1 // SPDX-License-Identifier: GPL-2.0-only
3 * Copyright (C) 2009 Red Hat, Inc.
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9 #include <linux/sched.h>
10 #include <linux/sched/coredump.h>
11 #include <linux/sched/numa_balancing.h>
12 #include <linux/highmem.h>
13 #include <linux/hugetlb.h>
14 #include <linux/mmu_notifier.h>
15 #include <linux/rmap.h>
16 #include <linux/swap.h>
17 #include <linux/shrinker.h>
18 #include <linux/mm_inline.h>
19 #include <linux/swapops.h>
20 #include <linux/dax.h>
21 #include <linux/khugepaged.h>
22 #include <linux/freezer.h>
23 #include <linux/pfn_t.h>
24 #include <linux/mman.h>
25 #include <linux/memremap.h>
26 #include <linux/pagemap.h>
27 #include <linux/debugfs.h>
28 #include <linux/migrate.h>
29 #include <linux/hashtable.h>
30 #include <linux/userfaultfd_k.h>
31 #include <linux/page_idle.h>
32 #include <linux/shmem_fs.h>
33 #include <linux/oom.h>
34 #include <linux/numa.h>
35 #include <linux/page_owner.h>
38 #include <asm/pgalloc.h>
42 * By default, transparent hugepage support is disabled in order to avoid
43 * risking an increased memory footprint for applications that are not
44 * guaranteed to benefit from it. When transparent hugepage support is
45 * enabled, it is for all mappings, and khugepaged scans all mappings.
46 * Defrag is invoked by khugepaged hugepage allocations and by page faults
47 * for all hugepage allocations.
49 unsigned long transparent_hugepage_flags __read_mostly =
50 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
51 (1<<TRANSPARENT_HUGEPAGE_FLAG)|
53 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
54 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
56 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
57 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
58 (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
60 static struct shrinker deferred_split_shrinker;
62 static atomic_t huge_zero_refcount;
63 struct page *huge_zero_page __read_mostly;
65 bool transparent_hugepage_enabled(struct vm_area_struct *vma)
67 /* The addr is used to check if the vma size fits */
68 unsigned long addr = (vma->vm_end & HPAGE_PMD_MASK) - HPAGE_PMD_SIZE;
70 if (!transhuge_vma_suitable(vma, addr))
72 if (vma_is_anonymous(vma))
73 return __transparent_hugepage_enabled(vma);
74 if (vma_is_shmem(vma))
75 return shmem_huge_enabled(vma);
80 static struct page *get_huge_zero_page(void)
82 struct page *zero_page;
84 if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
85 return READ_ONCE(huge_zero_page);
87 zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
90 count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
93 count_vm_event(THP_ZERO_PAGE_ALLOC);
95 if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
97 __free_pages(zero_page, compound_order(zero_page));
101 /* We take additional reference here. It will be put back by shrinker */
102 atomic_set(&huge_zero_refcount, 2);
104 return READ_ONCE(huge_zero_page);
107 static void put_huge_zero_page(void)
110 * Counter should never go to zero here. Only shrinker can put
113 BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
116 struct page *mm_get_huge_zero_page(struct mm_struct *mm)
118 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
119 return READ_ONCE(huge_zero_page);
121 if (!get_huge_zero_page())
124 if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
125 put_huge_zero_page();
127 return READ_ONCE(huge_zero_page);
130 void mm_put_huge_zero_page(struct mm_struct *mm)
132 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
133 put_huge_zero_page();
136 static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
137 struct shrink_control *sc)
139 /* we can free zero page only if last reference remains */
140 return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
143 static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
144 struct shrink_control *sc)
146 if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
147 struct page *zero_page = xchg(&huge_zero_page, NULL);
148 BUG_ON(zero_page == NULL);
149 __free_pages(zero_page, compound_order(zero_page));
156 static struct shrinker huge_zero_page_shrinker = {
157 .count_objects = shrink_huge_zero_page_count,
158 .scan_objects = shrink_huge_zero_page_scan,
159 .seeks = DEFAULT_SEEKS,
163 static ssize_t enabled_show(struct kobject *kobj,
164 struct kobj_attribute *attr, char *buf)
166 if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
167 return sprintf(buf, "[always] madvise never\n");
168 else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags))
169 return sprintf(buf, "always [madvise] never\n");
171 return sprintf(buf, "always madvise [never]\n");
174 static ssize_t enabled_store(struct kobject *kobj,
175 struct kobj_attribute *attr,
176 const char *buf, size_t count)
180 if (!memcmp("always", buf,
181 min(sizeof("always")-1, count))) {
182 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
183 set_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
184 } else if (!memcmp("madvise", buf,
185 min(sizeof("madvise")-1, count))) {
186 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
187 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
188 } else if (!memcmp("never", buf,
189 min(sizeof("never")-1, count))) {
190 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
191 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
196 int err = start_stop_khugepaged();
202 static struct kobj_attribute enabled_attr =
203 __ATTR(enabled, 0644, enabled_show, enabled_store);
205 ssize_t single_hugepage_flag_show(struct kobject *kobj,
206 struct kobj_attribute *attr, char *buf,
207 enum transparent_hugepage_flag flag)
209 return sprintf(buf, "%d\n",
210 !!test_bit(flag, &transparent_hugepage_flags));
213 ssize_t single_hugepage_flag_store(struct kobject *kobj,
214 struct kobj_attribute *attr,
215 const char *buf, size_t count,
216 enum transparent_hugepage_flag flag)
221 ret = kstrtoul(buf, 10, &value);
228 set_bit(flag, &transparent_hugepage_flags);
230 clear_bit(flag, &transparent_hugepage_flags);
235 static ssize_t defrag_show(struct kobject *kobj,
236 struct kobj_attribute *attr, char *buf)
238 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
239 return sprintf(buf, "[always] defer defer+madvise madvise never\n");
240 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
241 return sprintf(buf, "always [defer] defer+madvise madvise never\n");
242 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
243 return sprintf(buf, "always defer [defer+madvise] madvise never\n");
244 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
245 return sprintf(buf, "always defer defer+madvise [madvise] never\n");
246 return sprintf(buf, "always defer defer+madvise madvise [never]\n");
249 static ssize_t defrag_store(struct kobject *kobj,
250 struct kobj_attribute *attr,
251 const char *buf, size_t count)
253 if (!memcmp("always", buf,
254 min(sizeof("always")-1, count))) {
255 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
256 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
257 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
258 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
259 } else if (!memcmp("defer+madvise", buf,
260 min(sizeof("defer+madvise")-1, count))) {
261 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
262 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
263 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
264 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
265 } else if (!memcmp("defer", buf,
266 min(sizeof("defer")-1, count))) {
267 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
268 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
269 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
270 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
271 } else if (!memcmp("madvise", buf,
272 min(sizeof("madvise")-1, count))) {
273 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
274 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
275 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
276 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
277 } else if (!memcmp("never", buf,
278 min(sizeof("never")-1, count))) {
279 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
280 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
281 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
282 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
288 static struct kobj_attribute defrag_attr =
289 __ATTR(defrag, 0644, defrag_show, defrag_store);
291 static ssize_t use_zero_page_show(struct kobject *kobj,
292 struct kobj_attribute *attr, char *buf)
294 return single_hugepage_flag_show(kobj, attr, buf,
295 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
297 static ssize_t use_zero_page_store(struct kobject *kobj,
298 struct kobj_attribute *attr, const char *buf, size_t count)
300 return single_hugepage_flag_store(kobj, attr, buf, count,
301 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
303 static struct kobj_attribute use_zero_page_attr =
304 __ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
306 static ssize_t hpage_pmd_size_show(struct kobject *kobj,
307 struct kobj_attribute *attr, char *buf)
309 return sprintf(buf, "%lu\n", HPAGE_PMD_SIZE);
311 static struct kobj_attribute hpage_pmd_size_attr =
312 __ATTR_RO(hpage_pmd_size);
314 #ifdef CONFIG_DEBUG_VM
315 static ssize_t debug_cow_show(struct kobject *kobj,
316 struct kobj_attribute *attr, char *buf)
318 return single_hugepage_flag_show(kobj, attr, buf,
319 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
321 static ssize_t debug_cow_store(struct kobject *kobj,
322 struct kobj_attribute *attr,
323 const char *buf, size_t count)
325 return single_hugepage_flag_store(kobj, attr, buf, count,
326 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
328 static struct kobj_attribute debug_cow_attr =
329 __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
330 #endif /* CONFIG_DEBUG_VM */
332 static struct attribute *hugepage_attr[] = {
335 &use_zero_page_attr.attr,
336 &hpage_pmd_size_attr.attr,
337 #if defined(CONFIG_SHMEM) && defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE)
338 &shmem_enabled_attr.attr,
340 #ifdef CONFIG_DEBUG_VM
341 &debug_cow_attr.attr,
346 static const struct attribute_group hugepage_attr_group = {
347 .attrs = hugepage_attr,
350 static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
354 *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
355 if (unlikely(!*hugepage_kobj)) {
356 pr_err("failed to create transparent hugepage kobject\n");
360 err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
362 pr_err("failed to register transparent hugepage group\n");
366 err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
368 pr_err("failed to register transparent hugepage group\n");
369 goto remove_hp_group;
375 sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
377 kobject_put(*hugepage_kobj);
381 static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
383 sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
384 sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
385 kobject_put(hugepage_kobj);
388 static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
393 static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
396 #endif /* CONFIG_SYSFS */
398 static int __init hugepage_init(void)
401 struct kobject *hugepage_kobj;
403 if (!has_transparent_hugepage()) {
404 transparent_hugepage_flags = 0;
409 * hugepages can't be allocated by the buddy allocator
411 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER);
413 * we use page->mapping and page->index in second tail page
414 * as list_head: assuming THP order >= 2
416 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);
418 err = hugepage_init_sysfs(&hugepage_kobj);
422 err = khugepaged_init();
426 err = register_shrinker(&huge_zero_page_shrinker);
428 goto err_hzp_shrinker;
429 err = register_shrinker(&deferred_split_shrinker);
431 goto err_split_shrinker;
434 * By default disable transparent hugepages on smaller systems,
435 * where the extra memory used could hurt more than TLB overhead
436 * is likely to save. The admin can still enable it through /sys.
