Merge tag 'for-linus-4.19b-rc1b-tag' of git://git.kernel.org/pub/scm/linux/kernel...
[platform/kernel/linux-rpi.git] / mm / hmm.c
1 /*
2  * Copyright 2013 Red Hat Inc.
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * Authors: Jérôme Glisse <jglisse@redhat.com>
15  */
16 /*
17  * Refer to include/linux/hmm.h for information about heterogeneous memory
18  * management or HMM for short.
19  */
20 #include <linux/mm.h>
21 #include <linux/hmm.h>
22 #include <linux/init.h>
23 #include <linux/rmap.h>
24 #include <linux/swap.h>
25 #include <linux/slab.h>
26 #include <linux/sched.h>
27 #include <linux/mmzone.h>
28 #include <linux/pagemap.h>
29 #include <linux/swapops.h>
30 #include <linux/hugetlb.h>
31 #include <linux/memremap.h>
32 #include <linux/jump_label.h>
33 #include <linux/mmu_notifier.h>
34 #include <linux/memory_hotplug.h>
35
36 #define PA_SECTION_SIZE (1UL << PA_SECTION_SHIFT)
37
38 #if IS_ENABLED(CONFIG_HMM_MIRROR)
39 static const struct mmu_notifier_ops hmm_mmu_notifier_ops;
40
41 /*
42  * struct hmm - HMM per mm struct
43  *
44  * @mm: mm struct this HMM struct is bound to
45  * @lock: lock protecting ranges list
46  * @sequence: we track updates to the CPU page table with a sequence number
47  * @ranges: list of range being snapshotted
48  * @mirrors: list of mirrors for this mm
49  * @mmu_notifier: mmu notifier to track updates to CPU page table
50  * @mirrors_sem: read/write semaphore protecting the mirrors list
51  */
52 struct hmm {
53         struct mm_struct        *mm;
54         spinlock_t              lock;
55         atomic_t                sequence;
56         struct list_head        ranges;
57         struct list_head        mirrors;
58         struct mmu_notifier     mmu_notifier;
59         struct rw_semaphore     mirrors_sem;
60 };
61
62 /*
63  * hmm_register - register HMM against an mm (HMM internal)
64  *
65  * @mm: mm struct to attach to
66  *
67  * This is not intended to be used directly by device drivers. It allocates an
68  * HMM struct if mm does not have one, and initializes it.
69  */
70 static struct hmm *hmm_register(struct mm_struct *mm)
71 {
72         struct hmm *hmm = READ_ONCE(mm->hmm);
73         bool cleanup = false;
74
75         /*
76          * The hmm struct can only be freed once the mm_struct goes away,
77          * hence we should always have pre-allocated an new hmm struct
78          * above.
79          */
80         if (hmm)
81                 return hmm;
82
83         hmm = kmalloc(sizeof(*hmm), GFP_KERNEL);
84         if (!hmm)
85                 return NULL;
86         INIT_LIST_HEAD(&hmm->mirrors);
87         init_rwsem(&hmm->mirrors_sem);
88         atomic_set(&hmm->sequence, 0);
89         hmm->mmu_notifier.ops = NULL;
90         INIT_LIST_HEAD(&hmm->ranges);
91         spin_lock_init(&hmm->lock);
92         hmm->mm = mm;
93
94         /*
95          * We should only get here if hold the mmap_sem in write mode ie on
96          * registration of first mirror through hmm_mirror_register()
97          */
98         hmm->mmu_notifier.ops = &hmm_mmu_notifier_ops;
99         if (__mmu_notifier_register(&hmm->mmu_notifier, mm)) {
100                 kfree(hmm);
101                 return NULL;
102         }
103
104         spin_lock(&mm->page_table_lock);
105         if (!mm->hmm)
106                 mm->hmm = hmm;
107         else
108                 cleanup = true;
109         spin_unlock(&mm->page_table_lock);
110
111         if (cleanup) {
112                 mmu_notifier_unregister(&hmm->mmu_notifier, mm);
113                 kfree(hmm);
114         }
115
116         return mm->hmm;
117 }
118
119 void hmm_mm_destroy(struct mm_struct *mm)
120 {
121         kfree(mm->hmm);
122 }
123
124 static void hmm_invalidate_range(struct hmm *hmm,
125                                  enum hmm_update_type action,
126                                  unsigned long start,
127                                  unsigned long end)
128 {
129         struct hmm_mirror *mirror;
130         struct hmm_range *range;
131
132         spin_lock(&hmm->lock);
133         list_for_each_entry(range, &hmm->ranges, list) {
134                 unsigned long addr, idx, npages;
135
136                 if (end < range->start || start >= range->end)
137                         continue;
138
139                 range->valid = false;
140                 addr = max(start, range->start);
141                 idx = (addr - range->start) >> PAGE_SHIFT;
142                 npages = (min(range->end, end) - addr) >> PAGE_SHIFT;
143                 memset(&range->pfns[idx], 0, sizeof(*range->pfns) * npages);
144         }
145         spin_unlock(&hmm->lock);
146
147         down_read(&hmm->mirrors_sem);
148         list_for_each_entry(mirror, &hmm->mirrors, list)
149                 mirror->ops->sync_cpu_device_pagetables(mirror, action,
150                                                         start, end);
151         up_read(&hmm->mirrors_sem);
152 }
153
154 static void hmm_release(struct mmu_notifier *mn, struct mm_struct *mm)
155 {
156         struct hmm_mirror *mirror;
157         struct hmm *hmm = mm->hmm;
158
159         down_write(&hmm->mirrors_sem);
160         mirror = list_first_entry_or_null(&hmm->mirrors, struct hmm_mirror,
161                                           list);
162         while (mirror) {
163                 list_del_init(&mirror->list);
164                 if (mirror->ops->release) {
165                         /*
166                          * Drop mirrors_sem so callback can wait on any pending
167                          * work that might itself trigger mmu_notifier callback
168                          * and thus would deadlock with us.
169                          */
170                         up_write(&hmm->mirrors_sem);
171                         mirror->ops->release(mirror);
172                         down_write(&hmm->mirrors_sem);
173                 }
174                 mirror = list_first_entry_or_null(&hmm->mirrors,
175                                                   struct hmm_mirror, list);
176         }
177         up_write(&hmm->mirrors_sem);
178 }
179
180 static int hmm_invalidate_range_start(struct mmu_notifier *mn,
181                                        struct mm_struct *mm,
182                                        unsigned long start,
183                                        unsigned long end,
184                                        bool blockable)
185 {
186         struct hmm *hmm = mm->hmm;
187
188         VM_BUG_ON(!hmm);
189
190         atomic_inc(&hmm->sequence);
191
192         return 0;
193 }
194
195 static void hmm_invalidate_range_end(struct mmu_notifier *mn,
196                                      struct mm_struct *mm,
197                                      unsigned long start,
198                                      unsigned long end)
199 {
200         struct hmm *hmm = mm->hmm;
201
202         VM_BUG_ON(!hmm);
203
204         hmm_invalidate_range(mm->hmm, HMM_UPDATE_INVALIDATE, start, end);
205 }
206
207 static const struct mmu_notifier_ops hmm_mmu_notifier_ops = {
208         .release                = hmm_release,
209         .invalidate_range_start = hmm_invalidate_range_start,
210         .invalidate_range_end   = hmm_invalidate_range_end,
211 };
212
213 /*
214  * hmm_mirror_register() - register a mirror against an mm
215  *
216  * @mirror: new mirror struct to register
217  * @mm: mm to register against
218  *
219  * To start mirroring a process address space, the device driver must register
220  * an HMM mirror struct.
