memblock: ensure there is no overflow in memblock_overlaps_region()
[platform/kernel/linux-rpi.git] / mm / hmm.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright 2013 Red Hat Inc.
4  *
5  * Authors: Jérôme Glisse <jglisse@redhat.com>
6  */
7 /*
8  * Refer to include/linux/hmm.h for information about heterogeneous memory
9  * management or HMM for short.
10  */
11 #include <linux/pagewalk.h>
12 #include <linux/hmm.h>
13 #include <linux/init.h>
14 #include <linux/rmap.h>
15 #include <linux/swap.h>
16 #include <linux/slab.h>
17 #include <linux/sched.h>
18 #include <linux/mmzone.h>
19 #include <linux/pagemap.h>
20 #include <linux/swapops.h>
21 #include <linux/hugetlb.h>
22 #include <linux/memremap.h>
23 #include <linux/sched/mm.h>
24 #include <linux/jump_label.h>
25 #include <linux/dma-mapping.h>
26 #include <linux/mmu_notifier.h>
27 #include <linux/memory_hotplug.h>
28
29 struct hmm_vma_walk {
30         struct hmm_range        *range;
31         unsigned long           last;
32 };
33
34 enum {
35         HMM_NEED_FAULT = 1 << 0,
36         HMM_NEED_WRITE_FAULT = 1 << 1,
37         HMM_NEED_ALL_BITS = HMM_NEED_FAULT | HMM_NEED_WRITE_FAULT,
38 };
39
40 static int hmm_pfns_fill(unsigned long addr, unsigned long end,
41                          struct hmm_range *range, unsigned long cpu_flags)
42 {
43         unsigned long i = (addr - range->start) >> PAGE_SHIFT;
44
45         for (; addr < end; addr += PAGE_SIZE, i++)
46                 range->hmm_pfns[i] = cpu_flags;
47         return 0;
48 }
49
50 /*
51  * hmm_vma_fault() - fault in a range lacking valid pmd or pte(s)
52  * @addr: range virtual start address (inclusive)
53  * @end: range virtual end address (exclusive)
54  * @required_fault: HMM_NEED_* flags
55  * @walk: mm_walk structure
56  * Return: -EBUSY after page fault, or page fault error
57  *
58  * This function will be called whenever pmd_none() or pte_none() returns true,
59  * or whenever there is no page directory covering the virtual address range.
60  */
61 static int hmm_vma_fault(unsigned long addr, unsigned long end,
62                          unsigned int required_fault, struct mm_walk *walk)
63 {
64         struct hmm_vma_walk *hmm_vma_walk = walk->private;
65         struct vm_area_struct *vma = walk->vma;
66         unsigned int fault_flags = FAULT_FLAG_REMOTE;
67
68         WARN_ON_ONCE(!required_fault);
69         hmm_vma_walk->last = addr;
70
71         if (required_fault & HMM_NEED_WRITE_FAULT) {
72                 if (!(vma->vm_flags & VM_WRITE))
73                         return -EPERM;
74                 fault_flags |= FAULT_FLAG_WRITE;
75         }
76
77         for (; addr < end; addr += PAGE_SIZE)
78                 if (handle_mm_fault(vma, addr, fault_flags, NULL) &
79                     VM_FAULT_ERROR)
80                         return -EFAULT;
81         return -EBUSY;
82 }
83
84 static unsigned int hmm_pte_need_fault(const struct hmm_vma_walk *hmm_vma_walk,
85                                        unsigned long pfn_req_flags,
86                                        unsigned long cpu_flags)
87 {
88         struct hmm_range *range = hmm_vma_walk->range;
89
90         /*
91          * So we not only consider the individual per page request we also
92          * consider the default flags requested for the range. The API can
93          * be used 2 ways. The first one where the HMM user coalesces
94          * multiple page faults into one request and sets flags per pfn for
95          * those faults. The second one where the HMM user wants to pre-
96          * fault a range with specific flags. For the latter one it is a
97          * waste to have the user pre-fill the pfn arrays with a default
98          * flags value.
