1 // SPDX-License-Identifier: GPL-2.0-only
3 * Copyright (C) 2009 Red Hat, Inc.
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9 #include <linux/sched.h>
10 #include <linux/sched/mm.h>
11 #include <linux/sched/coredump.h>
12 #include <linux/sched/numa_balancing.h>
13 #include <linux/highmem.h>
14 #include <linux/hugetlb.h>
15 #include <linux/mmu_notifier.h>
16 #include <linux/rmap.h>
17 #include <linux/swap.h>
18 #include <linux/shrinker.h>
19 #include <linux/mm_inline.h>
20 #include <linux/swapops.h>
21 #include <linux/backing-dev.h>
22 #include <linux/dax.h>
23 #include <linux/khugepaged.h>
24 #include <linux/freezer.h>
25 #include <linux/pfn_t.h>
26 #include <linux/mman.h>
27 #include <linux/memremap.h>
28 #include <linux/pagemap.h>
29 #include <linux/debugfs.h>
30 #include <linux/migrate.h>
31 #include <linux/hashtable.h>
32 #include <linux/userfaultfd_k.h>
33 #include <linux/page_idle.h>
34 #include <linux/shmem_fs.h>
35 #include <linux/oom.h>
36 #include <linux/numa.h>
37 #include <linux/page_owner.h>
38 #include <linux/sched/sysctl.h>
39 #include <linux/memory-tiers.h>
42 #include <asm/pgalloc.h>
46 #define CREATE_TRACE_POINTS
47 #include <trace/events/thp.h>
50 * By default, transparent hugepage support is disabled in order to avoid
51 * risking an increased memory footprint for applications that are not
52 * guaranteed to benefit from it. When transparent hugepage support is
53 * enabled, it is for all mappings, and khugepaged scans all mappings.
54 * Defrag is invoked by khugepaged hugepage allocations and by page faults
55 * for all hugepage allocations.
57 unsigned long transparent_hugepage_flags __read_mostly =
58 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
59 (1<<TRANSPARENT_HUGEPAGE_FLAG)|
61 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
62 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
64 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
65 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
66 (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
68 static struct shrinker deferred_split_shrinker;
70 static atomic_t huge_zero_refcount;
71 struct page *huge_zero_page __read_mostly;
72 unsigned long huge_zero_pfn __read_mostly = ~0UL;
74 bool hugepage_vma_check(struct vm_area_struct *vma, unsigned long vm_flags,
75 bool smaps, bool in_pf, bool enforce_sysfs)
77 if (!vma->vm_mm) /* vdso */
81 * Explicitly disabled through madvise or prctl, or some
82 * architectures may disable THP for some mappings, for
85 if ((vm_flags & VM_NOHUGEPAGE) ||
86 test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))
89 * If the hardware/firmware marked hugepage support disabled.
91 if (transparent_hugepage_flags & (1 << TRANSPARENT_HUGEPAGE_NEVER_DAX))
94 /* khugepaged doesn't collapse DAX vma, but page fault is fine. */
99 * Special VMA and hugetlb VMA.
100 * Must be checked after dax since some dax mappings may have
103 if (vm_flags & VM_NO_KHUGEPAGED)
107 * Check alignment for file vma and size for both file and anon vma.
109 * Skip the check for page fault. Huge fault does the check in fault
110 * handlers. And this check is not suitable for huge PUD fault.
113 !transhuge_vma_suitable(vma, (vma->vm_end - HPAGE_PMD_SIZE)))
117 * Enabled via shmem mount options or sysfs settings.
118 * Must be done before hugepage flags check since shmem has its
121 if (!in_pf && shmem_file(vma->vm_file))
122 return shmem_huge_enabled(vma, !enforce_sysfs);
124 /* Enforce sysfs THP requirements as necessary */
126 (!hugepage_flags_enabled() || (!(vm_flags & VM_HUGEPAGE) &&
127 !hugepage_flags_always())))
130 /* Only regular file is valid */
131 if (!in_pf && file_thp_enabled(vma))
134 if (!vma_is_anonymous(vma))
137 if (vma_is_temporary_stack(vma))
141 * THPeligible bit of smaps should show 1 for proper VMAs even
142 * though anon_vma is not initialized yet.
144 * Allow page fault since anon_vma may be not initialized until
145 * the first page fault.
148 return (smaps || in_pf);
153 static bool get_huge_zero_page(void)
155 struct page *zero_page;
157 if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
160 zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
163 count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
167 if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
169 __free_pages(zero_page, compound_order(zero_page));
172 WRITE_ONCE(huge_zero_pfn, page_to_pfn(zero_page));
174 /* We take additional reference here. It will be put back by shrinker */
175 atomic_set(&huge_zero_refcount, 2);
177 count_vm_event(THP_ZERO_PAGE_ALLOC);
181 static void put_huge_zero_page(void)
184 * Counter should never go to zero here. Only shrinker can put
187 BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
190 struct page *mm_get_huge_zero_page(struct mm_struct *mm)
192 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
193 return READ_ONCE(huge_zero_page);
195 if (!get_huge_zero_page())
198 if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
199 put_huge_zero_page();
201 return READ_ONCE(huge_zero_page);
204 void mm_put_huge_zero_page(struct mm_struct *mm)
206 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
207 put_huge_zero_page();
210 static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
211 struct shrink_control *sc)
213 /* we can free zero page only if last reference remains */
214 return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
217 static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
218 struct shrink_control *sc)
220 if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
221 struct page *zero_page = xchg(&huge_zero_page, NULL);
222 BUG_ON(zero_page == NULL);
223 WRITE_ONCE(huge_zero_pfn, ~0UL);
224 __free_pages(zero_page, compound_order(zero_page));
231 static struct shrinker huge_zero_page_shrinker = {
232 .count_objects = shrink_huge_zero_page_count,
233 .scan_objects = shrink_huge_zero_page_scan,
234 .seeks = DEFAULT_SEEKS,
238 static ssize_t enabled_show(struct kobject *kobj,
239 struct kobj_attribute *attr, char *buf)
243 if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
244 output = "[always] madvise never";
245 else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
246 &transparent_hugepage_flags))
247 output = "always [madvise] never";
249 output = "always madvise [never]";
251 return sysfs_emit(buf, "%s\n", output);
254 static ssize_t enabled_store(struct kobject *kobj,
255 struct kobj_attribute *attr,
256 const char *buf, size_t count)
260 if (sysfs_streq(buf, "always")) {
261 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
262 set_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
263 } else if (sysfs_streq(buf, "madvise")) {
264 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
265 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
266 } else if (sysfs_streq(buf, "never")) {
267 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
268 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
273 int err = start_stop_khugepaged();
280 static struct kobj_attribute enabled_attr = __ATTR_RW(enabled);
282 ssize_t single_hugepage_flag_show(struct kobject *kobj,
283 struct kobj_attribute *attr, char *buf,
284 enum transparent_hugepage_flag flag)
286 return sysfs_emit(buf, "%d\n",
287 !!test_bit(flag, &transparent_hugepage_flags));
290 ssize_t single_hugepage_flag_store(struct kobject *kobj,
291 struct kobj_attribute *attr,
292 const char *buf, size_t count,
293 enum transparent_hugepage_flag flag)
298 ret = kstrtoul(buf, 10, &value);
305 set_bit(flag, &transparent_hugepage_flags);
307 clear_bit(flag, &transparent_hugepage_flags);
312 static ssize_t defrag_show(struct kobject *kobj,
313 struct kobj_attribute *attr, char *buf)
317 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG,
318 &transparent_hugepage_flags))
319 output = "[always] defer defer+madvise madvise never";
320 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG,
321 &transparent_hugepage_flags))
322 output = "always [defer] defer+madvise madvise never";
323 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG,
324 &transparent_hugepage_flags))
325 output = "always defer [defer+madvise] madvise never";
326 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG,
327 &transparent_hugepage_flags))
328 output = "always defer defer+madvise [madvise] never";
330 output = "always defer defer+madvise madvise [never]";
332 return sysfs_emit(buf, "%s\n", output);
335 static ssize_t defrag_store(struct kobject *kobj,
336 struct kobj_attribute *attr,
337 const char *buf, size_t count)
339 if (sysfs_streq(buf, "always")) {
340 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
341 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
342 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
343 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
344 } else if (sysfs_streq(buf, "defer+madvise")) {
345 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
346 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
347 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
348 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
349 } else if (sysfs_streq(buf, "defer")) {
350 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
351 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
352 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
353 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
354 } else if (sysfs_streq(buf, "madvise")) {
355 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
356 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
357 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
358 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
359 } else if (sysfs_streq(buf, "never")) {
360 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
361 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
362 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
363 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
369 static struct kobj_attribute defrag_attr = __ATTR_RW(defrag);
371 static ssize_t use_zero_page_show(struct kobject *kobj,
372 struct kobj_attribute *attr, char *buf)
374 return single_hugepage_flag_show(kobj, attr, buf,
375 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
377 static ssize_t use_zero_page_store(struct kobject *kobj,
378 struct kobj_attribute *attr, const char *buf, size_t count)
380 return single_hugepage_flag_store(kobj, attr, buf, count,
381 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
383 static struct kobj_attribute use_zero_page_attr = __ATTR_RW(use_zero_page);
385 static ssize_t hpage_pmd_size_show(struct kobject *kobj,
386 struct kobj_attribute *attr, char *buf)
388 return sysfs_emit(buf, "%lu\n", HPAGE_PMD_SIZE);
390 static struct kobj_attribute hpage_pmd_size_attr =
391 __ATTR_RO(hpage_pmd_size);
393 static struct attribute *hugepage_attr[] = {
396 &use_zero_page_attr.attr,
397 &hpage_pmd_size_attr.attr,
399 &shmem_enabled_attr.attr,
404 static const struct attribute_group hugepage_attr_group = {
405 .attrs = hugepage_attr,
408 static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
412 *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
413 if (unlikely(!*hugepage_kobj)) {
414 pr_err("failed to create transparent hugepage kobject\n");
418 err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
420 pr_err("failed to register transparent hugepage group\n");
424 err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
426 pr_err("failed to register transparent hugepage group\n");
427 goto remove_hp_group;
433 sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
435 kobject_put(*hugepage_kobj);
439 static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
441 sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
442 sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
443 kobject_put(hugepage_kobj);
446 static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
451 static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
454 #endif /* CONFIG_SYSFS */
456 static int __init hugepage_init(void)
459 struct kobject *hugepage_kobj;
461 if (!has_transparent_hugepage()) {
463 * Hardware doesn't support hugepages, hence disable
466 transparent_hugepage_flags = 1 << TRANSPARENT_HUGEPAGE_NEVER_DAX;
471 * hugepages can't be allocated by the buddy allocator
473 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER);
475 * we use page->mapping and page->index in second tail page
476 * as list_head: assuming THP order >= 2
478 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);
480 err = hugepage_init_sysfs(&hugepage_kobj);
484 err = khugepaged_init();
488 err = register_shrinker(&huge_zero_page_shrinker, "thp-zero");
490 goto err_hzp_shrinker;
491 err = register_shrinker(&deferred_split_shrinker, "thp-deferred_split");
493 goto err_split_shrinker;
496 * By default disable transparent hugepages on smaller systems,
497 * where the extra memory used could hurt more than TLB overhead
498 * is likely to save. The admin can still enable it through /sys.
