out_unlock;
1417
1418         /*
1419          * If there are potential migrations, wait for completion and retry
1420          * without disrupting NUMA hinting information. Do not relock and
1421          * check_same as the page may no longer be mapped.
1422          */
1423         if (unlikely(pmd_trans_migrating(*vmf->pmd))) {
1424                 page = pmd_page(*vmf->pmd);
1425                 if (!get_page_unless_zero(page))
1426                         goto out_unlock;
1427                 spin_unlock(vmf->ptl);
1428                 put_and_wait_on_page_locked(page);
1429                 goto out;
1430         }
1431
1432         page = pmd_page(pmd);
1433         BUG_ON(is_huge_zero_page(page));
1434         page_nid = page_to_nid(page);
1435         last_cpupid = page_cpupid_last(page);
1436         count_vm_numa_event(NUMA_HINT_FAULTS);
1437         if (page_nid == this_nid) {
1438                 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
1439                 flags |= TNF_FAULT_LOCAL;
1440         }
1441
1442         /* See similar comment in do_numa_page for explanation */
1443         if (!pmd_savedwrite(pmd))
1444                 flags |= TNF_NO_GROUP;
1445
1446         /*
1447          * Acquire the page lock to serialise THP migrations but avoid dropping
1448          * page_table_lock if at all possible
1449          */
1450         page_locked = trylock_page(page);
1451         target_nid = mpol_misplaced(page, vma, haddr);
1452         if (target_nid == NUMA_NO_NODE) {
1453                 /* If the page was locked, there are no parallel migrations */
1454                 if (page_locked)
1455                         goto clear_pmdnuma;
1456         }
1457
1458         /* Migration could have started since the pmd_trans_migrating check */
1459         if (!page_locked) {
1460                 page_nid = NUMA_NO_NODE;
1461                 if (!get_page_unless_zero(page))
1462                         goto out_unlock;
1463                 spin_unlock(vmf->ptl);
1464                 put_and_wait_on_page_locked(page);
1465                 goto out;
1466         }
1467
1468         /*
1469          * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
1470          * to serialises splits
1471          */
1472         get_page(page);
1473         spin_unlock(vmf->ptl);
1474         anon_vma = page_lock_anon_vma_read(page);
1475
1476         /* Confirm the PMD did not change while page_table_lock was released */
1477         spin_lock(vmf->ptl);
1478         if (unlikely(!pmd_same(pmd, *vmf->pmd))) {
1479                 unlock_page(page);
1480                 put_page(page);
1481                 page_nid = NUMA_NO_NODE;
1482                 goto out_unlock;
1483         }
1484
1485         /* Bail if we fail to protect against THP splits for any reason */
1486         if (unlikely(!anon_vma)) {
1487                 put_page(page);
1488                 page_nid = NUMA_NO_NODE;
1489                 goto clear_pmdnuma;
1490         }
1491
1492         /*
1493          * Since we took the NUMA fault, we must have observed the !accessible
1494          * bit. Make sure all other CPUs agree with that, to avoid them
1495          * modifying the page we're about to migrate.
1496          *
1497          * Must be done under PTL such that we'll observe the relevant
1498          * inc_tlb_flush_pending().
1499          *
1500          * We are not sure a pending tlb flush here is for a huge page
1501          * mapping or not. Hence use the tlb range variant
1502          */
1503         if (mm_tlb_flush_pending(vma->vm_mm)) {
1504                 flush_tlb_range(vma, haddr, haddr + HPAGE_PMD_SIZE);
1505                 /*
1506                  * change_huge_pmd() released the pmd lock before
1507                  * invalidating the secondary MMUs sharing the primary
1508                  * MMU pagetables (with ->invalidate_range()). The
1509                  * mmu_notifier_invalidate_range_end() (which
1510                  * internally calls ->invalidate_range()) in
1511                  * change_pmd_range() will run after us, so we can't
1512                  * rely on it here and we need an explicit invalidate.
1513                  */
1514                 mmu_notifier_invalidate_range(vma->vm_mm, haddr,
1515                                               haddr + HPAGE_PMD_SIZE);
1516         }
1517
1518         /*
1519          * Migrate the THP to the requested node, returns with page unlocked
1520          * and access rights restored.
1521          */
1522         spin_unlock(vmf->ptl);
1523
1524         migrated = migrate_misplaced_transhuge_page(vma->vm_mm, vma,
1525                                 vmf->pmd, pmd, vmf->address, page, target_nid);
1526         if (migrated) {
1527                 flags |= TNF_MIGRATED;
1528                 page_nid = target_nid;
1529         } else
1530                 flags |= TNF_MIGRATE_FAIL;
1531
1532         goto out;
1533 clear_pmdnuma:
1534         BUG_ON(!PageLocked(page));
1535         was_writable = pmd_savedwrite(pmd);
1536         pmd = pmd_modify(pmd, vma->vm_page_prot);
1537         pmd = pmd_mkyoung(pmd);
1538         if (was_writable)
1539                 pmd = pmd_mkwrite(pmd);
1540         set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd);
1541         update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1542         unlock_page(page);
1543 out_unlock:
1544         spin_unlock(vmf->ptl);
1545
1546 out:
1547         if (anon_vma)
1548                 page_unlock_anon_vma_read(anon_vma);
1549
1550         if (page_nid != NUMA_NO_NODE)
1551                 task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR,
1552                                 flags);
1553
1554         return 0;
1555 }
1556
1557 /*
1558  * Return true if we do MADV_FREE successfully on entire pmd page.
1559  * Otherwise, return false.
1560  */
1561 bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1562                 pmd_t *pmd, unsigned long addr, unsigned long next)
1563 {
1564         spinlock_t *ptl;
1565         pmd_t orig_pmd;
1566         struct page *page;
1567         struct mm_struct *mm = tlb->mm;
1568         bool ret = false;
1569
1570         tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
1571
1572         ptl = pmd_trans_huge_lock(pmd, vma);
1573         if (!ptl)
1574                 goto out_unlocked;
1575
1576         orig_pmd = *pmd;
1577         if (is_huge_zero_pmd(orig_pmd))
1578                 goto out;
1579
1580         if (unlikely(!pmd_present(orig_pmd))) {
1581                 VM_BUG_ON(thp_migration_supported() &&
1582                                   !is_pmd_migration_entry(orig_pmd));
1583                 goto out;
1584         }
1585
1586         page = pmd_page(orig_pmd);
1587         /*
1588          * If other processes are mapping this page, we couldn't discard
1589          * the page unless they all do MADV_FREE so let's skip the page.
1590          */
1591         if (page_mapcount(page) != 1)
1592                 goto out;
1593
1594         if (!trylock_page(page))
1595                 goto out;
1596
1597         /*
1598          * If user want to discard part-pages of THP, split it so MADV_FREE
1599          * will deactivate only them.