438 if (totalram_pages() < (512 << (20 - PAGE_SHIFT))) {
439 transparent_hugepage_flags = 0;
443 err = start_stop_khugepaged();
449 unregister_shrinker(&deferred_split_shrinker);
451 unregister_shrinker(&huge_zero_page_shrinker);
453 khugepaged_destroy();
455 hugepage_exit_sysfs(hugepage_kobj);
459 subsys_initcall(hugepage_init);
461 static int __init setup_transparent_hugepage(char *str)
466 if (!strcmp(str, "always")) {
467 set_bit(TRANSPARENT_HUGEPAGE_FLAG,
468 &transparent_hugepage_flags);
469 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
470 &transparent_hugepage_flags);
472 } else if (!strcmp(str, "madvise")) {
473 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
474 &transparent_hugepage_flags);
475 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
476 &transparent_hugepage_flags);
478 } else if (!strcmp(str, "never")) {
479 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
480 &transparent_hugepage_flags);
481 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
482 &transparent_hugepage_flags);
487 pr_warn("transparent_hugepage= cannot parse, ignored\n");
490 __setup("transparent_hugepage=", setup_transparent_hugepage);
492 pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
494 if (likely(vma->vm_flags & VM_WRITE))
495 pmd = pmd_mkwrite(pmd);
499 static inline struct list_head *page_deferred_list(struct page *page)
501 /* ->lru in the tail pages is occupied by compound_head. */
502 return &page[2].deferred_list;
505 void prep_transhuge_page(struct page *page)
508 * we use page->mapping and page->indexlru in second tail page
509 * as list_head: assuming THP order >= 2
512 INIT_LIST_HEAD(page_deferred_list(page));
513 set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR);
516 static unsigned long __thp_get_unmapped_area(struct file *filp, unsigned long len,
517 loff_t off, unsigned long flags, unsigned long size)
520 loff_t off_end = off + len;
521 loff_t off_align = round_up(off, size);
522 unsigned long len_pad;
524 if (off_end <= off_align || (off_end - off_align) < size)
527 len_pad = len + size;
528 if (len_pad < len || (off + len_pad) < off)
531 addr = current->mm->get_unmapped_area(filp, 0, len_pad,
532 off >> PAGE_SHIFT, flags);
533 if (IS_ERR_VALUE(addr))
536 addr += (off - addr) & (size - 1);
540 unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr,
541 unsigned long len, unsigned long pgoff, unsigned long flags)
543 loff_t off = (loff_t)pgoff << PAGE_SHIFT;
547 if (!IS_DAX(filp->f_mapping->host) || !IS_ENABLED(CONFIG_FS_DAX_PMD))
550 addr = __thp_get_unmapped_area(filp, len, off, flags, PMD_SIZE);
555 return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags);
557 EXPORT_SYMBOL_GPL(thp_get_unmapped_area);
559 static vm_fault_t __do_huge_pmd_anonymous_page(struct vm_fault *vmf,
560 struct page *page, gfp_t gfp)
562 struct vm_area_struct *vma = vmf->vma;
563 struct mem_cgroup *memcg;
565 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
568 VM_BUG_ON_PAGE(!PageCompound(page), page);
570 if (mem_cgroup_try_charge_delay(page, vma->vm_mm, gfp, &memcg, true)) {
572 count_vm_event(THP_FAULT_FALLBACK);
573 return VM_FAULT_FALLBACK;
576 pgtable = pte_alloc_one(vma->vm_mm);
577 if (unlikely(!pgtable)) {
582 clear_huge_page(page, vmf->address, HPAGE_PMD_NR);
584 * The memory barrier inside __SetPageUptodate makes sure that
585 * clear_huge_page writes become visible before the set_pmd_at()
588 __SetPageUptodate(page);
590 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
591 if (unlikely(!pmd_none(*vmf->pmd))) {
596 ret = check_stable_address_space(vma->vm_mm);
600 /* Deliver the page fault to userland */
601 if (userfaultfd_missing(vma)) {
604 spin_unlock(vmf->ptl);
605 mem_cgroup_cancel_charge(page, memcg, true);
607 pte_free(vma->vm_mm, pgtable);
608 ret2 = handle_userfault(vmf, VM_UFFD_MISSING);
609 VM_BUG_ON(ret2 & VM_FAULT_FALLBACK);
613 entry = mk_huge_pmd(page, vma->vm_page_prot);
614 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
615 page_add_new_anon_rmap(page, vma, haddr, true);
616 mem_cgroup_commit_charge(page, memcg, false, true);
617 lru_cache_add_active_or_unevictable(page, vma);
618 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
619 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
620 add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
621 mm_inc_nr_ptes(vma->vm_mm);
622 spin_unlock(vmf->ptl);
623 count_vm_event(THP_FAULT_ALLOC);
624 count_memcg_events(memcg, THP_FAULT_ALLOC, 1);
629 spin_unlock(vmf->ptl);
632 pte_free(vma->vm_mm, pgtable);
633 mem_cgroup_cancel_charge(page, memcg, true);
640 * always: directly stall for all thp allocations
641 * defer: wake kswapd and fail if not immediately available
642 * defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise
643 * fail if not immediately available
644 * madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately
646 * never: never stall for any thp allocation
648 static inline gfp_t alloc_hugepage_direct_gfpmask(struct vm_area_struct *vma, unsigned long addr)
650 const bool vma_madvised = !!(vma->vm_flags & VM_HUGEPAGE);
654 struct mempolicy *pol;
656 * __GFP_THISNODE is used only when __GFP_DIRECT_RECLAIM is not
657 * specified, to express a general desire to stay on the current
658 * node for optimistic allocation attempts. If the defrag mode
659 * and/or madvise hint requires the direct reclaim then we prefer
660 * to fallback to other node rather than node reclaim because that
661 * can lead to excessive reclaim even though there is free memory
662 * on other nodes. We expect that NUMA preferences are specified
663 * by memory policies.
665 pol = get_vma_policy(vma, addr);
666 if (pol->mode != MPOL_BIND)
667 this_node = __GFP_THISNODE;
671 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
672 return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY);
673 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
674 return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM | this_node;
675 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
676 return GFP_TRANSHUGE_LIGHT | (vma_madvised ? __GFP_DIRECT_RECLAIM :
677 __GFP_KSWAPD_RECLAIM | this_node);
678 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
679 return GFP_TRANSHUGE_LIGHT | (vma_madvised ? __GFP_DIRECT_RECLAIM :
681 return GFP_TRANSHUGE_LIGHT | this_node;
684 /* Caller must hold page table lock. */
685 static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
686 struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
687 struct page *zero_page)
692 entry = mk_pmd(zero_page, vma->vm_page_prot);
693 entry = pmd_mkhuge(entry);
695 pgtable_trans_huge_deposit(mm, pmd, pgtable);
696 set_pmd_at(mm, haddr, pmd, entry);
701 vm_fault_t do_huge_pmd_anonymous_page(struct vm_fault *vmf)
703 struct vm_area_struct *vma = vmf->vma;
706 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
708 if (!transhuge_vma_suitable(vma, haddr))
709 return VM_FAULT_FALLBACK;
710 if (unlikely(anon_vma_prepare(vma)))
712 if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
714 if (!(vmf->flags & FAULT_FLAG_WRITE) &&
715 !mm_forbids_zeropage(vma->vm_mm) &&
716 transparent_hugepage_use_zero_page()) {
718 struct page *zero_page;
721 pgtable = pte_alloc_one(vma->vm_mm);
722 if (unlikely(!pgtable))
724 zero_page = mm_get_huge_zero_page(vma->vm_mm);
725 if (unlikely(!zero_page)) {
726 pte_free(vma->vm_mm, pgtable);
727 count_vm_event(THP_FAULT_FALLBACK);
728 return VM_FAULT_FALLBACK;
730 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
733 if (pmd_none(*vmf->pmd)) {
734 ret = check_stable_address_space(vma->vm_mm);
736 spin_unlock(vmf->ptl);
737 } else if (userfaultfd_missing(vma)) {
738 spin_unlock(vmf->ptl);
739 ret = handle_userfault(vmf, VM_UFFD_MISSING);
740 VM_BUG_ON(ret & VM_FAULT_FALLBACK);
742 set_huge_zero_page(pgtable, vma->vm_mm, vma,
743 haddr, vmf->pmd, zero_page);
744 spin_unlock(vmf->ptl);
748 spin_unlock(vmf->ptl);
750 pte_free(vma->vm_mm, pgtable);
753 gfp = alloc_hugepage_direct_gfpmask(vma, haddr);
754 page = alloc_pages_vma(gfp, HPAGE_PMD_ORDER, vma, haddr, numa_node_id());
755 if (unlikely(!page)) {
756 count_vm_event(THP_FAULT_FALLBACK);
757 return VM_FAULT_FALLBACK;
759 prep_transhuge_page(page);
760 return __do_huge_pmd_anonymous_page(vmf, page, gfp);
763 static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
764 pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write,
767 struct mm_struct *mm = vma->vm_mm;
771 ptl = pmd_lock(mm, pmd);
772 if (!pmd_none(*pmd)) {
774 if (pmd_pfn(*pmd) != pfn_t_to_pfn(pfn)) {
775 WARN_ON_ONCE(!is_huge_zero_pmd(*pmd));
778 entry = pmd_mkyoung(*pmd);
779 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
780 if (pmdp_set_access_flags(vma, addr, pmd, entry, 1))
781 update_mmu_cache_pmd(vma, addr, pmd);
787 entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
788 if (pfn_t_devmap(pfn))
789 entry = pmd_mkdevmap(entry);
791 entry = pmd_mkyoung(pmd_mkdirty(entry));
792 entry = maybe_pmd_mkwrite(entry, vma);
796 pgtable_trans_huge_deposit(mm, pmd, pgtable);
801 set_pmd_at(mm, addr, pmd, entry);
802 update_mmu_cache_pmd(vma, addr, pmd);
807 pte_free(mm, pgtable);
810 vm_fault_t vmf_insert_pfn_pmd(struct vm_fault *vmf, pfn_t pfn, bool write)
812 unsigned long addr = vmf->address & PMD_MASK;
813 struct vm_area_struct *vma = vmf->vma;
814 pgprot_t pgprot = vma->vm_page_prot;
815 pgtable_t pgtable = NULL;
818 * If we had pmd_special, we could avoid all these restrictions,
819 * but we need to be consistent with PTEs and architectures that
820 * can't support a 'special' bit.