500 if (totalram_pages() < (512 << (20 - PAGE_SHIFT))) {
501 transparent_hugepage_flags = 0;
505 err = start_stop_khugepaged();
511 unregister_shrinker(&deferred_split_shrinker);
513 unregister_shrinker(&huge_zero_page_shrinker);
515 khugepaged_destroy();
517 hugepage_exit_sysfs(hugepage_kobj);
521 subsys_initcall(hugepage_init);
523 static int __init setup_transparent_hugepage(char *str)
528 if (!strcmp(str, "always")) {
529 set_bit(TRANSPARENT_HUGEPAGE_FLAG,
530 &transparent_hugepage_flags);
531 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
532 &transparent_hugepage_flags);
534 } else if (!strcmp(str, "madvise")) {
535 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
536 &transparent_hugepage_flags);
537 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
538 &transparent_hugepage_flags);
540 } else if (!strcmp(str, "never")) {
541 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
542 &transparent_hugepage_flags);
543 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
544 &transparent_hugepage_flags);
549 pr_warn("transparent_hugepage= cannot parse, ignored\n");
552 __setup("transparent_hugepage=", setup_transparent_hugepage);
554 pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
556 if (likely(vma->vm_flags & VM_WRITE))
557 pmd = pmd_mkwrite(pmd);
562 static inline struct deferred_split *get_deferred_split_queue(struct page *page)
564 struct mem_cgroup *memcg = page_memcg(compound_head(page));
565 struct pglist_data *pgdat = NODE_DATA(page_to_nid(page));
568 return &memcg->deferred_split_queue;
570 return &pgdat->deferred_split_queue;
573 static inline struct deferred_split *get_deferred_split_queue(struct page *page)
575 struct pglist_data *pgdat = NODE_DATA(page_to_nid(page));
577 return &pgdat->deferred_split_queue;
581 void prep_transhuge_page(struct page *page)
584 * we use page->mapping and page->index in second tail page
585 * as list_head: assuming THP order >= 2
588 INIT_LIST_HEAD(page_deferred_list(page));
589 set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR);
592 static inline bool is_transparent_hugepage(struct page *page)
594 if (!PageCompound(page))
597 page = compound_head(page);
598 return is_huge_zero_page(page) ||
599 page[1].compound_dtor == TRANSHUGE_PAGE_DTOR;
602 static unsigned long __thp_get_unmapped_area(struct file *filp,
603 unsigned long addr, unsigned long len,
604 loff_t off, unsigned long flags, unsigned long size)
606 loff_t off_end = off + len;
607 loff_t off_align = round_up(off, size);
608 unsigned long len_pad, ret;
610 if (off_end <= off_align || (off_end - off_align) < size)
613 len_pad = len + size;
614 if (len_pad < len || (off + len_pad) < off)
617 ret = current->mm->get_unmapped_area(filp, addr, len_pad,
618 off >> PAGE_SHIFT, flags);
621 * The failure might be due to length padding. The caller will retry
622 * without the padding.
624 if (IS_ERR_VALUE(ret))
628 * Do not try to align to THP boundary if allocation at the address
634 ret += (off - ret) & (size - 1);
638 unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr,
639 unsigned long len, unsigned long pgoff, unsigned long flags)
642 loff_t off = (loff_t)pgoff << PAGE_SHIFT;
644 ret = __thp_get_unmapped_area(filp, addr, len, off, flags, PMD_SIZE);
648 return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags);
650 EXPORT_SYMBOL_GPL(thp_get_unmapped_area);
652 static vm_fault_t __do_huge_pmd_anonymous_page(struct vm_fault *vmf,
653 struct page *page, gfp_t gfp)
655 struct vm_area_struct *vma = vmf->vma;
657 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
660 VM_BUG_ON_PAGE(!PageCompound(page), page);
662 if (mem_cgroup_charge(page_folio(page), vma->vm_mm, gfp)) {
664 count_vm_event(THP_FAULT_FALLBACK);
665 count_vm_event(THP_FAULT_FALLBACK_CHARGE);
666 return VM_FAULT_FALLBACK;
668 cgroup_throttle_swaprate(page, gfp);
670 pgtable = pte_alloc_one(vma->vm_mm);
671 if (unlikely(!pgtable)) {
676 clear_huge_page(page, vmf->address, HPAGE_PMD_NR);
678 * The memory barrier inside __SetPageUptodate makes sure that
679 * clear_huge_page writes become visible before the set_pmd_at()
682 __SetPageUptodate(page);
684 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
685 if (unlikely(!pmd_none(*vmf->pmd))) {
690 ret = check_stable_address_space(vma->vm_mm);
694 /* Deliver the page fault to userland */
695 if (userfaultfd_missing(vma)) {
696 spin_unlock(vmf->ptl);
698 pte_free(vma->vm_mm, pgtable);
699 ret = handle_userfault(vmf, VM_UFFD_MISSING);
700 VM_BUG_ON(ret & VM_FAULT_FALLBACK);
704 entry = mk_huge_pmd(page, vma->vm_page_prot);
705 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
706 page_add_new_anon_rmap(page, vma, haddr);
707 lru_cache_add_inactive_or_unevictable(page, vma);
708 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
709 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
710 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
711 add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
712 mm_inc_nr_ptes(vma->vm_mm);
713 spin_unlock(vmf->ptl);
714 count_vm_event(THP_FAULT_ALLOC);
715 count_memcg_event_mm(vma->vm_mm, THP_FAULT_ALLOC);
720 spin_unlock(vmf->ptl);
723 pte_free(vma->vm_mm, pgtable);
730 * always: directly stall for all thp allocations
731 * defer: wake kswapd and fail if not immediately available
732 * defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise
733 * fail if not immediately available
734 * madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately
736 * never: never stall for any thp allocation
738 gfp_t vma_thp_gfp_mask(struct vm_area_struct *vma)
740 const bool vma_madvised = vma && (vma->vm_flags & VM_HUGEPAGE);
742 /* Always do synchronous compaction */
743 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
744 return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY);
746 /* Kick kcompactd and fail quickly */
747 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
748 return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM;
750 /* Synchronous compaction if madvised, otherwise kick kcompactd */
751 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
752 return GFP_TRANSHUGE_LIGHT |
753 (vma_madvised ? __GFP_DIRECT_RECLAIM :
754 __GFP_KSWAPD_RECLAIM);
756 /* Only do synchronous compaction if madvised */
757 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
758 return GFP_TRANSHUGE_LIGHT |
759 (vma_madvised ? __GFP_DIRECT_RECLAIM : 0);
761 return GFP_TRANSHUGE_LIGHT;
764 /* Caller must hold page table lock. */
765 static void set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
766 struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
767 struct page *zero_page)
772 entry = mk_pmd(zero_page, vma->vm_page_prot);
773 entry = pmd_mkhuge(entry);
774 pgtable_trans_huge_deposit(mm, pmd, pgtable);
775 set_pmd_at(mm, haddr, pmd, entry);
779 vm_fault_t do_huge_pmd_anonymous_page(struct vm_fault *vmf)
781 struct vm_area_struct *vma = vmf->vma;
784 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
786 if (!transhuge_vma_suitable(vma, haddr))
787 return VM_FAULT_FALLBACK;
788 if (unlikely(anon_vma_prepare(vma)))
790 khugepaged_enter_vma(vma, vma->vm_flags);
792 if (!(vmf->flags & FAULT_FLAG_WRITE) &&
793 !mm_forbids_zeropage(vma->vm_mm) &&
794 transparent_hugepage_use_zero_page()) {
796 struct page *zero_page;
798 pgtable = pte_alloc_one(vma->vm_mm);
799 if (unlikely(!pgtable))
801 zero_page = mm_get_huge_zero_page(vma->vm_mm);
802 if (unlikely(!zero_page)) {
803 pte_free(vma->vm_mm, pgtable);
804 count_vm_event(THP_FAULT_FALLBACK);
805 return VM_FAULT_FALLBACK;
807 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
809 if (pmd_none(*vmf->pmd)) {
810 ret = check_stable_address_space(vma->vm_mm);
812 spin_unlock(vmf->ptl);
813 pte_free(vma->vm_mm, pgtable);
814 } else if (userfaultfd_missing(vma)) {
815 spin_unlock(vmf->ptl);
816 pte_free(vma->vm_mm, pgtable);
817 ret = handle_userfault(vmf, VM_UFFD_MISSING);
818 VM_BUG_ON(ret & VM_FAULT_FALLBACK);
820 set_huge_zero_page(pgtable, vma->vm_mm, vma,
821 haddr, vmf->pmd, zero_page);
822 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
823 spin_unlock(vmf->ptl);
826 spin_unlock(vmf->ptl);
827 pte_free(vma->vm_mm, pgtable);
831 gfp = vma_thp_gfp_mask(vma);
832 folio = vma_alloc_folio(gfp, HPAGE_PMD_ORDER, vma, haddr, true);
833 if (unlikely(!folio)) {
834 count_vm_event(THP_FAULT_FALLBACK);
835 return VM_FAULT_FALLBACK;
837 return __do_huge_pmd_anonymous_page(vmf, &folio->page, gfp);
840 static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
841 pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write,
844 struct mm_struct *mm = vma->vm_mm;
848 ptl = pmd_lock(mm, pmd);
849 if (!pmd_none(*pmd)) {
851 if (pmd_pfn(*pmd) != pfn_t_to_pfn(pfn)) {
852 WARN_ON_ONCE(!is_huge_zero_pmd(*pmd));
855 entry = pmd_mkyoung(*pmd);
856 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
857 if (pmdp_set_access_flags(vma, addr, pmd, entry, 1))
858 update_mmu_cache_pmd(vma, addr, pmd);
864 entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
865 if (pfn_t_devmap(pfn))
866 entry = pmd_mkdevmap(entry);
868 entry = pmd_mkyoung(pmd_mkdirty(entry));
869 entry = maybe_pmd_mkwrite(entry, vma);
873 pgtable_trans_huge_deposit(mm, pmd, pgtable);
878 set_pmd_at(mm, addr, pmd, entry);
879 update_mmu_cache_pmd(vma, addr, pmd);
884 pte_free(mm, pgtable);
888 * vmf_insert_pfn_pmd_prot - insert a pmd size pfn
889 * @vmf: Structure describing the fault
890 * @pfn: pfn to insert
891 * @pgprot: page protection to use
892 * @write: whether it's a write fault
894 * Insert a pmd size pfn. See vmf_insert_pfn() for additional info and
895 * also consult the vmf_insert_mixed_prot() documentation when
896 * @pgprot != @vmf->vma->vm_page_prot.
898 * Return: vm_fault_t value.
900 vm_fault_t vmf_insert_pfn_pmd_prot(struct vm_fault *vmf, pfn_t pfn,
901 pgprot_t pgprot, bool write)
903 unsigned long addr = vmf->address & PMD_MASK;
904 struct vm_area_struct *vma = vmf->vma;
905 pgtable_t pgtable = NULL;
908 * If we had pmd_special, we could avoid all these restrictions,
909 * but we need to be consistent with PTEs and architectures that
910 * can't support a 'special' bit.
