1 // SPDX-License-Identifier: GPL-2.0-only
3 * Copyright (C) 2009 Red Hat, Inc.
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9 #include <linux/sched.h>
10 #include <linux/sched/coredump.h>
11 #include <linux/sched/numa_balancing.h>
12 #include <linux/highmem.h>
13 #include <linux/hugetlb.h>
14 #include <linux/mmu_notifier.h>
15 #include <linux/rmap.h>
16 #include <linux/swap.h>
17 #include <linux/shrinker.h>
18 #include <linux/mm_inline.h>
19 #include <linux/swapops.h>
20 #include <linux/dax.h>
21 #include <linux/khugepaged.h>
22 #include <linux/freezer.h>
23 #include <linux/pfn_t.h>
24 #include <linux/mman.h>
25 #include <linux/memremap.h>
26 #include <linux/pagemap.h>
27 #include <linux/debugfs.h>
28 #include <linux/migrate.h>
29 #include <linux/hashtable.h>
30 #include <linux/userfaultfd_k.h>
31 #include <linux/page_idle.h>
32 #include <linux/shmem_fs.h>
33 #include <linux/oom.h>
34 #include <linux/numa.h>
37 #include <asm/pgalloc.h>
41 * By default, transparent hugepage support is disabled in order to avoid
42 * risking an increased memory footprint for applications that are not
43 * guaranteed to benefit from it. When transparent hugepage support is
44 * enabled, it is for all mappings, and khugepaged scans all mappings.
45 * Defrag is invoked by khugepaged hugepage allocations and by page faults
46 * for all hugepage allocations.
48 unsigned long transparent_hugepage_flags __read_mostly =
49 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
50 (1<<TRANSPARENT_HUGEPAGE_FLAG)|
52 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
53 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
55 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
56 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
57 (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
59 static struct shrinker deferred_split_shrinker;
61 static atomic_t huge_zero_refcount;
62 struct page *huge_zero_page __read_mostly;
64 bool transparent_hugepage_enabled(struct vm_area_struct *vma)
66 /* The addr is used to check if the vma size fits */
67 unsigned long addr = (vma->vm_end & HPAGE_PMD_MASK) - HPAGE_PMD_SIZE;
69 if (!transhuge_vma_suitable(vma, addr))
71 if (vma_is_anonymous(vma))
72 return __transparent_hugepage_enabled(vma);
73 if (vma_is_shmem(vma))
74 return shmem_huge_enabled(vma);
79 static struct page *get_huge_zero_page(void)
81 struct page *zero_page;
83 if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
84 return READ_ONCE(huge_zero_page);
86 zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
89 count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
92 count_vm_event(THP_ZERO_PAGE_ALLOC);
94 if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
96 __free_pages(zero_page, compound_order(zero_page));
100 /* We take additional reference here. It will be put back by shrinker */
101 atomic_set(&huge_zero_refcount, 2);
103 return READ_ONCE(huge_zero_page);
106 static void put_huge_zero_page(void)
109 * Counter should never go to zero here. Only shrinker can put
112 BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
115 struct page *mm_get_huge_zero_page(struct mm_struct *mm)
117 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
118 return READ_ONCE(huge_zero_page);
120 if (!get_huge_zero_page())
123 if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
124 put_huge_zero_page();
126 return READ_ONCE(huge_zero_page);
129 void mm_put_huge_zero_page(struct mm_struct *mm)
131 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
132 put_huge_zero_page();
135 static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
136 struct shrink_control *sc)
138 /* we can free zero page only if last reference remains */
139 return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
142 static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
143 struct shrink_control *sc)
145 if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
146 struct page *zero_page = xchg(&huge_zero_page, NULL);
147 BUG_ON(zero_page == NULL);
148 __free_pages(zero_page, compound_order(zero_page));
155 static struct shrinker huge_zero_page_shrinker = {
156 .count_objects = shrink_huge_zero_page_count,
157 .scan_objects = shrink_huge_zero_page_scan,
158 .seeks = DEFAULT_SEEKS,
162 static ssize_t enabled_show(struct kobject *kobj,
163 struct kobj_attribute *attr, char *buf)
165 if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
166 return sprintf(buf, "[always] madvise never\n");
167 else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags))
168 return sprintf(buf, "always [madvise] never\n");
170 return sprintf(buf, "always madvise [never]\n");
173 static ssize_t enabled_store(struct kobject *kobj,
174 struct kobj_attribute *attr,
175 const char *buf, size_t count)
179 if (!memcmp("always", buf,
180 min(sizeof("always")-1, count))) {
181 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
182 set_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
183 } else if (!memcmp("madvise", buf,
184 min(sizeof("madvise")-1, count))) {
185 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
186 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
187 } else if (!memcmp("never", buf,
188 min(sizeof("never")-1, count))) {
189 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
190 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
195 int err = start_stop_khugepaged();
201 static struct kobj_attribute enabled_attr =
202 __ATTR(enabled, 0644, enabled_show, enabled_store);
204 ssize_t single_hugepage_flag_show(struct kobject *kobj,
205 struct kobj_attribute *attr, char *buf,
206 enum transparent_hugepage_flag flag)
208 return sprintf(buf, "%d\n",
209 !!test_bit(flag, &transparent_hugepage_flags));
212 ssize_t single_hugepage_flag_store(struct kobject *kobj,
213 struct kobj_attribute *attr,
214 const char *buf, size_t count,
215 enum transparent_hugepage_flag flag)
220 ret = kstrtoul(buf, 10, &value);
227 set_bit(flag, &transparent_hugepage_flags);
229 clear_bit(flag, &transparent_hugepage_flags);
234 static ssize_t defrag_show(struct kobject *kobj,
235 struct kobj_attribute *attr, char *buf)
237 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
238 return sprintf(buf, "[always] defer defer+madvise madvise never\n");
239 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
240 return sprintf(buf, "always [defer] defer+madvise madvise never\n");
241 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
242 return sprintf(buf, "always defer [defer+madvise] madvise never\n");
243 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
244 return sprintf(buf, "always defer defer+madvise [madvise] never\n");
245 return sprintf(buf, "always defer defer+madvise madvise [never]\n");
248 static ssize_t defrag_store(struct kobject *kobj,
249 struct kobj_attribute *attr,
250 const char *buf, size_t count)
252 if (!memcmp("always", buf,
253 min(sizeof("always")-1, count))) {
254 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
255 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
256 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
257 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
258 } else if (!memcmp("defer+madvise", buf,
259 min(sizeof("defer+madvise")-1, count))) {
260 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
261 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
262 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
263 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
264 } else if (!memcmp("defer", buf,
265 min(sizeof("defer")-1, count))) {
266 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
267 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
268 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
269 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
270 } else if (!memcmp("madvise", buf,
271 min(sizeof("madvise")-1, count))) {
272 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
273 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
274 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
275 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
276 } else if (!memcmp("never", buf,
277 min(sizeof("never")-1, count))) {
278 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
279 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
280 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
281 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
287 static struct kobj_attribute defrag_attr =
288 __ATTR(defrag, 0644, defrag_show, defrag_store);
290 static ssize_t use_zero_page_show(struct kobject *kobj,
291 struct kobj_attribute *attr, char *buf)
293 return single_hugepage_flag_show(kobj, attr, buf,
294 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
296 static ssize_t use_zero_page_store(struct kobject *kobj,
297 struct kobj_attribute *attr, const char *buf, size_t count)
299 return single_hugepage_flag_store(kobj, attr, buf, count,
300 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
302 static struct kobj_attribute use_zero_page_attr =
303 __ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
305 static ssize_t hpage_pmd_size_show(struct kobject *kobj,
306 struct kobj_attribute *attr, char *buf)
308 return sprintf(buf, "%lu\n", HPAGE_PMD_SIZE);
310 static struct kobj_attribute hpage_pmd_size_attr =
311 __ATTR_RO(hpage_pmd_size);
313 #ifdef CONFIG_DEBUG_VM
314 static ssize_t debug_cow_show(struct kobject *kobj,
315 struct kobj_attribute *attr, char *buf)
317 return single_hugepage_flag_show(kobj, attr, buf,
318 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
320 static ssize_t debug_cow_store(struct kobject *kobj,
321 struct kobj_attribute *attr,
322 const char *buf, size_t count)
324 return single_hugepage_flag_store(kobj, attr, buf, count,
325 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
327 static struct kobj_attribute debug_cow_attr =
328 __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
329 #endif /* CONFIG_DEBUG_VM */
331 static struct attribute *hugepage_attr[] = {
334 &use_zero_page_attr.attr,
335 &hpage_pmd_size_attr.attr,
336 #if defined(CONFIG_SHMEM) && defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE)
337 &shmem_enabled_attr.attr,
339 #ifdef CONFIG_DEBUG_VM
340 &debug_cow_attr.attr,
345 static const struct attribute_group hugepage_attr_group = {
346 .attrs = hugepage_attr,
349 static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
353 *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
354 if (unlikely(!*hugepage_kobj)) {
355 pr_err("failed to create transparent hugepage kobject\n");
359 err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
361 pr_err("failed to register transparent hugepage group\n");
365 err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
367 pr_err("failed to register transparent hugepage group\n");
368 goto remove_hp_group;
374 sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
376 kobject_put(*hugepage_kobj);
380 static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
382 sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
383 sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
384 kobject_put(hugepage_kobj);
387 static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
392 static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
395 #endif /* CONFIG_SYSFS */
397 static int __init hugepage_init(void)
400 struct kobject *hugepage_kobj;
402 if (!has_transparent_hugepage()) {
403 transparent_hugepage_flags = 0;
408 * hugepages can't be allocated by the buddy allocator
410 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER);
412 * we use page->mapping and page->index in second tail page
413 * as list_head: assuming THP order >= 2
415 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);
417 err = hugepage_init_sysfs(&hugepage_kobj);
421 err = khugepaged_init();
425 err = register_shrinker(&huge_zero_page_shrinker);
427 goto err_hzp_shrinker;
428 err = register_shrinker(&deferred_split_shrinker);
430 goto err_split_shrinker;
433 * By default disable transparent hugepages on smaller systems,
434 * where the extra memory used could hurt more than TLB overhead
435 * is likely to save. The admin can still enable it through /sys.