1600          */
1601         if (next - addr != HPAGE_PMD_SIZE) {
1602                 get_page(page);
1603                 spin_unlock(ptl);
1604                 split_huge_page(page);
1605                 unlock_page(page);
1606                 put_page(page);
1607                 goto out_unlocked;
1608         }
1609
1610         if (PageDirty(page))
1611                 ClearPageDirty(page);
1612         unlock_page(page);
1613
1614         if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
1615                 pmdp_invalidate(vma, addr, pmd);
1616                 orig_pmd = pmd_mkold(orig_pmd);
1617                 orig_pmd = pmd_mkclean(orig_pmd);
1618
1619                 set_pmd_at(mm, addr, pmd, orig_pmd);
1620                 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1621         }
1622
1623         mark_page_lazyfree(page);
1624         ret = true;
1625 out:
1626         spin_unlock(ptl);
1627 out_unlocked:
1628         return ret;
1629 }
1630
1631 static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd)
1632 {
1633         pgtable_t pgtable;
1634
1635         pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1636         pte_free(mm, pgtable);
1637         mm_dec_nr_ptes(mm);
1638 }
1639
1640 int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1641                  pmd_t *pmd, unsigned long addr)
1642 {
1643         pmd_t orig_pmd;
1644         spinlock_t *ptl;
1645
1646         tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
1647
1648         ptl = __pmd_trans_huge_lock(pmd, vma);
1649         if (!ptl)
1650                 return 0;
1651         /*
1652          * For architectures like ppc64 we look at deposited pgtable
1653          * when calling pmdp_huge_get_and_clear. So do the
1654          * pgtable_trans_huge_withdraw after finishing pmdp related
1655          * operations.
1656          */
1657         orig_pmd = pmdp_huge_get_and_clear_full(vma, addr, pmd,
1658                                                 tlb->fullmm);
1659         tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1660         if (vma_is_special_huge(vma)) {
1661                 if (arch_needs_pgtable_deposit())
1662                         zap_deposited_table(tlb->mm, pmd);
1663                 spin_unlock(ptl);
1664                 if (is_huge_zero_pmd(orig_pmd))
1665                         tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
1666         } else if (is_huge_zero_pmd(orig_pmd)) {
1667                 zap_deposited_table(tlb->mm, pmd);
1668                 spin_unlock(ptl);
1669                 tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
1670         } else {
1671                 struct page *page = NULL;
1672                 int flush_needed = 1;
1673
1674                 if (pmd_present(orig_pmd)) {
1675                         page = pmd_page(orig_pmd);
1676                         page_remove_rmap(page, true);
1677                         VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
1678                         VM_BUG_ON_PAGE(!PageHead(page), page);
1679                 } else if (thp_migration_supported()) {
1680                         swp_entry_t entry;
1681
1682                         VM_BUG_ON(!is_pmd_migration_entry(orig_pmd));
1683                         entry = pmd_to_swp_entry(orig_pmd);
1684                         page = pfn_to_page(swp_offset(entry));
1685                         flush_needed = 0;
1686                 } else
1687                         WARN_ONCE(1, "Non present huge pmd without pmd migration enabled!");
1688
1689                 if (PageAnon(page)) {
1690                         zap_deposited_table(tlb->mm, pmd);
1691                         add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1692                 } else {
1693                         if (arch_needs_pgtable_deposit())
1694                                 zap_deposited_table(tlb->mm, pmd);
1695                         add_mm_counter(tlb->mm, mm_counter_file(page), -HPAGE_PMD_NR);
1696                 }
1697
1698                 spin_unlock(ptl);
1699                 if (flush_needed)
1700                         tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE);
1701         }
1702         return 1;
1703 }
1704
1705 #ifndef pmd_move_must_withdraw
1706 static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl,
1707                                          spinlock_t *old_pmd_ptl,
1708                                          struct vm_area_struct *vma)
1709 {
1710         /*
1711          * With split pmd lock we also need to move preallocated
1712          * PTE page table if new_pmd is on different PMD page table.
1713          *
1714          * We also don't deposit and withdraw tables for file pages.
1715          */
1716         return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma);
1717 }
1718 #endif
1719
1720 static pmd_t move_soft_dirty_pmd(pmd_t pmd)
1721 {
1722 #ifdef CONFIG_MEM_SOFT_DIRTY
1723         if (unlikely(is_pmd_migration_entry(pmd)))
1724                 pmd = pmd_swp_mksoft_dirty(pmd);
1725         else if (pmd_present(pmd))
1726                 pmd = pmd_mksoft_dirty(pmd);
1727 #endif
1728         return pmd;
1729 }
1730
1731 bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
1732                   unsigned long new_addr, pmd_t *old_pmd, pmd_t *new_pmd)
1733 {
1734         spinlock_t *old_ptl, *new_ptl;
1735         pmd_t pmd;
1736         struct mm_struct *mm = vma->vm_mm;
1737         bool force_flush = false;
1738
1739         /*
1740          * The destination pmd shouldn't be established, free_pgtables()
1741          * should have release it.
1742          */
1743         if (WARN_ON(!pmd_none(*new_pmd))) {
1744                 VM_BUG_ON(pmd_trans_huge(*new_pmd));
1745                 return false;
1746         }
1747
1748         /*
1749          * We don't have to worry about the ordering of src and dst
1750          * ptlocks because exclusive mmap_lock prevents deadlock.
1751          */
1752         old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
1753         if (old_ptl) {
1754                 new_ptl = pmd_lockptr(mm, new_pmd);
1755                 if (new_ptl != old_ptl)
1756                         spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
1757                 pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
1758                 if (pmd_present(pmd))
1759                         force_flush = true;
1760                 VM_BUG_ON(!pmd_none(*new_pmd));
1761
1762                 if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) {
1763                         pgtable_t pgtable;
1764                         pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1765                         pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
1766                 }
1767                 pmd = move_soft_dirty_pmd(pmd);
1768                 set_pmd_at(mm, new_addr, new_pmd, pmd);
1769                 if (force_flush)
1770                         flush_tlb_range(vma, old_addr, old_addr + PMD_SIZE);
1771                 if (new_ptl != old_ptl)
1772                         spin_unlock(new_ptl);
1773                 spin_unlock(old_ptl);
1774                 return true;
1775         }
1776         return false;
1777 }
1778
1779 /*
1780  * Returns
1781  *  - 0 if PMD could not be locked
1782  *  - 1 if PMD was locked but protections unchange and TLB flush unnecessary
1783  *  - HPAGE_PMD_NR is protections changed and TLB flush necessary
1784  */
1785 int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1786                 unsigned long addr, pgprot_t newprot, unsigned long cp_flags)
1787 {
1788         struct mm_struct *mm = vma->vm_mm;
1789         spinlock_t *ptl;
1790         pmd_t entry;
1791         bool preserve_write;
1792         int ret;
1793         bool prot_numa = cp_flags & MM_CP_PROT_NUMA;
1794         bool uffd_wp = cp_flags & MM_CP_UFFD_WP;
1795         bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE;
1796
1797         ptl = __pmd_trans_huge_lock(pmd, vma);
1798         if (!ptl)
1799                 return 0;
1800
1801         preserve_write = prot_numa && pmd_write(*pmd);
1802         ret = 1;
1803
1804 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1805         if (is_swap_pmd(*pmd)) {
1806                 swp_entry_t entry = pmd_to_swp_entry(*pmd);
1807
1808                 VM_BUG_ON(!is_pmd_migration_entry(*pmd));
1809                 if (is_write_migration_entry(entry)) {
1810                         pmd_t newpmd;
1811                         /*
1812                          * A protection check is difficult so
1813                          * just be safe and disable write
1814                          */
1815                         make_migration_entry_read(&entry);
1816                         newpmd = swp_entry_to_pmd(entry);
1817                         if (pmd_swp_soft_dirty(*pmd))
1818                                 newpmd = pmd_swp_mksoft_dirty(newpmd);
1819                         set_pmd_at(mm, addr, pmd, newpmd);
1820                 }
1821                 goto unlock;
1822         }
1823 #endif
1824
1825         /*
1826          * Avoid trapping faults against the zero page. The read-only
1827          * data is likely to be read-cached on the local CPU and
1828          * local/remote hits to the zero page are not interesting.