912 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
914 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
915 (VM_PFNMAP|VM_MIXEDMAP));
916 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
918 if (addr < vma->vm_start || addr >= vma->vm_end)
919 return VM_FAULT_SIGBUS;
921 if (arch_needs_pgtable_deposit()) {
922 pgtable = pte_alloc_one(vma->vm_mm);
927 track_pfn_insert(vma, &pgprot, pfn);
929 insert_pfn_pmd(vma, addr, vmf->pmd, pfn, pgprot, write, pgtable);
930 return VM_FAULT_NOPAGE;
932 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd_prot);
934 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
935 static pud_t maybe_pud_mkwrite(pud_t pud, struct vm_area_struct *vma)
937 if (likely(vma->vm_flags & VM_WRITE))
938 pud = pud_mkwrite(pud);
942 static void insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
943 pud_t *pud, pfn_t pfn, pgprot_t prot, bool write)
945 struct mm_struct *mm = vma->vm_mm;
949 ptl = pud_lock(mm, pud);
950 if (!pud_none(*pud)) {
952 if (pud_pfn(*pud) != pfn_t_to_pfn(pfn)) {
953 WARN_ON_ONCE(!is_huge_zero_pud(*pud));
956 entry = pud_mkyoung(*pud);
957 entry = maybe_pud_mkwrite(pud_mkdirty(entry), vma);
958 if (pudp_set_access_flags(vma, addr, pud, entry, 1))
959 update_mmu_cache_pud(vma, addr, pud);
964 entry = pud_mkhuge(pfn_t_pud(pfn, prot));
965 if (pfn_t_devmap(pfn))
966 entry = pud_mkdevmap(entry);
968 entry = pud_mkyoung(pud_mkdirty(entry));
969 entry = maybe_pud_mkwrite(entry, vma);
971 set_pud_at(mm, addr, pud, entry);
972 update_mmu_cache_pud(vma, addr, pud);
979 * vmf_insert_pfn_pud_prot - insert a pud size pfn
980 * @vmf: Structure describing the fault
981 * @pfn: pfn to insert
982 * @pgprot: page protection to use
983 * @write: whether it's a write fault
985 * Insert a pud size pfn. See vmf_insert_pfn() for additional info and
986 * also consult the vmf_insert_mixed_prot() documentation when
987 * @pgprot != @vmf->vma->vm_page_prot.
989 * Return: vm_fault_t value.
991 vm_fault_t vmf_insert_pfn_pud_prot(struct vm_fault *vmf, pfn_t pfn,
992 pgprot_t pgprot, bool write)
994 unsigned long addr = vmf->address & PUD_MASK;
995 struct vm_area_struct *vma = vmf->vma;
998 * If we had pud_special, we could avoid all these restrictions,
999 * but we need to be consistent with PTEs and architectures that
1000 * can't support a 'special' bit.
1002 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
1003 !pfn_t_devmap(pfn));
1004 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1005 (VM_PFNMAP|VM_MIXEDMAP));
1006 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1008 if (addr < vma->vm_start || addr >= vma->vm_end)
1009 return VM_FAULT_SIGBUS;
1011 track_pfn_insert(vma, &pgprot, pfn);
1013 insert_pfn_pud(vma, addr, vmf->pud, pfn, pgprot, write);
1014 return VM_FAULT_NOPAGE;
1016 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud_prot);
1017 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1019 static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
1020 pmd_t *pmd, bool write)
1024 _pmd = pmd_mkyoung(*pmd);
1026 _pmd = pmd_mkdirty(_pmd);
1027 if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
1029 update_mmu_cache_pmd(vma, addr, pmd);
1032 struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
1033 pmd_t *pmd, int flags, struct dev_pagemap **pgmap)
1035 unsigned long pfn = pmd_pfn(*pmd);
1036 struct mm_struct *mm = vma->vm_mm;
1039 assert_spin_locked(pmd_lockptr(mm, pmd));
1041 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
1042 if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
1043 (FOLL_PIN | FOLL_GET)))
1046 if (flags & FOLL_WRITE && !pmd_write(*pmd))
1049 if (pmd_present(*pmd) && pmd_devmap(*pmd))
1054 if (flags & FOLL_TOUCH)
1055 touch_pmd(vma, addr, pmd, flags & FOLL_WRITE);
1058 * device mapped pages can only be returned if the
1059 * caller will manage the page reference count.
1061 if (!(flags & (FOLL_GET | FOLL_PIN)))
1062 return ERR_PTR(-EEXIST);
1064 pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
1065 *pgmap = get_dev_pagemap(pfn, *pgmap);
1067 return ERR_PTR(-EFAULT);
1068 page = pfn_to_page(pfn);
1069 if (!try_grab_page(page, flags))
1070 page = ERR_PTR(-ENOMEM);
1075 int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1076 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
1077 struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1079 spinlock_t *dst_ptl, *src_ptl;
1080 struct page *src_page;
1082 pgtable_t pgtable = NULL;
1085 /* Skip if can be re-fill on fault */
1086 if (!vma_is_anonymous(dst_vma))
1089 pgtable = pte_alloc_one(dst_mm);
1090 if (unlikely(!pgtable))
1093 dst_ptl = pmd_lock(dst_mm, dst_pmd);
1094 src_ptl = pmd_lockptr(src_mm, src_pmd);
1095 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1100 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1101 if (unlikely(is_swap_pmd(pmd))) {
1102 swp_entry_t entry = pmd_to_swp_entry(pmd);
1104 VM_BUG_ON(!is_pmd_migration_entry(pmd));
1105 if (!is_readable_migration_entry(entry)) {
1106 entry = make_readable_migration_entry(
1108 pmd = swp_entry_to_pmd(entry);
1109 if (pmd_swp_soft_dirty(*src_pmd))
1110 pmd = pmd_swp_mksoft_dirty(pmd);
1111 if (pmd_swp_uffd_wp(*src_pmd))
1112 pmd = pmd_swp_mkuffd_wp(pmd);
1113 set_pmd_at(src_mm, addr, src_pmd, pmd);
1115 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1116 mm_inc_nr_ptes(dst_mm);
1117 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1118 if (!userfaultfd_wp(dst_vma))
1119 pmd = pmd_swp_clear_uffd_wp(pmd);
1120 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
1126 if (unlikely(!pmd_trans_huge(pmd))) {
1127 pte_free(dst_mm, pgtable);
1131 * When page table lock is held, the huge zero pmd should not be
1132 * under splitting since we don't split the page itself, only pmd to
1135 if (is_huge_zero_pmd(pmd)) {
1137 * get_huge_zero_page() will never allocate a new page here,
1138 * since we already have a zero page to copy. It just takes a
1141 mm_get_huge_zero_page(dst_mm);
1145 src_page = pmd_page(pmd);
1146 VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
1149 if (unlikely(page_try_dup_anon_rmap(src_page, true, src_vma))) {
1150 /* Page maybe pinned: split and retry the fault on PTEs. */
1152 pte_free(dst_mm, pgtable);
1153 spin_unlock(src_ptl);
1154 spin_unlock(dst_ptl);
1155 __split_huge_pmd(src_vma, src_pmd, addr, false, NULL);
1158 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1160 mm_inc_nr_ptes(dst_mm);
1161 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1162 pmdp_set_wrprotect(src_mm, addr, src_pmd);
1163 if (!userfaultfd_wp(dst_vma))
1164 pmd = pmd_clear_uffd_wp(pmd);
1165 pmd = pmd_mkold(pmd_wrprotect(pmd));
1166 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
1170 spin_unlock(src_ptl);
1171 spin_unlock(dst_ptl);
1176 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1177 static void touch_pud(struct vm_area_struct *vma, unsigned long addr,
1178 pud_t *pud, bool write)
1182 _pud = pud_mkyoung(*pud);
1184 _pud = pud_mkdirty(_pud);
1185 if (pudp_set_access_flags(vma, addr & HPAGE_PUD_MASK,
1187 update_mmu_cache_pud(vma, addr, pud);
1190 struct page *follow_devmap_pud(struct vm_area_struct *vma, unsigned long addr,
1191 pud_t *pud, int flags, struct dev_pagemap **pgmap)
1193 unsigned long pfn = pud_pfn(*pud);
1194 struct mm_struct *mm = vma->vm_mm;
1197 assert_spin_locked(pud_lockptr(mm, pud));
1199 if (flags & FOLL_WRITE && !pud_write(*pud))
1202 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
1203 if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
1204 (FOLL_PIN | FOLL_GET)))
1207 if (pud_present(*pud) && pud_devmap(*pud))
1212 if (flags & FOLL_TOUCH)
1213 touch_pud(vma, addr, pud, flags & FOLL_WRITE);
1216 * device mapped pages can only be returned if the
1217 * caller will manage the page reference count.
1219 * At least one of FOLL_GET | FOLL_PIN must be set, so assert that here:
1221 if (!(flags & (FOLL_GET | FOLL_PIN)))
1222 return ERR_PTR(-EEXIST);
1224 pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT;
1225 *pgmap = get_dev_pagemap(pfn, *pgmap);
1227 return ERR_PTR(-EFAULT);
1228 page = pfn_to_page(pfn);
1229 if (!try_grab_page(page, flags))
1230 page = ERR_PTR(-ENOMEM);
1235 int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1236 pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1237 struct vm_area_struct *vma)
1239 spinlock_t *dst_ptl, *src_ptl;
1243 dst_ptl = pud_lock(dst_mm, dst_pud);
1244 src_ptl = pud_lockptr(src_mm, src_pud);
1245 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1249 if (unlikely(!pud_trans_huge(pud) && !pud_devmap(pud)))
1253 * When page table lock is held, the huge zero pud should not be
1254 * under splitting since we don't split the page itself, only pud to
1257 if (is_huge_zero_pud(pud)) {
1258 /* No huge zero pud yet */
1262 * TODO: once we support anonymous pages, use page_try_dup_anon_rmap()
1263 * and split if duplicating fails.
