1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <linux/kernel.h>
3 #include <linux/errno.h>
5 #include <linux/spinlock.h>
8 #include <linux/memremap.h>
9 #include <linux/pagemap.h>
10 #include <linux/rmap.h>
11 #include <linux/swap.h>
12 #include <linux/swapops.h>
13 #include <linux/secretmem.h>
15 #include <linux/sched/signal.h>
16 #include <linux/rwsem.h>
17 #include <linux/hugetlb.h>
18 #include <linux/migrate.h>
19 #include <linux/mm_inline.h>
20 #include <linux/sched/mm.h>
22 #include <asm/mmu_context.h>
23 #include <asm/tlbflush.h>
27 struct follow_page_context {
28 struct dev_pagemap *pgmap;
29 unsigned int page_mask;
32 static inline void sanity_check_pinned_pages(struct page **pages,
35 if (!IS_ENABLED(CONFIG_DEBUG_VM))
39 * We only pin anonymous pages if they are exclusive. Once pinned, we
40 * can no longer turn them possibly shared and PageAnonExclusive() will
41 * stick around until the page is freed.
43 * We'd like to verify that our pinned anonymous pages are still mapped
44 * exclusively. The issue with anon THP is that we don't know how
45 * they are/were mapped when pinning them. However, for anon
46 * THP we can assume that either the given page (PTE-mapped THP) or
47 * the head page (PMD-mapped THP) should be PageAnonExclusive(). If
48 * neither is the case, there is certainly something wrong.
50 for (; npages; npages--, pages++) {
51 struct page *page = *pages;
52 struct folio *folio = page_folio(page);
54 if (!folio_test_anon(folio))
56 if (!folio_test_large(folio) || folio_test_hugetlb(folio))
57 VM_BUG_ON_PAGE(!PageAnonExclusive(&folio->page), page);
59 /* Either a PTE-mapped or a PMD-mapped THP. */
60 VM_BUG_ON_PAGE(!PageAnonExclusive(&folio->page) &&
61 !PageAnonExclusive(page), page);
66 * Return the folio with ref appropriately incremented,
67 * or NULL if that failed.
69 static inline struct folio *try_get_folio(struct page *page, int refs)
74 folio = page_folio(page);
75 if (WARN_ON_ONCE(folio_ref_count(folio) < 0))
77 if (unlikely(!folio_ref_try_add_rcu(folio, refs)))
81 * At this point we have a stable reference to the folio; but it
82 * could be that between calling page_folio() and the refcount
83 * increment, the folio was split, in which case we'd end up
84 * holding a reference on a folio that has nothing to do with the page
85 * we were given anymore.
86 * So now that the folio is stable, recheck that the page still
87 * belongs to this folio.
89 if (unlikely(page_folio(page) != folio)) {
90 if (!put_devmap_managed_page_refs(&folio->page, refs))
91 folio_put_refs(folio, refs);
99 * try_grab_folio() - Attempt to get or pin a folio.
100 * @page: pointer to page to be grabbed
101 * @refs: the value to (effectively) add to the folio's refcount
102 * @flags: gup flags: these are the FOLL_* flag values.
104 * "grab" names in this file mean, "look at flags to decide whether to use
105 * FOLL_PIN or FOLL_GET behavior, when incrementing the folio's refcount.
107 * Either FOLL_PIN or FOLL_GET (or neither) must be set, but not both at the
108 * same time. (That's true throughout the get_user_pages*() and
109 * pin_user_pages*() APIs.) Cases:
111 * FOLL_GET: folio's refcount will be incremented by @refs.
113 * FOLL_PIN on large folios: folio's refcount will be incremented by
114 * @refs, and its compound_pincount will be incremented by @refs.
116 * FOLL_PIN on single-page folios: folio's refcount will be incremented by
117 * @refs * GUP_PIN_COUNTING_BIAS.
119 * Return: The folio containing @page (with refcount appropriately
120 * incremented) for success, or NULL upon failure. If neither FOLL_GET
121 * nor FOLL_PIN was set, that's considered failure, and furthermore,
122 * a likely bug in the caller, so a warning is also emitted.
124 struct folio *try_grab_folio(struct page *page, int refs, unsigned int flags)
126 if (flags & FOLL_GET)
127 return try_get_folio(page, refs);
128 else if (flags & FOLL_PIN) {
132 * Can't do FOLL_LONGTERM + FOLL_PIN gup fast path if not in a
133 * right zone, so fail and let the caller fall back to the slow
136 if (unlikely((flags & FOLL_LONGTERM) &&
137 !is_longterm_pinnable_page(page)))
141 * CAUTION: Don't use compound_head() on the page before this
142 * point, the result won't be stable.
144 folio = try_get_folio(page, refs);
149 * When pinning a large folio, use an exact count to track it.
151 * However, be sure to *also* increment the normal folio
152 * refcount field at least once, so that the folio really
153 * is pinned. That's why the refcount from the earlier
154 * try_get_folio() is left intact.
156 if (folio_test_large(folio))
157 atomic_add(refs, folio_pincount_ptr(folio));
160 refs * (GUP_PIN_COUNTING_BIAS - 1));
162 * Adjust the pincount before re-checking the PTE for changes.
163 * This is essentially a smp_mb() and is paired with a memory
164 * barrier in page_try_share_anon_rmap().
166 smp_mb__after_atomic();
168 node_stat_mod_folio(folio, NR_FOLL_PIN_ACQUIRED, refs);
177 static void gup_put_folio(struct folio *folio, int refs, unsigned int flags)
179 if (flags & FOLL_PIN) {
180 node_stat_mod_folio(folio, NR_FOLL_PIN_RELEASED, refs);
181 if (folio_test_large(folio))
182 atomic_sub(refs, folio_pincount_ptr(folio));
184 refs *= GUP_PIN_COUNTING_BIAS;
187 if (!put_devmap_managed_page_refs(&folio->page, refs))
188 folio_put_refs(folio, refs);
192 * try_grab_page() - elevate a page's refcount by a flag-dependent amount
193 * @page: pointer to page to be grabbed
194 * @flags: gup flags: these are the FOLL_* flag values.
196 * This might not do anything at all, depending on the flags argument.
198 * "grab" names in this file mean, "look at flags to decide whether to use
199 * FOLL_PIN or FOLL_GET behavior, when incrementing the page's refcount.
201 * Either FOLL_PIN or FOLL_GET (or neither) may be set, but not both at the same
202 * time. Cases: please see the try_grab_folio() documentation, with
205 * Return: true for success, or if no action was required (if neither FOLL_PIN
206 * nor FOLL_GET was set, nothing is done). False for failure: FOLL_GET or
207 * FOLL_PIN was set, but the page could not be grabbed.
209 bool __must_check try_grab_page(struct page *page, unsigned int flags)
211 struct folio *folio = page_folio(page);
213 WARN_ON_ONCE((flags & (FOLL_GET | FOLL_PIN)) == (FOLL_GET | FOLL_PIN));
214 if (WARN_ON_ONCE(folio_ref_count(folio) <= 0))
217 if (flags & FOLL_GET)
218 folio_ref_inc(folio);
219 else if (flags & FOLL_PIN) {
221 * Similar to try_grab_folio(): be sure to *also*
222 * increment the normal page refcount field at least once,
223 * so that the page really is pinned.
225 if (folio_test_large(folio)) {
226 folio_ref_add(folio, 1);
227 atomic_add(1, folio_pincount_ptr(folio));
229 folio_ref_add(folio, GUP_PIN_COUNTING_BIAS);
232 node_stat_mod_folio(folio, NR_FOLL_PIN_ACQUIRED, 1);
239 * unpin_user_page() - release a dma-pinned page
240 * @page: pointer to page to be released
242 * Pages that were pinned via pin_user_pages*() must be released via either
243 * unpin_user_page(), or one of the unpin_user_pages*() routines. This is so
244 * that such pages can be separately tracked and uniquely handled. In
245 * particular, interactions with RDMA and filesystems need special handling.
247 void unpin_user_page(struct page *page)
249 sanity_check_pinned_pages(&page, 1);
250 gup_put_folio(page_folio(page), 1, FOLL_PIN);
252 EXPORT_SYMBOL(unpin_user_page);
254 static inline struct folio *gup_folio_range_next(struct page *start,
255 unsigned long npages, unsigned long i, unsigned int *ntails)
257 struct page *next = nth_page(start, i);
258 struct folio *folio = page_folio(next);
261 if (folio_test_large(folio))
262 nr = min_t(unsigned int, npages - i,
263 folio_nr_pages(folio) - folio_page_idx(folio, next));
269 static inline struct folio *gup_folio_next(struct page **list,
270 unsigned long npages, unsigned long i, unsigned int *ntails)
272 struct folio *folio = page_folio(list[i]);
275 for (nr = i + 1; nr < npages; nr++) {
276 if (page_folio(list[nr]) != folio)
285 * unpin_user_pages_dirty_lock() - release and optionally dirty gup-pinned pages
286 * @pages: array of pages to be maybe marked dirty, and definitely released.
287 * @npages: number of pages in the @pages array.
288 * @make_dirty: whether to mark the pages dirty
290 * "gup-pinned page" refers to a page that has had one of the get_user_pages()
291 * variants called on that page.
293 * For each page in the @pages array, make that page (or its head page, if a
294 * compound page) dirty, if @make_dirty is true, and if the page was previously
295 * listed as clean. In any case, releases all pages using unpin_user_page(),
296 * possibly via unpin_user_pages(), for the non-dirty case.
298 * Please see the unpin_user_page() documentation for details.
300 * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
301 * required, then the caller should a) verify that this is really correct,
302 * because _lock() is usually required, and b) hand code it:
303 * set_page_dirty_lock(), unpin_user_page().
306 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
314 unpin_user_pages(pages, npages);
318 sanity_check_pinned_pages(pages, npages);
319 for (i = 0; i < npages; i += nr) {
320 folio = gup_folio_next(pages, npages, i, &nr);
322 * Checking PageDirty at this point may race with
323 * clear_page_dirty_for_io(), but that's OK. Two key
326 * 1) This code sees the page as already dirty, so it
327 * skips the call to set_page_dirty(). That could happen
328 * because clear_page_dirty_for_io() called
329 * page_mkclean(), followed by set_page_dirty().
330 * However, now the page is going to get written back,
331 * which meets the original intention of setting it
332 * dirty, so all is well: clear_page_dirty_for_io() goes
333 * on to call TestClearPageDirty(), and write the page
336 * 2) This code sees the page as clean, so it calls
337 * set_page_dirty(). The page stays dirty, despite being
338 * written back, so it gets written back again in the
339 * next writeback cycle. This is harmless.
341 if (!folio_test_dirty(folio)) {
343 folio_mark_dirty(folio);
346 gup_put_folio(folio, nr, FOLL_PIN);
349 EXPORT_SYMBOL(unpin_user_pages_dirty_lock);
352 * unpin_user_page_range_dirty_lock() - release and optionally dirty
353 * gup-pinned page range
355 * @page: the starting page of a range maybe marked dirty, and definitely released.
356 * @npages: number of consecutive pages to release.
357 * @make_dirty: whether to mark the pages dirty
359 * "gup-pinned page range" refers to a range of pages that has had one of the
360 * pin_user_pages() variants called on that page.
362 * For the page ranges defined by [page .. page+npages], make that range (or
363 * its head pages, if a compound page) dirty, if @make_dirty is true, and if the
364 * page range was previously listed as clean.
366 * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
367 * required, then the caller should a) verify that this is really correct,
368 * because _lock() is usually required, and b) hand code it:
369 * set_page_dirty_lock(), unpin_user_page().