221  *
222  * THE mm->mmap_sem MUST BE HELD IN WRITE MODE !
223  */
224 int hmm_mirror_register(struct hmm_mirror *mirror, struct mm_struct *mm)
225 {
226         /* Sanity check */
227         if (!mm || !mirror || !mirror->ops)
228                 return -EINVAL;
229
230 again:
231         mirror->hmm = hmm_register(mm);
232         if (!mirror->hmm)
233                 return -ENOMEM;
234
235         down_write(&mirror->hmm->mirrors_sem);
236         if (mirror->hmm->mm == NULL) {
237                 /*
238                  * A racing hmm_mirror_unregister() is about to destroy the hmm
239                  * struct. Try again to allocate a new one.
240                  */
241                 up_write(&mirror->hmm->mirrors_sem);
242                 mirror->hmm = NULL;
243                 goto again;
244         } else {
245                 list_add(&mirror->list, &mirror->hmm->mirrors);
246                 up_write(&mirror->hmm->mirrors_sem);
247         }
248
249         return 0;
250 }
251 EXPORT_SYMBOL(hmm_mirror_register);
252
253 /*
254  * hmm_mirror_unregister() - unregister a mirror
255  *
256  * @mirror: new mirror struct to register
257  *
258  * Stop mirroring a process address space, and cleanup.
259  */
260 void hmm_mirror_unregister(struct hmm_mirror *mirror)
261 {
262         bool should_unregister = false;
263         struct mm_struct *mm;
264         struct hmm *hmm;
265
266         if (mirror->hmm == NULL)
267                 return;
268
269         hmm = mirror->hmm;
270         down_write(&hmm->mirrors_sem);
271         list_del_init(&mirror->list);
272         should_unregister = list_empty(&hmm->mirrors);
273         mirror->hmm = NULL;
274         mm = hmm->mm;
275         hmm->mm = NULL;
276         up_write(&hmm->mirrors_sem);
277
278         if (!should_unregister || mm == NULL)
279                 return;
280
281         spin_lock(&mm->page_table_lock);
282         if (mm->hmm == hmm)
283                 mm->hmm = NULL;
284         spin_unlock(&mm->page_table_lock);
285
286         mmu_notifier_unregister_no_release(&hmm->mmu_notifier, mm);
287         kfree(hmm);
288 }
289 EXPORT_SYMBOL(hmm_mirror_unregister);
290
291 struct hmm_vma_walk {
292         struct hmm_range        *range;
293         unsigned long           last;
294         bool                    fault;
295         bool                    block;
296 };
297
298 static int hmm_vma_do_fault(struct mm_walk *walk, unsigned long addr,
299                             bool write_fault, uint64_t *pfn)
300 {
301         unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_REMOTE;
302         struct hmm_vma_walk *hmm_vma_walk = walk->private;
303         struct hmm_range *range = hmm_vma_walk->range;
304         struct vm_area_struct *vma = walk->vma;
305         vm_fault_t ret;
306
307         flags |= hmm_vma_walk->block ? 0 : FAULT_FLAG_ALLOW_RETRY;
308         flags |= write_fault ? FAULT_FLAG_WRITE : 0;
309         ret = handle_mm_fault(vma, addr, flags);
310         if (ret & VM_FAULT_RETRY)
311                 return -EBUSY;
312         if (ret & VM_FAULT_ERROR) {
313                 *pfn = range->values[HMM_PFN_ERROR];
314                 return -EFAULT;
315         }
316
317         return -EAGAIN;
318 }
319
320 static int hmm_pfns_bad(unsigned long addr,
321                         unsigned long end,
322                         struct mm_walk *walk)
323 {
324         struct hmm_vma_walk *hmm_vma_walk = walk->private;
325         struct hmm_range *range = hmm_vma_walk->range;
326         uint64_t *pfns = range->pfns;
327         unsigned long i;
328
329         i = (addr - range->start) >> PAGE_SHIFT;
330         for (; addr < end; addr += PAGE_SIZE, i++)
331                 pfns[i] = range->values[HMM_PFN_ERROR];
332
333         return 0;
334 }
335
336 /*
337  * hmm_vma_walk_hole() - handle a range lacking valid pmd or pte(s)
338  * @start: range virtual start address (inclusive)
339  * @end: range virtual end address (exclusive)
340  * @fault: should we fault or not ?
341  * @write_fault: write fault ?
342  * @walk: mm_walk structure
343  * Returns: 0 on success, -EAGAIN after page fault, or page fault error
344  *
345  * This function will be called whenever pmd_none() or pte_none() returns true,
346  * or whenever there is no page directory covering the virtual address range.