1265 pudp_set_wrprotect(src_mm, addr, src_pud);
1266 pud = pud_mkold(pud_wrprotect(pud));
1267 set_pud_at(dst_mm, addr, dst_pud, pud);
1271 spin_unlock(src_ptl);
1272 spin_unlock(dst_ptl);
1276 void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud)
1278 bool write = vmf->flags & FAULT_FLAG_WRITE;
1280 vmf->ptl = pud_lock(vmf->vma->vm_mm, vmf->pud);
1281 if (unlikely(!pud_same(*vmf->pud, orig_pud)))
1284 touch_pud(vmf->vma, vmf->address, vmf->pud, write);
1286 spin_unlock(vmf->ptl);
1288 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1290 void huge_pmd_set_accessed(struct vm_fault *vmf)
1292 bool write = vmf->flags & FAULT_FLAG_WRITE;
1294 vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1295 if (unlikely(!pmd_same(*vmf->pmd, vmf->orig_pmd)))
1298 touch_pmd(vmf->vma, vmf->address, vmf->pmd, write);
1301 spin_unlock(vmf->ptl);
1304 vm_fault_t do_huge_pmd_wp_page(struct vm_fault *vmf)
1306 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
1307 struct vm_area_struct *vma = vmf->vma;
1308 struct folio *folio;
1310 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1311 pmd_t orig_pmd = vmf->orig_pmd;
1313 vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd);
1314 VM_BUG_ON_VMA(!vma->anon_vma, vma);
1316 VM_BUG_ON(unshare && (vmf->flags & FAULT_FLAG_WRITE));
1317 VM_BUG_ON(!unshare && !(vmf->flags & FAULT_FLAG_WRITE));
1319 if (is_huge_zero_pmd(orig_pmd))
1322 spin_lock(vmf->ptl);
1324 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1325 spin_unlock(vmf->ptl);
1329 page = pmd_page(orig_pmd);
1330 folio = page_folio(page);
1331 VM_BUG_ON_PAGE(!PageHead(page), page);
1333 /* Early check when only holding the PT lock. */
1334 if (PageAnonExclusive(page))
1337 if (!folio_trylock(folio)) {
1339 spin_unlock(vmf->ptl);
1341 spin_lock(vmf->ptl);
1342 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1343 spin_unlock(vmf->ptl);
1344 folio_unlock(folio);
1351 /* Recheck after temporarily dropping the PT lock. */
1352 if (PageAnonExclusive(page)) {
1353 folio_unlock(folio);
1358 * See do_wp_page(): we can only reuse the folio exclusively if
1359 * there are no additional references. Note that we always drain
1360 * the LRU pagevecs immediately after adding a THP.
1362 if (folio_ref_count(folio) >
1363 1 + folio_test_swapcache(folio) * folio_nr_pages(folio))
1364 goto unlock_fallback;
1365 if (folio_test_swapcache(folio))
1366 folio_free_swap(folio);
1367 if (folio_ref_count(folio) == 1) {
1370 page_move_anon_rmap(page, vma);
1371 folio_unlock(folio);
1373 if (unlikely(unshare)) {
1374 spin_unlock(vmf->ptl);
1377 entry = pmd_mkyoung(orig_pmd);
1378 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1379 if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry, 1))
1380 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1381 spin_unlock(vmf->ptl);
1382 return VM_FAULT_WRITE;
1386 folio_unlock(folio);
1387 spin_unlock(vmf->ptl);
1389 __split_huge_pmd(vma, vmf->pmd, vmf->address, false, NULL);
1390 return VM_FAULT_FALLBACK;
1393 /* FOLL_FORCE can write to even unwritable PMDs in COW mappings. */
1394 static inline bool can_follow_write_pmd(pmd_t pmd, struct page *page,
1395 struct vm_area_struct *vma,
1398 /* If the pmd is writable, we can write to the page. */
1402 /* Maybe FOLL_FORCE is set to override it? */
1403 if (!(flags & FOLL_FORCE))
1406 /* But FOLL_FORCE has no effect on shared mappings */
1407 if (vma->vm_flags & (VM_MAYSHARE | VM_SHARED))
1410 /* ... or read-only private ones */
1411 if (!(vma->vm_flags & VM_MAYWRITE))
1414 /* ... or already writable ones that just need to take a write fault */
1415 if (vma->vm_flags & VM_WRITE)
1419 * See can_change_pte_writable(): we broke COW and could map the page
1420 * writable if we have an exclusive anonymous page ...
1422 if (!page || !PageAnon(page) || !PageAnonExclusive(page))
1425 /* ... and a write-fault isn't required for other reasons. */
1426 if (vma_soft_dirty_enabled(vma) && !pmd_soft_dirty(pmd))
1428 return !userfaultfd_huge_pmd_wp(vma, pmd);
1431 struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1436 struct mm_struct *mm = vma->vm_mm;
1439 assert_spin_locked(pmd_lockptr(mm, pmd));
1441 page = pmd_page(*pmd);
1442 VM_BUG_ON_PAGE(!PageHead(page) && !is_zone_device_page(page), page);
1444 if ((flags & FOLL_WRITE) &&
1445 !can_follow_write_pmd(*pmd, page, vma, flags))
1448 /* Avoid dumping huge zero page */
1449 if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1450 return ERR_PTR(-EFAULT);
1452 /* Full NUMA hinting faults to serialise migration in fault paths */
1453 if (pmd_protnone(*pmd) && !gup_can_follow_protnone(flags))
1456 if (!pmd_write(*pmd) && gup_must_unshare(flags, page))
1457 return ERR_PTR(-EMLINK);
1459 VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) &&
1460 !PageAnonExclusive(page), page);
1462 if (!try_grab_page(page, flags))
1463 return ERR_PTR(-ENOMEM);
1465 if (flags & FOLL_TOUCH)
1466 touch_pmd(vma, addr, pmd, flags & FOLL_WRITE);
1468 page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1469 VM_BUG_ON_PAGE(!PageCompound(page) && !is_zone_device_page(page), page);
1474 /* NUMA hinting page fault entry point for trans huge pmds */
1475 vm_fault_t do_huge_pmd_numa_page(struct vm_fault *vmf)
1477 struct vm_area_struct *vma = vmf->vma;
1478 pmd_t oldpmd = vmf->orig_pmd;
1481 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1482 int page_nid = NUMA_NO_NODE;
1483 int target_nid, last_cpupid = (-1 & LAST_CPUPID_MASK);
1484 bool migrated = false;
1485 bool was_writable = pmd_savedwrite(oldpmd);
1488 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1489 if (unlikely(!pmd_same(oldpmd, *vmf->pmd))) {
1490 spin_unlock(vmf->ptl);
1494 pmd = pmd_modify(oldpmd, vma->vm_page_prot);
1495 page = vm_normal_page_pmd(vma, haddr, pmd);
1499 /* See similar comment in do_numa_page for explanation */
1501 flags |= TNF_NO_GROUP;
1503 page_nid = page_to_nid(page);
1505 * For memory tiering mode, cpupid of slow memory page is used
1506 * to record page access time. So use default value.
1508 if (node_is_toptier(page_nid))
1509 last_cpupid = page_cpupid_last(page);
1510 target_nid = numa_migrate_prep(page, vma, haddr, page_nid,
1513 if (target_nid == NUMA_NO_NODE) {
1518 spin_unlock(vmf->ptl);
1520 migrated = migrate_misplaced_page(page, vma, target_nid);
1522 flags |= TNF_MIGRATED;
1523 page_nid = target_nid;
1525 flags |= TNF_MIGRATE_FAIL;
1526 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1527 if (unlikely(!pmd_same(oldpmd, *vmf->pmd))) {
1528 spin_unlock(vmf->ptl);
1535 if (page_nid != NUMA_NO_NODE)
1536 task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR,
1542 /* Restore the PMD */
1543 pmd = pmd_modify(oldpmd, vma->vm_page_prot);
1544 pmd = pmd_mkyoung(pmd);
1546 pmd = pmd_mkwrite(pmd);
1547 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd);
1548 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1549 spin_unlock(vmf->ptl);
1554 * Return true if we do MADV_FREE successfully on entire pmd page.
1555 * Otherwise, return false.
1557 bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1558 pmd_t *pmd, unsigned long addr, unsigned long next)
1563 struct mm_struct *mm = tlb->mm;
1566 tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
1568 ptl = pmd_trans_huge_lock(pmd, vma);
1573 if (is_huge_zero_pmd(orig_pmd))
1576 if (unlikely(!pmd_present(orig_pmd))) {
1577 VM_BUG_ON(thp_migration_supported() &&
1578 !is_pmd_migration_entry(orig_pmd));
1582 page = pmd_page(orig_pmd);
1584 * If other processes are mapping this page, we couldn't discard
1585 * the page unless they all do MADV_FREE so let's skip the page.
1587 if (total_mapcount(page) != 1)
1590 if (!trylock_page(page))
1594 * If user want to discard part-pages of THP, split it so MADV_FREE
1595 * will deactivate only them.
1597 if (next - addr != HPAGE_PMD_SIZE) {
1600 split_huge_page(page);
1606 if (PageDirty(page))
1607 ClearPageDirty(page);
1610 if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
1611 pmdp_invalidate(vma, addr, pmd);
1612 orig_pmd = pmd_mkold(orig_pmd);
1613 orig_pmd = pmd_mkclean(orig_pmd);
1615 set_pmd_at(mm, addr, pmd, orig_pmd);
1616 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1619 mark_page_lazyfree(page);
1627 static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd)
1631 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1632 pte_free(mm, pgtable);
1636 int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1637 pmd_t *pmd, unsigned long addr)
1642 tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
1644 ptl = __pmd_trans_huge_lock(pmd, vma);
1648 * For architectures like ppc64 we look at deposited pgtable
1649 * when calling pmdp_huge_get_and_clear. So do the
1650 * pgtable_trans_huge_withdraw after finishing pmdp related
1653 orig_pmd = pmdp_huge_get_and_clear_full(vma, addr, pmd,
1655 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1656 if (vma_is_special_huge(vma)) {
1657 if (arch_needs_pgtable_deposit())
1658 zap_deposited_table(tlb->mm, pmd);
1660 } else if (is_huge_zero_pmd(orig_pmd)) {
1661 zap_deposited_table(tlb->mm, pmd);
1664 struct page *page = NULL;
1665 int flush_needed = 1;
1667 if (pmd_present(orig_pmd)) {
1668 page = pmd_page(orig_pmd);
1669 page_remove_rmap(page, vma, true);
1670 VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
1671 VM_BUG_ON_PAGE(!PageHead(page), page);
1672 } else if (thp_migration_supported()) {
1675 VM_BUG_ON(!is_pmd_migration_entry(orig_pmd));
1676 entry = pmd_to_swp_entry(orig_pmd);
1677 page = pfn_swap_entry_to_page(entry);
1680 WARN_ONCE(1, "Non present huge pmd without pmd migration enabled!");
1682 if (PageAnon(page)) {
1683 zap_deposited_table(tlb->mm, pmd);
1684 add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1686 if (arch_needs_pgtable_deposit())
1687 zap_deposited_table(tlb->mm, pmd);
1688 add_mm_counter(tlb->mm, mm_counter_file(page), -HPAGE_PMD_NR);
1693 tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE);
1698 #ifndef pmd_move_must_withdraw
1699 static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl,
1700 spinlock_t *old_pmd_ptl,
1701 struct vm_area_struct *vma)
1704 * With split pmd lock we also need to move preallocated
1705 * PTE page table if new_pmd is on different PMD page table.
1707 * We also don't deposit and withdraw tables for file pages.
1709 return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma);
1713 static pmd_t move_soft_dirty_pmd(pmd_t pmd)
1715 #ifdef CONFIG_MEM_SOFT_DIRTY
1716 if (unlikely(is_pmd_migration_entry(pmd)))
1717 pmd = pmd_swp_mksoft_dirty(pmd);
1718 else if (pmd_present(pmd))
1719 pmd = pmd_mksoft_dirty(pmd);
1724 bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
1725 unsigned long new_addr, pmd_t *old_pmd, pmd_t *new_pmd)
1727 spinlock_t *old_ptl, *new_ptl;
1729 struct mm_struct *mm = vma->vm_mm;
1730 bool force_flush = false;
1733 * The destination pmd shouldn't be established, free_pgtables()
1734 * should have release it.
1736 if (WARN_ON(!pmd_none(*new_pmd))) {
1737 VM_BUG_ON(pmd_trans_huge(*new_pmd));
1742 * We don't have to worry about the ordering of src and dst
1743 * ptlocks because exclusive mmap_lock prevents deadlock.
