1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <linux/kernel.h>
3 #include <linux/errno.h>
5 #include <linux/spinlock.h>
8 #include <linux/memremap.h>
9 #include <linux/pagemap.h>
10 #include <linux/rmap.h>
11 #include <linux/swap.h>
12 #include <linux/swapops.h>
13 #include <linux/secretmem.h>
15 #include <linux/sched/signal.h>
16 #include <linux/rwsem.h>
17 #include <linux/hugetlb.h>
18 #include <linux/migrate.h>
19 #include <linux/mm_inline.h>
20 #include <linux/sched/mm.h>
22 #include <asm/mmu_context.h>
23 #include <asm/tlbflush.h>
27 struct follow_page_context {
28 struct dev_pagemap *pgmap;
29 unsigned int page_mask;
32 static inline void sanity_check_pinned_pages(struct page **pages,
35 if (!IS_ENABLED(CONFIG_DEBUG_VM))
39 * We only pin anonymous pages if they are exclusive. Once pinned, we
40 * can no longer turn them possibly shared and PageAnonExclusive() will
41 * stick around until the page is freed.
43 * We'd like to verify that our pinned anonymous pages are still mapped
44 * exclusively. The issue with anon THP is that we don't know how
45 * they are/were mapped when pinning them. However, for anon
46 * THP we can assume that either the given page (PTE-mapped THP) or
47 * the head page (PMD-mapped THP) should be PageAnonExclusive(). If
48 * neither is the case, there is certainly something wrong.
50 for (; npages; npages--, pages++) {
51 struct page *page = *pages;
52 struct folio *folio = page_folio(page);
54 if (!folio_test_anon(folio))
56 if (!folio_test_large(folio) || folio_test_hugetlb(folio))
57 VM_BUG_ON_PAGE(!PageAnonExclusive(&folio->page), page);
59 /* Either a PTE-mapped or a PMD-mapped THP. */
60 VM_BUG_ON_PAGE(!PageAnonExclusive(&folio->page) &&
61 !PageAnonExclusive(page), page);
66 * Return the folio with ref appropriately incremented,
67 * or NULL if that failed.
69 static inline struct folio *try_get_folio(struct page *page, int refs)
74 folio = page_folio(page);
75 if (WARN_ON_ONCE(folio_ref_count(folio) < 0))
77 if (unlikely(!folio_ref_try_add_rcu(folio, refs)))
81 * At this point we have a stable reference to the folio; but it
82 * could be that between calling page_folio() and the refcount
83 * increment, the folio was split, in which case we'd end up
84 * holding a reference on a folio that has nothing to do with the page
85 * we were given anymore.
86 * So now that the folio is stable, recheck that the page still
87 * belongs to this folio.
89 if (unlikely(page_folio(page) != folio)) {
90 if (!put_devmap_managed_page_refs(&folio->page, refs))
91 folio_put_refs(folio, refs);
99 * try_grab_folio() - Attempt to get or pin a folio.
100 * @page: pointer to page to be grabbed
101 * @refs: the value to (effectively) add to the folio's refcount
102 * @flags: gup flags: these are the FOLL_* flag values.
104 * "grab" names in this file mean, "look at flags to decide whether to use
105 * FOLL_PIN or FOLL_GET behavior, when incrementing the folio's refcount.
107 * Either FOLL_PIN or FOLL_GET (or neither) must be set, but not both at the
108 * same time. (That's true throughout the get_user_pages*() and
109 * pin_user_pages*() APIs.) Cases:
111 * FOLL_GET: folio's refcount will be incremented by @refs.
113 * FOLL_PIN on large folios: folio's refcount will be incremented by
114 * @refs, and its compound_pincount will be incremented by @refs.
116 * FOLL_PIN on single-page folios: folio's refcount will be incremented by
117 * @refs * GUP_PIN_COUNTING_BIAS.
119 * Return: The folio containing @page (with refcount appropriately
120 * incremented) for success, or NULL upon failure. If neither FOLL_GET
121 * nor FOLL_PIN was set, that's considered failure, and furthermore,
122 * a likely bug in the caller, so a warning is also emitted.
124 struct folio *try_grab_folio(struct page *page, int refs, unsigned int flags)
126 if (flags & FOLL_GET)
127 return try_get_folio(page, refs);
128 else if (flags & FOLL_PIN) {
132 * Can't do FOLL_LONGTERM + FOLL_PIN gup fast path if not in a
133 * right zone, so fail and let the caller fall back to the slow
136 if (unlikely((flags & FOLL_LONGTERM) &&
137 !is_longterm_pinnable_page(page)))
141 * CAUTION: Don't use compound_head() on the page before this
142 * point, the result won't be stable.
144 folio = try_get_folio(page, refs);
149 * When pinning a large folio, use an exact count to track it.
151 * However, be sure to *also* increment the normal folio
152 * refcount field at least once, so that the folio really
153 * is pinned. That's why the refcount from the earlier
154 * try_get_folio() is left intact.
156 if (folio_test_large(folio))
157 atomic_add(refs, folio_pincount_ptr(folio));
160 refs * (GUP_PIN_COUNTING_BIAS - 1));
161 node_stat_mod_folio(folio, NR_FOLL_PIN_ACQUIRED, refs);
170 static void gup_put_folio(struct folio *folio, int refs, unsigned int flags)
172 if (flags & FOLL_PIN) {
173 node_stat_mod_folio(folio, NR_FOLL_PIN_RELEASED, refs);
174 if (folio_test_large(folio))
175 atomic_sub(refs, folio_pincount_ptr(folio));
177 refs *= GUP_PIN_COUNTING_BIAS;
180 if (!put_devmap_managed_page_refs(&folio->page, refs))
181 folio_put_refs(folio, refs);
185 * try_grab_page() - elevate a page's refcount by a flag-dependent amount
186 * @page: pointer to page to be grabbed
187 * @flags: gup flags: these are the FOLL_* flag values.
189 * This might not do anything at all, depending on the flags argument.
191 * "grab" names in this file mean, "look at flags to decide whether to use
192 * FOLL_PIN or FOLL_GET behavior, when incrementing the page's refcount.
194 * Either FOLL_PIN or FOLL_GET (or neither) may be set, but not both at the same
195 * time. Cases: please see the try_grab_folio() documentation, with
198 * Return: true for success, or if no action was required (if neither FOLL_PIN
199 * nor FOLL_GET was set, nothing is done). False for failure: FOLL_GET or
200 * FOLL_PIN was set, but the page could not be grabbed.
202 bool __must_check try_grab_page(struct page *page, unsigned int flags)
204 struct folio *folio = page_folio(page);
206 WARN_ON_ONCE((flags & (FOLL_GET | FOLL_PIN)) == (FOLL_GET | FOLL_PIN));
207 if (WARN_ON_ONCE(folio_ref_count(folio) <= 0))
210 if (flags & FOLL_GET)
211 folio_ref_inc(folio);
212 else if (flags & FOLL_PIN) {
214 * Similar to try_grab_folio(): be sure to *also*
215 * increment the normal page refcount field at least once,
216 * so that the page really is pinned.
218 if (folio_test_large(folio)) {
219 folio_ref_add(folio, 1);
220 atomic_add(1, folio_pincount_ptr(folio));
222 folio_ref_add(folio, GUP_PIN_COUNTING_BIAS);
225 node_stat_mod_folio(folio, NR_FOLL_PIN_ACQUIRED, 1);
232 * unpin_user_page() - release a dma-pinned page
233 * @page: pointer to page to be released
235 * Pages that were pinned via pin_user_pages*() must be released via either
236 * unpin_user_page(), or one of the unpin_user_pages*() routines. This is so
237 * that such pages can be separately tracked and uniquely handled. In
238 * particular, interactions with RDMA and filesystems need special handling.
240 void unpin_user_page(struct page *page)
242 sanity_check_pinned_pages(&page, 1);
243 gup_put_folio(page_folio(page), 1, FOLL_PIN);
245 EXPORT_SYMBOL(unpin_user_page);
247 static inline struct folio *gup_folio_range_next(struct page *start,
248 unsigned long npages, unsigned long i, unsigned int *ntails)
250 struct page *next = nth_page(start, i);
251 struct folio *folio = page_folio(next);
254 if (folio_test_large(folio))
255 nr = min_t(unsigned int, npages - i,
256 folio_nr_pages(folio) - folio_page_idx(folio, next));
262 static inline struct folio *gup_folio_next(struct page **list,
263 unsigned long npages, unsigned long i, unsigned int *ntails)
265 struct folio *folio = page_folio(list[i]);
268 for (nr = i + 1; nr < npages; nr++) {
269 if (page_folio(list[nr]) != folio)
278 * unpin_user_pages_dirty_lock() - release and optionally dirty gup-pinned pages
279 * @pages: array of pages to be maybe marked dirty, and definitely released.
