Merge tag 's390-5.2-3' of git://git.kernel.org/pub/scm/linux/kernel/git/s390/linux
[platform/kernel/linux-rpi.git] / mm / hmm.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright 2013 Red Hat Inc.
4  *
5  * Authors: Jérôme Glisse <jglisse@redhat.com>
6  */
7 /*
8  * Refer to include/linux/hmm.h for information about heterogeneous memory
9  * management or HMM for short.
10  */
11 #include <linux/mm.h>
12 #include <linux/hmm.h>
13 #include <linux/init.h>
14 #include <linux/rmap.h>
15 #include <linux/swap.h>
16 #include <linux/slab.h>
17 #include <linux/sched.h>
18 #include <linux/mmzone.h>
19 #include <linux/pagemap.h>
20 #include <linux/swapops.h>
21 #include <linux/hugetlb.h>
22 #include <linux/memremap.h>
23 #include <linux/jump_label.h>
24 #include <linux/dma-mapping.h>
25 #include <linux/mmu_notifier.h>
26 #include <linux/memory_hotplug.h>
27
28 #define PA_SECTION_SIZE (1UL << PA_SECTION_SHIFT)
29
30 #if IS_ENABLED(CONFIG_HMM_MIRROR)
31 static const struct mmu_notifier_ops hmm_mmu_notifier_ops;
32
33 static inline struct hmm *mm_get_hmm(struct mm_struct *mm)
34 {
35         struct hmm *hmm = READ_ONCE(mm->hmm);
36
37         if (hmm && kref_get_unless_zero(&hmm->kref))
38                 return hmm;
39
40         return NULL;
41 }
42
43 /**
44  * hmm_get_or_create - register HMM against an mm (HMM internal)
45  *
46  * @mm: mm struct to attach to
47  * Returns: returns an HMM object, either by referencing the existing
48  *          (per-process) object, or by creating a new one.
49  *
50  * This is not intended to be used directly by device drivers. If mm already
51  * has an HMM struct then it get a reference on it and returns it. Otherwise
52  * it allocates an HMM struct, initializes it, associate it with the mm and
53  * returns it.
54  */
55 static struct hmm *hmm_get_or_create(struct mm_struct *mm)
56 {
57         struct hmm *hmm = mm_get_hmm(mm);
58         bool cleanup = false;
59
60         if (hmm)
61                 return hmm;
62
63         hmm = kmalloc(sizeof(*hmm), GFP_KERNEL);
64         if (!hmm)
65                 return NULL;
66         init_waitqueue_head(&hmm->wq);
67         INIT_LIST_HEAD(&hmm->mirrors);
68         init_rwsem(&hmm->mirrors_sem);
69         hmm->mmu_notifier.ops = NULL;
70         INIT_LIST_HEAD(&hmm->ranges);
71         mutex_init(&hmm->lock);
72         kref_init(&hmm->kref);
73         hmm->notifiers = 0;
74         hmm->dead = false;
75         hmm->mm = mm;
76
77         spin_lock(&mm->page_table_lock);
78         if (!mm->hmm)
79                 mm->hmm = hmm;
80         else
81                 cleanup = true;
82         spin_unlock(&mm->page_table_lock);
83
84         if (cleanup)
85                 goto error;
86
87         /*
88          * We should only get here if hold the mmap_sem in write mode ie on
89          * registration of first mirror through hmm_mirror_register()
90          */
91         hmm->mmu_notifier.ops = &hmm_mmu_notifier_ops;
92         if (__mmu_notifier_register(&hmm->mmu_notifier, mm))
93                 goto error_mm;
94
95         return hmm;
96
97 error_mm:
98         spin_lock(&mm->page_table_lock);
99         if (mm->hmm == hmm)
100                 mm->hmm = NULL;
101         spin_unlock(&mm->page_table_lock);
102 error:
103         kfree(hmm);
104         return NULL;
105 }
106
107 static void hmm_free(struct kref *kref)
108 {
109         struct hmm *hmm = container_of(kref, struct hmm, kref);
110         struct mm_struct *mm = hmm->mm;
111
112         mmu_notifier_unregister_no_release(&hmm->mmu_notifier, mm);
113
114         spin_lock(&mm->page_table_lock);
115         if (mm->hmm == hmm)
116                 mm->hmm = NULL;
117         spin_unlock(&mm->page_table_lock);
118
119         kfree(hmm);
120 }
121
122 static inline void hmm_put(struct hmm *hmm)
123 {
124         kref_put(&hmm->kref, hmm_free);
125 }
126
127 void hmm_mm_destroy(struct mm_struct *mm)
128 {
129         struct hmm *hmm;
130
131         spin_lock(&mm->page_table_lock);
132         hmm = mm_get_hmm(mm);
133         mm->hmm = NULL;
134         if (hmm) {
135                 hmm->mm = NULL;
136                 hmm->dead = true;
137                 spin_unlock(&mm->page_table_lock);
138                 hmm_put(hmm);
139                 return;
140         }
141
142         spin_unlock(&mm->page_table_lock);
143 }
144
145 static void hmm_release(struct mmu_notifier *mn, struct mm_struct *mm)
146 {
147         struct hmm *hmm = mm_get_hmm(mm);
148         struct hmm_mirror *mirror;
149         struct hmm_range *range;
150
151         /* Report this HMM as dying. */
152         hmm->dead = true;
153
154         /* Wake-up everyone waiting on any range. */
155         mutex_lock(&hmm->lock);
156         list_for_each_entry(range, &hmm->ranges, list) {
157                 range->valid = false;
158         }
159         wake_up_all(&hmm->wq);
160         mutex_unlock(&hmm->lock);
161
162         down_write(&hmm->mirrors_sem);
163         mirror = list_first_entry_or_null(&hmm->mirrors, struct hmm_mirror,
164                                           list);
165         while (mirror) {
166                 list_del_init(&mirror->list);
167                 if (mirror->ops->release) {
168                         /*
169                          * Drop mirrors_sem so callback can wait on any pending
170                          * work that might itself trigger mmu_notifier callback
171                          * and thus would deadlock with us.
172                          */
173                         up_write(&hmm->mirrors_sem);
174                         mirror->ops->release(mirror);
175                         down_write(&hmm->mirrors_sem);
176                 }
177                 mirror = list_first_entry_or_null(&hmm->mirrors,
178                                                   struct hmm_mirror, list);
179         }
180         up_write(&hmm->mirrors_sem);
181
182         hmm_put(hmm);
183 }
184
185 static int hmm_invalidate_range_start(struct mmu_notifier *mn,
186                         const struct mmu_notifier_range *nrange)
187 {
188         struct hmm *hmm = mm_get_hmm(nrange->mm);
189         struct hmm_mirror *mirror;
190         struct hmm_update update;
191         struct hmm_range *range;
192         int ret = 0;
193
194         VM_BUG_ON(!hmm);
195
196         update.start = nrange->start;
197         update.end = nrange->end;
198         update.event = HMM_UPDATE_INVALIDATE;
199         update.blockable = mmu_notifier_range_blockable(nrange);
200
201         if (mmu_notifier_range_blockable(nrange))
202                 mutex_lock(&hmm->lock);
203         else if (!mutex_trylock(&hmm->lock)) {
204                 ret = -EAGAIN;
205                 goto out;
206         }
207         hmm->notifiers++;
208         list_for_each_entry(range, &hmm->ranges, list) {
209                 if (update.end < range->start || update.start >= range->end)
210                         continue;
211
212                 range->valid = false;
213         }
214         mutex_unlock(&hmm->lock);
215
216         if (mmu_notifier_range_blockable(nrange))
217                 down_read(&hmm->mirrors_sem);
218         else if (!down_read_trylock(&hmm->mirrors_sem)) {
219                 ret = -EAGAIN;
220                 goto out;
221         }
222         list_for_each_entry(mirror, &hmm->mirrors, list) {
223                 int ret;
224
225                 ret = mirror->ops->sync_cpu_device_pagetables(mirror, &update);
226                 if (!update.blockable && ret == -EAGAIN) {
227                         up_read(&hmm->mirrors_sem);
228                         ret = -EAGAIN;
229                         goto out;
230                 }
231         }
232         up_read(&hmm->mirrors_sem);
233
234 out:
235         hmm_put(hmm);
236         return ret;
237 }
238
239 static void hmm_invalidate_range_end(struct mmu_notifier *mn,
240                         const struct mmu_notifier_range *nrange)
241 {
242         struct hmm *hmm = mm_get_hmm(nrange->mm);
243
244         VM_BUG_ON(!hmm);
245
246         mutex_lock(&hmm->lock);
247         hmm->notifiers--;
248         if (!hmm->notifiers) {
249                 struct hmm_range *range;
250
251                 list_for_each_entry(range, &hmm->ranges, list) {
252                         if (range->valid)
253                                 continue;
254                         range->valid = true;
255                 }
256                 wake_up_all(&hmm->wq);
257         }
258         mutex_unlock(&hmm->lock);
259
260         hmm_put(hmm);
261 }
262
263 static const struct mmu_notifier_ops hmm_mmu_notifier_ops = {
264         .release                = hmm_release,
265         .invalidate_range_start = hmm_invalidate_range_start,
266         .invalidate_range_end   = hmm_invalidate_range_end,
267 };
268
269 /*
270  * hmm_mirror_register() - register a mirror against an mm
271  *
272  * @mirror: new mirror struct to register
273  * @mm: mm to register against
274  *
275  * To start mirroring a process address space, the device driver must register
276  * an HMM mirror struct.