822 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
824 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
825 (VM_PFNMAP|VM_MIXEDMAP));
826 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
828 if (addr < vma->vm_start || addr >= vma->vm_end)
829 return VM_FAULT_SIGBUS;
831 if (arch_needs_pgtable_deposit()) {
832 pgtable = pte_alloc_one(vma->vm_mm);
837 track_pfn_insert(vma, &pgprot, pfn);
839 insert_pfn_pmd(vma, addr, vmf->pmd, pfn, pgprot, write, pgtable);
840 return VM_FAULT_NOPAGE;
842 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd);
844 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
845 static pud_t maybe_pud_mkwrite(pud_t pud, struct vm_area_struct *vma)
847 if (likely(vma->vm_flags & VM_WRITE))
848 pud = pud_mkwrite(pud);
852 static void insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
853 pud_t *pud, pfn_t pfn, pgprot_t prot, bool write)
855 struct mm_struct *mm = vma->vm_mm;
859 ptl = pud_lock(mm, pud);
860 if (!pud_none(*pud)) {
862 if (pud_pfn(*pud) != pfn_t_to_pfn(pfn)) {
863 WARN_ON_ONCE(!is_huge_zero_pud(*pud));
866 entry = pud_mkyoung(*pud);
867 entry = maybe_pud_mkwrite(pud_mkdirty(entry), vma);
868 if (pudp_set_access_flags(vma, addr, pud, entry, 1))
869 update_mmu_cache_pud(vma, addr, pud);
874 entry = pud_mkhuge(pfn_t_pud(pfn, prot));
875 if (pfn_t_devmap(pfn))
876 entry = pud_mkdevmap(entry);
878 entry = pud_mkyoung(pud_mkdirty(entry));
879 entry = maybe_pud_mkwrite(entry, vma);
881 set_pud_at(mm, addr, pud, entry);
882 update_mmu_cache_pud(vma, addr, pud);
888 vm_fault_t vmf_insert_pfn_pud(struct vm_fault *vmf, pfn_t pfn, bool write)
890 unsigned long addr = vmf->address & PUD_MASK;
891 struct vm_area_struct *vma = vmf->vma;
892 pgprot_t pgprot = vma->vm_page_prot;
895 * If we had pud_special, we could avoid all these restrictions,
896 * but we need to be consistent with PTEs and architectures that
897 * can't support a 'special' bit.
899 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
901 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
902 (VM_PFNMAP|VM_MIXEDMAP));
903 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
905 if (addr < vma->vm_start || addr >= vma->vm_end)
906 return VM_FAULT_SIGBUS;
908 track_pfn_insert(vma, &pgprot, pfn);
910 insert_pfn_pud(vma, addr, vmf->pud, pfn, pgprot, write);
911 return VM_FAULT_NOPAGE;
913 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud);
914 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
916 static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
917 pmd_t *pmd, int flags)
921 _pmd = pmd_mkyoung(*pmd);
922 if (flags & FOLL_WRITE)
923 _pmd = pmd_mkdirty(_pmd);
924 if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
925 pmd, _pmd, flags & FOLL_WRITE))
926 update_mmu_cache_pmd(vma, addr, pmd);
929 struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
930 pmd_t *pmd, int flags, struct dev_pagemap **pgmap)
932 unsigned long pfn = pmd_pfn(*pmd);
933 struct mm_struct *mm = vma->vm_mm;
936 assert_spin_locked(pmd_lockptr(mm, pmd));
939 * When we COW a devmap PMD entry, we split it into PTEs, so we should
940 * not be in this function with `flags & FOLL_COW` set.
942 WARN_ONCE(flags & FOLL_COW, "mm: In follow_devmap_pmd with FOLL_COW set");
944 if (flags & FOLL_WRITE && !pmd_write(*pmd))
947 if (pmd_present(*pmd) && pmd_devmap(*pmd))
952 if (flags & FOLL_TOUCH)
953 touch_pmd(vma, addr, pmd, flags);
956 * device mapped pages can only be returned if the
957 * caller will manage the page reference count.
959 if (!(flags & FOLL_GET))
960 return ERR_PTR(-EEXIST);
962 pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
963 *pgmap = get_dev_pagemap(pfn, *pgmap);
965 return ERR_PTR(-EFAULT);
966 page = pfn_to_page(pfn);
972 int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
973 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
974 struct vm_area_struct *vma)
976 spinlock_t *dst_ptl, *src_ptl;
977 struct page *src_page;
979 pgtable_t pgtable = NULL;
982 /* Skip if can be re-fill on fault */
983 if (!vma_is_anonymous(vma))
986 pgtable = pte_alloc_one(dst_mm);
987 if (unlikely(!pgtable))
990 dst_ptl = pmd_lock(dst_mm, dst_pmd);
991 src_ptl = pmd_lockptr(src_mm, src_pmd);
992 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
997 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
998 if (unlikely(is_swap_pmd(pmd))) {
999 swp_entry_t entry = pmd_to_swp_entry(pmd);
1001 VM_BUG_ON(!is_pmd_migration_entry(pmd));
1002 if (is_write_migration_entry(entry)) {
1003 make_migration_entry_read(&entry);
1004 pmd = swp_entry_to_pmd(entry);
1005 if (pmd_swp_soft_dirty(*src_pmd))
1006 pmd = pmd_swp_mksoft_dirty(pmd);
1007 set_pmd_at(src_mm, addr, src_pmd, pmd);
1009 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1010 mm_inc_nr_ptes(dst_mm);
1011 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1012 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
1018 if (unlikely(!pmd_trans_huge(pmd))) {
1019 pte_free(dst_mm, pgtable);
1023 * When page table lock is held, the huge zero pmd should not be
1024 * under splitting since we don't split the page itself, only pmd to
1027 if (is_huge_zero_pmd(pmd)) {
1028 struct page *zero_page;
1030 * get_huge_zero_page() will never allocate a new page here,
1031 * since we already have a zero page to copy. It just takes a
1034 zero_page = mm_get_huge_zero_page(dst_mm);
1035 set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
1041 src_page = pmd_page(pmd);
1042 VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
1044 page_dup_rmap(src_page, true);
1045 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1046 mm_inc_nr_ptes(dst_mm);
1047 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1049 pmdp_set_wrprotect(src_mm, addr, src_pmd);
1050 pmd = pmd_mkold(pmd_wrprotect(pmd));
1051 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
1055 spin_unlock(src_ptl);
1056 spin_unlock(dst_ptl);
1061 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1062 static void touch_pud(struct vm_area_struct *vma, unsigned long addr,
1063 pud_t *pud, int flags)
1067 _pud = pud_mkyoung(*pud);
1068 if (flags & FOLL_WRITE)
1069 _pud = pud_mkdirty(_pud);
1070 if (pudp_set_access_flags(vma, addr & HPAGE_PUD_MASK,
1071 pud, _pud, flags & FOLL_WRITE))
1072 update_mmu_cache_pud(vma, addr, pud);
1075 struct page *follow_devmap_pud(struct vm_area_struct *vma, unsigned long addr,
1076 pud_t *pud, int flags, struct dev_pagemap **pgmap)
1078 unsigned long pfn = pud_pfn(*pud);
1079 struct mm_struct *mm = vma->vm_mm;
1082 assert_spin_locked(pud_lockptr(mm, pud));
1084 if (flags & FOLL_WRITE && !pud_write(*pud))
1087 if (pud_present(*pud) && pud_devmap(*pud))
1092 if (flags & FOLL_TOUCH)
1093 touch_pud(vma, addr, pud, flags);
1096 * device mapped pages can only be returned if the
1097 * caller will manage the page reference count.
1099 if (!(flags & FOLL_GET))
1100 return ERR_PTR(-EEXIST);
1102 pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT;
1103 *pgmap = get_dev_pagemap(pfn, *pgmap);
1105 return ERR_PTR(-EFAULT);
1106 page = pfn_to_page(pfn);
1112 int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1113 pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1114 struct vm_area_struct *vma)
1116 spinlock_t *dst_ptl, *src_ptl;
1120 dst_ptl = pud_lock(dst_mm, dst_pud);
1121 src_ptl = pud_lockptr(src_mm, src_pud);
1122 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1126 if (unlikely(!pud_trans_huge(pud) && !pud_devmap(pud)))
1130 * When page table lock is held, the huge zero pud should not be
1131 * under splitting since we don't split the page itself, only pud to
1134 if (is_huge_zero_pud(pud)) {
1135 /* No huge zero pud yet */
1138 pudp_set_wrprotect(src_mm, addr, src_pud);
1139 pud = pud_mkold(pud_wrprotect(pud));
1140 set_pud_at(dst_mm, addr, dst_pud, pud);
1144 spin_unlock(src_ptl);
1145 spin_unlock(dst_ptl);
1149 void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud)
1152 unsigned long haddr;
1153 bool write = vmf->flags & FAULT_FLAG_WRITE;
1155 vmf->ptl = pud_lock(vmf->vma->vm_mm, vmf->pud);
1156 if (unlikely(!pud_same(*vmf->pud, orig_pud)))
1159 entry = pud_mkyoung(orig_pud);
1161 entry = pud_mkdirty(entry);
1162 haddr = vmf->address & HPAGE_PUD_MASK;
1163 if (pudp_set_access_flags(vmf->vma, haddr, vmf->pud, entry, write))
1164 update_mmu_cache_pud(vmf->vma, vmf->address, vmf->pud);
1167 spin_unlock(vmf->ptl);
1169 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1171 void huge_pmd_set_accessed(struct vm_fault *vmf, pmd_t orig_pmd)
1174 unsigned long haddr;
1175 bool write = vmf->flags & FAULT_FLAG_WRITE;
1177 vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1178 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1181 entry = pmd_mkyoung(orig_pmd);
1183 entry = pmd_mkdirty(entry);
1184 haddr = vmf->address & HPAGE_PMD_MASK;
1185 if (pmdp_set_access_flags(vmf->vma, haddr, vmf->pmd, entry, write))
1186 update_mmu_cache_pmd(vmf->vma, vmf->address, vmf->pmd);
1189 spin_unlock(vmf->ptl);
1192 static vm_fault_t do_huge_pmd_wp_page_fallback(struct vm_fault *vmf,
1193 pmd_t orig_pmd, struct page *page)
1195 struct vm_area_struct *vma = vmf->vma;
1196 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1197 struct mem_cgroup *memcg;
1202 struct page **pages;
1203 struct mmu_notifier_range range;
1205 pages = kmalloc_array(HPAGE_PMD_NR, sizeof(struct page *),
1207 if (unlikely(!pages)) {
1208 ret |= VM_FAULT_OOM;
1212 for (i = 0; i < HPAGE_PMD_NR; i++) {
1213 pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE, vma,
1214 vmf->address, page_to_nid(page));
1215 if (unlikely(!pages[i] ||
1216 mem_cgroup_try_charge_delay(pages[i], vma->vm_mm,
1217 GFP_KERNEL, &memcg, false))) {
1221 memcg = (void *)page_private(pages[i]);
1222 set_page_private(pages[i], 0);
1223 mem_cgroup_cancel_charge(pages[i], memcg,
1228 ret |= VM_FAULT_OOM;
1231 set_page_private(pages[i], (unsigned long)memcg);
1234 for (i = 0; i < HPAGE_PMD_NR; i++) {
1235 copy_user_highpage(pages[i], page + i,
1236 haddr + PAGE_SIZE * i, vma);
1237 __SetPageUptodate(pages[i]);
1241 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1242 haddr, haddr + HPAGE_PMD_SIZE);
1243 mmu_notifier_invalidate_range_start(&range);
1245 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1246 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1247 goto out_free_pages;
1248 VM_BUG_ON_PAGE(!PageHead(page), page);
1251 * Leave pmd empty until pte is filled note we must notify here as
1252 * concurrent CPU thread might write to new page before the call to
1253 * mmu_notifier_invalidate_range_end() happens which can lead to a
1254 * device seeing memory write in different order than CPU.
