Merge tag 'dmaengine-5.7-rc1' of git://git.infradead.org/users/vkoul/slave-dma
[platform/kernel/linux-rpi.git] / mm / hmm.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright 2013 Red Hat Inc.
4  *
5  * Authors: Jérôme Glisse <jglisse@redhat.com>
6  */
7 /*
8  * Refer to include/linux/hmm.h for information about heterogeneous memory
9  * management or HMM for short.
10  */
11 #include <linux/pagewalk.h>
12 #include <linux/hmm.h>
13 #include <linux/init.h>
14 #include <linux/rmap.h>
15 #include <linux/swap.h>
16 #include <linux/slab.h>
17 #include <linux/sched.h>
18 #include <linux/mmzone.h>
19 #include <linux/pagemap.h>
20 #include <linux/swapops.h>
21 #include <linux/hugetlb.h>
22 #include <linux/memremap.h>
23 #include <linux/sched/mm.h>
24 #include <linux/jump_label.h>
25 #include <linux/dma-mapping.h>
26 #include <linux/mmu_notifier.h>
27 #include <linux/memory_hotplug.h>
28
29 struct hmm_vma_walk {
30         struct hmm_range        *range;
31         unsigned long           last;
32 };
33
34 enum {
35         HMM_NEED_FAULT = 1 << 0,
36         HMM_NEED_WRITE_FAULT = 1 << 1,
37         HMM_NEED_ALL_BITS = HMM_NEED_FAULT | HMM_NEED_WRITE_FAULT,
38 };
39
40 /*
41  * hmm_device_entry_from_pfn() - create a valid device entry value from pfn
42  * @range: range use to encode HMM pfn value
43  * @pfn: pfn value for which to create the device entry
44  * Return: valid device entry for the pfn
45  */
46 static uint64_t hmm_device_entry_from_pfn(const struct hmm_range *range,
47                                           unsigned long pfn)
48 {
49         return (pfn << range->pfn_shift) | range->flags[HMM_PFN_VALID];
50 }
51
52 static int hmm_pfns_fill(unsigned long addr, unsigned long end,
53                 struct hmm_range *range, enum hmm_pfn_value_e value)
54 {
55         uint64_t *pfns = range->pfns;
56         unsigned long i;
57
58         i = (addr - range->start) >> PAGE_SHIFT;
59         for (; addr < end; addr += PAGE_SIZE, i++)
60                 pfns[i] = range->values[value];
61
62         return 0;
63 }
64
65 /*
66  * hmm_vma_fault() - fault in a range lacking valid pmd or pte(s)
67  * @addr: range virtual start address (inclusive)
68  * @end: range virtual end address (exclusive)
69  * @required_fault: HMM_NEED_* flags
70  * @walk: mm_walk structure
71  * Return: -EBUSY after page fault, or page fault error
72  *
73  * This function will be called whenever pmd_none() or pte_none() returns true,
74  * or whenever there is no page directory covering the virtual address range.
75  */
76 static int hmm_vma_fault(unsigned long addr, unsigned long end,
77                          unsigned int required_fault, struct mm_walk *walk)
78 {
79         struct hmm_vma_walk *hmm_vma_walk = walk->private;
80         struct vm_area_struct *vma = walk->vma;
81         unsigned int fault_flags = FAULT_FLAG_REMOTE;
82
83         WARN_ON_ONCE(!required_fault);
84         hmm_vma_walk->last = addr;
85
86         if (required_fault & HMM_NEED_WRITE_FAULT) {
87                 if (!(vma->vm_flags & VM_WRITE))
88                         return -EPERM;
89                 fault_flags |= FAULT_FLAG_WRITE;
90         }
91
92         for (; addr < end; addr += PAGE_SIZE)
93                 if (handle_mm_fault(vma, addr, fault_flags) & VM_FAULT_ERROR)
94                         return -EFAULT;
95         return -EBUSY;
96 }
97
98 static unsigned int hmm_pte_need_fault(const struct hmm_vma_walk *hmm_vma_walk,
99                                        uint64_t pfns, uint64_t cpu_flags)
100 {
101         struct hmm_range *range = hmm_vma_walk->range;
102
103         /*
104          * So we not only consider the individual per page request we also
105          * consider the default flags requested for the range. The API can
106          * be used 2 ways. The first one where the HMM user coalesces
107          * multiple page faults into one request and sets flags per pfn for
108          * those faults. The second one where the HMM user wants to pre-
109          * fault a range with specific flags. For the latter one it is a
110          * waste to have the user pre-fill the pfn arrays with a default
111          * flags value.