347  */
348 static int hmm_vma_walk_hole_(unsigned long addr, unsigned long end,
349                               bool fault, bool write_fault,
350                               struct mm_walk *walk)
351 {
352         struct hmm_vma_walk *hmm_vma_walk = walk->private;
353         struct hmm_range *range = hmm_vma_walk->range;
354         uint64_t *pfns = range->pfns;
355         unsigned long i;
356
357         hmm_vma_walk->last = addr;
358         i = (addr - range->start) >> PAGE_SHIFT;
359         for (; addr < end; addr += PAGE_SIZE, i++) {
360                 pfns[i] = range->values[HMM_PFN_NONE];
361                 if (fault || write_fault) {
362                         int ret;
363
364                         ret = hmm_vma_do_fault(walk, addr, write_fault,
365                                                &pfns[i]);
366                         if (ret != -EAGAIN)
367                                 return ret;
368                 }
369         }
370
371         return (fault || write_fault) ? -EAGAIN : 0;
372 }
373
374 static inline void hmm_pte_need_fault(const struct hmm_vma_walk *hmm_vma_walk,
375                                       uint64_t pfns, uint64_t cpu_flags,
376                                       bool *fault, bool *write_fault)
377 {
378         struct hmm_range *range = hmm_vma_walk->range;
379
380         *fault = *write_fault = false;
381         if (!hmm_vma_walk->fault)
382                 return;
383
384         /* We aren't ask to do anything ... */
385         if (!(pfns & range->flags[HMM_PFN_VALID]))
386                 return;
387         /* If this is device memory than only fault if explicitly requested */
388         if ((cpu_flags & range->flags[HMM_PFN_DEVICE_PRIVATE])) {
389                 /* Do we fault on device memory ? */
390                 if (pfns & range->flags[HMM_PFN_DEVICE_PRIVATE]) {
391                         *write_fault = pfns & range->flags[HMM_PFN_WRITE];
392                         *fault = true;
393                 }
394                 return;
395         }
396
397         /* If CPU page table is not valid then we need to fault */
398         *fault = !(cpu_flags & range->flags[HMM_PFN_VALID]);
399         /* Need to write fault ? */
400         if ((pfns & range->flags[HMM_PFN_WRITE]) &&
401             !(cpu_flags & range->flags[HMM_PFN_WRITE])) {
402                 *write_fault = true;
403                 *fault = true;
404         }
405 }
406
407 static void hmm_range_need_fault(const struct hmm_vma_walk *hmm_vma_walk,
408                                  const uint64_t *pfns, unsigned long npages,
409                                  uint64_t cpu_flags, bool *fault,
410                                  bool *write_fault)
411 {
412         unsigned long i;
413
414         if (!hmm_vma_walk->fault) {
415                 *fault = *write_fault = false;
416                 return;
417         }
418
419         for (i = 0; i < npages; ++i) {
420                 hmm_pte_need_fault(hmm_vma_walk, pfns[i], cpu_flags,
421                                    fault, write_fault);
422                 if ((*fault) || (*write_fault))
423                         return;
424         }
425 }
426
427 static int hmm_vma_walk_hole(unsigned long addr, unsigned long end,
428                              struct mm_walk *walk)
429 {
430         struct hmm_vma_walk *hmm_vma_walk = walk->private;
431         struct hmm_range *range = hmm_vma_walk->range;
432         bool fault, write_fault;
433         unsigned long i, npages;
434         uint64_t *pfns;
435
436         i = (addr - range->start) >> PAGE_SHIFT;
437         npages = (end - addr) >> PAGE_SHIFT;
438         pfns = &range->pfns[i];
439         hmm_range_need_fault(hmm_vma_walk, pfns, npages,
440                              0, &fault, &write_fault);
441         return hmm_vma_walk_hole_(addr, end, fault, write_fault, walk);
442 }
443
444 static inline uint64_t pmd_to_hmm_pfn_flags(struct hmm_range *range, pmd_t pmd)
445 {
446         if (pmd_protnone(pmd))
447                 return 0;
448         return pmd_write(pmd) ? range->flags[HMM_PFN_VALID] |
449                                 range->flags[HMM_PFN_WRITE] :
450                                 range->flags[HMM_PFN_VALID];
451 }
452
453 static int hmm_vma_handle_pmd(struct mm_walk *walk,
454                               unsigned long addr,
455                               unsigned long end,
456                               uint64_t *pfns,
457                               pmd_t pmd)
458 {
459         struct hmm_vma_walk *hmm_vma_walk = walk->private;
460         struct hmm_range *range = hmm_vma_walk->range;
461         unsigned long pfn, npages, i;
462         bool fault, write_fault;
463         uint64_t cpu_flags;
464
465         npages = (end - addr) >> PAGE_SHIFT;
466         cpu_flags = pmd_to_hmm_pfn_flags(range, pmd);
467         hmm_range_need_fault(hmm_vma_walk, pfns, npages, cpu_flags,
468                              &fault, &write_fault);
469
470         if (pmd_protnone(pmd) || fault || write_fault)
471                 return hmm_vma_walk_hole_(addr, end, fault, write_fault, walk);
472
473         pfn = pmd_pfn(pmd) + pte_index(addr);
474         for (i = 0; addr < end; addr += PAGE_SIZE, i++, pfn++)
475                 pfns[i] = hmm_pfn_from_pfn(range, pfn) | cpu_flags;
476         hmm_vma_walk->last = end;
477         return 0;
478 }
479
480 static inline uint64_t pte_to_hmm_pfn_flags(struct hmm_range *range, pte_t pte)
481 {
482         if (pte_none(pte) || !pte_present(pte))
483                 return 0;
484         return pte_write(pte) ? range->flags[HMM_PFN_VALID] |
485                                 range->flags[HMM_PFN_WRITE] :
486                                 range->flags[HMM_PFN_VALID];
487 }
488
489 static int hmm_vma_handle_pte(struct mm_walk *walk, unsigned long addr,
490                               unsigned long end, pmd_t *pmdp, pte_t *ptep,
491                               uint64_t *pfn)
492 {
493         struct hmm_vma_walk *hmm_vma_walk = walk->private;
494         struct hmm_range *range = hmm_vma_walk->range;
495         struct vm_area_struct *vma = walk->vma;
496         bool fault, write_fault;
497         uint64_t cpu_flags;
498         pte_t pte = *ptep;
499         uint64_t orig_pfn = *pfn;
500
501         *pfn = range->values[HMM_PFN_NONE];
502         cpu_flags = pte_to_hmm_pfn_flags(range, pte);
503         hmm_pte_need_fault(hmm_vma_walk, orig_pfn, cpu_flags,
504                            &fault, &write_fault);
505
506         if (pte_none(pte)) {
507                 if (fault || write_fault)
508                         goto fault;
509                 return 0;
510         }
511
512         if (!pte_present(pte)) {
513                 swp_entry_t entry = pte_to_swp_entry(pte);
514
515                 if (!non_swap_entry(entry)) {
516                         if (fault || write_fault)
517                                 goto fault;
518                         return 0;
519                 }
520
521                 /*
522                  * This is a special swap entry, ignore migration, use
523                  * device and report anything else as error.
524                  */
525                 if (is_device_private_entry(entry)) {
526                         cpu_flags = range->flags[HMM_PFN_VALID] |
527                                 range->flags[HMM_PFN_DEVICE_PRIVATE];
528                         cpu_flags |= is_write_device_private_entry(entry) ?