437 if (totalram_pages() < (512 << (20 - PAGE_SHIFT))) {
438 transparent_hugepage_flags = 0;
442 err = start_stop_khugepaged();
448 unregister_shrinker(&deferred_split_shrinker);
450 unregister_shrinker(&huge_zero_page_shrinker);
452 khugepaged_destroy();
454 hugepage_exit_sysfs(hugepage_kobj);
458 subsys_initcall(hugepage_init);
460 static int __init setup_transparent_hugepage(char *str)
465 if (!strcmp(str, "always")) {
466 set_bit(TRANSPARENT_HUGEPAGE_FLAG,
467 &transparent_hugepage_flags);
468 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
469 &transparent_hugepage_flags);
471 } else if (!strcmp(str, "madvise")) {
472 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
473 &transparent_hugepage_flags);
474 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
475 &transparent_hugepage_flags);
477 } else if (!strcmp(str, "never")) {
478 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
479 &transparent_hugepage_flags);
480 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
481 &transparent_hugepage_flags);
486 pr_warn("transparent_hugepage= cannot parse, ignored\n");
489 __setup("transparent_hugepage=", setup_transparent_hugepage);
491 pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
493 if (likely(vma->vm_flags & VM_WRITE))
494 pmd = pmd_mkwrite(pmd);
498 static inline struct list_head *page_deferred_list(struct page *page)
500 /* ->lru in the tail pages is occupied by compound_head. */
501 return &page[2].deferred_list;
504 void prep_transhuge_page(struct page *page)
507 * we use page->mapping and page->indexlru in second tail page
508 * as list_head: assuming THP order >= 2
511 INIT_LIST_HEAD(page_deferred_list(page));
512 set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR);
515 static unsigned long __thp_get_unmapped_area(struct file *filp, unsigned long len,
516 loff_t off, unsigned long flags, unsigned long size)
519 loff_t off_end = off + len;
520 loff_t off_align = round_up(off, size);
521 unsigned long len_pad;
523 if (off_end <= off_align || (off_end - off_align) < size)
526 len_pad = len + size;
527 if (len_pad < len || (off + len_pad) < off)
530 addr = current->mm->get_unmapped_area(filp, 0, len_pad,
531 off >> PAGE_SHIFT, flags);
532 if (IS_ERR_VALUE(addr))
535 addr += (off - addr) & (size - 1);
539 unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr,
540 unsigned long len, unsigned long pgoff, unsigned long flags)
542 loff_t off = (loff_t)pgoff << PAGE_SHIFT;
546 if (!IS_DAX(filp->f_mapping->host) || !IS_ENABLED(CONFIG_FS_DAX_PMD))
549 addr = __thp_get_unmapped_area(filp, len, off, flags, PMD_SIZE);
554 return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags);
556 EXPORT_SYMBOL_GPL(thp_get_unmapped_area);
558 static vm_fault_t __do_huge_pmd_anonymous_page(struct vm_fault *vmf,
559 struct page *page, gfp_t gfp)
561 struct vm_area_struct *vma = vmf->vma;
562 struct mem_cgroup *memcg;
564 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
567 VM_BUG_ON_PAGE(!PageCompound(page), page);
569 if (mem_cgroup_try_charge_delay(page, vma->vm_mm, gfp, &memcg, true)) {
571 count_vm_event(THP_FAULT_FALLBACK);
572 return VM_FAULT_FALLBACK;
575 pgtable = pte_alloc_one(vma->vm_mm);
576 if (unlikely(!pgtable)) {
581 clear_huge_page(page, vmf->address, HPAGE_PMD_NR);
583 * The memory barrier inside __SetPageUptodate makes sure that
584 * clear_huge_page writes become visible before the set_pmd_at()
587 __SetPageUptodate(page);
589 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
590 if (unlikely(!pmd_none(*vmf->pmd))) {
595 ret = check_stable_address_space(vma->vm_mm);
599 /* Deliver the page fault to userland */
600 if (userfaultfd_missing(vma)) {
603 spin_unlock(vmf->ptl);
604 mem_cgroup_cancel_charge(page, memcg, true);
606 pte_free(vma->vm_mm, pgtable);
607 ret2 = handle_userfault(vmf, VM_UFFD_MISSING);
608 VM_BUG_ON(ret2 & VM_FAULT_FALLBACK);
612 entry = mk_huge_pmd(page, vma->vm_page_prot);
613 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
614 page_add_new_anon_rmap(page, vma, haddr, true);
615 mem_cgroup_commit_charge(page, memcg, false, true);
616 lru_cache_add_active_or_unevictable(page, vma);
617 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
618 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
619 add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
620 mm_inc_nr_ptes(vma->vm_mm);
621 spin_unlock(vmf->ptl);
622 count_vm_event(THP_FAULT_ALLOC);
623 count_memcg_events(memcg, THP_FAULT_ALLOC, 1);
628 spin_unlock(vmf->ptl);
631 pte_free(vma->vm_mm, pgtable);
632 mem_cgroup_cancel_charge(page, memcg, true);
639 * always: directly stall for all thp allocations
640 * defer: wake kswapd and fail if not immediately available
641 * defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise
642 * fail if not immediately available
643 * madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately
645 * never: never stall for any thp allocation
647 static inline gfp_t alloc_hugepage_direct_gfpmask(struct vm_area_struct *vma)
649 const bool vma_madvised = !!(vma->vm_flags & VM_HUGEPAGE);
651 /* Always do synchronous compaction */
652 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
653 return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY);
655 /* Kick kcompactd and fail quickly */
656 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
657 return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM;
659 /* Synchronous compaction if madvised, otherwise kick kcompactd */
660 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
661 return GFP_TRANSHUGE_LIGHT |
662 (vma_madvised ? __GFP_DIRECT_RECLAIM :
663 __GFP_KSWAPD_RECLAIM);
665 /* Only do synchronous compaction if madvised */
666 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
667 return GFP_TRANSHUGE_LIGHT |
668 (vma_madvised ? __GFP_DIRECT_RECLAIM : 0);
670 return GFP_TRANSHUGE_LIGHT;
673 /* Caller must hold page table lock. */
674 static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
675 struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
676 struct page *zero_page)
681 entry = mk_pmd(zero_page, vma->vm_page_prot);
682 entry = pmd_mkhuge(entry);
684 pgtable_trans_huge_deposit(mm, pmd, pgtable);
685 set_pmd_at(mm, haddr, pmd, entry);
690 vm_fault_t do_huge_pmd_anonymous_page(struct vm_fault *vmf)
692 struct vm_area_struct *vma = vmf->vma;
695 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
697 if (!transhuge_vma_suitable(vma, haddr))
698 return VM_FAULT_FALLBACK;
699 if (unlikely(anon_vma_prepare(vma)))
701 if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
703 if (!(vmf->flags & FAULT_FLAG_WRITE) &&
704 !mm_forbids_zeropage(vma->vm_mm) &&
705 transparent_hugepage_use_zero_page()) {
707 struct page *zero_page;
710 pgtable = pte_alloc_one(vma->vm_mm);
711 if (unlikely(!pgtable))
713 zero_page = mm_get_huge_zero_page(vma->vm_mm);
714 if (unlikely(!zero_page)) {
715 pte_free(vma->vm_mm, pgtable);
716 count_vm_event(THP_FAULT_FALLBACK);
717 return VM_FAULT_FALLBACK;
719 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
722 if (pmd_none(*vmf->pmd)) {
723 ret = check_stable_address_space(vma->vm_mm);
725 spin_unlock(vmf->ptl);
726 } else if (userfaultfd_missing(vma)) {
727 spin_unlock(vmf->ptl);
728 ret = handle_userfault(vmf, VM_UFFD_MISSING);
729 VM_BUG_ON(ret & VM_FAULT_FALLBACK);
731 set_huge_zero_page(pgtable, vma->vm_mm, vma,
732 haddr, vmf->pmd, zero_page);
733 spin_unlock(vmf->ptl);
737 spin_unlock(vmf->ptl);
739 pte_free(vma->vm_mm, pgtable);
742 gfp = alloc_hugepage_direct_gfpmask(vma);
743 page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER);
744 if (unlikely(!page)) {
745 count_vm_event(THP_FAULT_FALLBACK);
746 return VM_FAULT_FALLBACK;
748 prep_transhuge_page(page);
749 return __do_huge_pmd_anonymous_page(vmf, page, gfp);
752 static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
753 pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write,
756 struct mm_struct *mm = vma->vm_mm;
760 ptl = pmd_lock(mm, pmd);
761 if (!pmd_none(*pmd)) {
763 if (pmd_pfn(*pmd) != pfn_t_to_pfn(pfn)) {
764 WARN_ON_ONCE(!is_huge_zero_pmd(*pmd));
767 entry = pmd_mkyoung(*pmd);
768 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
769 if (pmdp_set_access_flags(vma, addr, pmd, entry, 1))
770 update_mmu_cache_pmd(vma, addr, pmd);
776 entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
777 if (pfn_t_devmap(pfn))
778 entry = pmd_mkdevmap(entry);
780 entry = pmd_mkyoung(pmd_mkdirty(entry));
781 entry = maybe_pmd_mkwrite(entry, vma);
785 pgtable_trans_huge_deposit(mm, pmd, pgtable);
790 set_pmd_at(mm, addr, pmd, entry);
791 update_mmu_cache_pmd(vma, addr, pmd);
796 pte_free(mm, pgtable);
799 vm_fault_t vmf_insert_pfn_pmd(struct vm_fault *vmf, pfn_t pfn, bool write)
801 unsigned long addr = vmf->address & PMD_MASK;
802 struct vm_area_struct *vma = vmf->vma;
803 pgprot_t pgprot = vma->vm_page_prot;
804 pgtable_t pgtable = NULL;
807 * If we had pmd_special, we could avoid all these restrictions,
808 * but we need to be consistent with PTEs and architectures that
809 * can't support a 'special' bit.