112          */
113         pfns = (pfns & range->pfn_flags_mask) | range->default_flags;
114
115         /* We aren't ask to do anything ... */
116         if (!(pfns & range->flags[HMM_PFN_VALID]))
117                 return 0;
118
119         /* Need to write fault ? */
120         if ((pfns & range->flags[HMM_PFN_WRITE]) &&
121             !(cpu_flags & range->flags[HMM_PFN_WRITE]))
122                 return HMM_NEED_FAULT | HMM_NEED_WRITE_FAULT;
123
124         /* If CPU page table is not valid then we need to fault */
125         if (!(cpu_flags & range->flags[HMM_PFN_VALID]))
126                 return HMM_NEED_FAULT;
127         return 0;
128 }
129
130 static unsigned int
131 hmm_range_need_fault(const struct hmm_vma_walk *hmm_vma_walk,
132                      const uint64_t *pfns, unsigned long npages,
133                      uint64_t cpu_flags)
134 {
135         struct hmm_range *range = hmm_vma_walk->range;
136         unsigned int required_fault = 0;
137         unsigned long i;
138
139         /*
140          * If the default flags do not request to fault pages, and the mask does
141          * not allow for individual pages to be faulted, then
142          * hmm_pte_need_fault() will always return 0.
143          */
144         if (!((range->default_flags | range->pfn_flags_mask) &
145               range->flags[HMM_PFN_VALID]))
146                 return 0;
147
148         for (i = 0; i < npages; ++i) {
149                 required_fault |=
150                         hmm_pte_need_fault(hmm_vma_walk, pfns[i], cpu_flags);
151                 if (required_fault == HMM_NEED_ALL_BITS)
152                         return required_fault;
153         }
154         return required_fault;
155 }
156
157 static int hmm_vma_walk_hole(unsigned long addr, unsigned long end,
158                              __always_unused int depth, struct mm_walk *walk)
159 {
160         struct hmm_vma_walk *hmm_vma_walk = walk->private;
161         struct hmm_range *range = hmm_vma_walk->range;
162         unsigned int required_fault;
163         unsigned long i, npages;
164         uint64_t *pfns;
165
166         i = (addr - range->start) >> PAGE_SHIFT;
167         npages = (end - addr) >> PAGE_SHIFT;
168         pfns = &range->pfns[i];
169         required_fault = hmm_range_need_fault(hmm_vma_walk, pfns, npages, 0);
170         if (!walk->vma) {
171                 if (required_fault)
172                         return -EFAULT;
173                 return hmm_pfns_fill(addr, end, range, HMM_PFN_ERROR);
174         }
175         if (required_fault)
176                 return hmm_vma_fault(addr, end, required_fault, walk);
177         hmm_vma_walk->last = addr;
178         return hmm_pfns_fill(addr, end, range, HMM_PFN_NONE);
179 }
180
181 static inline uint64_t pmd_to_hmm_pfn_flags(struct hmm_range *range, pmd_t pmd)
182 {
183         if (pmd_protnone(pmd))
184                 return 0;
185         return pmd_write(pmd) ? range->flags[HMM_PFN_VALID] |
186                                 range->flags[HMM_PFN_WRITE] :
187                                 range->flags[HMM_PFN_VALID];
188 }
189
190 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
191 static int hmm_vma_handle_pmd(struct mm_walk *walk, unsigned long addr,
192                 unsigned long end, uint64_t *pfns, pmd_t pmd)
193 {
194         struct hmm_vma_walk *hmm_vma_walk = walk->private;
195         struct hmm_range *range = hmm_vma_walk->range;
196         unsigned long pfn, npages, i;
197         unsigned int required_fault;
198         uint64_t cpu_flags;
199
200         npages = (end - addr) >> PAGE_SHIFT;
201         cpu_flags = pmd_to_hmm_pfn_flags(range, pmd);
202         required_fault =
203                 hmm_range_need_fault(hmm_vma_walk, pfns, npages, cpu_flags);
204         if (required_fault)
205                 return hmm_vma_fault(addr, end, required_fault, walk);
206
207         pfn = pmd_pfn(pmd) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