1256 * See Documentation/vm/mmu_notifier.rst
1258 pmdp_huge_clear_flush_notify(vma, haddr, vmf->pmd);
1260 pgtable = pgtable_trans_huge_withdraw(vma->vm_mm, vmf->pmd);
1261 pmd_populate(vma->vm_mm, &_pmd, pgtable);
1263 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1265 entry = mk_pte(pages[i], vma->vm_page_prot);
1266 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1267 memcg = (void *)page_private(pages[i]);
1268 set_page_private(pages[i], 0);
1269 page_add_new_anon_rmap(pages[i], vmf->vma, haddr, false);
1270 mem_cgroup_commit_charge(pages[i], memcg, false, false);
1271 lru_cache_add_active_or_unevictable(pages[i], vma);
1272 vmf->pte = pte_offset_map(&_pmd, haddr);
1273 VM_BUG_ON(!pte_none(*vmf->pte));
1274 set_pte_at(vma->vm_mm, haddr, vmf->pte, entry);
1275 pte_unmap(vmf->pte);
1279 smp_wmb(); /* make pte visible before pmd */
1280 pmd_populate(vma->vm_mm, vmf->pmd, pgtable);
1281 page_remove_rmap(page, true);
1282 spin_unlock(vmf->ptl);
1285 * No need to double call mmu_notifier->invalidate_range() callback as
1286 * the above pmdp_huge_clear_flush_notify() did already call it.
1288 mmu_notifier_invalidate_range_only_end(&range);
1290 ret |= VM_FAULT_WRITE;
1297 spin_unlock(vmf->ptl);
1298 mmu_notifier_invalidate_range_end(&range);
1299 for (i = 0; i < HPAGE_PMD_NR; i++) {
1300 memcg = (void *)page_private(pages[i]);
1301 set_page_private(pages[i], 0);
1302 mem_cgroup_cancel_charge(pages[i], memcg, false);
1309 vm_fault_t do_huge_pmd_wp_page(struct vm_fault *vmf, pmd_t orig_pmd)
1311 struct vm_area_struct *vma = vmf->vma;
1312 struct page *page = NULL, *new_page;
1313 struct mem_cgroup *memcg;
1314 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1315 struct mmu_notifier_range range;
1316 gfp_t huge_gfp; /* for allocation and charge */
1319 vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd);
1320 VM_BUG_ON_VMA(!vma->anon_vma, vma);
1321 if (is_huge_zero_pmd(orig_pmd))
1323 spin_lock(vmf->ptl);
1324 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1327 page = pmd_page(orig_pmd);
1328 VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page);
1330 * We can only reuse the page if nobody else maps the huge page or it's
1333 if (!trylock_page(page)) {
1335 spin_unlock(vmf->ptl);
1337 spin_lock(vmf->ptl);
1338 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1345 if (reuse_swap_page(page, NULL)) {
1347 entry = pmd_mkyoung(orig_pmd);
1348 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1349 if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry, 1))
1350 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1351 ret |= VM_FAULT_WRITE;
1357 spin_unlock(vmf->ptl);
1359 if (__transparent_hugepage_enabled(vma) &&
1360 !transparent_hugepage_debug_cow()) {
1361 huge_gfp = alloc_hugepage_direct_gfpmask(vma, haddr);
1362 new_page = alloc_pages_vma(huge_gfp, HPAGE_PMD_ORDER, vma,
1363 haddr, numa_node_id());
1367 if (likely(new_page)) {
1368 prep_transhuge_page(new_page);
1371 split_huge_pmd(vma, vmf->pmd, vmf->address);
1372 ret |= VM_FAULT_FALLBACK;
1374 ret = do_huge_pmd_wp_page_fallback(vmf, orig_pmd, page);
1375 if (ret & VM_FAULT_OOM) {
1376 split_huge_pmd(vma, vmf->pmd, vmf->address);
1377 ret |= VM_FAULT_FALLBACK;
1381 count_vm_event(THP_FAULT_FALLBACK);
1385 if (unlikely(mem_cgroup_try_charge_delay(new_page, vma->vm_mm,
1386 huge_gfp, &memcg, true))) {
1388 split_huge_pmd(vma, vmf->pmd, vmf->address);
1391 ret |= VM_FAULT_FALLBACK;
1392 count_vm_event(THP_FAULT_FALLBACK);
1396 count_vm_event(THP_FAULT_ALLOC);
1397 count_memcg_events(memcg, THP_FAULT_ALLOC, 1);
1400 clear_huge_page(new_page, vmf->address, HPAGE_PMD_NR);
1402 copy_user_huge_page(new_page, page, vmf->address,
1404 __SetPageUptodate(new_page);
1406 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1407 haddr, haddr + HPAGE_PMD_SIZE);
1408 mmu_notifier_invalidate_range_start(&range);
1410 spin_lock(vmf->ptl);
1413 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1414 spin_unlock(vmf->ptl);
1415 mem_cgroup_cancel_charge(new_page, memcg, true);
1420 entry = mk_huge_pmd(new_page, vma->vm_page_prot);
1421 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1422 pmdp_huge_clear_flush_notify(vma, haddr, vmf->pmd);
1423 page_add_new_anon_rmap(new_page, vma, haddr, true);
1424 mem_cgroup_commit_charge(new_page, memcg, false, true);
1425 lru_cache_add_active_or_unevictable(new_page, vma);
1426 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
1427 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1429 add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1431 VM_BUG_ON_PAGE(!PageHead(page), page);
1432 page_remove_rmap(page, true);
1435 ret |= VM_FAULT_WRITE;
1437 spin_unlock(vmf->ptl);
1440 * No need to double call mmu_notifier->invalidate_range() callback as
1441 * the above pmdp_huge_clear_flush_notify() did already call it.
1443 mmu_notifier_invalidate_range_only_end(&range);
1447 spin_unlock(vmf->ptl);
1452 * FOLL_FORCE can write to even unwritable pmd's, but only
1453 * after we've gone through a COW cycle and they are dirty.
1455 static inline bool can_follow_write_pmd(pmd_t pmd, unsigned int flags)
1457 return pmd_write(pmd) ||
1458 ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pmd_dirty(pmd));
1461 struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1466 struct mm_struct *mm = vma->vm_mm;
1467 struct page *page = NULL;
1469 assert_spin_locked(pmd_lockptr(mm, pmd));
1471 if (flags & FOLL_WRITE && !can_follow_write_pmd(*pmd, flags))
1474 /* Avoid dumping huge zero page */
1475 if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1476 return ERR_PTR(-EFAULT);
1478 /* Full NUMA hinting faults to serialise migration in fault paths */
1479 if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
1482 page = pmd_page(*pmd);
1483 VM_BUG_ON_PAGE(!PageHead(page) && !is_zone_device_page(page), page);
1484 if (flags & FOLL_TOUCH)
1485 touch_pmd(vma, addr, pmd, flags);
1486 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1488 * We don't mlock() pte-mapped THPs. This way we can avoid
1489 * leaking mlocked pages into non-VM_LOCKED VMAs.
1493 * In most cases the pmd is the only mapping of the page as we
1494 * break COW for the mlock() -- see gup_flags |= FOLL_WRITE for
1495 * writable private mappings in populate_vma_page_range().
1497 * The only scenario when we have the page shared here is if we
1498 * mlocking read-only mapping shared over fork(). We skip
1499 * mlocking such pages.
1503 * We can expect PageDoubleMap() to be stable under page lock:
1504 * for file pages we set it in page_add_file_rmap(), which
1505 * requires page to be locked.
1508 if (PageAnon(page) && compound_mapcount(page) != 1)
1510 if (PageDoubleMap(page) || !page->mapping)
1512 if (!trylock_page(page))
1515 if (page->mapping && !PageDoubleMap(page))
1516 mlock_vma_page(page);
1520 page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1521 VM_BUG_ON_PAGE(!PageCompound(page) && !is_zone_device_page(page), page);
1522 if (flags & FOLL_GET)
1529 /* NUMA hinting page fault entry point for trans huge pmds */
1530 vm_fault_t do_huge_pmd_numa_page(struct vm_fault *vmf, pmd_t pmd)
1532 struct vm_area_struct *vma = vmf->vma;
1533 struct anon_vma *anon_vma = NULL;
1535 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1536 int page_nid = NUMA_NO_NODE, this_nid = numa_node_id();
1537 int target_nid, last_cpupid = -1;
1539 bool migrated = false;
1543 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1544 if (unlikely(!pmd_same(pmd, *vmf->pmd)))
1548 * If there are potential migrations, wait for completion and retry
1549 * without disrupting NUMA hinting information. Do not relock and
1550 * check_same as the page may no longer be mapped.
