1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <linux/kernel.h>
3 #include <linux/errno.h>
5 #include <linux/spinlock.h>
8 #include <linux/memremap.h>
9 #include <linux/pagemap.h>
10 #include <linux/rmap.h>
11 #include <linux/swap.h>
12 #include <linux/swapops.h>
13 #include <linux/secretmem.h>
15 #include <linux/sched/signal.h>
16 #include <linux/rwsem.h>
17 #include <linux/hugetlb.h>
18 #include <linux/migrate.h>
19 #include <linux/mm_inline.h>
20 #include <linux/sched/mm.h>
22 #include <asm/mmu_context.h>
23 #include <asm/tlbflush.h>
27 struct follow_page_context {
28 struct dev_pagemap *pgmap;
29 unsigned int page_mask;
32 static inline void sanity_check_pinned_pages(struct page **pages,
35 if (!IS_ENABLED(CONFIG_DEBUG_VM))
39 * We only pin anonymous pages if they are exclusive. Once pinned, we
40 * can no longer turn them possibly shared and PageAnonExclusive() will
41 * stick around until the page is freed.
43 * We'd like to verify that our pinned anonymous pages are still mapped
44 * exclusively. The issue with anon THP is that we don't know how
45 * they are/were mapped when pinning them. However, for anon
46 * THP we can assume that either the given page (PTE-mapped THP) or
47 * the head page (PMD-mapped THP) should be PageAnonExclusive(). If
48 * neither is the case, there is certainly something wrong.
50 for (; npages; npages--, pages++) {
51 struct page *page = *pages;
52 struct folio *folio = page_folio(page);
54 if (!folio_test_anon(folio))
56 if (!folio_test_large(folio) || folio_test_hugetlb(folio))
57 VM_BUG_ON_PAGE(!PageAnonExclusive(&folio->page), page);
59 /* Either a PTE-mapped or a PMD-mapped THP. */
60 VM_BUG_ON_PAGE(!PageAnonExclusive(&folio->page) &&
61 !PageAnonExclusive(page), page);
66 * Return the folio with ref appropriately incremented,
67 * or NULL if that failed.
69 static inline struct folio *try_get_folio(struct page *page, int refs)
74 folio = page_folio(page);
75 if (WARN_ON_ONCE(folio_ref_count(folio) < 0))
77 if (unlikely(!folio_ref_try_add_rcu(folio, refs)))
81 * At this point we have a stable reference to the folio; but it
82 * could be that between calling page_folio() and the refcount
83 * increment, the folio was split, in which case we'd end up
84 * holding a reference on a folio that has nothing to do with the page
85 * we were given anymore.
86 * So now that the folio is stable, recheck that the page still
87 * belongs to this folio.
89 if (unlikely(page_folio(page) != folio)) {
90 if (!put_devmap_managed_page_refs(&folio->page, refs))
91 folio_put_refs(folio, refs);
99 * try_grab_folio() - Attempt to get or pin a folio.
100 * @page: pointer to page to be grabbed
101 * @refs: the value to (effectively) add to the folio's refcount
102 * @flags: gup flags: these are the FOLL_* flag values.
104 * "grab" names in this file mean, "look at flags to decide whether to use
105 * FOLL_PIN or FOLL_GET behavior, when incrementing the folio's refcount.
107 * Either FOLL_PIN or FOLL_GET (or neither) must be set, but not both at the
108 * same time. (That's true throughout the get_user_pages*() and
109 * pin_user_pages*() APIs.) Cases:
111 * FOLL_GET: folio's refcount will be incremented by @refs.
113 * FOLL_PIN on large folios: folio's refcount will be incremented by
114 * @refs, and its compound_pincount will be incremented by @refs.
116 * FOLL_PIN on single-page folios: folio's refcount will be incremented by
117 * @refs * GUP_PIN_COUNTING_BIAS.
119 * Return: The folio containing @page (with refcount appropriately
120 * incremented) for success, or NULL upon failure. If neither FOLL_GET
121 * nor FOLL_PIN was set, that's considered failure, and furthermore,
122 * a likely bug in the caller, so a warning is also emitted.
124 struct folio *try_grab_folio(struct page *page, int refs, unsigned int flags)
126 if (flags & FOLL_GET)
127 return try_get_folio(page, refs);
128 else if (flags & FOLL_PIN) {
132 * Can't do FOLL_LONGTERM + FOLL_PIN gup fast path if not in a
133 * right zone, so fail and let the caller fall back to the slow
136 if (unlikely((flags & FOLL_LONGTERM) &&
137 !is_longterm_pinnable_page(page)))
141 * CAUTION: Don't use compound_head() on the page before this
142 * point, the result won't be stable.
144 folio = try_get_folio(page, refs);
149 * When pinning a large folio, use an exact count to track it.
151 * However, be sure to *also* increment the normal folio
152 * refcount field at least once, so that the folio really
153 * is pinned. That's why the refcount from the earlier
154 * try_get_folio() is left intact.
156 if (folio_test_large(folio))
157 atomic_add(refs, folio_pincount_ptr(folio));
160 refs * (GUP_PIN_COUNTING_BIAS - 1));
161 node_stat_mod_folio(folio, NR_FOLL_PIN_ACQUIRED, refs);
170 static void gup_put_folio(struct folio *folio, int refs, unsigned int flags)
172 if (flags & FOLL_PIN) {
173 node_stat_mod_folio(folio, NR_FOLL_PIN_RELEASED, refs);
174 if (folio_test_large(folio))
175 atomic_sub(refs, folio_pincount_ptr(folio));
177 refs *= GUP_PIN_COUNTING_BIAS;
180 if (!put_devmap_managed_page_refs(&folio->page, refs))
181 folio_put_refs(folio, refs);
185 * try_grab_page() - elevate a page's refcount by a flag-dependent amount
186 * @page: pointer to page to be grabbed
187 * @flags: gup flags: these are the FOLL_* flag values.
189 * This might not do anything at all, depending on the flags argument.
191 * "grab" names in this file mean, "look at flags to decide whether to use
192 * FOLL_PIN or FOLL_GET behavior, when incrementing the page's refcount.
194 * Either FOLL_PIN or FOLL_GET (or neither) may be set, but not both at the same
195 * time. Cases: please see the try_grab_folio() documentation, with
198 * Return: true for success, or if no action was required (if neither FOLL_PIN
199 * nor FOLL_GET was set, nothing is done). False for failure: FOLL_GET or
200 * FOLL_PIN was set, but the page could not be grabbed.
202 bool __must_check try_grab_page(struct page *page, unsigned int flags)
204 struct folio *folio = page_folio(page);
206 WARN_ON_ONCE((flags & (FOLL_GET | FOLL_PIN)) == (FOLL_GET | FOLL_PIN));
207 if (WARN_ON_ONCE(folio_ref_count(folio) <= 0))
210 if (flags & FOLL_GET)
211 folio_ref_inc(folio);
212 else if (flags & FOLL_PIN) {
214 * Similar to try_grab_folio(): be sure to *also*
215 * increment the normal page refcount field at least once,
216 * so that the page really is pinned.
218 if (folio_test_large(folio)) {
219 folio_ref_add(folio, 1);
220 atomic_add(1, folio_pincount_ptr(folio));
222 folio_ref_add(folio, GUP_PIN_COUNTING_BIAS);
225 node_stat_mod_folio(folio, NR_FOLL_PIN_ACQUIRED, 1);
232 * unpin_user_page() - release a dma-pinned page
233 * @page: pointer to page to be released
235 * Pages that were pinned via pin_user_pages*() must be released via either
236 * unpin_user_page(), or one of the unpin_user_pages*() routines. This is so
237 * that such pages can be separately tracked and uniquely handled. In
238 * particular, interactions with RDMA and filesystems need special handling.
240 void unpin_user_page(struct page *page)
242 sanity_check_pinned_pages(&page, 1);
243 gup_put_folio(page_folio(page), 1, FOLL_PIN);
245 EXPORT_SYMBOL(unpin_user_page);
247 static inline struct folio *gup_folio_range_next(struct page *start,
248 unsigned long npages, unsigned long i, unsigned int *ntails)
250 struct page *next = nth_page(start, i);
251 struct folio *folio = page_folio(next);
254 if (folio_test_large(folio))
255 nr = min_t(unsigned int, npages - i,
256 folio_nr_pages(folio) - folio_page_idx(folio, next));
262 static inline struct folio *gup_folio_next(struct page **list,
263 unsigned long npages, unsigned long i, unsigned int *ntails)
265 struct folio *folio = page_folio(list[i]);
268 for (nr = i + 1; nr < npages; nr++) {
269 if (page_folio(list[nr]) != folio)
278 * unpin_user_pages_dirty_lock() - release and optionally dirty gup-pinned pages
279 * @pages: array of pages to be maybe marked dirty, and definitely released.
280 * @npages: number of pages in the @pages array.
281 * @make_dirty: whether to mark the pages dirty
283 * "gup-pinned page" refers to a page that has had one of the get_user_pages()
284 * variants called on that page.
286 * For each page in the @pages array, make that page (or its head page, if a
287 * compound page) dirty, if @make_dirty is true, and if the page was previously
288 * listed as clean. In any case, releases all pages using unpin_user_page(),
289 * possibly via unpin_user_pages(), for the non-dirty case.
291 * Please see the unpin_user_page() documentation for details.
293 * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
294 * required, then the caller should a) verify that this is really correct,
295 * because _lock() is usually required, and b) hand code it:
296 * set_page_dirty_lock(), unpin_user_page().
299 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
307 unpin_user_pages(pages, npages);
311 sanity_check_pinned_pages(pages, npages);
312 for (i = 0; i < npages; i += nr) {
313 folio = gup_folio_next(pages, npages, i, &nr);
315 * Checking PageDirty at this point may race with
316 * clear_page_dirty_for_io(), but that's OK. Two key
319 * 1) This code sees the page as already dirty, so it
320 * skips the call to set_page_dirty(). That could happen
321 * because clear_page_dirty_for_io() called
322 * page_mkclean(), followed by set_page_dirty().
323 * However, now the page is going to get written back,
324 * which meets the original intention of setting it
325 * dirty, so all is well: clear_page_dirty_for_io() goes
326 * on to call TestClearPageDirty(), and write the page
329 * 2) This code sees the page as clean, so it calls
330 * set_page_dirty(). The page stays dirty, despite being
331 * written back, so it gets written back again in the
332 * next writeback cycle. This is harmless.
334 if (!folio_test_dirty(folio)) {
336 folio_mark_dirty(folio);
339 gup_put_folio(folio, nr, FOLL_PIN);
342 EXPORT_SYMBOL(unpin_user_pages_dirty_lock);
345 * unpin_user_page_range_dirty_lock() - release and optionally dirty
346 * gup-pinned page range
348 * @page: the starting page of a range maybe marked dirty, and definitely released.
349 * @npages: number of consecutive pages to release.
350 * @make_dirty: whether to mark the pages dirty
352 * "gup-pinned page range" refers to a range of pages that has had one of the
353 * pin_user_pages() variants called on that page.
355 * For the page ranges defined by [page .. page+npages], make that range (or
356 * its head pages, if a compound page) dirty, if @make_dirty is true, and if the
357 * page range was previously listed as clean.
359 * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
360 * required, then the caller should a) verify that this is really correct,
361 * because _lock() is usually required, and b) hand code it:
362 * set_page_dirty_lock(), unpin_user_page().