208         for (i = 0; addr < end; addr += PAGE_SIZE, i++, pfn++)
209                 pfns[i] = hmm_device_entry_from_pfn(range, pfn) | cpu_flags;
210         hmm_vma_walk->last = end;
211         return 0;
212 }
213 #else /* CONFIG_TRANSPARENT_HUGEPAGE */
214 /* stub to allow the code below to compile */
215 int hmm_vma_handle_pmd(struct mm_walk *walk, unsigned long addr,
216                 unsigned long end, uint64_t *pfns, pmd_t pmd);
217 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
218
219 static inline bool hmm_is_device_private_entry(struct hmm_range *range,
220                 swp_entry_t entry)
221 {
222         return is_device_private_entry(entry) &&
223                 device_private_entry_to_page(entry)->pgmap->owner ==
224                 range->dev_private_owner;
225 }
226
227 static inline uint64_t pte_to_hmm_pfn_flags(struct hmm_range *range, pte_t pte)
228 {
229         if (pte_none(pte) || !pte_present(pte) || pte_protnone(pte))
230                 return 0;
231         return pte_write(pte) ? range->flags[HMM_PFN_VALID] |
232                                 range->flags[HMM_PFN_WRITE] :
233                                 range->flags[HMM_PFN_VALID];
234 }
235
236 static int hmm_vma_handle_pte(struct mm_walk *walk, unsigned long addr,
237                               unsigned long end, pmd_t *pmdp, pte_t *ptep,
238                               uint64_t *pfn)
239 {
240         struct hmm_vma_walk *hmm_vma_walk = walk->private;
241         struct hmm_range *range = hmm_vma_walk->range;
242         unsigned int required_fault;
243         uint64_t cpu_flags;
244         pte_t pte = *ptep;
245         uint64_t orig_pfn = *pfn;
246
247         if (pte_none(pte)) {
248                 required_fault = hmm_pte_need_fault(hmm_vma_walk, orig_pfn, 0);
249                 if (required_fault)
250                         goto fault;
251                 *pfn = range->values[HMM_PFN_NONE];
252                 return 0;
253         }
254
255         if (!pte_present(pte)) {
256                 swp_entry_t entry = pte_to_swp_entry(pte);
257
258                 /*
259                  * Never fault in device private pages pages, but just report
260                  * the PFN even if not present.
261                  */
262                 if (hmm_is_device_private_entry(range, entry)) {
263                         *pfn = hmm_device_entry_from_pfn(range,
264                                 device_private_entry_to_pfn(entry));
265                         *pfn |= range->flags[HMM_PFN_VALID];
266                         if (is_write_device_private_entry(entry))
267                                 *pfn |= range->flags[HMM_PFN_WRITE];
268                         return 0;
269                 }
270
271                 required_fault = hmm_pte_need_fault(hmm_vma_walk, orig_pfn, 0);
272                 if (!required_fault) {
273                         *pfn = range->values[HMM_PFN_NONE];
274                         return 0;
275                 }
276
277                 if (!non_swap_entry(entry))
278                         goto fault;
279
280                 if (is_migration_entry(entry)) {
281                         pte_unmap(ptep);
282                         hmm_vma_walk->last = addr;
283                         migration_entry_wait(walk->mm, pmdp, addr);
284                         return -EBUSY;
285                 }
286
287                 /* Report error for everything else */
288                 pte_unmap(ptep);
289                 return -EFAULT;
290         }
291
292         cpu_flags = pte_to_hmm_pfn_flags(range, pte);
293         required_fault = hmm_pte_need_fault(hmm_vma_walk, orig_pfn, cpu_flags);
294         if (required_fault)
295                 goto fault;
296
297         /*
298          * Since each architecture defines a struct page for the zero page, just
299          * fall through and treat it like a normal page.