811 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
813 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
814 (VM_PFNMAP|VM_MIXEDMAP));
815 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
817 if (addr < vma->vm_start || addr >= vma->vm_end)
818 return VM_FAULT_SIGBUS;
820 if (arch_needs_pgtable_deposit()) {
821 pgtable = pte_alloc_one(vma->vm_mm);
826 track_pfn_insert(vma, &pgprot, pfn);
828 insert_pfn_pmd(vma, addr, vmf->pmd, pfn, pgprot, write, pgtable);
829 return VM_FAULT_NOPAGE;
831 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd);
833 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
834 static pud_t maybe_pud_mkwrite(pud_t pud, struct vm_area_struct *vma)
836 if (likely(vma->vm_flags & VM_WRITE))
837 pud = pud_mkwrite(pud);
841 static void insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
842 pud_t *pud, pfn_t pfn, pgprot_t prot, bool write)
844 struct mm_struct *mm = vma->vm_mm;
848 ptl = pud_lock(mm, pud);
849 if (!pud_none(*pud)) {
851 if (pud_pfn(*pud) != pfn_t_to_pfn(pfn)) {
852 WARN_ON_ONCE(!is_huge_zero_pud(*pud));
855 entry = pud_mkyoung(*pud);
856 entry = maybe_pud_mkwrite(pud_mkdirty(entry), vma);
857 if (pudp_set_access_flags(vma, addr, pud, entry, 1))
858 update_mmu_cache_pud(vma, addr, pud);
863 entry = pud_mkhuge(pfn_t_pud(pfn, prot));
864 if (pfn_t_devmap(pfn))
865 entry = pud_mkdevmap(entry);
867 entry = pud_mkyoung(pud_mkdirty(entry));
868 entry = maybe_pud_mkwrite(entry, vma);
870 set_pud_at(mm, addr, pud, entry);
871 update_mmu_cache_pud(vma, addr, pud);
877 vm_fault_t vmf_insert_pfn_pud(struct vm_fault *vmf, pfn_t pfn, bool write)
879 unsigned long addr = vmf->address & PUD_MASK;
880 struct vm_area_struct *vma = vmf->vma;
881 pgprot_t pgprot = vma->vm_page_prot;
884 * If we had pud_special, we could avoid all these restrictions,
885 * but we need to be consistent with PTEs and architectures that
886 * can't support a 'special' bit.
888 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
890 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
891 (VM_PFNMAP|VM_MIXEDMAP));
892 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
894 if (addr < vma->vm_start || addr >= vma->vm_end)
895 return VM_FAULT_SIGBUS;
897 track_pfn_insert(vma, &pgprot, pfn);
899 insert_pfn_pud(vma, addr, vmf->pud, pfn, pgprot, write);
900 return VM_FAULT_NOPAGE;
902 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud);
903 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
905 static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
906 pmd_t *pmd, int flags)
910 _pmd = pmd_mkyoung(*pmd);
911 if (flags & FOLL_WRITE)
912 _pmd = pmd_mkdirty(_pmd);
913 if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
914 pmd, _pmd, flags & FOLL_WRITE))
915 update_mmu_cache_pmd(vma, addr, pmd);
918 struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
919 pmd_t *pmd, int flags, struct dev_pagemap **pgmap)
921 unsigned long pfn = pmd_pfn(*pmd);
922 struct mm_struct *mm = vma->vm_mm;
925 assert_spin_locked(pmd_lockptr(mm, pmd));
928 * When we COW a devmap PMD entry, we split it into PTEs, so we should
929 * not be in this function with `flags & FOLL_COW` set.
931 WARN_ONCE(flags & FOLL_COW, "mm: In follow_devmap_pmd with FOLL_COW set");
933 if (flags & FOLL_WRITE && !pmd_write(*pmd))
936 if (pmd_present(*pmd) && pmd_devmap(*pmd))
941 if (flags & FOLL_TOUCH)
942 touch_pmd(vma, addr, pmd, flags);
945 * device mapped pages can only be returned if the
946 * caller will manage the page reference count.
948 if (!(flags & FOLL_GET))
949 return ERR_PTR(-EEXIST);
951 pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
952 *pgmap = get_dev_pagemap(pfn, *pgmap);
954 return ERR_PTR(-EFAULT);
955 page = pfn_to_page(pfn);
961 int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
962 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
963 struct vm_area_struct *vma)
965 spinlock_t *dst_ptl, *src_ptl;
966 struct page *src_page;
968 pgtable_t pgtable = NULL;
971 /* Skip if can be re-fill on fault */
972 if (!vma_is_anonymous(vma))
975 pgtable = pte_alloc_one(dst_mm);
976 if (unlikely(!pgtable))
979 dst_ptl = pmd_lock(dst_mm, dst_pmd);
980 src_ptl = pmd_lockptr(src_mm, src_pmd);
981 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
986 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
987 if (unlikely(is_swap_pmd(pmd))) {
988 swp_entry_t entry = pmd_to_swp_entry(pmd);
990 VM_BUG_ON(!is_pmd_migration_entry(pmd));
991 if (is_write_migration_entry(entry)) {
992 make_migration_entry_read(&entry);
993 pmd = swp_entry_to_pmd(entry);
994 if (pmd_swp_soft_dirty(*src_pmd))
995 pmd = pmd_swp_mksoft_dirty(pmd);
996 set_pmd_at(src_mm, addr, src_pmd, pmd);
998 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
999 mm_inc_nr_ptes(dst_mm);
1000 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1001 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
1007 if (unlikely(!pmd_trans_huge(pmd))) {
1008 pte_free(dst_mm, pgtable);
1012 * When page table lock is held, the huge zero pmd should not be
1013 * under splitting since we don't split the page itself, only pmd to
1016 if (is_huge_zero_pmd(pmd)) {
1017 struct page *zero_page;
1019 * get_huge_zero_page() will never allocate a new page here,
1020 * since we already have a zero page to copy. It just takes a
1023 zero_page = mm_get_huge_zero_page(dst_mm);
1024 set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
1030 src_page = pmd_page(pmd);
1031 VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
1033 page_dup_rmap(src_page, true);
1034 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1035 mm_inc_nr_ptes(dst_mm);
1036 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1038 pmdp_set_wrprotect(src_mm, addr, src_pmd);
1039 pmd = pmd_mkold(pmd_wrprotect(pmd));
1040 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
1044 spin_unlock(src_ptl);
1045 spin_unlock(dst_ptl);
1050 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1051 static void touch_pud(struct vm_area_struct *vma, unsigned long addr,
1052 pud_t *pud, int flags)
1056 _pud = pud_mkyoung(*pud);
1057 if (flags & FOLL_WRITE)
1058 _pud = pud_mkdirty(_pud);
1059 if (pudp_set_access_flags(vma, addr & HPAGE_PUD_MASK,
1060 pud, _pud, flags & FOLL_WRITE))
1061 update_mmu_cache_pud(vma, addr, pud);
1064 struct page *follow_devmap_pud(struct vm_area_struct *vma, unsigned long addr,
1065 pud_t *pud, int flags, struct dev_pagemap **pgmap)
1067 unsigned long pfn = pud_pfn(*pud);
1068 struct mm_struct *mm = vma->vm_mm;
1071 assert_spin_locked(pud_lockptr(mm, pud));
1073 if (flags & FOLL_WRITE && !pud_write(*pud))
1076 if (pud_present(*pud) && pud_devmap(*pud))
1081 if (flags & FOLL_TOUCH)
1082 touch_pud(vma, addr, pud, flags);
1085 * device mapped pages can only be returned if the
1086 * caller will manage the page reference count.
1088 if (!(flags & FOLL_GET))
1089 return ERR_PTR(-EEXIST);
1091 pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT;
1092 *pgmap = get_dev_pagemap(pfn, *pgmap);
1094 return ERR_PTR(-EFAULT);
1095 page = pfn_to_page(pfn);
1101 int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1102 pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1103 struct vm_area_struct *vma)
1105 spinlock_t *dst_ptl, *src_ptl;
1109 dst_ptl = pud_lock(dst_mm, dst_pud);
1110 src_ptl = pud_lockptr(src_mm, src_pud);
1111 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1115 if (unlikely(!pud_trans_huge(pud) && !pud_devmap(pud)))
1119 * When page table lock is held, the huge zero pud should not be
1120 * under splitting since we don't split the page itself, only pud to
1123 if (is_huge_zero_pud(pud)) {
1124 /* No huge zero pud yet */
1127 pudp_set_wrprotect(src_mm, addr, src_pud);
1128 pud = pud_mkold(pud_wrprotect(pud));
1129 set_pud_at(dst_mm, addr, dst_pud, pud);
1133 spin_unlock(src_ptl);
1134 spin_unlock(dst_ptl);
1138 void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud)
1141 unsigned long haddr;
1142 bool write = vmf->flags & FAULT_FLAG_WRITE;
1144 vmf->ptl = pud_lock(vmf->vma->vm_mm, vmf->pud);
1145 if (unlikely(!pud_same(*vmf->pud, orig_pud)))
1148 entry = pud_mkyoung(orig_pud);
1150 entry = pud_mkdirty(entry);
1151 haddr = vmf->address & HPAGE_PUD_MASK;
1152 if (pudp_set_access_flags(vmf->vma, haddr, vmf->pud, entry, write))
1153 update_mmu_cache_pud(vmf->vma, vmf->address, vmf->pud);
1156 spin_unlock(vmf->ptl);
1158 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1160 void huge_pmd_set_accessed(struct vm_fault *vmf, pmd_t orig_pmd)
1163 unsigned long haddr;
1164 bool write = vmf->flags & FAULT_FLAG_WRITE;
1166 vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1167 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1170 entry = pmd_mkyoung(orig_pmd);
1172 entry = pmd_mkdirty(entry);
1173 haddr = vmf->address & HPAGE_PMD_MASK;
1174 if (pmdp_set_access_flags(vmf->vma, haddr, vmf->pmd, entry, write))
1175 update_mmu_cache_pmd(vmf->vma, vmf->address, vmf->pmd);
1178 spin_unlock(vmf->ptl);
1181 static vm_fault_t do_huge_pmd_wp_page_fallback(struct vm_fault *vmf,
1182 pmd_t orig_pmd, struct page *page)
1184 struct vm_area_struct *vma = vmf->vma;
1185 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1186 struct mem_cgroup *memcg;
1191 struct page **pages;
1192 struct mmu_notifier_range range;
1194 pages = kmalloc_array(HPAGE_PMD_NR, sizeof(struct page *),
1196 if (unlikely(!pages)) {
1197 ret |= VM_FAULT_OOM;
1201 for (i = 0; i < HPAGE_PMD_NR; i++) {
1202 pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE, vma,
1203 vmf->address, page_to_nid(page));
1204 if (unlikely(!pages[i] ||
1205 mem_cgroup_try_charge_delay(pages[i], vma->vm_mm,
1206 GFP_KERNEL, &memcg, false))) {
1210 memcg = (void *)page_private(pages[i]);
1211 set_page_private(pages[i], 0);
1212 mem_cgroup_cancel_charge(pages[i], memcg,
1217 ret |= VM_FAULT_OOM;
1220 set_page_private(pages[i], (unsigned long)memcg);
1223 for (i = 0; i < HPAGE_PMD_NR; i++) {
1224 copy_user_highpage(pages[i], page + i,
1225 haddr + PAGE_SIZE * i, vma);
1226 __SetPageUptodate(pages[i]);
1230 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1231 haddr, haddr + HPAGE_PMD_SIZE);
1232 mmu_notifier_invalidate_range_start(&range);
1234 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1235 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1236 goto out_free_pages;
1237 VM_BUG_ON_PAGE(!PageHead(page), page);
1240 * Leave pmd empty until pte is filled note we must notify here as
1241 * concurrent CPU thread might write to new page before the call to
1242 * mmu_notifier_invalidate_range_end() happens which can lead to a
1243 * device seeing memory write in different order than CPU.