365 void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages,
372 for (i = 0; i < npages; i += nr) {
373 folio = gup_folio_range_next(page, npages, i, &nr);
374 if (make_dirty && !folio_test_dirty(folio)) {
376 folio_mark_dirty(folio);
379 gup_put_folio(folio, nr, FOLL_PIN);
382 EXPORT_SYMBOL(unpin_user_page_range_dirty_lock);
384 static void unpin_user_pages_lockless(struct page **pages, unsigned long npages)
391 * Don't perform any sanity checks because we might have raced with
392 * fork() and some anonymous pages might now actually be shared --
393 * which is why we're unpinning after all.
395 for (i = 0; i < npages; i += nr) {
396 folio = gup_folio_next(pages, npages, i, &nr);
397 gup_put_folio(folio, nr, FOLL_PIN);
402 * unpin_user_pages() - release an array of gup-pinned pages.
403 * @pages: array of pages to be marked dirty and released.
404 * @npages: number of pages in the @pages array.
406 * For each page in the @pages array, release the page using unpin_user_page().
408 * Please see the unpin_user_page() documentation for details.
410 void unpin_user_pages(struct page **pages, unsigned long npages)
417 * If this WARN_ON() fires, then the system *might* be leaking pages (by
418 * leaving them pinned), but probably not. More likely, gup/pup returned
419 * a hard -ERRNO error to the caller, who erroneously passed it here.
421 if (WARN_ON(IS_ERR_VALUE(npages)))
424 sanity_check_pinned_pages(pages, npages);
425 for (i = 0; i < npages; i += nr) {
426 folio = gup_folio_next(pages, npages, i, &nr);
427 gup_put_folio(folio, nr, FOLL_PIN);
430 EXPORT_SYMBOL(unpin_user_pages);
433 * Set the MMF_HAS_PINNED if not set yet; after set it'll be there for the mm's
434 * lifecycle. Avoid setting the bit unless necessary, or it might cause write
435 * cache bouncing on large SMP machines for concurrent pinned gups.
437 static inline void mm_set_has_pinned_flag(unsigned long *mm_flags)
439 if (!test_bit(MMF_HAS_PINNED, mm_flags))
440 set_bit(MMF_HAS_PINNED, mm_flags);
444 static struct page *no_page_table(struct vm_area_struct *vma,
448 * When core dumping an enormous anonymous area that nobody
449 * has touched so far, we don't want to allocate unnecessary pages or
450 * page tables. Return error instead of NULL to skip handle_mm_fault,
451 * then get_dump_page() will return NULL to leave a hole in the dump.
452 * But we can only make this optimization where a hole would surely
453 * be zero-filled if handle_mm_fault() actually did handle it.
455 if ((flags & FOLL_DUMP) &&
456 (vma_is_anonymous(vma) || !vma->vm_ops->fault))
457 return ERR_PTR(-EFAULT);
461 static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address,
462 pte_t *pte, unsigned int flags)
464 if (flags & FOLL_TOUCH) {
467 if (flags & FOLL_WRITE)
468 entry = pte_mkdirty(entry);
469 entry = pte_mkyoung(entry);
471 if (!pte_same(*pte, entry)) {
472 set_pte_at(vma->vm_mm, address, pte, entry);
473 update_mmu_cache(vma, address, pte);
477 /* Proper page table entry exists, but no corresponding struct page */
481 /* FOLL_FORCE can write to even unwritable PTEs in COW mappings. */
482 static inline bool can_follow_write_pte(pte_t pte, struct page *page,
483 struct vm_area_struct *vma,
486 /* If the pte is writable, we can write to the page. */
490 /* Maybe FOLL_FORCE is set to override it? */
491 if (!(flags & FOLL_FORCE))
494 /* But FOLL_FORCE has no effect on shared mappings */
495 if (vma->vm_flags & (VM_MAYSHARE | VM_SHARED))
498 /* ... or read-only private ones */
499 if (!(vma->vm_flags & VM_MAYWRITE))
502 /* ... or already writable ones that just need to take a write fault */
503 if (vma->vm_flags & VM_WRITE)
507 * See can_change_pte_writable(): we broke COW and could map the page
508 * writable if we have an exclusive anonymous page ...
510 if (!page || !PageAnon(page) || !PageAnonExclusive(page))
513 /* ... and a write-fault isn't required for other reasons. */
514 if (vma_soft_dirty_enabled(vma) && !pte_soft_dirty(pte))
516 return !userfaultfd_pte_wp(vma, pte);
519 static struct page *follow_page_pte(struct vm_area_struct *vma,
520 unsigned long address, pmd_t *pmd, unsigned int flags,
521 struct dev_pagemap **pgmap)
523 struct mm_struct *mm = vma->vm_mm;
529 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
530 if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
531 (FOLL_PIN | FOLL_GET)))
532 return ERR_PTR(-EINVAL);
535 * Considering PTE level hugetlb, like continuous-PTE hugetlb on
536 * ARM64 architecture.
538 if (is_vm_hugetlb_page(vma)) {
539 page = follow_huge_pmd_pte(vma, address, flags);
542 return no_page_table(vma, flags);
546 if (unlikely(pmd_bad(*pmd)))
547 return no_page_table(vma, flags);
549 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
551 if (!pte_present(pte)) {
554 * KSM's break_ksm() relies upon recognizing a ksm page
555 * even while it is being migrated, so for that case we
556 * need migration_entry_wait().
558 if (likely(!(flags & FOLL_MIGRATION)))
562 entry = pte_to_swp_entry(pte);
563 if (!is_migration_entry(entry))
565 pte_unmap_unlock(ptep, ptl);
566 migration_entry_wait(mm, pmd, address);
569 if ((flags & FOLL_NUMA) && pte_protnone(pte))
572 page = vm_normal_page(vma, address, pte);
575 * We only care about anon pages in can_follow_write_pte() and don't
576 * have to worry about pte_devmap() because they are never anon.
578 if ((flags & FOLL_WRITE) &&
579 !can_follow_write_pte(pte, page, vma, flags)) {
584 if (!page && pte_devmap(pte) && (flags & (FOLL_GET | FOLL_PIN))) {
586 * Only return device mapping pages in the FOLL_GET or FOLL_PIN
587 * case since they are only valid while holding the pgmap
590 *pgmap = get_dev_pagemap(pte_pfn(pte), *pgmap);
592 page = pte_page(pte);
595 } else if (unlikely(!page)) {
596 if (flags & FOLL_DUMP) {
597 /* Avoid special (like zero) pages in core dumps */
598 page = ERR_PTR(-EFAULT);
602 if (is_zero_pfn(pte_pfn(pte))) {
603 page = pte_page(pte);
605 ret = follow_pfn_pte(vma, address, ptep, flags);
611 if (!pte_write(pte) && gup_must_unshare(flags, page)) {
612 page = ERR_PTR(-EMLINK);
616 VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) &&
617 !PageAnonExclusive(page), page);
619 /* try_grab_page() does nothing unless FOLL_GET or FOLL_PIN is set. */
620 if (unlikely(!try_grab_page(page, flags))) {
621 page = ERR_PTR(-ENOMEM);
625 * We need to make the page accessible if and only if we are going
626 * to access its content (the FOLL_PIN case). Please see
627 * Documentation/core-api/pin_user_pages.rst for details.
629 if (flags & FOLL_PIN) {
630 ret = arch_make_page_accessible(page);
632 unpin_user_page(page);
637 if (flags & FOLL_TOUCH) {
638 if ((flags & FOLL_WRITE) &&
639 !pte_dirty(pte) && !PageDirty(page))
640 set_page_dirty(page);
642 * pte_mkyoung() would be more correct here, but atomic care
643 * is needed to avoid losing the dirty bit: it is easier to use
644 * mark_page_accessed().
646 mark_page_accessed(page);
649 pte_unmap_unlock(ptep, ptl);
652 pte_unmap_unlock(ptep, ptl);
655 return no_page_table(vma, flags);
658 static struct page *follow_pmd_mask(struct vm_area_struct *vma,
659 unsigned long address, pud_t *pudp,
661 struct follow_page_context *ctx)
666 struct mm_struct *mm = vma->vm_mm;
668 pmd = pmd_offset(pudp, address);
670 * The READ_ONCE() will stabilize the pmdval in a register or
671 * on the stack so that it will stop changing under the code.
673 pmdval = READ_ONCE(*pmd);
674 if (pmd_none(pmdval))
675 return no_page_table(vma, flags);
676 if (pmd_huge(pmdval) && is_vm_hugetlb_page(vma)) {
677 page = follow_huge_pmd_pte(vma, address, flags);
680 return no_page_table(vma, flags);
682 if (is_hugepd(__hugepd(pmd_val(pmdval)))) {
683 page = follow_huge_pd(vma, address,
684 __hugepd(pmd_val(pmdval)), flags,
688 return no_page_table(vma, flags);
691 if (!pmd_present(pmdval)) {
693 * Should never reach here, if thp migration is not supported;
694 * Otherwise, it must be a thp migration entry.
696 VM_BUG_ON(!thp_migration_supported() ||
697 !is_pmd_migration_entry(pmdval));
699 if (likely(!(flags & FOLL_MIGRATION)))
700 return no_page_table(vma, flags);
702 pmd_migration_entry_wait(mm, pmd);
703 pmdval = READ_ONCE(*pmd);
705 * MADV_DONTNEED may convert the pmd to null because
706 * mmap_lock is held in read mode
708 if (pmd_none(pmdval))
709 return no_page_table(vma, flags);
712 if (pmd_devmap(pmdval)) {
713 ptl = pmd_lock(mm, pmd);
714 page = follow_devmap_pmd(vma, address, pmd, flags, &ctx->pgmap);
719 if (likely(!pmd_trans_huge(pmdval)))
720 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
722 if ((flags & FOLL_NUMA) && pmd_protnone(pmdval))
723 return no_page_table(vma, flags);
726 ptl = pmd_lock(mm, pmd);
727 if (unlikely(pmd_none(*pmd))) {
729 return no_page_table(vma, flags);
731 if (unlikely(!pmd_present(*pmd))) {
733 if (likely(!(flags & FOLL_MIGRATION)))
734 return no_page_table(vma, flags);
735 pmd_migration_entry_wait(mm, pmd);
738 if (unlikely(!pmd_trans_huge(*pmd))) {
740 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
742 if (flags & FOLL_SPLIT_PMD) {
744 page = pmd_page(*pmd);
745 if (is_huge_zero_page(page)) {
748 split_huge_pmd(vma, pmd, address);
749 if (pmd_trans_unstable(pmd))
753 split_huge_pmd(vma, pmd, address);
754 ret = pte_alloc(mm, pmd) ? -ENOMEM : 0;
757 return ret ? ERR_PTR(ret) :
758 follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
760 page = follow_trans_huge_pmd(vma, address, pmd, flags);
762 ctx->page_mask = HPAGE_PMD_NR - 1;
766 static struct page *follow_pud_mask(struct vm_area_struct *vma,
767 unsigned long address, p4d_t *p4dp,
769 struct follow_page_context *ctx)
774 struct mm_struct *mm = vma->vm_mm;
776 pud = pud_offset(p4dp, address);
778 return no_page_table(vma, flags);
779 if (pud_huge(*pud) && is_vm_hugetlb_page(vma)) {
780 page = follow_huge_pud(mm, address, pud, flags);
783 return no_page_table(vma, flags);
785 if (is_hugepd(__hugepd(pud_val(*pud)))) {
786 page = follow_huge_pd(vma, address,
787 __hugepd(pud_val(*pud)), flags,
791 return no_page_table(vma, flags);
793 if (pud_devmap(*pud)) {
794 ptl = pud_lock(mm, pud);
795 page = follow_devmap_pud(vma, address, pud, flags, &ctx->pgmap);
800 if (unlikely(pud_bad(*pud)))
801 return no_page_table(vma, flags);
803 return follow_pmd_mask(vma, address, pud, flags, ctx);
806 static struct page *follow_p4d_mask(struct vm_area_struct *vma,
807 unsigned long address, pgd_t *pgdp,
809 struct follow_page_context *ctx)
814 p4d = p4d_offset(pgdp, address);
816 return no_page_table(vma, flags);
817 BUILD_BUG_ON(p4d_huge(*p4d));
818 if (unlikely(p4d_bad(*p4d)))
819 return no_page_table(vma, flags);
821 if (is_hugepd(__hugepd(p4d_val(*p4d)))) {
822 page = follow_huge_pd(vma, address,
823 __hugepd(p4d_val(*p4d)), flags,
827 return no_page_table(vma, flags);
829 return follow_pud_mask(vma, address, p4d, flags, ctx);
833 * follow_page_mask - look up a page descriptor from a user-virtual address
834 * @vma: vm_area_struct mapping @address
835 * @address: virtual address to look up
836 * @flags: flags modifying lookup behaviour
837 * @ctx: contains dev_pagemap for %ZONE_DEVICE memory pinning and a
838 * pointer to output page_mask
840 * @flags can have FOLL_ flags set, defined in <linux/mm.h>
842 * When getting pages from ZONE_DEVICE memory, the @ctx->pgmap caches
843 * the device's dev_pagemap metadata to avoid repeating expensive lookups.