99          */
100         pfn_req_flags &= range->pfn_flags_mask;
101         pfn_req_flags |= range->default_flags;
102
103         /* We aren't ask to do anything ... */
104         if (!(pfn_req_flags & HMM_PFN_REQ_FAULT))
105                 return 0;
106
107         /* Need to write fault ? */
108         if ((pfn_req_flags & HMM_PFN_REQ_WRITE) &&
109             !(cpu_flags & HMM_PFN_WRITE))
110                 return HMM_NEED_FAULT | HMM_NEED_WRITE_FAULT;
111
112         /* If CPU page table is not valid then we need to fault */
113         if (!(cpu_flags & HMM_PFN_VALID))
114                 return HMM_NEED_FAULT;
115         return 0;
116 }
117
118 static unsigned int
119 hmm_range_need_fault(const struct hmm_vma_walk *hmm_vma_walk,
120                      const unsigned long hmm_pfns[], unsigned long npages,
121                      unsigned long cpu_flags)
122 {
123         struct hmm_range *range = hmm_vma_walk->range;
124         unsigned int required_fault = 0;
125         unsigned long i;
126
127         /*
128          * If the default flags do not request to fault pages, and the mask does
129          * not allow for individual pages to be faulted, then
130          * hmm_pte_need_fault() will always return 0.
131          */
132         if (!((range->default_flags | range->pfn_flags_mask) &
133               HMM_PFN_REQ_FAULT))
134                 return 0;
135
136         for (i = 0; i < npages; ++i) {
137                 required_fault |= hmm_pte_need_fault(hmm_vma_walk, hmm_pfns[i],
138                                                      cpu_flags);
139                 if (required_fault == HMM_NEED_ALL_BITS)
140                         return required_fault;
141         }
142         return required_fault;
143 }
144
145 static int hmm_vma_walk_hole(unsigned long addr, unsigned long end,
146                              __always_unused int depth, struct mm_walk *walk)
147 {
148         struct hmm_vma_walk *hmm_vma_walk = walk->private;
149         struct hmm_range *range = hmm_vma_walk->range;
150         unsigned int required_fault;
151         unsigned long i, npages;
152         unsigned long *hmm_pfns;
153
154         i = (addr - range->start) >> PAGE_SHIFT;
155         npages = (end - addr) >> PAGE_SHIFT;
156         hmm_pfns = &range->hmm_pfns[i];
157         required_fault =
158                 hmm_range_need_fault(hmm_vma_walk, hmm_pfns, npages, 0);
159         if (!walk->vma) {
160                 if (required_fault)
161                         return -EFAULT;
162                 return hmm_pfns_fill(addr, end, range, HMM_PFN_ERROR);
163         }
164         if (required_fault)
165                 return hmm_vma_fault(addr, end, required_fault, walk);
166         return hmm_pfns_fill(addr, end, range, 0);
167 }
168
169 static inline unsigned long hmm_pfn_flags_order(unsigned long order)
170 {
171         return order << HMM_PFN_ORDER_SHIFT;
172 }
173
174 static inline unsigned long pmd_to_hmm_pfn_flags(struct hmm_range *range,
175                                                  pmd_t pmd)
176 {
177         if (pmd_protnone(pmd))
178                 return 0;
179         return (pmd_write(pmd) ? (HMM_PFN_VALID | HMM_PFN_WRITE) :
180                                  HMM_PFN_VALID) |
181                hmm_pfn_flags_order(PMD_SHIFT - PAGE_SHIFT);
182 }
183
184 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
185 static int hmm_vma_handle_pmd(struct mm_walk *walk, unsigned long addr,
186                               unsigned long end, unsigned long hmm_pfns[],
187                               pmd_t pmd)
188 {
189         struct hmm_vma_walk *hmm_vma_walk = walk->private;
190         struct hmm_range *range = hmm_vma_walk->range;
191         unsigned long pfn, npages, i;
192         unsigned int required_fault;
193         unsigned long cpu_flags;
194
195         npages = (end - addr) >> PAGE_SHIFT;
196         cpu_flags = pmd_to_hmm_pfn_flags(range, pmd);
197         required_fault =
198                 hmm_range_need_fault(hmm_vma_walk, hmm_pfns, npages, cpu_flags);
199         if (required_fault)