1245 * See Documentation/vm/mmu_notifier.rst
1247 pmdp_huge_clear_flush_notify(vma, haddr, vmf->pmd);
1249 pgtable = pgtable_trans_huge_withdraw(vma->vm_mm, vmf->pmd);
1250 pmd_populate(vma->vm_mm, &_pmd, pgtable);
1252 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1254 entry = mk_pte(pages[i], vma->vm_page_prot);
1255 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1256 memcg = (void *)page_private(pages[i]);
1257 set_page_private(pages[i], 0);
1258 page_add_new_anon_rmap(pages[i], vmf->vma, haddr, false);
1259 mem_cgroup_commit_charge(pages[i], memcg, false, false);
1260 lru_cache_add_active_or_unevictable(pages[i], vma);
1261 vmf->pte = pte_offset_map(&_pmd, haddr);
1262 VM_BUG_ON(!pte_none(*vmf->pte));
1263 set_pte_at(vma->vm_mm, haddr, vmf->pte, entry);
1264 pte_unmap(vmf->pte);
1268 smp_wmb(); /* make pte visible before pmd */
1269 pmd_populate(vma->vm_mm, vmf->pmd, pgtable);
1270 page_remove_rmap(page, true);
1271 spin_unlock(vmf->ptl);
1274 * No need to double call mmu_notifier->invalidate_range() callback as
1275 * the above pmdp_huge_clear_flush_notify() did already call it.
1277 mmu_notifier_invalidate_range_only_end(&range);
1279 ret |= VM_FAULT_WRITE;
1286 spin_unlock(vmf->ptl);
1287 mmu_notifier_invalidate_range_end(&range);
1288 for (i = 0; i < HPAGE_PMD_NR; i++) {
1289 memcg = (void *)page_private(pages[i]);
1290 set_page_private(pages[i], 0);
1291 mem_cgroup_cancel_charge(pages[i], memcg, false);
1298 vm_fault_t do_huge_pmd_wp_page(struct vm_fault *vmf, pmd_t orig_pmd)
1300 struct vm_area_struct *vma = vmf->vma;
1301 struct page *page = NULL, *new_page;
1302 struct mem_cgroup *memcg;
1303 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1304 struct mmu_notifier_range range;
1305 gfp_t huge_gfp; /* for allocation and charge */
1308 vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd);
1309 VM_BUG_ON_VMA(!vma->anon_vma, vma);
1310 if (is_huge_zero_pmd(orig_pmd))
1312 spin_lock(vmf->ptl);
1313 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1316 page = pmd_page(orig_pmd);
1317 VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page);
1319 * We can only reuse the page if nobody else maps the huge page or it's
1322 if (!trylock_page(page)) {
1324 spin_unlock(vmf->ptl);
1326 spin_lock(vmf->ptl);
1327 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1334 if (reuse_swap_page(page, NULL)) {
1336 entry = pmd_mkyoung(orig_pmd);
1337 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1338 if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry, 1))
1339 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1340 ret |= VM_FAULT_WRITE;
1346 spin_unlock(vmf->ptl);
1348 if (__transparent_hugepage_enabled(vma) &&
1349 !transparent_hugepage_debug_cow()) {
1350 huge_gfp = alloc_hugepage_direct_gfpmask(vma);
1351 new_page = alloc_hugepage_vma(huge_gfp, vma, haddr, HPAGE_PMD_ORDER);
1355 if (likely(new_page)) {
1356 prep_transhuge_page(new_page);
1359 split_huge_pmd(vma, vmf->pmd, vmf->address);
1360 ret |= VM_FAULT_FALLBACK;
1362 ret = do_huge_pmd_wp_page_fallback(vmf, orig_pmd, page);
1363 if (ret & VM_FAULT_OOM) {
1364 split_huge_pmd(vma, vmf->pmd, vmf->address);
1365 ret |= VM_FAULT_FALLBACK;
1369 count_vm_event(THP_FAULT_FALLBACK);
1373 if (unlikely(mem_cgroup_try_charge_delay(new_page, vma->vm_mm,
1374 huge_gfp, &memcg, true))) {
1376 split_huge_pmd(vma, vmf->pmd, vmf->address);
1379 ret |= VM_FAULT_FALLBACK;
1380 count_vm_event(THP_FAULT_FALLBACK);
1384 count_vm_event(THP_FAULT_ALLOC);
1385 count_memcg_events(memcg, THP_FAULT_ALLOC, 1);
1388 clear_huge_page(new_page, vmf->address, HPAGE_PMD_NR);
1390 copy_user_huge_page(new_page, page, vmf->address,
1392 __SetPageUptodate(new_page);
1394 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1395 haddr, haddr + HPAGE_PMD_SIZE);
1396 mmu_notifier_invalidate_range_start(&range);
1398 spin_lock(vmf->ptl);
1401 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1402 spin_unlock(vmf->ptl);
1403 mem_cgroup_cancel_charge(new_page, memcg, true);
1408 entry = mk_huge_pmd(new_page, vma->vm_page_prot);
1409 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1410 pmdp_huge_clear_flush_notify(vma, haddr, vmf->pmd);
1411 page_add_new_anon_rmap(new_page, vma, haddr, true);
1412 mem_cgroup_commit_charge(new_page, memcg, false, true);
1413 lru_cache_add_active_or_unevictable(new_page, vma);
1414 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
1415 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1417 add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1419 VM_BUG_ON_PAGE(!PageHead(page), page);
1420 page_remove_rmap(page, true);
1423 ret |= VM_FAULT_WRITE;
1425 spin_unlock(vmf->ptl);
1428 * No need to double call mmu_notifier->invalidate_range() callback as
1429 * the above pmdp_huge_clear_flush_notify() did already call it.
1431 mmu_notifier_invalidate_range_only_end(&range);
1435 spin_unlock(vmf->ptl);
1440 * FOLL_FORCE can write to even unwritable pmd's, but only
1441 * after we've gone through a COW cycle and they are dirty.
1443 static inline bool can_follow_write_pmd(pmd_t pmd, unsigned int flags)
1445 return pmd_write(pmd) ||
1446 ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pmd_dirty(pmd));
1449 struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1454 struct mm_struct *mm = vma->vm_mm;
1455 struct page *page = NULL;
1457 assert_spin_locked(pmd_lockptr(mm, pmd));
1459 if (flags & FOLL_WRITE && !can_follow_write_pmd(*pmd, flags))
1462 /* Avoid dumping huge zero page */
1463 if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1464 return ERR_PTR(-EFAULT);
1466 /* Full NUMA hinting faults to serialise migration in fault paths */
1467 if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
1470 page = pmd_page(*pmd);
1471 VM_BUG_ON_PAGE(!PageHead(page) && !is_zone_device_page(page), page);
1472 if (flags & FOLL_TOUCH)
1473 touch_pmd(vma, addr, pmd, flags);
1474 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1476 * We don't mlock() pte-mapped THPs. This way we can avoid
1477 * leaking mlocked pages into non-VM_LOCKED VMAs.
1481 * In most cases the pmd is the only mapping of the page as we
1482 * break COW for the mlock() -- see gup_flags |= FOLL_WRITE for
1483 * writable private mappings in populate_vma_page_range().
1485 * The only scenario when we have the page shared here is if we
1486 * mlocking read-only mapping shared over fork(). We skip
1487 * mlocking such pages.
1491 * We can expect PageDoubleMap() to be stable under page lock:
1492 * for file pages we set it in page_add_file_rmap(), which
1493 * requires page to be locked.
1496 if (PageAnon(page) && compound_mapcount(page) != 1)
1498 if (PageDoubleMap(page) || !page->mapping)
1500 if (!trylock_page(page))
1503 if (page->mapping && !PageDoubleMap(page))
1504 mlock_vma_page(page);
1508 page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1509 VM_BUG_ON_PAGE(!PageCompound(page) && !is_zone_device_page(page), page);
1510 if (flags & FOLL_GET)
1517 /* NUMA hinting page fault entry point for trans huge pmds */
1518 vm_fault_t do_huge_pmd_numa_page(struct vm_fault *vmf, pmd_t pmd)
1520 struct vm_area_struct *vma = vmf->vma;
1521 struct anon_vma *anon_vma = NULL;
1523 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1524 int page_nid = NUMA_NO_NODE, this_nid = numa_node_id();
1525 int target_nid, last_cpupid = -1;
1527 bool migrated = false;
1531 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1532 if (unlikely(!pmd_same(pmd, *vmf->pmd)))
1536 * If there are potential migrations, wait for completion and retry
1537 * without disrupting NUMA hinting information. Do not relock and
1538 * check_same as the page may no longer be mapped.