845 * When getting an anonymous page and the caller has to trigger unsharing
846 * of a shared anonymous page first, -EMLINK is returned. The caller should
847 * trigger a fault with FAULT_FLAG_UNSHARE set. Note that unsharing is only
848 * relevant with FOLL_PIN and !FOLL_WRITE.
850 * On output, the @ctx->page_mask is set according to the size of the page.
852 * Return: the mapped (struct page *), %NULL if no mapping exists, or
853 * an error pointer if there is a mapping to something not represented
854 * by a page descriptor (see also vm_normal_page()).
856 static struct page *follow_page_mask(struct vm_area_struct *vma,
857 unsigned long address, unsigned int flags,
858 struct follow_page_context *ctx)
862 struct mm_struct *mm = vma->vm_mm;
866 /* make this handle hugepd */
867 page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
869 WARN_ON_ONCE(flags & (FOLL_GET | FOLL_PIN));
873 pgd = pgd_offset(mm, address);
875 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
876 return no_page_table(vma, flags);
878 if (pgd_huge(*pgd)) {
879 page = follow_huge_pgd(mm, address, pgd, flags);
882 return no_page_table(vma, flags);
884 if (is_hugepd(__hugepd(pgd_val(*pgd)))) {
885 page = follow_huge_pd(vma, address,
886 __hugepd(pgd_val(*pgd)), flags,
890 return no_page_table(vma, flags);
893 return follow_p4d_mask(vma, address, pgd, flags, ctx);
896 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
897 unsigned int foll_flags)
899 struct follow_page_context ctx = { NULL };
902 if (vma_is_secretmem(vma))
905 if (foll_flags & FOLL_PIN)
908 page = follow_page_mask(vma, address, foll_flags, &ctx);
910 put_dev_pagemap(ctx.pgmap);
914 static int get_gate_page(struct mm_struct *mm, unsigned long address,
915 unsigned int gup_flags, struct vm_area_struct **vma,
925 /* user gate pages are read-only */
926 if (gup_flags & FOLL_WRITE)
928 if (address > TASK_SIZE)
929 pgd = pgd_offset_k(address);
931 pgd = pgd_offset_gate(mm, address);
934 p4d = p4d_offset(pgd, address);
937 pud = pud_offset(p4d, address);
940 pmd = pmd_offset(pud, address);
941 if (!pmd_present(*pmd))
943 VM_BUG_ON(pmd_trans_huge(*pmd));
944 pte = pte_offset_map(pmd, address);
947 *vma = get_gate_vma(mm);
950 *page = vm_normal_page(*vma, address, *pte);
952 if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(*pte)))
954 *page = pte_page(*pte);
956 if (unlikely(!try_grab_page(*page, gup_flags))) {
968 * mmap_lock must be held on entry. If @locked != NULL and *@flags
969 * does not include FOLL_NOWAIT, the mmap_lock may be released. If it
970 * is, *@locked will be set to 0 and -EBUSY returned.
972 static int faultin_page(struct vm_area_struct *vma,
973 unsigned long address, unsigned int *flags, bool unshare,
976 unsigned int fault_flags = 0;
979 if (*flags & FOLL_NOFAULT)
981 if (*flags & FOLL_WRITE)
982 fault_flags |= FAULT_FLAG_WRITE;
983 if (*flags & FOLL_REMOTE)
984 fault_flags |= FAULT_FLAG_REMOTE;
986 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
987 if (*flags & FOLL_NOWAIT)
988 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT;
989 if (*flags & FOLL_TRIED) {
991 * Note: FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_TRIED
994 fault_flags |= FAULT_FLAG_TRIED;
997 fault_flags |= FAULT_FLAG_UNSHARE;
998 /* FAULT_FLAG_WRITE and FAULT_FLAG_UNSHARE are incompatible */
999 VM_BUG_ON(fault_flags & FAULT_FLAG_WRITE);
1002 ret = handle_mm_fault(vma, address, fault_flags, NULL);
1004 if (ret & VM_FAULT_COMPLETED) {
1006 * With FAULT_FLAG_RETRY_NOWAIT we'll never release the
1007 * mmap lock in the page fault handler. Sanity check this.
1009 WARN_ON_ONCE(fault_flags & FAULT_FLAG_RETRY_NOWAIT);
1013 * We should do the same as VM_FAULT_RETRY, but let's not
1014 * return -EBUSY since that's not reflecting the reality of
1015 * what has happened - we've just fully completed a page
1016 * fault, with the mmap lock released. Use -EAGAIN to show
1017 * that we want to take the mmap lock _again_.
1022 if (ret & VM_FAULT_ERROR) {
1023 int err = vm_fault_to_errno(ret, *flags);
1030 if (ret & VM_FAULT_RETRY) {
1031 if (locked && !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
1039 static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags)
1041 vm_flags_t vm_flags = vma->vm_flags;
1042 int write = (gup_flags & FOLL_WRITE);
1043 int foreign = (gup_flags & FOLL_REMOTE);
1045 if (vm_flags & (VM_IO | VM_PFNMAP))
1048 if (gup_flags & FOLL_ANON && !vma_is_anonymous(vma))
1051 if ((gup_flags & FOLL_LONGTERM) && vma_is_fsdax(vma))
1054 if (vma_is_secretmem(vma))
1058 if (!(vm_flags & VM_WRITE)) {
1059 if (!(gup_flags & FOLL_FORCE))
1062 * We used to let the write,force case do COW in a
1063 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could
1064 * set a breakpoint in a read-only mapping of an
1065 * executable, without corrupting the file (yet only
1066 * when that file had been opened for writing!).
1067 * Anon pages in shared mappings are surprising: now
1070 if (!is_cow_mapping(vm_flags))
1073 } else if (!(vm_flags & VM_READ)) {
1074 if (!(gup_flags & FOLL_FORCE))
1077 * Is there actually any vma we can reach here which does not
1078 * have VM_MAYREAD set?
1080 if (!(vm_flags & VM_MAYREAD))
1084 * gups are always data accesses, not instruction
1085 * fetches, so execute=false here
1087 if (!arch_vma_access_permitted(vma, write, false, foreign))
1093 * __get_user_pages() - pin user pages in memory
1094 * @mm: mm_struct of target mm
1095 * @start: starting user address
1096 * @nr_pages: number of pages from start to pin
1097 * @gup_flags: flags modifying pin behaviour
1098 * @pages: array that receives pointers to the pages pinned.
1099 * Should be at least nr_pages long. Or NULL, if caller
1100 * only intends to ensure the pages are faulted in.
1101 * @vmas: array of pointers to vmas corresponding to each page.
1102 * Or NULL if the caller does not require them.
1103 * @locked: whether we're still with the mmap_lock held
1105 * Returns either number of pages pinned (which may be less than the
1106 * number requested), or an error. Details about the return value:
1108 * -- If nr_pages is 0, returns 0.
1109 * -- If nr_pages is >0, but no pages were pinned, returns -errno.
1110 * -- If nr_pages is >0, and some pages were pinned, returns the number of
1111 * pages pinned. Again, this may be less than nr_pages.
1112 * -- 0 return value is possible when the fault would need to be retried.
1114 * The caller is responsible for releasing returned @pages, via put_page().
1116 * @vmas are valid only as long as mmap_lock is held.
1118 * Must be called with mmap_lock held. It may be released. See below.
1120 * __get_user_pages walks a process's page tables and takes a reference to
1121 * each struct page that each user address corresponds to at a given
1122 * instant. That is, it takes the page that would be accessed if a user
1123 * thread accesses the given user virtual address at that instant.
1125 * This does not guarantee that the page exists in the user mappings when
1126 * __get_user_pages returns, and there may even be a completely different
1127 * page there in some cases (eg. if mmapped pagecache has been invalidated
1128 * and subsequently re faulted). However it does guarantee that the page
1129 * won't be freed completely. And mostly callers simply care that the page
1130 * contains data that was valid *at some point in time*. Typically, an IO
1131 * or similar operation cannot guarantee anything stronger anyway because
1132 * locks can't be held over the syscall boundary.
1134 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
1135 * the page is written to, set_page_dirty (or set_page_dirty_lock, as
1136 * appropriate) must be called after the page is finished with, and
1137 * before put_page is called.
1139 * If @locked != NULL, *@locked will be set to 0 when mmap_lock is
1140 * released by an up_read(). That can happen if @gup_flags does not
1143 * A caller using such a combination of @locked and @gup_flags
1144 * must therefore hold the mmap_lock for reading only, and recognize
1145 * when it's been released. Otherwise, it must be held for either
1146 * reading or writing and will not be released.
1148 * In most cases, get_user_pages or get_user_pages_fast should be used
1149 * instead of __get_user_pages. __get_user_pages should be used only if
1150 * you need some special @gup_flags.
1152 static long __get_user_pages(struct mm_struct *mm,
1153 unsigned long start, unsigned long nr_pages,
1154 unsigned int gup_flags, struct page **pages,
1155 struct vm_area_struct **vmas, int *locked)
1157 long ret = 0, i = 0;
1158 struct vm_area_struct *vma = NULL;
1159 struct follow_page_context ctx = { NULL };
1164 start = untagged_addr(start);
1166 VM_BUG_ON(!!pages != !!(gup_flags & (FOLL_GET | FOLL_PIN)));
1169 * If FOLL_FORCE is set then do not force a full fault as the hinting
1170 * fault information is unrelated to the reference behaviour of a task
1171 * using the address space
1173 if (!(gup_flags & FOLL_FORCE))
1174 gup_flags |= FOLL_NUMA;
1178 unsigned int foll_flags = gup_flags;
1179 unsigned int page_increm;
1181 /* first iteration or cross vma bound */
1182 if (!vma || start >= vma->vm_end) {
1183 vma = find_extend_vma(mm, start);
1184 if (!vma && in_gate_area(mm, start)) {
1185 ret = get_gate_page(mm, start & PAGE_MASK,
1187 pages ? &pages[i] : NULL);
1198 ret = check_vma_flags(vma, gup_flags);
1202 if (is_vm_hugetlb_page(vma)) {
1203 i = follow_hugetlb_page(mm, vma, pages, vmas,
1204 &start, &nr_pages, i,
1206 if (locked && *locked == 0) {
1208 * We've got a VM_FAULT_RETRY
1209 * and we've lost mmap_lock.