277  *
278  * THE mm->mmap_sem MUST BE HELD IN WRITE MODE !
279  */
280 int hmm_mirror_register(struct hmm_mirror *mirror, struct mm_struct *mm)
281 {
282         /* Sanity check */
283         if (!mm || !mirror || !mirror->ops)
284                 return -EINVAL;
285
286         mirror->hmm = hmm_get_or_create(mm);
287         if (!mirror->hmm)
288                 return -ENOMEM;
289
290         down_write(&mirror->hmm->mirrors_sem);
291         list_add(&mirror->list, &mirror->hmm->mirrors);
292         up_write(&mirror->hmm->mirrors_sem);
293
294         return 0;
295 }
296 EXPORT_SYMBOL(hmm_mirror_register);
297
298 /*
299  * hmm_mirror_unregister() - unregister a mirror
300  *
301  * @mirror: new mirror struct to register
302  *
303  * Stop mirroring a process address space, and cleanup.
304  */
305 void hmm_mirror_unregister(struct hmm_mirror *mirror)
306 {
307         struct hmm *hmm = READ_ONCE(mirror->hmm);
308
309         if (hmm == NULL)
310                 return;
311
312         down_write(&hmm->mirrors_sem);
313         list_del_init(&mirror->list);
314         /* To protect us against double unregister ... */
315         mirror->hmm = NULL;
316         up_write(&hmm->mirrors_sem);
317
318         hmm_put(hmm);
319 }
320 EXPORT_SYMBOL(hmm_mirror_unregister);
321
322 struct hmm_vma_walk {
323         struct hmm_range        *range;
324         struct dev_pagemap      *pgmap;
325         unsigned long           last;
326         bool                    fault;
327         bool                    block;
328 };
329
330 static int hmm_vma_do_fault(struct mm_walk *walk, unsigned long addr,
331                             bool write_fault, uint64_t *pfn)
332 {
333         unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_REMOTE;
334         struct hmm_vma_walk *hmm_vma_walk = walk->private;
335         struct hmm_range *range = hmm_vma_walk->range;
336         struct vm_area_struct *vma = walk->vma;
337         vm_fault_t ret;
338
339         flags |= hmm_vma_walk->block ? 0 : FAULT_FLAG_ALLOW_RETRY;
340         flags |= write_fault ? FAULT_FLAG_WRITE : 0;
341         ret = handle_mm_fault(vma, addr, flags);
342         if (ret & VM_FAULT_RETRY)
343                 return -EAGAIN;
344         if (ret & VM_FAULT_ERROR) {
345                 *pfn = range->values[HMM_PFN_ERROR];
346                 return -EFAULT;
347         }
348
349         return -EBUSY;
350 }
351
352 static int hmm_pfns_bad(unsigned long addr,
353                         unsigned long end,
354                         struct mm_walk *walk)
355 {
356         struct hmm_vma_walk *hmm_vma_walk = walk->private;
357         struct hmm_range *range = hmm_vma_walk->range;
358         uint64_t *pfns = range->pfns;
359         unsigned long i;
360
361         i = (addr - range->start) >> PAGE_SHIFT;
362         for (; addr < end; addr += PAGE_SIZE, i++)
363                 pfns[i] = range->values[HMM_PFN_ERROR];
364
365         return 0;
366 }
367
368 /*
369  * hmm_vma_walk_hole() - handle a range lacking valid pmd or pte(s)
370  * @start: range virtual start address (inclusive)
371  * @end: range virtual end address (exclusive)
372  * @fault: should we fault or not ?
373  * @write_fault: write fault ?
374  * @walk: mm_walk structure
375  * Returns: 0 on success, -EBUSY after page fault, or page fault error
376  *
377  * This function will be called whenever pmd_none() or pte_none() returns true,
378  * or whenever there is no page directory covering the virtual address range.
379  */
380 static int hmm_vma_walk_hole_(unsigned long addr, unsigned long end,
381                               bool fault, bool write_fault,
382                               struct mm_walk *walk)
383 {
384         struct hmm_vma_walk *hmm_vma_walk = walk->private;
385         struct hmm_range *range = hmm_vma_walk->range;
386         uint64_t *pfns = range->pfns;
387         unsigned long i, page_size;
388
389         hmm_vma_walk->last = addr;
390         page_size = hmm_range_page_size(range);
391         i = (addr - range->start) >> range->page_shift;
392
393         for (; addr < end; addr += page_size, i++) {
394                 pfns[i] = range->values[HMM_PFN_NONE];
395                 if (fault || write_fault) {
396                         int ret;
397
398                         ret = hmm_vma_do_fault(walk, addr, write_fault,
399                                                &pfns[i]);
400                         if (ret != -EBUSY)
401                                 return ret;
402                 }
403         }
404
405         return (fault || write_fault) ? -EBUSY : 0;
406 }
407
408 static inline void hmm_pte_need_fault(const struct hmm_vma_walk *hmm_vma_walk,
409                                       uint64_t pfns, uint64_t cpu_flags,
410                                       bool *fault, bool *write_fault)
411 {
412         struct hmm_range *range = hmm_vma_walk->range;
413
414         if (!hmm_vma_walk->fault)
415                 return;
416
417         /*
418          * So we not only consider the individual per page request we also
419          * consider the default flags requested for the range. The API can
420          * be use in 2 fashions. The first one where the HMM user coalesce
421          * multiple page fault into one request and set flags per pfns for
422          * of those faults. The second one where the HMM user want to pre-
423          * fault a range with specific flags. For the latter one it is a
424          * waste to have the user pre-fill the pfn arrays with a default
425          * flags value.