1540 if (unlikely(pmd_trans_migrating(*vmf->pmd))) {
1541 page = pmd_page(*vmf->pmd);
1542 if (!get_page_unless_zero(page))
1544 spin_unlock(vmf->ptl);
1545 put_and_wait_on_page_locked(page);
1549 page = pmd_page(pmd);
1550 BUG_ON(is_huge_zero_page(page));
1551 page_nid = page_to_nid(page);
1552 last_cpupid = page_cpupid_last(page);
1553 count_vm_numa_event(NUMA_HINT_FAULTS);
1554 if (page_nid == this_nid) {
1555 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
1556 flags |= TNF_FAULT_LOCAL;
1559 /* See similar comment in do_numa_page for explanation */
1560 if (!pmd_savedwrite(pmd))
1561 flags |= TNF_NO_GROUP;
1564 * Acquire the page lock to serialise THP migrations but avoid dropping
1565 * page_table_lock if at all possible
1567 page_locked = trylock_page(page);
1568 target_nid = mpol_misplaced(page, vma, haddr);
1569 if (target_nid == NUMA_NO_NODE) {
1570 /* If the page was locked, there are no parallel migrations */
1575 /* Migration could have started since the pmd_trans_migrating check */
1577 page_nid = NUMA_NO_NODE;
1578 if (!get_page_unless_zero(page))
1580 spin_unlock(vmf->ptl);
1581 put_and_wait_on_page_locked(page);
1586 * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
1587 * to serialises splits
1590 spin_unlock(vmf->ptl);
1591 anon_vma = page_lock_anon_vma_read(page);
1593 /* Confirm the PMD did not change while page_table_lock was released */
1594 spin_lock(vmf->ptl);
1595 if (unlikely(!pmd_same(pmd, *vmf->pmd))) {
1598 page_nid = NUMA_NO_NODE;
1602 /* Bail if we fail to protect against THP splits for any reason */
1603 if (unlikely(!anon_vma)) {
1605 page_nid = NUMA_NO_NODE;
1610 * Since we took the NUMA fault, we must have observed the !accessible
1611 * bit. Make sure all other CPUs agree with that, to avoid them
1612 * modifying the page we're about to migrate.
1614 * Must be done under PTL such that we'll observe the relevant
1615 * inc_tlb_flush_pending().
1617 * We are not sure a pending tlb flush here is for a huge page
1618 * mapping or not. Hence use the tlb range variant
1620 if (mm_tlb_flush_pending(vma->vm_mm)) {
1621 flush_tlb_range(vma, haddr, haddr + HPAGE_PMD_SIZE);
1623 * change_huge_pmd() released the pmd lock before
1624 * invalidating the secondary MMUs sharing the primary
1625 * MMU pagetables (with ->invalidate_range()). The
1626 * mmu_notifier_invalidate_range_end() (which
1627 * internally calls ->invalidate_range()) in
1628 * change_pmd_range() will run after us, so we can't
1629 * rely on it here and we need an explicit invalidate.
1631 mmu_notifier_invalidate_range(vma->vm_mm, haddr,
1632 haddr + HPAGE_PMD_SIZE);
1636 * Migrate the THP to the requested node, returns with page unlocked
1637 * and access rights restored.
1639 spin_unlock(vmf->ptl);
1641 migrated = migrate_misplaced_transhuge_page(vma->vm_mm, vma,
1642 vmf->pmd, pmd, vmf->address, page, target_nid);
1644 flags |= TNF_MIGRATED;
1645 page_nid = target_nid;
1647 flags |= TNF_MIGRATE_FAIL;
1651 BUG_ON(!PageLocked(page));
1652 was_writable = pmd_savedwrite(pmd);
1653 pmd = pmd_modify(pmd, vma->vm_page_prot);
1654 pmd = pmd_mkyoung(pmd);
1656 pmd = pmd_mkwrite(pmd);
1657 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd);
1658 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1661 spin_unlock(vmf->ptl);
1665 page_unlock_anon_vma_read(anon_vma);
1667 if (page_nid != NUMA_NO_NODE)
1668 task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR,
1675 * Return true if we do MADV_FREE successfully on entire pmd page.
1676 * Otherwise, return false.
1678 bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1679 pmd_t *pmd, unsigned long addr, unsigned long next)
1684 struct mm_struct *mm = tlb->mm;
1687 tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
1689 ptl = pmd_trans_huge_lock(pmd, vma);
1694 if (is_huge_zero_pmd(orig_pmd))
1697 if (unlikely(!pmd_present(orig_pmd))) {
1698 VM_BUG_ON(thp_migration_supported() &&
1699 !is_pmd_migration_entry(orig_pmd));
1703 page = pmd_page(orig_pmd);
1705 * If other processes are mapping this page, we couldn't discard
1706 * the page unless they all do MADV_FREE so let's skip the page.
1708 if (page_mapcount(page) != 1)
1711 if (!trylock_page(page))
1715 * If user want to discard part-pages of THP, split it so MADV_FREE
1716 * will deactivate only them.
1718 if (next - addr != HPAGE_PMD_SIZE) {
1721 split_huge_page(page);
1727 if (PageDirty(page))
1728 ClearPageDirty(page);
1731 if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
1732 pmdp_invalidate(vma, addr, pmd);
1733 orig_pmd = pmd_mkold(orig_pmd);
1734 orig_pmd = pmd_mkclean(orig_pmd);
1736 set_pmd_at(mm, addr, pmd, orig_pmd);
1737 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1740 mark_page_lazyfree(page);
1748 static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd)
1752 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1753 pte_free(mm, pgtable);
1757 int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1758 pmd_t *pmd, unsigned long addr)
1763 tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
1765 ptl = __pmd_trans_huge_lock(pmd, vma);
1769 * For architectures like ppc64 we look at deposited pgtable
1770 * when calling pmdp_huge_get_and_clear. So do the
1771 * pgtable_trans_huge_withdraw after finishing pmdp related
1774 orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
1776 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1777 if (vma_is_dax(vma)) {
1778 if (arch_needs_pgtable_deposit())
1779 zap_deposited_table(tlb->mm, pmd);
1781 if (is_huge_zero_pmd(orig_pmd))
1782 tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
1783 } else if (is_huge_zero_pmd(orig_pmd)) {
1784 zap_deposited_table(tlb->mm, pmd);
1786 tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
1788 struct page *page = NULL;
1789 int flush_needed = 1;
1791 if (pmd_present(orig_pmd)) {
1792 page = pmd_page(orig_pmd);
1793 page_remove_rmap(page, true);
1794 VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
1795 VM_BUG_ON_PAGE(!PageHead(page), page);
1796 } else if (thp_migration_supported()) {
1799 VM_BUG_ON(!is_pmd_migration_entry(orig_pmd));
1800 entry = pmd_to_swp_entry(orig_pmd);
1801 page = pfn_to_page(swp_offset(entry));
1804 WARN_ONCE(1, "Non present huge pmd without pmd migration enabled!");
1806 if (PageAnon(page)) {
1807 zap_deposited_table(tlb->mm, pmd);
1808 add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1810 if (arch_needs_pgtable_deposit())
1811 zap_deposited_table(tlb->mm, pmd);
1812 add_mm_counter(tlb->mm, mm_counter_file(page), -HPAGE_PMD_NR);
1817 tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE);
1822 #ifndef pmd_move_must_withdraw
1823 static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl,
1824 spinlock_t *old_pmd_ptl,
1825 struct vm_area_struct *vma)
1828 * With split pmd lock we also need to move preallocated
1829 * PTE page table if new_pmd is on different PMD page table.
1831 * We also don't deposit and withdraw tables for file pages.
1833 return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma);
1837 static pmd_t move_soft_dirty_pmd(pmd_t pmd)
1839 #ifdef CONFIG_MEM_SOFT_DIRTY
1840 if (unlikely(is_pmd_migration_entry(pmd)))
1841 pmd = pmd_swp_mksoft_dirty(pmd);
1842 else if (pmd_present(pmd))
1843 pmd = pmd_mksoft_dirty(pmd);
1848 bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
1849 unsigned long new_addr, unsigned long old_end,
1850 pmd_t *old_pmd, pmd_t *new_pmd)
1852 spinlock_t *old_ptl, *new_ptl;
1854 struct mm_struct *mm = vma->vm_mm;
1855 bool force_flush = false;
1857 if ((old_addr & ~HPAGE_PMD_MASK) ||
1858 (new_addr & ~HPAGE_PMD_MASK) ||
1859 old_end - old_addr < HPAGE_PMD_SIZE)
1863 * The destination pmd shouldn't be established, free_pgtables()
1864 * should have release it.
1866 if (WARN_ON(!pmd_none(*new_pmd))) {
1867 VM_BUG_ON(pmd_trans_huge(*new_pmd));
1872 * We don't have to worry about the ordering of src and dst
1873 * ptlocks because exclusive mmap_sem prevents deadlock.
1875 old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
1877 new_ptl = pmd_lockptr(mm, new_pmd);
1878 if (new_ptl != old_ptl)
1879 spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
1880 pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
1881 if (pmd_present(pmd))
1883 VM_BUG_ON(!pmd_none(*new_pmd));
1885 if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) {
1887 pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1888 pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
1890 pmd = move_soft_dirty_pmd(pmd);
1891 set_pmd_at(mm, new_addr, new_pmd, pmd);
1893 flush_tlb_range(vma, old_addr, old_addr + PMD_SIZE);
1894 if (new_ptl != old_ptl)
1895 spin_unlock(new_ptl);
1896 spin_unlock(old_ptl);
1904 * - 0 if PMD could not be locked
1905 * - 1 if PMD was locked but protections unchange and TLB flush unnecessary
1906 * - HPAGE_PMD_NR is protections changed and TLB flush necessary
1908 int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1909 unsigned long addr, pgprot_t newprot, int prot_numa)
1911 struct mm_struct *mm = vma->vm_mm;
1914 bool preserve_write;
1917 ptl = __pmd_trans_huge_lock(pmd, vma);
1921 preserve_write = prot_numa && pmd_write(*pmd);
1924 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1925 if (is_swap_pmd(*pmd)) {
1926 swp_entry_t entry = pmd_to_swp_entry(*pmd);
1928 VM_BUG_ON(!is_pmd_migration_entry(*pmd));
1929 if (is_write_migration_entry(entry)) {
1932 * A protection check is difficult so
1933 * just be safe and disable write
1935 make_migration_entry_read(&entry);
1936 newpmd = swp_entry_to_pmd(entry);
1937 if (pmd_swp_soft_dirty(*pmd))
1938 newpmd = pmd_swp_mksoft_dirty(newpmd);
1939 set_pmd_at(mm, addr, pmd, newpmd);
1946 * Avoid trapping faults against the zero page. The read-only
1947 * data is likely to be read-cached on the local CPU and
1948 * local/remote hits to the zero page are not interesting.