200                 return hmm_vma_fault(addr, end, required_fault, walk);
201
202         pfn = pmd_pfn(pmd) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
203         for (i = 0; addr < end; addr += PAGE_SIZE, i++, pfn++)
204                 hmm_pfns[i] = pfn | cpu_flags;
205         return 0;
206 }
207 #else /* CONFIG_TRANSPARENT_HUGEPAGE */
208 /* stub to allow the code below to compile */
209 int hmm_vma_handle_pmd(struct mm_walk *walk, unsigned long addr,
210                 unsigned long end, unsigned long hmm_pfns[], pmd_t pmd);
211 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
212
213 static inline bool hmm_is_device_private_entry(struct hmm_range *range,
214                 swp_entry_t entry)
215 {
216         return is_device_private_entry(entry) &&
217                 device_private_entry_to_page(entry)->pgmap->owner ==
218                 range->dev_private_owner;
219 }
220
221 static inline unsigned long pte_to_hmm_pfn_flags(struct hmm_range *range,
222                                                  pte_t pte)
223 {
224         if (pte_none(pte) || !pte_present(pte) || pte_protnone(pte))
225                 return 0;
226         return pte_write(pte) ? (HMM_PFN_VALID | HMM_PFN_WRITE) : HMM_PFN_VALID;
227 }
228
229 static int hmm_vma_handle_pte(struct mm_walk *walk, unsigned long addr,
230                               unsigned long end, pmd_t *pmdp, pte_t *ptep,
231                               unsigned long *hmm_pfn)
232 {
233         struct hmm_vma_walk *hmm_vma_walk = walk->private;
234         struct hmm_range *range = hmm_vma_walk->range;
235         unsigned int required_fault;
236         unsigned long cpu_flags;
237         pte_t pte = *ptep;
238         uint64_t pfn_req_flags = *hmm_pfn;
239
240         if (pte_none(pte)) {
241                 required_fault =
242                         hmm_pte_need_fault(hmm_vma_walk, pfn_req_flags, 0);
243                 if (required_fault)
244                         goto fault;
245                 *hmm_pfn = 0;
246                 return 0;
247         }
248
249         if (!pte_present(pte)) {
250                 swp_entry_t entry = pte_to_swp_entry(pte);
251
252                 /*
253                  * Never fault in device private pages, but just report
254                  * the PFN even if not present.
255                  */
256                 if (hmm_is_device_private_entry(range, entry)) {
257                         cpu_flags = HMM_PFN_VALID;
258                         if (is_write_device_private_entry(entry))
259                                 cpu_flags |= HMM_PFN_WRITE;
260                         *hmm_pfn = device_private_entry_to_pfn(entry) |
261                                         cpu_flags;
262                         return 0;
263                 }
264
265                 required_fault =
266                         hmm_pte_need_fault(hmm_vma_walk, pfn_req_flags, 0);
267                 if (!required_fault) {
268                         *hmm_pfn = 0;
269                         return 0;
270                 }
271
272                 if (!non_swap_entry(entry))
273                         goto fault;
274
275                 if (is_migration_entry(entry)) {
276                         pte_unmap(ptep);
277                         hmm_vma_walk->last = addr;
278                         migration_entry_wait(walk->mm, pmdp, addr);
279                         return -EBUSY;
280                 }
281
282                 /* Report error for everything else */
283                 pte_unmap(ptep);
284                 return -EFAULT;
285         }
286
287         cpu_flags = pte_to_hmm_pfn_flags(range, pte);
288         required_fault =
289                 hmm_pte_need_fault(hmm_vma_walk, pfn_req_flags, cpu_flags);
290         if (required_fault)
291                 goto fault;
292
293         /*
294          * Bypass devmap pte such as DAX page when all pfn requested
295          * flags(pfn_req_flags) are fulfilled.
296          * Since each architecture defines a struct page for the zero page, just
297          * fall through and treat it like a normal page.