426          */
427         pfns = (pfns & range->pfn_flags_mask) | range->default_flags;
428
429         /* We aren't ask to do anything ... */
430         if (!(pfns & range->flags[HMM_PFN_VALID]))
431                 return;
432         /* If this is device memory than only fault if explicitly requested */
433         if ((cpu_flags & range->flags[HMM_PFN_DEVICE_PRIVATE])) {
434                 /* Do we fault on device memory ? */
435                 if (pfns & range->flags[HMM_PFN_DEVICE_PRIVATE]) {
436                         *write_fault = pfns & range->flags[HMM_PFN_WRITE];
437                         *fault = true;
438                 }
439                 return;
440         }
441
442         /* If CPU page table is not valid then we need to fault */
443         *fault = !(cpu_flags & range->flags[HMM_PFN_VALID]);
444         /* Need to write fault ? */
445         if ((pfns & range->flags[HMM_PFN_WRITE]) &&
446             !(cpu_flags & range->flags[HMM_PFN_WRITE])) {
447                 *write_fault = true;
448                 *fault = true;
449         }
450 }
451
452 static void hmm_range_need_fault(const struct hmm_vma_walk *hmm_vma_walk,
453                                  const uint64_t *pfns, unsigned long npages,
454                                  uint64_t cpu_flags, bool *fault,
455                                  bool *write_fault)
456 {
457         unsigned long i;
458
459         if (!hmm_vma_walk->fault) {
460                 *fault = *write_fault = false;
461                 return;
462         }
463
464         *fault = *write_fault = false;
465         for (i = 0; i < npages; ++i) {
466                 hmm_pte_need_fault(hmm_vma_walk, pfns[i], cpu_flags,
467                                    fault, write_fault);
468                 if ((*write_fault))
469                         return;
470         }
471 }
472
473 static int hmm_vma_walk_hole(unsigned long addr, unsigned long end,
474                              struct mm_walk *walk)
475 {
476         struct hmm_vma_walk *hmm_vma_walk = walk->private;
477         struct hmm_range *range = hmm_vma_walk->range;
478         bool fault, write_fault;
479         unsigned long i, npages;
480         uint64_t *pfns;
481
482         i = (addr - range->start) >> PAGE_SHIFT;
483         npages = (end - addr) >> PAGE_SHIFT;
484         pfns = &range->pfns[i];
485         hmm_range_need_fault(hmm_vma_walk, pfns, npages,
486                              0, &fault, &write_fault);
487         return hmm_vma_walk_hole_(addr, end, fault, write_fault, walk);
488 }
489
490 static inline uint64_t pmd_to_hmm_pfn_flags(struct hmm_range *range, pmd_t pmd)
491 {
492         if (pmd_protnone(pmd))
493                 return 0;
494         return pmd_write(pmd) ? range->flags[HMM_PFN_VALID] |
495                                 range->flags[HMM_PFN_WRITE] :
496                                 range->flags[HMM_PFN_VALID];
497 }
498
499 static inline uint64_t pud_to_hmm_pfn_flags(struct hmm_range *range, pud_t pud)
500 {
501         if (!pud_present(pud))
502                 return 0;
503         return pud_write(pud) ? range->flags[HMM_PFN_VALID] |
504                                 range->flags[HMM_PFN_WRITE] :
505                                 range->flags[HMM_PFN_VALID];
506 }
507
508 static int hmm_vma_handle_pmd(struct mm_walk *walk,
509                               unsigned long addr,
510                               unsigned long end,
511                               uint64_t *pfns,
512                               pmd_t pmd)
513 {
514 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
515         struct hmm_vma_walk *hmm_vma_walk = walk->private;
516         struct hmm_range *range = hmm_vma_walk->range;
517         unsigned long pfn, npages, i;
518         bool fault, write_fault;
519         uint64_t cpu_flags;
520
521         npages = (end - addr) >> PAGE_SHIFT;
522         cpu_flags = pmd_to_hmm_pfn_flags(range, pmd);
523         hmm_range_need_fault(hmm_vma_walk, pfns, npages, cpu_flags,
524                              &fault, &write_fault);
525
526         if (pmd_protnone(pmd) || fault || write_fault)
527                 return hmm_vma_walk_hole_(addr, end, fault, write_fault, walk);
528
529         pfn = pmd_pfn(pmd) + pte_index(addr);
530         for (i = 0; addr < end; addr += PAGE_SIZE, i++, pfn++) {
531                 if (pmd_devmap(pmd)) {
532                         hmm_vma_walk->pgmap = get_dev_pagemap(pfn,
533                                               hmm_vma_walk->pgmap);
534                         if (unlikely(!hmm_vma_walk->pgmap))
535                                 return -EBUSY;
536                 }
537                 pfns[i] = hmm_device_entry_from_pfn(range, pfn) | cpu_flags;
538         }
539         if (hmm_vma_walk->pgmap) {
540                 put_dev_pagemap(hmm_vma_walk->pgmap);
541                 hmm_vma_walk->pgmap = NULL;
542         }
543         hmm_vma_walk->last = end;
544         return 0;
545 #else
546         /* If THP is not enabled then we should never reach that code ! */
547         return -EINVAL;
548 #endif
549 }
550
551 static inline uint64_t pte_to_hmm_pfn_flags(struct hmm_range *range, pte_t pte)
552 {
553         if (pte_none(pte) || !pte_present(pte))
554                 return 0;
555         return pte_write(pte) ? range->flags[HMM_PFN_VALID] |
556                                 range->flags[HMM_PFN_WRITE] :
557                                 range->flags[HMM_PFN_VALID];
558 }
559
560 static int hmm_vma_handle_pte(struct mm_walk *walk, unsigned long addr,
561                               unsigned long end, pmd_t *pmdp, pte_t *ptep,
562                               uint64_t *pfn)
563 {
564         struct hmm_vma_walk *hmm_vma_walk = walk->private;
565         struct hmm_range *range = hmm_vma_walk->range;
566         struct vm_area_struct *vma = walk->vma;
567         bool fault, write_fault;
568         uint64_t cpu_flags;
569         pte_t pte = *ptep;
570         uint64_t orig_pfn = *pfn;
571
572         *pfn = range->values[HMM_PFN_NONE];
573         fault = write_fault = false;
574
575         if (pte_none(pte)) {
576                 hmm_pte_need_fault(hmm_vma_walk, orig_pfn, 0,
577                                    &fault, &write_fault);
578                 if (fault || write_fault)
579                         goto fault;
580                 return 0;
581         }
582
583         if (!pte_present(pte)) {
584                 swp_entry_t entry = pte_to_swp_entry(pte);
585
586                 if (!non_swap_entry(entry)) {
587                         if (fault || write_fault)
588                                 goto fault;
589                         return 0;
590                 }
591
592                 /*
593                  * This is a special swap entry, ignore migration, use
594                  * device and report anything else as error.
595                  */
596                 if (is_device_private_entry(entry)) {
597                         cpu_flags = range->flags[HMM_PFN_VALID] |
598                                 range->flags[HMM_PFN_DEVICE_PRIVATE];
599                         cpu_flags |= is_write_device_private_entry(entry) ?