1950 if (prot_numa && is_huge_zero_pmd(*pmd))
1953 if (prot_numa && pmd_protnone(*pmd))
1957 * In case prot_numa, we are under down_read(mmap_sem). It's critical
1958 * to not clear pmd intermittently to avoid race with MADV_DONTNEED
1959 * which is also under down_read(mmap_sem):
1962 * change_huge_pmd(prot_numa=1)
1963 * pmdp_huge_get_and_clear_notify()
1964 * madvise_dontneed()
1966 * pmd_trans_huge(*pmd) == 0 (without ptl)
1969 * // pmd is re-established
1971 * The race makes MADV_DONTNEED miss the huge pmd and don't clear it
1972 * which may break userspace.
1974 * pmdp_invalidate() is required to make sure we don't miss
1975 * dirty/young flags set by hardware.
1977 entry = pmdp_invalidate(vma, addr, pmd);
1979 entry = pmd_modify(entry, newprot);
1981 entry = pmd_mk_savedwrite(entry);
1983 set_pmd_at(mm, addr, pmd, entry);
1984 BUG_ON(vma_is_anonymous(vma) && !preserve_write && pmd_write(entry));
1991 * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise.
1993 * Note that if it returns page table lock pointer, this routine returns without
1994 * unlocking page table lock. So callers must unlock it.
1996 spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
1999 ptl = pmd_lock(vma->vm_mm, pmd);
2000 if (likely(is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) ||
2008 * Returns true if a given pud maps a thp, false otherwise.
2010 * Note that if it returns true, this routine returns without unlocking page
2011 * table lock. So callers must unlock it.
2013 spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma)
2017 ptl = pud_lock(vma->vm_mm, pud);
2018 if (likely(pud_trans_huge(*pud) || pud_devmap(*pud)))
2024 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
2025 int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma,
2026 pud_t *pud, unsigned long addr)
2030 ptl = __pud_trans_huge_lock(pud, vma);
2034 * For architectures like ppc64 we look at deposited pgtable
2035 * when calling pudp_huge_get_and_clear. So do the
2036 * pgtable_trans_huge_withdraw after finishing pudp related
2039 pudp_huge_get_and_clear_full(tlb->mm, addr, pud, tlb->fullmm);
2040 tlb_remove_pud_tlb_entry(tlb, pud, addr);
2041 if (vma_is_dax(vma)) {
2043 /* No zero page support yet */
2045 /* No support for anonymous PUD pages yet */
2051 static void __split_huge_pud_locked(struct vm_area_struct *vma, pud_t *pud,
2052 unsigned long haddr)
2054 VM_BUG_ON(haddr & ~HPAGE_PUD_MASK);
2055 VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2056 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PUD_SIZE, vma);
2057 VM_BUG_ON(!pud_trans_huge(*pud) && !pud_devmap(*pud));
2059 count_vm_event(THP_SPLIT_PUD);
2061 pudp_huge_clear_flush_notify(vma, haddr, pud);
2064 void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud,
2065 unsigned long address)
2068 struct mmu_notifier_range range;
2070 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
2071 address & HPAGE_PUD_MASK,
2072 (address & HPAGE_PUD_MASK) + HPAGE_PUD_SIZE);
2073 mmu_notifier_invalidate_range_start(&range);
2074 ptl = pud_lock(vma->vm_mm, pud);
2075 if (unlikely(!pud_trans_huge(*pud) && !pud_devmap(*pud)))
2077 __split_huge_pud_locked(vma, pud, range.start);
2082 * No need to double call mmu_notifier->invalidate_range() callback as
2083 * the above pudp_huge_clear_flush_notify() did already call it.
2085 mmu_notifier_invalidate_range_only_end(&range);
2087 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
2089 static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
2090 unsigned long haddr, pmd_t *pmd)
2092 struct mm_struct *mm = vma->vm_mm;
2098 * Leave pmd empty until pte is filled note that it is fine to delay
2099 * notification until mmu_notifier_invalidate_range_end() as we are
2100 * replacing a zero pmd write protected page with a zero pte write
2103 * See Documentation/vm/mmu_notifier.rst
2105 pmdp_huge_clear_flush(vma, haddr, pmd);
2107 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2108 pmd_populate(mm, &_pmd, pgtable);
2110 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
2112 entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
2113 entry = pte_mkspecial(entry);
2114 pte = pte_offset_map(&_pmd, haddr);
2115 VM_BUG_ON(!pte_none(*pte));
2116 set_pte_at(mm, haddr, pte, entry);
2119 smp_wmb(); /* make pte visible before pmd */
2120 pmd_populate(mm, pmd, pgtable);
2123 static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
2124 unsigned long haddr, bool freeze)
2126 struct mm_struct *mm = vma->vm_mm;
2129 pmd_t old_pmd, _pmd;
2130 bool young, write, soft_dirty, pmd_migration = false;
2134 VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
2135 VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2136 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
2137 VM_BUG_ON(!is_pmd_migration_entry(*pmd) && !pmd_trans_huge(*pmd)
2138 && !pmd_devmap(*pmd));
2140 count_vm_event(THP_SPLIT_PMD);
2142 if (!vma_is_anonymous(vma)) {
2143 _pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
2145 * We are going to unmap this huge page. So
2146 * just go ahead and zap it
2148 if (arch_needs_pgtable_deposit())
2149 zap_deposited_table(mm, pmd);
2150 if (vma_is_dax(vma))
2152 page = pmd_page(_pmd);
2153 if (!PageDirty(page) && pmd_dirty(_pmd))
2154 set_page_dirty(page);
2155 if (!PageReferenced(page) && pmd_young(_pmd))
2156 SetPageReferenced(page);
2157 page_remove_rmap(page, true);
2159 add_mm_counter(mm, mm_counter_file(page), -HPAGE_PMD_NR);
2161 } else if (is_huge_zero_pmd(*pmd)) {
2163 * FIXME: Do we want to invalidate secondary mmu by calling
2164 * mmu_notifier_invalidate_range() see comments below inside
2165 * __split_huge_pmd() ?
2167 * We are going from a zero huge page write protected to zero
2168 * small page also write protected so it does not seems useful
2169 * to invalidate secondary mmu at this time.
2171 return __split_huge_zero_page_pmd(vma, haddr, pmd);
2175 * Up to this point the pmd is present and huge and userland has the
2176 * whole access to the hugepage during the split (which happens in
2177 * place). If we overwrite the pmd with the not-huge version pointing
2178 * to the pte here (which of course we could if all CPUs were bug
2179 * free), userland could trigger a small page size TLB miss on the
2180 * small sized TLB while the hugepage TLB entry is still established in
2181 * the huge TLB. Some CPU doesn't like that.
2182 * See http://support.amd.com/us/Processor_TechDocs/41322.pdf, Erratum
2183 * 383 on page 93. Intel should be safe but is also warns that it's
2184 * only safe if the permission and cache attributes of the two entries
2185 * loaded in the two TLB is identical (which should be the case here).
2186 * But it is generally safer to never allow small and huge TLB entries
2187 * for the same virtual address to be loaded simultaneously. So instead
2188 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
2189 * current pmd notpresent (atomically because here the pmd_trans_huge
2190 * must remain set at all times on the pmd until the split is complete
2191 * for this pmd), then we flush the SMP TLB and finally we write the
2192 * non-huge version of the pmd entry with pmd_populate.
2194 old_pmd = pmdp_invalidate(vma, haddr, pmd);
2196 pmd_migration = is_pmd_migration_entry(old_pmd);
2197 if (unlikely(pmd_migration)) {
2200 entry = pmd_to_swp_entry(old_pmd);
2201 page = pfn_to_page(swp_offset(entry));
2202 write = is_write_migration_entry(entry);
2204 soft_dirty = pmd_swp_soft_dirty(old_pmd);
2206 page = pmd_page(old_pmd);
2207 if (pmd_dirty(old_pmd))
2209 write = pmd_write(old_pmd);
2210 young = pmd_young(old_pmd);
2211 soft_dirty = pmd_soft_dirty(old_pmd);
2213 VM_BUG_ON_PAGE(!page_count(page), page);
2214 page_ref_add(page, HPAGE_PMD_NR - 1);
2217 * Withdraw the table only after we mark the pmd entry invalid.
2218 * This's critical for some architectures (Power).
2220 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2221 pmd_populate(mm, &_pmd, pgtable);
2223 for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
2226 * Note that NUMA hinting access restrictions are not
2227 * transferred to avoid any possibility of altering
2228 * permissions across VMAs.
2230 if (freeze || pmd_migration) {
2231 swp_entry_t swp_entry;
2232 swp_entry = make_migration_entry(page + i, write);
2233 entry = swp_entry_to_pte(swp_entry);
2235 entry = pte_swp_mksoft_dirty(entry);
2237 entry = mk_pte(page + i, READ_ONCE(vma->vm_page_prot));
2238 entry = maybe_mkwrite(entry, vma);
2240 entry = pte_wrprotect(entry);
2242 entry = pte_mkold(entry);
2244 entry = pte_mksoft_dirty(entry);
2246 pte = pte_offset_map(&_pmd, addr);
2247 BUG_ON(!pte_none(*pte));
2248 set_pte_at(mm, addr, pte, entry);
2249 atomic_inc(&page[i]._mapcount);
2254 * Set PG_double_map before dropping compound_mapcount to avoid
2255 * false-negative page_mapped().
2257 if (compound_mapcount(page) > 1 && !TestSetPageDoubleMap(page)) {
2258 for (i = 0; i < HPAGE_PMD_NR; i++)
2259 atomic_inc(&page[i]._mapcount);
2262 if (atomic_add_negative(-1, compound_mapcount_ptr(page))) {
2263 /* Last compound_mapcount is gone. */
2264 __dec_node_page_state(page, NR_ANON_THPS);
2265 if (TestClearPageDoubleMap(page)) {
2266 /* No need in mapcount reference anymore */
2267 for (i = 0; i < HPAGE_PMD_NR; i++)
2268 atomic_dec(&page[i]._mapcount);
2272 smp_wmb(); /* make pte visible before pmd */
2273 pmd_populate(mm, pmd, pgtable);
2276 for (i = 0; i < HPAGE_PMD_NR; i++) {
2277 page_remove_rmap(page + i, false);
2283 void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
2284 unsigned long address, bool freeze, struct page *page)
2287 struct mmu_notifier_range range;
2289 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
2290 address & HPAGE_PMD_MASK,
2291 (address & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE);
2292 mmu_notifier_invalidate_range_start(&range);
2293 ptl = pmd_lock(vma->vm_mm, pmd);
2296 * If caller asks to setup a migration entries, we need a page to check
2297 * pmd against. Otherwise we can end up replacing wrong page.