1210 * We must stop here.
1212 BUG_ON(gup_flags & FOLL_NOWAIT);
1220 * If we have a pending SIGKILL, don't keep faulting pages and
1221 * potentially allocating memory.
1223 if (fatal_signal_pending(current)) {
1229 page = follow_page_mask(vma, start, foll_flags, &ctx);
1230 if (!page || PTR_ERR(page) == -EMLINK) {
1231 ret = faultin_page(vma, start, &foll_flags,
1232 PTR_ERR(page) == -EMLINK, locked);
1246 } else if (PTR_ERR(page) == -EEXIST) {
1248 * Proper page table entry exists, but no corresponding
1249 * struct page. If the caller expects **pages to be
1250 * filled in, bail out now, because that can't be done
1254 ret = PTR_ERR(page);
1259 } else if (IS_ERR(page)) {
1260 ret = PTR_ERR(page);
1265 flush_anon_page(vma, page, start);
1266 flush_dcache_page(page);
1274 page_increm = 1 + (~(start >> PAGE_SHIFT) & ctx.page_mask);
1275 if (page_increm > nr_pages)
1276 page_increm = nr_pages;
1278 start += page_increm * PAGE_SIZE;
1279 nr_pages -= page_increm;
1283 put_dev_pagemap(ctx.pgmap);
1287 static bool vma_permits_fault(struct vm_area_struct *vma,
1288 unsigned int fault_flags)
1290 bool write = !!(fault_flags & FAULT_FLAG_WRITE);
1291 bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE);
1292 vm_flags_t vm_flags = write ? VM_WRITE : VM_READ;
1294 if (!(vm_flags & vma->vm_flags))
1298 * The architecture might have a hardware protection
1299 * mechanism other than read/write that can deny access.
1301 * gup always represents data access, not instruction
1302 * fetches, so execute=false here:
1304 if (!arch_vma_access_permitted(vma, write, false, foreign))
1311 * fixup_user_fault() - manually resolve a user page fault
1312 * @mm: mm_struct of target mm
1313 * @address: user address
1314 * @fault_flags:flags to pass down to handle_mm_fault()
1315 * @unlocked: did we unlock the mmap_lock while retrying, maybe NULL if caller
1316 * does not allow retry. If NULL, the caller must guarantee
1317 * that fault_flags does not contain FAULT_FLAG_ALLOW_RETRY.
1319 * This is meant to be called in the specific scenario where for locking reasons
1320 * we try to access user memory in atomic context (within a pagefault_disable()
1321 * section), this returns -EFAULT, and we want to resolve the user fault before
1324 * Typically this is meant to be used by the futex code.
1326 * The main difference with get_user_pages() is that this function will
1327 * unconditionally call handle_mm_fault() which will in turn perform all the
1328 * necessary SW fixup of the dirty and young bits in the PTE, while
1329 * get_user_pages() only guarantees to update these in the struct page.
1331 * This is important for some architectures where those bits also gate the
1332 * access permission to the page because they are maintained in software. On
1333 * such architectures, gup() will not be enough to make a subsequent access
1336 * This function will not return with an unlocked mmap_lock. So it has not the
1337 * same semantics wrt the @mm->mmap_lock as does filemap_fault().
1339 int fixup_user_fault(struct mm_struct *mm,
1340 unsigned long address, unsigned int fault_flags,
1343 struct vm_area_struct *vma;
1346 address = untagged_addr(address);
1349 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
1352 vma = find_extend_vma(mm, address);
1353 if (!vma || address < vma->vm_start)
1356 if (!vma_permits_fault(vma, fault_flags))
1359 if ((fault_flags & FAULT_FLAG_KILLABLE) &&
1360 fatal_signal_pending(current))
1363 ret = handle_mm_fault(vma, address, fault_flags, NULL);
1365 if (ret & VM_FAULT_COMPLETED) {
1367 * NOTE: it's a pity that we need to retake the lock here
1368 * to pair with the unlock() in the callers. Ideally we
1369 * could tell the callers so they do not need to unlock.
1376 if (ret & VM_FAULT_ERROR) {
1377 int err = vm_fault_to_errno(ret, 0);
1384 if (ret & VM_FAULT_RETRY) {
1387 fault_flags |= FAULT_FLAG_TRIED;
1393 EXPORT_SYMBOL_GPL(fixup_user_fault);
1396 * Please note that this function, unlike __get_user_pages will not
1397 * return 0 for nr_pages > 0 without FOLL_NOWAIT
1399 static __always_inline long __get_user_pages_locked(struct mm_struct *mm,
1400 unsigned long start,
1401 unsigned long nr_pages,
1402 struct page **pages,
1403 struct vm_area_struct **vmas,
1407 long ret, pages_done;
1411 /* if VM_FAULT_RETRY can be returned, vmas become invalid */
1413 /* check caller initialized locked */
1414 BUG_ON(*locked != 1);
1417 if (flags & FOLL_PIN)
1418 mm_set_has_pinned_flag(&mm->flags);
1421 * FOLL_PIN and FOLL_GET are mutually exclusive. Traditional behavior
1422 * is to set FOLL_GET if the caller wants pages[] filled in (but has
1423 * carelessly failed to specify FOLL_GET), so keep doing that, but only
1424 * for FOLL_GET, not for the newer FOLL_PIN.
1426 * FOLL_PIN always expects pages to be non-null, but no need to assert
1427 * that here, as any failures will be obvious enough.
1429 if (pages && !(flags & FOLL_PIN))
1433 lock_dropped = false;
1435 ret = __get_user_pages(mm, start, nr_pages, flags, pages,
1438 /* VM_FAULT_RETRY couldn't trigger, bypass */
1441 /* VM_FAULT_RETRY or VM_FAULT_COMPLETED cannot return errors */
1444 BUG_ON(ret >= nr_pages);
1455 * VM_FAULT_RETRY didn't trigger or it was a
1463 * VM_FAULT_RETRY triggered, so seek to the faulting offset.
1464 * For the prefault case (!pages) we only update counts.
1468 start += ret << PAGE_SHIFT;
1469 lock_dropped = true;
1473 * Repeat on the address that fired VM_FAULT_RETRY
1474 * with both FAULT_FLAG_ALLOW_RETRY and
1475 * FAULT_FLAG_TRIED. Note that GUP can be interrupted
1476 * by fatal signals, so we need to check it before we
1477 * start trying again otherwise it can loop forever.
1480 if (fatal_signal_pending(current)) {
1482 pages_done = -EINTR;
1486 ret = mmap_read_lock_killable(mm);
1495 ret = __get_user_pages(mm, start, 1, flags | FOLL_TRIED,
1496 pages, NULL, locked);
1498 /* Continue to retry until we succeeded */
1516 if (lock_dropped && *locked) {
1518 * We must let the caller know we temporarily dropped the lock
1519 * and so the critical section protected by it was lost.
1521 mmap_read_unlock(mm);
1528 * populate_vma_page_range() - populate a range of pages in the vma.
1530 * @start: start address
1532 * @locked: whether the mmap_lock is still held
1534 * This takes care of mlocking the pages too if VM_LOCKED is set.
1536 * Return either number of pages pinned in the vma, or a negative error
1539 * vma->vm_mm->mmap_lock must be held.
1541 * If @locked is NULL, it may be held for read or write and will
1544 * If @locked is non-NULL, it must held for read only and may be
1545 * released. If it's released, *@locked will be set to 0.
1547 long populate_vma_page_range(struct vm_area_struct *vma,
1548 unsigned long start, unsigned long end, int *locked)
1550 struct mm_struct *mm = vma->vm_mm;
1551 unsigned long nr_pages = (end - start) / PAGE_SIZE;
1555 VM_BUG_ON(!PAGE_ALIGNED(start));
1556 VM_BUG_ON(!PAGE_ALIGNED(end));
1557 VM_BUG_ON_VMA(start < vma->vm_start, vma);
1558 VM_BUG_ON_VMA(end > vma->vm_end, vma);
1559 mmap_assert_locked(mm);
1562 * Rightly or wrongly, the VM_LOCKONFAULT case has never used
1563 * faultin_page() to break COW, so it has no work to do here.
1565 if (vma->vm_flags & VM_LOCKONFAULT)
1568 gup_flags = FOLL_TOUCH;
1570 * We want to touch writable mappings with a write fault in order
1571 * to break COW, except for shared mappings because these don't COW
1572 * and we would not want to dirty them for nothing.
1574 if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE)
1575 gup_flags |= FOLL_WRITE;
1578 * We want mlock to succeed for regions that have any permissions
1579 * other than PROT_NONE.
1581 if (vma_is_accessible(vma))
1582 gup_flags |= FOLL_FORCE;
1585 * We made sure addr is within a VMA, so the following will
1586 * not result in a stack expansion that recurses back here.
1588 ret = __get_user_pages(mm, start, nr_pages, gup_flags,
1589 NULL, NULL, locked);
1595 * faultin_vma_page_range() - populate (prefault) page tables inside the
1596 * given VMA range readable/writable
1598 * This takes care of mlocking the pages, too, if VM_LOCKED is set.
1601 * @start: start address
1603 * @write: whether to prefault readable or writable
1604 * @locked: whether the mmap_lock is still held
1606 * Returns either number of processed pages in the vma, or a negative error
1607 * code on error (see __get_user_pages()).
1609 * vma->vm_mm->mmap_lock must be held. The range must be page-aligned and
1610 * covered by the VMA.
1612 * If @locked is NULL, it may be held for read or write and will be unperturbed.
1614 * If @locked is non-NULL, it must held for read only and may be released. If
1615 * it's released, *@locked will be set to 0.
1617 long faultin_vma_page_range(struct vm_area_struct *vma, unsigned long start,
1618 unsigned long end, bool write, int *locked)
1620 struct mm_struct *mm = vma->vm_mm;
1621 unsigned long nr_pages = (end - start) / PAGE_SIZE;
1625 VM_BUG_ON(!PAGE_ALIGNED(start));
1626 VM_BUG_ON(!PAGE_ALIGNED(end));
1627 VM_BUG_ON_VMA(start < vma->vm_start, vma);
1628 VM_BUG_ON_VMA(end > vma->vm_end, vma);
1629 mmap_assert_locked(mm);
1632 * FOLL_TOUCH: Mark page accessed and thereby young; will also mark
1633 * the page dirty with FOLL_WRITE -- which doesn't make a
1634 * difference with !FOLL_FORCE, because the page is writable
1635 * in the page table.
1636 * FOLL_HWPOISON: Return -EHWPOISON instead of -EFAULT when we hit
1638 * !FOLL_FORCE: Require proper access permissions.
1640 gup_flags = FOLL_TOUCH | FOLL_HWPOISON;
1642 gup_flags |= FOLL_WRITE;
1645 * We want to report -EINVAL instead of -EFAULT for any permission
1646 * problems or incompatible mappings.
1648 if (check_vma_flags(vma, gup_flags))
1651 ret = __get_user_pages(mm, start, nr_pages, gup_flags,
1652 NULL, NULL, locked);
1658 * __mm_populate - populate and/or mlock pages within a range of address space.
1660 * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap
1661 * flags. VMAs must be already marked with the desired vm_flags, and
1662 * mmap_lock must not be held.
1664 int __mm_populate(unsigned long start, unsigned long len, int ignore_errors)
1666 struct mm_struct *mm = current->mm;
1667 unsigned long end, nstart, nend;
1668 struct vm_area_struct *vma = NULL;
1674 for (nstart = start; nstart < end; nstart = nend) {
1676 * We want to fault in pages for [nstart; end) address range.
1677 * Find first corresponding VMA.