298          */
299         if (pte_special(pte) && !pte_devmap(pte) &&
300             !is_zero_pfn(pte_pfn(pte))) {
301                 if (hmm_pte_need_fault(hmm_vma_walk, pfn_req_flags, 0)) {
302                         pte_unmap(ptep);
303                         return -EFAULT;
304                 }
305                 *hmm_pfn = HMM_PFN_ERROR;
306                 return 0;
307         }
308
309         *hmm_pfn = pte_pfn(pte) | cpu_flags;
310         return 0;
311
312 fault:
313         pte_unmap(ptep);
314         /* Fault any virtual address we were asked to fault */
315         return hmm_vma_fault(addr, end, required_fault, walk);
316 }
317
318 static int hmm_vma_walk_pmd(pmd_t *pmdp,
319                             unsigned long start,
320                             unsigned long end,
321                             struct mm_walk *walk)
322 {
323         struct hmm_vma_walk *hmm_vma_walk = walk->private;
324         struct hmm_range *range = hmm_vma_walk->range;
325         unsigned long *hmm_pfns =
326                 &range->hmm_pfns[(start - range->start) >> PAGE_SHIFT];
327         unsigned long npages = (end - start) >> PAGE_SHIFT;
328         unsigned long addr = start;
329         pte_t *ptep;
330         pmd_t pmd;
331
332 again:
333         pmd = READ_ONCE(*pmdp);
334         if (pmd_none(pmd))
335                 return hmm_vma_walk_hole(start, end, -1, walk);
336
337         if (thp_migration_supported() && is_pmd_migration_entry(pmd)) {
338                 if (hmm_range_need_fault(hmm_vma_walk, hmm_pfns, npages, 0)) {
339                         hmm_vma_walk->last = addr;
340                         pmd_migration_entry_wait(walk->mm, pmdp);
341                         return -EBUSY;
342                 }
343                 return hmm_pfns_fill(start, end, range, 0);
344         }
345
346         if (!pmd_present(pmd)) {
347                 if (hmm_range_need_fault(hmm_vma_walk, hmm_pfns, npages, 0))
348                         return -EFAULT;
349                 return hmm_pfns_fill(start, end, range, HMM_PFN_ERROR);
350         }
351
352         if (pmd_devmap(pmd) || pmd_trans_huge(pmd)) {
353                 /*
354                  * No need to take pmd_lock here, even if some other thread
355                  * is splitting the huge pmd we will get that event through
356                  * mmu_notifier callback.
357                  *
358                  * So just read pmd value and check again it's a transparent
359                  * huge or device mapping one and compute corresponding pfn
360                  * values.
361                  */
362                 pmd = pmd_read_atomic(pmdp);
363                 barrier();
364                 if (!pmd_devmap(pmd) && !pmd_trans_huge(pmd))
365                         goto again;
366
367                 return hmm_vma_handle_pmd(walk, addr, end, hmm_pfns, pmd);
368         }
369
370         /*
371          * We have handled all the valid cases above ie either none, migration,
372          * huge or transparent huge. At this point either it is a valid pmd
373          * entry pointing to pte directory or it is a bad pmd that will not
374          * recover.