300          */
301         if (pte_special(pte) && !is_zero_pfn(pte_pfn(pte))) {
302                 if (hmm_pte_need_fault(hmm_vma_walk, orig_pfn, 0)) {
303                         pte_unmap(ptep);
304                         return -EFAULT;
305                 }
306                 *pfn = range->values[HMM_PFN_SPECIAL];
307                 return 0;
308         }
309
310         *pfn = hmm_device_entry_from_pfn(range, pte_pfn(pte)) | cpu_flags;
311         return 0;
312
313 fault:
314         pte_unmap(ptep);
315         /* Fault any virtual address we were asked to fault */
316         return hmm_vma_fault(addr, end, required_fault, walk);
317 }
318
319 static int hmm_vma_walk_pmd(pmd_t *pmdp,
320                             unsigned long start,
321                             unsigned long end,
322                             struct mm_walk *walk)
323 {
324         struct hmm_vma_walk *hmm_vma_walk = walk->private;
325         struct hmm_range *range = hmm_vma_walk->range;
326         uint64_t *pfns = &range->pfns[(start - range->start) >> PAGE_SHIFT];
327         unsigned long npages = (end - start) >> PAGE_SHIFT;
328         unsigned long addr = start;
329         pte_t *ptep;
330         pmd_t pmd;
331
332 again:
333         pmd = READ_ONCE(*pmdp);
334         if (pmd_none(pmd))
335                 return hmm_vma_walk_hole(start, end, -1, walk);
336
337         if (thp_migration_supported() && is_pmd_migration_entry(pmd)) {
338                 if (hmm_range_need_fault(hmm_vma_walk, pfns, npages, 0)) {
339                         hmm_vma_walk->last = addr;
340                         pmd_migration_entry_wait(walk->mm, pmdp);
341                         return -EBUSY;
342                 }
343                 return hmm_pfns_fill(start, end, range, HMM_PFN_NONE);
344         }
345
346         if (!pmd_present(pmd)) {
347                 if (hmm_range_need_fault(hmm_vma_walk, pfns, npages, 0))
348                         return -EFAULT;
349                 return hmm_pfns_fill(start, end, range, HMM_PFN_ERROR);
350         }
351
352         if (pmd_devmap(pmd) || pmd_trans_huge(pmd)) {
353                 /*
354                  * No need to take pmd_lock here, even if some other thread
355                  * is splitting the huge pmd we will get that event through
356                  * mmu_notifier callback.
357                  *
358                  * So just read pmd value and check again it's a transparent
359                  * huge or device mapping one and compute corresponding pfn
360                  * values.
361                  */
362                 pmd = pmd_read_atomic(pmdp);
363                 barrier();
364                 if (!pmd_devmap(pmd) && !pmd_trans_huge(pmd))
365                         goto again;
366
367                 return hmm_vma_handle_pmd(walk, addr, end, pfns, pmd);
368         }
369
370         /*
371          * We have handled all the valid cases above ie either none, migration,
372          * huge or transparent huge. At this point either it is a valid pmd
373          * entry pointing to pte directory or it is a bad pmd that will not
374          * recover.