1552 if (unlikely(pmd_trans_migrating(*vmf->pmd))) {
1553 page = pmd_page(*vmf->pmd);
1554 if (!get_page_unless_zero(page))
1556 spin_unlock(vmf->ptl);
1557 put_and_wait_on_page_locked(page);
1561 page = pmd_page(pmd);
1562 BUG_ON(is_huge_zero_page(page));
1563 page_nid = page_to_nid(page);
1564 last_cpupid = page_cpupid_last(page);
1565 count_vm_numa_event(NUMA_HINT_FAULTS);
1566 if (page_nid == this_nid) {
1567 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
1568 flags |= TNF_FAULT_LOCAL;
1571 /* See similar comment in do_numa_page for explanation */
1572 if (!pmd_savedwrite(pmd))
1573 flags |= TNF_NO_GROUP;
1576 * Acquire the page lock to serialise THP migrations but avoid dropping
1577 * page_table_lock if at all possible
1579 page_locked = trylock_page(page);
1580 target_nid = mpol_misplaced(page, vma, haddr);
1581 if (target_nid == NUMA_NO_NODE) {
1582 /* If the page was locked, there are no parallel migrations */
1587 /* Migration could have started since the pmd_trans_migrating check */
1589 page_nid = NUMA_NO_NODE;
1590 if (!get_page_unless_zero(page))
1592 spin_unlock(vmf->ptl);
1593 put_and_wait_on_page_locked(page);
1598 * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
1599 * to serialises splits
1602 spin_unlock(vmf->ptl);
1603 anon_vma = page_lock_anon_vma_read(page);
1605 /* Confirm the PMD did not change while page_table_lock was released */
1606 spin_lock(vmf->ptl);
1607 if (unlikely(!pmd_same(pmd, *vmf->pmd))) {
1610 page_nid = NUMA_NO_NODE;
1614 /* Bail if we fail to protect against THP splits for any reason */
1615 if (unlikely(!anon_vma)) {
1617 page_nid = NUMA_NO_NODE;
1622 * Since we took the NUMA fault, we must have observed the !accessible
1623 * bit. Make sure all other CPUs agree with that, to avoid them
1624 * modifying the page we're about to migrate.
1626 * Must be done under PTL such that we'll observe the relevant
1627 * inc_tlb_flush_pending().
1629 * We are not sure a pending tlb flush here is for a huge page
1630 * mapping or not. Hence use the tlb range variant
1632 if (mm_tlb_flush_pending(vma->vm_mm)) {
1633 flush_tlb_range(vma, haddr, haddr + HPAGE_PMD_SIZE);
1635 * change_huge_pmd() released the pmd lock before
1636 * invalidating the secondary MMUs sharing the primary
1637 * MMU pagetables (with ->invalidate_range()). The
1638 * mmu_notifier_invalidate_range_end() (which
1639 * internally calls ->invalidate_range()) in
1640 * change_pmd_range() will run after us, so we can't
1641 * rely on it here and we need an explicit invalidate.
1643 mmu_notifier_invalidate_range(vma->vm_mm, haddr,
1644 haddr + HPAGE_PMD_SIZE);
1648 * Migrate the THP to the requested node, returns with page unlocked
1649 * and access rights restored.
1651 spin_unlock(vmf->ptl);
1653 migrated = migrate_misplaced_transhuge_page(vma->vm_mm, vma,
1654 vmf->pmd, pmd, vmf->address, page, target_nid);
1656 flags |= TNF_MIGRATED;
1657 page_nid = target_nid;
1659 flags |= TNF_MIGRATE_FAIL;
1663 BUG_ON(!PageLocked(page));
1664 was_writable = pmd_savedwrite(pmd);
1665 pmd = pmd_modify(pmd, vma->vm_page_prot);
1666 pmd = pmd_mkyoung(pmd);
1668 pmd = pmd_mkwrite(pmd);
1669 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd);
1670 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1673 spin_unlock(vmf->ptl);
1677 page_unlock_anon_vma_read(anon_vma);
1679 if (page_nid != NUMA_NO_NODE)
1680 task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR,
1687 * Return true if we do MADV_FREE successfully on entire pmd page.
1688 * Otherwise, return false.
1690 bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1691 pmd_t *pmd, unsigned long addr, unsigned long next)
1696 struct mm_struct *mm = tlb->mm;
1699 tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
1701 ptl = pmd_trans_huge_lock(pmd, vma);
1706 if (is_huge_zero_pmd(orig_pmd))
1709 if (unlikely(!pmd_present(orig_pmd))) {
1710 VM_BUG_ON(thp_migration_supported() &&
1711 !is_pmd_migration_entry(orig_pmd));
1715 page = pmd_page(orig_pmd);
1717 * If other processes are mapping this page, we couldn't discard
1718 * the page unless they all do MADV_FREE so let's skip the page.
1720 if (page_mapcount(page) != 1)
1723 if (!trylock_page(page))
1727 * If user want to discard part-pages of THP, split it so MADV_FREE
1728 * will deactivate only them.
1730 if (next - addr != HPAGE_PMD_SIZE) {
1733 split_huge_page(page);
1739 if (PageDirty(page))
1740 ClearPageDirty(page);
1743 if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
1744 pmdp_invalidate(vma, addr, pmd);
1745 orig_pmd = pmd_mkold(orig_pmd);
1746 orig_pmd = pmd_mkclean(orig_pmd);
1748 set_pmd_at(mm, addr, pmd, orig_pmd);
1749 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1752 mark_page_lazyfree(page);
1760 static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd)
1764 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1765 pte_free(mm, pgtable);
1769 int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1770 pmd_t *pmd, unsigned long addr)
1775 tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
1777 ptl = __pmd_trans_huge_lock(pmd, vma);
1781 * For architectures like ppc64 we look at deposited pgtable
1782 * when calling pmdp_huge_get_and_clear. So do the
1783 * pgtable_trans_huge_withdraw after finishing pmdp related
1786 orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
1788 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1789 if (vma_is_dax(vma)) {
1790 if (arch_needs_pgtable_deposit())
1791 zap_deposited_table(tlb->mm, pmd);
1793 if (is_huge_zero_pmd(orig_pmd))
1794 tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
1795 } else if (is_huge_zero_pmd(orig_pmd)) {
1796 zap_deposited_table(tlb->mm, pmd);
1798 tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
1800 struct page *page = NULL;
1801 int flush_needed = 1;
1803 if (pmd_present(orig_pmd)) {
1804 page = pmd_page(orig_pmd);
1805 page_remove_rmap(page, true);
1806 VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
1807 VM_BUG_ON_PAGE(!PageHead(page), page);
1808 } else if (thp_migration_supported()) {
1811 VM_BUG_ON(!is_pmd_migration_entry(orig_pmd));
1812 entry = pmd_to_swp_entry(orig_pmd);
1813 page = pfn_to_page(swp_offset(entry));
1816 WARN_ONCE(1, "Non present huge pmd without pmd migration enabled!");
1818 if (PageAnon(page)) {
1819 zap_deposited_table(tlb->mm, pmd);
1820 add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1822 if (arch_needs_pgtable_deposit())
1823 zap_deposited_table(tlb->mm, pmd);
1824 add_mm_counter(tlb->mm, mm_counter_file(page), -HPAGE_PMD_NR);
1829 tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE);
1834 #ifndef pmd_move_must_withdraw
1835 static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl,
1836 spinlock_t *old_pmd_ptl,
1837 struct vm_area_struct *vma)
1840 * With split pmd lock we also need to move preallocated
1841 * PTE page table if new_pmd is on different PMD page table.
1843 * We also don't deposit and withdraw tables for file pages.
1845 return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma);
1849 static pmd_t move_soft_dirty_pmd(pmd_t pmd)
1851 #ifdef CONFIG_MEM_SOFT_DIRTY
1852 if (unlikely(is_pmd_migration_entry(pmd)))
1853 pmd = pmd_swp_mksoft_dirty(pmd);
1854 else if (pmd_present(pmd))
1855 pmd = pmd_mksoft_dirty(pmd);
1860 bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
1861 unsigned long new_addr, unsigned long old_end,
1862 pmd_t *old_pmd, pmd_t *new_pmd)
1864 spinlock_t *old_ptl, *new_ptl;
1866 struct mm_struct *mm = vma->vm_mm;
1867 bool force_flush = false;
1869 if ((old_addr & ~HPAGE_PMD_MASK) ||
1870 (new_addr & ~HPAGE_PMD_MASK) ||
1871 old_end - old_addr < HPAGE_PMD_SIZE)
1875 * The destination pmd shouldn't be established, free_pgtables()
1876 * should have release it.
1878 if (WARN_ON(!pmd_none(*new_pmd))) {
1879 VM_BUG_ON(pmd_trans_huge(*new_pmd));
1884 * We don't have to worry about the ordering of src and dst
1885 * ptlocks because exclusive mmap_sem prevents deadlock.
1887 old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
1889 new_ptl = pmd_lockptr(mm, new_pmd);
1890 if (new_ptl != old_ptl)
1891 spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
1892 pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
1893 if (pmd_present(pmd))
1895 VM_BUG_ON(!pmd_none(*new_pmd));
1897 if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) {
1899 pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1900 pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
1902 pmd = move_soft_dirty_pmd(pmd);
1903 set_pmd_at(mm, new_addr, new_pmd, pmd);
1905 flush_tlb_range(vma, old_addr, old_addr + PMD_SIZE);
1906 if (new_ptl != old_ptl)
1907 spin_unlock(new_ptl);
1908 spin_unlock(old_ptl);
1916 * - 0 if PMD could not be locked
1917 * - 1 if PMD was locked but protections unchange and TLB flush unnecessary
1918 * - HPAGE_PMD_NR is protections changed and TLB flush necessary
1920 int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1921 unsigned long addr, pgprot_t newprot, int prot_numa)
1923 struct mm_struct *mm = vma->vm_mm;
1926 bool preserve_write;
1929 ptl = __pmd_trans_huge_lock(pmd, vma);
1933 preserve_write = prot_numa && pmd_write(*pmd);
1936 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1937 if (is_swap_pmd(*pmd)) {
1938 swp_entry_t entry = pmd_to_swp_entry(*pmd);
1940 VM_BUG_ON(!is_pmd_migration_entry(*pmd));
1941 if (is_write_migration_entry(entry)) {
1944 * A protection check is difficult so
1945 * just be safe and disable write
1947 make_migration_entry_read(&entry);
1948 newpmd = swp_entry_to_pmd(entry);
1949 if (pmd_swp_soft_dirty(*pmd))
1950 newpmd = pmd_swp_mksoft_dirty(newpmd);
1951 set_pmd_at(mm, addr, pmd, newpmd);
1958 * Avoid trapping faults against the zero page. The read-only
1959 * data is likely to be read-cached on the local CPU and
1960 * local/remote hits to the zero page are not interesting.