280 * @npages: number of pages in the @pages array.
281 * @make_dirty: whether to mark the pages dirty
283 * "gup-pinned page" refers to a page that has had one of the get_user_pages()
284 * variants called on that page.
286 * For each page in the @pages array, make that page (or its head page, if a
287 * compound page) dirty, if @make_dirty is true, and if the page was previously
288 * listed as clean. In any case, releases all pages using unpin_user_page(),
289 * possibly via unpin_user_pages(), for the non-dirty case.
291 * Please see the unpin_user_page() documentation for details.
293 * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
294 * required, then the caller should a) verify that this is really correct,
295 * because _lock() is usually required, and b) hand code it:
296 * set_page_dirty_lock(), unpin_user_page().
299 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
307 unpin_user_pages(pages, npages);
311 sanity_check_pinned_pages(pages, npages);
312 for (i = 0; i < npages; i += nr) {
313 folio = gup_folio_next(pages, npages, i, &nr);
315 * Checking PageDirty at this point may race with
316 * clear_page_dirty_for_io(), but that's OK. Two key
319 * 1) This code sees the page as already dirty, so it
320 * skips the call to set_page_dirty(). That could happen
321 * because clear_page_dirty_for_io() called
322 * page_mkclean(), followed by set_page_dirty().
323 * However, now the page is going to get written back,
324 * which meets the original intention of setting it
325 * dirty, so all is well: clear_page_dirty_for_io() goes
326 * on to call TestClearPageDirty(), and write the page
329 * 2) This code sees the page as clean, so it calls
330 * set_page_dirty(). The page stays dirty, despite being
331 * written back, so it gets written back again in the
332 * next writeback cycle. This is harmless.
334 if (!folio_test_dirty(folio)) {
336 folio_mark_dirty(folio);
339 gup_put_folio(folio, nr, FOLL_PIN);
342 EXPORT_SYMBOL(unpin_user_pages_dirty_lock);
345 * unpin_user_page_range_dirty_lock() - release and optionally dirty
346 * gup-pinned page range
348 * @page: the starting page of a range maybe marked dirty, and definitely released.
349 * @npages: number of consecutive pages to release.
350 * @make_dirty: whether to mark the pages dirty
352 * "gup-pinned page range" refers to a range of pages that has had one of the
353 * pin_user_pages() variants called on that page.
355 * For the page ranges defined by [page .. page+npages], make that range (or
356 * its head pages, if a compound page) dirty, if @make_dirty is true, and if the
357 * page range was previously listed as clean.
359 * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
360 * required, then the caller should a) verify that this is really correct,
361 * because _lock() is usually required, and b) hand code it:
362 * set_page_dirty_lock(), unpin_user_page().
365 void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages,
372 for (i = 0; i < npages; i += nr) {
373 folio = gup_folio_range_next(page, npages, i, &nr);
374 if (make_dirty && !folio_test_dirty(folio)) {
376 folio_mark_dirty(folio);
379 gup_put_folio(folio, nr, FOLL_PIN);
382 EXPORT_SYMBOL(unpin_user_page_range_dirty_lock);
384 static void unpin_user_pages_lockless(struct page **pages, unsigned long npages)
391 * Don't perform any sanity checks because we might have raced with
392 * fork() and some anonymous pages might now actually be shared --
393 * which is why we're unpinning after all.
395 for (i = 0; i < npages; i += nr) {
396 folio = gup_folio_next(pages, npages, i, &nr);
397 gup_put_folio(folio, nr, FOLL_PIN);
402 * unpin_user_pages() - release an array of gup-pinned pages.
403 * @pages: array of pages to be marked dirty and released.
404 * @npages: number of pages in the @pages array.
406 * For each page in the @pages array, release the page using unpin_user_page().
408 * Please see the unpin_user_page() documentation for details.
410 void unpin_user_pages(struct page **pages, unsigned long npages)
417 * If this WARN_ON() fires, then the system *might* be leaking pages (by
418 * leaving them pinned), but probably not. More likely, gup/pup returned
419 * a hard -ERRNO error to the caller, who erroneously passed it here.
421 if (WARN_ON(IS_ERR_VALUE(npages)))
424 sanity_check_pinned_pages(pages, npages);
425 for (i = 0; i < npages; i += nr) {
426 folio = gup_folio_next(pages, npages, i, &nr);
427 gup_put_folio(folio, nr, FOLL_PIN);
430 EXPORT_SYMBOL(unpin_user_pages);
433 * Set the MMF_HAS_PINNED if not set yet; after set it'll be there for the mm's
434 * lifecycle. Avoid setting the bit unless necessary, or it might cause write
435 * cache bouncing on large SMP machines for concurrent pinned gups.
437 static inline void mm_set_has_pinned_flag(unsigned long *mm_flags)
439 if (!test_bit(MMF_HAS_PINNED, mm_flags))
440 set_bit(MMF_HAS_PINNED, mm_flags);
444 static struct page *no_page_table(struct vm_area_struct *vma,
448 * When core dumping an enormous anonymous area that nobody
449 * has touched so far, we don't want to allocate unnecessary pages or
450 * page tables. Return error instead of NULL to skip handle_mm_fault,
451 * then get_dump_page() will return NULL to leave a hole in the dump.
452 * But we can only make this optimization where a hole would surely
453 * be zero-filled if handle_mm_fault() actually did handle it.
455 if ((flags & FOLL_DUMP) &&
456 (vma_is_anonymous(vma) || !vma->vm_ops->fault))
457 return ERR_PTR(-EFAULT);
461 static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address,
462 pte_t *pte, unsigned int flags)
464 if (flags & FOLL_TOUCH) {
467 if (flags & FOLL_WRITE)
468 entry = pte_mkdirty(entry);
469 entry = pte_mkyoung(entry);
471 if (!pte_same(*pte, entry)) {
472 set_pte_at(vma->vm_mm, address, pte, entry);
473 update_mmu_cache(vma, address, pte);
477 /* Proper page table entry exists, but no corresponding struct page */
481 /* FOLL_FORCE can write to even unwritable PTEs in COW mappings. */
482 static inline bool can_follow_write_pte(pte_t pte, struct page *page,
483 struct vm_area_struct *vma,
486 /* If the pte is writable, we can write to the page. */
490 /* Maybe FOLL_FORCE is set to override it? */
491 if (!(flags & FOLL_FORCE))
494 /* But FOLL_FORCE has no effect on shared mappings */
495 if (vma->vm_flags & (VM_MAYSHARE | VM_SHARED))
498 /* ... or read-only private ones */
499 if (!(vma->vm_flags & VM_MAYWRITE))
502 /* ... or already writable ones that just need to take a write fault */
503 if (vma->vm_flags & VM_WRITE)
507 * See can_change_pte_writable(): we broke COW and could map the page
508 * writable if we have an exclusive anonymous page ...
510 if (!page || !PageAnon(page) || !PageAnonExclusive(page))
513 /* ... and a write-fault isn't required for other reasons. */
514 if (vma_soft_dirty_enabled(vma) && !pte_soft_dirty(pte))
516 return !userfaultfd_pte_wp(vma, pte);
519 static struct page *follow_page_pte(struct vm_area_struct *vma,
520 unsigned long address, pmd_t *pmd, unsigned int flags,
521 struct dev_pagemap **pgmap)
523 struct mm_struct *mm = vma->vm_mm;
529 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
530 if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
531 (FOLL_PIN | FOLL_GET)))
532 return ERR_PTR(-EINVAL);
534 if (unlikely(pmd_bad(*pmd)))
535 return no_page_table(vma, flags);
537 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
539 if (!pte_present(pte)) {
542 * KSM's break_ksm() relies upon recognizing a ksm page
543 * even while it is being migrated, so for that case we
544 * need migration_entry_wait().
546 if (likely(!(flags & FOLL_MIGRATION)))
550 entry = pte_to_swp_entry(pte);
551 if (!is_migration_entry(entry))
553 pte_unmap_unlock(ptep, ptl);
554 migration_entry_wait(mm, pmd, address);
557 if ((flags & FOLL_NUMA) && pte_protnone(pte))
560 page = vm_normal_page(vma, address, pte);
563 * We only care about anon pages in can_follow_write_pte() and don't
564 * have to worry about pte_devmap() because they are never anon.