372 void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages,
379 for (i = 0; i < npages; i += nr) {
380 folio = gup_folio_range_next(page, npages, i, &nr);
381 if (make_dirty && !folio_test_dirty(folio)) {
383 folio_mark_dirty(folio);
386 gup_put_folio(folio, nr, FOLL_PIN);
389 EXPORT_SYMBOL(unpin_user_page_range_dirty_lock);
391 static void unpin_user_pages_lockless(struct page **pages, unsigned long npages)
398 * Don't perform any sanity checks because we might have raced with
399 * fork() and some anonymous pages might now actually be shared --
400 * which is why we're unpinning after all.
402 for (i = 0; i < npages; i += nr) {
403 folio = gup_folio_next(pages, npages, i, &nr);
404 gup_put_folio(folio, nr, FOLL_PIN);
409 * unpin_user_pages() - release an array of gup-pinned pages.
410 * @pages: array of pages to be marked dirty and released.
411 * @npages: number of pages in the @pages array.
413 * For each page in the @pages array, release the page using unpin_user_page().
415 * Please see the unpin_user_page() documentation for details.
417 void unpin_user_pages(struct page **pages, unsigned long npages)
424 * If this WARN_ON() fires, then the system *might* be leaking pages (by
425 * leaving them pinned), but probably not. More likely, gup/pup returned
426 * a hard -ERRNO error to the caller, who erroneously passed it here.
428 if (WARN_ON(IS_ERR_VALUE(npages)))
431 sanity_check_pinned_pages(pages, npages);
432 for (i = 0; i < npages; i += nr) {
433 folio = gup_folio_next(pages, npages, i, &nr);
434 gup_put_folio(folio, nr, FOLL_PIN);
437 EXPORT_SYMBOL(unpin_user_pages);
440 * Set the MMF_HAS_PINNED if not set yet; after set it'll be there for the mm's
441 * lifecycle. Avoid setting the bit unless necessary, or it might cause write
442 * cache bouncing on large SMP machines for concurrent pinned gups.
444 static inline void mm_set_has_pinned_flag(unsigned long *mm_flags)
446 if (!test_bit(MMF_HAS_PINNED, mm_flags))
447 set_bit(MMF_HAS_PINNED, mm_flags);
451 static struct page *no_page_table(struct vm_area_struct *vma,
455 * When core dumping an enormous anonymous area that nobody
456 * has touched so far, we don't want to allocate unnecessary pages or
457 * page tables. Return error instead of NULL to skip handle_mm_fault,
458 * then get_dump_page() will return NULL to leave a hole in the dump.
459 * But we can only make this optimization where a hole would surely
460 * be zero-filled if handle_mm_fault() actually did handle it.
462 if ((flags & FOLL_DUMP) &&
463 (vma_is_anonymous(vma) || !vma->vm_ops->fault))
464 return ERR_PTR(-EFAULT);
468 static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address,
469 pte_t *pte, unsigned int flags)
471 if (flags & FOLL_TOUCH) {
474 if (flags & FOLL_WRITE)
475 entry = pte_mkdirty(entry);
476 entry = pte_mkyoung(entry);
478 if (!pte_same(*pte, entry)) {
479 set_pte_at(vma->vm_mm, address, pte, entry);
480 update_mmu_cache(vma, address, pte);
484 /* Proper page table entry exists, but no corresponding struct page */
488 /* FOLL_FORCE can write to even unwritable PTEs in COW mappings. */
489 static inline bool can_follow_write_pte(pte_t pte, struct page *page,
490 struct vm_area_struct *vma,
493 /* If the pte is writable, we can write to the page. */
497 /* Maybe FOLL_FORCE is set to override it? */
498 if (!(flags & FOLL_FORCE))
501 /* But FOLL_FORCE has no effect on shared mappings */
502 if (vma->vm_flags & (VM_MAYSHARE | VM_SHARED))
505 /* ... or read-only private ones */
506 if (!(vma->vm_flags & VM_MAYWRITE))
509 /* ... or already writable ones that just need to take a write fault */
510 if (vma->vm_flags & VM_WRITE)
514 * See can_change_pte_writable(): we broke COW and could map the page
515 * writable if we have an exclusive anonymous page ...
517 if (!page || !PageAnon(page) || !PageAnonExclusive(page))
520 /* ... and a write-fault isn't required for other reasons. */
521 if (vma_soft_dirty_enabled(vma) && !pte_soft_dirty(pte))
523 return !userfaultfd_pte_wp(vma, pte);
526 static struct page *follow_page_pte(struct vm_area_struct *vma,
527 unsigned long address, pmd_t *pmd, unsigned int flags,
528 struct dev_pagemap **pgmap)
530 struct mm_struct *mm = vma->vm_mm;
536 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
537 if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
538 (FOLL_PIN | FOLL_GET)))
539 return ERR_PTR(-EINVAL);
541 if (unlikely(pmd_bad(*pmd)))
542 return no_page_table(vma, flags);
544 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
546 if (!pte_present(pte)) {
549 * KSM's break_ksm() relies upon recognizing a ksm page
550 * even while it is being migrated, so for that case we
551 * need migration_entry_wait().
553 if (likely(!(flags & FOLL_MIGRATION)))
557 entry = pte_to_swp_entry(pte);
558 if (!is_migration_entry(entry))
560 pte_unmap_unlock(ptep, ptl);
561 migration_entry_wait(mm, pmd, address);
564 if (pte_protnone(pte) && !gup_can_follow_protnone(flags))
567 page = vm_normal_page(vma, address, pte);
570 * We only care about anon pages in can_follow_write_pte() and don't
571 * have to worry about pte_devmap() because they are never anon.
573 if ((flags & FOLL_WRITE) &&
574 !can_follow_write_pte(pte, page, vma, flags)) {
579 if (!page && pte_devmap(pte) && (flags & (FOLL_GET | FOLL_PIN))) {
581 * Only return device mapping pages in the FOLL_GET or FOLL_PIN
582 * case since they are only valid while holding the pgmap
585 *pgmap = get_dev_pagemap(pte_pfn(pte), *pgmap);
587 page = pte_page(pte);
590 } else if (unlikely(!page)) {
591 if (flags & FOLL_DUMP) {
592 /* Avoid special (like zero) pages in core dumps */
593 page = ERR_PTR(-EFAULT);
597 if (is_zero_pfn(pte_pfn(pte))) {
598 page = pte_page(pte);
600 ret = follow_pfn_pte(vma, address, ptep, flags);
606 if (!pte_write(pte) && gup_must_unshare(flags, page)) {
607 page = ERR_PTR(-EMLINK);
611 VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) &&
612 !PageAnonExclusive(page), page);
614 /* try_grab_page() does nothing unless FOLL_GET or FOLL_PIN is set. */
615 if (unlikely(!try_grab_page(page, flags))) {
616 page = ERR_PTR(-ENOMEM);
620 * We need to make the page accessible if and only if we are going
621 * to access its content (the FOLL_PIN case). Please see
622 * Documentation/core-api/pin_user_pages.rst for details.
624 if (flags & FOLL_PIN) {
625 ret = arch_make_page_accessible(page);
627 unpin_user_page(page);
632 if (flags & FOLL_TOUCH) {
633 if ((flags & FOLL_WRITE) &&
634 !pte_dirty(pte) && !PageDirty(page))
635 set_page_dirty(page);
637 * pte_mkyoung() would be more correct here, but atomic care
638 * is needed to avoid losing the dirty bit: it is easier to use
639 * mark_page_accessed().
641 mark_page_accessed(page);
644 pte_unmap_unlock(ptep, ptl);
647 pte_unmap_unlock(ptep, ptl);
650 return no_page_table(vma, flags);
653 static struct page *follow_pmd_mask(struct vm_area_struct *vma,
654 unsigned long address, pud_t *pudp,
656 struct follow_page_context *ctx)
661 struct mm_struct *mm = vma->vm_mm;
663 pmd = pmd_offset(pudp, address);
665 * The READ_ONCE() will stabilize the pmdval in a register or
666 * on the stack so that it will stop changing under the code.
668 pmdval = READ_ONCE(*pmd);
669 if (pmd_none(pmdval))
670 return no_page_table(vma, flags);
671 if (pmd_huge(pmdval) && is_vm_hugetlb_page(vma)) {
672 page = follow_huge_pmd(mm, address, pmd, flags);
675 return no_page_table(vma, flags);
677 if (is_hugepd(__hugepd(pmd_val(pmdval)))) {
678 page = follow_huge_pd(vma, address,
679 __hugepd(pmd_val(pmdval)), flags,
683 return no_page_table(vma, flags);
686 if (!pmd_present(pmdval)) {
688 * Should never reach here, if thp migration is not supported;
689 * Otherwise, it must be a thp migration entry.
691 VM_BUG_ON(!thp_migration_supported() ||
692 !is_pmd_migration_entry(pmdval));
694 if (likely(!(flags & FOLL_MIGRATION)))
695 return no_page_table(vma, flags);
697 pmd_migration_entry_wait(mm, pmd);
698 pmdval = READ_ONCE(*pmd);
700 * MADV_DONTNEED may convert the pmd to null because
701 * mmap_lock is held in read mode
703 if (pmd_none(pmdval))
704 return no_page_table(vma, flags);
707 if (pmd_devmap(pmdval)) {
708 ptl = pmd_lock(mm, pmd);
709 page = follow_devmap_pmd(vma, address, pmd, flags, &ctx->pgmap);
714 if (likely(!pmd_trans_huge(pmdval)))
715 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
717 if (pmd_protnone(pmdval) && !gup_can_follow_protnone(flags))
718 return no_page_table(vma, flags);
721 ptl = pmd_lock(mm, pmd);
722 if (unlikely(pmd_none(*pmd))) {
724 return no_page_table(vma, flags);
726 if (unlikely(!pmd_present(*pmd))) {
728 if (likely(!(flags & FOLL_MIGRATION)))
729 return no_page_table(vma, flags);
730 pmd_migration_entry_wait(mm, pmd);
733 if (unlikely(!pmd_trans_huge(*pmd))) {
735 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
737 if (flags & FOLL_SPLIT_PMD) {
739 page = pmd_page(*pmd);
740 if (is_huge_zero_page(page)) {
743 split_huge_pmd(vma, pmd, address);
744 if (pmd_trans_unstable(pmd))
748 split_huge_pmd(vma, pmd, address);
749 ret = pte_alloc(mm, pmd) ? -ENOMEM : 0;
752 return ret ? ERR_PTR(ret) :
753 follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
755 page = follow_trans_huge_pmd(vma, address, pmd, flags);
757 ctx->page_mask = HPAGE_PMD_NR - 1;
761 static struct page *follow_pud_mask(struct vm_area_struct *vma,
762 unsigned long address, p4d_t *p4dp,
764 struct follow_page_context *ctx)
769 struct mm_struct *mm = vma->vm_mm;
771 pud = pud_offset(p4dp, address);
773 return no_page_table(vma, flags);
774 if (pud_huge(*pud) && is_vm_hugetlb_page(vma)) {
775 page = follow_huge_pud(mm, address, pud, flags);
778 return no_page_table(vma, flags);
780 if (is_hugepd(__hugepd(pud_val(*pud)))) {
781 page = follow_huge_pd(vma, address,
782 __hugepd(pud_val(*pud)), flags,
786 return no_page_table(vma, flags);
788 if (pud_devmap(*pud)) {
789 ptl = pud_lock(mm, pud);
790 page = follow_devmap_pud(vma, address, pud, flags, &ctx->pgmap);
795 if (unlikely(pud_bad(*pud)))
796 return no_page_table(vma, flags);
798 return follow_pmd_mask(vma, address, pud, flags, ctx);
801 static struct page *follow_p4d_mask(struct vm_area_struct *vma,
802 unsigned long address, pgd_t *pgdp,
804 struct follow_page_context *ctx)
809 p4d = p4d_offset(pgdp, address);
811 return no_page_table(vma, flags);
812 BUILD_BUG_ON(p4d_huge(*p4d));
813 if (unlikely(p4d_bad(*p4d)))
814 return no_page_table(vma, flags);
816 if (is_hugepd(__hugepd(p4d_val(*p4d)))) {
817 page = follow_huge_pd(vma, address,
818 __hugepd(p4d_val(*p4d)), flags,
822 return no_page_table(vma, flags);
824 return follow_pud_mask(vma, address, p4d, flags, ctx);
828 * follow_page_mask - look up a page descriptor from a user-virtual address
829 * @vma: vm_area_struct mapping @address
830 * @address: virtual address to look up
831 * @flags: flags modifying lookup behaviour
832 * @ctx: contains dev_pagemap for %ZONE_DEVICE memory pinning and a
833 * pointer to output page_mask
835 * @flags can have FOLL_ flags set, defined in <linux/mm.h>
837 * When getting pages from ZONE_DEVICE memory, the @ctx->pgmap caches
838 * the device's dev_pagemap metadata to avoid repeating expensive lookups.