529                                 range->flags[HMM_PFN_WRITE] : 0;
530                         hmm_pte_need_fault(hmm_vma_walk, orig_pfn, cpu_flags,
531                                            &fault, &write_fault);
532                         if (fault || write_fault)
533                                 goto fault;
534                         *pfn = hmm_pfn_from_pfn(range, swp_offset(entry));
535                         *pfn |= cpu_flags;
536                         return 0;
537                 }
538
539                 if (is_migration_entry(entry)) {
540                         if (fault || write_fault) {
541                                 pte_unmap(ptep);
542                                 hmm_vma_walk->last = addr;
543                                 migration_entry_wait(vma->vm_mm,
544                                                      pmdp, addr);
545                                 return -EAGAIN;
546                         }
547                         return 0;
548                 }
549
550                 /* Report error for everything else */
551                 *pfn = range->values[HMM_PFN_ERROR];
552                 return -EFAULT;
553         }
554
555         if (fault || write_fault)
556                 goto fault;
557
558         *pfn = hmm_pfn_from_pfn(range, pte_pfn(pte)) | cpu_flags;
559         return 0;
560
561 fault:
562         pte_unmap(ptep);
563         /* Fault any virtual address we were asked to fault */
564         return hmm_vma_walk_hole_(addr, end, fault, write_fault, walk);
565 }
566
567 static int hmm_vma_walk_pmd(pmd_t *pmdp,
568                             unsigned long start,
569                             unsigned long end,
570                             struct mm_walk *walk)
571 {
572         struct hmm_vma_walk *hmm_vma_walk = walk->private;
573         struct hmm_range *range = hmm_vma_walk->range;
574         uint64_t *pfns = range->pfns;
575         unsigned long addr = start, i;
576         pte_t *ptep;
577
578         i = (addr - range->start) >> PAGE_SHIFT;
579
580 again:
581         if (pmd_none(*pmdp))
582                 return hmm_vma_walk_hole(start, end, walk);
583
584         if (pmd_huge(*pmdp) && (range->vma->vm_flags & VM_HUGETLB))
585                 return hmm_pfns_bad(start, end, walk);
586
587         if (pmd_devmap(*pmdp) || pmd_trans_huge(*pmdp)) {
588                 pmd_t pmd;
589
590                 /*
591                  * No need to take pmd_lock here, even if some other threads
592                  * is splitting the huge pmd we will get that event through
593                  * mmu_notifier callback.
594                  *
595                  * So just read pmd value and check again its a transparent
596                  * huge or device mapping one and compute corresponding pfn
597                  * values.
598                  */
599                 pmd = pmd_read_atomic(pmdp);
600                 barrier();
601                 if (!pmd_devmap(pmd) && !pmd_trans_huge(pmd))
602                         goto again;
603
604                 return hmm_vma_handle_pmd(walk, addr, end, &pfns[i], pmd);
605         }
606
607         if (pmd_bad(*pmdp))
608                 return hmm_pfns_bad(start, end, walk);
609
610         ptep = pte_offset_map(pmdp, addr);
611         for (; addr < end; addr += PAGE_SIZE, ptep++, i++) {
612                 int r;
613
614                 r = hmm_vma_handle_pte(walk, addr, end, pmdp, ptep, &pfns[i]);
615                 if (r) {
616                         /* hmm_vma_handle_pte() did unmap pte directory */
617                         hmm_vma_walk->last = addr;
618                         return r;
619                 }
620         }
621         pte_unmap(ptep - 1);
622
623         hmm_vma_walk->last = addr;
624         return 0;
625 }
626
627 static void hmm_pfns_clear(struct hmm_range *range,
628                            uint64_t *pfns,
629                            unsigned long addr,
630                            unsigned long end)
631 {
632         for (; addr < end; addr += PAGE_SIZE, pfns++)
633                 *pfns = range->values[HMM_PFN_NONE];
634 }
635
636 static void hmm_pfns_special(struct hmm_range *range)
637 {
638         unsigned long addr = range->start, i = 0;
639
640         for (; addr < range->end; addr += PAGE_SIZE, i++)
641                 range->pfns[i] = range->values[HMM_PFN_SPECIAL];
642 }
643
644 /*
645  * hmm_vma_get_pfns() - snapshot CPU page table for a range of virtual addresses
646  * @range: range being snapshotted
647  * Returns: -EINVAL if invalid argument, -ENOMEM out of memory, -EPERM invalid
648  *          vma permission, 0 success
649  *
650  * This snapshots the CPU page table for a range of virtual addresses. Snapshot
651  * validity is tracked by range struct. See hmm_vma_range_done() for further
652  * information.
653  *
654  * The range struct is initialized here. It tracks the CPU page table, but only
655  * if the function returns success (0), in which case the caller must then call
656  * hmm_vma_range_done() to stop CPU page table update tracking on this range.
657  *
658  * NOT CALLING hmm_vma_range_done() IF FUNCTION RETURNS 0 WILL LEAD TO SERIOUS
659  * MEMORY CORRUPTION ! YOU HAVE BEEN WARNED !
660  */
661 int hmm_vma_get_pfns(struct hmm_range *range)
662 {
663         struct vm_area_struct *vma = range->vma;
664         struct hmm_vma_walk hmm_vma_walk;
665         struct mm_walk mm_walk;
666         struct hmm *hmm;
667
668         /* Sanity check, this really should not happen ! */
669         if (range->start < vma->vm_start || range->start >= vma->vm_end)
670                 return -EINVAL;
671         if (range->end < vma->vm_start || range->end > vma->vm_end)
672                 return -EINVAL;
673
674         hmm = hmm_register(vma->vm_mm);
675         if (!hmm)
676                 return -ENOMEM;
677         /* Caller must have registered a mirror, via hmm_mirror_register() ! */
678         if (!hmm->mmu_notifier.ops)
679                 return -EINVAL;
680
681         /* FIXME support hugetlb fs */
682         if (is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_SPECIAL) ||
683                         vma_is_dax(vma)) {
684                 hmm_pfns_special(range);
685                 return -EINVAL;
686         }
687
688         if (!(vma->vm_flags & VM_READ)) {
689                 /*
690                  * If vma do not allow read access, then assume that it does
691                  * not allow write access, either. Architecture that allow
692                  * write without read access are not supported by HMM, because
693                  * operations such has atomic access would not work.
694                  */
695                 hmm_pfns_clear(range, range->pfns, range->start, range->end);
696                 return -EPERM;
697         }
698
699         /* Initialize range to track CPU page table update */
700         spin_lock(&hmm->lock);
701         range->valid = true;
702         list_add_rcu(&range->list, &hmm->ranges);
703         spin_unlock(&hmm->lock);
704
705         hmm_vma_walk.fault = false;
706         hmm_vma_walk.range = range;
707         mm_walk.private = &hmm_vma_walk;
708
709         mm_walk.vma = vma;
710         mm_walk.mm = vma->vm_mm;
711         mm_walk.pte_entry = NULL;
712         mm_walk.test_walk = NULL;
713         mm_walk.hugetlb_entry = NULL;
714         mm_walk.pmd_entry = hmm_vma_walk_pmd;
715         mm_walk.pte_hole = hmm_vma_walk_hole;
716
717         walk_page_range(range->start, range->end, &mm_walk);
718         return 0;
719 }
720 EXPORT_SYMBOL(hmm_vma_get_pfns);
721
722 /*
723  * hmm_vma_range_done() - stop tracking change to CPU page table over a range
724  * @range: range being tracked
725  * Returns: false if range data has been invalidated, true otherwise
726  *
727  * Range struct is used to track updates to the CPU page table after a call to
728  * either hmm_vma_get_pfns() or hmm_vma_fault(). Once the device driver is done
729  * using the data,  or wants to lock updates to the data it got from those
730  * functions, it must call the hmm_vma_range_done() function, which will then
731  * stop tracking CPU page table updates.