1829          */
1830         if (prot_numa && is_huge_zero_pmd(*pmd))
1831                 goto unlock;
1832
1833         if (prot_numa && pmd_protnone(*pmd))
1834                 goto unlock;
1835
1836         /*
1837          * In case prot_numa, we are under mmap_read_lock(mm). It's critical
1838          * to not clear pmd intermittently to avoid race with MADV_DONTNEED
1839          * which is also under mmap_read_lock(mm):
1840          *
1841          *      CPU0:                           CPU1:
1842          *                              change_huge_pmd(prot_numa=1)
1843          *                               pmdp_huge_get_and_clear_notify()
1844          * madvise_dontneed()
1845          *  zap_pmd_range()
1846          *   pmd_trans_huge(*pmd) == 0 (without ptl)
1847          *   // skip the pmd
1848          *                               set_pmd_at();
1849          *                               // pmd is re-established
1850          *
1851          * The race makes MADV_DONTNEED miss the huge pmd and don't clear it
1852          * which may break userspace.
1853          *
1854          * pmdp_invalidate() is required to make sure we don't miss
1855          * dirty/young flags set by hardware.
1856          */
1857         entry = pmdp_invalidate(vma, addr, pmd);
1858
1859         entry = pmd_modify(entry, newprot);
1860         if (preserve_write)
1861                 entry = pmd_mk_savedwrite(entry);
1862         if (uffd_wp) {
1863                 entry = pmd_wrprotect(entry);
1864                 entry = pmd_mkuffd_wp(entry);
1865         } else if (uffd_wp_resolve) {
1866                 /*
1867                  * Leave the write bit to be handled by PF interrupt
1868                  * handler, then things like COW could be properly
1869                  * handled.
1870                  */
1871                 entry = pmd_clear_uffd_wp(entry);
1872         }
1873         ret = HPAGE_PMD_NR;
1874         set_pmd_at(mm, addr, pmd, entry);
1875         BUG_ON(vma_is_anonymous(vma) && !preserve_write && pmd_write(entry));
1876 unlock:
1877         spin_unlock(ptl);
1878         return ret;
1879 }
1880
1881 /*
1882  * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise.
1883  *
1884  * Note that if it returns page table lock pointer, this routine returns without
1885  * unlocking page table lock. So callers must unlock it.
1886  */
1887 spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
1888 {
1889         spinlock_t *ptl;
1890         ptl = pmd_lock(vma->vm_mm, pmd);
1891         if (likely(is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) ||
1892                         pmd_devmap(*pmd)))
1893                 return ptl;
1894         spin_unlock(ptl);
1895         return NULL;
1896 }
1897
1898 /*
1899  * Returns true if a given pud maps a thp, false otherwise.
1900  *
1901  * Note that if it returns true, this routine returns without unlocking page
1902  * table lock. So callers must unlock it.
1903  */
1904 spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma)
1905 {
1906         spinlock_t *ptl;
1907
1908         ptl = pud_lock(vma->vm_mm, pud);
1909         if (likely(pud_trans_huge(*pud) || pud_devmap(*pud)))
1910                 return ptl;
1911         spin_unlock(ptl);
1912         return NULL;
1913 }
1914
1915 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1916 int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma,
1917                  pud_t *pud, unsigned long addr)
1918 {
1919         spinlock_t *ptl;
1920
1921         ptl = __pud_trans_huge_lock(pud, vma);
1922         if (!ptl)
1923                 return 0;
1924         /*
1925          * For architectures like ppc64 we look at deposited pgtable
1926          * when calling pudp_huge_get_and_clear. So do the
1927          * pgtable_trans_huge_withdraw after finishing pudp related
1928          * operations.
1929          */
1930         pudp_huge_get_and_clear_full(tlb->mm, addr, pud, tlb->fullmm);
1931         tlb_remove_pud_tlb_entry(tlb, pud, addr);
1932         if (vma_is_special_huge(vma)) {
1933                 spin_unlock(ptl);
1934                 /* No zero page support yet */
1935         } else {
1936                 /* No support for anonymous PUD pages yet */
1937                 BUG();
1938         }
1939         return 1;
1940 }
1941
1942 static void __split_huge_pud_locked(struct vm_area_struct *vma, pud_t *pud,
1943                 unsigned long haddr)
1944 {
1945         VM_BUG_ON(haddr & ~HPAGE_PUD_MASK);
1946         VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
1947         VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PUD_SIZE, vma);
1948         VM_BUG_ON(!pud_trans_huge(*pud) && !pud_devmap(*pud));
1949
1950         count_vm_event(THP_SPLIT_PUD);
1951
1952         pudp_huge_clear_flush_notify(vma, haddr, pud);
1953 }
1954
1955 void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud,
1956                 unsigned long address)
1957 {
1958         spinlock_t *ptl;
1959         struct mmu_notifier_range range;
1960
1961         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1962                                 address & HPAGE_PUD_MASK,
1963                                 (address & HPAGE_PUD_MASK) + HPAGE_PUD_SIZE);
1964         mmu_notifier_invalidate_range_start(&range);
1965         ptl = pud_lock(vma->vm_mm, pud);
1966         if (unlikely(!pud_trans_huge(*pud) && !pud_devmap(*pud)))
1967                 goto out;
1968         __split_huge_pud_locked(vma, pud, range.start);
1969
1970 out:
1971         spin_unlock(ptl);
1972         /*
1973          * No need to double call mmu_notifier->invalidate_range() callback as
1974          * the above pudp_huge_clear_flush_notify() did already call it.
1975          */
1976         mmu_notifier_invalidate_range_only_end(&range);
1977 }
1978 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1979
1980 static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
1981                 unsigned long haddr, pmd_t *pmd)
1982 {
1983         struct mm_struct *mm = vma->vm_mm;
1984         pgtable_t pgtable;
1985         pmd_t _pmd;
1986         int i;
1987
1988         /*
1989          * Leave pmd empty until pte is filled note that it is fine to delay
1990          * notification until mmu_notifier_invalidate_range_end() as we are
1991          * replacing a zero pmd write protected page with a zero pte write
1992          * protected page.
1993          *
1994          * See Documentation/vm/mmu_notifier.rst
1995          */
1996         pmdp_huge_clear_flush(vma, haddr, pmd);
1997
1998         pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1999         pmd_populate(mm, &_pmd, pgtable);
2000
2001         for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
2002                 pte_t *pte, entry;
2003                 entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
2004                 entry = pte_mkspecial(entry);
2005                 pte = pte_offset_map(&_pmd, haddr);
2006                 VM_BUG_ON(!pte_none(*pte));
2007                 set_pte_at(mm, haddr, pte, entry);
2008                 pte_unmap(pte);
2009         }
2010         smp_wmb(); /* make pte visible before pmd */
2011         pmd_populate(mm, pmd, pgtable);
2012 }
2013
2014 static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
2015                 unsigned long haddr, bool freeze)
2016 {
2017         struct mm_struct *mm = vma->vm_mm;
2018         struct page *page;
2019         pgtable_t pgtable;
2020         pmd_t old_pmd, _pmd;
2021         bool young, write, soft_dirty, pmd_migration = false, uffd_wp = false;
2022         unsigned long addr;
2023         int i;
2024
2025         VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
2026         VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2027         VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
2028         VM_BUG_ON(!is_pmd_migration_entry(*pmd) && !pmd_trans_huge(*pmd)
2029                                 && !pmd_devmap(*pmd));
2030
2031         count_vm_event(THP_SPLIT_PMD);
2032
2033         if (!vma_is_anonymous(vma)) {
2034                 _pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
2035                 /*
2036                  * We are going to unmap this huge page. So
2037                  * just go ahead and zap it
2038                  */
2039                 if (arch_needs_pgtable_deposit())
2040                         zap_deposited_table(mm, pmd);
2041                 if (vma_is_special_huge(vma))
2042                         return;
2043                 page = pmd_page(_pmd);
2044                 if (!PageDirty(page) && pmd_dirty(_pmd))
2045                         set_page_dirty(page);
2046                 if (!PageReferenced(page) && pmd_young(_pmd))
2047                         SetPageReferenced(page);
2048                 page_remove_rmap(page, true);
2049                 put_page(page);
2050                 add_mm_counter(mm, mm_counter_file(page), -HPAGE_PMD_NR);
2051                 return;
2052         } else if (pmd_trans_huge(*pmd) && is_huge_zero_pmd(*pmd)) {
2053                 /*
2054                  * FIXME: Do we want to invalidate secondary mmu by calling
2055                  * mmu_notifier_invalidate_range() see comments below inside
2056                  * __split_huge_pmd() ?