840 * When getting an anonymous page and the caller has to trigger unsharing
841 * of a shared anonymous page first, -EMLINK is returned. The caller should
842 * trigger a fault with FAULT_FLAG_UNSHARE set. Note that unsharing is only
843 * relevant with FOLL_PIN and !FOLL_WRITE.
845 * On output, the @ctx->page_mask is set according to the size of the page.
847 * Return: the mapped (struct page *), %NULL if no mapping exists, or
848 * an error pointer if there is a mapping to something not represented
849 * by a page descriptor (see also vm_normal_page()).
851 static struct page *follow_page_mask(struct vm_area_struct *vma,
852 unsigned long address, unsigned int flags,
853 struct follow_page_context *ctx)
857 struct mm_struct *mm = vma->vm_mm;
861 /* make this handle hugepd */
862 page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
864 WARN_ON_ONCE(flags & (FOLL_GET | FOLL_PIN));
868 pgd = pgd_offset(mm, address);
870 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
871 return no_page_table(vma, flags);
873 if (pgd_huge(*pgd)) {
874 page = follow_huge_pgd(mm, address, pgd, flags);
877 return no_page_table(vma, flags);
879 if (is_hugepd(__hugepd(pgd_val(*pgd)))) {
880 page = follow_huge_pd(vma, address,
881 __hugepd(pgd_val(*pgd)), flags,
885 return no_page_table(vma, flags);
888 return follow_p4d_mask(vma, address, pgd, flags, ctx);
891 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
892 unsigned int foll_flags)
894 struct follow_page_context ctx = { NULL };
897 if (vma_is_secretmem(vma))
900 if (foll_flags & FOLL_PIN)
903 page = follow_page_mask(vma, address, foll_flags, &ctx);
905 put_dev_pagemap(ctx.pgmap);
909 static int get_gate_page(struct mm_struct *mm, unsigned long address,
910 unsigned int gup_flags, struct vm_area_struct **vma,
920 /* user gate pages are read-only */
921 if (gup_flags & FOLL_WRITE)
923 if (address > TASK_SIZE)
924 pgd = pgd_offset_k(address);
926 pgd = pgd_offset_gate(mm, address);
929 p4d = p4d_offset(pgd, address);
932 pud = pud_offset(p4d, address);
935 pmd = pmd_offset(pud, address);
936 if (!pmd_present(*pmd))
938 VM_BUG_ON(pmd_trans_huge(*pmd));
939 pte = pte_offset_map(pmd, address);
942 *vma = get_gate_vma(mm);
945 *page = vm_normal_page(*vma, address, *pte);
947 if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(*pte)))
949 *page = pte_page(*pte);
951 if (unlikely(!try_grab_page(*page, gup_flags))) {
963 * mmap_lock must be held on entry. If @locked != NULL and *@flags
964 * does not include FOLL_NOWAIT, the mmap_lock may be released. If it
965 * is, *@locked will be set to 0 and -EBUSY returned.
967 static int faultin_page(struct vm_area_struct *vma,
968 unsigned long address, unsigned int *flags, bool unshare,
971 unsigned int fault_flags = 0;
974 if (*flags & FOLL_NOFAULT)
976 if (*flags & FOLL_WRITE)
977 fault_flags |= FAULT_FLAG_WRITE;
978 if (*flags & FOLL_REMOTE)
979 fault_flags |= FAULT_FLAG_REMOTE;
981 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
982 if (*flags & FOLL_NOWAIT)
983 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT;
984 if (*flags & FOLL_TRIED) {
986 * Note: FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_TRIED
989 fault_flags |= FAULT_FLAG_TRIED;
992 fault_flags |= FAULT_FLAG_UNSHARE;
993 /* FAULT_FLAG_WRITE and FAULT_FLAG_UNSHARE are incompatible */
994 VM_BUG_ON(fault_flags & FAULT_FLAG_WRITE);
997 ret = handle_mm_fault(vma, address, fault_flags, NULL);
999 if (ret & VM_FAULT_COMPLETED) {
1001 * With FAULT_FLAG_RETRY_NOWAIT we'll never release the
1002 * mmap lock in the page fault handler. Sanity check this.
1004 WARN_ON_ONCE(fault_flags & FAULT_FLAG_RETRY_NOWAIT);
1008 * We should do the same as VM_FAULT_RETRY, but let's not
1009 * return -EBUSY since that's not reflecting the reality of
1010 * what has happened - we've just fully completed a page
1011 * fault, with the mmap lock released. Use -EAGAIN to show
1012 * that we want to take the mmap lock _again_.
1017 if (ret & VM_FAULT_ERROR) {
1018 int err = vm_fault_to_errno(ret, *flags);
1025 if (ret & VM_FAULT_RETRY) {
1026 if (locked && !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
1034 static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags)
1036 vm_flags_t vm_flags = vma->vm_flags;
1037 int write = (gup_flags & FOLL_WRITE);
1038 int foreign = (gup_flags & FOLL_REMOTE);
1040 if (vm_flags & (VM_IO | VM_PFNMAP))
1043 if (gup_flags & FOLL_ANON && !vma_is_anonymous(vma))
1046 if ((gup_flags & FOLL_LONGTERM) && vma_is_fsdax(vma))
1049 if (vma_is_secretmem(vma))
1053 if (!(vm_flags & VM_WRITE)) {
1054 if (!(gup_flags & FOLL_FORCE))
1057 * We used to let the write,force case do COW in a
1058 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could
1059 * set a breakpoint in a read-only mapping of an
1060 * executable, without corrupting the file (yet only
1061 * when that file had been opened for writing!).
1062 * Anon pages in shared mappings are surprising: now
1065 if (!is_cow_mapping(vm_flags))
1068 } else if (!(vm_flags & VM_READ)) {
1069 if (!(gup_flags & FOLL_FORCE))
1072 * Is there actually any vma we can reach here which does not
1073 * have VM_MAYREAD set?
1075 if (!(vm_flags & VM_MAYREAD))
1079 * gups are always data accesses, not instruction
1080 * fetches, so execute=false here
1082 if (!arch_vma_access_permitted(vma, write, false, foreign))
1088 * __get_user_pages() - pin user pages in memory
1089 * @mm: mm_struct of target mm
1090 * @start: starting user address
1091 * @nr_pages: number of pages from start to pin
1092 * @gup_flags: flags modifying pin behaviour
1093 * @pages: array that receives pointers to the pages pinned.
1094 * Should be at least nr_pages long. Or NULL, if caller
1095 * only intends to ensure the pages are faulted in.
1096 * @vmas: array of pointers to vmas corresponding to each page.
1097 * Or NULL if the caller does not require them.
1098 * @locked: whether we're still with the mmap_lock held
1100 * Returns either number of pages pinned (which may be less than the
1101 * number requested), or an error. Details about the return value:
1103 * -- If nr_pages is 0, returns 0.
1104 * -- If nr_pages is >0, but no pages were pinned, returns -errno.
1105 * -- If nr_pages is >0, and some pages were pinned, returns the number of
1106 * pages pinned. Again, this may be less than nr_pages.
1107 * -- 0 return value is possible when the fault would need to be retried.
1109 * The caller is responsible for releasing returned @pages, via put_page().
1111 * @vmas are valid only as long as mmap_lock is held.
1113 * Must be called with mmap_lock held. It may be released. See below.
1115 * __get_user_pages walks a process's page tables and takes a reference to
1116 * each struct page that each user address corresponds to at a given
1117 * instant. That is, it takes the page that would be accessed if a user
1118 * thread accesses the given user virtual address at that instant.
1120 * This does not guarantee that the page exists in the user mappings when
1121 * __get_user_pages returns, and there may even be a completely different
1122 * page there in some cases (eg. if mmapped pagecache has been invalidated
1123 * and subsequently re faulted). However it does guarantee that the page
1124 * won't be freed completely. And mostly callers simply care that the page
1125 * contains data that was valid *at some point in time*. Typically, an IO
1126 * or similar operation cannot guarantee anything stronger anyway because
1127 * locks can't be held over the syscall boundary.
1129 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
1130 * the page is written to, set_page_dirty (or set_page_dirty_lock, as
1131 * appropriate) must be called after the page is finished with, and
1132 * before put_page is called.
1134 * If @locked != NULL, *@locked will be set to 0 when mmap_lock is
1135 * released by an up_read(). That can happen if @gup_flags does not
1138 * A caller using such a combination of @locked and @gup_flags
1139 * must therefore hold the mmap_lock for reading only, and recognize
1140 * when it's been released. Otherwise, it must be held for either
1141 * reading or writing and will not be released.
1143 * In most cases, get_user_pages or get_user_pages_fast should be used
1144 * instead of __get_user_pages. __get_user_pages should be used only if
1145 * you need some special @gup_flags.
1147 static long __get_user_pages(struct mm_struct *mm,
1148 unsigned long start, unsigned long nr_pages,
1149 unsigned int gup_flags, struct page **pages,
1150 struct vm_area_struct **vmas, int *locked)
1152 long ret = 0, i = 0;
1153 struct vm_area_struct *vma = NULL;
1154 struct follow_page_context ctx = { NULL };
1159 start = untagged_addr(start);
1161 VM_BUG_ON(!!pages != !!(gup_flags & (FOLL_GET | FOLL_PIN)));
1165 unsigned int foll_flags = gup_flags;
1166 unsigned int page_increm;
1168 /* first iteration or cross vma bound */
1169 if (!vma || start >= vma->vm_end) {
1170 vma = find_extend_vma(mm, start);
1171 if (!vma && in_gate_area(mm, start)) {
1172 ret = get_gate_page(mm, start & PAGE_MASK,
1174 pages ? &pages[i] : NULL);
1185 ret = check_vma_flags(vma, gup_flags);
1189 if (is_vm_hugetlb_page(vma)) {
1190 i = follow_hugetlb_page(mm, vma, pages, vmas,
1191 &start, &nr_pages, i,
1193 if (locked && *locked == 0) {
1195 * We've got a VM_FAULT_RETRY
1196 * and we've lost mmap_lock.
1197 * We must stop here.
1199 BUG_ON(gup_flags & FOLL_NOWAIT);
1207 * If we have a pending SIGKILL, don't keep faulting pages and
1208 * potentially allocating memory.