732  *
733  * Note that device driver must still implement general CPU page table update
734  * tracking either by using hmm_mirror (see hmm_mirror_register()) or by using
735  * the mmu_notifier API directly.
736  *
737  * CPU page table update tracking done through hmm_range is only temporary and
738  * to be used while trying to duplicate CPU page table contents for a range of
739  * virtual addresses.
740  *
741  * There are two ways to use this :
742  * again:
743  *   hmm_vma_get_pfns(range); or hmm_vma_fault(...);
744  *   trans = device_build_page_table_update_transaction(pfns);
745  *   device_page_table_lock();
746  *   if (!hmm_vma_range_done(range)) {
747  *     device_page_table_unlock();
748  *     goto again;
749  *   }
750  *   device_commit_transaction(trans);
751  *   device_page_table_unlock();
752  *
753  * Or:
754  *   hmm_vma_get_pfns(range); or hmm_vma_fault(...);
755  *   device_page_table_lock();
756  *   hmm_vma_range_done(range);
757  *   device_update_page_table(range->pfns);
758  *   device_page_table_unlock();
759  */
760 bool hmm_vma_range_done(struct hmm_range *range)
761 {
762         unsigned long npages = (range->end - range->start) >> PAGE_SHIFT;
763         struct hmm *hmm;
764
765         if (range->end <= range->start) {
766                 BUG();
767                 return false;
768         }
769
770         hmm = hmm_register(range->vma->vm_mm);
771         if (!hmm) {
772                 memset(range->pfns, 0, sizeof(*range->pfns) * npages);
773                 return false;
774         }
775
776         spin_lock(&hmm->lock);
777         list_del_rcu(&range->list);
778         spin_unlock(&hmm->lock);
779
780         return range->valid;
781 }
782 EXPORT_SYMBOL(hmm_vma_range_done);
783
784 /*
785  * hmm_vma_fault() - try to fault some address in a virtual address range
786  * @range: range being faulted
787  * @block: allow blocking on fault (if true it sleeps and do not drop mmap_sem)
788  * Returns: 0 success, error otherwise (-EAGAIN means mmap_sem have been drop)
789  *
790  * This is similar to a regular CPU page fault except that it will not trigger
791  * any memory migration if the memory being faulted is not accessible by CPUs.
792  *
793  * On error, for one virtual address in the range, the function will mark the
794  * corresponding HMM pfn entry with an error flag.
795  *
796  * Expected use pattern:
797  * retry:
798  *   down_read(&mm->mmap_sem);
799  *   // Find vma and address device wants to fault, initialize hmm_pfn_t
800  *   // array accordingly
801  *   ret = hmm_vma_fault(range, write, block);
802  *   switch (ret) {
803  *   case -EAGAIN:
804  *     hmm_vma_range_done(range);
805  *     // You might want to rate limit or yield to play nicely, you may
806  *     // also commit any valid pfn in the array assuming that you are
807  *     // getting true from hmm_vma_range_monitor_end()
808  *     goto retry;
809  *   case 0:
810  *     break;
811  *   case -ENOMEM:
812  *   case -EINVAL:
813  *   case -EPERM:
814  *   default:
815  *     // Handle error !
816  *     up_read(&mm->mmap_sem)
817  *     return;
818  *   }
819  *   // Take device driver lock that serialize device page table update
820  *   driver_lock_device_page_table_update();
821  *   hmm_vma_range_done(range);
822  *   // Commit pfns we got from hmm_vma_fault()
823  *   driver_unlock_device_page_table_update();
824  *   up_read(&mm->mmap_sem)
825  *
826  * YOU MUST CALL hmm_vma_range_done() AFTER THIS FUNCTION RETURN SUCCESS (0)
827  * BEFORE FREEING THE range struct OR YOU WILL HAVE SERIOUS MEMORY CORRUPTION !
828  *
829  * YOU HAVE BEEN WARNED !
830  */
831 int hmm_vma_fault(struct hmm_range *range, bool block)
832 {
833         struct vm_area_struct *vma = range->vma;
834         unsigned long start = range->start;
835         struct hmm_vma_walk hmm_vma_walk;
836         struct mm_walk mm_walk;
837         struct hmm *hmm;
838         int ret;
839
840         /* Sanity check, this really should not happen ! */
841         if (range->start < vma->vm_start || range->start >= vma->vm_end)
842                 return -EINVAL;
843         if (range->end < vma->vm_start || range->end > vma->vm_end)
844                 return -EINVAL;
845
846         hmm = hmm_register(vma->vm_mm);
847         if (!hmm) {
848                 hmm_pfns_clear(range, range->pfns, range->start, range->end);
849                 return -ENOMEM;
850         }
851         /* Caller must have registered a mirror using hmm_mirror_register() */
852         if (!hmm->mmu_notifier.ops)
853                 return -EINVAL;
854
855         /* FIXME support hugetlb fs */
856         if (is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_SPECIAL) ||
857                         vma_is_dax(vma)) {
858                 hmm_pfns_special(range);
859                 return -EINVAL;
860         }
861
862         if (!(vma->vm_flags & VM_READ)) {
863                 /*
864                  * If vma do not allow read access, then assume that it does
865                  * not allow write access, either. Architecture that allow
866                  * write without read access are not supported by HMM, because
867                  * operations such has atomic access would not work.