566 if ((flags & FOLL_WRITE) &&
567 !can_follow_write_pte(pte, page, vma, flags)) {
572 if (!page && pte_devmap(pte) && (flags & (FOLL_GET | FOLL_PIN))) {
574 * Only return device mapping pages in the FOLL_GET or FOLL_PIN
575 * case since they are only valid while holding the pgmap
578 *pgmap = get_dev_pagemap(pte_pfn(pte), *pgmap);
580 page = pte_page(pte);
583 } else if (unlikely(!page)) {
584 if (flags & FOLL_DUMP) {
585 /* Avoid special (like zero) pages in core dumps */
586 page = ERR_PTR(-EFAULT);
590 if (is_zero_pfn(pte_pfn(pte))) {
591 page = pte_page(pte);
593 ret = follow_pfn_pte(vma, address, ptep, flags);
599 if (!pte_write(pte) && gup_must_unshare(flags, page)) {
600 page = ERR_PTR(-EMLINK);
604 VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) &&
605 !PageAnonExclusive(page), page);
607 /* try_grab_page() does nothing unless FOLL_GET or FOLL_PIN is set. */
608 if (unlikely(!try_grab_page(page, flags))) {
609 page = ERR_PTR(-ENOMEM);
613 * We need to make the page accessible if and only if we are going
614 * to access its content (the FOLL_PIN case). Please see
615 * Documentation/core-api/pin_user_pages.rst for details.
617 if (flags & FOLL_PIN) {
618 ret = arch_make_page_accessible(page);
620 unpin_user_page(page);
625 if (flags & FOLL_TOUCH) {
626 if ((flags & FOLL_WRITE) &&
627 !pte_dirty(pte) && !PageDirty(page))
628 set_page_dirty(page);
630 * pte_mkyoung() would be more correct here, but atomic care
631 * is needed to avoid losing the dirty bit: it is easier to use
632 * mark_page_accessed().
634 mark_page_accessed(page);
637 pte_unmap_unlock(ptep, ptl);
640 pte_unmap_unlock(ptep, ptl);
643 return no_page_table(vma, flags);
646 static struct page *follow_pmd_mask(struct vm_area_struct *vma,
647 unsigned long address, pud_t *pudp,
649 struct follow_page_context *ctx)
654 struct mm_struct *mm = vma->vm_mm;
656 pmd = pmd_offset(pudp, address);
658 * The READ_ONCE() will stabilize the pmdval in a register or
659 * on the stack so that it will stop changing under the code.
661 pmdval = READ_ONCE(*pmd);
662 if (pmd_none(pmdval))
663 return no_page_table(vma, flags);
664 if (pmd_huge(pmdval) && is_vm_hugetlb_page(vma)) {
665 page = follow_huge_pmd(mm, address, pmd, flags);
668 return no_page_table(vma, flags);
670 if (is_hugepd(__hugepd(pmd_val(pmdval)))) {
671 page = follow_huge_pd(vma, address,
672 __hugepd(pmd_val(pmdval)), flags,
676 return no_page_table(vma, flags);
679 if (!pmd_present(pmdval)) {
681 * Should never reach here, if thp migration is not supported;
682 * Otherwise, it must be a thp migration entry.
684 VM_BUG_ON(!thp_migration_supported() ||
685 !is_pmd_migration_entry(pmdval));
687 if (likely(!(flags & FOLL_MIGRATION)))
688 return no_page_table(vma, flags);
690 pmd_migration_entry_wait(mm, pmd);
691 pmdval = READ_ONCE(*pmd);
693 * MADV_DONTNEED may convert the pmd to null because
694 * mmap_lock is held in read mode
696 if (pmd_none(pmdval))
697 return no_page_table(vma, flags);
700 if (pmd_devmap(pmdval)) {
701 ptl = pmd_lock(mm, pmd);
702 page = follow_devmap_pmd(vma, address, pmd, flags, &ctx->pgmap);
707 if (likely(!pmd_trans_huge(pmdval)))
708 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
710 if ((flags & FOLL_NUMA) && pmd_protnone(pmdval))
711 return no_page_table(vma, flags);
714 ptl = pmd_lock(mm, pmd);
715 if (unlikely(pmd_none(*pmd))) {
717 return no_page_table(vma, flags);
719 if (unlikely(!pmd_present(*pmd))) {
721 if (likely(!(flags & FOLL_MIGRATION)))
722 return no_page_table(vma, flags);
723 pmd_migration_entry_wait(mm, pmd);
726 if (unlikely(!pmd_trans_huge(*pmd))) {
728 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
730 if (flags & FOLL_SPLIT_PMD) {
732 page = pmd_page(*pmd);
733 if (is_huge_zero_page(page)) {
736 split_huge_pmd(vma, pmd, address);
737 if (pmd_trans_unstable(pmd))
741 split_huge_pmd(vma, pmd, address);
742 ret = pte_alloc(mm, pmd) ? -ENOMEM : 0;
745 return ret ? ERR_PTR(ret) :
746 follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
748 page = follow_trans_huge_pmd(vma, address, pmd, flags);
750 ctx->page_mask = HPAGE_PMD_NR - 1;
754 static struct page *follow_pud_mask(struct vm_area_struct *vma,
755 unsigned long address, p4d_t *p4dp,
757 struct follow_page_context *ctx)
762 struct mm_struct *mm = vma->vm_mm;
764 pud = pud_offset(p4dp, address);
766 return no_page_table(vma, flags);
767 if (pud_huge(*pud) && is_vm_hugetlb_page(vma)) {
768 page = follow_huge_pud(mm, address, pud, flags);
771 return no_page_table(vma, flags);
773 if (is_hugepd(__hugepd(pud_val(*pud)))) {
774 page = follow_huge_pd(vma, address,
775 __hugepd(pud_val(*pud)), flags,
779 return no_page_table(vma, flags);
781 if (pud_devmap(*pud)) {
782 ptl = pud_lock(mm, pud);
783 page = follow_devmap_pud(vma, address, pud, flags, &ctx->pgmap);
788 if (unlikely(pud_bad(*pud)))
789 return no_page_table(vma, flags);
791 return follow_pmd_mask(vma, address, pud, flags, ctx);
794 static struct page *follow_p4d_mask(struct vm_area_struct *vma,
795 unsigned long address, pgd_t *pgdp,
797 struct follow_page_context *ctx)
802 p4d = p4d_offset(pgdp, address);
804 return no_page_table(vma, flags);
805 BUILD_BUG_ON(p4d_huge(*p4d));
806 if (unlikely(p4d_bad(*p4d)))
807 return no_page_table(vma, flags);
809 if (is_hugepd(__hugepd(p4d_val(*p4d)))) {
810 page = follow_huge_pd(vma, address,
811 __hugepd(p4d_val(*p4d)), flags,
815 return no_page_table(vma, flags);
817 return follow_pud_mask(vma, address, p4d, flags, ctx);
821 * follow_page_mask - look up a page descriptor from a user-virtual address
822 * @vma: vm_area_struct mapping @address
823 * @address: virtual address to look up
824 * @flags: flags modifying lookup behaviour
825 * @ctx: contains dev_pagemap for %ZONE_DEVICE memory pinning and a
826 * pointer to output page_mask
828 * @flags can have FOLL_ flags set, defined in <linux/mm.h>
830 * When getting pages from ZONE_DEVICE memory, the @ctx->pgmap caches
831 * the device's dev_pagemap metadata to avoid repeating expensive lookups.
833 * When getting an anonymous page and the caller has to trigger unsharing
834 * of a shared anonymous page first, -EMLINK is returned. The caller should
835 * trigger a fault with FAULT_FLAG_UNSHARE set. Note that unsharing is only
836 * relevant with FOLL_PIN and !FOLL_WRITE.
838 * On output, the @ctx->page_mask is set according to the size of the page.
840 * Return: the mapped (struct page *), %NULL if no mapping exists, or
841 * an error pointer if there is a mapping to something not represented
842 * by a page descriptor (see also vm_normal_page()).
844 static struct page *follow_page_mask(struct vm_area_struct *vma,
845 unsigned long address, unsigned int flags,
846 struct follow_page_context *ctx)
850 struct mm_struct *mm = vma->vm_mm;
854 /* make this handle hugepd */
855 page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
857 WARN_ON_ONCE(flags & (FOLL_GET | FOLL_PIN));
861 pgd = pgd_offset(mm, address);
863 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
864 return no_page_table(vma, flags);
866 if (pgd_huge(*pgd)) {
867 page = follow_huge_pgd(mm, address, pgd, flags);
870 return no_page_table(vma, flags);
872 if (is_hugepd(__hugepd(pgd_val(*pgd)))) {
873 page = follow_huge_pd(vma, address,
874 __hugepd(pgd_val(*pgd)), flags,
878 return no_page_table(vma, flags);
881 return follow_p4d_mask(vma, address, pgd, flags, ctx);
884 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
885 unsigned int foll_flags)
887 struct follow_page_context ctx = { NULL };
890 if (vma_is_secretmem(vma))
893 if (foll_flags & FOLL_PIN)
896 page = follow_page_mask(vma, address, foll_flags, &ctx);
898 put_dev_pagemap(ctx.pgmap);
902 static int get_gate_page(struct mm_struct *mm, unsigned long address,
903 unsigned int gup_flags, struct vm_area_struct **vma,
913 /* user gate pages are read-only */
914 if (gup_flags & FOLL_WRITE)
916 if (address > TASK_SIZE)
917 pgd = pgd_offset_k(address);
919 pgd = pgd_offset_gate(mm, address);
922 p4d = p4d_offset(pgd, address);
925 pud = pud_offset(p4d, address);
928 pmd = pmd_offset(pud, address);
929 if (!pmd_present(*pmd))
931 VM_BUG_ON(pmd_trans_huge(*pmd));
932 pte = pte_offset_map(pmd, address);
935 *vma = get_gate_vma(mm);
938 *page = vm_normal_page(*vma, address, *pte);
940 if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(*pte)))
942 *page = pte_page(*pte);
944 if (unlikely(!try_grab_page(*page, gup_flags))) {
956 * mmap_lock must be held on entry. If @locked != NULL and *@flags
957 * does not include FOLL_NOWAIT, the mmap_lock may be released. If it
958 * is, *@locked will be set to 0 and -EBUSY returned.