2057                  *
2058                  * We are going from a zero huge page write protected to zero
2059                  * small page also write protected so it does not seems useful
2060                  * to invalidate secondary mmu at this time.
2061                  */
2062                 return __split_huge_zero_page_pmd(vma, haddr, pmd);
2063         }
2064
2065         /*
2066          * Up to this point the pmd is present and huge and userland has the
2067          * whole access to the hugepage during the split (which happens in
2068          * place). If we overwrite the pmd with the not-huge version pointing
2069          * to the pte here (which of course we could if all CPUs were bug
2070          * free), userland could trigger a small page size TLB miss on the
2071          * small sized TLB while the hugepage TLB entry is still established in
2072          * the huge TLB. Some CPU doesn't like that.
2073          * See http://support.amd.com/TechDocs/41322_10h_Rev_Gd.pdf, Erratum
2074          * 383 on page 105. Intel should be safe but is also warns that it's
2075          * only safe if the permission and cache attributes of the two entries
2076          * loaded in the two TLB is identical (which should be the case here).
2077          * But it is generally safer to never allow small and huge TLB entries
2078          * for the same virtual address to be loaded simultaneously. So instead
2079          * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
2080          * current pmd notpresent (atomically because here the pmd_trans_huge
2081          * must remain set at all times on the pmd until the split is complete
2082          * for this pmd), then we flush the SMP TLB and finally we write the
2083          * non-huge version of the pmd entry with pmd_populate.
2084          */
2085         old_pmd = pmdp_invalidate(vma, haddr, pmd);
2086
2087         pmd_migration = is_pmd_migration_entry(old_pmd);
2088         if (unlikely(pmd_migration)) {
2089                 swp_entry_t entry;
2090
2091                 entry = pmd_to_swp_entry(old_pmd);
2092                 page = pfn_to_page(swp_offset(entry));
2093                 write = is_write_migration_entry(entry);
2094                 young = false;
2095                 soft_dirty = pmd_swp_soft_dirty(old_pmd);
2096                 uffd_wp = pmd_swp_uffd_wp(old_pmd);
2097         } else {
2098                 page = pmd_page(old_pmd);
2099                 if (pmd_dirty(old_pmd))
2100                         SetPageDirty(page);
2101                 write = pmd_write(old_pmd);
2102                 young = pmd_young(old_pmd);
2103                 soft_dirty = pmd_soft_dirty(old_pmd);
2104                 uffd_wp = pmd_uffd_wp(old_pmd);
2105         }
2106         VM_BUG_ON_PAGE(!page_count(page), page);
2107         page_ref_add(page, HPAGE_PMD_NR - 1);
2108
2109         /*
2110          * Withdraw the table only after we mark the pmd entry invalid.
2111          * This's critical for some architectures (Power).
2112          */
2113         pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2114         pmd_populate(mm, &_pmd, pgtable);
2115
2116         for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
2117                 pte_t entry, *pte;
2118                 /*
2119                  * Note that NUMA hinting access restrictions are not
2120                  * transferred to avoid any possibility of altering
2121                  * permissions across VMAs.
2122                  */
2123                 if (freeze || pmd_migration) {
2124                         swp_entry_t swp_entry;
2125                         swp_entry = make_migration_entry(page + i, write);
2126                         entry = swp_entry_to_pte(swp_entry);
2127                         if (soft_dirty)
2128                                 entry = pte_swp_mksoft_dirty(entry);
2129                         if (uffd_wp)
2130                                 entry = pte_swp_mkuffd_wp(entry);
2131                 } else {
2132                         entry = mk_pte(page + i, READ_ONCE(vma->vm_page_prot));
2133                         entry = maybe_mkwrite(entry, vma);
2134                         if (!write)
2135                                 entry = pte_wrprotect(entry);
2136                         if (!young)
2137                                 entry = pte_mkold(entry);
2138                         if (soft_dirty)
2139                                 entry = pte_mksoft_dirty(entry);
2140                         if (uffd_wp)
2141                                 entry = pte_mkuffd_wp(entry);
2142                 }
2143                 pte = pte_offset_map(&_pmd, addr);
2144                 BUG_ON(!pte_none(*pte));
2145                 set_pte_at(mm, addr, pte, entry);
2146                 if (!pmd_migration)
2147                         atomic_inc(&page[i]._mapcount);
2148                 pte_unmap(pte);
2149         }
2150
2151         if (!pmd_migration) {
2152                 /*
2153                  * Set PG_double_map before dropping compound_mapcount to avoid
2154                  * false-negative page_mapped().
2155                  */
2156                 if (compound_mapcount(page) > 1 &&
2157                     !TestSetPageDoubleMap(page)) {
2158                         for (i = 0; i < HPAGE_PMD_NR; i++)
2159                                 atomic_inc(&page[i]._mapcount);
2160                 }
2161
2162                 lock_page_memcg(page);
2163                 if (atomic_add_negative(-1, compound_mapcount_ptr(page))) {
2164                         /* Last compound_mapcount is gone. */
2165                         __dec_lruvec_page_state(page, NR_ANON_THPS);
2166                         if (TestClearPageDoubleMap(page)) {
2167                                 /* No need in mapcount reference anymore */
2168                                 for (i = 0; i < HPAGE_PMD_NR; i++)
2169                                         atomic_dec(&page[i]._mapcount);
2170                         }
2171                 }
2172                 unlock_page_memcg(page);
2173         }
2174
2175         smp_wmb(); /* make pte visible before pmd */
2176         pmd_populate(mm, pmd, pgtable);
2177
2178         if (freeze) {
2179                 for (i = 0; i < HPAGE_PMD_NR; i++) {
2180                         page_remove_rmap(page + i, false);
2181                         put_page(page + i);
2182                 }
2183         }
2184 }
2185
2186 void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
2187                 unsigned long address, bool freeze, struct page *page)
2188 {
2189         spinlock_t *ptl;
2190         struct mmu_notifier_range range;
2191         bool do_unlock_page = false;
2192         pmd_t _pmd;
2193
2194         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
2195                                 address & HPAGE_PMD_MASK,
2196                                 (address & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE);
2197         mmu_notifier_invalidate_range_start(&range);
2198         ptl = pmd_lock(vma->vm_mm, pmd);
2199
2200         /*
2201          * If caller asks to setup a migration entries, we need a page to check
2202          * pmd against. Otherwise we can end up replacing wrong page.