2299 VM_BUG_ON(freeze && !page);
2300 if (page && page != pmd_page(*pmd))
2303 if (pmd_trans_huge(*pmd)) {
2304 page = pmd_page(*pmd);
2305 if (PageMlocked(page))
2306 clear_page_mlock(page);
2307 } else if (!(pmd_devmap(*pmd) || is_pmd_migration_entry(*pmd)))
2309 __split_huge_pmd_locked(vma, pmd, range.start, freeze);
2313 * No need to double call mmu_notifier->invalidate_range() callback.
2314 * They are 3 cases to consider inside __split_huge_pmd_locked():
2315 * 1) pmdp_huge_clear_flush_notify() call invalidate_range() obvious
2316 * 2) __split_huge_zero_page_pmd() read only zero page and any write
2317 * fault will trigger a flush_notify before pointing to a new page
2318 * (it is fine if the secondary mmu keeps pointing to the old zero
2319 * page in the meantime)
2320 * 3) Split a huge pmd into pte pointing to the same page. No need
2321 * to invalidate secondary tlb entry they are all still valid.
2322 * any further changes to individual pte will notify. So no need
2323 * to call mmu_notifier->invalidate_range()
2325 mmu_notifier_invalidate_range_only_end(&range);
2328 void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
2329 bool freeze, struct page *page)
2336 pgd = pgd_offset(vma->vm_mm, address);
2337 if (!pgd_present(*pgd))
2340 p4d = p4d_offset(pgd, address);
2341 if (!p4d_present(*p4d))
2344 pud = pud_offset(p4d, address);
2345 if (!pud_present(*pud))
2348 pmd = pmd_offset(pud, address);
2350 __split_huge_pmd(vma, pmd, address, freeze, page);
2353 void vma_adjust_trans_huge(struct vm_area_struct *vma,
2354 unsigned long start,
2359 * If the new start address isn't hpage aligned and it could
2360 * previously contain an hugepage: check if we need to split
2363 if (start & ~HPAGE_PMD_MASK &&
2364 (start & HPAGE_PMD_MASK) >= vma->vm_start &&
2365 (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2366 split_huge_pmd_address(vma, start, false, NULL);
2369 * If the new end address isn't hpage aligned and it could
2370 * previously contain an hugepage: check if we need to split
2373 if (end & ~HPAGE_PMD_MASK &&
2374 (end & HPAGE_PMD_MASK) >= vma->vm_start &&
2375 (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2376 split_huge_pmd_address(vma, end, false, NULL);
2379 * If we're also updating the vma->vm_next->vm_start, if the new
2380 * vm_next->vm_start isn't page aligned and it could previously
2381 * contain an hugepage: check if we need to split an huge pmd.
2383 if (adjust_next > 0) {
2384 struct vm_area_struct *next = vma->vm_next;
2385 unsigned long nstart = next->vm_start;
2386 nstart += adjust_next << PAGE_SHIFT;
2387 if (nstart & ~HPAGE_PMD_MASK &&
2388 (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
2389 (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
2390 split_huge_pmd_address(next, nstart, false, NULL);
2394 static void unmap_page(struct page *page)
2396 enum ttu_flags ttu_flags = TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS |
2397 TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD;
2400 VM_BUG_ON_PAGE(!PageHead(page), page);
2403 ttu_flags |= TTU_SPLIT_FREEZE;
2405 unmap_success = try_to_unmap(page, ttu_flags);
2406 VM_BUG_ON_PAGE(!unmap_success, page);
2409 static void remap_page(struct page *page)
2412 if (PageTransHuge(page)) {
2413 remove_migration_ptes(page, page, true);
2415 for (i = 0; i < HPAGE_PMD_NR; i++)
2416 remove_migration_ptes(page + i, page + i, true);
2420 static void __split_huge_page_tail(struct page *head, int tail,
2421 struct lruvec *lruvec, struct list_head *list)
2423 struct page *page_tail = head + tail;
2425 VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
2428 * Clone page flags before unfreezing refcount.
2430 * After successful get_page_unless_zero() might follow flags change,
2431 * for exmaple lock_page() which set PG_waiters.
2433 page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
2434 page_tail->flags |= (head->flags &
2435 ((1L << PG_referenced) |
2436 (1L << PG_swapbacked) |
2437 (1L << PG_swapcache) |
2438 (1L << PG_mlocked) |
2439 (1L << PG_uptodate) |
2441 (1L << PG_workingset) |
2443 (1L << PG_unevictable) |
2446 /* ->mapping in first tail page is compound_mapcount */
2447 VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
2449 page_tail->mapping = head->mapping;
2450 page_tail->index = head->index + tail;
2452 /* Page flags must be visible before we make the page non-compound. */
2456 * Clear PageTail before unfreezing page refcount.
2458 * After successful get_page_unless_zero() might follow put_page()
2459 * which needs correct compound_head().
2461 clear_compound_head(page_tail);
2463 /* Finally unfreeze refcount. Additional reference from page cache. */
2464 page_ref_unfreeze(page_tail, 1 + (!PageAnon(head) ||
2465 PageSwapCache(head)));
2467 if (page_is_young(head))
2468 set_page_young(page_tail);
2469 if (page_is_idle(head))
2470 set_page_idle(page_tail);
2472 page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
2475 * always add to the tail because some iterators expect new
2476 * pages to show after the currently processed elements - e.g.
2479 lru_add_page_tail(head, page_tail, lruvec, list);
2482 static void __split_huge_page(struct page *page, struct list_head *list,
2483 pgoff_t end, unsigned long flags)
2485 struct page *head = compound_head(page);
2486 pg_data_t *pgdat = page_pgdat(head);
2487 struct lruvec *lruvec;
2490 lruvec = mem_cgroup_page_lruvec(head, pgdat);
2492 /* complete memcg works before add pages to LRU */
2493 mem_cgroup_split_huge_fixup(head);
2495 for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
2496 __split_huge_page_tail(head, i, lruvec, list);
2497 /* Some pages can be beyond i_size: drop them from page cache */
2498 if (head[i].index >= end) {
2499 ClearPageDirty(head + i);
2500 __delete_from_page_cache(head + i, NULL);
2501 if (IS_ENABLED(CONFIG_SHMEM) && PageSwapBacked(head))
2502 shmem_uncharge(head->mapping->host, 1);
2507 ClearPageCompound(head);
2508 /* See comment in __split_huge_page_tail() */
2509 if (PageAnon(head)) {
2510 /* Additional pin to swap cache */
2511 if (PageSwapCache(head))
2512 page_ref_add(head, 2);
2516 /* Additional pin to page cache */
2517 page_ref_add(head, 2);
2518 xa_unlock(&head->mapping->i_pages);
2521 spin_unlock_irqrestore(&pgdat->lru_lock, flags);
2525 for (i = 0; i < HPAGE_PMD_NR; i++) {
2526 struct page *subpage = head + i;
2527 if (subpage == page)
2529 unlock_page(subpage);
2532 * Subpages may be freed if there wasn't any mapping
2533 * like if add_to_swap() is running on a lru page that
2534 * had its mapping zapped. And freeing these pages
2535 * requires taking the lru_lock so we do the put_page
2536 * of the tail pages after the split is complete.
2542 int total_mapcount(struct page *page)
2544 int i, compound, ret;
2546 VM_BUG_ON_PAGE(PageTail(page), page);
2548 if (likely(!PageCompound(page)))
2549 return atomic_read(&page->_mapcount) + 1;
2551 compound = compound_mapcount(page);
2555 for (i = 0; i < HPAGE_PMD_NR; i++)
2556 ret += atomic_read(&page[i]._mapcount) + 1;
2557 /* File pages has compound_mapcount included in _mapcount */
2558 if (!PageAnon(page))
2559 return ret - compound * HPAGE_PMD_NR;
2560 if (PageDoubleMap(page))
2561 ret -= HPAGE_PMD_NR;
2566 * This calculates accurately how many mappings a transparent hugepage
2567 * has (unlike page_mapcount() which isn't fully accurate). This full
2568 * accuracy is primarily needed to know if copy-on-write faults can
2569 * reuse the page and change the mapping to read-write instead of
2570 * copying them. At the same time this returns the total_mapcount too.
2572 * The function returns the highest mapcount any one of the subpages
2573 * has. If the return value is one, even if different processes are
2574 * mapping different subpages of the transparent hugepage, they can
2575 * all reuse it, because each process is reusing a different subpage.
2577 * The total_mapcount is instead counting all virtual mappings of the
2578 * subpages. If the total_mapcount is equal to "one", it tells the
2579 * caller all mappings belong to the same "mm" and in turn the
2580 * anon_vma of the transparent hugepage can become the vma->anon_vma
2581 * local one as no other process may be mapping any of the subpages.
2583 * It would be more accurate to replace page_mapcount() with
2584 * page_trans_huge_mapcount(), however we only use
2585 * page_trans_huge_mapcount() in the copy-on-write faults where we
2586 * need full accuracy to avoid breaking page pinning, because
2587 * page_trans_huge_mapcount() is slower than page_mapcount().
2589 int page_trans_huge_mapcount(struct page *page, int *total_mapcount)
2591 int i, ret, _total_mapcount, mapcount;
2593 /* hugetlbfs shouldn't call it */
2594 VM_BUG_ON_PAGE(PageHuge(page), page);
2596 if (likely(!PageTransCompound(page))) {
2597 mapcount = atomic_read(&page->_mapcount) + 1;
2599 *total_mapcount = mapcount;
2603 page = compound_head(page);
2605 _total_mapcount = ret = 0;
2606 for (i = 0; i < HPAGE_PMD_NR; i++) {
2607 mapcount = atomic_read(&page[i]._mapcount) + 1;
2608 ret = max(ret, mapcount);
2609 _total_mapcount += mapcount;
2611 if (PageDoubleMap(page)) {
2613 _total_mapcount -= HPAGE_PMD_NR;
2615 mapcount = compound_mapcount(page);
2617 _total_mapcount += mapcount;
2619 *total_mapcount = _total_mapcount;
2623 /* Racy check whether the huge page can be split */
2624 bool can_split_huge_page(struct page *page, int *pextra_pins)
2628 /* Additional pins from page cache */
2630 extra_pins = PageSwapCache(page) ? HPAGE_PMD_NR : 0;
2632 extra_pins = HPAGE_PMD_NR;
2634 *pextra_pins = extra_pins;
2635 return total_mapcount(page) == page_count(page) - extra_pins - 1;
2639 * This function splits huge page into normal pages. @page can point to any
2640 * subpage of huge page to split. Split doesn't change the position of @page.