375          */
376         if (pmd_bad(pmd)) {
377                 if (hmm_range_need_fault(hmm_vma_walk, hmm_pfns, npages, 0))
378                         return -EFAULT;
379                 return hmm_pfns_fill(start, end, range, HMM_PFN_ERROR);
380         }
381
382         ptep = pte_offset_map(pmdp, addr);
383         for (; addr < end; addr += PAGE_SIZE, ptep++, hmm_pfns++) {
384                 int r;
385
386                 r = hmm_vma_handle_pte(walk, addr, end, pmdp, ptep, hmm_pfns);
387                 if (r) {
388                         /* hmm_vma_handle_pte() did pte_unmap() */
389                         return r;
390                 }
391         }
392         pte_unmap(ptep - 1);
393         return 0;
394 }
395
396 #if defined(CONFIG_ARCH_HAS_PTE_DEVMAP) && \
397     defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
398 static inline unsigned long pud_to_hmm_pfn_flags(struct hmm_range *range,
399                                                  pud_t pud)
400 {
401         if (!pud_present(pud))
402                 return 0;
403         return (pud_write(pud) ? (HMM_PFN_VALID | HMM_PFN_WRITE) :
404                                  HMM_PFN_VALID) |
405                hmm_pfn_flags_order(PUD_SHIFT - PAGE_SHIFT);
406 }
407
408 static int hmm_vma_walk_pud(pud_t *pudp, unsigned long start, unsigned long end,
409                 struct mm_walk *walk)
410 {
411         struct hmm_vma_walk *hmm_vma_walk = walk->private;
412         struct hmm_range *range = hmm_vma_walk->range;
413         unsigned long addr = start;
414         pud_t pud;
415         int ret = 0;
416         spinlock_t *ptl = pud_trans_huge_lock(pudp, walk->vma);
417
418         if (!ptl)
419                 return 0;
420
421         /* Normally we don't want to split the huge page */
422         walk->action = ACTION_CONTINUE;
423
424         pud = READ_ONCE(*pudp);
425         if (pud_none(pud)) {
426                 spin_unlock(ptl);
427                 return hmm_vma_walk_hole(start, end, -1, walk);
428         }
429
430         if (pud_huge(pud) && pud_devmap(pud)) {
431                 unsigned long i, npages, pfn;
432                 unsigned int required_fault;
433                 unsigned long *hmm_pfns;
434                 unsigned long cpu_flags;
435
436                 if (!pud_present(pud)) {
437                         spin_unlock(ptl);
438                         return hmm_vma_walk_hole(start, end, -1, walk);
439                 }
440
441                 i = (addr - range->start) >> PAGE_SHIFT;
442                 npages = (end - addr) >> PAGE_SHIFT;
443                 hmm_pfns = &range->hmm_pfns[i];
444
445                 cpu_flags = pud_to_hmm_pfn_flags(range, pud);
446                 required_fault = hmm_range_need_fault(hmm_vma_walk, hmm_pfns,
447                                                       npages, cpu_flags);
448                 if (required_fault) {
449                         spin_unlock(ptl);
450                         return hmm_vma_fault(addr, end, required_fault, walk);
451                 }
452
453                 pfn = pud_pfn(pud) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
454                 for (i = 0; i < npages; ++i, ++pfn)
455                         hmm_pfns[i] = pfn | cpu_flags;
456                 goto out_unlock;
457         }
458
459         /* Ask for the PUD to be split */
460         walk->action = ACTION_SUBTREE;
461
462 out_unlock:
463         spin_unlock(ptl);
464         return ret;
465 }
466 #else
467 #define hmm_vma_walk_pud        NULL
468 #endif
469
470 #ifdef CONFIG_HUGETLB_PAGE
471 static int hmm_vma_walk_hugetlb_entry(pte_t *pte, unsigned long hmask,
472                                       unsigned long start, unsigned long end,
473                                       struct mm_walk *walk)
474 {
475         unsigned long addr = start, i, pfn;
476         struct hmm_vma_walk *hmm_vma_walk = walk->private;
477         struct hmm_range *range = hmm_vma_walk->range;
478         struct vm_area_struct *vma = walk->vma;
479         unsigned int required_fault;
480         unsigned long pfn_req_flags;
481         unsigned long cpu_flags;
482         spinlock_t *ptl;
483         pte_t entry;
484
485         ptl = huge_pte_lock(hstate_vma(vma), walk->mm, pte);
486         entry = huge_ptep_get(pte);
487
488         i = (start - range->start) >> PAGE_SHIFT;
489         pfn_req_flags = range->hmm_pfns[i];
490         cpu_flags = pte_to_hmm_pfn_flags(range, entry) |
491                     hmm_pfn_flags_order(huge_page_order(hstate_vma(vma)));
492         required_fault =
493                 hmm_pte_need_fault(hmm_vma_walk, pfn_req_flags, cpu_flags);
494         if (required_fault) {
495                 spin_unlock(ptl);
496                 return hmm_vma_fault(addr, end, required_fault, walk);
497         }
498
499         pfn = pte_pfn(entry) + ((start & ~hmask) >> PAGE_SHIFT);
500         for (; addr < end; addr += PAGE_SIZE, i++, pfn++)
501                 range->hmm_pfns[i] = pfn | cpu_flags;
502
503         spin_unlock(ptl);
504         return 0;
505 }
506 #else
507 #define hmm_vma_walk_hugetlb_entry NULL
508 #endif /* CONFIG_HUGETLB_PAGE */
509
510 static int hmm_vma_walk_test(unsigned long start, unsigned long end,
511                              struct mm_walk *walk)
512 {
513         struct hmm_vma_walk *hmm_vma_walk = walk->private;
514         struct hmm_range *range = hmm_vma_walk->range;
515         struct vm_area_struct *vma = walk->vma;
516
517         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP | VM_MIXEDMAP)) &&
518             vma->vm_flags & VM_READ)
519                 return 0;
520
521         /*
522          * vma ranges that don't have struct page backing them or map I/O
523          * devices directly cannot be handled by hmm_range_fault().