1210 if (fatal_signal_pending(current)) {
1216 page = follow_page_mask(vma, start, foll_flags, &ctx);
1217 if (!page || PTR_ERR(page) == -EMLINK) {
1218 ret = faultin_page(vma, start, &foll_flags,
1219 PTR_ERR(page) == -EMLINK, locked);
1233 } else if (PTR_ERR(page) == -EEXIST) {
1235 * Proper page table entry exists, but no corresponding
1236 * struct page. If the caller expects **pages to be
1237 * filled in, bail out now, because that can't be done
1241 ret = PTR_ERR(page);
1246 } else if (IS_ERR(page)) {
1247 ret = PTR_ERR(page);
1252 flush_anon_page(vma, page, start);
1253 flush_dcache_page(page);
1261 page_increm = 1 + (~(start >> PAGE_SHIFT) & ctx.page_mask);
1262 if (page_increm > nr_pages)
1263 page_increm = nr_pages;
1265 start += page_increm * PAGE_SIZE;
1266 nr_pages -= page_increm;
1270 put_dev_pagemap(ctx.pgmap);
1274 static bool vma_permits_fault(struct vm_area_struct *vma,
1275 unsigned int fault_flags)
1277 bool write = !!(fault_flags & FAULT_FLAG_WRITE);
1278 bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE);
1279 vm_flags_t vm_flags = write ? VM_WRITE : VM_READ;
1281 if (!(vm_flags & vma->vm_flags))
1285 * The architecture might have a hardware protection
1286 * mechanism other than read/write that can deny access.
1288 * gup always represents data access, not instruction
1289 * fetches, so execute=false here:
1291 if (!arch_vma_access_permitted(vma, write, false, foreign))
1298 * fixup_user_fault() - manually resolve a user page fault
1299 * @mm: mm_struct of target mm
1300 * @address: user address
1301 * @fault_flags:flags to pass down to handle_mm_fault()
1302 * @unlocked: did we unlock the mmap_lock while retrying, maybe NULL if caller
1303 * does not allow retry. If NULL, the caller must guarantee
1304 * that fault_flags does not contain FAULT_FLAG_ALLOW_RETRY.
1306 * This is meant to be called in the specific scenario where for locking reasons
1307 * we try to access user memory in atomic context (within a pagefault_disable()
1308 * section), this returns -EFAULT, and we want to resolve the user fault before
1311 * Typically this is meant to be used by the futex code.
1313 * The main difference with get_user_pages() is that this function will
1314 * unconditionally call handle_mm_fault() which will in turn perform all the
1315 * necessary SW fixup of the dirty and young bits in the PTE, while
1316 * get_user_pages() only guarantees to update these in the struct page.
1318 * This is important for some architectures where those bits also gate the
1319 * access permission to the page because they are maintained in software. On
1320 * such architectures, gup() will not be enough to make a subsequent access
1323 * This function will not return with an unlocked mmap_lock. So it has not the
1324 * same semantics wrt the @mm->mmap_lock as does filemap_fault().
1326 int fixup_user_fault(struct mm_struct *mm,
1327 unsigned long address, unsigned int fault_flags,
1330 struct vm_area_struct *vma;
1333 address = untagged_addr(address);
1336 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
1339 vma = find_extend_vma(mm, address);
1340 if (!vma || address < vma->vm_start)
1343 if (!vma_permits_fault(vma, fault_flags))
1346 if ((fault_flags & FAULT_FLAG_KILLABLE) &&
1347 fatal_signal_pending(current))
1350 ret = handle_mm_fault(vma, address, fault_flags, NULL);
1352 if (ret & VM_FAULT_COMPLETED) {
1354 * NOTE: it's a pity that we need to retake the lock here
1355 * to pair with the unlock() in the callers. Ideally we
1356 * could tell the callers so they do not need to unlock.
1363 if (ret & VM_FAULT_ERROR) {
1364 int err = vm_fault_to_errno(ret, 0);
1371 if (ret & VM_FAULT_RETRY) {
1374 fault_flags |= FAULT_FLAG_TRIED;
1380 EXPORT_SYMBOL_GPL(fixup_user_fault);
1383 * Please note that this function, unlike __get_user_pages will not
1384 * return 0 for nr_pages > 0 without FOLL_NOWAIT
1386 static __always_inline long __get_user_pages_locked(struct mm_struct *mm,
1387 unsigned long start,
1388 unsigned long nr_pages,
1389 struct page **pages,
1390 struct vm_area_struct **vmas,
1394 long ret, pages_done;
1398 /* if VM_FAULT_RETRY can be returned, vmas become invalid */
1400 /* check caller initialized locked */
1401 BUG_ON(*locked != 1);
1404 if (flags & FOLL_PIN)
1405 mm_set_has_pinned_flag(&mm->flags);
1408 * FOLL_PIN and FOLL_GET are mutually exclusive. Traditional behavior
1409 * is to set FOLL_GET if the caller wants pages[] filled in (but has
1410 * carelessly failed to specify FOLL_GET), so keep doing that, but only
1411 * for FOLL_GET, not for the newer FOLL_PIN.
1413 * FOLL_PIN always expects pages to be non-null, but no need to assert
1414 * that here, as any failures will be obvious enough.
1416 if (pages && !(flags & FOLL_PIN))
1420 lock_dropped = false;
1422 ret = __get_user_pages(mm, start, nr_pages, flags, pages,
1425 /* VM_FAULT_RETRY couldn't trigger, bypass */
1428 /* VM_FAULT_RETRY or VM_FAULT_COMPLETED cannot return errors */
1431 BUG_ON(ret >= nr_pages);
1442 * VM_FAULT_RETRY didn't trigger or it was a
1450 * VM_FAULT_RETRY triggered, so seek to the faulting offset.
1451 * For the prefault case (!pages) we only update counts.
1455 start += ret << PAGE_SHIFT;
1456 lock_dropped = true;
1460 * Repeat on the address that fired VM_FAULT_RETRY
1461 * with both FAULT_FLAG_ALLOW_RETRY and
1462 * FAULT_FLAG_TRIED. Note that GUP can be interrupted
1463 * by fatal signals, so we need to check it before we
1464 * start trying again otherwise it can loop forever.
1467 if (fatal_signal_pending(current)) {
1469 pages_done = -EINTR;
1473 ret = mmap_read_lock_killable(mm);
1482 ret = __get_user_pages(mm, start, 1, flags | FOLL_TRIED,
1483 pages, NULL, locked);
1485 /* Continue to retry until we succeeded */
1503 if (lock_dropped && *locked) {
1505 * We must let the caller know we temporarily dropped the lock
1506 * and so the critical section protected by it was lost.
1508 mmap_read_unlock(mm);
1515 * populate_vma_page_range() - populate a range of pages in the vma.
1517 * @start: start address
1519 * @locked: whether the mmap_lock is still held
1521 * This takes care of mlocking the pages too if VM_LOCKED is set.
1523 * Return either number of pages pinned in the vma, or a negative error
1526 * vma->vm_mm->mmap_lock must be held.
1528 * If @locked is NULL, it may be held for read or write and will
1531 * If @locked is non-NULL, it must held for read only and may be
1532 * released. If it's released, *@locked will be set to 0.
1534 long populate_vma_page_range(struct vm_area_struct *vma,
1535 unsigned long start, unsigned long end, int *locked)
1537 struct mm_struct *mm = vma->vm_mm;
1538 unsigned long nr_pages = (end - start) / PAGE_SIZE;
1542 VM_BUG_ON(!PAGE_ALIGNED(start));
1543 VM_BUG_ON(!PAGE_ALIGNED(end));
1544 VM_BUG_ON_VMA(start < vma->vm_start, vma);
1545 VM_BUG_ON_VMA(end > vma->vm_end, vma);
1546 mmap_assert_locked(mm);
1549 * Rightly or wrongly, the VM_LOCKONFAULT case has never used
1550 * faultin_page() to break COW, so it has no work to do here.
1552 if (vma->vm_flags & VM_LOCKONFAULT)
1555 gup_flags = FOLL_TOUCH;
1557 * We want to touch writable mappings with a write fault in order
1558 * to break COW, except for shared mappings because these don't COW
1559 * and we would not want to dirty them for nothing.
1561 if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE)
1562 gup_flags |= FOLL_WRITE;
1565 * We want mlock to succeed for regions that have any permissions
1566 * other than PROT_NONE.
1568 if (vma_is_accessible(vma))
1569 gup_flags |= FOLL_FORCE;
1572 * We made sure addr is within a VMA, so the following will
1573 * not result in a stack expansion that recurses back here.
1575 ret = __get_user_pages(mm, start, nr_pages, gup_flags,
1576 NULL, NULL, locked);
1582 * faultin_vma_page_range() - populate (prefault) page tables inside the
1583 * given VMA range readable/writable
1585 * This takes care of mlocking the pages, too, if VM_LOCKED is set.
1588 * @start: start address
1590 * @write: whether to prefault readable or writable
1591 * @locked: whether the mmap_lock is still held
1593 * Returns either number of processed pages in the vma, or a negative error
1594 * code on error (see __get_user_pages()).
1596 * vma->vm_mm->mmap_lock must be held. The range must be page-aligned and
1597 * covered by the VMA.
1599 * If @locked is NULL, it may be held for read or write and will be unperturbed.
1601 * If @locked is non-NULL, it must held for read only and may be released. If
1602 * it's released, *@locked will be set to 0.
1604 long faultin_vma_page_range(struct vm_area_struct *vma, unsigned long start,
1605 unsigned long end, bool write, int *locked)
1607 struct mm_struct *mm = vma->vm_mm;
1608 unsigned long nr_pages = (end - start) / PAGE_SIZE;
1612 VM_BUG_ON(!PAGE_ALIGNED(start));
1613 VM_BUG_ON(!PAGE_ALIGNED(end));
1614 VM_BUG_ON_VMA(start < vma->vm_start, vma);
1615 VM_BUG_ON_VMA(end > vma->vm_end, vma);
1616 mmap_assert_locked(mm);
1619 * FOLL_TOUCH: Mark page accessed and thereby young; will also mark
1620 * the page dirty with FOLL_WRITE -- which doesn't make a
1621 * difference with !FOLL_FORCE, because the page is writable
1622 * in the page table.
1623 * FOLL_HWPOISON: Return -EHWPOISON instead of -EFAULT when we hit
1625 * !FOLL_FORCE: Require proper access permissions.
1627 gup_flags = FOLL_TOUCH | FOLL_HWPOISON;
1629 gup_flags |= FOLL_WRITE;
1632 * We want to report -EINVAL instead of -EFAULT for any permission
1633 * problems or incompatible mappings.
1635 if (check_vma_flags(vma, gup_flags))
1638 ret = __get_user_pages(mm, start, nr_pages, gup_flags,
1639 NULL, NULL, locked);
1645 * __mm_populate - populate and/or mlock pages within a range of address space.
1647 * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap
1648 * flags. VMAs must be already marked with the desired vm_flags, and
1649 * mmap_lock must not be held.
1651 int __mm_populate(unsigned long start, unsigned long len, int ignore_errors)
1653 struct mm_struct *mm = current->mm;
1654 unsigned long end, nstart, nend;
1655 struct vm_area_struct *vma = NULL;
1661 for (nstart = start; nstart < end; nstart = nend) {
1663 * We want to fault in pages for [nstart; end) address range.
1664 * Find first corresponding VMA.
1669 vma = find_vma_intersection(mm, nstart, end);
1670 } else if (nstart >= vma->vm_end)
1671 vma = find_vma_intersection(mm, vma->vm_end, end);
1676 * Set [nstart; nend) to intersection of desired address
1677 * range with the first VMA. Also, skip undesirable VMA types.
1679 nend = min(end, vma->vm_end);
1680 if (vma->vm_flags & (VM_IO | VM_PFNMAP))
1682 if (nstart < vma->vm_start)
1683 nstart = vma->vm_start;
1685 * Now fault in a range of pages. populate_vma_page_range()
1686 * double checks the vma flags, so that it won't mlock pages
1687 * if the vma was already munlocked.