1745 old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
1747 new_ptl = pmd_lockptr(mm, new_pmd);
1748 if (new_ptl != old_ptl)
1749 spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
1750 pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
1751 if (pmd_present(pmd))
1753 VM_BUG_ON(!pmd_none(*new_pmd));
1755 if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) {
1757 pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1758 pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
1760 pmd = move_soft_dirty_pmd(pmd);
1761 set_pmd_at(mm, new_addr, new_pmd, pmd);
1763 flush_pmd_tlb_range(vma, old_addr, old_addr + PMD_SIZE);
1764 if (new_ptl != old_ptl)
1765 spin_unlock(new_ptl);
1766 spin_unlock(old_ptl);
1774 * - 0 if PMD could not be locked
1775 * - 1 if PMD was locked but protections unchanged and TLB flush unnecessary
1776 * or if prot_numa but THP migration is not supported
1777 * - HPAGE_PMD_NR if protections changed and TLB flush necessary
1779 int change_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1780 pmd_t *pmd, unsigned long addr, pgprot_t newprot,
1781 unsigned long cp_flags)
1783 struct mm_struct *mm = vma->vm_mm;
1785 pmd_t oldpmd, entry;
1786 bool preserve_write;
1788 bool prot_numa = cp_flags & MM_CP_PROT_NUMA;
1789 bool uffd_wp = cp_flags & MM_CP_UFFD_WP;
1790 bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE;
1792 tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
1794 if (prot_numa && !thp_migration_supported())
1797 ptl = __pmd_trans_huge_lock(pmd, vma);
1801 preserve_write = prot_numa && pmd_write(*pmd);
1804 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1805 if (is_swap_pmd(*pmd)) {
1806 swp_entry_t entry = pmd_to_swp_entry(*pmd);
1807 struct page *page = pfn_swap_entry_to_page(entry);
1810 VM_BUG_ON(!is_pmd_migration_entry(*pmd));
1811 if (is_writable_migration_entry(entry)) {
1813 * A protection check is difficult so
1814 * just be safe and disable write
1817 entry = make_readable_exclusive_migration_entry(swp_offset(entry));
1819 entry = make_readable_migration_entry(swp_offset(entry));
1820 newpmd = swp_entry_to_pmd(entry);
1821 if (pmd_swp_soft_dirty(*pmd))
1822 newpmd = pmd_swp_mksoft_dirty(newpmd);
1823 if (pmd_swp_uffd_wp(*pmd))
1824 newpmd = pmd_swp_mkuffd_wp(newpmd);
1830 newpmd = pmd_swp_mkuffd_wp(newpmd);
1831 else if (uffd_wp_resolve)
1832 newpmd = pmd_swp_clear_uffd_wp(newpmd);
1833 if (!pmd_same(*pmd, newpmd))
1834 set_pmd_at(mm, addr, pmd, newpmd);
1843 * Avoid trapping faults against the zero page. The read-only
1844 * data is likely to be read-cached on the local CPU and
1845 * local/remote hits to the zero page are not interesting.
1847 if (is_huge_zero_pmd(*pmd))
1850 if (pmd_protnone(*pmd))
1853 page = pmd_page(*pmd);
1854 toptier = node_is_toptier(page_to_nid(page));
1856 * Skip scanning top tier node if normal numa
1857 * balancing is disabled
1859 if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_NORMAL) &&
1863 if (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING &&
1865 xchg_page_access_time(page, jiffies_to_msecs(jiffies));
1868 * In case prot_numa, we are under mmap_read_lock(mm). It's critical
1869 * to not clear pmd intermittently to avoid race with MADV_DONTNEED
1870 * which is also under mmap_read_lock(mm):
1873 * change_huge_pmd(prot_numa=1)
1874 * pmdp_huge_get_and_clear_notify()
1875 * madvise_dontneed()
1877 * pmd_trans_huge(*pmd) == 0 (without ptl)
1880 * // pmd is re-established
1882 * The race makes MADV_DONTNEED miss the huge pmd and don't clear it
1883 * which may break userspace.
1885 * pmdp_invalidate_ad() is required to make sure we don't miss
1886 * dirty/young flags set by hardware.
1888 oldpmd = pmdp_invalidate_ad(vma, addr, pmd);
1890 entry = pmd_modify(oldpmd, newprot);
1892 entry = pmd_mk_savedwrite(entry);
1894 entry = pmd_wrprotect(entry);
1895 entry = pmd_mkuffd_wp(entry);
1896 } else if (uffd_wp_resolve) {
1898 * Leave the write bit to be handled by PF interrupt
1899 * handler, then things like COW could be properly
1902 entry = pmd_clear_uffd_wp(entry);
1905 set_pmd_at(mm, addr, pmd, entry);
1907 if (huge_pmd_needs_flush(oldpmd, entry))
1908 tlb_flush_pmd_range(tlb, addr, HPAGE_PMD_SIZE);
1910 BUG_ON(vma_is_anonymous(vma) && !preserve_write && pmd_write(entry));
1917 * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise.
1919 * Note that if it returns page table lock pointer, this routine returns without
1920 * unlocking page table lock. So callers must unlock it.
1922 spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
1925 ptl = pmd_lock(vma->vm_mm, pmd);
1926 if (likely(is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) ||
1934 * Returns page table lock pointer if a given pud maps a thp, NULL otherwise.
1936 * Note that if it returns page table lock pointer, this routine returns without
1937 * unlocking page table lock. So callers must unlock it.
1939 spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma)
1943 ptl = pud_lock(vma->vm_mm, pud);
1944 if (likely(pud_trans_huge(*pud) || pud_devmap(*pud)))
1950 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1951 int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma,
1952 pud_t *pud, unsigned long addr)
1956 ptl = __pud_trans_huge_lock(pud, vma);
1960 pudp_huge_get_and_clear_full(tlb->mm, addr, pud, tlb->fullmm);
1961 tlb_remove_pud_tlb_entry(tlb, pud, addr);
1962 if (vma_is_special_huge(vma)) {
1964 /* No zero page support yet */
1966 /* No support for anonymous PUD pages yet */
1972 static void __split_huge_pud_locked(struct vm_area_struct *vma, pud_t *pud,
1973 unsigned long haddr)
1975 VM_BUG_ON(haddr & ~HPAGE_PUD_MASK);
1976 VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
1977 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PUD_SIZE, vma);
1978 VM_BUG_ON(!pud_trans_huge(*pud) && !pud_devmap(*pud));
1980 count_vm_event(THP_SPLIT_PUD);
1982 pudp_huge_clear_flush_notify(vma, haddr, pud);
1985 void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud,
1986 unsigned long address)
1989 struct mmu_notifier_range range;
1991 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1992 address & HPAGE_PUD_MASK,
1993 (address & HPAGE_PUD_MASK) + HPAGE_PUD_SIZE);
1994 mmu_notifier_invalidate_range_start(&range);
1995 ptl = pud_lock(vma->vm_mm, pud);
1996 if (unlikely(!pud_trans_huge(*pud) && !pud_devmap(*pud)))
1998 __split_huge_pud_locked(vma, pud, range.start);
2003 * No need to double call mmu_notifier->invalidate_range() callback as
2004 * the above pudp_huge_clear_flush_notify() did already call it.
2006 mmu_notifier_invalidate_range_only_end(&range);
2008 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
2010 static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
2011 unsigned long haddr, pmd_t *pmd)
2013 struct mm_struct *mm = vma->vm_mm;
2015 pmd_t _pmd, old_pmd;
2019 * Leave pmd empty until pte is filled note that it is fine to delay
2020 * notification until mmu_notifier_invalidate_range_end() as we are
2021 * replacing a zero pmd write protected page with a zero pte write
2024 * See Documentation/mm/mmu_notifier.rst
2026 old_pmd = pmdp_huge_clear_flush(vma, haddr, pmd);
2028 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2029 pmd_populate(mm, &_pmd, pgtable);
2031 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
2033 entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
2034 entry = pte_mkspecial(entry);
2035 if (pmd_uffd_wp(old_pmd))
2036 entry = pte_mkuffd_wp(entry);
2037 pte = pte_offset_map(&_pmd, haddr);
2038 VM_BUG_ON(!pte_none(*pte));
2039 set_pte_at(mm, haddr, pte, entry);
2042 smp_wmb(); /* make pte visible before pmd */
2043 pmd_populate(mm, pmd, pgtable);
2046 static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
2047 unsigned long haddr, bool freeze)
2049 struct mm_struct *mm = vma->vm_mm;
2052 pmd_t old_pmd, _pmd;
2053 bool young, write, soft_dirty, pmd_migration = false, uffd_wp = false;
2054 bool anon_exclusive = false, dirty = false;
2058 VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
2059 VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2060 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
2061 VM_BUG_ON(!is_pmd_migration_entry(*pmd) && !pmd_trans_huge(*pmd)
2062 && !pmd_devmap(*pmd));
2064 count_vm_event(THP_SPLIT_PMD);
2066 if (!vma_is_anonymous(vma)) {
2067 old_pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
2069 * We are going to unmap this huge page. So
2070 * just go ahead and zap it
2072 if (arch_needs_pgtable_deposit())
2073 zap_deposited_table(mm, pmd);
2074 if (vma_is_special_huge(vma))
2076 if (unlikely(is_pmd_migration_entry(old_pmd))) {
2079 entry = pmd_to_swp_entry(old_pmd);
2080 page = pfn_swap_entry_to_page(entry);
2082 page = pmd_page(old_pmd);
2083 if (!PageDirty(page) && pmd_dirty(old_pmd))
2084 set_page_dirty(page);
2085 if (!PageReferenced(page) && pmd_young(old_pmd))
2086 SetPageReferenced(page);
2087 page_remove_rmap(page, vma, true);
2090 add_mm_counter(mm, mm_counter_file(page), -HPAGE_PMD_NR);
2094 if (is_huge_zero_pmd(*pmd)) {
2096 * FIXME: Do we want to invalidate secondary mmu by calling
2097 * mmu_notifier_invalidate_range() see comments below inside
2098 * __split_huge_pmd() ?
2100 * We are going from a zero huge page write protected to zero
2101 * small page also write protected so it does not seems useful
2102 * to invalidate secondary mmu at this time.
2104 return __split_huge_zero_page_pmd(vma, haddr, pmd);
2108 * Up to this point the pmd is present and huge and userland has the
2109 * whole access to the hugepage during the split (which happens in
2110 * place). If we overwrite the pmd with the not-huge version pointing
2111 * to the pte here (which of course we could if all CPUs were bug
2112 * free), userland could trigger a small page size TLB miss on the
2113 * small sized TLB while the hugepage TLB entry is still established in
2114 * the huge TLB. Some CPU doesn't like that.
2115 * See http://support.amd.com/TechDocs/41322_10h_Rev_Gd.pdf, Erratum
2116 * 383 on page 105. Intel should be safe but is also warns that it's
2117 * only safe if the permission and cache attributes of the two entries
2118 * loaded in the two TLB is identical (which should be the case here).