1962 if (prot_numa && is_huge_zero_pmd(*pmd))
1965 if (prot_numa && pmd_protnone(*pmd))
1969 * In case prot_numa, we are under down_read(mmap_sem). It's critical
1970 * to not clear pmd intermittently to avoid race with MADV_DONTNEED
1971 * which is also under down_read(mmap_sem):
1974 * change_huge_pmd(prot_numa=1)
1975 * pmdp_huge_get_and_clear_notify()
1976 * madvise_dontneed()
1978 * pmd_trans_huge(*pmd) == 0 (without ptl)
1981 * // pmd is re-established
1983 * The race makes MADV_DONTNEED miss the huge pmd and don't clear it
1984 * which may break userspace.
1986 * pmdp_invalidate() is required to make sure we don't miss
1987 * dirty/young flags set by hardware.
1989 entry = pmdp_invalidate(vma, addr, pmd);
1991 entry = pmd_modify(entry, newprot);
1993 entry = pmd_mk_savedwrite(entry);
1995 set_pmd_at(mm, addr, pmd, entry);
1996 BUG_ON(vma_is_anonymous(vma) && !preserve_write && pmd_write(entry));
2003 * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise.
2005 * Note that if it returns page table lock pointer, this routine returns without
2006 * unlocking page table lock. So callers must unlock it.
2008 spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
2011 ptl = pmd_lock(vma->vm_mm, pmd);
2012 if (likely(is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) ||
2020 * Returns true if a given pud maps a thp, false otherwise.
2022 * Note that if it returns true, this routine returns without unlocking page
2023 * table lock. So callers must unlock it.
2025 spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma)
2029 ptl = pud_lock(vma->vm_mm, pud);
2030 if (likely(pud_trans_huge(*pud) || pud_devmap(*pud)))
2036 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
2037 int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma,
2038 pud_t *pud, unsigned long addr)
2042 ptl = __pud_trans_huge_lock(pud, vma);
2046 * For architectures like ppc64 we look at deposited pgtable
2047 * when calling pudp_huge_get_and_clear. So do the
2048 * pgtable_trans_huge_withdraw after finishing pudp related
2051 pudp_huge_get_and_clear_full(tlb->mm, addr, pud, tlb->fullmm);
2052 tlb_remove_pud_tlb_entry(tlb, pud, addr);
2053 if (vma_is_dax(vma)) {
2055 /* No zero page support yet */
2057 /* No support for anonymous PUD pages yet */
2063 static void __split_huge_pud_locked(struct vm_area_struct *vma, pud_t *pud,
2064 unsigned long haddr)
2066 VM_BUG_ON(haddr & ~HPAGE_PUD_MASK);
2067 VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2068 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PUD_SIZE, vma);
2069 VM_BUG_ON(!pud_trans_huge(*pud) && !pud_devmap(*pud));
2071 count_vm_event(THP_SPLIT_PUD);
2073 pudp_huge_clear_flush_notify(vma, haddr, pud);
2076 void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud,
2077 unsigned long address)
2080 struct mmu_notifier_range range;
2082 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
2083 address & HPAGE_PUD_MASK,
2084 (address & HPAGE_PUD_MASK) + HPAGE_PUD_SIZE);
2085 mmu_notifier_invalidate_range_start(&range);
2086 ptl = pud_lock(vma->vm_mm, pud);
2087 if (unlikely(!pud_trans_huge(*pud) && !pud_devmap(*pud)))
2089 __split_huge_pud_locked(vma, pud, range.start);
2094 * No need to double call mmu_notifier->invalidate_range() callback as
2095 * the above pudp_huge_clear_flush_notify() did already call it.
2097 mmu_notifier_invalidate_range_only_end(&range);
2099 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
2101 static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
2102 unsigned long haddr, pmd_t *pmd)
2104 struct mm_struct *mm = vma->vm_mm;
2110 * Leave pmd empty until pte is filled note that it is fine to delay
2111 * notification until mmu_notifier_invalidate_range_end() as we are
2112 * replacing a zero pmd write protected page with a zero pte write
2115 * See Documentation/vm/mmu_notifier.rst
2117 pmdp_huge_clear_flush(vma, haddr, pmd);
2119 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2120 pmd_populate(mm, &_pmd, pgtable);
2122 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
2124 entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
2125 entry = pte_mkspecial(entry);
2126 pte = pte_offset_map(&_pmd, haddr);
2127 VM_BUG_ON(!pte_none(*pte));
2128 set_pte_at(mm, haddr, pte, entry);
2131 smp_wmb(); /* make pte visible before pmd */
2132 pmd_populate(mm, pmd, pgtable);
2135 static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
2136 unsigned long haddr, bool freeze)
2138 struct mm_struct *mm = vma->vm_mm;
2141 pmd_t old_pmd, _pmd;
2142 bool young, write, soft_dirty, pmd_migration = false;
2146 VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
2147 VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2148 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
2149 VM_BUG_ON(!is_pmd_migration_entry(*pmd) && !pmd_trans_huge(*pmd)
2150 && !pmd_devmap(*pmd));
2152 count_vm_event(THP_SPLIT_PMD);
2154 if (!vma_is_anonymous(vma)) {
2155 _pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
2157 * We are going to unmap this huge page. So
2158 * just go ahead and zap it
2160 if (arch_needs_pgtable_deposit())
2161 zap_deposited_table(mm, pmd);
2162 if (vma_is_dax(vma))
2164 page = pmd_page(_pmd);
2165 if (!PageDirty(page) && pmd_dirty(_pmd))
2166 set_page_dirty(page);
2167 if (!PageReferenced(page) && pmd_young(_pmd))
2168 SetPageReferenced(page);
2169 page_remove_rmap(page, true);
2171 add_mm_counter(mm, mm_counter_file(page), -HPAGE_PMD_NR);
2173 } else if (is_huge_zero_pmd(*pmd)) {
2175 * FIXME: Do we want to invalidate secondary mmu by calling
2176 * mmu_notifier_invalidate_range() see comments below inside
2177 * __split_huge_pmd() ?
2179 * We are going from a zero huge page write protected to zero
2180 * small page also write protected so it does not seems useful
2181 * to invalidate secondary mmu at this time.
2183 return __split_huge_zero_page_pmd(vma, haddr, pmd);
2187 * Up to this point the pmd is present and huge and userland has the
2188 * whole access to the hugepage during the split (which happens in
2189 * place). If we overwrite the pmd with the not-huge version pointing
2190 * to the pte here (which of course we could if all CPUs were bug
2191 * free), userland could trigger a small page size TLB miss on the
2192 * small sized TLB while the hugepage TLB entry is still established in
2193 * the huge TLB. Some CPU doesn't like that.
2194 * See http://support.amd.com/us/Processor_TechDocs/41322.pdf, Erratum
2195 * 383 on page 93. Intel should be safe but is also warns that it's
2196 * only safe if the permission and cache attributes of the two entries
2197 * loaded in the two TLB is identical (which should be the case here).
2198 * But it is generally safer to never allow small and huge TLB entries
2199 * for the same virtual address to be loaded simultaneously. So instead
2200 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
2201 * current pmd notpresent (atomically because here the pmd_trans_huge
2202 * must remain set at all times on the pmd until the split is complete
2203 * for this pmd), then we flush the SMP TLB and finally we write the
2204 * non-huge version of the pmd entry with pmd_populate.
2206 old_pmd = pmdp_invalidate(vma, haddr, pmd);
2208 pmd_migration = is_pmd_migration_entry(old_pmd);
2209 if (unlikely(pmd_migration)) {
2212 entry = pmd_to_swp_entry(old_pmd);
2213 page = pfn_to_page(swp_offset(entry));
2214 write = is_write_migration_entry(entry);
2216 soft_dirty = pmd_swp_soft_dirty(old_pmd);
2218 page = pmd_page(old_pmd);
2219 if (pmd_dirty(old_pmd))
2221 write = pmd_write(old_pmd);
2222 young = pmd_young(old_pmd);
2223 soft_dirty = pmd_soft_dirty(old_pmd);
2225 VM_BUG_ON_PAGE(!page_count(page), page);
2226 page_ref_add(page, HPAGE_PMD_NR - 1);
2229 * Withdraw the table only after we mark the pmd entry invalid.
2230 * This's critical for some architectures (Power).
2232 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2233 pmd_populate(mm, &_pmd, pgtable);
2235 for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
2238 * Note that NUMA hinting access restrictions are not
2239 * transferred to avoid any possibility of altering
2240 * permissions across VMAs.
2242 if (freeze || pmd_migration) {
2243 swp_entry_t swp_entry;
2244 swp_entry = make_migration_entry(page + i, write);
2245 entry = swp_entry_to_pte(swp_entry);
2247 entry = pte_swp_mksoft_dirty(entry);
2249 entry = mk_pte(page + i, READ_ONCE(vma->vm_page_prot));
2250 entry = maybe_mkwrite(entry, vma);
2252 entry = pte_wrprotect(entry);
2254 entry = pte_mkold(entry);
2256 entry = pte_mksoft_dirty(entry);
2258 pte = pte_offset_map(&_pmd, addr);
2259 BUG_ON(!pte_none(*pte));
2260 set_pte_at(mm, addr, pte, entry);
2261 atomic_inc(&page[i]._mapcount);
2266 * Set PG_double_map before dropping compound_mapcount to avoid
2267 * false-negative page_mapped().
2269 if (compound_mapcount(page) > 1 && !TestSetPageDoubleMap(page)) {
2270 for (i = 0; i < HPAGE_PMD_NR; i++)
2271 atomic_inc(&page[i]._mapcount);
2274 if (atomic_add_negative(-1, compound_mapcount_ptr(page))) {
2275 /* Last compound_mapcount is gone. */
2276 __dec_node_page_state(page, NR_ANON_THPS);
2277 if (TestClearPageDoubleMap(page)) {
2278 /* No need in mapcount reference anymore */
2279 for (i = 0; i < HPAGE_PMD_NR; i++)
2280 atomic_dec(&page[i]._mapcount);
2284 smp_wmb(); /* make pte visible before pmd */
2285 pmd_populate(mm, pmd, pgtable);
2288 for (i = 0; i < HPAGE_PMD_NR; i++) {
2289 page_remove_rmap(page + i, false);
2295 void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
2296 unsigned long address, bool freeze, struct page *page)
2299 struct mmu_notifier_range range;
2301 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
2302 address & HPAGE_PMD_MASK,
2303 (address & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE);
2304 mmu_notifier_invalidate_range_start(&range);
2305 ptl = pmd_lock(vma->vm_mm, pmd);
2308 * If caller asks to setup a migration entries, we need a page to check
2309 * pmd against. Otherwise we can end up replacing wrong page.