1682 vma = find_vma(mm, nstart);
1683 } else if (nstart >= vma->vm_end)
1685 if (!vma || vma->vm_start >= end)
1688 * Set [nstart; nend) to intersection of desired address
1689 * range with the first VMA. Also, skip undesirable VMA types.
1691 nend = min(end, vma->vm_end);
1692 if (vma->vm_flags & (VM_IO | VM_PFNMAP))
1694 if (nstart < vma->vm_start)
1695 nstart = vma->vm_start;
1697 * Now fault in a range of pages. populate_vma_page_range()
1698 * double checks the vma flags, so that it won't mlock pages
1699 * if the vma was already munlocked.
1701 ret = populate_vma_page_range(vma, nstart, nend, &locked);
1703 if (ignore_errors) {
1705 continue; /* continue at next VMA */
1709 nend = nstart + ret * PAGE_SIZE;
1713 mmap_read_unlock(mm);
1714 return ret; /* 0 or negative error code */
1716 #else /* CONFIG_MMU */
1717 static long __get_user_pages_locked(struct mm_struct *mm, unsigned long start,
1718 unsigned long nr_pages, struct page **pages,
1719 struct vm_area_struct **vmas, int *locked,
1720 unsigned int foll_flags)
1722 struct vm_area_struct *vma;
1723 unsigned long vm_flags;
1726 /* calculate required read or write permissions.
1727 * If FOLL_FORCE is set, we only require the "MAY" flags.
1729 vm_flags = (foll_flags & FOLL_WRITE) ?
1730 (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1731 vm_flags &= (foll_flags & FOLL_FORCE) ?
1732 (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1734 for (i = 0; i < nr_pages; i++) {
1735 vma = find_vma(mm, start);
1737 goto finish_or_fault;
1739 /* protect what we can, including chardevs */
1740 if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1741 !(vm_flags & vma->vm_flags))
1742 goto finish_or_fault;
1745 pages[i] = virt_to_page((void *)start);
1751 start = (start + PAGE_SIZE) & PAGE_MASK;
1757 return i ? : -EFAULT;
1759 #endif /* !CONFIG_MMU */
1762 * fault_in_writeable - fault in userspace address range for writing
1763 * @uaddr: start of address range
1764 * @size: size of address range
1766 * Returns the number of bytes not faulted in (like copy_to_user() and
1767 * copy_from_user()).
1769 size_t fault_in_writeable(char __user *uaddr, size_t size)
1771 char __user *start = uaddr, *end;
1773 if (unlikely(size == 0))
1775 if (!user_write_access_begin(uaddr, size))
1777 if (!PAGE_ALIGNED(uaddr)) {
1778 unsafe_put_user(0, uaddr, out);
1779 uaddr = (char __user *)PAGE_ALIGN((unsigned long)uaddr);
1781 end = (char __user *)PAGE_ALIGN((unsigned long)start + size);
1782 if (unlikely(end < start))
1784 while (uaddr != end) {
1785 unsafe_put_user(0, uaddr, out);
1790 user_write_access_end();
1791 if (size > uaddr - start)
1792 return size - (uaddr - start);
1795 EXPORT_SYMBOL(fault_in_writeable);
1798 * fault_in_subpage_writeable - fault in an address range for writing
1799 * @uaddr: start of address range
1800 * @size: size of address range
1802 * Fault in a user address range for writing while checking for permissions at
1803 * sub-page granularity (e.g. arm64 MTE). This function should be used when
1804 * the caller cannot guarantee forward progress of a copy_to_user() loop.
1806 * Returns the number of bytes not faulted in (like copy_to_user() and
1807 * copy_from_user()).
1809 size_t fault_in_subpage_writeable(char __user *uaddr, size_t size)
1814 * Attempt faulting in at page granularity first for page table
1815 * permission checking. The arch-specific probe_subpage_writeable()
1816 * functions may not check for this.
1818 faulted_in = size - fault_in_writeable(uaddr, size);
1820 faulted_in -= probe_subpage_writeable(uaddr, faulted_in);
1822 return size - faulted_in;
1824 EXPORT_SYMBOL(fault_in_subpage_writeable);
1827 * fault_in_safe_writeable - fault in an address range for writing
1828 * @uaddr: start of address range
1829 * @size: length of address range
1831 * Faults in an address range for writing. This is primarily useful when we
1832 * already know that some or all of the pages in the address range aren't in
1835 * Unlike fault_in_writeable(), this function is non-destructive.
1837 * Note that we don't pin or otherwise hold the pages referenced that we fault
1838 * in. There's no guarantee that they'll stay in memory for any duration of
1841 * Returns the number of bytes not faulted in, like copy_to_user() and
1844 size_t fault_in_safe_writeable(const char __user *uaddr, size_t size)
1846 unsigned long start = (unsigned long)uaddr, end;
1847 struct mm_struct *mm = current->mm;
1848 bool unlocked = false;
1850 if (unlikely(size == 0))
1852 end = PAGE_ALIGN(start + size);
1858 if (fixup_user_fault(mm, start, FAULT_FLAG_WRITE, &unlocked))
1860 start = (start + PAGE_SIZE) & PAGE_MASK;
1861 } while (start != end);
1862 mmap_read_unlock(mm);
1864 if (size > (unsigned long)uaddr - start)
1865 return size - ((unsigned long)uaddr - start);
1868 EXPORT_SYMBOL(fault_in_safe_writeable);
1871 * fault_in_readable - fault in userspace address range for reading
1872 * @uaddr: start of user address range
1873 * @size: size of user address range
1875 * Returns the number of bytes not faulted in (like copy_to_user() and
1876 * copy_from_user()).
1878 size_t fault_in_readable(const char __user *uaddr, size_t size)
1880 const char __user *start = uaddr, *end;
1883 if (unlikely(size == 0))
1885 if (!user_read_access_begin(uaddr, size))
1887 if (!PAGE_ALIGNED(uaddr)) {
1888 unsafe_get_user(c, uaddr, out);
1889 uaddr = (const char __user *)PAGE_ALIGN((unsigned long)uaddr);
1891 end = (const char __user *)PAGE_ALIGN((unsigned long)start + size);
1892 if (unlikely(end < start))
1894 while (uaddr != end) {
1895 unsafe_get_user(c, uaddr, out);
1900 user_read_access_end();
1902 if (size > uaddr - start)
1903 return size - (uaddr - start);
1906 EXPORT_SYMBOL(fault_in_readable);
1909 * get_dump_page() - pin user page in memory while writing it to core dump
1910 * @addr: user address
1912 * Returns struct page pointer of user page pinned for dump,
1913 * to be freed afterwards by put_page().
1915 * Returns NULL on any kind of failure - a hole must then be inserted into
1916 * the corefile, to preserve alignment with its headers; and also returns
1917 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
1918 * allowing a hole to be left in the corefile to save disk space.
1920 * Called without mmap_lock (takes and releases the mmap_lock by itself).
1922 #ifdef CONFIG_ELF_CORE
1923 struct page *get_dump_page(unsigned long addr)
1925 struct mm_struct *mm = current->mm;
1930 if (mmap_read_lock_killable(mm))
1932 ret = __get_user_pages_locked(mm, addr, 1, &page, NULL, &locked,
1933 FOLL_FORCE | FOLL_DUMP | FOLL_GET);
1935 mmap_read_unlock(mm);
1936 return (ret == 1) ? page : NULL;
1938 #endif /* CONFIG_ELF_CORE */
1940 #ifdef CONFIG_MIGRATION
1942 * Check whether all pages are pinnable, if so return number of pages. If some
1943 * pages are not pinnable, migrate them, and unpin all pages. Return zero if
1944 * pages were migrated, or if some pages were not successfully isolated.
1945 * Return negative error if migration fails.
1947 static long check_and_migrate_movable_pages(unsigned long nr_pages,
1948 struct page **pages,
1949 unsigned int gup_flags)
1951 unsigned long isolation_error_count = 0, i;
1952 struct folio *prev_folio = NULL;
1953 LIST_HEAD(movable_page_list);
1954 bool drain_allow = true, coherent_pages = false;
1957 for (i = 0; i < nr_pages; i++) {
1958 struct folio *folio = page_folio(pages[i]);
1960 if (folio == prev_folio)
1965 * Device coherent pages are managed by a driver and should not
1966 * be pinned indefinitely as it prevents the driver moving the
1967 * page. So when trying to pin with FOLL_LONGTERM instead try
1968 * to migrate the page out of device memory.
1970 if (folio_is_device_coherent(folio)) {
1972 * We always want a new GUP lookup with device coherent
1976 coherent_pages = true;
1979 * Migration will fail if the page is pinned, so convert
1980 * the pin on the source page to a normal reference.
1982 if (gup_flags & FOLL_PIN) {
1983 get_page(&folio->page);
1984 unpin_user_page(&folio->page);
1987 ret = migrate_device_coherent_page(&folio->page);
1994 if (folio_is_longterm_pinnable(folio))
1997 * Try to move out any movable page before pinning the range.
1999 if (folio_test_hugetlb(folio)) {
2000 if (isolate_hugetlb(&folio->page,
2001 &movable_page_list))
2002 isolation_error_count++;
2006 if (!folio_test_lru(folio) && drain_allow) {
2007 lru_add_drain_all();
2008 drain_allow = false;
2011 if (folio_isolate_lru(folio)) {
2012 isolation_error_count++;
2015 list_add_tail(&folio->lru, &movable_page_list);
2016 node_stat_mod_folio(folio,
2017 NR_ISOLATED_ANON + folio_is_file_lru(folio),
2018 folio_nr_pages(folio));
2021 if (!list_empty(&movable_page_list) || isolation_error_count ||
2026 * If list is empty, and no isolation errors, means that all pages are
2027 * in the correct zone.
2033 * pages[i] might be NULL if any device coherent pages were found.
2035 for (i = 0; i < nr_pages; i++) {
2039 if (gup_flags & FOLL_PIN)
2040 unpin_user_page(pages[i]);
2045 if (!list_empty(&movable_page_list)) {
2046 struct migration_target_control mtc = {
2047 .nid = NUMA_NO_NODE,
2048 .gfp_mask = GFP_USER | __GFP_NOWARN,
2051 ret = migrate_pages(&movable_page_list, alloc_migration_target,
2052 NULL, (unsigned long)&mtc, MIGRATE_SYNC,
2053 MR_LONGTERM_PIN, NULL);
2054 if (ret > 0) /* number of pages not migrated */
2058 if (ret && !list_empty(&movable_page_list))
2059 putback_movable_pages(&movable_page_list);
2063 static long check_and_migrate_movable_pages(unsigned long nr_pages,
2064 struct page **pages,
2065 unsigned int gup_flags)
2069 #endif /* CONFIG_MIGRATION */
2072 * __gup_longterm_locked() is a wrapper for __get_user_pages_locked which
2073 * allows us to process the FOLL_LONGTERM flag.