868                  */
869                 hmm_pfns_clear(range, range->pfns, range->start, range->end);
870                 return -EPERM;
871         }
872
873         /* Initialize range to track CPU page table update */
874         spin_lock(&hmm->lock);
875         range->valid = true;
876         list_add_rcu(&range->list, &hmm->ranges);
877         spin_unlock(&hmm->lock);
878
879         hmm_vma_walk.fault = true;
880         hmm_vma_walk.block = block;
881         hmm_vma_walk.range = range;
882         mm_walk.private = &hmm_vma_walk;
883         hmm_vma_walk.last = range->start;
884
885         mm_walk.vma = vma;
886         mm_walk.mm = vma->vm_mm;
887         mm_walk.pte_entry = NULL;
888         mm_walk.test_walk = NULL;
889         mm_walk.hugetlb_entry = NULL;
890         mm_walk.pmd_entry = hmm_vma_walk_pmd;
891         mm_walk.pte_hole = hmm_vma_walk_hole;
892
893         do {
894                 ret = walk_page_range(start, range->end, &mm_walk);
895                 start = hmm_vma_walk.last;
896         } while (ret == -EAGAIN);
897
898         if (ret) {
899                 unsigned long i;
900
901                 i = (hmm_vma_walk.last - range->start) >> PAGE_SHIFT;
902                 hmm_pfns_clear(range, &range->pfns[i], hmm_vma_walk.last,
903                                range->end);
904                 hmm_vma_range_done(range);
905         }
906         return ret;
907 }
908 EXPORT_SYMBOL(hmm_vma_fault);
909 #endif /* IS_ENABLED(CONFIG_HMM_MIRROR) */
910
911
912 #if IS_ENABLED(CONFIG_DEVICE_PRIVATE) ||  IS_ENABLED(CONFIG_DEVICE_PUBLIC)
913 struct page *hmm_vma_alloc_locked_page(struct vm_area_struct *vma,
914                                        unsigned long addr)
915 {
916         struct page *page;
917
918         page = alloc_page_vma(GFP_HIGHUSER, vma, addr);
919         if (!page)
920                 return NULL;
921         lock_page(page);
922         return page;
923 }
924 EXPORT_SYMBOL(hmm_vma_alloc_locked_page);
925
926
927 static void hmm_devmem_ref_release(struct percpu_ref *ref)
928 {
929         struct hmm_devmem *devmem;
930
931         devmem = container_of(ref, struct hmm_devmem, ref);
932         complete(&devmem->completion);
933 }
934
935 static void hmm_devmem_ref_exit(void *data)
936 {
937         struct percpu_ref *ref = data;
938         struct hmm_devmem *devmem;
939
940         devmem = container_of(ref, struct hmm_devmem, ref);
941         percpu_ref_exit(ref);
942         devm_remove_action(devmem->device, &hmm_devmem_ref_exit, data);
943 }
944
945 static void hmm_devmem_ref_kill(void *data)
946 {
947         struct percpu_ref *ref = data;
948         struct hmm_devmem *devmem;
949
950         devmem = container_of(ref, struct hmm_devmem, ref);
951         percpu_ref_kill(ref);
952         wait_for_completion(&devmem->completion);
953         devm_remove_action(devmem->device, &hmm_devmem_ref_kill, data);
954 }
955
956 static int hmm_devmem_fault(struct vm_area_struct *vma,
957                             unsigned long addr,
958                             const struct page *page,
959                             unsigned int flags,
960                             pmd_t *pmdp)
961 {
962         struct hmm_devmem *devmem = page->pgmap->data;
963
964         return devmem->ops->fault(devmem, vma, addr, page, flags, pmdp);
965 }
966
967 static void hmm_devmem_free(struct page *page, void *data)
968 {
969         struct hmm_devmem *devmem = data;
970
971         devmem->ops->free(devmem, page);
972 }
973
974 static DEFINE_MUTEX(hmm_devmem_lock);
975 static RADIX_TREE(hmm_devmem_radix, GFP_KERNEL);
976
977 static void hmm_devmem_radix_release(struct resource *resource)
978 {
979         resource_size_t key;
980
981         mutex_lock(&hmm_devmem_lock);
982         for (key = resource->start;
983              key <= resource->end;
984              key += PA_SECTION_SIZE)
985                 radix_tree_delete(&hmm_devmem_radix, key >> PA_SECTION_SHIFT);
986         mutex_unlock(&hmm_devmem_lock);
987 }
988
989 static void hmm_devmem_release(struct device *dev, void *data)
990 {
991         struct hmm_devmem *devmem = data;
992         struct resource *resource = devmem->resource;
993         unsigned long start_pfn, npages;
994         struct zone *zone;
995         struct page *page;
996
997         if (percpu_ref_tryget_live(&devmem->ref)) {
998                 dev_WARN(dev, "%s: page mapping is still live!\n", __func__);
999                 percpu_ref_put(&devmem->ref);
1000         }
1001
1002         /* pages are dead and unused, undo the arch mapping */
1003         start_pfn = (resource->start & ~(PA_SECTION_SIZE - 1)) >> PAGE_SHIFT;
1004         npages = ALIGN(resource_size(resource), PA_SECTION_SIZE) >> PAGE_SHIFT;
1005
1006         page = pfn_to_page(start_pfn);
1007         zone = page_zone(page);
1008
1009         mem_hotplug_begin();
1010         if (resource->desc == IORES_DESC_DEVICE_PRIVATE_MEMORY)
1011                 __remove_pages(zone, start_pfn, npages, NULL);
1012         else
1013                 arch_remove_memory(start_pfn << PAGE_SHIFT,
1014                                    npages << PAGE_SHIFT, NULL);
1015         mem_hotplug_done();
1016
1017         hmm_devmem_radix_release(resource);
1018 }
1019
1020 static int hmm_devmem_pages_create(struct hmm_devmem *devmem)
1021 {
1022         resource_size_t key, align_start, align_size, align_end;
1023         struct device *device = devmem->device;
1024         int ret, nid, is_ram;
1025         unsigned long pfn;
1026
1027         align_start = devmem->resource->start & ~(PA_SECTION_SIZE - 1);
1028         align_size = ALIGN(devmem->resource->start +
1029                            resource_size(devmem->resource),
1030                            PA_SECTION_SIZE) - align_start;
1031
1032         is_ram = region_intersects(align_start, align_size,
1033                                    IORESOURCE_SYSTEM_RAM,
1034                                    IORES_DESC_NONE);
1035         if (is_ram == REGION_MIXED) {
1036                 WARN_ONCE(1, "%s attempted on mixed region %pr\n",
1037                                 __func__, devmem->resource);
1038                 return -ENXIO;
1039         }
1040         if (is_ram == REGION_INTERSECTS)
1041                 return -ENXIO;
1042
1043         if (devmem->resource->desc == IORES_DESC_DEVICE_PUBLIC_MEMORY)
1044                 devmem->pagemap.type = MEMORY_DEVICE_PUBLIC;
1045         else
1046                 devmem->pagemap.type = MEMORY_DEVICE_PRIVATE;
1047
1048         devmem->pagemap.res = *devmem->resource;
1049         devmem->pagemap.page_fault = hmm_devmem_fault;
1050         devmem->pagemap.page_free = hmm_devmem_free;
1051         devmem->pagemap.dev = devmem->device;
1052         devmem->pagemap.ref = &devmem->ref;
1053         devmem->pagemap.data = devmem;
1054
1055         mutex_lock(&hmm_devmem_lock);
1056         align_end = align_start + align_size - 1;
1057         for (key = align_start; key <= align_end; key += PA_SECTION_SIZE) {
1058                 struct hmm_devmem *dup;
1059
1060                 dup = radix_tree_lookup(&hmm_devmem_radix,
1061                                         key >> PA_SECTION_SHIFT);
1062                 if (dup) {
1063                         dev_err(device, "%s: collides with mapping for %s\n",
1064                                 __func__, dev_name(dup->device));
1065                         mutex_unlock(&hmm_devmem_lock);
1066                         ret = -EBUSY;
1067                         goto error;
1068                 }
1069                 ret = radix_tree_insert(&hmm_devmem_radix,
1070                                         key >> PA_SECTION_SHIFT,
1071                                         devmem);
1072                 if (ret) {
1073                         dev_err(device, "%s: failed: %d\n", __func__, ret);
1074                         mutex_unlock(&hmm_devmem_lock);
1075                         goto error_radix;
1076                 }
1077         }
1078         mutex_unlock(&hmm_devmem_lock);
1079
1080         nid = dev_to_node(device);
1081         if (nid < 0)
1082                 nid = numa_mem_id();
1083
1084         mem_hotplug_begin();
1085         /*
1086          * For device private memory we call add_pages() as we only need to
1087          * allocate and initialize struct page for the device memory. More-
1088          * over the device memory is un-accessible thus we do not want to
1089          * create a linear mapping for the memory like arch_add_memory()
1090          * would do.