2311 VM_BUG_ON(freeze && !page);
2312 if (page && page != pmd_page(*pmd))
2315 if (pmd_trans_huge(*pmd)) {
2316 page = pmd_page(*pmd);
2317 if (PageMlocked(page))
2318 clear_page_mlock(page);
2319 } else if (!(pmd_devmap(*pmd) || is_pmd_migration_entry(*pmd)))
2321 __split_huge_pmd_locked(vma, pmd, range.start, freeze);
2325 * No need to double call mmu_notifier->invalidate_range() callback.
2326 * They are 3 cases to consider inside __split_huge_pmd_locked():
2327 * 1) pmdp_huge_clear_flush_notify() call invalidate_range() obvious
2328 * 2) __split_huge_zero_page_pmd() read only zero page and any write
2329 * fault will trigger a flush_notify before pointing to a new page
2330 * (it is fine if the secondary mmu keeps pointing to the old zero
2331 * page in the meantime)
2332 * 3) Split a huge pmd into pte pointing to the same page. No need
2333 * to invalidate secondary tlb entry they are all still valid.
2334 * any further changes to individual pte will notify. So no need
2335 * to call mmu_notifier->invalidate_range()
2337 mmu_notifier_invalidate_range_only_end(&range);
2340 void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
2341 bool freeze, struct page *page)
2348 pgd = pgd_offset(vma->vm_mm, address);
2349 if (!pgd_present(*pgd))
2352 p4d = p4d_offset(pgd, address);
2353 if (!p4d_present(*p4d))
2356 pud = pud_offset(p4d, address);
2357 if (!pud_present(*pud))
2360 pmd = pmd_offset(pud, address);
2362 __split_huge_pmd(vma, pmd, address, freeze, page);
2365 void vma_adjust_trans_huge(struct vm_area_struct *vma,
2366 unsigned long start,
2371 * If the new start address isn't hpage aligned and it could
2372 * previously contain an hugepage: check if we need to split
2375 if (start & ~HPAGE_PMD_MASK &&
2376 (start & HPAGE_PMD_MASK) >= vma->vm_start &&
2377 (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2378 split_huge_pmd_address(vma, start, false, NULL);
2381 * If the new end address isn't hpage aligned and it could
2382 * previously contain an hugepage: check if we need to split
2385 if (end & ~HPAGE_PMD_MASK &&
2386 (end & HPAGE_PMD_MASK) >= vma->vm_start &&
2387 (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2388 split_huge_pmd_address(vma, end, false, NULL);
2391 * If we're also updating the vma->vm_next->vm_start, if the new
2392 * vm_next->vm_start isn't page aligned and it could previously
2393 * contain an hugepage: check if we need to split an huge pmd.
2395 if (adjust_next > 0) {
2396 struct vm_area_struct *next = vma->vm_next;
2397 unsigned long nstart = next->vm_start;
2398 nstart += adjust_next << PAGE_SHIFT;
2399 if (nstart & ~HPAGE_PMD_MASK &&
2400 (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
2401 (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
2402 split_huge_pmd_address(next, nstart, false, NULL);
2406 static void unmap_page(struct page *page)
2408 enum ttu_flags ttu_flags = TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS |
2409 TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD;
2412 VM_BUG_ON_PAGE(!PageHead(page), page);
2415 ttu_flags |= TTU_SPLIT_FREEZE;
2417 unmap_success = try_to_unmap(page, ttu_flags);
2418 VM_BUG_ON_PAGE(!unmap_success, page);
2421 static void remap_page(struct page *page)
2424 if (PageTransHuge(page)) {
2425 remove_migration_ptes(page, page, true);
2427 for (i = 0; i < HPAGE_PMD_NR; i++)
2428 remove_migration_ptes(page + i, page + i, true);
2432 static void __split_huge_page_tail(struct page *head, int tail,
2433 struct lruvec *lruvec, struct list_head *list)
2435 struct page *page_tail = head + tail;
2437 VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
2440 * Clone page flags before unfreezing refcount.
2442 * After successful get_page_unless_zero() might follow flags change,
2443 * for exmaple lock_page() which set PG_waiters.
2445 page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
2446 page_tail->flags |= (head->flags &
2447 ((1L << PG_referenced) |
2448 (1L << PG_swapbacked) |
2449 (1L << PG_swapcache) |
2450 (1L << PG_mlocked) |
2451 (1L << PG_uptodate) |
2453 (1L << PG_workingset) |
2455 (1L << PG_unevictable) |
2458 /* ->mapping in first tail page is compound_mapcount */
2459 VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
2461 page_tail->mapping = head->mapping;
2462 page_tail->index = head->index + tail;
2464 /* Page flags must be visible before we make the page non-compound. */
2468 * Clear PageTail before unfreezing page refcount.
2470 * After successful get_page_unless_zero() might follow put_page()
2471 * which needs correct compound_head().
2473 clear_compound_head(page_tail);
2475 /* Finally unfreeze refcount. Additional reference from page cache. */
2476 page_ref_unfreeze(page_tail, 1 + (!PageAnon(head) ||
2477 PageSwapCache(head)));
2479 if (page_is_young(head))
2480 set_page_young(page_tail);
2481 if (page_is_idle(head))
2482 set_page_idle(page_tail);
2484 page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
2487 * always add to the tail because some iterators expect new
2488 * pages to show after the currently processed elements - e.g.
2491 lru_add_page_tail(head, page_tail, lruvec, list);
2494 static void __split_huge_page(struct page *page, struct list_head *list,
2495 pgoff_t end, unsigned long flags)
2497 struct page *head = compound_head(page);
2498 pg_data_t *pgdat = page_pgdat(head);
2499 struct lruvec *lruvec;
2500 struct address_space *swap_cache = NULL;
2501 unsigned long offset = 0;
2504 lruvec = mem_cgroup_page_lruvec(head, pgdat);
2506 /* complete memcg works before add pages to LRU */
2507 mem_cgroup_split_huge_fixup(head);
2509 if (PageAnon(head) && PageSwapCache(head)) {
2510 swp_entry_t entry = { .val = page_private(head) };
2512 offset = swp_offset(entry);
2513 swap_cache = swap_address_space(entry);
2514 xa_lock(&swap_cache->i_pages);
2517 for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
2518 __split_huge_page_tail(head, i, lruvec, list);
2519 /* Some pages can be beyond i_size: drop them from page cache */
2520 if (head[i].index >= end) {
2521 ClearPageDirty(head + i);
2522 __delete_from_page_cache(head + i, NULL);
2523 if (IS_ENABLED(CONFIG_SHMEM) && PageSwapBacked(head))
2524 shmem_uncharge(head->mapping->host, 1);
2526 } else if (!PageAnon(page)) {
2527 __xa_store(&head->mapping->i_pages, head[i].index,
2529 } else if (swap_cache) {
2530 __xa_store(&swap_cache->i_pages, offset + i,
2535 ClearPageCompound(head);
2537 split_page_owner(head, HPAGE_PMD_ORDER);
2539 /* See comment in __split_huge_page_tail() */
2540 if (PageAnon(head)) {
2541 /* Additional pin to swap cache */
2542 if (PageSwapCache(head)) {
2543 page_ref_add(head, 2);
2544 xa_unlock(&swap_cache->i_pages);
2549 /* Additional pin to page cache */
2550 page_ref_add(head, 2);
2551 xa_unlock(&head->mapping->i_pages);
2554 spin_unlock_irqrestore(&pgdat->lru_lock, flags);
2558 for (i = 0; i < HPAGE_PMD_NR; i++) {
2559 struct page *subpage = head + i;
2560 if (subpage == page)
2562 unlock_page(subpage);
2565 * Subpages may be freed if there wasn't any mapping
2566 * like if add_to_swap() is running on a lru page that
2567 * had its mapping zapped. And freeing these pages
2568 * requires taking the lru_lock so we do the put_page
2569 * of the tail pages after the split is complete.
2575 int total_mapcount(struct page *page)
2577 int i, compound, ret;
2579 VM_BUG_ON_PAGE(PageTail(page), page);
2581 if (likely(!PageCompound(page)))
2582 return atomic_read(&page->_mapcount) + 1;
2584 compound = compound_mapcount(page);
2588 for (i = 0; i < HPAGE_PMD_NR; i++)
2589 ret += atomic_read(&page[i]._mapcount) + 1;
2590 /* File pages has compound_mapcount included in _mapcount */
2591 if (!PageAnon(page))
2592 return ret - compound * HPAGE_PMD_NR;
2593 if (PageDoubleMap(page))
2594 ret -= HPAGE_PMD_NR;
2599 * This calculates accurately how many mappings a transparent hugepage
2600 * has (unlike page_mapcount() which isn't fully accurate). This full
2601 * accuracy is primarily needed to know if copy-on-write faults can
2602 * reuse the page and change the mapping to read-write instead of
2603 * copying them. At the same time this returns the total_mapcount too.
2605 * The function returns the highest mapcount any one of the subpages
2606 * has. If the return value is one, even if different processes are
2607 * mapping different subpages of the transparent hugepage, they can
2608 * all reuse it, because each process is reusing a different subpage.
2610 * The total_mapcount is instead counting all virtual mappings of the
2611 * subpages. If the total_mapcount is equal to "one", it tells the
2612 * caller all mappings belong to the same "mm" and in turn the
2613 * anon_vma of the transparent hugepage can become the vma->anon_vma
2614 * local one as no other process may be mapping any of the subpages.
2616 * It would be more accurate to replace page_mapcount() with
2617 * page_trans_huge_mapcount(), however we only use
2618 * page_trans_huge_mapcount() in the copy-on-write faults where we
2619 * need full accuracy to avoid breaking page pinning, because
2620 * page_trans_huge_mapcount() is slower than page_mapcount().