2075 static long __gup_longterm_locked(struct mm_struct *mm,
2076 unsigned long start,
2077 unsigned long nr_pages,
2078 struct page **pages,
2079 struct vm_area_struct **vmas,
2080 unsigned int gup_flags)
2085 if (!(gup_flags & FOLL_LONGTERM))
2086 return __get_user_pages_locked(mm, start, nr_pages, pages, vmas,
2088 flags = memalloc_pin_save();
2090 rc = __get_user_pages_locked(mm, start, nr_pages, pages, vmas,
2094 rc = check_and_migrate_movable_pages(rc, pages, gup_flags);
2096 memalloc_pin_restore(flags);
2101 static bool is_valid_gup_flags(unsigned int gup_flags)
2104 * FOLL_PIN must only be set internally by the pin_user_pages*() APIs,
2105 * never directly by the caller, so enforce that with an assertion:
2107 if (WARN_ON_ONCE(gup_flags & FOLL_PIN))
2110 * FOLL_PIN is a prerequisite to FOLL_LONGTERM. Another way of saying
2111 * that is, FOLL_LONGTERM is a specific case, more restrictive case of
2114 if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
2121 static long __get_user_pages_remote(struct mm_struct *mm,
2122 unsigned long start, unsigned long nr_pages,
2123 unsigned int gup_flags, struct page **pages,
2124 struct vm_area_struct **vmas, int *locked)
2127 * Parts of FOLL_LONGTERM behavior are incompatible with
2128 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
2129 * vmas. However, this only comes up if locked is set, and there are
2130 * callers that do request FOLL_LONGTERM, but do not set locked. So,
2131 * allow what we can.
2133 if (gup_flags & FOLL_LONGTERM) {
2134 if (WARN_ON_ONCE(locked))
2137 * This will check the vmas (even if our vmas arg is NULL)
2138 * and return -ENOTSUPP if DAX isn't allowed in this case:
2140 return __gup_longterm_locked(mm, start, nr_pages, pages,
2141 vmas, gup_flags | FOLL_TOUCH |
2145 return __get_user_pages_locked(mm, start, nr_pages, pages, vmas,
2147 gup_flags | FOLL_TOUCH | FOLL_REMOTE);
2151 * get_user_pages_remote() - pin user pages in memory
2152 * @mm: mm_struct of target mm
2153 * @start: starting user address
2154 * @nr_pages: number of pages from start to pin
2155 * @gup_flags: flags modifying lookup behaviour
2156 * @pages: array that receives pointers to the pages pinned.
2157 * Should be at least nr_pages long. Or NULL, if caller
2158 * only intends to ensure the pages are faulted in.
2159 * @vmas: array of pointers to vmas corresponding to each page.
2160 * Or NULL if the caller does not require them.
2161 * @locked: pointer to lock flag indicating whether lock is held and
2162 * subsequently whether VM_FAULT_RETRY functionality can be
2163 * utilised. Lock must initially be held.
2165 * Returns either number of pages pinned (which may be less than the
2166 * number requested), or an error. Details about the return value:
2168 * -- If nr_pages is 0, returns 0.
2169 * -- If nr_pages is >0, but no pages were pinned, returns -errno.
2170 * -- If nr_pages is >0, and some pages were pinned, returns the number of
2171 * pages pinned. Again, this may be less than nr_pages.
2173 * The caller is responsible for releasing returned @pages, via put_page().
2175 * @vmas are valid only as long as mmap_lock is held.
2177 * Must be called with mmap_lock held for read or write.
2179 * get_user_pages_remote walks a process's page tables and takes a reference
2180 * to each struct page that each user address corresponds to at a given
2181 * instant. That is, it takes the page that would be accessed if a user
2182 * thread accesses the given user virtual address at that instant.
2184 * This does not guarantee that the page exists in the user mappings when
2185 * get_user_pages_remote returns, and there may even be a completely different
2186 * page there in some cases (eg. if mmapped pagecache has been invalidated
2187 * and subsequently re faulted). However it does guarantee that the page
2188 * won't be freed completely. And mostly callers simply care that the page
2189 * contains data that was valid *at some point in time*. Typically, an IO
2190 * or similar operation cannot guarantee anything stronger anyway because
2191 * locks can't be held over the syscall boundary.
2193 * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page
2194 * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must
2195 * be called after the page is finished with, and before put_page is called.
2197 * get_user_pages_remote is typically used for fewer-copy IO operations,
2198 * to get a handle on the memory by some means other than accesses
2199 * via the user virtual addresses. The pages may be submitted for
2200 * DMA to devices or accessed via their kernel linear mapping (via the
2201 * kmap APIs). Care should be taken to use the correct cache flushing APIs.
2203 * See also get_user_pages_fast, for performance critical applications.
2205 * get_user_pages_remote should be phased out in favor of
2206 * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing
2207 * should use get_user_pages_remote because it cannot pass
2208 * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault.
2210 long get_user_pages_remote(struct mm_struct *mm,
2211 unsigned long start, unsigned long nr_pages,
2212 unsigned int gup_flags, struct page **pages,
2213 struct vm_area_struct **vmas, int *locked)
2215 if (!is_valid_gup_flags(gup_flags))
2218 return __get_user_pages_remote(mm, start, nr_pages, gup_flags,
2219 pages, vmas, locked);
2221 EXPORT_SYMBOL(get_user_pages_remote);
2223 #else /* CONFIG_MMU */
2224 long get_user_pages_remote(struct mm_struct *mm,
2225 unsigned long start, unsigned long nr_pages,
2226 unsigned int gup_flags, struct page **pages,
2227 struct vm_area_struct **vmas, int *locked)
2232 static long __get_user_pages_remote(struct mm_struct *mm,
2233 unsigned long start, unsigned long nr_pages,
2234 unsigned int gup_flags, struct page **pages,
2235 struct vm_area_struct **vmas, int *locked)
2239 #endif /* !CONFIG_MMU */
2242 * get_user_pages() - pin user pages in memory
2243 * @start: starting user address
2244 * @nr_pages: number of pages from start to pin
2245 * @gup_flags: flags modifying lookup behaviour
2246 * @pages: array that receives pointers to the pages pinned.
2247 * Should be at least nr_pages long. Or NULL, if caller
2248 * only intends to ensure the pages are faulted in.
2249 * @vmas: array of pointers to vmas corresponding to each page.
2250 * Or NULL if the caller does not require them.
2252 * This is the same as get_user_pages_remote(), just with a less-flexible
2253 * calling convention where we assume that the mm being operated on belongs to
2254 * the current task, and doesn't allow passing of a locked parameter. We also
2255 * obviously don't pass FOLL_REMOTE in here.
2257 long get_user_pages(unsigned long start, unsigned long nr_pages,
2258 unsigned int gup_flags, struct page **pages,
2259 struct vm_area_struct **vmas)
2261 if (!is_valid_gup_flags(gup_flags))
2264 return __gup_longterm_locked(current->mm, start, nr_pages,
2265 pages, vmas, gup_flags | FOLL_TOUCH);
2267 EXPORT_SYMBOL(get_user_pages);
2270 * get_user_pages_unlocked() is suitable to replace the form:
2272 * mmap_read_lock(mm);
2273 * get_user_pages(mm, ..., pages, NULL);
2274 * mmap_read_unlock(mm);
2278 * get_user_pages_unlocked(mm, ..., pages);
2280 * It is functionally equivalent to get_user_pages_fast so
2281 * get_user_pages_fast should be used instead if specific gup_flags
2282 * (e.g. FOLL_FORCE) are not required.
2284 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2285 struct page **pages, unsigned int gup_flags)
2287 struct mm_struct *mm = current->mm;
2292 * FIXME: Current FOLL_LONGTERM behavior is incompatible with
2293 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
2294 * vmas. As there are no users of this flag in this call we simply
2295 * disallow this option for now.
2297 if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
2301 ret = __get_user_pages_locked(mm, start, nr_pages, pages, NULL,
2302 &locked, gup_flags | FOLL_TOUCH);
2304 mmap_read_unlock(mm);
2307 EXPORT_SYMBOL(get_user_pages_unlocked);
2312 * get_user_pages_fast attempts to pin user pages by walking the page
2313 * tables directly and avoids taking locks. Thus the walker needs to be
2314 * protected from page table pages being freed from under it, and should
2315 * block any THP splits.
2317 * One way to achieve this is to have the walker disable interrupts, and
2318 * rely on IPIs from the TLB flushing code blocking before the page table
2319 * pages are freed. This is unsuitable for architectures that do not need
2320 * to broadcast an IPI when invalidating TLBs.
2322 * Another way to achieve this is to batch up page table containing pages
2323 * belonging to more than one mm_user, then rcu_sched a callback to free those
2324 * pages. Disabling interrupts will allow the fast_gup walker to both block
2325 * the rcu_sched callback, and an IPI that we broadcast for splitting THPs
2326 * (which is a relatively rare event). The code below adopts this strategy.
2328 * Before activating this code, please be aware that the following assumptions
2329 * are currently made:
2331 * *) Either MMU_GATHER_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to
2332 * free pages containing page tables or TLB flushing requires IPI broadcast.
2334 * *) ptes can be read atomically by the architecture.
2336 * *) access_ok is sufficient to validate userspace address ranges.
2338 * The last two assumptions can be relaxed by the addition of helper functions.
2340 * This code is based heavily on the PowerPC implementation by Nick Piggin.
2342 #ifdef CONFIG_HAVE_FAST_GUP
2344 static void __maybe_unused undo_dev_pagemap(int *nr, int nr_start,
2346 struct page **pages)
2348 while ((*nr) - nr_start) {
2349 struct page *page = pages[--(*nr)];
2351 ClearPageReferenced(page);
2352 if (flags & FOLL_PIN)
2353 unpin_user_page(page);
2359 #ifdef CONFIG_ARCH_HAS_PTE_SPECIAL
2361 * Fast-gup relies on pte change detection to avoid concurrent pgtable
2364 * To pin the page, fast-gup needs to do below in order:
2365 * (1) pin the page (by prefetching pte), then (2) check pte not changed.
2367 * For the rest of pgtable operations where pgtable updates can be racy
2368 * with fast-gup, we need to do (1) clear pte, then (2) check whether page
2371 * Above will work for all pte-level operations, including THP split.
2373 * For THP collapse, it's a bit more complicated because fast-gup may be
2374 * walking a pgtable page that is being freed (pte is still valid but pmd
2375 * can be cleared already). To avoid race in such condition, we need to
2376 * also check pmd here to make sure pmd doesn't change (corresponds to
2377 * pmdp_collapse_flush() in the THP collapse code path).
2379 static int gup_pte_range(pmd_t pmd, pmd_t *pmdp, unsigned long addr,
2380 unsigned long end, unsigned int flags,
2381 struct page **pages, int *nr)
2383 struct dev_pagemap *pgmap = NULL;
2384 int nr_start = *nr, ret = 0;
2387 ptem = ptep = pte_offset_map(&pmd, addr);
2389 pte_t pte = ptep_get_lockless(ptep);
2391 struct folio *folio;
2394 * Similar to the PMD case below, NUMA hinting must take slow
2395 * path using the pte_protnone check.
2397 if (pte_protnone(pte))
2400 if (!pte_access_permitted(pte, flags & FOLL_WRITE))
2403 if (pte_devmap(pte)) {
2404 if (unlikely(flags & FOLL_LONGTERM))
2407 pgmap = get_dev_pagemap(pte_pfn(pte), pgmap);
2408 if (unlikely(!pgmap)) {
2409 undo_dev_pagemap(nr, nr_start, flags, pages);
2412 } else if (pte_special(pte))
2415 VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
2416 page = pte_page(pte);
2418 folio = try_grab_folio(page, 1, flags);
2422 if (unlikely(page_is_secretmem(page))) {
2423 gup_put_folio(folio, 1, flags);
2427 if (unlikely(pmd_val(pmd) != pmd_val(*pmdp)) ||
2428 unlikely(pte_val(pte) != pte_val(*ptep))) {
2429 gup_put_folio(folio, 1, flags);
2433 if (!pte_write(pte) && gup_must_unshare(flags, page)) {
2434 gup_put_folio(folio, 1, flags);
2439 * We need to make the page accessible if and only if we are
2440 * going to access its content (the FOLL_PIN case). Please
2441 * see Documentation/core-api/pin_user_pages.rst for
2444 if (flags & FOLL_PIN) {
2445 ret = arch_make_page_accessible(page);
2447 gup_put_folio(folio, 1, flags);
2451 folio_set_referenced(folio);
2454 } while (ptep++, addr += PAGE_SIZE, addr != end);
2460 put_dev_pagemap(pgmap);
2467 * If we can't determine whether or not a pte is special, then fail immediately
2468 * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not
2471 * For a futex to be placed on a THP tail page, get_futex_key requires a
2472 * get_user_pages_fast_only implementation that can pin pages. Thus it's still
2473 * useful to have gup_huge_pmd even if we can't operate on ptes.