1091          *
1092          * For device public memory, which is accesible by the CPU, we do
1093          * want the linear mapping and thus use arch_add_memory().
1094          */
1095         if (devmem->pagemap.type == MEMORY_DEVICE_PUBLIC)
1096                 ret = arch_add_memory(nid, align_start, align_size, NULL,
1097                                 false);
1098         else
1099                 ret = add_pages(nid, align_start >> PAGE_SHIFT,
1100                                 align_size >> PAGE_SHIFT, NULL, false);
1101         if (ret) {
1102                 mem_hotplug_done();
1103                 goto error_add_memory;
1104         }
1105         move_pfn_range_to_zone(&NODE_DATA(nid)->node_zones[ZONE_DEVICE],
1106                                 align_start >> PAGE_SHIFT,
1107                                 align_size >> PAGE_SHIFT, NULL);
1108         mem_hotplug_done();
1109
1110         for (pfn = devmem->pfn_first; pfn < devmem->pfn_last; pfn++) {
1111                 struct page *page = pfn_to_page(pfn);
1112
1113                 page->pgmap = &devmem->pagemap;
1114         }
1115         return 0;
1116
1117 error_add_memory:
1118         untrack_pfn(NULL, PHYS_PFN(align_start), align_size);
1119 error_radix:
1120         hmm_devmem_radix_release(devmem->resource);
1121 error:
1122         return ret;
1123 }
1124
1125 static int hmm_devmem_match(struct device *dev, void *data, void *match_data)
1126 {
1127         struct hmm_devmem *devmem = data;
1128
1129         return devmem->resource == match_data;
1130 }
1131
1132 static void hmm_devmem_pages_remove(struct hmm_devmem *devmem)
1133 {
1134         devres_release(devmem->device, &hmm_devmem_release,
1135                        &hmm_devmem_match, devmem->resource);
1136 }
1137
1138 /*
1139  * hmm_devmem_add() - hotplug ZONE_DEVICE memory for device memory
1140  *
1141  * @ops: memory event device driver callback (see struct hmm_devmem_ops)
1142  * @device: device struct to bind the resource too
1143  * @size: size in bytes of the device memory to add
1144  * Returns: pointer to new hmm_devmem struct ERR_PTR otherwise
1145  *
1146  * This function first finds an empty range of physical address big enough to
1147  * contain the new resource, and then hotplugs it as ZONE_DEVICE memory, which
1148  * in turn allocates struct pages. It does not do anything beyond that; all
1149  * events affecting the memory will go through the various callbacks provided
1150  * by hmm_devmem_ops struct.
1151  *
1152  * Device driver should call this function during device initialization and
1153  * is then responsible of memory management. HMM only provides helpers.
1154  */
1155 struct hmm_devmem *hmm_devmem_add(const struct hmm_devmem_ops *ops,
1156                                   struct device *device,
1157                                   unsigned long size)
1158 {
1159         struct hmm_devmem *devmem;
1160         resource_size_t addr;
1161         int ret;
1162
1163         dev_pagemap_get_ops();
1164
1165         devmem = devres_alloc_node(&hmm_devmem_release, sizeof(*devmem),
1166                                    GFP_KERNEL, dev_to_node(device));
1167         if (!devmem)
1168                 return ERR_PTR(-ENOMEM);
1169
1170         init_completion(&devmem->completion);
1171         devmem->pfn_first = -1UL;
1172         devmem->pfn_last = -1UL;
1173         devmem->resource = NULL;
1174         devmem->device = device;
1175         devmem->ops = ops;
1176
1177         ret = percpu_ref_init(&devmem->ref, &hmm_devmem_ref_release,
1178                               0, GFP_KERNEL);
1179         if (ret)
1180                 goto error_percpu_ref;
1181
1182         ret = devm_add_action(device, hmm_devmem_ref_exit, &devmem->ref);
1183         if (ret)
1184                 goto error_devm_add_action;
1185
1186         size = ALIGN(size, PA_SECTION_SIZE);
1187         addr = min((unsigned long)iomem_resource.end,
1188                    (1UL << MAX_PHYSMEM_BITS) - 1);
1189         addr = addr - size + 1UL;
1190
1191         /*
1192          * FIXME add a new helper to quickly walk resource tree and find free
1193          * range
1194          *
1195          * FIXME what about ioport_resource resource ?