1689 ret = populate_vma_page_range(vma, nstart, nend, &locked);
1691 if (ignore_errors) {
1693 continue; /* continue at next VMA */
1697 nend = nstart + ret * PAGE_SIZE;
1701 mmap_read_unlock(mm);
1702 return ret; /* 0 or negative error code */
1704 #else /* CONFIG_MMU */
1705 static long __get_user_pages_locked(struct mm_struct *mm, unsigned long start,
1706 unsigned long nr_pages, struct page **pages,
1707 struct vm_area_struct **vmas, int *locked,
1708 unsigned int foll_flags)
1710 struct vm_area_struct *vma;
1711 unsigned long vm_flags;
1714 /* calculate required read or write permissions.
1715 * If FOLL_FORCE is set, we only require the "MAY" flags.
1717 vm_flags = (foll_flags & FOLL_WRITE) ?
1718 (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1719 vm_flags &= (foll_flags & FOLL_FORCE) ?
1720 (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1722 for (i = 0; i < nr_pages; i++) {
1723 vma = find_vma(mm, start);
1725 goto finish_or_fault;
1727 /* protect what we can, including chardevs */
1728 if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1729 !(vm_flags & vma->vm_flags))
1730 goto finish_or_fault;
1733 pages[i] = virt_to_page((void *)start);
1739 start = (start + PAGE_SIZE) & PAGE_MASK;
1745 return i ? : -EFAULT;
1747 #endif /* !CONFIG_MMU */
1750 * fault_in_writeable - fault in userspace address range for writing
1751 * @uaddr: start of address range
1752 * @size: size of address range
1754 * Returns the number of bytes not faulted in (like copy_to_user() and
1755 * copy_from_user()).
1757 size_t fault_in_writeable(char __user *uaddr, size_t size)
1759 char __user *start = uaddr, *end;
1761 if (unlikely(size == 0))
1763 if (!user_write_access_begin(uaddr, size))
1765 if (!PAGE_ALIGNED(uaddr)) {
1766 unsafe_put_user(0, uaddr, out);
1767 uaddr = (char __user *)PAGE_ALIGN((unsigned long)uaddr);
1769 end = (char __user *)PAGE_ALIGN((unsigned long)start + size);
1770 if (unlikely(end < start))
1772 while (uaddr != end) {
1773 unsafe_put_user(0, uaddr, out);
1778 user_write_access_end();
1779 if (size > uaddr - start)
1780 return size - (uaddr - start);
1783 EXPORT_SYMBOL(fault_in_writeable);
1786 * fault_in_subpage_writeable - fault in an address range for writing
1787 * @uaddr: start of address range
1788 * @size: size of address range
1790 * Fault in a user address range for writing while checking for permissions at
1791 * sub-page granularity (e.g. arm64 MTE). This function should be used when
1792 * the caller cannot guarantee forward progress of a copy_to_user() loop.
1794 * Returns the number of bytes not faulted in (like copy_to_user() and
1795 * copy_from_user()).
1797 size_t fault_in_subpage_writeable(char __user *uaddr, size_t size)
1802 * Attempt faulting in at page granularity first for page table
1803 * permission checking. The arch-specific probe_subpage_writeable()
1804 * functions may not check for this.
1806 faulted_in = size - fault_in_writeable(uaddr, size);
1808 faulted_in -= probe_subpage_writeable(uaddr, faulted_in);
1810 return size - faulted_in;
1812 EXPORT_SYMBOL(fault_in_subpage_writeable);
1815 * fault_in_safe_writeable - fault in an address range for writing
1816 * @uaddr: start of address range
1817 * @size: length of address range
1819 * Faults in an address range for writing. This is primarily useful when we
1820 * already know that some or all of the pages in the address range aren't in
1823 * Unlike fault_in_writeable(), this function is non-destructive.
1825 * Note that we don't pin or otherwise hold the pages referenced that we fault
1826 * in. There's no guarantee that they'll stay in memory for any duration of
1829 * Returns the number of bytes not faulted in, like copy_to_user() and
1832 size_t fault_in_safe_writeable(const char __user *uaddr, size_t size)
1834 unsigned long start = (unsigned long)uaddr, end;
1835 struct mm_struct *mm = current->mm;
1836 bool unlocked = false;
1838 if (unlikely(size == 0))
1840 end = PAGE_ALIGN(start + size);
1846 if (fixup_user_fault(mm, start, FAULT_FLAG_WRITE, &unlocked))
1848 start = (start + PAGE_SIZE) & PAGE_MASK;
1849 } while (start != end);
1850 mmap_read_unlock(mm);
1852 if (size > (unsigned long)uaddr - start)
1853 return size - ((unsigned long)uaddr - start);
1856 EXPORT_SYMBOL(fault_in_safe_writeable);
1859 * fault_in_readable - fault in userspace address range for reading
1860 * @uaddr: start of user address range
1861 * @size: size of user address range
1863 * Returns the number of bytes not faulted in (like copy_to_user() and
1864 * copy_from_user()).
1866 size_t fault_in_readable(const char __user *uaddr, size_t size)
1868 const char __user *start = uaddr, *end;
1871 if (unlikely(size == 0))
1873 if (!user_read_access_begin(uaddr, size))
1875 if (!PAGE_ALIGNED(uaddr)) {
1876 unsafe_get_user(c, uaddr, out);
1877 uaddr = (const char __user *)PAGE_ALIGN((unsigned long)uaddr);
1879 end = (const char __user *)PAGE_ALIGN((unsigned long)start + size);
1880 if (unlikely(end < start))
1882 while (uaddr != end) {
1883 unsafe_get_user(c, uaddr, out);
1888 user_read_access_end();
1890 if (size > uaddr - start)
1891 return size - (uaddr - start);
1894 EXPORT_SYMBOL(fault_in_readable);
1897 * get_dump_page() - pin user page in memory while writing it to core dump
1898 * @addr: user address
1900 * Returns struct page pointer of user page pinned for dump,
1901 * to be freed afterwards by put_page().
1903 * Returns NULL on any kind of failure - a hole must then be inserted into
1904 * the corefile, to preserve alignment with its headers; and also returns
1905 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
1906 * allowing a hole to be left in the corefile to save disk space.
1908 * Called without mmap_lock (takes and releases the mmap_lock by itself).
1910 #ifdef CONFIG_ELF_CORE
1911 struct page *get_dump_page(unsigned long addr)
1913 struct mm_struct *mm = current->mm;
1918 if (mmap_read_lock_killable(mm))
1920 ret = __get_user_pages_locked(mm, addr, 1, &page, NULL, &locked,
1921 FOLL_FORCE | FOLL_DUMP | FOLL_GET);
1923 mmap_read_unlock(mm);
1924 return (ret == 1) ? page : NULL;
1926 #endif /* CONFIG_ELF_CORE */
1928 #ifdef CONFIG_MIGRATION
1930 * Returns the number of collected pages. Return value is always >= 0.
1932 static unsigned long collect_longterm_unpinnable_pages(
1933 struct list_head *movable_page_list,
1934 unsigned long nr_pages,
1935 struct page **pages)
1937 unsigned long i, collected = 0;
1938 struct folio *prev_folio = NULL;
1939 bool drain_allow = true;
1941 for (i = 0; i < nr_pages; i++) {
1942 struct folio *folio = page_folio(pages[i]);
1944 if (folio == prev_folio)
1948 if (folio_is_longterm_pinnable(folio))
1953 if (folio_is_device_coherent(folio))
1956 if (folio_test_hugetlb(folio)) {
1957 isolate_hugetlb(&folio->page, movable_page_list);
1961 if (!folio_test_lru(folio) && drain_allow) {
1962 lru_add_drain_all();
1963 drain_allow = false;
1966 if (!folio_isolate_lru(folio))
1969 list_add_tail(&folio->lru, movable_page_list);
1970 node_stat_mod_folio(folio,
1971 NR_ISOLATED_ANON + folio_is_file_lru(folio),
1972 folio_nr_pages(folio));
1979 * Unpins all pages and migrates device coherent pages and movable_page_list.
1980 * Returns -EAGAIN if all pages were successfully migrated or -errno for failure
1981 * (or partial success).
1983 static int migrate_longterm_unpinnable_pages(
1984 struct list_head *movable_page_list,
1985 unsigned long nr_pages,
1986 struct page **pages)
1991 for (i = 0; i < nr_pages; i++) {
1992 struct folio *folio = page_folio(pages[i]);
1994 if (folio_is_device_coherent(folio)) {
1996 * Migration will fail if the page is pinned, so convert
1997 * the pin on the source page to a normal reference.
2001 gup_put_folio(folio, 1, FOLL_PIN);
2003 if (migrate_device_coherent_page(&folio->page)) {
2012 * We can't migrate pages with unexpected references, so drop
2013 * the reference obtained by __get_user_pages_locked().
2014 * Migrating pages have been added to movable_page_list after
2015 * calling folio_isolate_lru() which takes a reference so the
2016 * page won't be freed if it's migrating.
2018 unpin_user_page(pages[i]);
2022 if (!list_empty(movable_page_list)) {
2023 struct migration_target_control mtc = {
2024 .nid = NUMA_NO_NODE,
2025 .gfp_mask = GFP_USER | __GFP_NOWARN,
2028 if (migrate_pages(movable_page_list, alloc_migration_target,
2029 NULL, (unsigned long)&mtc, MIGRATE_SYNC,
2030 MR_LONGTERM_PIN, NULL)) {
2036 putback_movable_pages(movable_page_list);
2041 for (i = 0; i < nr_pages; i++)
2043 unpin_user_page(pages[i]);
2044 putback_movable_pages(movable_page_list);
2050 * Check whether all pages are *allowed* to be pinned. Rather confusingly, all
2051 * pages in the range are required to be pinned via FOLL_PIN, before calling
2054 * If any pages in the range are not allowed to be pinned, then this routine
2055 * will migrate those pages away, unpin all the pages in the range and return
2056 * -EAGAIN. The caller should re-pin the entire range with FOLL_PIN and then
2057 * call this routine again.
2059 * If an error other than -EAGAIN occurs, this indicates a migration failure.
2060 * The caller should give up, and propagate the error back up the call stack.
2062 * If everything is OK and all pages in the range are allowed to be pinned, then
2063 * this routine leaves all pages pinned and returns zero for success.
2065 static long check_and_migrate_movable_pages(unsigned long nr_pages,
2066 struct page **pages)
2068 unsigned long collected;
2069 LIST_HEAD(movable_page_list);
2071 collected = collect_longterm_unpinnable_pages(&movable_page_list,
2076 return migrate_longterm_unpinnable_pages(&movable_page_list, nr_pages,
2080 static long check_and_migrate_movable_pages(unsigned long nr_pages,
2081 struct page **pages)
2085 #endif /* CONFIG_MIGRATION */
2088 * __gup_longterm_locked() is a wrapper for __get_user_pages_locked which
2089 * allows us to process the FOLL_LONGTERM flag.
2091 static long __gup_longterm_locked(struct mm_struct *mm,
2092 unsigned long start,
2093 unsigned long nr_pages,
2094 struct page **pages,
2095 struct vm_area_struct **vmas,
2096 unsigned int gup_flags)
2099 long rc, nr_pinned_pages;
2101 if (!(gup_flags & FOLL_LONGTERM))
2102 return __get_user_pages_locked(mm, start, nr_pages, pages, vmas,
2106 * If we get to this point then FOLL_LONGTERM is set, and FOLL_LONGTERM
2107 * implies FOLL_PIN (although the reverse is not true). Therefore it is
2108 * correct to unconditionally call check_and_migrate_movable_pages()
2109 * which assumes pages have been pinned via FOLL_PIN.
2111 * Enforce the above reasoning by asserting that FOLL_PIN is set.