2475 static int gup_pte_range(pmd_t pmd, pmd_t *pmdp, unsigned long addr,
2476 unsigned long end, unsigned int flags,
2477 struct page **pages, int *nr)
2481 #endif /* CONFIG_ARCH_HAS_PTE_SPECIAL */
2483 #if defined(CONFIG_ARCH_HAS_PTE_DEVMAP) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
2484 static int __gup_device_huge(unsigned long pfn, unsigned long addr,
2485 unsigned long end, unsigned int flags,
2486 struct page **pages, int *nr)
2489 struct dev_pagemap *pgmap = NULL;
2492 struct page *page = pfn_to_page(pfn);
2494 pgmap = get_dev_pagemap(pfn, pgmap);
2495 if (unlikely(!pgmap)) {
2496 undo_dev_pagemap(nr, nr_start, flags, pages);
2499 SetPageReferenced(page);
2501 if (unlikely(!try_grab_page(page, flags))) {
2502 undo_dev_pagemap(nr, nr_start, flags, pages);
2507 } while (addr += PAGE_SIZE, addr != end);
2509 put_dev_pagemap(pgmap);
2513 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2514 unsigned long end, unsigned int flags,
2515 struct page **pages, int *nr)
2517 unsigned long fault_pfn;
2520 fault_pfn = pmd_pfn(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
2521 if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr))
2524 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
2525 undo_dev_pagemap(nr, nr_start, flags, pages);
2531 static int __gup_device_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
2532 unsigned long end, unsigned int flags,
2533 struct page **pages, int *nr)
2535 unsigned long fault_pfn;
2538 fault_pfn = pud_pfn(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
2539 if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr))
2542 if (unlikely(pud_val(orig) != pud_val(*pudp))) {
2543 undo_dev_pagemap(nr, nr_start, flags, pages);
2549 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2550 unsigned long end, unsigned int flags,
2551 struct page **pages, int *nr)
2557 static int __gup_device_huge_pud(pud_t pud, pud_t *pudp, unsigned long addr,
2558 unsigned long end, unsigned int flags,
2559 struct page **pages, int *nr)
2566 static int record_subpages(struct page *page, unsigned long addr,
2567 unsigned long end, struct page **pages)
2571 for (nr = 0; addr != end; nr++, addr += PAGE_SIZE)
2572 pages[nr] = nth_page(page, nr);
2577 #ifdef CONFIG_ARCH_HAS_HUGEPD
2578 static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end,
2581 unsigned long __boundary = (addr + sz) & ~(sz-1);
2582 return (__boundary - 1 < end - 1) ? __boundary : end;
2585 static int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr,
2586 unsigned long end, unsigned int flags,
2587 struct page **pages, int *nr)
2589 unsigned long pte_end;
2591 struct folio *folio;
2595 pte_end = (addr + sz) & ~(sz-1);
2599 pte = huge_ptep_get(ptep);
2601 if (!pte_access_permitted(pte, flags & FOLL_WRITE))
2604 /* hugepages are never "special" */
2605 VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
2607 page = nth_page(pte_page(pte), (addr & (sz - 1)) >> PAGE_SHIFT);
2608 refs = record_subpages(page, addr, end, pages + *nr);
2610 folio = try_grab_folio(page, refs, flags);
2614 if (unlikely(pte_val(pte) != pte_val(*ptep))) {
2615 gup_put_folio(folio, refs, flags);
2619 if (!pte_write(pte) && gup_must_unshare(flags, &folio->page)) {
2620 gup_put_folio(folio, refs, flags);
2625 folio_set_referenced(folio);
2629 static int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
2630 unsigned int pdshift, unsigned long end, unsigned int flags,
2631 struct page **pages, int *nr)
2634 unsigned long sz = 1UL << hugepd_shift(hugepd);
2637 ptep = hugepte_offset(hugepd, addr, pdshift);
2639 next = hugepte_addr_end(addr, end, sz);
2640 if (!gup_hugepte(ptep, sz, addr, end, flags, pages, nr))
2642 } while (ptep++, addr = next, addr != end);
2647 static inline int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
2648 unsigned int pdshift, unsigned long end, unsigned int flags,
2649 struct page **pages, int *nr)
2653 #endif /* CONFIG_ARCH_HAS_HUGEPD */
2655 static int gup_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2656 unsigned long end, unsigned int flags,
2657 struct page **pages, int *nr)
2660 struct folio *folio;
2663 if (!pmd_access_permitted(orig, flags & FOLL_WRITE))
2666 if (pmd_devmap(orig)) {
2667 if (unlikely(flags & FOLL_LONGTERM))
2669 return __gup_device_huge_pmd(orig, pmdp, addr, end, flags,
2673 page = nth_page(pmd_page(orig), (addr & ~PMD_MASK) >> PAGE_SHIFT);
2674 refs = record_subpages(page, addr, end, pages + *nr);
2676 folio = try_grab_folio(page, refs, flags);
2680 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
2681 gup_put_folio(folio, refs, flags);
2685 if (!pmd_write(orig) && gup_must_unshare(flags, &folio->page)) {
2686 gup_put_folio(folio, refs, flags);
2691 folio_set_referenced(folio);
2695 static int gup_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
2696 unsigned long end, unsigned int flags,
2697 struct page **pages, int *nr)
2700 struct folio *folio;
2703 if (!pud_access_permitted(orig, flags & FOLL_WRITE))
2706 if (pud_devmap(orig)) {
2707 if (unlikely(flags & FOLL_LONGTERM))
2709 return __gup_device_huge_pud(orig, pudp, addr, end, flags,
2713 page = nth_page(pud_page(orig), (addr & ~PUD_MASK) >> PAGE_SHIFT);
2714 refs = record_subpages(page, addr, end, pages + *nr);
2716 folio = try_grab_folio(page, refs, flags);
2720 if (unlikely(pud_val(orig) != pud_val(*pudp))) {
2721 gup_put_folio(folio, refs, flags);
2725 if (!pud_write(orig) && gup_must_unshare(flags, &folio->page)) {
2726 gup_put_folio(folio, refs, flags);
2731 folio_set_referenced(folio);
2735 static int gup_huge_pgd(pgd_t orig, pgd_t *pgdp, unsigned long addr,
2736 unsigned long end, unsigned int flags,
2737 struct page **pages, int *nr)
2741 struct folio *folio;
2743 if (!pgd_access_permitted(orig, flags & FOLL_WRITE))
2746 BUILD_BUG_ON(pgd_devmap(orig));
2748 page = nth_page(pgd_page(orig), (addr & ~PGDIR_MASK) >> PAGE_SHIFT);
2749 refs = record_subpages(page, addr, end, pages + *nr);
2751 folio = try_grab_folio(page, refs, flags);
2755 if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) {
2756 gup_put_folio(folio, refs, flags);
2761 folio_set_referenced(folio);
2765 static int gup_pmd_range(pud_t *pudp, pud_t pud, unsigned long addr, unsigned long end,
2766 unsigned int flags, struct page **pages, int *nr)
2771 pmdp = pmd_offset_lockless(pudp, pud, addr);
2773 pmd_t pmd = READ_ONCE(*pmdp);
2775 next = pmd_addr_end(addr, end);
2776 if (!pmd_present(pmd))
2779 if (unlikely(pmd_trans_huge(pmd) || pmd_huge(pmd) ||
2782 * NUMA hinting faults need to be handled in the GUP
2783 * slowpath for accounting purposes and so that they
2784 * can be serialised against THP migration.
2786 if (pmd_protnone(pmd))
2789 if (!gup_huge_pmd(pmd, pmdp, addr, next, flags,
2793 } else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd))))) {
2795 * architecture have different format for hugetlbfs
2796 * pmd format and THP pmd format
2798 if (!gup_huge_pd(__hugepd(pmd_val(pmd)), addr,
2799 PMD_SHIFT, next, flags, pages, nr))
2801 } else if (!gup_pte_range(pmd, pmdp, addr, next, flags, pages, nr))
2803 } while (pmdp++, addr = next, addr != end);
2808 static int gup_pud_range(p4d_t *p4dp, p4d_t p4d, unsigned long addr, unsigned long end,
2809 unsigned int flags, struct page **pages, int *nr)
2814 pudp = pud_offset_lockless(p4dp, p4d, addr);
2816 pud_t pud = READ_ONCE(*pudp);
2818 next = pud_addr_end(addr, end);
2819 if (unlikely(!pud_present(pud)))
2821 if (unlikely(pud_huge(pud))) {
2822 if (!gup_huge_pud(pud, pudp, addr, next, flags,
2825 } else if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) {
2826 if (!gup_huge_pd(__hugepd(pud_val(pud)), addr,
2827 PUD_SHIFT, next, flags, pages, nr))
2829 } else if (!gup_pmd_range(pudp, pud, addr, next, flags, pages, nr))
2831 } while (pudp++, addr = next, addr != end);
2836 static int gup_p4d_range(pgd_t *pgdp, pgd_t pgd, unsigned long addr, unsigned long end,
2837 unsigned int flags, struct page **pages, int *nr)
2842 p4dp = p4d_offset_lockless(pgdp, pgd, addr);
2844 p4d_t p4d = READ_ONCE(*p4dp);
2846 next = p4d_addr_end(addr, end);
2849 BUILD_BUG_ON(p4d_huge(p4d));
2850 if (unlikely(is_hugepd(__hugepd(p4d_val(p4d))))) {
2851 if (!gup_huge_pd(__hugepd(p4d_val(p4d)), addr,
2852 P4D_SHIFT, next, flags, pages, nr))
2854 } else if (!gup_pud_range(p4dp, p4d, addr, next, flags, pages, nr))
2856 } while (p4dp++, addr = next, addr != end);
2861 static void gup_pgd_range(unsigned long addr, unsigned long end,
2862 unsigned int flags, struct page **pages, int *nr)
2867 pgdp = pgd_offset(current->mm, addr);
2869 pgd_t pgd = READ_ONCE(*pgdp);
2871 next = pgd_addr_end(addr, end);
2874 if (unlikely(pgd_huge(pgd))) {
2875 if (!gup_huge_pgd(pgd, pgdp, addr, next, flags,
2878 } else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd))))) {
2879 if (!gup_huge_pd(__hugepd(pgd_val(pgd)), addr,
2880 PGDIR_SHIFT, next, flags, pages, nr))
2882 } else if (!gup_p4d_range(pgdp, pgd, addr, next, flags, pages, nr))
2884 } while (pgdp++, addr = next, addr != end);
2887 static inline void gup_pgd_range(unsigned long addr, unsigned long end,
2888 unsigned int flags, struct page **pages, int *nr)
2891 #endif /* CONFIG_HAVE_FAST_GUP */
2893 #ifndef gup_fast_permitted
2895 * Check if it's allowed to use get_user_pages_fast_only() for the range, or
2896 * we need to fall back to the slow version:
2898 static bool gup_fast_permitted(unsigned long start, unsigned long end)
2904 static int __gup_longterm_unlocked(unsigned long start, int nr_pages,
2905 unsigned int gup_flags, struct page **pages)
2910 * FIXME: FOLL_LONGTERM does not work with
2911 * get_user_pages_unlocked() (see comments in that function)
2913 if (gup_flags & FOLL_LONGTERM) {
2914 mmap_read_lock(current->mm);
2915 ret = __gup_longterm_locked(current->mm,
2917 pages, NULL, gup_flags);
2918 mmap_read_unlock(current->mm);
2920 ret = get_user_pages_unlocked(start, nr_pages,
2927 static unsigned long lockless_pages_from_mm(unsigned long start,
2929 unsigned int gup_flags,
2930 struct page **pages)
2932 unsigned long flags;
2936 if (!IS_ENABLED(CONFIG_HAVE_FAST_GUP) ||
2937 !gup_fast_permitted(start, end))
2940 if (gup_flags & FOLL_PIN) {
2941 seq = raw_read_seqcount(¤t->mm->write_protect_seq);
2947 * Disable interrupts. The nested form is used, in order to allow full,
2948 * general purpose use of this routine.