2642 * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
2643 * The huge page must be locked.
2645 * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
2647 * Both head page and tail pages will inherit mapping, flags, and so on from
2650 * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
2651 * they are not mapped.
2653 * Returns 0 if the hugepage is split successfully.
2654 * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
2657 int split_huge_page_to_list(struct page *page, struct list_head *list)
2659 struct page *head = compound_head(page);
2660 struct pglist_data *pgdata = NODE_DATA(page_to_nid(head));
2661 struct anon_vma *anon_vma = NULL;
2662 struct address_space *mapping = NULL;
2663 int count, mapcount, extra_pins, ret;
2665 unsigned long flags;
2668 VM_BUG_ON_PAGE(is_huge_zero_page(page), page);
2669 VM_BUG_ON_PAGE(!PageLocked(page), page);
2670 VM_BUG_ON_PAGE(!PageCompound(page), page);
2672 if (PageWriteback(page))
2675 if (PageAnon(head)) {
2677 * The caller does not necessarily hold an mmap_sem that would
2678 * prevent the anon_vma disappearing so we first we take a
2679 * reference to it and then lock the anon_vma for write. This
2680 * is similar to page_lock_anon_vma_read except the write lock
2681 * is taken to serialise against parallel split or collapse
2684 anon_vma = page_get_anon_vma(head);
2691 anon_vma_lock_write(anon_vma);
2693 mapping = head->mapping;
2702 i_mmap_lock_read(mapping);
2705 *__split_huge_page() may need to trim off pages beyond EOF:
2706 * but on 32-bit, i_size_read() takes an irq-unsafe seqlock,
2707 * which cannot be nested inside the page tree lock. So note
2708 * end now: i_size itself may be changed at any moment, but
2709 * head page lock is good enough to serialize the trimming.
2711 end = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
2715 * Racy check if we can split the page, before unmap_page() will
2718 if (!can_split_huge_page(head, &extra_pins)) {
2723 mlocked = PageMlocked(page);
2725 VM_BUG_ON_PAGE(compound_mapcount(head), head);
2727 /* Make sure the page is not on per-CPU pagevec as it takes pin */
2731 /* prevent PageLRU to go away from under us, and freeze lru stats */
2732 spin_lock_irqsave(&pgdata->lru_lock, flags);
2735 XA_STATE(xas, &mapping->i_pages, page_index(head));
2738 * Check if the head page is present in page cache.
2739 * We assume all tail are present too, if head is there.
2741 xa_lock(&mapping->i_pages);
2742 if (xas_load(&xas) != head)
2746 /* Prevent deferred_split_scan() touching ->_refcount */
2747 spin_lock(&pgdata->split_queue_lock);
2748 count = page_count(head);
2749 mapcount = total_mapcount(head);
2750 if (!mapcount && page_ref_freeze(head, 1 + extra_pins)) {
2751 if (!list_empty(page_deferred_list(head))) {
2752 pgdata->split_queue_len--;
2753 list_del(page_deferred_list(head));
2756 __dec_node_page_state(page, NR_SHMEM_THPS);
2757 spin_unlock(&pgdata->split_queue_lock);
2758 __split_huge_page(page, list, end, flags);
2759 if (PageSwapCache(head)) {
2760 swp_entry_t entry = { .val = page_private(head) };
2762 ret = split_swap_cluster(entry);
2766 if (IS_ENABLED(CONFIG_DEBUG_VM) && mapcount) {
2767 pr_alert("total_mapcount: %u, page_count(): %u\n",
2770 dump_page(head, NULL);
2771 dump_page(page, "total_mapcount(head) > 0");
2774 spin_unlock(&pgdata->split_queue_lock);
2776 xa_unlock(&mapping->i_pages);
2777 spin_unlock_irqrestore(&pgdata->lru_lock, flags);
2784 anon_vma_unlock_write(anon_vma);
2785 put_anon_vma(anon_vma);
2788 i_mmap_unlock_read(mapping);
2790 count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
2794 void free_transhuge_page(struct page *page)
2796 struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
2797 unsigned long flags;
2799 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2800 if (!list_empty(page_deferred_list(page))) {
2801 pgdata->split_queue_len--;
2802 list_del(page_deferred_list(page));
2804 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2805 free_compound_page(page);
2808 void deferred_split_huge_page(struct page *page)
2810 struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
2811 unsigned long flags;
2813 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
2815 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2816 if (list_empty(page_deferred_list(page))) {
2817 count_vm_event(THP_DEFERRED_SPLIT_PAGE);
2818 list_add_tail(page_deferred_list(page), &pgdata->split_queue);
2819 pgdata->split_queue_len++;
2821 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2824 static unsigned long deferred_split_count(struct shrinker *shrink,
2825 struct shrink_control *sc)
2827 struct pglist_data *pgdata = NODE_DATA(sc->nid);
2828 return READ_ONCE(pgdata->split_queue_len);
2831 static unsigned long deferred_split_scan(struct shrinker *shrink,
2832 struct shrink_control *sc)
2834 struct pglist_data *pgdata = NODE_DATA(sc->nid);
2835 unsigned long flags;
2836 LIST_HEAD(list), *pos, *next;
2840 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2841 /* Take pin on all head pages to avoid freeing them under us */
2842 list_for_each_safe(pos, next, &pgdata->split_queue) {
2843 page = list_entry((void *)pos, struct page, mapping);
2844 page = compound_head(page);
2845 if (get_page_unless_zero(page)) {
2846 list_move(page_deferred_list(page), &list);
2848 /* We lost race with put_compound_page() */
2849 list_del_init(page_deferred_list(page));
2850 pgdata->split_queue_len--;
2852 if (!--sc->nr_to_scan)
2855 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2857 list_for_each_safe(pos, next, &list) {
2858 page = list_entry((void *)pos, struct page, mapping);
2859 if (!trylock_page(page))
2861 /* split_huge_page() removes page from list on success */
2862 if (!split_huge_page(page))
2869 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2870 list_splice_tail(&list, &pgdata->split_queue);
2871 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2874 * Stop shrinker if we didn't split any page, but the queue is empty.
2875 * This can happen if pages were freed under us.
2877 if (!split && list_empty(&pgdata->split_queue))
2882 static struct shrinker deferred_split_shrinker = {
2883 .count_objects = deferred_split_count,
2884 .scan_objects = deferred_split_scan,
2885 .seeks = DEFAULT_SEEKS,
2886 .flags = SHRINKER_NUMA_AWARE,
2889 #ifdef CONFIG_DEBUG_FS
2890 static int split_huge_pages_set(void *data, u64 val)
2894 unsigned long pfn, max_zone_pfn;
2895 unsigned long total = 0, split = 0;
2900 for_each_populated_zone(zone) {
2901 max_zone_pfn = zone_end_pfn(zone);
2902 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
2903 if (!pfn_valid(pfn))
2906 page = pfn_to_page(pfn);
2907 if (!get_page_unless_zero(page))
2910 if (zone != page_zone(page))
2913 if (!PageHead(page) || PageHuge(page) || !PageLRU(page))
2918 if (!split_huge_page(page))
2926 pr_info("%lu of %lu THP split\n", split, total);
2930 DEFINE_SIMPLE_ATTRIBUTE(split_huge_pages_fops, NULL, split_huge_pages_set,
2933 static int __init split_huge_pages_debugfs(void)
2935 debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
2936 &split_huge_pages_fops);
2939 late_initcall(split_huge_pages_debugfs);
2942 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
2943 void set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw,
2946 struct vm_area_struct *vma = pvmw->vma;
2947 struct mm_struct *mm = vma->vm_mm;
2948 unsigned long address = pvmw->address;
2953 if (!(pvmw->pmd && !pvmw->pte))
2956 flush_cache_range(vma, address, address + HPAGE_PMD_SIZE);
2957 pmdval = *pvmw->pmd;
2958 pmdp_invalidate(vma, address, pvmw->pmd);
2959 if (pmd_dirty(pmdval))
2960 set_page_dirty(page);
2961 entry = make_migration_entry(page, pmd_write(pmdval));
2962 pmdswp = swp_entry_to_pmd(entry);
2963 if (pmd_soft_dirty(pmdval))
2964 pmdswp = pmd_swp_mksoft_dirty(pmdswp);
2965 set_pmd_at(mm, address, pvmw->pmd, pmdswp);
2966 page_remove_rmap(page, true);
2970 void remove_migration_pmd(struct page_vma_mapped_walk *pvmw, struct page *new)
2972 struct vm_area_struct *vma = pvmw->vma;
2973 struct mm_struct *mm = vma->vm_mm;
2974 unsigned long address = pvmw->address;
2975 unsigned long mmun_start = address & HPAGE_PMD_MASK;
2979 if (!(pvmw->pmd && !pvmw->pte))
2982 entry = pmd_to_swp_entry(*pvmw->pmd);
2984 pmde = pmd_mkold(mk_huge_pmd(new, vma->vm_page_prot));
2985 if (pmd_swp_soft_dirty(*pvmw->pmd))
2986 pmde = pmd_mksoft_dirty(pmde);
2987 if (is_write_migration_entry(entry))
2988 pmde = maybe_pmd_mkwrite(pmde, vma);
2990 flush_cache_range(vma, mmun_start, mmun_start + HPAGE_PMD_SIZE);
2992 page_add_anon_rmap(new, vma, mmun_start, true);
2994 page_add_file_rmap(new, true);
2995 set_pmd_at(mm, mmun_start, pvmw->pmd, pmde);
2996 if ((vma->vm_flags & VM_LOCKED) && !PageDoubleMap(new))
2997 mlock_vma_page(new);
2998 update_mmu_cache_pmd(vma, address, pvmw->pmd);