960 static int faultin_page(struct vm_area_struct *vma,
961 unsigned long address, unsigned int *flags, bool unshare,
964 unsigned int fault_flags = 0;
967 if (*flags & FOLL_NOFAULT)
969 if (*flags & FOLL_WRITE)
970 fault_flags |= FAULT_FLAG_WRITE;
971 if (*flags & FOLL_REMOTE)
972 fault_flags |= FAULT_FLAG_REMOTE;
974 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
975 if (*flags & FOLL_NOWAIT)
976 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT;
977 if (*flags & FOLL_TRIED) {
979 * Note: FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_TRIED
982 fault_flags |= FAULT_FLAG_TRIED;
985 fault_flags |= FAULT_FLAG_UNSHARE;
986 /* FAULT_FLAG_WRITE and FAULT_FLAG_UNSHARE are incompatible */
987 VM_BUG_ON(fault_flags & FAULT_FLAG_WRITE);
990 ret = handle_mm_fault(vma, address, fault_flags, NULL);
992 if (ret & VM_FAULT_COMPLETED) {
994 * With FAULT_FLAG_RETRY_NOWAIT we'll never release the
995 * mmap lock in the page fault handler. Sanity check this.
997 WARN_ON_ONCE(fault_flags & FAULT_FLAG_RETRY_NOWAIT);
1001 * We should do the same as VM_FAULT_RETRY, but let's not
1002 * return -EBUSY since that's not reflecting the reality of
1003 * what has happened - we've just fully completed a page
1004 * fault, with the mmap lock released. Use -EAGAIN to show
1005 * that we want to take the mmap lock _again_.
1010 if (ret & VM_FAULT_ERROR) {
1011 int err = vm_fault_to_errno(ret, *flags);
1018 if (ret & VM_FAULT_RETRY) {
1019 if (locked && !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
1027 static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags)
1029 vm_flags_t vm_flags = vma->vm_flags;
1030 int write = (gup_flags & FOLL_WRITE);
1031 int foreign = (gup_flags & FOLL_REMOTE);
1033 if (vm_flags & (VM_IO | VM_PFNMAP))
1036 if (gup_flags & FOLL_ANON && !vma_is_anonymous(vma))
1039 if ((gup_flags & FOLL_LONGTERM) && vma_is_fsdax(vma))
1042 if (vma_is_secretmem(vma))
1046 if (!(vm_flags & VM_WRITE)) {
1047 if (!(gup_flags & FOLL_FORCE))
1050 * We used to let the write,force case do COW in a
1051 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could
1052 * set a breakpoint in a read-only mapping of an
1053 * executable, without corrupting the file (yet only
1054 * when that file had been opened for writing!).
1055 * Anon pages in shared mappings are surprising: now
1058 if (!is_cow_mapping(vm_flags))
1061 } else if (!(vm_flags & VM_READ)) {
1062 if (!(gup_flags & FOLL_FORCE))
1065 * Is there actually any vma we can reach here which does not
1066 * have VM_MAYREAD set?
1068 if (!(vm_flags & VM_MAYREAD))
1072 * gups are always data accesses, not instruction
1073 * fetches, so execute=false here
1075 if (!arch_vma_access_permitted(vma, write, false, foreign))
1081 * __get_user_pages() - pin user pages in memory
1082 * @mm: mm_struct of target mm
1083 * @start: starting user address
1084 * @nr_pages: number of pages from start to pin
1085 * @gup_flags: flags modifying pin behaviour
1086 * @pages: array that receives pointers to the pages pinned.
1087 * Should be at least nr_pages long. Or NULL, if caller
1088 * only intends to ensure the pages are faulted in.
1089 * @vmas: array of pointers to vmas corresponding to each page.
1090 * Or NULL if the caller does not require them.
1091 * @locked: whether we're still with the mmap_lock held
1093 * Returns either number of pages pinned (which may be less than the
1094 * number requested), or an error. Details about the return value:
1096 * -- If nr_pages is 0, returns 0.
1097 * -- If nr_pages is >0, but no pages were pinned, returns -errno.
1098 * -- If nr_pages is >0, and some pages were pinned, returns the number of
1099 * pages pinned. Again, this may be less than nr_pages.
1100 * -- 0 return value is possible when the fault would need to be retried.
1102 * The caller is responsible for releasing returned @pages, via put_page().
1104 * @vmas are valid only as long as mmap_lock is held.
1106 * Must be called with mmap_lock held. It may be released. See below.
1108 * __get_user_pages walks a process's page tables and takes a reference to
1109 * each struct page that each user address corresponds to at a given
1110 * instant. That is, it takes the page that would be accessed if a user
1111 * thread accesses the given user virtual address at that instant.
1113 * This does not guarantee that the page exists in the user mappings when
1114 * __get_user_pages returns, and there may even be a completely different
1115 * page there in some cases (eg. if mmapped pagecache has been invalidated
1116 * and subsequently re faulted). However it does guarantee that the page
1117 * won't be freed completely. And mostly callers simply care that the page
1118 * contains data that was valid *at some point in time*. Typically, an IO
1119 * or similar operation cannot guarantee anything stronger anyway because
1120 * locks can't be held over the syscall boundary.
1122 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
1123 * the page is written to, set_page_dirty (or set_page_dirty_lock, as
1124 * appropriate) must be called after the page is finished with, and
1125 * before put_page is called.
1127 * If @locked != NULL, *@locked will be set to 0 when mmap_lock is
1128 * released by an up_read(). That can happen if @gup_flags does not
1131 * A caller using such a combination of @locked and @gup_flags
1132 * must therefore hold the mmap_lock for reading only, and recognize
1133 * when it's been released. Otherwise, it must be held for either
1134 * reading or writing and will not be released.
1136 * In most cases, get_user_pages or get_user_pages_fast should be used
1137 * instead of __get_user_pages. __get_user_pages should be used only if
1138 * you need some special @gup_flags.
1140 static long __get_user_pages(struct mm_struct *mm,
1141 unsigned long start, unsigned long nr_pages,
1142 unsigned int gup_flags, struct page **pages,
1143 struct vm_area_struct **vmas, int *locked)
1145 long ret = 0, i = 0;
1146 struct vm_area_struct *vma = NULL;
1147 struct follow_page_context ctx = { NULL };
1152 start = untagged_addr(start);
1154 VM_BUG_ON(!!pages != !!(gup_flags & (FOLL_GET | FOLL_PIN)));
1157 * If FOLL_FORCE is set then do not force a full fault as the hinting
1158 * fault information is unrelated to the reference behaviour of a task
1159 * using the address space
1161 if (!(gup_flags & FOLL_FORCE))
1162 gup_flags |= FOLL_NUMA;
1166 unsigned int foll_flags = gup_flags;
1167 unsigned int page_increm;
1169 /* first iteration or cross vma bound */
1170 if (!vma || start >= vma->vm_end) {
1171 vma = find_extend_vma(mm, start);
1172 if (!vma && in_gate_area(mm, start)) {
1173 ret = get_gate_page(mm, start & PAGE_MASK,
1175 pages ? &pages[i] : NULL);
1186 ret = check_vma_flags(vma, gup_flags);
1190 if (is_vm_hugetlb_page(vma)) {
1191 i = follow_hugetlb_page(mm, vma, pages, vmas,
1192 &start, &nr_pages, i,
1194 if (locked && *locked == 0) {
1196 * We've got a VM_FAULT_RETRY
1197 * and we've lost mmap_lock.
1198 * We must stop here.
1200 BUG_ON(gup_flags & FOLL_NOWAIT);
1208 * If we have a pending SIGKILL, don't keep faulting pages and
1209 * potentially allocating memory.