375          */
376         if (pmd_bad(pmd)) {
377                 if (hmm_range_need_fault(hmm_vma_walk, pfns, npages, 0))
378                         return -EFAULT;
379                 return hmm_pfns_fill(start, end, range, HMM_PFN_ERROR);
380         }
381
382         ptep = pte_offset_map(pmdp, addr);
383         for (; addr < end; addr += PAGE_SIZE, ptep++, pfns++) {
384                 int r;
385
386                 r = hmm_vma_handle_pte(walk, addr, end, pmdp, ptep, pfns);
387                 if (r) {
388                         /* hmm_vma_handle_pte() did pte_unmap() */
389                         hmm_vma_walk->last = addr;
390                         return r;
391                 }
392         }
393         pte_unmap(ptep - 1);
394
395         hmm_vma_walk->last = addr;
396         return 0;
397 }
398
399 #if defined(CONFIG_ARCH_HAS_PTE_DEVMAP) && \
400     defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
401 static inline uint64_t pud_to_hmm_pfn_flags(struct hmm_range *range, pud_t pud)
402 {
403         if (!pud_present(pud))
404                 return 0;
405         return pud_write(pud) ? range->flags[HMM_PFN_VALID] |
406                                 range->flags[HMM_PFN_WRITE] :
407                                 range->flags[HMM_PFN_VALID];
408 }
409
410 static int hmm_vma_walk_pud(pud_t *pudp, unsigned long start, unsigned long end,
411                 struct mm_walk *walk)
412 {
413         struct hmm_vma_walk *hmm_vma_walk = walk->private;
414         struct hmm_range *range = hmm_vma_walk->range;
415         unsigned long addr = start;
416         pud_t pud;
417         int ret = 0;
418         spinlock_t *ptl = pud_trans_huge_lock(pudp, walk->vma);
419
420         if (!ptl)
421                 return 0;
422
423         /* Normally we don't want to split the huge page */
424         walk->action = ACTION_CONTINUE;
425
426         pud = READ_ONCE(*pudp);
427         if (pud_none(pud)) {
428                 spin_unlock(ptl);
429                 return hmm_vma_walk_hole(start, end, -1, walk);
430         }
431
432         if (pud_huge(pud) && pud_devmap(pud)) {
433                 unsigned long i, npages, pfn;
434                 unsigned int required_fault;
435                 uint64_t *pfns, cpu_flags;
436
437                 if (!pud_present(pud)) {
438                         spin_unlock(ptl);
439                         return hmm_vma_walk_hole(start, end, -1, walk);
440                 }
441
442                 i = (addr - range->start) >> PAGE_SHIFT;
443                 npages = (end - addr) >> PAGE_SHIFT;
444                 pfns = &range->pfns[i];
445
446                 cpu_flags = pud_to_hmm_pfn_flags(range, pud);
447                 required_fault = hmm_range_need_fault(hmm_vma_walk, pfns,
448                                                       npages, cpu_flags);
449                 if (required_fault) {
450                         spin_unlock(ptl);
451                         return hmm_vma_fault(addr, end, required_fault, walk);
452                 }
453
454                 pfn = pud_pfn(pud) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
455                 for (i = 0; i < npages; ++i, ++pfn)
456                         pfns[i] = hmm_device_entry_from_pfn(range, pfn) |
457                                   cpu_flags;
458                 hmm_vma_walk->last = end;
459                 goto out_unlock;
460         }
461
462         /* Ask for the PUD to be split */
463         walk->action = ACTION_SUBTREE;
464
465 out_unlock:
466         spin_unlock(ptl);
467         return ret;
468 }
469 #else
470 #define hmm_vma_walk_pud        NULL
471 #endif
472
473 #ifdef CONFIG_HUGETLB_PAGE
474 static int hmm_vma_walk_hugetlb_entry(pte_t *pte, unsigned long hmask,
475                                       unsigned long start, unsigned long end,
476                                       struct mm_walk *walk)
477 {
478         unsigned long addr = start, i, pfn;
479         struct hmm_vma_walk *hmm_vma_walk = walk->private;
480         struct hmm_range *range = hmm_vma_walk->range;
481         struct vm_area_struct *vma = walk->vma;
482         uint64_t orig_pfn, cpu_flags;
483         unsigned int required_fault;
484         spinlock_t *ptl;
485         pte_t entry;
486
487         ptl = huge_pte_lock(hstate_vma(vma), walk->mm, pte);
488         entry = huge_ptep_get(pte);
489
490         i = (start - range->start) >> PAGE_SHIFT;
491         orig_pfn = range->pfns[i];
492         cpu_flags = pte_to_hmm_pfn_flags(range, entry);
493         required_fault = hmm_pte_need_fault(hmm_vma_walk, orig_pfn, cpu_flags);
494         if (required_fault) {
495                 spin_unlock(ptl);
496                 return hmm_vma_fault(addr, end, required_fault, walk);
497         }
498
499         pfn = pte_pfn(entry) + ((start & ~hmask) >> PAGE_SHIFT);
500         for (; addr < end; addr += PAGE_SIZE, i++, pfn++)
501                 range->pfns[i] = hmm_device_entry_from_pfn(range, pfn) |
502                                  cpu_flags;
503         hmm_vma_walk->last = end;
504         spin_unlock(ptl);
505         return 0;
506 }
507 #else
508 #define hmm_vma_walk_hugetlb_entry NULL
509 #endif /* CONFIG_HUGETLB_PAGE */
510
511 static int hmm_vma_walk_test(unsigned long start, unsigned long end,
512                              struct mm_walk *walk)
513 {
514         struct hmm_vma_walk *hmm_vma_walk = walk->private;
515         struct hmm_range *range = hmm_vma_walk->range;
516         struct vm_area_struct *vma = walk->vma;
517
518         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP | VM_MIXEDMAP)) &&
519             vma->vm_flags & VM_READ)
520                 return 0;
521
522         /*
523          * vma ranges that don't have struct page backing them or map I/O
524          * devices directly cannot be handled by hmm_range_fault().