2113 if (WARN_ON(!(gup_flags & FOLL_PIN)))
2115 flags = memalloc_pin_save();
2117 nr_pinned_pages = __get_user_pages_locked(mm, start, nr_pages,
2120 if (nr_pinned_pages <= 0) {
2121 rc = nr_pinned_pages;
2124 rc = check_and_migrate_movable_pages(nr_pinned_pages, pages);
2125 } while (rc == -EAGAIN);
2126 memalloc_pin_restore(flags);
2128 return rc ? rc : nr_pinned_pages;
2131 static bool is_valid_gup_flags(unsigned int gup_flags)
2134 * FOLL_PIN must only be set internally by the pin_user_pages*() APIs,
2135 * never directly by the caller, so enforce that with an assertion:
2137 if (WARN_ON_ONCE(gup_flags & FOLL_PIN))
2140 * FOLL_PIN is a prerequisite to FOLL_LONGTERM. Another way of saying
2141 * that is, FOLL_LONGTERM is a specific case, more restrictive case of
2144 if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
2151 static long __get_user_pages_remote(struct mm_struct *mm,
2152 unsigned long start, unsigned long nr_pages,
2153 unsigned int gup_flags, struct page **pages,
2154 struct vm_area_struct **vmas, int *locked)
2157 * Parts of FOLL_LONGTERM behavior are incompatible with
2158 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
2159 * vmas. However, this only comes up if locked is set, and there are
2160 * callers that do request FOLL_LONGTERM, but do not set locked. So,
2161 * allow what we can.
2163 if (gup_flags & FOLL_LONGTERM) {
2164 if (WARN_ON_ONCE(locked))
2167 * This will check the vmas (even if our vmas arg is NULL)
2168 * and return -ENOTSUPP if DAX isn't allowed in this case:
2170 return __gup_longterm_locked(mm, start, nr_pages, pages,
2171 vmas, gup_flags | FOLL_TOUCH |
2175 return __get_user_pages_locked(mm, start, nr_pages, pages, vmas,
2177 gup_flags | FOLL_TOUCH | FOLL_REMOTE);
2181 * get_user_pages_remote() - pin user pages in memory
2182 * @mm: mm_struct of target mm
2183 * @start: starting user address
2184 * @nr_pages: number of pages from start to pin
2185 * @gup_flags: flags modifying lookup behaviour
2186 * @pages: array that receives pointers to the pages pinned.
2187 * Should be at least nr_pages long. Or NULL, if caller
2188 * only intends to ensure the pages are faulted in.
2189 * @vmas: array of pointers to vmas corresponding to each page.
2190 * Or NULL if the caller does not require them.
2191 * @locked: pointer to lock flag indicating whether lock is held and
2192 * subsequently whether VM_FAULT_RETRY functionality can be
2193 * utilised. Lock must initially be held.
2195 * Returns either number of pages pinned (which may be less than the
2196 * number requested), or an error. Details about the return value:
2198 * -- If nr_pages is 0, returns 0.
2199 * -- If nr_pages is >0, but no pages were pinned, returns -errno.
2200 * -- If nr_pages is >0, and some pages were pinned, returns the number of
2201 * pages pinned. Again, this may be less than nr_pages.
2203 * The caller is responsible for releasing returned @pages, via put_page().
2205 * @vmas are valid only as long as mmap_lock is held.
2207 * Must be called with mmap_lock held for read or write.
2209 * get_user_pages_remote walks a process's page tables and takes a reference
2210 * to each struct page that each user address corresponds to at a given
2211 * instant. That is, it takes the page that would be accessed if a user
2212 * thread accesses the given user virtual address at that instant.
2214 * This does not guarantee that the page exists in the user mappings when
2215 * get_user_pages_remote returns, and there may even be a completely different
2216 * page there in some cases (eg. if mmapped pagecache has been invalidated
2217 * and subsequently re faulted). However it does guarantee that the page
2218 * won't be freed completely. And mostly callers simply care that the page
2219 * contains data that was valid *at some point in time*. Typically, an IO
2220 * or similar operation cannot guarantee anything stronger anyway because
2221 * locks can't be held over the syscall boundary.
2223 * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page
2224 * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must
2225 * be called after the page is finished with, and before put_page is called.
2227 * get_user_pages_remote is typically used for fewer-copy IO operations,
2228 * to get a handle on the memory by some means other than accesses
2229 * via the user virtual addresses. The pages may be submitted for
2230 * DMA to devices or accessed via their kernel linear mapping (via the
2231 * kmap APIs). Care should be taken to use the correct cache flushing APIs.
2233 * See also get_user_pages_fast, for performance critical applications.
2235 * get_user_pages_remote should be phased out in favor of
2236 * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing
2237 * should use get_user_pages_remote because it cannot pass
2238 * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault.
2240 long get_user_pages_remote(struct mm_struct *mm,
2241 unsigned long start, unsigned long nr_pages,
2242 unsigned int gup_flags, struct page **pages,
2243 struct vm_area_struct **vmas, int *locked)
2245 if (!is_valid_gup_flags(gup_flags))
2248 return __get_user_pages_remote(mm, start, nr_pages, gup_flags,
2249 pages, vmas, locked);
2251 EXPORT_SYMBOL(get_user_pages_remote);
2253 #else /* CONFIG_MMU */
2254 long get_user_pages_remote(struct mm_struct *mm,
2255 unsigned long start, unsigned long nr_pages,
2256 unsigned int gup_flags, struct page **pages,
2257 struct vm_area_struct **vmas, int *locked)
2262 static long __get_user_pages_remote(struct mm_struct *mm,
2263 unsigned long start, unsigned long nr_pages,
2264 unsigned int gup_flags, struct page **pages,
2265 struct vm_area_struct **vmas, int *locked)
2269 #endif /* !CONFIG_MMU */
2272 * get_user_pages() - pin user pages in memory
2273 * @start: starting user address
2274 * @nr_pages: number of pages from start to pin
2275 * @gup_flags: flags modifying lookup behaviour
2276 * @pages: array that receives pointers to the pages pinned.
2277 * Should be at least nr_pages long. Or NULL, if caller
2278 * only intends to ensure the pages are faulted in.
2279 * @vmas: array of pointers to vmas corresponding to each page.
2280 * Or NULL if the caller does not require them.
2282 * This is the same as get_user_pages_remote(), just with a less-flexible
2283 * calling convention where we assume that the mm being operated on belongs to
2284 * the current task, and doesn't allow passing of a locked parameter. We also
2285 * obviously don't pass FOLL_REMOTE in here.
2287 long get_user_pages(unsigned long start, unsigned long nr_pages,
2288 unsigned int gup_flags, struct page **pages,
2289 struct vm_area_struct **vmas)
2291 if (!is_valid_gup_flags(gup_flags))
2294 return __gup_longterm_locked(current->mm, start, nr_pages,
2295 pages, vmas, gup_flags | FOLL_TOUCH);
2297 EXPORT_SYMBOL(get_user_pages);
2300 * get_user_pages_unlocked() is suitable to replace the form:
2302 * mmap_read_lock(mm);
2303 * get_user_pages(mm, ..., pages, NULL);
2304 * mmap_read_unlock(mm);
2308 * get_user_pages_unlocked(mm, ..., pages);
2310 * It is functionally equivalent to get_user_pages_fast so
2311 * get_user_pages_fast should be used instead if specific gup_flags
2312 * (e.g. FOLL_FORCE) are not required.
2314 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2315 struct page **pages, unsigned int gup_flags)
2317 struct mm_struct *mm = current->mm;
2322 * FIXME: Current FOLL_LONGTERM behavior is incompatible with
2323 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
2324 * vmas. As there are no users of this flag in this call we simply
2325 * disallow this option for now.
2327 if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
2331 ret = __get_user_pages_locked(mm, start, nr_pages, pages, NULL,
2332 &locked, gup_flags | FOLL_TOUCH);
2334 mmap_read_unlock(mm);
2337 EXPORT_SYMBOL(get_user_pages_unlocked);
2342 * get_user_pages_fast attempts to pin user pages by walking the page
2343 * tables directly and avoids taking locks. Thus the walker needs to be
2344 * protected from page table pages being freed from under it, and should
2345 * block any THP splits.
2347 * One way to achieve this is to have the walker disable interrupts, and
2348 * rely on IPIs from the TLB flushing code blocking before the page table
2349 * pages are freed. This is unsuitable for architectures that do not need
2350 * to broadcast an IPI when invalidating TLBs.
2352 * Another way to achieve this is to batch up page table containing pages
2353 * belonging to more than one mm_user, then rcu_sched a callback to free those
2354 * pages. Disabling interrupts will allow the fast_gup walker to both block
2355 * the rcu_sched callback, and an IPI that we broadcast for splitting THPs
2356 * (which is a relatively rare event). The code below adopts this strategy.
2358 * Before activating this code, please be aware that the following assumptions
2359 * are currently made:
2361 * *) Either MMU_GATHER_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to
2362 * free pages containing page tables or TLB flushing requires IPI broadcast.
2364 * *) ptes can be read atomically by the architecture.
2366 * *) access_ok is sufficient to validate userspace address ranges.
2368 * The last two assumptions can be relaxed by the addition of helper functions.
2370 * This code is based heavily on the PowerPC implementation by Nick Piggin.
2372 #ifdef CONFIG_HAVE_FAST_GUP
2374 static void __maybe_unused undo_dev_pagemap(int *nr, int nr_start,
2376 struct page **pages)
2378 while ((*nr) - nr_start) {
2379 struct page *page = pages[--(*nr)];
2381 ClearPageReferenced(page);
2382 if (flags & FOLL_PIN)
2383 unpin_user_page(page);
2389 #ifdef CONFIG_ARCH_HAS_PTE_SPECIAL
2391 * Fast-gup relies on pte change detection to avoid concurrent pgtable
2394 * To pin the page, fast-gup needs to do below in order:
2395 * (1) pin the page (by prefetching pte), then (2) check pte not changed.
2397 * For the rest of pgtable operations where pgtable updates can be racy
2398 * with fast-gup, we need to do (1) clear pte, then (2) check whether page
2401 * Above will work for all pte-level operations, including THP split.
2403 * For THP collapse, it's a bit more complicated because fast-gup may be
2404 * walking a pgtable page that is being freed (pte is still valid but pmd
2405 * can be cleared already). To avoid race in such condition, we need to
2406 * also check pmd here to make sure pmd doesn't change (corresponds to
2407 * pmdp_collapse_flush() in the THP collapse code path).
2409 static int gup_pte_range(pmd_t pmd, pmd_t *pmdp, unsigned long addr,
2410 unsigned long end, unsigned int flags,
2411 struct page **pages, int *nr)
2413 struct dev_pagemap *pgmap = NULL;
2414 int nr_start = *nr, ret = 0;
2417 ptem = ptep = pte_offset_map(&pmd, addr);
2419 pte_t pte = ptep_get_lockless(ptep);
2421 struct folio *folio;
2423 if (pte_protnone(pte) && !gup_can_follow_protnone(flags))
2426 if (!pte_access_permitted(pte, flags & FOLL_WRITE))
2429 if (pte_devmap(pte)) {
2430 if (unlikely(flags & FOLL_LONGTERM))
2433 pgmap = get_dev_pagemap(pte_pfn(pte), pgmap);
2434 if (unlikely(!pgmap)) {
2435 undo_dev_pagemap(nr, nr_start, flags, pages);
2438 } else if (pte_special(pte))
2441 VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
2442 page = pte_page(pte);
2444 folio = try_grab_folio(page, 1, flags);
2448 if (unlikely(page_is_secretmem(page))) {
2449 gup_put_folio(folio, 1, flags);
2453 if (unlikely(pmd_val(pmd) != pmd_val(*pmdp)) ||
2454 unlikely(pte_val(pte) != pte_val(*ptep))) {
2455 gup_put_folio(folio, 1, flags);
2459 if (!pte_write(pte) && gup_must_unshare(flags, page)) {
2460 gup_put_folio(folio, 1, flags);
2465 * We need to make the page accessible if and only if we are
2466 * going to access its content (the FOLL_PIN case). Please
2467 * see Documentation/core-api/pin_user_pages.rst for
2470 if (flags & FOLL_PIN) {
2471 ret = arch_make_page_accessible(page);
2473 gup_put_folio(folio, 1, flags);
2477 folio_set_referenced(folio);
2480 } while (ptep++, addr += PAGE_SIZE, addr != end);
2486 put_dev_pagemap(pgmap);
2493 * If we can't determine whether or not a pte is special, then fail immediately
2494 * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not
2497 * For a futex to be placed on a THP tail page, get_futex_key requires a
2498 * get_user_pages_fast_only implementation that can pin pages. Thus it's still
2499 * useful to have gup_huge_pmd even if we can't operate on ptes.