524          *
525          * If the vma does not allow read access, then assume that it does not
526          * allow write access either. HMM does not support architectures that
527          * allow write without read.
528          *
529          * If a fault is requested for an unsupported range then it is a hard
530          * failure.
531          */
532         if (hmm_range_need_fault(hmm_vma_walk,
533                                  range->hmm_pfns +
534                                          ((start - range->start) >> PAGE_SHIFT),
535                                  (end - start) >> PAGE_SHIFT, 0))
536                 return -EFAULT;
537
538         hmm_pfns_fill(start, end, range, HMM_PFN_ERROR);
539
540         /* Skip this vma and continue processing the next vma. */
541         return 1;
542 }
543
544 static const struct mm_walk_ops hmm_walk_ops = {
545         .pud_entry      = hmm_vma_walk_pud,
546         .pmd_entry      = hmm_vma_walk_pmd,
547         .pte_hole       = hmm_vma_walk_hole,
548         .hugetlb_entry  = hmm_vma_walk_hugetlb_entry,
549         .test_walk      = hmm_vma_walk_test,
550 };
551
552 /**
553  * hmm_range_fault - try to fault some address in a virtual address range
554  * @range:      argument structure
555  *
556  * Returns 0 on success or one of the following error codes:
557  *
558  * -EINVAL:     Invalid arguments or mm or virtual address is in an invalid vma
559  *              (e.g., device file vma).
560  * -ENOMEM:     Out of memory.
561  * -EPERM:      Invalid permission (e.g., asking for write and range is read
562  *              only).
563  * -EBUSY:      The range has been invalidated and the caller needs to wait for
564  *              the invalidation to finish.
565  * -EFAULT:     A page was requested to be valid and could not be made valid
566  *              ie it has no backing VMA or it is illegal to access
567  *
568  * This is similar to get_user_pages(), except that it can read the page tables
569  * without mutating them (ie causing faults).
570  */
571 int hmm_range_fault(struct hmm_range *range)
572 {
573         struct hmm_vma_walk hmm_vma_walk = {
574                 .range = range,
575                 .last = range->start,
576         };
577         struct mm_struct *mm = range->notifier->mm;
578         int ret;
579
580         mmap_assert_locked(mm);
581
582         do {
583                 /* If range is no longer valid force retry. */
584                 if (mmu_interval_check_retry(range->notifier,
585                                              range->notifier_seq))
586                         return -EBUSY;
587                 ret = walk_page_range(mm, hmm_vma_walk.last, range->end,
588                                       &hmm_walk_ops, &hmm_vma_walk);
589                 /*
590                  * When -EBUSY is returned the loop restarts with
591                  * hmm_vma_walk.last set to an address that has not been stored
592                  * in pfns. All entries < last in the pfn array are set to their
593                  * output, and all >= are still at their input values.
594                  */
595         } while (ret == -EBUSY);
596         return ret;
597 }
598 EXPORT_SYMBOL(hmm_range_fault);