2203          */
2204         VM_BUG_ON(freeze && !page);
2205         if (page) {
2206                 VM_WARN_ON_ONCE(!PageLocked(page));
2207                 if (page != pmd_page(*pmd))
2208                         goto out;
2209         }
2210
2211 repeat:
2212         if (pmd_trans_huge(*pmd)) {
2213                 if (!page) {
2214                         page = pmd_page(*pmd);
2215                         /*
2216                          * An anonymous page must be locked, to ensure that a
2217                          * concurrent reuse_swap_page() sees stable mapcount;
2218                          * but reuse_swap_page() is not used on shmem or file,
2219                          * and page lock must not be taken when zap_pmd_range()
2220                          * calls __split_huge_pmd() while i_mmap_lock is held.
2221                          */
2222                         if (PageAnon(page)) {
2223                                 if (unlikely(!trylock_page(page))) {
2224                                         get_page(page);
2225                                         _pmd = *pmd;
2226                                         spin_unlock(ptl);
2227                                         lock_page(page);
2228                                         spin_lock(ptl);
2229                                         if (unlikely(!pmd_same(*pmd, _pmd))) {
2230                                                 unlock_page(page);
2231                                                 put_page(page);
2232                                                 page = NULL;
2233                                                 goto repeat;
2234                                         }
2235                                         put_page(page);
2236                                 }
2237                                 do_unlock_page = true;
2238                         }
2239                 }
2240                 if (PageMlocked(page))
2241                         clear_page_mlock(page);
2242         } else if (!(pmd_devmap(*pmd) || is_pmd_migration_entry(*pmd)))
2243                 goto out;
2244         __split_huge_pmd_locked(vma, pmd, range.start, freeze);
2245 out:
2246         spin_unlock(ptl);
2247         if (do_unlock_page)
2248                 unlock_page(page);
2249         /*
2250          * No need to double call mmu_notifier->invalidate_range() callback.
2251          * They are 3 cases to consider inside __split_huge_pmd_locked():
2252          *  1) pmdp_huge_clear_flush_notify() call invalidate_range() obvious
2253          *  2) __split_huge_zero_page_pmd() read only zero page and any write
2254          *    fault will trigger a flush_notify before pointing to a new page
2255          *    (it is fine if the secondary mmu keeps pointing to the old zero
2256          *    page in the meantime)
2257          *  3) Split a huge pmd into pte pointing to the same page. No need
2258          *     to invalidate secondary tlb entry they are all still valid.
2259          *     any further changes to individual pte will notify. So no need
2260          *     to call mmu_notifier->invalidate_range()
2261          */
2262         mmu_notifier_invalidate_range_only_end(&range);
2263 }
2264
2265 void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
2266                 bool freeze, struct page *page)
2267 {
2268         pgd_t *pgd;
2269         p4d_t *p4d;
2270         pud_t *pud;
2271         pmd_t *pmd;
2272
2273         pgd = pgd_offset(vma->vm_mm, address);
2274         if (!pgd_present(*pgd))
2275                 return;
2276
2277         p4d = p4d_offset(pgd, address);
2278         if (!p4d_present(*p4d))
2279                 return;
2280
2281         pud = pud_offset(p4d, address);
2282         if (!pud_present(*pud))
2283                 return;
2284
2285         pmd = pmd_offset(pud, address);
2286
2287         __split_huge_pmd(vma, pmd, address, freeze, page);
2288 }
2289
2290 void vma_adjust_trans_huge(struct vm_area_struct *vma,
2291                              unsigned long start,
2292                              unsigned long end,
2293                              long adjust_next)
2294 {
2295         /*
2296          * If the new start address isn't hpage aligned and it could
2297          * previously contain an hugepage: check if we need to split
2298          * an huge pmd.
2299          */
2300         if (start & ~HPAGE_PMD_MASK &&
2301             (start & HPAGE_PMD_MASK) >= vma->vm_start &&
2302             (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2303                 split_huge_pmd_address(vma, start, false, NULL);
2304
2305         /*
2306          * If the new end address isn't hpage aligned and it could
2307          * previously contain an hugepage: check if we need to split
2308          * an huge pmd.
2309          */
2310         if (end & ~HPAGE_PMD_MASK &&
2311             (end & HPAGE_PMD_MASK) >= vma->vm_start &&
2312             (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2313                 split_huge_pmd_address(vma, end, false, NULL);
2314
2315         /*
2316          * If we're also updating the vma->vm_next->vm_start, if the new
2317          * vm_next->vm_start isn't hpage aligned and it could previously
2318          * contain an hugepage: check if we need to split an huge pmd.
2319          */
2320         if (adjust_next > 0) {
2321                 struct vm_area_struct *next = vma->vm_next;
2322                 unsigned long nstart = next->vm_start;
2323                 nstart += adjust_next;
2324                 if (nstart & ~HPAGE_PMD_MASK &&
2325                     (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
2326                     (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
2327                         split_huge_pmd_address(next, nstart, false, NULL);
2328         }
2329 }
2330
2331 static void unmap_page(struct page *page)
2332 {
2333         enum ttu_flags ttu_flags = TTU_IGNORE_MLOCK |
2334                 TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD;
2335         bool unmap_success;
2336
2337         VM_BUG_ON_PAGE(!PageHead(page), page);
2338
2339         if (PageAnon(page))
2340                 ttu_flags |= TTU_SPLIT_FREEZE;
2341
2342         unmap_success = try_to_unmap(page, ttu_flags);
2343         VM_BUG_ON_PAGE(!unmap_success, page);
2344 }
2345
2346 static void remap_page(struct page *page, unsigned int nr)
2347 {
2348         int i;
2349         if (PageTransHuge(page)) {
2350                 remove_migration_ptes(page, page, true);
2351         } else {
2352                 for (i = 0; i < nr; i++)
2353                         remove_migration_ptes(page + i, page + i, true);
2354         }
2355 }
2356
2357 static void __split_huge_page_tail(struct page *head, int tail,
2358                 struct lruvec *lruvec, struct list_head *list)
2359 {
2360         struct page *page_tail = head + tail;
2361
2362         VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
2363
2364         /*
2365          * Clone page flags before unfreezing refcount.
2366          *
2367          * After successful get_page_unless_zero() might follow flags change,
2368          * for exmaple lock_page() which set PG_waiters.
2369          */
2370         page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
2371         page_tail->flags |= (head->flags &
2372                         ((1L << PG_referenced) |
2373                          (1L << PG_swapbacked) |
2374                          (1L << PG_swapcache) |
2375                          (1L << PG_mlocked) |
2376                          (1L << PG_uptodate) |
2377                          (1L << PG_active) |
2378                          (1L << PG_workingset) |
2379                          (1L << PG_locked) |
2380                          (1L << PG_unevictable) |
2381 #ifdef CONFIG_64BIT
2382                          (1L << PG_arch_2) |
2383 #endif
2384                          (1L << PG_dirty)));
2385
2386         /* ->mapping in first tail page is compound_mapcount */
2387         VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
2388                         page_tail);
2389         page_tail->mapping = head->mapping;
2390         page_tail->index = head->index + tail;
2391
2392         /* Page flags must be visible before we make the page non-compound. */
2393         smp_wmb();
2394
2395         /*
2396          * Clear PageTail before unfreezing page refcount.
2397          *
2398          * After successful get_page_unless_zero() might follow put_page()
2399          * which needs correct compound_head().