600                                 range->flags[HMM_PFN_WRITE] : 0;
601                         hmm_pte_need_fault(hmm_vma_walk, orig_pfn, cpu_flags,
602                                            &fault, &write_fault);
603                         if (fault || write_fault)
604                                 goto fault;
605                         *pfn = hmm_device_entry_from_pfn(range,
606                                             swp_offset(entry));
607                         *pfn |= cpu_flags;
608                         return 0;
609                 }
610
611                 if (is_migration_entry(entry)) {
612                         if (fault || write_fault) {
613                                 pte_unmap(ptep);
614                                 hmm_vma_walk->last = addr;
615                                 migration_entry_wait(vma->vm_mm,
616                                                      pmdp, addr);
617                                 return -EBUSY;
618                         }
619                         return 0;
620                 }
621
622                 /* Report error for everything else */
623                 *pfn = range->values[HMM_PFN_ERROR];
624                 return -EFAULT;
625         } else {
626                 cpu_flags = pte_to_hmm_pfn_flags(range, pte);
627                 hmm_pte_need_fault(hmm_vma_walk, orig_pfn, cpu_flags,
628                                    &fault, &write_fault);
629         }
630
631         if (fault || write_fault)
632                 goto fault;
633
634         if (pte_devmap(pte)) {
635                 hmm_vma_walk->pgmap = get_dev_pagemap(pte_pfn(pte),
636                                               hmm_vma_walk->pgmap);
637                 if (unlikely(!hmm_vma_walk->pgmap))
638                         return -EBUSY;
639         } else if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) && pte_special(pte)) {
640                 *pfn = range->values[HMM_PFN_SPECIAL];
641                 return -EFAULT;
642         }
643
644         *pfn = hmm_device_entry_from_pfn(range, pte_pfn(pte)) | cpu_flags;
645         return 0;
646
647 fault:
648         if (hmm_vma_walk->pgmap) {
649                 put_dev_pagemap(hmm_vma_walk->pgmap);
650                 hmm_vma_walk->pgmap = NULL;
651         }
652         pte_unmap(ptep);
653         /* Fault any virtual address we were asked to fault */
654         return hmm_vma_walk_hole_(addr, end, fault, write_fault, walk);
655 }
656
657 static int hmm_vma_walk_pmd(pmd_t *pmdp,
658                             unsigned long start,
659                             unsigned long end,
660                             struct mm_walk *walk)
661 {
662         struct hmm_vma_walk *hmm_vma_walk = walk->private;
663         struct hmm_range *range = hmm_vma_walk->range;
664         struct vm_area_struct *vma = walk->vma;
665         uint64_t *pfns = range->pfns;
666         unsigned long addr = start, i;
667         pte_t *ptep;
668         pmd_t pmd;
669
670
671 again:
672         pmd = READ_ONCE(*pmdp);
673         if (pmd_none(pmd))
674                 return hmm_vma_walk_hole(start, end, walk);
675
676         if (pmd_huge(pmd) && (range->vma->vm_flags & VM_HUGETLB))
677                 return hmm_pfns_bad(start, end, walk);
678
679         if (thp_migration_supported() && is_pmd_migration_entry(pmd)) {
680                 bool fault, write_fault;
681                 unsigned long npages;
682                 uint64_t *pfns;
683
684                 i = (addr - range->start) >> PAGE_SHIFT;
685                 npages = (end - addr) >> PAGE_SHIFT;
686                 pfns = &range->pfns[i];
687
688                 hmm_range_need_fault(hmm_vma_walk, pfns, npages,
689                                      0, &fault, &write_fault);
690                 if (fault || write_fault) {
691                         hmm_vma_walk->last = addr;
692                         pmd_migration_entry_wait(vma->vm_mm, pmdp);
693                         return -EBUSY;
694                 }
695                 return 0;
696         } else if (!pmd_present(pmd))
697                 return hmm_pfns_bad(start, end, walk);
698
699         if (pmd_devmap(pmd) || pmd_trans_huge(pmd)) {
700                 /*
701                  * No need to take pmd_lock here, even if some other threads
702                  * is splitting the huge pmd we will get that event through
703                  * mmu_notifier callback.
704                  *
705                  * So just read pmd value and check again its a transparent
706                  * huge or device mapping one and compute corresponding pfn
707                  * values.
708                  */
709                 pmd = pmd_read_atomic(pmdp);
710                 barrier();
711                 if (!pmd_devmap(pmd) && !pmd_trans_huge(pmd))
712                         goto again;
713
714                 i = (addr - range->start) >> PAGE_SHIFT;
715                 return hmm_vma_handle_pmd(walk, addr, end, &pfns[i], pmd);
716         }
717
718         /*
719          * We have handled all the valid case above ie either none, migration,
720          * huge or transparent huge. At this point either it is a valid pmd
721          * entry pointing to pte directory or it is a bad pmd that will not
722          * recover.
723          */
724         if (pmd_bad(pmd))
725                 return hmm_pfns_bad(start, end, walk);
726
727         ptep = pte_offset_map(pmdp, addr);
728         i = (addr - range->start) >> PAGE_SHIFT;
729         for (; addr < end; addr += PAGE_SIZE, ptep++, i++) {
730                 int r;
731
732                 r = hmm_vma_handle_pte(walk, addr, end, pmdp, ptep, &pfns[i]);
733                 if (r) {
734                         /* hmm_vma_handle_pte() did unmap pte directory */
735                         hmm_vma_walk->last = addr;
736                         return r;
737                 }
738         }
739         if (hmm_vma_walk->pgmap) {
740                 /*
741                  * We do put_dev_pagemap() here and not in hmm_vma_handle_pte()
742                  * so that we can leverage get_dev_pagemap() optimization which
743                  * will not re-take a reference on a pgmap if we already have
744                  * one.
745                  */
746                 put_dev_pagemap(hmm_vma_walk->pgmap);
747                 hmm_vma_walk->pgmap = NULL;
748         }
749         pte_unmap(ptep - 1);
750
751         hmm_vma_walk->last = addr;
752         return 0;
753 }
754
755 static int hmm_vma_walk_pud(pud_t *pudp,
756                             unsigned long start,
757                             unsigned long end,
758                             struct mm_walk *walk)
759 {
760         struct hmm_vma_walk *hmm_vma_walk = walk->private;
761         struct hmm_range *range = hmm_vma_walk->range;
762         unsigned long addr = start, next;
763         pmd_t *pmdp;
764         pud_t pud;
765         int ret;
766
767 again:
768         pud = READ_ONCE(*pudp);
769         if (pud_none(pud))
770                 return hmm_vma_walk_hole(start, end, walk);
771
772         if (pud_huge(pud) && pud_devmap(pud)) {
773                 unsigned long i, npages, pfn;
774                 uint64_t *pfns, cpu_flags;
775                 bool fault, write_fault;
776
777                 if (!pud_present(pud))
778                         return hmm_vma_walk_hole(start, end, walk);
779
780                 i = (addr - range->start) >> PAGE_SHIFT;
781                 npages = (end - addr) >> PAGE_SHIFT;
782                 pfns = &range->pfns[i];
783
784                 cpu_flags = pud_to_hmm_pfn_flags(range, pud);
785                 hmm_range_need_fault(hmm_vma_walk, pfns, npages,
786                                      cpu_flags, &fault, &write_fault);
787                 if (fault || write_fault)
788                         return hmm_vma_walk_hole_(addr, end, fault,
789                                                 write_fault, walk);
790
791 #ifdef CONFIG_HUGETLB_PAGE
792                 pfn = pud_pfn(pud) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
793                 for (i = 0; i < npages; ++i, ++pfn) {
794                         hmm_vma_walk->pgmap = get_dev_pagemap(pfn,
795                                               hmm_vma_walk->pgmap);
796                         if (unlikely(!hmm_vma_walk->pgmap))
797                                 return -EBUSY;
798                         pfns[i] = hmm_device_entry_from_pfn(range, pfn) |
799                                   cpu_flags;
800                 }
801                 if (hmm_vma_walk->pgmap) {
802                         put_dev_pagemap(hmm_vma_walk->pgmap);