1211 if (fatal_signal_pending(current)) {
1217 page = follow_page_mask(vma, start, foll_flags, &ctx);
1218 if (!page || PTR_ERR(page) == -EMLINK) {
1219 ret = faultin_page(vma, start, &foll_flags,
1220 PTR_ERR(page) == -EMLINK, locked);
1234 } else if (PTR_ERR(page) == -EEXIST) {
1236 * Proper page table entry exists, but no corresponding
1237 * struct page. If the caller expects **pages to be
1238 * filled in, bail out now, because that can't be done
1242 ret = PTR_ERR(page);
1247 } else if (IS_ERR(page)) {
1248 ret = PTR_ERR(page);
1253 flush_anon_page(vma, page, start);
1254 flush_dcache_page(page);
1262 page_increm = 1 + (~(start >> PAGE_SHIFT) & ctx.page_mask);
1263 if (page_increm > nr_pages)
1264 page_increm = nr_pages;
1266 start += page_increm * PAGE_SIZE;
1267 nr_pages -= page_increm;
1271 put_dev_pagemap(ctx.pgmap);
1275 static bool vma_permits_fault(struct vm_area_struct *vma,
1276 unsigned int fault_flags)
1278 bool write = !!(fault_flags & FAULT_FLAG_WRITE);
1279 bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE);
1280 vm_flags_t vm_flags = write ? VM_WRITE : VM_READ;
1282 if (!(vm_flags & vma->vm_flags))
1286 * The architecture might have a hardware protection
1287 * mechanism other than read/write that can deny access.
1289 * gup always represents data access, not instruction
1290 * fetches, so execute=false here:
1292 if (!arch_vma_access_permitted(vma, write, false, foreign))
1299 * fixup_user_fault() - manually resolve a user page fault
1300 * @mm: mm_struct of target mm
1301 * @address: user address
1302 * @fault_flags:flags to pass down to handle_mm_fault()
1303 * @unlocked: did we unlock the mmap_lock while retrying, maybe NULL if caller
1304 * does not allow retry. If NULL, the caller must guarantee
1305 * that fault_flags does not contain FAULT_FLAG_ALLOW_RETRY.
1307 * This is meant to be called in the specific scenario where for locking reasons
1308 * we try to access user memory in atomic context (within a pagefault_disable()
1309 * section), this returns -EFAULT, and we want to resolve the user fault before
1312 * Typically this is meant to be used by the futex code.
1314 * The main difference with get_user_pages() is that this function will
1315 * unconditionally call handle_mm_fault() which will in turn perform all the
1316 * necessary SW fixup of the dirty and young bits in the PTE, while
1317 * get_user_pages() only guarantees to update these in the struct page.
1319 * This is important for some architectures where those bits also gate the
1320 * access permission to the page because they are maintained in software. On
1321 * such architectures, gup() will not be enough to make a subsequent access
1324 * This function will not return with an unlocked mmap_lock. So it has not the
1325 * same semantics wrt the @mm->mmap_lock as does filemap_fault().
1327 int fixup_user_fault(struct mm_struct *mm,
1328 unsigned long address, unsigned int fault_flags,
1331 struct vm_area_struct *vma;
1334 address = untagged_addr(address);
1337 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
1340 vma = find_extend_vma(mm, address);
1341 if (!vma || address < vma->vm_start)
1344 if (!vma_permits_fault(vma, fault_flags))
1347 if ((fault_flags & FAULT_FLAG_KILLABLE) &&
1348 fatal_signal_pending(current))
1351 ret = handle_mm_fault(vma, address, fault_flags, NULL);
1353 if (ret & VM_FAULT_COMPLETED) {
1355 * NOTE: it's a pity that we need to retake the lock here
1356 * to pair with the unlock() in the callers. Ideally we
1357 * could tell the callers so they do not need to unlock.
1364 if (ret & VM_FAULT_ERROR) {
1365 int err = vm_fault_to_errno(ret, 0);
1372 if (ret & VM_FAULT_RETRY) {
1375 fault_flags |= FAULT_FLAG_TRIED;
1381 EXPORT_SYMBOL_GPL(fixup_user_fault);
1384 * Please note that this function, unlike __get_user_pages will not
1385 * return 0 for nr_pages > 0 without FOLL_NOWAIT
1387 static __always_inline long __get_user_pages_locked(struct mm_struct *mm,
1388 unsigned long start,
1389 unsigned long nr_pages,
1390 struct page **pages,
1391 struct vm_area_struct **vmas,
1395 long ret, pages_done;
1399 /* if VM_FAULT_RETRY can be returned, vmas become invalid */
1401 /* check caller initialized locked */
1402 BUG_ON(*locked != 1);
1405 if (flags & FOLL_PIN)
1406 mm_set_has_pinned_flag(&mm->flags);
1409 * FOLL_PIN and FOLL_GET are mutually exclusive. Traditional behavior
1410 * is to set FOLL_GET if the caller wants pages[] filled in (but has
1411 * carelessly failed to specify FOLL_GET), so keep doing that, but only
1412 * for FOLL_GET, not for the newer FOLL_PIN.
1414 * FOLL_PIN always expects pages to be non-null, but no need to assert
1415 * that here, as any failures will be obvious enough.
1417 if (pages && !(flags & FOLL_PIN))
1421 lock_dropped = false;
1423 ret = __get_user_pages(mm, start, nr_pages, flags, pages,
1426 /* VM_FAULT_RETRY couldn't trigger, bypass */
1429 /* VM_FAULT_RETRY or VM_FAULT_COMPLETED cannot return errors */
1432 BUG_ON(ret >= nr_pages);
1443 * VM_FAULT_RETRY didn't trigger or it was a
1451 * VM_FAULT_RETRY triggered, so seek to the faulting offset.
1452 * For the prefault case (!pages) we only update counts.
1456 start += ret << PAGE_SHIFT;
1457 lock_dropped = true;
1461 * Repeat on the address that fired VM_FAULT_RETRY
1462 * with both FAULT_FLAG_ALLOW_RETRY and
1463 * FAULT_FLAG_TRIED. Note that GUP can be interrupted
1464 * by fatal signals, so we need to check it before we
1465 * start trying again otherwise it can loop forever.
1468 if (fatal_signal_pending(current)) {
1470 pages_done = -EINTR;
1474 ret = mmap_read_lock_killable(mm);
1483 ret = __get_user_pages(mm, start, 1, flags | FOLL_TRIED,
1484 pages, NULL, locked);
1486 /* Continue to retry until we succeeded */
1504 if (lock_dropped && *locked) {
1506 * We must let the caller know we temporarily dropped the lock
1507 * and so the critical section protected by it was lost.
1509 mmap_read_unlock(mm);
1516 * populate_vma_page_range() - populate a range of pages in the vma.
1518 * @start: start address
1520 * @locked: whether the mmap_lock is still held
1522 * This takes care of mlocking the pages too if VM_LOCKED is set.
1524 * Return either number of pages pinned in the vma, or a negative error
1527 * vma->vm_mm->mmap_lock must be held.
1529 * If @locked is NULL, it may be held for read or write and will
1532 * If @locked is non-NULL, it must held for read only and may be
1533 * released. If it's released, *@locked will be set to 0.
1535 long populate_vma_page_range(struct vm_area_struct *vma,
1536 unsigned long start, unsigned long end, int *locked)
1538 struct mm_struct *mm = vma->vm_mm;
1539 unsigned long nr_pages = (end - start) / PAGE_SIZE;
1543 VM_BUG_ON(!PAGE_ALIGNED(start));
1544 VM_BUG_ON(!PAGE_ALIGNED(end));
1545 VM_BUG_ON_VMA(start < vma->vm_start, vma);
1546 VM_BUG_ON_VMA(end > vma->vm_end, vma);
1547 mmap_assert_locked(mm);
1550 * Rightly or wrongly, the VM_LOCKONFAULT case has never used
1551 * faultin_page() to break COW, so it has no work to do here.
1553 if (vma->vm_flags & VM_LOCKONFAULT)
1556 gup_flags = FOLL_TOUCH;
1558 * We want to touch writable mappings with a write fault in order
1559 * to break COW, except for shared mappings because these don't COW
1560 * and we would not want to dirty them for nothing.
1562 if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE)
1563 gup_flags |= FOLL_WRITE;
1566 * We want mlock to succeed for regions that have any permissions
1567 * other than PROT_NONE.
1569 if (vma_is_accessible(vma))
1570 gup_flags |= FOLL_FORCE;
1573 * We made sure addr is within a VMA, so the following will
1574 * not result in a stack expansion that recurses back here.
1576 ret = __get_user_pages(mm, start, nr_pages, gup_flags,
1577 NULL, NULL, locked);
1583 * faultin_vma_page_range() - populate (prefault) page tables inside the
1584 * given VMA range readable/writable
1586 * This takes care of mlocking the pages, too, if VM_LOCKED is set.