2400          */
2401         clear_compound_head(page_tail);
2402
2403         /* Finally unfreeze refcount. Additional reference from page cache. */
2404         page_ref_unfreeze(page_tail, 1 + (!PageAnon(head) ||
2405                                           PageSwapCache(head)));
2406
2407         if (page_is_young(head))
2408                 set_page_young(page_tail);
2409         if (page_is_idle(head))
2410                 set_page_idle(page_tail);
2411
2412         page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
2413
2414         /*
2415          * always add to the tail because some iterators expect new
2416          * pages to show after the currently processed elements - e.g.
2417          * migrate_pages
2418          */
2419         lru_add_page_tail(head, page_tail, lruvec, list);
2420 }
2421
2422 static void __split_huge_page(struct page *page, struct list_head *list,
2423                 pgoff_t end, unsigned long flags)
2424 {
2425         struct page *head = compound_head(page);
2426         pg_data_t *pgdat = page_pgdat(head);
2427         struct lruvec *lruvec;
2428         struct address_space *swap_cache = NULL;
2429         unsigned long offset = 0;
2430         unsigned int nr = thp_nr_pages(head);
2431         int i;
2432
2433         lruvec = mem_cgroup_page_lruvec(head, pgdat);
2434
2435         /* complete memcg works before add pages to LRU */
2436         mem_cgroup_split_huge_fixup(head);
2437
2438         if (PageAnon(head) && PageSwapCache(head)) {
2439                 swp_entry_t entry = { .val = page_private(head) };
2440
2441                 offset = swp_offset(entry);
2442                 swap_cache = swap_address_space(entry);
2443                 xa_lock(&swap_cache->i_pages);
2444         }
2445
2446         for (i = nr - 1; i >= 1; i--) {
2447                 __split_huge_page_tail(head, i, lruvec, list);
2448                 /* Some pages can be beyond i_size: drop them from page cache */
2449                 if (head[i].index >= end) {
2450                         ClearPageDirty(head + i);
2451                         __delete_from_page_cache(head + i, NULL);
2452                         if (IS_ENABLED(CONFIG_SHMEM) && PageSwapBacked(head))
2453                                 shmem_uncharge(head->mapping->host, 1);
2454                         put_page(head + i);
2455                 } else if (!PageAnon(page)) {
2456                         __xa_store(&head->mapping->i_pages, head[i].index,
2457                                         head + i, 0);
2458                 } else if (swap_cache) {
2459                         __xa_store(&swap_cache->i_pages, offset + i,
2460                                         head + i, 0);
2461                 }
2462         }
2463
2464         ClearPageCompound(head);
2465
2466         split_page_owner(head, nr);
2467
2468         /* See comment in __split_huge_page_tail() */
2469         if (PageAnon(head)) {
2470                 /* Additional pin to swap cache */
2471                 if (PageSwapCache(head)) {
2472                         page_ref_add(head, 2);
2473                         xa_unlock(&swap_cache->i_pages);
2474                 } else {
2475                         page_ref_inc(head);
2476                 }
2477         } else {
2478                 /* Additional pin to page cache */
2479                 page_ref_add(head, 2);
2480                 xa_unlock(&head->mapping->i_pages);
2481         }
2482
2483         spin_unlock_irqrestore(&pgdat->lru_lock, flags);
2484
2485         remap_page(head, nr);
2486
2487         if (PageSwapCache(head)) {
2488                 swp_entry_t entry = { .val = page_private(head) };
2489
2490                 split_swap_cluster(entry);
2491         }
2492
2493         for (i = 0; i < nr; i++) {
2494                 struct page *subpage = head + i;
2495                 if (subpage == page)
2496                         continue;
2497                 unlock_page(subpage);
2498
2499                 /*
2500                  * Subpages may be freed if there wasn't any mapping
2501                  * like if add_to_swap() is running on a lru page that
2502                  * had its mapping zapped. And freeing these pages
2503                  * requires taking the lru_lock so we do the put_page
2504                  * of the tail pages after the split is complete.
2505                  */
2506                 put_page(subpage);
2507         }
2508 }
2509
2510 int total_mapcount(struct page *page)
2511 {
2512         int i, compound, nr, ret;
2513
2514         VM_BUG_ON_PAGE(PageTail(page), page);
2515
2516         if (likely(!PageCompound(page)))
2517                 return atomic_read(&page->_mapcount) + 1;
2518
2519         compound = compound_mapcount(page);
2520         nr = compound_nr(page);
2521         if (PageHuge(page))
2522                 return compound;
2523         ret = compound;
2524         for (i = 0; i < nr; i++)
2525                 ret += atomic_read(&page[i]._mapcount) + 1;
2526         /* File pages has compound_mapcount included in _mapcount */
2527         if (!PageAnon(page))
2528                 return ret - compound * nr;
2529         if (PageDoubleMap(page))
2530                 ret -= nr;
2531         return ret;
2532 }
2533
2534 /*
2535  * This calculates accurately how many mappings a transparent hugepage
2536  * has (unlike page_mapcount() which isn't fully accurate). This full
2537  * accuracy is primarily needed to know if copy-on-write faults can
2538  * reuse the page and change the mapping to read-write instead of
2539  * copying them. At the same time this returns the total_mapcount too.
2540  *
2541  * The function returns the highest mapcount any one of the subpages
2542  * has. If the return value is one, even if different processes are
2543  * mapping different subpages of the transparent hugepage, they can
2544  * all reuse it, because each process is reusing a different subpage.
2545  *
2546  * The total_mapcount is instead counting all virtual mappings of the
2547  * subpages. If the total_mapcount is equal to "one", it tells the
2548  * caller all mappings belong to the same "mm" and in turn the
2549  * anon_vma of the transparent hugepage can become the vma->anon_vma
2550  * local one as no other process may be mapping any of the subpages.
2551  *
2552  * It would be more accurate to replace page_mapcount() with
2553  * page_trans_huge_mapcount(), however we only use
2554  * page_trans_huge_mapcount() in the copy-on-write faults where we
2555  * need full accuracy to avoid breaking page pinning, because
2556  * page_trans_huge_mapcount() is slower than page_mapcount().
2557  */
2558 int page_trans_huge_mapcount(struct page *page, int *total_mapcount)
2559 {
2560         int i, ret, _total_mapcount, mapcount;
2561
2562         /* hugetlbfs shouldn't call it */
2563         VM_BUG_ON_PAGE(PageHuge(page), page);
2564
2565         if (likely(!PageTransCompound(page))) {
2566                 mapcount = atomic_read(&page->_mapcount) + 1;
2567                 if (total_mapcount)
2568                         *total_mapcount = mapcount;
2569                 return mapcount;
2570         }
2571
2572         page = compound_head(page);
2573
2574         _total_mapcount = ret = 0;
2575         for (i = 0; i < thp_nr_pages(page); i++) {
2576                 mapcount = atomic_read(&page[i]._mapcount) + 1;
2577                 ret = max(ret, mapcount);
2578                 _total_mapcount += mapcount;
2579         }
2580         if (PageDoubleMap(page)) {
2581                 ret -= 1;
2582                 _total_mapcount -= thp_nr_pages(page);
2583         }
2584         mapcount = compound_mapcount(page);
2585         ret += mapcount;
2586         _total_mapcount += mapcount;
2587         if (total_mapcount)
2588                 *total_mapcount = _total_mapcount;
2589         return ret;
2590 }
2591
2592 /* Racy check whether the huge page can be split */
2593 bool can_split_huge_page(struct page *page, int *pextra_pins)
2594 {
2595         int extra_pins;
2596
2597         /* Additional pins from page cache */
2598         if (PageAnon(page))
2599                 extra_pins = PageSwapCache(page) ? thp_nr_pages(page) : 0;
2600         else
2601                 extra_pins = thp_nr_pages(page);
2602         if (pextra_pins)
2603                 *pextra_pins = extra_pins;
2604         return total_mapcount(page) == page_count(page) - extra_pins - 1;
2605 }
2606
2607 /*
2608  * This function splits huge page into normal pages. @page can point to any
2609  * subpage of huge page to split. Split doesn't change the position of @page.