2119 * But it is generally safer to never allow small and huge TLB entries
2120 * for the same virtual address to be loaded simultaneously. So instead
2121 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
2122 * current pmd notpresent (atomically because here the pmd_trans_huge
2123 * must remain set at all times on the pmd until the split is complete
2124 * for this pmd), then we flush the SMP TLB and finally we write the
2125 * non-huge version of the pmd entry with pmd_populate.
2127 old_pmd = pmdp_invalidate(vma, haddr, pmd);
2129 pmd_migration = is_pmd_migration_entry(old_pmd);
2130 if (unlikely(pmd_migration)) {
2133 entry = pmd_to_swp_entry(old_pmd);
2134 page = pfn_swap_entry_to_page(entry);
2135 write = is_writable_migration_entry(entry);
2137 anon_exclusive = is_readable_exclusive_migration_entry(entry);
2138 young = is_migration_entry_young(entry);
2139 dirty = is_migration_entry_dirty(entry);
2140 soft_dirty = pmd_swp_soft_dirty(old_pmd);
2141 uffd_wp = pmd_swp_uffd_wp(old_pmd);
2143 page = pmd_page(old_pmd);
2144 if (pmd_dirty(old_pmd)) {
2148 write = pmd_write(old_pmd);
2149 young = pmd_young(old_pmd);
2150 soft_dirty = pmd_soft_dirty(old_pmd);
2151 uffd_wp = pmd_uffd_wp(old_pmd);
2153 VM_BUG_ON_PAGE(!page_count(page), page);
2154 page_ref_add(page, HPAGE_PMD_NR - 1);
2157 * Without "freeze", we'll simply split the PMD, propagating the
2158 * PageAnonExclusive() flag for each PTE by setting it for
2159 * each subpage -- no need to (temporarily) clear.
2161 * With "freeze" we want to replace mapped pages by
2162 * migration entries right away. This is only possible if we
2163 * managed to clear PageAnonExclusive() -- see
2164 * set_pmd_migration_entry().
2166 * In case we cannot clear PageAnonExclusive(), split the PMD
2167 * only and let try_to_migrate_one() fail later.
2169 * See page_try_share_anon_rmap(): invalidate PMD first.
2171 anon_exclusive = PageAnon(page) && PageAnonExclusive(page);
2172 if (freeze && anon_exclusive && page_try_share_anon_rmap(page))
2177 * Withdraw the table only after we mark the pmd entry invalid.
2178 * This's critical for some architectures (Power).
2180 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2181 pmd_populate(mm, &_pmd, pgtable);
2183 for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
2186 * Note that NUMA hinting access restrictions are not
2187 * transferred to avoid any possibility of altering
2188 * permissions across VMAs.
2190 if (freeze || pmd_migration) {
2191 swp_entry_t swp_entry;
2193 swp_entry = make_writable_migration_entry(
2194 page_to_pfn(page + i));
2195 else if (anon_exclusive)
2196 swp_entry = make_readable_exclusive_migration_entry(
2197 page_to_pfn(page + i));
2199 swp_entry = make_readable_migration_entry(
2200 page_to_pfn(page + i));
2202 swp_entry = make_migration_entry_young(swp_entry);
2204 swp_entry = make_migration_entry_dirty(swp_entry);
2205 entry = swp_entry_to_pte(swp_entry);
2207 entry = pte_swp_mksoft_dirty(entry);
2209 entry = pte_swp_mkuffd_wp(entry);
2211 entry = mk_pte(page + i, READ_ONCE(vma->vm_page_prot));
2212 entry = maybe_mkwrite(entry, vma);
2214 SetPageAnonExclusive(page + i);
2216 entry = pte_wrprotect(entry);
2218 entry = pte_mkold(entry);
2220 * NOTE: we don't do pte_mkdirty when dirty==true
2221 * because it breaks sparc64 which can sigsegv
2222 * random process. Need to revisit when we figure
2223 * out what is special with sparc64.
2226 entry = pte_mksoft_dirty(entry);
2228 entry = pte_mkuffd_wp(entry);
2230 pte = pte_offset_map(&_pmd, addr);
2231 BUG_ON(!pte_none(*pte));
2232 set_pte_at(mm, addr, pte, entry);
2234 atomic_inc(&page[i]._mapcount);
2238 if (!pmd_migration) {
2240 * Set PG_double_map before dropping compound_mapcount to avoid
2241 * false-negative page_mapped().
2243 if (compound_mapcount(page) > 1 &&
2244 !TestSetPageDoubleMap(page)) {
2245 for (i = 0; i < HPAGE_PMD_NR; i++)
2246 atomic_inc(&page[i]._mapcount);
2249 lock_page_memcg(page);
2250 if (atomic_add_negative(-1, compound_mapcount_ptr(page))) {
2251 /* Last compound_mapcount is gone. */
2252 __mod_lruvec_page_state(page, NR_ANON_THPS,
2254 if (TestClearPageDoubleMap(page)) {
2255 /* No need in mapcount reference anymore */
2256 for (i = 0; i < HPAGE_PMD_NR; i++)
2257 atomic_dec(&page[i]._mapcount);
2260 unlock_page_memcg(page);
2262 /* Above is effectively page_remove_rmap(page, vma, true) */
2263 munlock_vma_page(page, vma, true);
2266 smp_wmb(); /* make pte visible before pmd */
2267 pmd_populate(mm, pmd, pgtable);
2270 for (i = 0; i < HPAGE_PMD_NR; i++) {
2271 page_remove_rmap(page + i, vma, false);
2277 void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
2278 unsigned long address, bool freeze, struct folio *folio)
2281 struct mmu_notifier_range range;
2283 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
2284 address & HPAGE_PMD_MASK,
2285 (address & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE);
2286 mmu_notifier_invalidate_range_start(&range);
2287 ptl = pmd_lock(vma->vm_mm, pmd);
2290 * If caller asks to setup a migration entry, we need a folio to check
2291 * pmd against. Otherwise we can end up replacing wrong folio.
2293 VM_BUG_ON(freeze && !folio);
2294 VM_WARN_ON_ONCE(folio && !folio_test_locked(folio));
2296 if (pmd_trans_huge(*pmd) || pmd_devmap(*pmd) ||
2297 is_pmd_migration_entry(*pmd)) {
2299 * It's safe to call pmd_page when folio is set because it's
2300 * guaranteed that pmd is present.
2302 if (folio && folio != page_folio(pmd_page(*pmd)))
2304 __split_huge_pmd_locked(vma, pmd, range.start, freeze);
2310 * No need to double call mmu_notifier->invalidate_range() callback.
2311 * They are 3 cases to consider inside __split_huge_pmd_locked():
2312 * 1) pmdp_huge_clear_flush_notify() call invalidate_range() obvious
2313 * 2) __split_huge_zero_page_pmd() read only zero page and any write
2314 * fault will trigger a flush_notify before pointing to a new page
2315 * (it is fine if the secondary mmu keeps pointing to the old zero
2316 * page in the meantime)
2317 * 3) Split a huge pmd into pte pointing to the same page. No need
2318 * to invalidate secondary tlb entry they are all still valid.
2319 * any further changes to individual pte will notify. So no need
2320 * to call mmu_notifier->invalidate_range()
2322 mmu_notifier_invalidate_range_only_end(&range);
2325 void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
2326 bool freeze, struct folio *folio)
2328 pmd_t *pmd = mm_find_pmd(vma->vm_mm, address);
2333 __split_huge_pmd(vma, pmd, address, freeze, folio);
2336 static inline void split_huge_pmd_if_needed(struct vm_area_struct *vma, unsigned long address)
2339 * If the new address isn't hpage aligned and it could previously
2340 * contain an hugepage: check if we need to split an huge pmd.
2342 if (!IS_ALIGNED(address, HPAGE_PMD_SIZE) &&
2343 range_in_vma(vma, ALIGN_DOWN(address, HPAGE_PMD_SIZE),
2344 ALIGN(address, HPAGE_PMD_SIZE)))
2345 split_huge_pmd_address(vma, address, false, NULL);
2348 void vma_adjust_trans_huge(struct vm_area_struct *vma,
2349 unsigned long start,
2353 /* Check if we need to split start first. */
2354 split_huge_pmd_if_needed(vma, start);
2356 /* Check if we need to split end next. */
2357 split_huge_pmd_if_needed(vma, end);
2360 * If we're also updating the next vma vm_start,
2361 * check if we need to split it.
2363 if (adjust_next > 0) {
2364 struct vm_area_struct *next = find_vma(vma->vm_mm, vma->vm_end);
2365 unsigned long nstart = next->vm_start;
2366 nstart += adjust_next;
2367 split_huge_pmd_if_needed(next, nstart);
2371 static void unmap_folio(struct folio *folio)
2373 enum ttu_flags ttu_flags = TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD |
2376 VM_BUG_ON_FOLIO(!folio_test_large(folio), folio);
2379 * Anon pages need migration entries to preserve them, but file
2380 * pages can simply be left unmapped, then faulted back on demand.
2381 * If that is ever changed (perhaps for mlock), update remap_page().
2383 if (folio_test_anon(folio))
2384 try_to_migrate(folio, ttu_flags);
2386 try_to_unmap(folio, ttu_flags | TTU_IGNORE_MLOCK);
2389 static void remap_page(struct folio *folio, unsigned long nr)
2393 /* If unmap_folio() uses try_to_migrate() on file, remove this check */
2394 if (!folio_test_anon(folio))
2397 remove_migration_ptes(folio, folio, true);
2398 i += folio_nr_pages(folio);
2401 folio = folio_next(folio);
2405 static void lru_add_page_tail(struct page *head, struct page *tail,
2406 struct lruvec *lruvec, struct list_head *list)
2408 VM_BUG_ON_PAGE(!PageHead(head), head);
2409 VM_BUG_ON_PAGE(PageCompound(tail), head);
2410 VM_BUG_ON_PAGE(PageLRU(tail), head);
2411 lockdep_assert_held(&lruvec->lru_lock);
2414 /* page reclaim is reclaiming a huge page */
2415 VM_WARN_ON(PageLRU(head));
2417 list_add_tail(&tail->lru, list);
2419 /* head is still on lru (and we have it frozen) */
2420 VM_WARN_ON(!PageLRU(head));
2421 if (PageUnevictable(tail))
2422 tail->mlock_count = 0;
2424 list_add_tail(&tail->lru, &head->lru);
2429 static void __split_huge_page_tail(struct page *head, int tail,
2430 struct lruvec *lruvec, struct list_head *list)
2432 struct page *page_tail = head + tail;
2434 VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
2437 * Clone page flags before unfreezing refcount.
2439 * After successful get_page_unless_zero() might follow flags change,
2440 * for example lock_page() which set PG_waiters.
2442 * Note that for mapped sub-pages of an anonymous THP,
2443 * PG_anon_exclusive has been cleared in unmap_folio() and is stored in
2444 * the migration entry instead from where remap_page() will restore it.
2445 * We can still have PG_anon_exclusive set on effectively unmapped and
2446 * unreferenced sub-pages of an anonymous THP: we can simply drop
2447 * PG_anon_exclusive (-> PG_mappedtodisk) for these here.