803                         hmm_vma_walk->pgmap = NULL;
804                 }
805                 hmm_vma_walk->last = end;
806                 return 0;
807 #else
808                 return -EINVAL;
809 #endif
810         }
811
812         split_huge_pud(walk->vma, pudp, addr);
813         if (pud_none(*pudp))
814                 goto again;
815
816         pmdp = pmd_offset(pudp, addr);
817         do {
818                 next = pmd_addr_end(addr, end);
819                 ret = hmm_vma_walk_pmd(pmdp, addr, next, walk);
820                 if (ret)
821                         return ret;
822         } while (pmdp++, addr = next, addr != end);
823
824         return 0;
825 }
826
827 static int hmm_vma_walk_hugetlb_entry(pte_t *pte, unsigned long hmask,
828                                       unsigned long start, unsigned long end,
829                                       struct mm_walk *walk)
830 {
831 #ifdef CONFIG_HUGETLB_PAGE
832         unsigned long addr = start, i, pfn, mask, size, pfn_inc;
833         struct hmm_vma_walk *hmm_vma_walk = walk->private;
834         struct hmm_range *range = hmm_vma_walk->range;
835         struct vm_area_struct *vma = walk->vma;
836         struct hstate *h = hstate_vma(vma);
837         uint64_t orig_pfn, cpu_flags;
838         bool fault, write_fault;
839         spinlock_t *ptl;
840         pte_t entry;
841         int ret = 0;
842
843         size = 1UL << huge_page_shift(h);
844         mask = size - 1;
845         if (range->page_shift != PAGE_SHIFT) {
846                 /* Make sure we are looking at full page. */
847                 if (start & mask)
848                         return -EINVAL;
849                 if (end < (start + size))
850                         return -EINVAL;
851                 pfn_inc = size >> PAGE_SHIFT;
852         } else {
853                 pfn_inc = 1;
854                 size = PAGE_SIZE;
855         }
856
857
858         ptl = huge_pte_lock(hstate_vma(walk->vma), walk->mm, pte);
859         entry = huge_ptep_get(pte);
860
861         i = (start - range->start) >> range->page_shift;
862         orig_pfn = range->pfns[i];
863         range->pfns[i] = range->values[HMM_PFN_NONE];
864         cpu_flags = pte_to_hmm_pfn_flags(range, entry);
865         fault = write_fault = false;
866         hmm_pte_need_fault(hmm_vma_walk, orig_pfn, cpu_flags,
867                            &fault, &write_fault);
868         if (fault || write_fault) {
869                 ret = -ENOENT;
870                 goto unlock;
871         }
872
873         pfn = pte_pfn(entry) + ((start & mask) >> range->page_shift);
874         for (; addr < end; addr += size, i++, pfn += pfn_inc)
875                 range->pfns[i] = hmm_device_entry_from_pfn(range, pfn) |
876                                  cpu_flags;
877         hmm_vma_walk->last = end;
878
879 unlock:
880         spin_unlock(ptl);
881
882         if (ret == -ENOENT)
883                 return hmm_vma_walk_hole_(addr, end, fault, write_fault, walk);
884
885         return ret;
886 #else /* CONFIG_HUGETLB_PAGE */
887         return -EINVAL;
888 #endif
889 }
890
891 static void hmm_pfns_clear(struct hmm_range *range,
892                            uint64_t *pfns,
893                            unsigned long addr,
894                            unsigned long end)
895 {
896         for (; addr < end; addr += PAGE_SIZE, pfns++)
897                 *pfns = range->values[HMM_PFN_NONE];
898 }
899
900 /*
901  * hmm_range_register() - start tracking change to CPU page table over a range
902  * @range: range
903  * @mm: the mm struct for the range of virtual address
904  * @start: start virtual address (inclusive)
905  * @end: end virtual address (exclusive)
906  * @page_shift: expect page shift for the range
907  * Returns 0 on success, -EFAULT if the address space is no longer valid
908  *
909  * Track updates to the CPU page table see include/linux/hmm.h
910  */
911 int hmm_range_register(struct hmm_range *range,
912                        struct mm_struct *mm,
913                        unsigned long start,
914                        unsigned long end,
915                        unsigned page_shift)
916 {
917         unsigned long mask = ((1UL << page_shift) - 1UL);
918
919         range->valid = false;
920         range->hmm = NULL;
921
922         if ((start & mask) || (end & mask))
923                 return -EINVAL;
924         if (start >= end)
925                 return -EINVAL;
926
927         range->page_shift = page_shift;
928         range->start = start;
929         range->end = end;
930
931         range->hmm = hmm_get_or_create(mm);
932         if (!range->hmm)
933                 return -EFAULT;
934
935         /* Check if hmm_mm_destroy() was call. */
936         if (range->hmm->mm == NULL || range->hmm->dead) {
937                 hmm_put(range->hmm);
938                 return -EFAULT;
939         }
940
941         /* Initialize range to track CPU page table update */
942         mutex_lock(&range->hmm->lock);
943
944         list_add_rcu(&range->list, &range->hmm->ranges);
945
946         /*
947          * If there are any concurrent notifiers we have to wait for them for
948          * the range to be valid (see hmm_range_wait_until_valid()).
949          */
950         if (!range->hmm->notifiers)
951                 range->valid = true;
952         mutex_unlock(&range->hmm->lock);
953
954         return 0;
955 }
956 EXPORT_SYMBOL(hmm_range_register);
957
958 /*
959  * hmm_range_unregister() - stop tracking change to CPU page table over a range
960  * @range: range
961  *
962  * Range struct is used to track updates to the CPU page table after a call to
963  * hmm_range_register(). See include/linux/hmm.h for how to use it.
964  */
965 void hmm_range_unregister(struct hmm_range *range)
966 {
967         /* Sanity check this really should not happen. */
968         if (range->hmm == NULL || range->end <= range->start)
969                 return;
970
971         mutex_lock(&range->hmm->lock);
972         list_del_rcu(&range->list);
973         mutex_unlock(&range->hmm->lock);
974
975         /* Drop reference taken by hmm_range_register() */
976         range->valid = false;
977         hmm_put(range->hmm);
978         range->hmm = NULL;
979 }
980 EXPORT_SYMBOL(hmm_range_unregister);
981
982 /*
983  * hmm_range_snapshot() - snapshot CPU page table for a range
984  * @range: range
985  * Returns: -EINVAL if invalid argument, -ENOMEM out of memory, -EPERM invalid
986  *          permission (for instance asking for write and range is read only),
987  *          -EAGAIN if you need to retry, -EFAULT invalid (ie either no valid
988  *          vma or it is illegal to access that range), number of valid pages
989  *          in range->pfns[] (from range start address).
990  *
991  * This snapshots the CPU page table for a range of virtual addresses. Snapshot
992  * validity is tracked by range struct. See in include/linux/hmm.h for example
993  * on how to use.
994  */
995 long hmm_range_snapshot(struct hmm_range *range)
996 {
997         const unsigned long device_vma = VM_IO | VM_PFNMAP | VM_MIXEDMAP;
998         unsigned long start = range->start, end;
999         struct hmm_vma_walk hmm_vma_walk;
1000         struct hmm *hmm = range->hmm;
1001         struct vm_area_struct *vma;
1002         struct mm_walk mm_walk;
1003
1004         /* Check if hmm_mm_destroy() was call. */
1005         if (hmm->mm == NULL || hmm->dead)
1006                 return -EFAULT;
1007
1008         do {
1009                 /* If range is no longer valid force retry. */
1010                 if (!range->valid)
1011                         return -EAGAIN;
1012
1013                 vma = find_vma(hmm->mm, start);
1014                 if (vma == NULL || (vma->vm_flags & device_vma))
1015                         return -EFAULT;
1016
1017                 if (is_vm_hugetlb_page(vma)) {
1018                         struct hstate *h = hstate_vma(vma);
1019
1020                         if (huge_page_shift(h) != range->page_shift &&
1021                             range->page_shift != PAGE_SHIFT)
1022                                 return -EINVAL;
1023                 } else {
1024                         if (range->page_shift != PAGE_SHIFT)
1025                                 return -EINVAL;
1026                 }
1027
1028                 if (!(vma->vm_flags & VM_READ)) {
1029                         /*
1030                          * If vma do not allow read access, then assume that it
1031                          * does not allow write access, either. HMM does not
1032                          * support architecture that allow write without read.