2610  *
2611  * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
2612  * The huge page must be locked.
2613  *
2614  * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
2615  *
2616  * Both head page and tail pages will inherit mapping, flags, and so on from
2617  * the hugepage.
2618  *
2619  * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
2620  * they are not mapped.
2621  *
2622  * Returns 0 if the hugepage is split successfully.
2623  * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
2624  * us.
2625  */
2626 int split_huge_page_to_list(struct page *page, struct list_head *list)
2627 {
2628         struct page *head = compound_head(page);
2629         struct pglist_data *pgdata = NODE_DATA(page_to_nid(head));
2630         struct deferred_split *ds_queue = get_deferred_split_queue(head);
2631         struct anon_vma *anon_vma = NULL;
2632         struct address_space *mapping = NULL;
2633         int count, mapcount, extra_pins, ret;
2634         unsigned long flags;
2635         pgoff_t end;
2636
2637         VM_BUG_ON_PAGE(is_huge_zero_page(head), head);
2638         VM_BUG_ON_PAGE(!PageLocked(head), head);
2639         VM_BUG_ON_PAGE(!PageCompound(head), head);
2640
2641         if (PageWriteback(head))
2642                 return -EBUSY;
2643
2644         if (PageAnon(head)) {
2645                 /*
2646                  * The caller does not necessarily hold an mmap_lock that would
2647                  * prevent the anon_vma disappearing so we first we take a
2648                  * reference to it and then lock the anon_vma for write. This
2649                  * is similar to page_lock_anon_vma_read except the write lock
2650                  * is taken to serialise against parallel split or collapse
2651                  * operations.
2652                  */
2653                 anon_vma = page_get_anon_vma(head);
2654                 if (!anon_vma) {
2655                         ret = -EBUSY;
2656                         goto out;
2657                 }
2658                 end = -1;
2659                 mapping = NULL;
2660                 anon_vma_lock_write(anon_vma);
2661         } else {
2662                 mapping = head->mapping;
2663
2664                 /* Truncated ? */
2665                 if (!mapping) {
2666                         ret = -EBUSY;
2667                         goto out;
2668                 }
2669
2670                 anon_vma = NULL;
2671                 i_mmap_lock_read(mapping);
2672
2673                 /*
2674                  *__split_huge_page() may need to trim off pages beyond EOF:
2675                  * but on 32-bit, i_size_read() takes an irq-unsafe seqlock,
2676                  * which cannot be nested inside the page tree lock. So note
2677                  * end now: i_size itself may be changed at any moment, but
2678                  * head page lock is good enough to serialize the trimming.
2679                  */
2680                 end = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
2681         }
2682
2683         /*
2684          * Racy check if we can split the page, before unmap_page() will
2685          * split PMDs
2686          */
2687         if (!can_split_huge_page(head, &extra_pins)) {
2688                 ret = -EBUSY;
2689                 goto out_unlock;
2690         }
2691
2692         unmap_page(head);
2693         VM_BUG_ON_PAGE(compound_mapcount(head), head);
2694
2695         /* prevent PageLRU to go away from under us, and freeze lru stats */
2696         spin_lock_irqsave(&pgdata->lru_lock, flags);
2697
2698         if (mapping) {
2699                 XA_STATE(xas, &mapping->i_pages, page_index(head));
2700
2701                 /*
2702                  * Check if the head page is present in page cache.
2703                  * We assume all tail are present too, if head is there.
2704                  */
2705                 xa_lock(&mapping->i_pages);
2706                 if (xas_load(&xas) != head)
2707                         goto fail;
2708         }
2709
2710         /* Prevent deferred_split_scan() touching ->_refcount */
2711         spin_lock(&ds_queue->split_queue_lock);
2712         count = page_count(head);
2713         mapcount = total_mapcount(head);
2714         if (!mapcount && page_ref_freeze(head, 1 + extra_pins)) {
2715                 if (!list_empty(page_deferred_list(head))) {
2716                         ds_queue->split_queue_len--;
2717                         list_del(page_deferred_list(head));
2718                 }
2719                 spin_unlock(&ds_queue->split_queue_lock);
2720                 if (mapping) {
2721                         if (PageSwapBacked(head))
2722                                 __dec_node_page_state(head, NR_SHMEM_THPS);
2723                         else
2724                                 __dec_node_page_state(head, NR_FILE_THPS);
2725                 }
2726
2727                 __split_huge_page(page, list, end, flags);
2728                 ret = 0;
2729         } else {
2730                 if (IS_ENABLED(CONFIG_DEBUG_VM) && mapcount) {
2731                         pr_alert("total_mapcount: %u, page_count(): %u\n",
2732                                         mapcount, count);
2733                         if (PageTail(page))
2734                                 dump_page(head, NULL);
2735                         dump_page(page, "total_mapcount(head) > 0");
2736                         BUG();
2737                 }
2738                 spin_unlock(&ds_queue->split_queue_lock);
2739 fail:           if (mapping)
2740                         xa_unlock(&mapping->i_pages);
2741                 spin_unlock_irqrestore(&pgdata->lru_lock, flags);
2742                 remap_page(head, thp_nr_pages(head));
2743                 ret = -EBUSY;
2744         }
2745
2746 out_unlock:
2747         if (anon_vma) {
2748                 anon_vma_unlock_write(anon_vma);
2749                 put_anon_vma(anon_vma);
2750         }
2751         if (mapping)
2752                 i_mmap_unlock_read(mapping);
2753 out:
2754         count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
2755         return ret;
2756 }
2757
2758 void free_transhuge_page(struct page *page)
2759 {
2760         struct deferred_split *ds_queue = get_deferred_split_queue(page);
2761         unsigned long flags;
2762
2763         spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2764         if (!list_empty(page_deferred_list(page))) {
2765                 ds_queue->split_queue_len--;
2766                 list_del(page_deferred_list(page));
2767         }
2768         spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2769         free_compound_page(page);
2770 }
2771
2772 void deferred_split_huge_page(struct page *page)
2773 {
2774         struct deferred_split *ds_queue = get_deferred_split_queue(page);
2775 #ifdef CONFIG_MEMCG
2776         struct mem_cgroup *memcg = compound_head(page)->mem_cgroup;
2777 #endif
2778         unsigned long flags;
2779
2780         VM_BUG_ON_PAGE(!PageTransHuge(page), page);
2781
2782         /*
2783          * The try_to_unmap() in page reclaim path might reach here too,
2784          * this may cause a race condition to corrupt deferred split queue.
2785          * And, if page reclaim is already handling the same page, it is
2786          * unnecessary to handle it again in shrinker.
2787          *
2788          * Check PageSwapCache to determine if the page is being
2789          * handled by page reclaim since THP swap would add the page into
2790          * swap cache before calling try_to_unmap().