2950 * With interrupts disabled, we block page table pages from being freed
2951 * from under us. See struct mmu_table_batch comments in
2952 * include/asm-generic/tlb.h for more details.
2954 * We do not adopt an rcu_read_lock() here as we also want to block IPIs
2955 * that come from THPs splitting.
2957 local_irq_save(flags);
2958 gup_pgd_range(start, end, gup_flags, pages, &nr_pinned);
2959 local_irq_restore(flags);
2962 * When pinning pages for DMA there could be a concurrent write protect
2963 * from fork() via copy_page_range(), in this case always fail fast GUP.
2965 if (gup_flags & FOLL_PIN) {
2966 if (read_seqcount_retry(¤t->mm->write_protect_seq, seq)) {
2967 unpin_user_pages_lockless(pages, nr_pinned);
2970 sanity_check_pinned_pages(pages, nr_pinned);
2976 static int internal_get_user_pages_fast(unsigned long start,
2977 unsigned long nr_pages,
2978 unsigned int gup_flags,
2979 struct page **pages)
2981 unsigned long len, end;
2982 unsigned long nr_pinned;
2985 if (WARN_ON_ONCE(gup_flags & ~(FOLL_WRITE | FOLL_LONGTERM |
2986 FOLL_FORCE | FOLL_PIN | FOLL_GET |
2987 FOLL_FAST_ONLY | FOLL_NOFAULT)))
2990 if (gup_flags & FOLL_PIN)
2991 mm_set_has_pinned_flag(¤t->mm->flags);
2993 if (!(gup_flags & FOLL_FAST_ONLY))
2994 might_lock_read(¤t->mm->mmap_lock);
2996 start = untagged_addr(start) & PAGE_MASK;
2997 len = nr_pages << PAGE_SHIFT;
2998 if (check_add_overflow(start, len, &end))
3000 if (unlikely(!access_ok((void __user *)start, len)))
3003 nr_pinned = lockless_pages_from_mm(start, end, gup_flags, pages);
3004 if (nr_pinned == nr_pages || gup_flags & FOLL_FAST_ONLY)
3007 /* Slow path: try to get the remaining pages with get_user_pages */
3008 start += nr_pinned << PAGE_SHIFT;
3010 ret = __gup_longterm_unlocked(start, nr_pages - nr_pinned, gup_flags,
3014 * The caller has to unpin the pages we already pinned so
3015 * returning -errno is not an option
3021 return ret + nr_pinned;
3025 * get_user_pages_fast_only() - pin user pages in memory
3026 * @start: starting user address
3027 * @nr_pages: number of pages from start to pin
3028 * @gup_flags: flags modifying pin behaviour
3029 * @pages: array that receives pointers to the pages pinned.
3030 * Should be at least nr_pages long.
3032 * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to
3034 * Note a difference with get_user_pages_fast: this always returns the
3035 * number of pages pinned, 0 if no pages were pinned.
3037 * If the architecture does not support this function, simply return with no
3040 * Careful, careful! COW breaking can go either way, so a non-write
3041 * access can get ambiguous page results. If you call this function without
3042 * 'write' set, you'd better be sure that you're ok with that ambiguity.
3044 int get_user_pages_fast_only(unsigned long start, int nr_pages,
3045 unsigned int gup_flags, struct page **pages)
3049 * Internally (within mm/gup.c), gup fast variants must set FOLL_GET,
3050 * because gup fast is always a "pin with a +1 page refcount" request.
3052 * FOLL_FAST_ONLY is required in order to match the API description of
3053 * this routine: no fall back to regular ("slow") GUP.
3055 gup_flags |= FOLL_GET | FOLL_FAST_ONLY;
3057 nr_pinned = internal_get_user_pages_fast(start, nr_pages, gup_flags,
3061 * As specified in the API description above, this routine is not
3062 * allowed to return negative values. However, the common core
3063 * routine internal_get_user_pages_fast() *can* return -errno.
3064 * Therefore, correct for that here:
3071 EXPORT_SYMBOL_GPL(get_user_pages_fast_only);
3074 * get_user_pages_fast() - pin user pages in memory
3075 * @start: starting user address
3076 * @nr_pages: number of pages from start to pin
3077 * @gup_flags: flags modifying pin behaviour
3078 * @pages: array that receives pointers to the pages pinned.
3079 * Should be at least nr_pages long.
3081 * Attempt to pin user pages in memory without taking mm->mmap_lock.
3082 * If not successful, it will fall back to taking the lock and
3083 * calling get_user_pages().
3085 * Returns number of pages pinned. This may be fewer than the number requested.
3086 * If nr_pages is 0 or negative, returns 0. If no pages were pinned, returns
3089 int get_user_pages_fast(unsigned long start, int nr_pages,
3090 unsigned int gup_flags, struct page **pages)
3092 if (!is_valid_gup_flags(gup_flags))
3096 * The caller may or may not have explicitly set FOLL_GET; either way is
3097 * OK. However, internally (within mm/gup.c), gup fast variants must set
3098 * FOLL_GET, because gup fast is always a "pin with a +1 page refcount"
3101 gup_flags |= FOLL_GET;
3102 return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
3104 EXPORT_SYMBOL_GPL(get_user_pages_fast);
3107 * pin_user_pages_fast() - pin user pages in memory without taking locks
3109 * @start: starting user address
3110 * @nr_pages: number of pages from start to pin
3111 * @gup_flags: flags modifying pin behaviour
3112 * @pages: array that receives pointers to the pages pinned.
3113 * Should be at least nr_pages long.
3115 * Nearly the same as get_user_pages_fast(), except that FOLL_PIN is set. See
3116 * get_user_pages_fast() for documentation on the function arguments, because
3117 * the arguments here are identical.
3119 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
3120 * see Documentation/core-api/pin_user_pages.rst for further details.
3122 int pin_user_pages_fast(unsigned long start, int nr_pages,
3123 unsigned int gup_flags, struct page **pages)
3125 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
3126 if (WARN_ON_ONCE(gup_flags & FOLL_GET))
3129 if (WARN_ON_ONCE(!pages))
3132 gup_flags |= FOLL_PIN;
3133 return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
3135 EXPORT_SYMBOL_GPL(pin_user_pages_fast);
3138 * This is the FOLL_PIN equivalent of get_user_pages_fast_only(). Behavior
3139 * is the same, except that this one sets FOLL_PIN instead of FOLL_GET.
3141 * The API rules are the same, too: no negative values may be returned.
3143 int pin_user_pages_fast_only(unsigned long start, int nr_pages,
3144 unsigned int gup_flags, struct page **pages)
3149 * FOLL_GET and FOLL_PIN are mutually exclusive. Note that the API
3150 * rules require returning 0, rather than -errno:
3152 if (WARN_ON_ONCE(gup_flags & FOLL_GET))
3155 if (WARN_ON_ONCE(!pages))
3158 * FOLL_FAST_ONLY is required in order to match the API description of
3159 * this routine: no fall back to regular ("slow") GUP.
3161 gup_flags |= (FOLL_PIN | FOLL_FAST_ONLY);
3162 nr_pinned = internal_get_user_pages_fast(start, nr_pages, gup_flags,
3165 * This routine is not allowed to return negative values. However,
3166 * internal_get_user_pages_fast() *can* return -errno. Therefore,
3167 * correct for that here:
3174 EXPORT_SYMBOL_GPL(pin_user_pages_fast_only);
3177 * pin_user_pages_remote() - pin pages of a remote process
3179 * @mm: mm_struct of target mm
3180 * @start: starting user address
3181 * @nr_pages: number of pages from start to pin
3182 * @gup_flags: flags modifying lookup behaviour
3183 * @pages: array that receives pointers to the pages pinned.
3184 * Should be at least nr_pages long.
3185 * @vmas: array of pointers to vmas corresponding to each page.
3186 * Or NULL if the caller does not require them.
3187 * @locked: pointer to lock flag indicating whether lock is held and
3188 * subsequently whether VM_FAULT_RETRY functionality can be
3189 * utilised. Lock must initially be held.
3191 * Nearly the same as get_user_pages_remote(), except that FOLL_PIN is set. See
3192 * get_user_pages_remote() for documentation on the function arguments, because
3193 * the arguments here are identical.
3195 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
3196 * see Documentation/core-api/pin_user_pages.rst for details.
3198 long pin_user_pages_remote(struct mm_struct *mm,
3199 unsigned long start, unsigned long nr_pages,
3200 unsigned int gup_flags, struct page **pages,
3201 struct vm_area_struct **vmas, int *locked)
3203 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
3204 if (WARN_ON_ONCE(gup_flags & FOLL_GET))
3207 if (WARN_ON_ONCE(!pages))
3210 gup_flags |= FOLL_PIN;
3211 return __get_user_pages_remote(mm, start, nr_pages, gup_flags,
3212 pages, vmas, locked);
3214 EXPORT_SYMBOL(pin_user_pages_remote);
3217 * pin_user_pages() - pin user pages in memory for use by other devices
3219 * @start: starting user address
3220 * @nr_pages: number of pages from start to pin
3221 * @gup_flags: flags modifying lookup behaviour
3222 * @pages: array that receives pointers to the pages pinned.
3223 * Should be at least nr_pages long.
3224 * @vmas: array of pointers to vmas corresponding to each page.
3225 * Or NULL if the caller does not require them.
3227 * Nearly the same as get_user_pages(), except that FOLL_TOUCH is not set, and
3230 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
3231 * see Documentation/core-api/pin_user_pages.rst for details.
3233 long pin_user_pages(unsigned long start, unsigned long nr_pages,
3234 unsigned int gup_flags, struct page **pages,
3235 struct vm_area_struct **vmas)
3237 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
3238 if (WARN_ON_ONCE(gup_flags & FOLL_GET))
3241 if (WARN_ON_ONCE(!pages))
3244 gup_flags |= FOLL_PIN;
3245 return __gup_longterm_locked(current->mm, start, nr_pages,
3246 pages, vmas, gup_flags);
3248 EXPORT_SYMBOL(pin_user_pages);
3251 * pin_user_pages_unlocked() is the FOLL_PIN variant of
3252 * get_user_pages_unlocked(). Behavior is the same, except that this one sets
3253 * FOLL_PIN and rejects FOLL_GET.
3255 long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
3256 struct page **pages, unsigned int gup_flags)
3258 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
3259 if (WARN_ON_ONCE(gup_flags & FOLL_GET))
3262 if (WARN_ON_ONCE(!pages))
3265 gup_flags |= FOLL_PIN;
3266 return get_user_pages_unlocked(start, nr_pages, pages, gup_flags);
3268 EXPORT_SYMBOL(pin_user_pages_unlocked);