1033                          */
1034                         hmm_pfns_clear(range, range->pfns,
1035                                 range->start, range->end);
1036                         return -EPERM;
1037                 }
1038
1039                 range->vma = vma;
1040                 hmm_vma_walk.pgmap = NULL;
1041                 hmm_vma_walk.last = start;
1042                 hmm_vma_walk.fault = false;
1043                 hmm_vma_walk.range = range;
1044                 mm_walk.private = &hmm_vma_walk;
1045                 end = min(range->end, vma->vm_end);
1046
1047                 mm_walk.vma = vma;
1048                 mm_walk.mm = vma->vm_mm;
1049                 mm_walk.pte_entry = NULL;
1050                 mm_walk.test_walk = NULL;
1051                 mm_walk.hugetlb_entry = NULL;
1052                 mm_walk.pud_entry = hmm_vma_walk_pud;
1053                 mm_walk.pmd_entry = hmm_vma_walk_pmd;
1054                 mm_walk.pte_hole = hmm_vma_walk_hole;
1055                 mm_walk.hugetlb_entry = hmm_vma_walk_hugetlb_entry;
1056
1057                 walk_page_range(start, end, &mm_walk);
1058                 start = end;
1059         } while (start < range->end);
1060
1061         return (hmm_vma_walk.last - range->start) >> PAGE_SHIFT;
1062 }
1063 EXPORT_SYMBOL(hmm_range_snapshot);
1064
1065 /*
1066  * hmm_range_fault() - try to fault some address in a virtual address range
1067  * @range: range being faulted
1068  * @block: allow blocking on fault (if true it sleeps and do not drop mmap_sem)
1069  * Returns: number of valid pages in range->pfns[] (from range start
1070  *          address). This may be zero. If the return value is negative,
1071  *          then one of the following values may be returned:
1072  *
1073  *           -EINVAL  invalid arguments or mm or virtual address are in an
1074  *                    invalid vma (for instance device file vma).
1075  *           -ENOMEM: Out of memory.
1076  *           -EPERM:  Invalid permission (for instance asking for write and
1077  *                    range is read only).
1078  *           -EAGAIN: If you need to retry and mmap_sem was drop. This can only
1079  *                    happens if block argument is false.
1080  *           -EBUSY:  If the the range is being invalidated and you should wait
1081  *                    for invalidation to finish.
1082  *           -EFAULT: Invalid (ie either no valid vma or it is illegal to access
1083  *                    that range), number of valid pages in range->pfns[] (from
1084  *                    range start address).
1085  *
1086  * This is similar to a regular CPU page fault except that it will not trigger
1087  * any memory migration if the memory being faulted is not accessible by CPUs
1088  * and caller does not ask for migration.
1089  *
1090  * On error, for one virtual address in the range, the function will mark the
1091  * corresponding HMM pfn entry with an error flag.
1092  */
1093 long hmm_range_fault(struct hmm_range *range, bool block)
1094 {
1095         const unsigned long device_vma = VM_IO | VM_PFNMAP | VM_MIXEDMAP;
1096         unsigned long start = range->start, end;
1097         struct hmm_vma_walk hmm_vma_walk;
1098         struct hmm *hmm = range->hmm;
1099         struct vm_area_struct *vma;
1100         struct mm_walk mm_walk;
1101         int ret;
1102
1103         /* Check if hmm_mm_destroy() was call. */
1104         if (hmm->mm == NULL || hmm->dead)
1105                 return -EFAULT;
1106
1107         do {
1108                 /* If range is no longer valid force retry. */
1109                 if (!range->valid) {
1110                         up_read(&hmm->mm->mmap_sem);
1111                         return -EAGAIN;
1112                 }
1113
1114                 vma = find_vma(hmm->mm, start);
1115                 if (vma == NULL || (vma->vm_flags & device_vma))
1116                         return -EFAULT;
1117
1118                 if (is_vm_hugetlb_page(vma)) {
1119                         if (huge_page_shift(hstate_vma(vma)) !=
1120                             range->page_shift &&
1121                             range->page_shift != PAGE_SHIFT)
1122                                 return -EINVAL;
1123                 } else {
1124                         if (range->page_shift != PAGE_SHIFT)
1125                                 return -EINVAL;
1126                 }
1127
1128                 if (!(vma->vm_flags & VM_READ)) {
1129                         /*
1130                          * If vma do not allow read access, then assume that it
1131                          * does not allow write access, either. HMM does not
1132                          * support architecture that allow write without read.
1133                          */
1134                         hmm_pfns_clear(range, range->pfns,
1135                                 range->start, range->end);
1136                         return -EPERM;
1137                 }
1138
1139                 range->vma = vma;
1140                 hmm_vma_walk.pgmap = NULL;
1141                 hmm_vma_walk.last = start;
1142                 hmm_vma_walk.fault = true;
1143                 hmm_vma_walk.block = block;
1144                 hmm_vma_walk.range = range;
1145                 mm_walk.private = &hmm_vma_walk;
1146                 end = min(range->end, vma->vm_end);
1147
1148                 mm_walk.vma = vma;
1149                 mm_walk.mm = vma->vm_mm;
1150                 mm_walk.pte_entry = NULL;
1151                 mm_walk.test_walk = NULL;
1152                 mm_walk.hugetlb_entry = NULL;
1153                 mm_walk.pud_entry = hmm_vma_walk_pud;
1154                 mm_walk.pmd_entry = hmm_vma_walk_pmd;
1155                 mm_walk.pte_hole = hmm_vma_walk_hole;
1156                 mm_walk.hugetlb_entry = hmm_vma_walk_hugetlb_entry;
1157
1158                 do {
1159                         ret = walk_page_range(start, end, &mm_walk);
1160                         start = hmm_vma_walk.last;
1161
1162                         /* Keep trying while the range is valid. */
1163                 } while (ret == -EBUSY && range->valid);
1164
1165                 if (ret) {
1166                         unsigned long i;
1167
1168                         i = (hmm_vma_walk.last - range->start) >> PAGE_SHIFT;
1169                         hmm_pfns_clear(range, &range->pfns[i],
1170                                 hmm_vma_walk.last, range->end);
1171                         return ret;
1172                 }
1173                 start = end;
1174
1175         } while (start < range->end);
1176
1177         return (hmm_vma_walk.last - range->start) >> PAGE_SHIFT;
1178 }
1179 EXPORT_SYMBOL(hmm_range_fault);
1180
1181 /**
1182  * hmm_range_dma_map() - hmm_range_fault() and dma map page all in one.
1183  * @range: range being faulted
1184  * @device: device against to dma map page to
1185  * @daddrs: dma address of mapped pages
1186  * @block: allow blocking on fault (if true it sleeps and do not drop mmap_sem)
1187  * Returns: number of pages mapped on success, -EAGAIN if mmap_sem have been
1188  *          drop and you need to try again, some other error value otherwise
1189  *
1190  * Note same usage pattern as hmm_range_fault().
1191  */
1192 long hmm_range_dma_map(struct hmm_range *range,
1193                        struct device *device,
1194                        dma_addr_t *daddrs,
1195                        bool block)
1196 {
1197         unsigned long i, npages, mapped;
1198         long ret;
1199
1200         ret = hmm_range_fault(range, block);
1201         if (ret <= 0)
1202                 return ret ? ret : -EBUSY;
1203
1204         npages = (range->end - range->start) >> PAGE_SHIFT;
1205         for (i = 0, mapped = 0; i < npages; ++i) {
1206                 enum dma_data_direction dir = DMA_TO_DEVICE;
1207                 struct page *page;
1208
1209                 /*
1210                  * FIXME need to update DMA API to provide invalid DMA address
1211                  * value instead of a function to test dma address value. This
1212                  * would remove lot of dumb code duplicated accross many arch.
1213                  *
1214                  * For now setting it to 0 here is good enough as the pfns[]
1215                  * value is what is use to check what is valid and what isn't.