2501 static int gup_pte_range(pmd_t pmd, pmd_t *pmdp, unsigned long addr,
2502 unsigned long end, unsigned int flags,
2503 struct page **pages, int *nr)
2507 #endif /* CONFIG_ARCH_HAS_PTE_SPECIAL */
2509 #if defined(CONFIG_ARCH_HAS_PTE_DEVMAP) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
2510 static int __gup_device_huge(unsigned long pfn, unsigned long addr,
2511 unsigned long end, unsigned int flags,
2512 struct page **pages, int *nr)
2515 struct dev_pagemap *pgmap = NULL;
2518 struct page *page = pfn_to_page(pfn);
2520 pgmap = get_dev_pagemap(pfn, pgmap);
2521 if (unlikely(!pgmap)) {
2522 undo_dev_pagemap(nr, nr_start, flags, pages);
2525 SetPageReferenced(page);
2527 if (unlikely(!try_grab_page(page, flags))) {
2528 undo_dev_pagemap(nr, nr_start, flags, pages);
2533 } while (addr += PAGE_SIZE, addr != end);
2535 put_dev_pagemap(pgmap);
2539 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2540 unsigned long end, unsigned int flags,
2541 struct page **pages, int *nr)
2543 unsigned long fault_pfn;
2546 fault_pfn = pmd_pfn(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
2547 if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr))
2550 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
2551 undo_dev_pagemap(nr, nr_start, flags, pages);
2557 static int __gup_device_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
2558 unsigned long end, unsigned int flags,
2559 struct page **pages, int *nr)
2561 unsigned long fault_pfn;
2564 fault_pfn = pud_pfn(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
2565 if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr))
2568 if (unlikely(pud_val(orig) != pud_val(*pudp))) {
2569 undo_dev_pagemap(nr, nr_start, flags, pages);
2575 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2576 unsigned long end, unsigned int flags,
2577 struct page **pages, int *nr)
2583 static int __gup_device_huge_pud(pud_t pud, pud_t *pudp, unsigned long addr,
2584 unsigned long end, unsigned int flags,
2585 struct page **pages, int *nr)
2592 static int record_subpages(struct page *page, unsigned long addr,
2593 unsigned long end, struct page **pages)
2597 for (nr = 0; addr != end; nr++, addr += PAGE_SIZE)
2598 pages[nr] = nth_page(page, nr);
2603 #ifdef CONFIG_ARCH_HAS_HUGEPD
2604 static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end,
2607 unsigned long __boundary = (addr + sz) & ~(sz-1);
2608 return (__boundary - 1 < end - 1) ? __boundary : end;
2611 static int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr,
2612 unsigned long end, unsigned int flags,
2613 struct page **pages, int *nr)
2615 unsigned long pte_end;
2617 struct folio *folio;
2621 pte_end = (addr + sz) & ~(sz-1);
2625 pte = huge_ptep_get(ptep);
2627 if (!pte_access_permitted(pte, flags & FOLL_WRITE))
2630 /* hugepages are never "special" */
2631 VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
2633 page = nth_page(pte_page(pte), (addr & (sz - 1)) >> PAGE_SHIFT);
2634 refs = record_subpages(page, addr, end, pages + *nr);
2636 folio = try_grab_folio(page, refs, flags);
2640 if (unlikely(pte_val(pte) != pte_val(*ptep))) {
2641 gup_put_folio(folio, refs, flags);
2645 if (!pte_write(pte) && gup_must_unshare(flags, &folio->page)) {
2646 gup_put_folio(folio, refs, flags);
2651 folio_set_referenced(folio);
2655 static int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
2656 unsigned int pdshift, unsigned long end, unsigned int flags,
2657 struct page **pages, int *nr)
2660 unsigned long sz = 1UL << hugepd_shift(hugepd);
2663 ptep = hugepte_offset(hugepd, addr, pdshift);
2665 next = hugepte_addr_end(addr, end, sz);
2666 if (!gup_hugepte(ptep, sz, addr, end, flags, pages, nr))
2668 } while (ptep++, addr = next, addr != end);
2673 static inline int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
2674 unsigned int pdshift, unsigned long end, unsigned int flags,
2675 struct page **pages, int *nr)
2679 #endif /* CONFIG_ARCH_HAS_HUGEPD */
2681 static int gup_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2682 unsigned long end, unsigned int flags,
2683 struct page **pages, int *nr)
2686 struct folio *folio;
2689 if (!pmd_access_permitted(orig, flags & FOLL_WRITE))
2692 if (pmd_devmap(orig)) {
2693 if (unlikely(flags & FOLL_LONGTERM))
2695 return __gup_device_huge_pmd(orig, pmdp, addr, end, flags,
2699 page = nth_page(pmd_page(orig), (addr & ~PMD_MASK) >> PAGE_SHIFT);
2700 refs = record_subpages(page, addr, end, pages + *nr);
2702 folio = try_grab_folio(page, refs, flags);
2706 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
2707 gup_put_folio(folio, refs, flags);
2711 if (!pmd_write(orig) && gup_must_unshare(flags, &folio->page)) {
2712 gup_put_folio(folio, refs, flags);
2717 folio_set_referenced(folio);
2721 static int gup_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
2722 unsigned long end, unsigned int flags,
2723 struct page **pages, int *nr)
2726 struct folio *folio;
2729 if (!pud_access_permitted(orig, flags & FOLL_WRITE))
2732 if (pud_devmap(orig)) {
2733 if (unlikely(flags & FOLL_LONGTERM))
2735 return __gup_device_huge_pud(orig, pudp, addr, end, flags,
2739 page = nth_page(pud_page(orig), (addr & ~PUD_MASK) >> PAGE_SHIFT);
2740 refs = record_subpages(page, addr, end, pages + *nr);
2742 folio = try_grab_folio(page, refs, flags);
2746 if (unlikely(pud_val(orig) != pud_val(*pudp))) {
2747 gup_put_folio(folio, refs, flags);
2751 if (!pud_write(orig) && gup_must_unshare(flags, &folio->page)) {
2752 gup_put_folio(folio, refs, flags);
2757 folio_set_referenced(folio);
2761 static int gup_huge_pgd(pgd_t orig, pgd_t *pgdp, unsigned long addr,
2762 unsigned long end, unsigned int flags,
2763 struct page **pages, int *nr)
2767 struct folio *folio;
2769 if (!pgd_access_permitted(orig, flags & FOLL_WRITE))
2772 BUILD_BUG_ON(pgd_devmap(orig));
2774 page = nth_page(pgd_page(orig), (addr & ~PGDIR_MASK) >> PAGE_SHIFT);
2775 refs = record_subpages(page, addr, end, pages + *nr);
2777 folio = try_grab_folio(page, refs, flags);
2781 if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) {
2782 gup_put_folio(folio, refs, flags);
2787 folio_set_referenced(folio);
2791 static int gup_pmd_range(pud_t *pudp, pud_t pud, unsigned long addr, unsigned long end,
2792 unsigned int flags, struct page **pages, int *nr)
2797 pmdp = pmd_offset_lockless(pudp, pud, addr);
2799 pmd_t pmd = READ_ONCE(*pmdp);
2801 next = pmd_addr_end(addr, end);
2802 if (!pmd_present(pmd))
2805 if (unlikely(pmd_trans_huge(pmd) || pmd_huge(pmd) ||
2807 if (pmd_protnone(pmd) &&
2808 !gup_can_follow_protnone(flags))
2811 if (!gup_huge_pmd(pmd, pmdp, addr, next, flags,
2815 } else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd))))) {
2817 * architecture have different format for hugetlbfs
2818 * pmd format and THP pmd format
2820 if (!gup_huge_pd(__hugepd(pmd_val(pmd)), addr,
2821 PMD_SHIFT, next, flags, pages, nr))
2823 } else if (!gup_pte_range(pmd, pmdp, addr, next, flags, pages, nr))
2825 } while (pmdp++, addr = next, addr != end);
2830 static int gup_pud_range(p4d_t *p4dp, p4d_t p4d, unsigned long addr, unsigned long end,
2831 unsigned int flags, struct page **pages, int *nr)
2836 pudp = pud_offset_lockless(p4dp, p4d, addr);
2838 pud_t pud = READ_ONCE(*pudp);
2840 next = pud_addr_end(addr, end);
2841 if (unlikely(!pud_present(pud)))
2843 if (unlikely(pud_huge(pud))) {
2844 if (!gup_huge_pud(pud, pudp, addr, next, flags,
2847 } else if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) {
2848 if (!gup_huge_pd(__hugepd(pud_val(pud)), addr,
2849 PUD_SHIFT, next, flags, pages, nr))
2851 } else if (!gup_pmd_range(pudp, pud, addr, next, flags, pages, nr))
2853 } while (pudp++, addr = next, addr != end);
2858 static int gup_p4d_range(pgd_t *pgdp, pgd_t pgd, unsigned long addr, unsigned long end,
2859 unsigned int flags, struct page **pages, int *nr)
2864 p4dp = p4d_offset_lockless(pgdp, pgd, addr);
2866 p4d_t p4d = READ_ONCE(*p4dp);
2868 next = p4d_addr_end(addr, end);
2871 BUILD_BUG_ON(p4d_huge(p4d));
2872 if (unlikely(is_hugepd(__hugepd(p4d_val(p4d))))) {
2873 if (!gup_huge_pd(__hugepd(p4d_val(p4d)), addr,
2874 P4D_SHIFT, next, flags, pages, nr))
2876 } else if (!gup_pud_range(p4dp, p4d, addr, next, flags, pages, nr))
2878 } while (p4dp++, addr = next, addr != end);
2883 static void gup_pgd_range(unsigned long addr, unsigned long end,
2884 unsigned int flags, struct page **pages, int *nr)
2889 pgdp = pgd_offset(current->mm, addr);
2891 pgd_t pgd = READ_ONCE(*pgdp);
2893 next = pgd_addr_end(addr, end);
2896 if (unlikely(pgd_huge(pgd))) {
2897 if (!gup_huge_pgd(pgd, pgdp, addr, next, flags,
2900 } else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd))))) {
2901 if (!gup_huge_pd(__hugepd(pgd_val(pgd)), addr,
2902 PGDIR_SHIFT, next, flags, pages, nr))
2904 } else if (!gup_p4d_range(pgdp, pgd, addr, next, flags, pages, nr))
2906 } while (pgdp++, addr = next, addr != end);
2909 static inline void gup_pgd_range(unsigned long addr, unsigned long end,
2910 unsigned int flags, struct page **pages, int *nr)
2913 #endif /* CONFIG_HAVE_FAST_GUP */
2915 #ifndef gup_fast_permitted
2917 * Check if it's allowed to use get_user_pages_fast_only() for the range, or
2918 * we need to fall back to the slow version:
2920 static bool gup_fast_permitted(unsigned long start, unsigned long end)
2926 static int __gup_longterm_unlocked(unsigned long start, int nr_pages,
2927 unsigned int gup_flags, struct page **pages)
2932 * FIXME: FOLL_LONGTERM does not work with
2933 * get_user_pages_unlocked() (see comments in that function)
2935 if (gup_flags & FOLL_LONGTERM) {
2936 mmap_read_lock(current->mm);
2937 ret = __gup_longterm_locked(current->mm,
2939 pages, NULL, gup_flags);
2940 mmap_read_unlock(current->mm);
2942 ret = get_user_pages_unlocked(start, nr_pages,
2949 static unsigned long lockless_pages_from_mm(unsigned long start,
2951 unsigned int gup_flags,
2952 struct page **pages)
2954 unsigned long flags;
2958 if (!IS_ENABLED(CONFIG_HAVE_FAST_GUP) ||
2959 !gup_fast_permitted(start, end))
2962 if (gup_flags & FOLL_PIN) {
2963 seq = raw_read_seqcount(¤t->mm->write_protect_seq);
2969 * Disable interrupts. The nested form is used, in order to allow full,
2970 * general purpose use of this routine.