2449 page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
2450 page_tail->flags |= (head->flags &
2451 ((1L << PG_referenced) |
2452 (1L << PG_swapbacked) |
2453 (1L << PG_swapcache) |
2454 (1L << PG_mlocked) |
2455 (1L << PG_uptodate) |
2457 (1L << PG_workingset) |
2459 (1L << PG_unevictable) |
2464 LRU_GEN_MASK | LRU_REFS_MASK));
2466 /* ->mapping in first tail page is compound_mapcount */
2467 VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
2469 page_tail->mapping = head->mapping;
2470 page_tail->index = head->index + tail;
2473 * page->private should not be set in tail pages with the exception
2474 * of swap cache pages that store the swp_entry_t in tail pages.
2475 * Fix up and warn once if private is unexpectedly set.
2477 if (!folio_test_swapcache(page_folio(head))) {
2478 VM_WARN_ON_ONCE_PAGE(page_tail->private != 0, page_tail);
2479 page_tail->private = 0;
2482 /* Page flags must be visible before we make the page non-compound. */
2486 * Clear PageTail before unfreezing page refcount.
2488 * After successful get_page_unless_zero() might follow put_page()
2489 * which needs correct compound_head().
2491 clear_compound_head(page_tail);
2493 /* Finally unfreeze refcount. Additional reference from page cache. */
2494 page_ref_unfreeze(page_tail, 1 + (!PageAnon(head) ||
2495 PageSwapCache(head)));
2497 if (page_is_young(head))
2498 set_page_young(page_tail);
2499 if (page_is_idle(head))
2500 set_page_idle(page_tail);
2502 page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
2505 * always add to the tail because some iterators expect new
2506 * pages to show after the currently processed elements - e.g.
2509 lru_add_page_tail(head, page_tail, lruvec, list);
2512 static void __split_huge_page(struct page *page, struct list_head *list,
2515 struct folio *folio = page_folio(page);
2516 struct page *head = &folio->page;
2517 struct lruvec *lruvec;
2518 struct address_space *swap_cache = NULL;
2519 unsigned long offset = 0;
2520 unsigned int nr = thp_nr_pages(head);
2523 /* complete memcg works before add pages to LRU */
2524 split_page_memcg(head, nr);
2526 if (PageAnon(head) && PageSwapCache(head)) {
2527 swp_entry_t entry = { .val = page_private(head) };
2529 offset = swp_offset(entry);
2530 swap_cache = swap_address_space(entry);
2531 xa_lock(&swap_cache->i_pages);
2534 /* lock lru list/PageCompound, ref frozen by page_ref_freeze */
2535 lruvec = folio_lruvec_lock(folio);
2537 ClearPageHasHWPoisoned(head);
2539 for (i = nr - 1; i >= 1; i--) {
2540 __split_huge_page_tail(head, i, lruvec, list);
2541 /* Some pages can be beyond EOF: drop them from page cache */
2542 if (head[i].index >= end) {
2543 struct folio *tail = page_folio(head + i);
2545 if (shmem_mapping(head->mapping))
2546 shmem_uncharge(head->mapping->host, 1);
2547 else if (folio_test_clear_dirty(tail))
2548 folio_account_cleaned(tail,
2549 inode_to_wb(folio->mapping->host));
2550 __filemap_remove_folio(tail, NULL);
2552 } else if (!PageAnon(page)) {
2553 __xa_store(&head->mapping->i_pages, head[i].index,
2555 } else if (swap_cache) {
2556 __xa_store(&swap_cache->i_pages, offset + i,
2561 ClearPageCompound(head);
2562 unlock_page_lruvec(lruvec);
2563 /* Caller disabled irqs, so they are still disabled here */
2565 split_page_owner(head, nr);
2567 /* See comment in __split_huge_page_tail() */
2568 if (PageAnon(head)) {
2569 /* Additional pin to swap cache */
2570 if (PageSwapCache(head)) {
2571 page_ref_add(head, 2);
2572 xa_unlock(&swap_cache->i_pages);
2577 /* Additional pin to page cache */
2578 page_ref_add(head, 2);
2579 xa_unlock(&head->mapping->i_pages);
2583 remap_page(folio, nr);
2585 if (PageSwapCache(head)) {
2586 swp_entry_t entry = { .val = page_private(head) };
2588 split_swap_cluster(entry);
2591 for (i = 0; i < nr; i++) {
2592 struct page *subpage = head + i;
2593 if (subpage == page)
2595 unlock_page(subpage);
2598 * Subpages may be freed if there wasn't any mapping
2599 * like if add_to_swap() is running on a lru page that
2600 * had its mapping zapped. And freeing these pages
2601 * requires taking the lru_lock so we do the put_page
2602 * of the tail pages after the split is complete.
2604 free_page_and_swap_cache(subpage);
2608 /* Racy check whether the huge page can be split */
2609 bool can_split_folio(struct folio *folio, int *pextra_pins)
2613 /* Additional pins from page cache */
2614 if (folio_test_anon(folio))
2615 extra_pins = folio_test_swapcache(folio) ?
2616 folio_nr_pages(folio) : 0;
2618 extra_pins = folio_nr_pages(folio);
2620 *pextra_pins = extra_pins;
2621 return folio_mapcount(folio) == folio_ref_count(folio) - extra_pins - 1;
2625 * This function splits huge page into normal pages. @page can point to any
2626 * subpage of huge page to split. Split doesn't change the position of @page.
2628 * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
2629 * The huge page must be locked.
2631 * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
2633 * Both head page and tail pages will inherit mapping, flags, and so on from
2636 * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
2637 * they are not mapped.
2639 * Returns 0 if the hugepage is split successfully.
2640 * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
2643 int split_huge_page_to_list(struct page *page, struct list_head *list)
2645 struct folio *folio = page_folio(page);
2646 struct deferred_split *ds_queue = get_deferred_split_queue(&folio->page);
2647 XA_STATE(xas, &folio->mapping->i_pages, folio->index);
2648 struct anon_vma *anon_vma = NULL;
2649 struct address_space *mapping = NULL;
2650 int extra_pins, ret;
2654 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
2655 VM_BUG_ON_FOLIO(!folio_test_large(folio), folio);
2657 is_hzp = is_huge_zero_page(&folio->page);
2659 pr_warn_ratelimited("Called split_huge_page for huge zero page\n");
2663 if (folio_test_writeback(folio))
2666 if (folio_test_anon(folio)) {
2668 * The caller does not necessarily hold an mmap_lock that would
2669 * prevent the anon_vma disappearing so we first we take a
2670 * reference to it and then lock the anon_vma for write. This
2671 * is similar to folio_lock_anon_vma_read except the write lock
2672 * is taken to serialise against parallel split or collapse
2675 anon_vma = folio_get_anon_vma(folio);
2682 anon_vma_lock_write(anon_vma);
2686 mapping = folio->mapping;
2694 gfp = current_gfp_context(mapping_gfp_mask(mapping) &
2697 if (folio_test_private(folio) &&
2698 !filemap_release_folio(folio, gfp)) {
2703 xas_split_alloc(&xas, folio, folio_order(folio), gfp);
2704 if (xas_error(&xas)) {
2705 ret = xas_error(&xas);
2710 i_mmap_lock_read(mapping);
2713 *__split_huge_page() may need to trim off pages beyond EOF:
2714 * but on 32-bit, i_size_read() takes an irq-unsafe seqlock,
2715 * which cannot be nested inside the page tree lock. So note
2716 * end now: i_size itself may be changed at any moment, but
2717 * folio lock is good enough to serialize the trimming.
2719 end = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
2720 if (shmem_mapping(mapping))
2721 end = shmem_fallocend(mapping->host, end);
2725 * Racy check if we can split the page, before unmap_folio() will
2728 if (!can_split_folio(folio, &extra_pins)) {
2735 /* block interrupt reentry in xa_lock and spinlock */
2736 local_irq_disable();
2739 * Check if the folio is present in page cache.
2740 * We assume all tail are present too, if folio is there.
2744 if (xas_load(&xas) != folio)
2748 /* Prevent deferred_split_scan() touching ->_refcount */
2749 spin_lock(&ds_queue->split_queue_lock);
2750 if (folio_ref_freeze(folio, 1 + extra_pins)) {
2751 if (!list_empty(page_deferred_list(&folio->page))) {
2752 ds_queue->split_queue_len--;
2753 list_del(page_deferred_list(&folio->page));
2755 spin_unlock(&ds_queue->split_queue_lock);
2757 int nr = folio_nr_pages(folio);
2759 xas_split(&xas, folio, folio_order(folio));
2760 if (folio_test_pmd_mappable(folio)) {
2761 if (folio_test_swapbacked(folio)) {
2762 __lruvec_stat_mod_folio(folio,
2763 NR_SHMEM_THPS, -nr);
2765 __lruvec_stat_mod_folio(folio,
2767 filemap_nr_thps_dec(mapping);
2772 __split_huge_page(page, list, end);
2775 spin_unlock(&ds_queue->split_queue_lock);
2780 remap_page(folio, folio_nr_pages(folio));
2786 anon_vma_unlock_write(anon_vma);
2787 put_anon_vma(anon_vma);
2790 i_mmap_unlock_read(mapping);
2793 count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
2797 void free_transhuge_page(struct page *page)
2799 struct deferred_split *ds_queue = get_deferred_split_queue(page);
2800 unsigned long flags;
2802 spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2803 if (!list_empty(page_deferred_list(page))) {
2804 ds_queue->split_queue_len--;
2805 list_del(page_deferred_list(page));
2807 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2808 free_compound_page(page);
2811 void deferred_split_huge_page(struct page *page)
2813 struct deferred_split *ds_queue = get_deferred_split_queue(page);
2815 struct mem_cgroup *memcg = page_memcg(compound_head(page));
2817 unsigned long flags;
2819 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
2822 * The try_to_unmap() in page reclaim path might reach here too,
2823 * this may cause a race condition to corrupt deferred split queue.
2824 * And, if page reclaim is already handling the same page, it is
2825 * unnecessary to handle it again in shrinker.
2827 * Check PageSwapCache to determine if the page is being
2828 * handled by page reclaim since THP swap would add the page into
2829 * swap cache before calling try_to_unmap().
2831 if (PageSwapCache(page))
2834 if (!list_empty(page_deferred_list(page)))
2837 spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2838 if (list_empty(page_deferred_list(page))) {
2839 count_vm_event(THP_DEFERRED_SPLIT_PAGE);
2840 list_add_tail(page_deferred_list(page), &ds_queue->split_queue);
2841 ds_queue->split_queue_len++;
2844 set_shrinker_bit(memcg, page_to_nid(page),
2845 deferred_split_shrinker.id);
2848 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2851 static unsigned long deferred_split_count(struct shrinker *shrink,
2852 struct shrink_control *sc)
2854 struct pglist_data *pgdata = NODE_DATA(sc->nid);
2855 struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
2859 ds_queue = &sc->memcg->deferred_split_queue;
2861 return READ_ONCE(ds_queue->split_queue_len);
2864 static unsigned long deferred_split_scan(struct shrinker *shrink,
2865 struct shrink_control *sc)
2867 struct pglist_data *pgdata = NODE_DATA(sc->nid);
2868 struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
2869 unsigned long flags;
2870 LIST_HEAD(list), *pos, *next;
2876 ds_queue = &sc->memcg->deferred_split_queue;
2879 spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2880 /* Take pin on all head pages to avoid freeing them under us */
2881 list_for_each_safe(pos, next, &ds_queue->split_queue) {
2882 page = list_entry((void *)pos, struct page, deferred_list);
2883 page = compound_head(page);
2884 if (get_page_unless_zero(page)) {
2885 list_move(page_deferred_list(page), &list);
2887 /* We lost race with put_compound_page() */
2888 list_del_init(page_deferred_list(page));
2889 ds_queue->split_queue_len--;
2891 if (!--sc->nr_to_scan)
2894 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2896 list_for_each_safe(pos, next, &list) {
2897 page = list_entry((void *)pos, struct page, deferred_list);
2898 if (!trylock_page(page))
2900 /* split_huge_page() removes page from list on success */
2901 if (!split_huge_page(page))
2908 spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2909 list_splice_tail(&list, &ds_queue->split_queue);
2910 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2913 * Stop shrinker if we didn't split any page, but the queue is empty.