1216                  */
1217                 daddrs[i] = 0;
1218
1219                 page = hmm_device_entry_to_page(range, range->pfns[i]);
1220                 if (page == NULL)
1221                         continue;
1222
1223                 /* Check if range is being invalidated */
1224                 if (!range->valid) {
1225                         ret = -EBUSY;
1226                         goto unmap;
1227                 }
1228
1229                 /* If it is read and write than map bi-directional. */
1230                 if (range->pfns[i] & range->flags[HMM_PFN_WRITE])
1231                         dir = DMA_BIDIRECTIONAL;
1232
1233                 daddrs[i] = dma_map_page(device, page, 0, PAGE_SIZE, dir);
1234                 if (dma_mapping_error(device, daddrs[i])) {
1235                         ret = -EFAULT;
1236                         goto unmap;
1237                 }
1238
1239                 mapped++;
1240         }
1241
1242         return mapped;
1243
1244 unmap:
1245         for (npages = i, i = 0; (i < npages) && mapped; ++i) {
1246                 enum dma_data_direction dir = DMA_TO_DEVICE;
1247                 struct page *page;
1248
1249                 page = hmm_device_entry_to_page(range, range->pfns[i]);
1250                 if (page == NULL)
1251                         continue;
1252
1253                 if (dma_mapping_error(device, daddrs[i]))
1254                         continue;
1255
1256                 /* If it is read and write than map bi-directional. */
1257                 if (range->pfns[i] & range->flags[HMM_PFN_WRITE])
1258                         dir = DMA_BIDIRECTIONAL;
1259
1260                 dma_unmap_page(device, daddrs[i], PAGE_SIZE, dir);
1261                 mapped--;
1262         }
1263
1264         return ret;
1265 }
1266 EXPORT_SYMBOL(hmm_range_dma_map);
1267
1268 /**
1269  * hmm_range_dma_unmap() - unmap range of that was map with hmm_range_dma_map()
1270  * @range: range being unmapped
1271  * @vma: the vma against which the range (optional)
1272  * @device: device against which dma map was done
1273  * @daddrs: dma address of mapped pages
1274  * @dirty: dirty page if it had the write flag set
1275  * Returns: number of page unmapped on success, -EINVAL otherwise
1276  *
1277  * Note that caller MUST abide by mmu notifier or use HMM mirror and abide
1278  * to the sync_cpu_device_pagetables() callback so that it is safe here to
1279  * call set_page_dirty(). Caller must also take appropriate locks to avoid
1280  * concurrent mmu notifier or sync_cpu_device_pagetables() to make progress.
1281  */
1282 long hmm_range_dma_unmap(struct hmm_range *range,
1283                          struct vm_area_struct *vma,
1284                          struct device *device,
1285                          dma_addr_t *daddrs,
1286                          bool dirty)
1287 {
1288         unsigned long i, npages;
1289         long cpages = 0;
1290
1291         /* Sanity check. */
1292         if (range->end <= range->start)
1293                 return -EINVAL;
1294         if (!daddrs)
1295                 return -EINVAL;
1296         if (!range->pfns)
1297                 return -EINVAL;
1298
1299         npages = (range->end - range->start) >> PAGE_SHIFT;
1300         for (i = 0; i < npages; ++i) {
1301                 enum dma_data_direction dir = DMA_TO_DEVICE;
1302                 struct page *page;
1303
1304                 page = hmm_device_entry_to_page(range, range->pfns[i]);
1305                 if (page == NULL)
1306                         continue;
1307
1308                 /* If it is read and write than map bi-directional. */
1309                 if (range->pfns[i] & range->flags[HMM_PFN_WRITE]) {
1310                         dir = DMA_BIDIRECTIONAL;
1311
1312                         /*
1313                          * See comments in function description on why it is
1314                          * safe here to call set_page_dirty()
1315                          */
1316                         if (dirty)
1317                                 set_page_dirty(page);
1318                 }
1319
1320                 /* Unmap and clear pfns/dma address */
1321                 dma_unmap_page(device, daddrs[i], PAGE_SIZE, dir);
1322                 range->pfns[i] = range->values[HMM_PFN_NONE];
1323                 /* FIXME see comments in hmm_vma_dma_map() */
1324                 daddrs[i] = 0;
1325                 cpages++;
1326         }
1327
1328         return cpages;
1329 }
1330 EXPORT_SYMBOL(hmm_range_dma_unmap);
1331 #endif /* IS_ENABLED(CONFIG_HMM_MIRROR) */
1332
1333
1334 #if IS_ENABLED(CONFIG_DEVICE_PRIVATE) ||  IS_ENABLED(CONFIG_DEVICE_PUBLIC)
1335 struct page *hmm_vma_alloc_locked_page(struct vm_area_struct *vma,
1336                                        unsigned long addr)
1337 {
1338         struct page *page;
1339
1340         page = alloc_page_vma(GFP_HIGHUSER, vma, addr);
1341         if (!page)
1342                 return NULL;
1343         lock_page(page);
1344         return page;
1345 }
1346 EXPORT_SYMBOL(hmm_vma_alloc_locked_page);
1347
1348
1349 static void hmm_devmem_ref_release(struct percpu_ref *ref)
1350 {
1351         struct hmm_devmem *devmem;
1352
1353         devmem = container_of(ref, struct hmm_devmem, ref);
1354         complete(&devmem->completion);
1355 }
1356
1357 static void hmm_devmem_ref_exit(void *data)
1358 {
1359         struct percpu_ref *ref = data;
1360         struct hmm_devmem *devmem;
1361
1362         devmem = container_of(ref, struct hmm_devmem, ref);
1363         wait_for_completion(&devmem->completion);
1364         percpu_ref_exit(ref);
1365 }
1366
1367 static void hmm_devmem_ref_kill(struct percpu_ref *ref)
1368 {
1369         percpu_ref_kill(ref);
1370 }
1371
1372 static vm_fault_t hmm_devmem_fault(struct vm_area_struct *vma,
1373                             unsigned long addr,
1374                             const struct page *page,
1375                             unsigned int flags,
1376                             pmd_t *pmdp)
1377 {
1378         struct hmm_devmem *devmem = page->pgmap->data;
1379
1380         return devmem->ops->fault(devmem, vma, addr, page, flags, pmdp);
1381 }
1382
1383 static void hmm_devmem_free(struct page *page, void *data)
1384 {
1385         struct hmm_devmem *devmem = data;
1386
1387         page->mapping = NULL;
1388
1389         devmem->ops->free(devmem, page);
1390 }
1391
1392 /*
1393  * hmm_devmem_add() - hotplug ZONE_DEVICE memory for device memory
1394  *
1395  * @ops: memory event device driver callback (see struct hmm_devmem_ops)
1396  * @device: device struct to bind the resource too
1397  * @size: size in bytes of the device memory to add
1398  * Returns: pointer to new hmm_devmem struct ERR_PTR otherwise
1399  *
1400  * This function first finds an empty range of physical address big enough to
1401  * contain the new resource, and then hotplugs it as ZONE_DEVICE memory, which
1402  * in turn allocates struct pages. It does not do anything beyond that; all
1403  * events affecting the memory will go through the various callbacks provided
1404  * by hmm_devmem_ops struct.
1405  *
1406  * Device driver should call this function during device initialization and
1407  * is then responsible of memory management. HMM only provides helpers.
1408  */
1409 struct hmm_devmem *hmm_devmem_add(const struct hmm_devmem_ops *ops,
1410                                   struct device *device,
1411                                   unsigned long size)
1412 {
1413         struct hmm_devmem *devmem;
1414         resource_size_t addr;
1415         void *result;
1416         int ret;
1417
1418         dev_pagemap_get_ops();
1419
1420         devmem = devm_kzalloc(device, sizeof(*devmem), GFP_KERNEL);
1421         if (!devmem)
1422                 return ERR_PTR(-ENOMEM);
1423
1424         init_completion(&devmem->completion);
1425         devmem->pfn_first = -1UL;
1426         devmem->pfn_last = -1UL;
1427         devmem->resource = NULL;
1428         devmem->device = device;
1429         devmem->ops = ops;
1430
1431         ret = percpu_ref_init(&devmem->ref, &hmm_devmem_ref_release,
1432                               0, GFP_KERNEL);
1433         if (ret)
1434                 return ERR_PTR(ret);
1435
1436         ret = devm_add_action_or_reset(device, hmm_devmem_ref_exit, &devmem->ref);
1437         if (ret)
1438                 return ERR_PTR(ret);
1439
1440         size = ALIGN(size, PA_SECTION_SIZE);
1441         addr = min((unsigned long)iomem_resource.end,
1442                    (1UL << MAX_PHYSMEM_BITS) - 1);
1443         addr = addr - size + 1UL;
1444
1445         /*
1446          * FIXME add a new helper to quickly walk resource tree and find free
1447          * range
1448          *
1449          * FIXME what about ioport_resource resource ?