2972 * With interrupts disabled, we block page table pages from being freed
2973 * from under us. See struct mmu_table_batch comments in
2974 * include/asm-generic/tlb.h for more details.
2976 * We do not adopt an rcu_read_lock() here as we also want to block IPIs
2977 * that come from THPs splitting.
2979 local_irq_save(flags);
2980 gup_pgd_range(start, end, gup_flags, pages, &nr_pinned);
2981 local_irq_restore(flags);
2984 * When pinning pages for DMA there could be a concurrent write protect
2985 * from fork() via copy_page_range(), in this case always fail fast GUP.
2987 if (gup_flags & FOLL_PIN) {
2988 if (read_seqcount_retry(¤t->mm->write_protect_seq, seq)) {
2989 unpin_user_pages_lockless(pages, nr_pinned);
2992 sanity_check_pinned_pages(pages, nr_pinned);
2998 static int internal_get_user_pages_fast(unsigned long start,
2999 unsigned long nr_pages,
3000 unsigned int gup_flags,
3001 struct page **pages)
3003 unsigned long len, end;
3004 unsigned long nr_pinned;
3007 if (WARN_ON_ONCE(gup_flags & ~(FOLL_WRITE | FOLL_LONGTERM |
3008 FOLL_FORCE | FOLL_PIN | FOLL_GET |
3009 FOLL_FAST_ONLY | FOLL_NOFAULT)))
3012 if (gup_flags & FOLL_PIN)
3013 mm_set_has_pinned_flag(¤t->mm->flags);
3015 if (!(gup_flags & FOLL_FAST_ONLY))
3016 might_lock_read(¤t->mm->mmap_lock);
3018 start = untagged_addr(start) & PAGE_MASK;
3019 len = nr_pages << PAGE_SHIFT;
3020 if (check_add_overflow(start, len, &end))
3022 if (unlikely(!access_ok((void __user *)start, len)))
3025 nr_pinned = lockless_pages_from_mm(start, end, gup_flags, pages);
3026 if (nr_pinned == nr_pages || gup_flags & FOLL_FAST_ONLY)
3029 /* Slow path: try to get the remaining pages with get_user_pages */
3030 start += nr_pinned << PAGE_SHIFT;
3032 ret = __gup_longterm_unlocked(start, nr_pages - nr_pinned, gup_flags,
3036 * The caller has to unpin the pages we already pinned so
3037 * returning -errno is not an option
3043 return ret + nr_pinned;
3047 * get_user_pages_fast_only() - pin user pages in memory
3048 * @start: starting user address
3049 * @nr_pages: number of pages from start to pin
3050 * @gup_flags: flags modifying pin behaviour
3051 * @pages: array that receives pointers to the pages pinned.
3052 * Should be at least nr_pages long.
3054 * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to
3056 * Note a difference with get_user_pages_fast: this always returns the
3057 * number of pages pinned, 0 if no pages were pinned.
3059 * If the architecture does not support this function, simply return with no
3062 * Careful, careful! COW breaking can go either way, so a non-write
3063 * access can get ambiguous page results. If you call this function without
3064 * 'write' set, you'd better be sure that you're ok with that ambiguity.
3066 int get_user_pages_fast_only(unsigned long start, int nr_pages,
3067 unsigned int gup_flags, struct page **pages)
3071 * Internally (within mm/gup.c), gup fast variants must set FOLL_GET,
3072 * because gup fast is always a "pin with a +1 page refcount" request.
3074 * FOLL_FAST_ONLY is required in order to match the API description of
3075 * this routine: no fall back to regular ("slow") GUP.
3077 gup_flags |= FOLL_GET | FOLL_FAST_ONLY;
3079 nr_pinned = internal_get_user_pages_fast(start, nr_pages, gup_flags,
3083 * As specified in the API description above, this routine is not
3084 * allowed to return negative values. However, the common core
3085 * routine internal_get_user_pages_fast() *can* return -errno.
3086 * Therefore, correct for that here:
3093 EXPORT_SYMBOL_GPL(get_user_pages_fast_only);
3096 * get_user_pages_fast() - pin user pages in memory
3097 * @start: starting user address
3098 * @nr_pages: number of pages from start to pin
3099 * @gup_flags: flags modifying pin behaviour
3100 * @pages: array that receives pointers to the pages pinned.
3101 * Should be at least nr_pages long.
3103 * Attempt to pin user pages in memory without taking mm->mmap_lock.
3104 * If not successful, it will fall back to taking the lock and
3105 * calling get_user_pages().
3107 * Returns number of pages pinned. This may be fewer than the number requested.
3108 * If nr_pages is 0 or negative, returns 0. If no pages were pinned, returns
3111 int get_user_pages_fast(unsigned long start, int nr_pages,
3112 unsigned int gup_flags, struct page **pages)
3114 if (!is_valid_gup_flags(gup_flags))
3118 * The caller may or may not have explicitly set FOLL_GET; either way is
3119 * OK. However, internally (within mm/gup.c), gup fast variants must set
3120 * FOLL_GET, because gup fast is always a "pin with a +1 page refcount"
3123 gup_flags |= FOLL_GET;
3124 return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
3126 EXPORT_SYMBOL_GPL(get_user_pages_fast);
3129 * pin_user_pages_fast() - pin user pages in memory without taking locks
3131 * @start: starting user address
3132 * @nr_pages: number of pages from start to pin
3133 * @gup_flags: flags modifying pin behaviour
3134 * @pages: array that receives pointers to the pages pinned.
3135 * Should be at least nr_pages long.
3137 * Nearly the same as get_user_pages_fast(), except that FOLL_PIN is set. See
3138 * get_user_pages_fast() for documentation on the function arguments, because
3139 * the arguments here are identical.
3141 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
3142 * see Documentation/core-api/pin_user_pages.rst for further details.
3144 int pin_user_pages_fast(unsigned long start, int nr_pages,
3145 unsigned int gup_flags, struct page **pages)
3147 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
3148 if (WARN_ON_ONCE(gup_flags & FOLL_GET))
3151 if (WARN_ON_ONCE(!pages))
3154 gup_flags |= FOLL_PIN;
3155 return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
3157 EXPORT_SYMBOL_GPL(pin_user_pages_fast);
3160 * This is the FOLL_PIN equivalent of get_user_pages_fast_only(). Behavior
3161 * is the same, except that this one sets FOLL_PIN instead of FOLL_GET.
3163 * The API rules are the same, too: no negative values may be returned.
3165 int pin_user_pages_fast_only(unsigned long start, int nr_pages,
3166 unsigned int gup_flags, struct page **pages)
3171 * FOLL_GET and FOLL_PIN are mutually exclusive. Note that the API
3172 * rules require returning 0, rather than -errno:
3174 if (WARN_ON_ONCE(gup_flags & FOLL_GET))
3177 if (WARN_ON_ONCE(!pages))
3180 * FOLL_FAST_ONLY is required in order to match the API description of
3181 * this routine: no fall back to regular ("slow") GUP.
3183 gup_flags |= (FOLL_PIN | FOLL_FAST_ONLY);
3184 nr_pinned = internal_get_user_pages_fast(start, nr_pages, gup_flags,
3187 * This routine is not allowed to return negative values. However,
3188 * internal_get_user_pages_fast() *can* return -errno. Therefore,
3189 * correct for that here:
3196 EXPORT_SYMBOL_GPL(pin_user_pages_fast_only);
3199 * pin_user_pages_remote() - pin pages of a remote process
3201 * @mm: mm_struct of target mm
3202 * @start: starting user address
3203 * @nr_pages: number of pages from start to pin
3204 * @gup_flags: flags modifying lookup behaviour
3205 * @pages: array that receives pointers to the pages pinned.
3206 * Should be at least nr_pages long.
3207 * @vmas: array of pointers to vmas corresponding to each page.
3208 * Or NULL if the caller does not require them.
3209 * @locked: pointer to lock flag indicating whether lock is held and
3210 * subsequently whether VM_FAULT_RETRY functionality can be
3211 * utilised. Lock must initially be held.
3213 * Nearly the same as get_user_pages_remote(), except that FOLL_PIN is set. See
3214 * get_user_pages_remote() for documentation on the function arguments, because
3215 * the arguments here are identical.
3217 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
3218 * see Documentation/core-api/pin_user_pages.rst for details.
3220 long pin_user_pages_remote(struct mm_struct *mm,
3221 unsigned long start, unsigned long nr_pages,
3222 unsigned int gup_flags, struct page **pages,
3223 struct vm_area_struct **vmas, int *locked)
3225 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
3226 if (WARN_ON_ONCE(gup_flags & FOLL_GET))
3229 if (WARN_ON_ONCE(!pages))
3232 gup_flags |= FOLL_PIN;
3233 return __get_user_pages_remote(mm, start, nr_pages, gup_flags,
3234 pages, vmas, locked);
3236 EXPORT_SYMBOL(pin_user_pages_remote);
3239 * pin_user_pages() - pin user pages in memory for use by other devices
3241 * @start: starting user address
3242 * @nr_pages: number of pages from start to pin
3243 * @gup_flags: flags modifying lookup behaviour
3244 * @pages: array that receives pointers to the pages pinned.
3245 * Should be at least nr_pages long.
3246 * @vmas: array of pointers to vmas corresponding to each page.
3247 * Or NULL if the caller does not require them.
3249 * Nearly the same as get_user_pages(), except that FOLL_TOUCH is not set, and
3252 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
3253 * see Documentation/core-api/pin_user_pages.rst for details.
3255 long pin_user_pages(unsigned long start, unsigned long nr_pages,
3256 unsigned int gup_flags, struct page **pages,
3257 struct vm_area_struct **vmas)
3259 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
3260 if (WARN_ON_ONCE(gup_flags & FOLL_GET))
3263 if (WARN_ON_ONCE(!pages))
3266 gup_flags |= FOLL_PIN;
3267 return __gup_longterm_locked(current->mm, start, nr_pages,
3268 pages, vmas, gup_flags);
3270 EXPORT_SYMBOL(pin_user_pages);
3273 * pin_user_pages_unlocked() is the FOLL_PIN variant of
3274 * get_user_pages_unlocked(). Behavior is the same, except that this one sets
3275 * FOLL_PIN and rejects FOLL_GET.
3277 long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
3278 struct page **pages, unsigned int gup_flags)
3280 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
3281 if (WARN_ON_ONCE(gup_flags & FOLL_GET))
3284 if (WARN_ON_ONCE(!pages))
3287 gup_flags |= FOLL_PIN;
3288 return get_user_pages_unlocked(start, nr_pages, pages, gup_flags);
3290 EXPORT_SYMBOL(pin_user_pages_unlocked);