2914 * This can happen if pages were freed under us.
2916 if (!split && list_empty(&ds_queue->split_queue))
2921 static struct shrinker deferred_split_shrinker = {
2922 .count_objects = deferred_split_count,
2923 .scan_objects = deferred_split_scan,
2924 .seeks = DEFAULT_SEEKS,
2925 .flags = SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE |
2929 #ifdef CONFIG_DEBUG_FS
2930 static void split_huge_pages_all(void)
2934 unsigned long pfn, max_zone_pfn;
2935 unsigned long total = 0, split = 0;
2937 pr_debug("Split all THPs\n");
2938 for_each_zone(zone) {
2939 if (!managed_zone(zone))
2941 max_zone_pfn = zone_end_pfn(zone);
2942 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
2945 page = pfn_to_online_page(pfn);
2946 if (!page || !get_page_unless_zero(page))
2949 if (zone != page_zone(page))
2952 if (!PageHead(page) || PageHuge(page) || !PageLRU(page))
2957 nr_pages = thp_nr_pages(page);
2958 if (!split_huge_page(page))
2960 pfn += nr_pages - 1;
2968 pr_debug("%lu of %lu THP split\n", split, total);
2971 static inline bool vma_not_suitable_for_thp_split(struct vm_area_struct *vma)
2973 return vma_is_special_huge(vma) || (vma->vm_flags & VM_IO) ||
2974 is_vm_hugetlb_page(vma);
2977 static int split_huge_pages_pid(int pid, unsigned long vaddr_start,
2978 unsigned long vaddr_end)
2981 struct task_struct *task;
2982 struct mm_struct *mm;
2983 unsigned long total = 0, split = 0;
2986 vaddr_start &= PAGE_MASK;
2987 vaddr_end &= PAGE_MASK;
2989 /* Find the task_struct from pid */
2991 task = find_task_by_vpid(pid);
2997 get_task_struct(task);
3000 /* Find the mm_struct */
3001 mm = get_task_mm(task);
3002 put_task_struct(task);
3009 pr_debug("Split huge pages in pid: %d, vaddr: [0x%lx - 0x%lx]\n",
3010 pid, vaddr_start, vaddr_end);
3014 * always increase addr by PAGE_SIZE, since we could have a PTE page
3015 * table filled with PTE-mapped THPs, each of which is distinct.
3017 for (addr = vaddr_start; addr < vaddr_end; addr += PAGE_SIZE) {
3018 struct vm_area_struct *vma = vma_lookup(mm, addr);
3024 /* skip special VMA and hugetlb VMA */
3025 if (vma_not_suitable_for_thp_split(vma)) {
3030 /* FOLL_DUMP to ignore special (like zero) pages */
3031 page = follow_page(vma, addr, FOLL_GET | FOLL_DUMP);
3033 if (IS_ERR_OR_NULL(page))
3036 if (!is_transparent_hugepage(page))
3040 if (!can_split_folio(page_folio(page), NULL))
3043 if (!trylock_page(page))
3046 if (!split_huge_page(page))
3054 mmap_read_unlock(mm);
3057 pr_debug("%lu of %lu THP split\n", split, total);
3063 static int split_huge_pages_in_file(const char *file_path, pgoff_t off_start,
3066 struct filename *file;
3067 struct file *candidate;
3068 struct address_space *mapping;
3072 unsigned long total = 0, split = 0;
3074 file = getname_kernel(file_path);
3078 candidate = file_open_name(file, O_RDONLY, 0);
3079 if (IS_ERR(candidate))
3082 pr_debug("split file-backed THPs in file: %s, page offset: [0x%lx - 0x%lx]\n",
3083 file_path, off_start, off_end);
3085 mapping = candidate->f_mapping;
3087 for (index = off_start; index < off_end; index += nr_pages) {
3088 struct page *fpage = pagecache_get_page(mapping, index,
3089 FGP_ENTRY | FGP_HEAD, 0);
3092 if (xa_is_value(fpage) || !fpage)
3095 if (!is_transparent_hugepage(fpage))
3099 nr_pages = thp_nr_pages(fpage);
3101 if (!trylock_page(fpage))
3104 if (!split_huge_page(fpage))
3113 filp_close(candidate, NULL);
3116 pr_debug("%lu of %lu file-backed THP split\n", split, total);
3122 #define MAX_INPUT_BUF_SZ 255
3124 static ssize_t split_huge_pages_write(struct file *file, const char __user *buf,
3125 size_t count, loff_t *ppops)
3127 static DEFINE_MUTEX(split_debug_mutex);
3129 /* hold pid, start_vaddr, end_vaddr or file_path, off_start, off_end */
3130 char input_buf[MAX_INPUT_BUF_SZ];
3132 unsigned long vaddr_start, vaddr_end;
3134 ret = mutex_lock_interruptible(&split_debug_mutex);
3140 memset(input_buf, 0, MAX_INPUT_BUF_SZ);
3141 if (copy_from_user(input_buf, buf, min_t(size_t, count, MAX_INPUT_BUF_SZ)))
3144 input_buf[MAX_INPUT_BUF_SZ - 1] = '\0';
3146 if (input_buf[0] == '/') {
3148 char *buf = input_buf;
3149 char file_path[MAX_INPUT_BUF_SZ];
3150 pgoff_t off_start = 0, off_end = 0;
3151 size_t input_len = strlen(input_buf);
3153 tok = strsep(&buf, ",");
3155 strcpy(file_path, tok);
3161 ret = sscanf(buf, "0x%lx,0x%lx", &off_start, &off_end);
3166 ret = split_huge_pages_in_file(file_path, off_start, off_end);
3173 ret = sscanf(input_buf, "%d,0x%lx,0x%lx", &pid, &vaddr_start, &vaddr_end);
3174 if (ret == 1 && pid == 1) {
3175 split_huge_pages_all();
3176 ret = strlen(input_buf);
3178 } else if (ret != 3) {
3183 ret = split_huge_pages_pid(pid, vaddr_start, vaddr_end);
3185 ret = strlen(input_buf);
3187 mutex_unlock(&split_debug_mutex);
3192 static const struct file_operations split_huge_pages_fops = {
3193 .owner = THIS_MODULE,
3194 .write = split_huge_pages_write,
3195 .llseek = no_llseek,
3198 static int __init split_huge_pages_debugfs(void)
3200 debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
3201 &split_huge_pages_fops);
3204 late_initcall(split_huge_pages_debugfs);
3207 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
3208 int set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw,
3211 struct vm_area_struct *vma = pvmw->vma;
3212 struct mm_struct *mm = vma->vm_mm;
3213 unsigned long address = pvmw->address;
3214 bool anon_exclusive;
3219 if (!(pvmw->pmd && !pvmw->pte))
3222 flush_cache_range(vma, address, address + HPAGE_PMD_SIZE);
3223 pmdval = pmdp_invalidate(vma, address, pvmw->pmd);
3225 /* See page_try_share_anon_rmap(): invalidate PMD first. */
3226 anon_exclusive = PageAnon(page) && PageAnonExclusive(page);
3227 if (anon_exclusive && page_try_share_anon_rmap(page)) {
3228 set_pmd_at(mm, address, pvmw->pmd, pmdval);
3232 if (pmd_dirty(pmdval))
3233 set_page_dirty(page);
3234 if (pmd_write(pmdval))
3235 entry = make_writable_migration_entry(page_to_pfn(page));
3236 else if (anon_exclusive)
3237 entry = make_readable_exclusive_migration_entry(page_to_pfn(page));
3239 entry = make_readable_migration_entry(page_to_pfn(page));
3240 if (pmd_young(pmdval))
3241 entry = make_migration_entry_young(entry);
3242 if (pmd_dirty(pmdval))
3243 entry = make_migration_entry_dirty(entry);
3244 pmdswp = swp_entry_to_pmd(entry);
3245 if (pmd_soft_dirty(pmdval))
3246 pmdswp = pmd_swp_mksoft_dirty(pmdswp);
3247 if (pmd_uffd_wp(pmdval))
3248 pmdswp = pmd_swp_mkuffd_wp(pmdswp);
3249 set_pmd_at(mm, address, pvmw->pmd, pmdswp);
3250 page_remove_rmap(page, vma, true);
3252 trace_set_migration_pmd(address, pmd_val(pmdswp));
3257 void remove_migration_pmd(struct page_vma_mapped_walk *pvmw, struct page *new)
3259 struct vm_area_struct *vma = pvmw->vma;
3260 struct mm_struct *mm = vma->vm_mm;
3261 unsigned long address = pvmw->address;
3262 unsigned long haddr = address & HPAGE_PMD_MASK;
3266 if (!(pvmw->pmd && !pvmw->pte))
3269 entry = pmd_to_swp_entry(*pvmw->pmd);
3271 pmde = mk_huge_pmd(new, READ_ONCE(vma->vm_page_prot));
3272 if (pmd_swp_soft_dirty(*pvmw->pmd))
3273 pmde = pmd_mksoft_dirty(pmde);
3274 if (pmd_swp_uffd_wp(*pvmw->pmd))
3275 pmde = pmd_wrprotect(pmd_mkuffd_wp(pmde));
3276 if (!is_migration_entry_young(entry))
3277 pmde = pmd_mkold(pmde);
3278 /* NOTE: this may contain setting soft-dirty on some archs */
3279 if (PageDirty(new) && is_migration_entry_dirty(entry))
3280 pmde = pmd_mkdirty(pmde);
3281 if (is_writable_migration_entry(entry))
3282 pmde = maybe_pmd_mkwrite(pmde, vma);
3284 pmde = pmd_wrprotect(pmde);
3286 if (PageAnon(new)) {
3287 rmap_t rmap_flags = RMAP_COMPOUND;
3289 if (!is_readable_migration_entry(entry))
3290 rmap_flags |= RMAP_EXCLUSIVE;
3292 page_add_anon_rmap(new, vma, haddr, rmap_flags);
3294 page_add_file_rmap(new, vma, true);
3296 VM_BUG_ON(pmd_write(pmde) && PageAnon(new) && !PageAnonExclusive(new));
3297 set_pmd_at(mm, haddr, pvmw->pmd, pmde);
3299 /* No need to invalidate - it was non-present before */
3300 update_mmu_cache_pmd(vma, address, pvmw->pmd);
3301 trace_remove_migration_pmd(address, pmd_val(pmde));