1589 * @start: start address
1591 * @write: whether to prefault readable or writable
1592 * @locked: whether the mmap_lock is still held
1594 * Returns either number of processed pages in the vma, or a negative error
1595 * code on error (see __get_user_pages()).
1597 * vma->vm_mm->mmap_lock must be held. The range must be page-aligned and
1598 * covered by the VMA.
1600 * If @locked is NULL, it may be held for read or write and will be unperturbed.
1602 * If @locked is non-NULL, it must held for read only and may be released. If
1603 * it's released, *@locked will be set to 0.
1605 long faultin_vma_page_range(struct vm_area_struct *vma, unsigned long start,
1606 unsigned long end, bool write, int *locked)
1608 struct mm_struct *mm = vma->vm_mm;
1609 unsigned long nr_pages = (end - start) / PAGE_SIZE;
1613 VM_BUG_ON(!PAGE_ALIGNED(start));
1614 VM_BUG_ON(!PAGE_ALIGNED(end));
1615 VM_BUG_ON_VMA(start < vma->vm_start, vma);
1616 VM_BUG_ON_VMA(end > vma->vm_end, vma);
1617 mmap_assert_locked(mm);
1620 * FOLL_TOUCH: Mark page accessed and thereby young; will also mark
1621 * the page dirty with FOLL_WRITE -- which doesn't make a
1622 * difference with !FOLL_FORCE, because the page is writable
1623 * in the page table.
1624 * FOLL_HWPOISON: Return -EHWPOISON instead of -EFAULT when we hit
1626 * !FOLL_FORCE: Require proper access permissions.
1628 gup_flags = FOLL_TOUCH | FOLL_HWPOISON;
1630 gup_flags |= FOLL_WRITE;
1633 * We want to report -EINVAL instead of -EFAULT for any permission
1634 * problems or incompatible mappings.
1636 if (check_vma_flags(vma, gup_flags))
1639 ret = __get_user_pages(mm, start, nr_pages, gup_flags,
1640 NULL, NULL, locked);
1646 * __mm_populate - populate and/or mlock pages within a range of address space.
1648 * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap
1649 * flags. VMAs must be already marked with the desired vm_flags, and
1650 * mmap_lock must not be held.
1652 int __mm_populate(unsigned long start, unsigned long len, int ignore_errors)
1654 struct mm_struct *mm = current->mm;
1655 unsigned long end, nstart, nend;
1656 struct vm_area_struct *vma = NULL;
1662 for (nstart = start; nstart < end; nstart = nend) {
1664 * We want to fault in pages for [nstart; end) address range.
1665 * Find first corresponding VMA.
1670 vma = find_vma(mm, nstart);
1671 } else if (nstart >= vma->vm_end)
1673 if (!vma || vma->vm_start >= end)
1676 * Set [nstart; nend) to intersection of desired address
1677 * range with the first VMA. Also, skip undesirable VMA types.
1679 nend = min(end, vma->vm_end);
1680 if (vma->vm_flags & (VM_IO | VM_PFNMAP))
1682 if (nstart < vma->vm_start)
1683 nstart = vma->vm_start;
1685 * Now fault in a range of pages. populate_vma_page_range()
1686 * double checks the vma flags, so that it won't mlock pages
1687 * if the vma was already munlocked.
1689 ret = populate_vma_page_range(vma, nstart, nend, &locked);
1691 if (ignore_errors) {
1693 continue; /* continue at next VMA */
1697 nend = nstart + ret * PAGE_SIZE;
1701 mmap_read_unlock(mm);
1702 return ret; /* 0 or negative error code */
1704 #else /* CONFIG_MMU */
1705 static long __get_user_pages_locked(struct mm_struct *mm, unsigned long start,
1706 unsigned long nr_pages, struct page **pages,
1707 struct vm_area_struct **vmas, int *locked,
1708 unsigned int foll_flags)
1710 struct vm_area_struct *vma;
1711 unsigned long vm_flags;
1714 /* calculate required read or write permissions.
1715 * If FOLL_FORCE is set, we only require the "MAY" flags.
1717 vm_flags = (foll_flags & FOLL_WRITE) ?
1718 (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1719 vm_flags &= (foll_flags & FOLL_FORCE) ?
1720 (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1722 for (i = 0; i < nr_pages; i++) {
1723 vma = find_vma(mm, start);
1725 goto finish_or_fault;
1727 /* protect what we can, including chardevs */
1728 if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1729 !(vm_flags & vma->vm_flags))
1730 goto finish_or_fault;
1733 pages[i] = virt_to_page((void *)start);
1739 start = (start + PAGE_SIZE) & PAGE_MASK;
1745 return i ? : -EFAULT;
1747 #endif /* !CONFIG_MMU */
1750 * fault_in_writeable - fault in userspace address range for writing
1751 * @uaddr: start of address range
1752 * @size: size of address range
1754 * Returns the number of bytes not faulted in (like copy_to_user() and
1755 * copy_from_user()).
1757 size_t fault_in_writeable(char __user *uaddr, size_t size)
1759 char __user *start = uaddr, *end;
1761 if (unlikely(size == 0))
1763 if (!user_write_access_begin(uaddr, size))
1765 if (!PAGE_ALIGNED(uaddr)) {
1766 unsafe_put_user(0, uaddr, out);
1767 uaddr = (char __user *)PAGE_ALIGN((unsigned long)uaddr);
1769 end = (char __user *)PAGE_ALIGN((unsigned long)start + size);
1770 if (unlikely(end < start))
1772 while (uaddr != end) {
1773 unsafe_put_user(0, uaddr, out);
1778 user_write_access_end();
1779 if (size > uaddr - start)
1780 return size - (uaddr - start);
1783 EXPORT_SYMBOL(fault_in_writeable);
1786 * fault_in_subpage_writeable - fault in an address range for writing
1787 * @uaddr: start of address range
1788 * @size: size of address range
1790 * Fault in a user address range for writing while checking for permissions at
1791 * sub-page granularity (e.g. arm64 MTE). This function should be used when
1792 * the caller cannot guarantee forward progress of a copy_to_user() loop.
1794 * Returns the number of bytes not faulted in (like copy_to_user() and
1795 * copy_from_user()).
1797 size_t fault_in_subpage_writeable(char __user *uaddr, size_t size)
1802 * Attempt faulting in at page granularity first for page table
1803 * permission checking. The arch-specific probe_subpage_writeable()
1804 * functions may not check for this.
1806 faulted_in = size - fault_in_writeable(uaddr, size);
1808 faulted_in -= probe_subpage_writeable(uaddr, faulted_in);
1810 return size - faulted_in;
1812 EXPORT_SYMBOL(fault_in_subpage_writeable);
1815 * fault_in_safe_writeable - fault in an address range for writing
1816 * @uaddr: start of address range
1817 * @size: length of address range
1819 * Faults in an address range for writing. This is primarily useful when we
1820 * already know that some or all of the pages in the address range aren't in
1823 * Unlike fault_in_writeable(), this function is non-destructive.
1825 * Note that we don't pin or otherwise hold the pages referenced that we fault
1826 * in. There's no guarantee that they'll stay in memory for any duration of
1829 * Returns the number of bytes not faulted in, like copy_to_user() and
1832 size_t fault_in_safe_writeable(const char __user *uaddr, size_t size)
1834 unsigned long start = (unsigned long)uaddr, end;
1835 struct mm_struct *mm = current->mm;
1836 bool unlocked = false;
1838 if (unlikely(size == 0))
1840 end = PAGE_ALIGN(start + size);
1846 if (fixup_user_fault(mm, start, FAULT_FLAG_WRITE, &unlocked))
1848 start = (start + PAGE_SIZE) & PAGE_MASK;
1849 } while (start != end);
1850 mmap_read_unlock(mm);
1852 if (size > (unsigned long)uaddr - start)
1853 return size - ((unsigned long)uaddr - start);
1856 EXPORT_SYMBOL(fault_in_safe_writeable);
1859 * fault_in_readable - fault in userspace address range for reading
1860 * @uaddr: start of user address range
1861 * @size: size of user address range
1863 * Returns the number of bytes not faulted in (like copy_to_user() and
1864 * copy_from_user()).
1866 size_t fault_in_readable(const char __user *uaddr, size_t size)
1868 const char __user *start = uaddr, *end;
1871 if (unlikely(size == 0))
1873 if (!user_read_access_begin(uaddr, size))
1875 if (!PAGE_ALIGNED(uaddr)) {
1876 unsafe_get_user(c, uaddr, out);
1877 uaddr = (const char __user *)PAGE_ALIGN((unsigned long)uaddr);
1879 end = (const char __user *)PAGE_ALIGN((unsigned long)start + size);
1880 if (unlikely(end < start))
1882 while (uaddr != end) {
1883 unsafe_get_user(c, uaddr, out);
1888 user_read_access_end();
1890 if (size > uaddr - start)
1891 return size - (uaddr - start);
1894 EXPORT_SYMBOL(fault_in_readable);
1897 * get_dump_page() - pin user page in memory while writing it to core dump
1898 * @addr: user address
1900 * Returns struct page pointer of user page pinned for dump,
1901 * to be freed afterwards by put_page().