1450          */
1451         for (; addr > size && addr >= iomem_resource.start; addr -= size) {
1452                 ret = region_intersects(addr, size, 0, IORES_DESC_NONE);
1453                 if (ret != REGION_DISJOINT)
1454                         continue;
1455
1456                 devmem->resource = devm_request_mem_region(device, addr, size,
1457                                                            dev_name(device));
1458                 if (!devmem->resource)
1459                         return ERR_PTR(-ENOMEM);
1460                 break;
1461         }
1462         if (!devmem->resource)
1463                 return ERR_PTR(-ERANGE);
1464
1465         devmem->resource->desc = IORES_DESC_DEVICE_PRIVATE_MEMORY;
1466         devmem->pfn_first = devmem->resource->start >> PAGE_SHIFT;
1467         devmem->pfn_last = devmem->pfn_first +
1468                            (resource_size(devmem->resource) >> PAGE_SHIFT);
1469         devmem->page_fault = hmm_devmem_fault;
1470
1471         devmem->pagemap.type = MEMORY_DEVICE_PRIVATE;
1472         devmem->pagemap.res = *devmem->resource;
1473         devmem->pagemap.page_free = hmm_devmem_free;
1474         devmem->pagemap.altmap_valid = false;
1475         devmem->pagemap.ref = &devmem->ref;
1476         devmem->pagemap.data = devmem;
1477         devmem->pagemap.kill = hmm_devmem_ref_kill;
1478
1479         result = devm_memremap_pages(devmem->device, &devmem->pagemap);
1480         if (IS_ERR(result))
1481                 return result;
1482         return devmem;
1483 }
1484 EXPORT_SYMBOL_GPL(hmm_devmem_add);
1485
1486 struct hmm_devmem *hmm_devmem_add_resource(const struct hmm_devmem_ops *ops,
1487                                            struct device *device,
1488                                            struct resource *res)
1489 {
1490         struct hmm_devmem *devmem;
1491         void *result;
1492         int ret;
1493
1494         if (res->desc != IORES_DESC_DEVICE_PUBLIC_MEMORY)
1495                 return ERR_PTR(-EINVAL);
1496
1497         dev_pagemap_get_ops();
1498
1499         devmem = devm_kzalloc(device, sizeof(*devmem), GFP_KERNEL);
1500         if (!devmem)
1501                 return ERR_PTR(-ENOMEM);
1502
1503         init_completion(&devmem->completion);
1504         devmem->pfn_first = -1UL;
1505         devmem->pfn_last = -1UL;
1506         devmem->resource = res;
1507         devmem->device = device;
1508         devmem->ops = ops;
1509
1510         ret = percpu_ref_init(&devmem->ref, &hmm_devmem_ref_release,
1511                               0, GFP_KERNEL);
1512         if (ret)
1513                 return ERR_PTR(ret);
1514
1515         ret = devm_add_action_or_reset(device, hmm_devmem_ref_exit,
1516                         &devmem->ref);
1517         if (ret)
1518                 return ERR_PTR(ret);
1519
1520         devmem->pfn_first = devmem->resource->start >> PAGE_SHIFT;
1521         devmem->pfn_last = devmem->pfn_first +
1522                            (resource_size(devmem->resource) >> PAGE_SHIFT);
1523         devmem->page_fault = hmm_devmem_fault;
1524
1525         devmem->pagemap.type = MEMORY_DEVICE_PUBLIC;
1526         devmem->pagemap.res = *devmem->resource;
1527         devmem->pagemap.page_free = hmm_devmem_free;
1528         devmem->pagemap.altmap_valid = false;
1529         devmem->pagemap.ref = &devmem->ref;
1530         devmem->pagemap.data = devmem;
1531         devmem->pagemap.kill = hmm_devmem_ref_kill;
1532
1533         result = devm_memremap_pages(devmem->device, &devmem->pagemap);
1534         if (IS_ERR(result))
1535                 return result;
1536         return devmem;
1537 }
1538 EXPORT_SYMBOL_GPL(hmm_devmem_add_resource);
1539
1540 /*
1541  * A device driver that wants to handle multiple devices memory through a
1542  * single fake device can use hmm_device to do so. This is purely a helper
1543  * and it is not needed to make use of any HMM functionality.
1544  */
1545 #define HMM_DEVICE_MAX 256
1546
1547 static DECLARE_BITMAP(hmm_device_mask, HMM_DEVICE_MAX);
1548 static DEFINE_SPINLOCK(hmm_device_lock);
1549 static struct class *hmm_device_class;
1550 static dev_t hmm_device_devt;
1551
1552 static void hmm_device_release(struct device *device)
1553 {
1554         struct hmm_device *hmm_device;
1555
1556         hmm_device = container_of(device, struct hmm_device, device);
1557         spin_lock(&hmm_device_lock);
1558         clear_bit(hmm_device->minor, hmm_device_mask);
1559         spin_unlock(&hmm_device_lock);
1560
1561         kfree(hmm_device);
1562 }
1563
1564 struct hmm_device *hmm_device_new(void *drvdata)
1565 {
1566         struct hmm_device *hmm_device;
1567
1568         hmm_device = kzalloc(sizeof(*hmm_device), GFP_KERNEL);
1569         if (!hmm_device)
1570                 return ERR_PTR(-ENOMEM);
1571
1572         spin_lock(&hmm_device_lock);
1573         hmm_device->minor = find_first_zero_bit(hmm_device_mask, HMM_DEVICE_MAX);
1574         if (hmm_device->minor >= HMM_DEVICE_MAX) {
1575                 spin_unlock(&hmm_device_lock);
1576                 kfree(hmm_device);
1577                 return ERR_PTR(-EBUSY);
1578         }
1579         set_bit(hmm_device->minor, hmm_device_mask);
1580         spin_unlock(&hmm_device_lock);
1581
1582         dev_set_name(&hmm_device->device, "hmm_device%d", hmm_device->minor);
1583         hmm_device->device.devt = MKDEV(MAJOR(hmm_device_devt),
1584                                         hmm_device->minor);
1585         hmm_device->device.release = hmm_device_release;
1586         dev_set_drvdata(&hmm_device->device, drvdata);
1587         hmm_device->device.class = hmm_device_class;
1588         device_initialize(&hmm_device->device);
1589
1590         return hmm_device;
1591 }
1592 EXPORT_SYMBOL(hmm_device_new);
1593
1594 void hmm_device_put(struct hmm_device *hmm_device)
1595 {
1596         put_device(&hmm_device->device);
1597 }
1598 EXPORT_SYMBOL(hmm_device_put);
1599
1600 static int __init hmm_init(void)
1601 {
1602         int ret;
1603
1604         ret = alloc_chrdev_region(&hmm_device_devt, 0,
1605                                   HMM_DEVICE_MAX,
1606                                   "hmm_device");
1607         if (ret)
1608                 return ret;
1609
1610         hmm_device_class = class_create(THIS_MODULE, "hmm_device");
1611         if (IS_ERR(hmm_device_class)) {
1612                 unregister_chrdev_region(hmm_device_devt, HMM_DEVICE_MAX);
1613                 return PTR_ERR(hmm_device_class);
1614         }
1615         return 0;
1616 }
1617
1618 device_initcall(hmm_init);
1619 #endif /* CONFIG_DEVICE_PRIVATE || CONFIG_DEVICE_PUBLIC */