2622 int page_trans_huge_mapcount(struct page *page, int *total_mapcount)
2624 int i, ret, _total_mapcount, mapcount;
2626 /* hugetlbfs shouldn't call it */
2627 VM_BUG_ON_PAGE(PageHuge(page), page);
2629 if (likely(!PageTransCompound(page))) {
2630 mapcount = atomic_read(&page->_mapcount) + 1;
2632 *total_mapcount = mapcount;
2636 page = compound_head(page);
2638 _total_mapcount = ret = 0;
2639 for (i = 0; i < HPAGE_PMD_NR; i++) {
2640 mapcount = atomic_read(&page[i]._mapcount) + 1;
2641 ret = max(ret, mapcount);
2642 _total_mapcount += mapcount;
2644 if (PageDoubleMap(page)) {
2646 _total_mapcount -= HPAGE_PMD_NR;
2648 mapcount = compound_mapcount(page);
2650 _total_mapcount += mapcount;
2652 *total_mapcount = _total_mapcount;
2656 /* Racy check whether the huge page can be split */
2657 bool can_split_huge_page(struct page *page, int *pextra_pins)
2661 /* Additional pins from page cache */
2663 extra_pins = PageSwapCache(page) ? HPAGE_PMD_NR : 0;
2665 extra_pins = HPAGE_PMD_NR;
2667 *pextra_pins = extra_pins;
2668 return total_mapcount(page) == page_count(page) - extra_pins - 1;
2672 * This function splits huge page into normal pages. @page can point to any
2673 * subpage of huge page to split. Split doesn't change the position of @page.
2675 * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
2676 * The huge page must be locked.
2678 * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
2680 * Both head page and tail pages will inherit mapping, flags, and so on from
2683 * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
2684 * they are not mapped.
2686 * Returns 0 if the hugepage is split successfully.
2687 * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
2690 int split_huge_page_to_list(struct page *page, struct list_head *list)
2692 struct page *head = compound_head(page);
2693 struct pglist_data *pgdata = NODE_DATA(page_to_nid(head));
2694 struct anon_vma *anon_vma = NULL;
2695 struct address_space *mapping = NULL;
2696 int count, mapcount, extra_pins, ret;
2698 unsigned long flags;
2701 VM_BUG_ON_PAGE(is_huge_zero_page(page), page);
2702 VM_BUG_ON_PAGE(!PageLocked(page), page);
2703 VM_BUG_ON_PAGE(!PageCompound(page), page);
2705 if (PageWriteback(page))
2708 if (PageAnon(head)) {
2710 * The caller does not necessarily hold an mmap_sem that would
2711 * prevent the anon_vma disappearing so we first we take a
2712 * reference to it and then lock the anon_vma for write. This
2713 * is similar to page_lock_anon_vma_read except the write lock
2714 * is taken to serialise against parallel split or collapse
2717 anon_vma = page_get_anon_vma(head);
2724 anon_vma_lock_write(anon_vma);
2726 mapping = head->mapping;
2735 i_mmap_lock_read(mapping);
2738 *__split_huge_page() may need to trim off pages beyond EOF:
2739 * but on 32-bit, i_size_read() takes an irq-unsafe seqlock,
2740 * which cannot be nested inside the page tree lock. So note
2741 * end now: i_size itself may be changed at any moment, but
2742 * head page lock is good enough to serialize the trimming.
2744 end = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
2748 * Racy check if we can split the page, before unmap_page() will
2751 if (!can_split_huge_page(head, &extra_pins)) {
2756 mlocked = PageMlocked(page);
2758 VM_BUG_ON_PAGE(compound_mapcount(head), head);
2760 /* Make sure the page is not on per-CPU pagevec as it takes pin */
2764 /* prevent PageLRU to go away from under us, and freeze lru stats */
2765 spin_lock_irqsave(&pgdata->lru_lock, flags);
2768 XA_STATE(xas, &mapping->i_pages, page_index(head));
2771 * Check if the head page is present in page cache.
2772 * We assume all tail are present too, if head is there.
2774 xa_lock(&mapping->i_pages);
2775 if (xas_load(&xas) != head)
2779 /* Prevent deferred_split_scan() touching ->_refcount */
2780 spin_lock(&pgdata->split_queue_lock);
2781 count = page_count(head);
2782 mapcount = total_mapcount(head);
2783 if (!mapcount && page_ref_freeze(head, 1 + extra_pins)) {
2784 if (!list_empty(page_deferred_list(head))) {
2785 pgdata->split_queue_len--;
2786 list_del(page_deferred_list(head));
2789 __dec_node_page_state(page, NR_SHMEM_THPS);
2790 spin_unlock(&pgdata->split_queue_lock);
2791 __split_huge_page(page, list, end, flags);
2792 if (PageSwapCache(head)) {
2793 swp_entry_t entry = { .val = page_private(head) };
2795 ret = split_swap_cluster(entry);
2799 if (IS_ENABLED(CONFIG_DEBUG_VM) && mapcount) {
2800 pr_alert("total_mapcount: %u, page_count(): %u\n",
2803 dump_page(head, NULL);
2804 dump_page(page, "total_mapcount(head) > 0");
2807 spin_unlock(&pgdata->split_queue_lock);
2809 xa_unlock(&mapping->i_pages);
2810 spin_unlock_irqrestore(&pgdata->lru_lock, flags);
2817 anon_vma_unlock_write(anon_vma);
2818 put_anon_vma(anon_vma);
2821 i_mmap_unlock_read(mapping);
2823 count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
2827 void free_transhuge_page(struct page *page)
2829 struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
2830 unsigned long flags;
2832 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2833 if (!list_empty(page_deferred_list(page))) {
2834 pgdata->split_queue_len--;
2835 list_del(page_deferred_list(page));
2837 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2838 free_compound_page(page);
2841 void deferred_split_huge_page(struct page *page)
2843 struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
2844 unsigned long flags;
2846 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
2848 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2849 if (list_empty(page_deferred_list(page))) {
2850 count_vm_event(THP_DEFERRED_SPLIT_PAGE);
2851 list_add_tail(page_deferred_list(page), &pgdata->split_queue);
2852 pgdata->split_queue_len++;
2854 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2857 static unsigned long deferred_split_count(struct shrinker *shrink,
2858 struct shrink_control *sc)
2860 struct pglist_data *pgdata = NODE_DATA(sc->nid);
2861 return READ_ONCE(pgdata->split_queue_len);
2864 static unsigned long deferred_split_scan(struct shrinker *shrink,
2865 struct shrink_control *sc)
2867 struct pglist_data *pgdata = NODE_DATA(sc->nid);
2868 unsigned long flags;
2869 LIST_HEAD(list), *pos, *next;
2873 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2874 /* Take pin on all head pages to avoid freeing them under us */
2875 list_for_each_safe(pos, next, &pgdata->split_queue) {
2876 page = list_entry((void *)pos, struct page, mapping);
2877 page = compound_head(page);
2878 if (get_page_unless_zero(page)) {
2879 list_move(page_deferred_list(page), &list);
2881 /* We lost race with put_compound_page() */
2882 list_del_init(page_deferred_list(page));
2883 pgdata->split_queue_len--;
2885 if (!--sc->nr_to_scan)
2888 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2890 list_for_each_safe(pos, next, &list) {
2891 page = list_entry((void *)pos, struct page, mapping);
2892 if (!trylock_page(page))
2894 /* split_huge_page() removes page from list on success */
2895 if (!split_huge_page(page))
2902 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2903 list_splice_tail(&list, &pgdata->split_queue);
2904 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2907 * Stop shrinker if we didn't split any page, but the queue is empty.
2908 * This can happen if pages were freed under us.
2910 if (!split && list_empty(&pgdata->split_queue))
2915 static struct shrinker deferred_split_shrinker = {
2916 .count_objects = deferred_split_count,
2917 .scan_objects = deferred_split_scan,
2918 .seeks = DEFAULT_SEEKS,
2919 .flags = SHRINKER_NUMA_AWARE,
2922 #ifdef CONFIG_DEBUG_FS
2923 static int split_huge_pages_set(void *data, u64 val)
2927 unsigned long pfn, max_zone_pfn;
2928 unsigned long total = 0, split = 0;
2933 for_each_populated_zone(zone) {
2934 max_zone_pfn = zone_end_pfn(zone);
2935 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
2936 if (!pfn_valid(pfn))
2939 page = pfn_to_page(pfn);
2940 if (!get_page_unless_zero(page))
2943 if (zone != page_zone(page))
2946 if (!PageHead(page) || PageHuge(page) || !PageLRU(page))
2951 if (!split_huge_page(page))
2959 pr_info("%lu of %lu THP split\n", split, total);
2963 DEFINE_SIMPLE_ATTRIBUTE(split_huge_pages_fops, NULL, split_huge_pages_set,
2966 static int __init split_huge_pages_debugfs(void)
2968 debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
2969 &split_huge_pages_fops);
2972 late_initcall(split_huge_pages_debugfs);
2975 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
2976 void set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw,
2979 struct vm_area_struct *vma = pvmw->vma;
2980 struct mm_struct *mm = vma->vm_mm;
2981 unsigned long address = pvmw->address;
2986 if (!(pvmw->pmd && !pvmw->pte))
2989 flush_cache_range(vma, address, address + HPAGE_PMD_SIZE);
2990 pmdval = *pvmw->pmd;
2991 pmdp_invalidate(vma, address, pvmw->pmd);
2992 if (pmd_dirty(pmdval))
2993 set_page_dirty(page);
2994 entry = make_migration_entry(page, pmd_write(pmdval));
2995 pmdswp = swp_entry_to_pmd(entry);
2996 if (pmd_soft_dirty(pmdval))
2997 pmdswp = pmd_swp_mksoft_dirty(pmdswp);
2998 set_pmd_at(mm, address, pvmw->pmd, pmdswp);
2999 page_remove_rmap(page, true);
3003 void remove_migration_pmd(struct page_vma_mapped_walk *pvmw, struct page *new)
3005 struct vm_area_struct *vma = pvmw->vma;
3006 struct mm_struct *mm = vma->vm_mm;
3007 unsigned long address = pvmw->address;
3008 unsigned long mmun_start = address & HPAGE_PMD_MASK;
3012 if (!(pvmw->pmd && !pvmw->pte))
3015 entry = pmd_to_swp_entry(*pvmw->pmd);
3017 pmde = pmd_mkold(mk_huge_pmd(new, vma->vm_page_prot));
3018 if (pmd_swp_soft_dirty(*pvmw->pmd))
3019 pmde = pmd_mksoft_dirty(pmde);
3020 if (is_write_migration_entry(entry))
3021 pmde = maybe_pmd_mkwrite(pmde, vma);
3023 flush_cache_range(vma, mmun_start, mmun_start + HPAGE_PMD_SIZE);
3025 page_add_anon_rmap(new, vma, mmun_start, true);
3027 page_add_file_rmap(new, true);
3028 set_pmd_at(mm, mmun_start, pvmw->pmd, pmde);
3029 if ((vma->vm_flags & VM_LOCKED) && !PageDoubleMap(new))
3030 mlock_vma_page(new);
3031 update_mmu_cache_pmd(vma, address, pvmw->pmd);