1903 * Returns NULL on any kind of failure - a hole must then be inserted into
1904 * the corefile, to preserve alignment with its headers; and also returns
1905 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
1906 * allowing a hole to be left in the corefile to save disk space.
1908 * Called without mmap_lock (takes and releases the mmap_lock by itself).
1910 #ifdef CONFIG_ELF_CORE
1911 struct page *get_dump_page(unsigned long addr)
1913 struct mm_struct *mm = current->mm;
1918 if (mmap_read_lock_killable(mm))
1920 ret = __get_user_pages_locked(mm, addr, 1, &page, NULL, &locked,
1921 FOLL_FORCE | FOLL_DUMP | FOLL_GET);
1923 mmap_read_unlock(mm);
1924 return (ret == 1) ? page : NULL;
1926 #endif /* CONFIG_ELF_CORE */
1928 #ifdef CONFIG_MIGRATION
1930 * Check whether all pages are pinnable, if so return number of pages. If some
1931 * pages are not pinnable, migrate them, and unpin all pages. Return zero if
1932 * pages were migrated, or if some pages were not successfully isolated.
1933 * Return negative error if migration fails.
1935 static long check_and_migrate_movable_pages(unsigned long nr_pages,
1936 struct page **pages,
1937 unsigned int gup_flags)
1939 unsigned long isolation_error_count = 0, i;
1940 struct folio *prev_folio = NULL;
1941 LIST_HEAD(movable_page_list);
1942 bool drain_allow = true, coherent_pages = false;
1945 for (i = 0; i < nr_pages; i++) {
1946 struct folio *folio = page_folio(pages[i]);
1948 if (folio == prev_folio)
1953 * Device coherent pages are managed by a driver and should not
1954 * be pinned indefinitely as it prevents the driver moving the
1955 * page. So when trying to pin with FOLL_LONGTERM instead try
1956 * to migrate the page out of device memory.
1958 if (folio_is_device_coherent(folio)) {
1960 * We always want a new GUP lookup with device coherent
1964 coherent_pages = true;
1967 * Migration will fail if the page is pinned, so convert
1968 * the pin on the source page to a normal reference.
1970 if (gup_flags & FOLL_PIN) {
1971 get_page(&folio->page);
1972 unpin_user_page(&folio->page);
1975 ret = migrate_device_coherent_page(&folio->page);
1982 if (folio_is_longterm_pinnable(folio))
1985 * Try to move out any movable page before pinning the range.
1987 if (folio_test_hugetlb(folio)) {
1988 if (isolate_hugetlb(&folio->page,
1989 &movable_page_list))
1990 isolation_error_count++;
1994 if (!folio_test_lru(folio) && drain_allow) {
1995 lru_add_drain_all();
1996 drain_allow = false;
1999 if (folio_isolate_lru(folio)) {
2000 isolation_error_count++;
2003 list_add_tail(&folio->lru, &movable_page_list);
2004 node_stat_mod_folio(folio,
2005 NR_ISOLATED_ANON + folio_is_file_lru(folio),
2006 folio_nr_pages(folio));
2009 if (!list_empty(&movable_page_list) || isolation_error_count ||
2014 * If list is empty, and no isolation errors, means that all pages are
2015 * in the correct zone.
2021 * pages[i] might be NULL if any device coherent pages were found.
2023 for (i = 0; i < nr_pages; i++) {
2027 if (gup_flags & FOLL_PIN)
2028 unpin_user_page(pages[i]);
2033 if (!list_empty(&movable_page_list)) {
2034 struct migration_target_control mtc = {
2035 .nid = NUMA_NO_NODE,
2036 .gfp_mask = GFP_USER | __GFP_NOWARN,
2039 ret = migrate_pages(&movable_page_list, alloc_migration_target,
2040 NULL, (unsigned long)&mtc, MIGRATE_SYNC,
2041 MR_LONGTERM_PIN, NULL);
2042 if (ret > 0) /* number of pages not migrated */
2046 if (ret && !list_empty(&movable_page_list))
2047 putback_movable_pages(&movable_page_list);
2051 static long check_and_migrate_movable_pages(unsigned long nr_pages,
2052 struct page **pages,
2053 unsigned int gup_flags)
2057 #endif /* CONFIG_MIGRATION */
2060 * __gup_longterm_locked() is a wrapper for __get_user_pages_locked which
2061 * allows us to process the FOLL_LONGTERM flag.
2063 static long __gup_longterm_locked(struct mm_struct *mm,
2064 unsigned long start,
2065 unsigned long nr_pages,
2066 struct page **pages,
2067 struct vm_area_struct **vmas,
2068 unsigned int gup_flags)
2073 if (!(gup_flags & FOLL_LONGTERM))
2074 return __get_user_pages_locked(mm, start, nr_pages, pages, vmas,
2076 flags = memalloc_pin_save();
2078 rc = __get_user_pages_locked(mm, start, nr_pages, pages, vmas,
2082 rc = check_and_migrate_movable_pages(rc, pages, gup_flags);
2084 memalloc_pin_restore(flags);
2089 static bool is_valid_gup_flags(unsigned int gup_flags)
2092 * FOLL_PIN must only be set internally by the pin_user_pages*() APIs,
2093 * never directly by the caller, so enforce that with an assertion:
2095 if (WARN_ON_ONCE(gup_flags & FOLL_PIN))
2098 * FOLL_PIN is a prerequisite to FOLL_LONGTERM. Another way of saying
2099 * that is, FOLL_LONGTERM is a specific case, more restrictive case of
2102 if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
2109 static long __get_user_pages_remote(struct mm_struct *mm,
2110 unsigned long start, unsigned long nr_pages,
2111 unsigned int gup_flags, struct page **pages,
2112 struct vm_area_struct **vmas, int *locked)
2115 * Parts of FOLL_LONGTERM behavior are incompatible with
2116 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
2117 * vmas. However, this only comes up if locked is set, and there are
2118 * callers that do request FOLL_LONGTERM, but do not set locked. So,
2119 * allow what we can.
2121 if (gup_flags & FOLL_LONGTERM) {
2122 if (WARN_ON_ONCE(locked))
2125 * This will check the vmas (even if our vmas arg is NULL)
2126 * and return -ENOTSUPP if DAX isn't allowed in this case:
2128 return __gup_longterm_locked(mm, start, nr_pages, pages,
2129 vmas, gup_flags | FOLL_TOUCH |
2133 return __get_user_pages_locked(mm, start, nr_pages, pages, vmas,
2135 gup_flags | FOLL_TOUCH | FOLL_REMOTE);
2139 * get_user_pages_remote() - pin user pages in memory
2140 * @mm: mm_struct of target mm
2141 * @start: starting user address
2142 * @nr_pages: number of pages from start to pin
2143 * @gup_flags: flags modifying lookup behaviour
2144 * @pages: array that receives pointers to the pages pinned.
2145 * Should be at least nr_pages long. Or NULL, if caller
2146 * only intends to ensure the pages are faulted in.
2147 * @vmas: array of pointers to vmas corresponding to each page.
2148 * Or NULL if the caller does not require them.
2149 * @locked: pointer to lock flag indicating whether lock is held and
2150 * subsequently whether VM_FAULT_RETRY functionality can be
2151 * utilised. Lock must initially be held.
2153 * Returns either number of pages pinned (which may be less than the
2154 * number requested), or an error. Details about the return value:
2156 * -- If nr_pages is 0, returns 0.
2157 * -- If nr_pages is >0, but no pages were pinned, returns -errno.
2158 * -- If nr_pages is >0, and some pages were pinned, returns the number of
2159 * pages pinned. Again, this may be less than nr_pages.
2161 * The caller is responsible for releasing returned @pages, via put_page().
2163 * @vmas are valid only as long as mmap_lock is held.
2165 * Must be called with mmap_lock held for read or write.
2167 * get_user_pages_remote walks a process's page tables and takes a reference
2168 * to each struct page that each user address corresponds to at a given
2169 * instant. That is, it takes the page that would be accessed if a user
2170 * thread accesses the given user virtual address at that instant.
2172 * This does not guarantee that the page exists in the user mappings when
2173 * get_user_pages_remote returns, and there may even be a completely different
2174 * page there in some cases (eg. if mmapped pagecache has been invalidated
2175 * and subsequently re faulted). However it does guarantee that the page
2176 * won't be freed completely. And mostly callers simply care that the page
2177 * contains data that was valid *at some point in time*. Typically, an IO
2178 * or similar operation cannot guarantee anything stronger anyway because
2179 * locks can't be held over the syscall boundary.