2791          */
2792         if (PageSwapCache(page))
2793                 return;
2794
2795         spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2796         if (list_empty(page_deferred_list(page))) {
2797                 count_vm_event(THP_DEFERRED_SPLIT_PAGE);
2798                 list_add_tail(page_deferred_list(page), &ds_queue->split_queue);
2799                 ds_queue->split_queue_len++;
2800 #ifdef CONFIG_MEMCG
2801                 if (memcg)
2802                         memcg_set_shrinker_bit(memcg, page_to_nid(page),
2803                                                deferred_split_shrinker.id);
2804 #endif
2805         }
2806         spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2807 }
2808
2809 static unsigned long deferred_split_count(struct shrinker *shrink,
2810                 struct shrink_control *sc)
2811 {
2812         struct pglist_data *pgdata = NODE_DATA(sc->nid);
2813         struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
2814
2815 #ifdef CONFIG_MEMCG
2816         if (sc->memcg)
2817                 ds_queue = &sc->memcg->deferred_split_queue;
2818 #endif
2819         return READ_ONCE(ds_queue->split_queue_len);
2820 }
2821
2822 static unsigned long deferred_split_scan(struct shrinker *shrink,
2823                 struct shrink_control *sc)
2824 {
2825         struct pglist_data *pgdata = NODE_DATA(sc->nid);
2826         struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
2827         unsigned long flags;
2828         LIST_HEAD(list), *pos, *next;
2829         struct page *page;
2830         int split = 0;
2831
2832 #ifdef CONFIG_MEMCG
2833         if (sc->memcg)
2834                 ds_queue = &sc->memcg->deferred_split_queue;
2835 #endif
2836
2837         spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2838         /* Take pin on all head pages to avoid freeing them under us */
2839         list_for_each_safe(pos, next, &ds_queue->split_queue) {
2840                 page = list_entry((void *)pos, struct page, mapping);
2841                 page = compound_head(page);
2842                 if (get_page_unless_zero(page)) {
2843                         list_move(page_deferred_list(page), &list);
2844                 } else {
2845                         /* We lost race with put_compound_page() */
2846                         list_del_init(page_deferred_list(page));
2847                         ds_queue->split_queue_len--;
2848                 }
2849                 if (!--sc->nr_to_scan)
2850                         break;
2851         }
2852         spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2853
2854         list_for_each_safe(pos, next, &list) {
2855                 page = list_entry((void *)pos, struct page, mapping);
2856                 if (!trylock_page(page))
2857                         goto next;
2858                 /* split_huge_page() removes page from list on success */
2859                 if (!split_huge_page(page))
2860                         split++;
2861                 unlock_page(page);
2862 next:
2863                 put_page(page);
2864         }
2865
2866         spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2867         list_splice_tail(&list, &ds_queue->split_queue);
2868         spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2869
2870         /*
2871          * Stop shrinker if we didn't split any page, but the queue is empty.
2872          * This can happen if pages were freed under us.
2873          */
2874         if (!split && list_empty(&ds_queue->split_queue))
2875                 return SHRINK_STOP;
2876         return split;
2877 }
2878
2879 static struct shrinker deferred_split_shrinker = {
2880         .count_objects = deferred_split_count,
2881         .scan_objects = deferred_split_scan,
2882         .seeks = DEFAULT_SEEKS,
2883         .flags = SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE |
2884                  SHRINKER_NONSLAB,
2885 };
2886
2887 #ifdef CONFIG_DEBUG_FS
2888 static int split_huge_pages_set(void *data, u64 val)
2889 {
2890         struct zone *zone;
2891         struct page *page;
2892         unsigned long pfn, max_zone_pfn;
2893         unsigned long total = 0, split = 0;
2894
2895         if (val != 1)
2896                 return -EINVAL;
2897
2898         for_each_populated_zone(zone) {
2899                 max_zone_pfn = zone_end_pfn(zone);
2900                 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
2901                         if (!pfn_valid(pfn))
2902                                 continue;
2903
2904                         page = pfn_to_page(pfn);
2905                         if (!get_page_unless_zero(page))
2906                                 continue;
2907
2908                         if (zone != page_zone(page))
2909                                 goto next;
2910
2911                         if (!PageHead(page) || PageHuge(page) || !PageLRU(page))
2912                                 goto next;
2913
2914                         total++;
2915                         lock_page(page);
2916                         if (!split_huge_page(page))
2917                                 split++;
2918                         unlock_page(page);
2919 next:
2920                         put_page(page);
2921                 }
2922         }
2923
2924         pr_info("%lu of %lu THP split\n", split, total);
2925
2926         return 0;
2927 }
2928 DEFINE_DEBUGFS_ATTRIBUTE(split_huge_pages_fops, NULL, split_huge_pages_set,
2929                 "%llu\n");
2930
2931 static int __init split_huge_pages_debugfs(void)
2932 {
2933         debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
2934                             &split_huge_pages_fops);
2935         return 0;
2936 }
2937 late_initcall(split_huge_pages_debugfs);
2938 #endif
2939
2940 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
2941 void set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw,
2942                 struct page *page)
2943 {
2944         struct vm_area_struct *vma = pvmw->vma;
2945         struct mm_struct *mm = vma->vm_mm;
2946         unsigned long address = pvmw->address;
2947         pmd_t pmdval;
2948         swp_entry_t entry;
2949         pmd_t pmdswp;
2950
2951         if (!(pvmw->pmd && !pvmw->pte))
2952                 return;
2953
2954         flush_cache_range(vma, address, address + HPAGE_PMD_SIZE);
2955         pmdval = pmdp_invalidate(vma, address, pvmw->pmd);
2956         if (pmd_dirty(pmdval))
2957                 set_page_dirty(page);
2958         entry = make_migration_entry(page, pmd_write(pmdval));
2959         pmdswp = swp_entry_to_pmd(entry);
2960         if (pmd_soft_dirty(pmdval))
2961                 pmdswp = pmd_swp_mksoft_dirty(pmdswp);
2962         set_pmd_at(mm, address, pvmw->pmd, pmdswp);
2963         page_remove_rmap(page, true);
2964         put_page(page);
2965 }
2966
2967 void remove_migration_pmd(struct page_vma_mapped_walk *pvmw, struct page *new)
2968 {
2969         struct vm_area_struct *vma = pvmw->vma;
2970         struct mm_struct *mm = vma->vm_mm;
2971         unsigned long address = pvmw->address;
2972         unsigned long mmun_start = address & HPAGE_PMD_MASK;
2973         pmd_t pmde;
2974         swp_entry_t entry;
2975
2976         if (!(pvmw->pmd && !pvmw->pte))
2977                 return;
2978
2979         entry = pmd_to_swp_entry(*pvmw->pmd);
2980         get_page(new);
2981         pmde = pmd_mkold(mk_huge_pmd(new, vma->vm_page_prot));
2982         if (pmd_swp_soft_dirty(*pvmw->pmd))
2983                 pmde = pmd_mksoft_dirty(pmde);
2984         if (is_write_migration_entry(entry))
2985                 pmde = maybe_pmd_mkwrite(pmde, vma);
2986
2987         flush_cache_range(vma, mmun_start, mmun_start + HPAGE_PMD_SIZE);
2988         if (PageAnon(new))
2989                 page_add_anon_rmap(new, vma, mmun_start, true);
2990         else
2991                 page_add_file_rmap(new, true);
2992         set_pmd_at(mm, mmun_start, pvmw->pmd, pmde);
2993         if ((vma->vm_flags & VM_LOCKED) && !PageDoubleMap(new))
2994                 mlock_vma_page(new);
2995         update_mmu_cache_pmd(vma, address, pvmw->pmd);
2996 }
2997 #endif