525          *
526          * If the vma does not allow read access, then assume that it does not
527          * allow write access either. HMM does not support architectures that
528          * allow write without read.
529          *
530          * If a fault is requested for an unsupported range then it is a hard
531          * failure.
532          */
533         if (hmm_range_need_fault(hmm_vma_walk,
534                                  range->pfns +
535                                          ((start - range->start) >> PAGE_SHIFT),
536                                  (end - start) >> PAGE_SHIFT, 0))
537                 return -EFAULT;
538
539         hmm_pfns_fill(start, end, range, HMM_PFN_ERROR);
540         hmm_vma_walk->last = end;
541
542         /* Skip this vma and continue processing the next vma. */
543         return 1;
544 }
545
546 static const struct mm_walk_ops hmm_walk_ops = {
547         .pud_entry      = hmm_vma_walk_pud,
548         .pmd_entry      = hmm_vma_walk_pmd,
549         .pte_hole       = hmm_vma_walk_hole,
550         .hugetlb_entry  = hmm_vma_walk_hugetlb_entry,
551         .test_walk      = hmm_vma_walk_test,
552 };
553
554 /**
555  * hmm_range_fault - try to fault some address in a virtual address range
556  * @range:      argument structure
557  *
558  * Return: the number of valid pages in range->pfns[] (from range start
559  * address), which may be zero.  On error one of the following status codes
560  * can be returned:
561  *
562  * -EINVAL:     Invalid arguments or mm or virtual address is in an invalid vma
563  *              (e.g., device file vma).
564  * -ENOMEM:     Out of memory.
565  * -EPERM:      Invalid permission (e.g., asking for write and range is read
566  *              only).
567  * -EBUSY:      The range has been invalidated and the caller needs to wait for
568  *              the invalidation to finish.
569  * -EFAULT:     A page was requested to be valid and could not be made valid
570  *              ie it has no backing VMA or it is illegal to access
571  *
572  * This is similar to get_user_pages(), except that it can read the page tables
573  * without mutating them (ie causing faults).
574  */
575 long hmm_range_fault(struct hmm_range *range)
576 {
577         struct hmm_vma_walk hmm_vma_walk = {
578                 .range = range,
579                 .last = range->start,
580         };
581         struct mm_struct *mm = range->notifier->mm;
582         int ret;
583
584         lockdep_assert_held(&mm->mmap_sem);
585
586         do {
587                 /* If range is no longer valid force retry. */
588                 if (mmu_interval_check_retry(range->notifier,
589                                              range->notifier_seq))
590                         return -EBUSY;
591                 ret = walk_page_range(mm, hmm_vma_walk.last, range->end,
592                                       &hmm_walk_ops, &hmm_vma_walk);
593         } while (ret == -EBUSY);
594
595         if (ret)
596                 return ret;
597         return (hmm_vma_walk.last - range->start) >> PAGE_SHIFT;
598 }
599 EXPORT_SYMBOL(hmm_range_fault);