1196          */
1197         for (; addr > size && addr >= iomem_resource.start; addr -= size) {
1198                 ret = region_intersects(addr, size, 0, IORES_DESC_NONE);
1199                 if (ret != REGION_DISJOINT)
1200                         continue;
1201
1202                 devmem->resource = devm_request_mem_region(device, addr, size,
1203                                                            dev_name(device));
1204                 if (!devmem->resource) {
1205                         ret = -ENOMEM;
1206                         goto error_no_resource;
1207                 }
1208                 break;
1209         }
1210         if (!devmem->resource) {
1211                 ret = -ERANGE;
1212                 goto error_no_resource;
1213         }
1214
1215         devmem->resource->desc = IORES_DESC_DEVICE_PRIVATE_MEMORY;
1216         devmem->pfn_first = devmem->resource->start >> PAGE_SHIFT;
1217         devmem->pfn_last = devmem->pfn_first +
1218                            (resource_size(devmem->resource) >> PAGE_SHIFT);
1219
1220         ret = hmm_devmem_pages_create(devmem);
1221         if (ret)
1222                 goto error_pages;
1223
1224         devres_add(device, devmem);
1225
1226         ret = devm_add_action(device, hmm_devmem_ref_kill, &devmem->ref);
1227         if (ret) {
1228                 hmm_devmem_remove(devmem);
1229                 return ERR_PTR(ret);
1230         }
1231
1232         return devmem;
1233
1234 error_pages:
1235         devm_release_mem_region(device, devmem->resource->start,
1236                                 resource_size(devmem->resource));
1237 error_no_resource:
1238 error_devm_add_action:
1239         hmm_devmem_ref_kill(&devmem->ref);
1240         hmm_devmem_ref_exit(&devmem->ref);
1241 error_percpu_ref:
1242         devres_free(devmem);
1243         return ERR_PTR(ret);
1244 }
1245 EXPORT_SYMBOL(hmm_devmem_add);
1246
1247 struct hmm_devmem *hmm_devmem_add_resource(const struct hmm_devmem_ops *ops,
1248                                            struct device *device,
1249                                            struct resource *res)
1250 {
1251         struct hmm_devmem *devmem;
1252         int ret;
1253
1254         if (res->desc != IORES_DESC_DEVICE_PUBLIC_MEMORY)
1255                 return ERR_PTR(-EINVAL);
1256
1257         dev_pagemap_get_ops();
1258
1259         devmem = devres_alloc_node(&hmm_devmem_release, sizeof(*devmem),
1260                                    GFP_KERNEL, dev_to_node(device));
1261         if (!devmem)
1262                 return ERR_PTR(-ENOMEM);
1263
1264         init_completion(&devmem->completion);
1265         devmem->pfn_first = -1UL;
1266         devmem->pfn_last = -1UL;
1267         devmem->resource = res;
1268         devmem->device = device;
1269         devmem->ops = ops;
1270
1271         ret = percpu_ref_init(&devmem->ref, &hmm_devmem_ref_release,
1272                               0, GFP_KERNEL);
1273         if (ret)
1274                 goto error_percpu_ref;
1275
1276         ret = devm_add_action(device, hmm_devmem_ref_exit, &devmem->ref);
1277         if (ret)
1278                 goto error_devm_add_action;
1279
1280
1281         devmem->pfn_first = devmem->resource->start >> PAGE_SHIFT;
1282         devmem->pfn_last = devmem->pfn_first +
1283                            (resource_size(devmem->resource) >> PAGE_SHIFT);
1284
1285         ret = hmm_devmem_pages_create(devmem);
1286         if (ret)
1287                 goto error_devm_add_action;
1288
1289         devres_add(device, devmem);
1290
1291         ret = devm_add_action(device, hmm_devmem_ref_kill, &devmem->ref);
1292         if (ret) {
1293                 hmm_devmem_remove(devmem);
1294                 return ERR_PTR(ret);
1295         }
1296
1297         return devmem;
1298
1299 error_devm_add_action:
1300         hmm_devmem_ref_kill(&devmem->ref);
1301         hmm_devmem_ref_exit(&devmem->ref);
1302 error_percpu_ref:
1303         devres_free(devmem);
1304         return ERR_PTR(ret);
1305 }
1306 EXPORT_SYMBOL(hmm_devmem_add_resource);
1307
1308 /*
1309  * hmm_devmem_remove() - remove device memory (kill and free ZONE_DEVICE)
1310  *
1311  * @devmem: hmm_devmem struct use to track and manage the ZONE_DEVICE memory
1312  *
1313  * This will hot-unplug memory that was hotplugged by hmm_devmem_add on behalf
1314  * of the device driver. It will free struct page and remove the resource that
1315  * reserved the physical address range for this device memory.
1316  */
1317 void hmm_devmem_remove(struct hmm_devmem *devmem)
1318 {
1319         resource_size_t start, size;
1320         struct device *device;
1321         bool cdm = false;
1322
1323         if (!devmem)
1324                 return;
1325
1326         device = devmem->device;
1327         start = devmem->resource->start;
1328         size = resource_size(devmem->resource);
1329
1330         cdm = devmem->resource->desc == IORES_DESC_DEVICE_PUBLIC_MEMORY;
1331         hmm_devmem_ref_kill(&devmem->ref);
1332         hmm_devmem_ref_exit(&devmem->ref);
1333         hmm_devmem_pages_remove(devmem);
1334
1335         if (!cdm)
1336                 devm_release_mem_region(device, start, size);
1337 }
1338 EXPORT_SYMBOL(hmm_devmem_remove);
1339
1340 /*
1341  * A device driver that wants to handle multiple devices memory through a
1342  * single fake device can use hmm_device to do so. This is purely a helper
1343  * and it is not needed to make use of any HMM functionality.
1344  */
1345 #define HMM_DEVICE_MAX 256
1346
1347 static DECLARE_BITMAP(hmm_device_mask, HMM_DEVICE_MAX);
1348 static DEFINE_SPINLOCK(hmm_device_lock);
1349 static struct class *hmm_device_class;
1350 static dev_t hmm_device_devt;
1351
1352 static void hmm_device_release(struct device *device)
1353 {
1354         struct hmm_device *hmm_device;
1355
1356         hmm_device = container_of(device, struct hmm_device, device);
1357         spin_lock(&hmm_device_lock);
1358         clear_bit(hmm_device->minor, hmm_device_mask);
1359         spin_unlock(&hmm_device_lock);
1360
1361         kfree(hmm_device);
1362 }
1363
1364 struct hmm_device *hmm_device_new(void *drvdata)
1365 {
1366         struct hmm_device *hmm_device;
1367
1368         hmm_device = kzalloc(sizeof(*hmm_device), GFP_KERNEL);
1369         if (!hmm_device)
1370                 return ERR_PTR(-ENOMEM);
1371
1372         spin_lock(&hmm_device_lock);
1373         hmm_device->minor = find_first_zero_bit(hmm_device_mask, HMM_DEVICE_MAX);
1374         if (hmm_device->minor >= HMM_DEVICE_MAX) {
1375                 spin_unlock(&hmm_device_lock);
1376                 kfree(hmm_device);
1377                 return ERR_PTR(-EBUSY);
1378         }
1379         set_bit(hmm_device->minor, hmm_device_mask);
1380         spin_unlock(&hmm_device_lock);
1381
1382         dev_set_name(&hmm_device->device, "hmm_device%d", hmm_device->minor);
1383         hmm_device->device.devt = MKDEV(MAJOR(hmm_device_devt),
1384                                         hmm_device->minor);
1385         hmm_device->device.release = hmm_device_release;
1386         dev_set_drvdata(&hmm_device->device, drvdata);
1387         hmm_device->device.class = hmm_device_class;
1388         device_initialize(&hmm_device->device);
1389
1390         return hmm_device;
1391 }
1392 EXPORT_SYMBOL(hmm_device_new);
1393
1394 void hmm_device_put(struct hmm_device *hmm_device)
1395 {
1396         put_device(&hmm_device->device);
1397 }
1398 EXPORT_SYMBOL(hmm_device_put);
1399
1400 static int __init hmm_init(void)
1401 {
1402         int ret;
1403
1404         ret = alloc_chrdev_region(&hmm_device_devt, 0,
1405                                   HMM_DEVICE_MAX,
1406                                   "hmm_device");
1407         if (ret)
1408                 return ret;
1409
1410         hmm_device_class = class_create(THIS_MODULE, "hmm_device");
1411         if (IS_ERR(hmm_device_class)) {
1412                 unregister_chrdev_region(hmm_device_devt, HMM_DEVICE_MAX);
1413                 return PTR_ERR(hmm_device_class);
1414         }
1415         return 0;
1416 }
1417
1418 device_initcall(hmm_init);
1419 #endif /* CONFIG_DEVICE_PRIVATE || CONFIG_DEVICE_PUBLIC */