2181 * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page
2182 * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must
2183 * be called after the page is finished with, and before put_page is called.
2185 * get_user_pages_remote is typically used for fewer-copy IO operations,
2186 * to get a handle on the memory by some means other than accesses
2187 * via the user virtual addresses. The pages may be submitted for
2188 * DMA to devices or accessed via their kernel linear mapping (via the
2189 * kmap APIs). Care should be taken to use the correct cache flushing APIs.
2191 * See also get_user_pages_fast, for performance critical applications.
2193 * get_user_pages_remote should be phased out in favor of
2194 * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing
2195 * should use get_user_pages_remote because it cannot pass
2196 * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault.
2198 long get_user_pages_remote(struct mm_struct *mm,
2199 unsigned long start, unsigned long nr_pages,
2200 unsigned int gup_flags, struct page **pages,
2201 struct vm_area_struct **vmas, int *locked)
2203 if (!is_valid_gup_flags(gup_flags))
2206 return __get_user_pages_remote(mm, start, nr_pages, gup_flags,
2207 pages, vmas, locked);
2209 EXPORT_SYMBOL(get_user_pages_remote);
2211 #else /* CONFIG_MMU */
2212 long get_user_pages_remote(struct mm_struct *mm,
2213 unsigned long start, unsigned long nr_pages,
2214 unsigned int gup_flags, struct page **pages,
2215 struct vm_area_struct **vmas, int *locked)
2220 static long __get_user_pages_remote(struct mm_struct *mm,
2221 unsigned long start, unsigned long nr_pages,
2222 unsigned int gup_flags, struct page **pages,
2223 struct vm_area_struct **vmas, int *locked)
2227 #endif /* !CONFIG_MMU */
2230 * get_user_pages() - pin user pages in memory
2231 * @start: starting user address
2232 * @nr_pages: number of pages from start to pin
2233 * @gup_flags: flags modifying lookup behaviour
2234 * @pages: array that receives pointers to the pages pinned.
2235 * Should be at least nr_pages long. Or NULL, if caller
2236 * only intends to ensure the pages are faulted in.
2237 * @vmas: array of pointers to vmas corresponding to each page.
2238 * Or NULL if the caller does not require them.
2240 * This is the same as get_user_pages_remote(), just with a less-flexible
2241 * calling convention where we assume that the mm being operated on belongs to
2242 * the current task, and doesn't allow passing of a locked parameter. We also
2243 * obviously don't pass FOLL_REMOTE in here.
2245 long get_user_pages(unsigned long start, unsigned long nr_pages,
2246 unsigned int gup_flags, struct page **pages,
2247 struct vm_area_struct **vmas)
2249 if (!is_valid_gup_flags(gup_flags))
2252 return __gup_longterm_locked(current->mm, start, nr_pages,
2253 pages, vmas, gup_flags | FOLL_TOUCH);
2255 EXPORT_SYMBOL(get_user_pages);
2258 * get_user_pages_unlocked() is suitable to replace the form:
2260 * mmap_read_lock(mm);
2261 * get_user_pages(mm, ..., pages, NULL);
2262 * mmap_read_unlock(mm);
2266 * get_user_pages_unlocked(mm, ..., pages);
2268 * It is functionally equivalent to get_user_pages_fast so
2269 * get_user_pages_fast should be used instead if specific gup_flags
2270 * (e.g. FOLL_FORCE) are not required.
2272 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2273 struct page **pages, unsigned int gup_flags)
2275 struct mm_struct *mm = current->mm;
2280 * FIXME: Current FOLL_LONGTERM behavior is incompatible with
2281 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
2282 * vmas. As there are no users of this flag in this call we simply
2283 * disallow this option for now.
2285 if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
2289 ret = __get_user_pages_locked(mm, start, nr_pages, pages, NULL,
2290 &locked, gup_flags | FOLL_TOUCH);
2292 mmap_read_unlock(mm);
2295 EXPORT_SYMBOL(get_user_pages_unlocked);
2300 * get_user_pages_fast attempts to pin user pages by walking the page
2301 * tables directly and avoids taking locks. Thus the walker needs to be
2302 * protected from page table pages being freed from under it, and should
2303 * block any THP splits.
2305 * One way to achieve this is to have the walker disable interrupts, and
2306 * rely on IPIs from the TLB flushing code blocking before the page table
2307 * pages are freed. This is unsuitable for architectures that do not need
2308 * to broadcast an IPI when invalidating TLBs.
2310 * Another way to achieve this is to batch up page table containing pages
2311 * belonging to more than one mm_user, then rcu_sched a callback to free those
2312 * pages. Disabling interrupts will allow the fast_gup walker to both block
2313 * the rcu_sched callback, and an IPI that we broadcast for splitting THPs
2314 * (which is a relatively rare event). The code below adopts this strategy.
2316 * Before activating this code, please be aware that the following assumptions
2317 * are currently made:
2319 * *) Either MMU_GATHER_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to
2320 * free pages containing page tables or TLB flushing requires IPI broadcast.
2322 * *) ptes can be read atomically by the architecture.
2324 * *) access_ok is sufficient to validate userspace address ranges.
2326 * The last two assumptions can be relaxed by the addition of helper functions.
2328 * This code is based heavily on the PowerPC implementation by Nick Piggin.
2330 #ifdef CONFIG_HAVE_FAST_GUP
2332 static void __maybe_unused undo_dev_pagemap(int *nr, int nr_start,
2334 struct page **pages)
2336 while ((*nr) - nr_start) {
2337 struct page *page = pages[--(*nr)];
2339 ClearPageReferenced(page);
2340 if (flags & FOLL_PIN)
2341 unpin_user_page(page);
2347 #ifdef CONFIG_ARCH_HAS_PTE_SPECIAL
2349 * Fast-gup relies on pte change detection to avoid concurrent pgtable
2352 * To pin the page, fast-gup needs to do below in order:
2353 * (1) pin the page (by prefetching pte), then (2) check pte not changed.
2355 * For the rest of pgtable operations where pgtable updates can be racy
2356 * with fast-gup, we need to do (1) clear pte, then (2) check whether page
2359 * Above will work for all pte-level operations, including THP split.
2361 * For THP collapse, it's a bit more complicated because fast-gup may be
2362 * walking a pgtable page that is being freed (pte is still valid but pmd
2363 * can be cleared already). To avoid race in such condition, we need to
2364 * also check pmd here to make sure pmd doesn't change (corresponds to
2365 * pmdp_collapse_flush() in the THP collapse code path).
2367 static int gup_pte_range(pmd_t pmd, pmd_t *pmdp, unsigned long addr,
2368 unsigned long end, unsigned int flags,
2369 struct page **pages, int *nr)
2371 struct dev_pagemap *pgmap = NULL;
2372 int nr_start = *nr, ret = 0;
2375 ptem = ptep = pte_offset_map(&pmd, addr);
2377 pte_t pte = ptep_get_lockless(ptep);
2379 struct folio *folio;
2382 * Similar to the PMD case below, NUMA hinting must take slow
2383 * path using the pte_protnone check.
2385 if (pte_protnone(pte))
2388 if (!pte_access_permitted(pte, flags & FOLL_WRITE))
2391 if (pte_devmap(pte)) {
2392 if (unlikely(flags & FOLL_LONGTERM))
2395 pgmap = get_dev_pagemap(pte_pfn(pte), pgmap);
2396 if (unlikely(!pgmap)) {
2397 undo_dev_pagemap(nr, nr_start, flags, pages);
2400 } else if (pte_special(pte))
2403 VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
2404 page = pte_page(pte);
2406 folio = try_grab_folio(page, 1, flags);
2410 if (unlikely(page_is_secretmem(page))) {
2411 gup_put_folio(folio, 1, flags);
2415 if (unlikely(pmd_val(pmd) != pmd_val(*pmdp)) ||
2416 unlikely(pte_val(pte) != pte_val(*ptep))) {
2417 gup_put_folio(folio, 1, flags);
2421 if (!pte_write(pte) && gup_must_unshare(flags, page)) {
2422 gup_put_folio(folio, 1, flags);
2427 * We need to make the page accessible if and only if we are
2428 * going to access its content (the FOLL_PIN case). Please
2429 * see Documentation/core-api/pin_user_pages.rst for
2432 if (flags & FOLL_PIN) {
2433 ret = arch_make_page_accessible(page);
2435 gup_put_folio(folio, 1, flags);
2439 folio_set_referenced(folio);
2442 } while (ptep++, addr += PAGE_SIZE, addr != end);
2448 put_dev_pagemap(pgmap);
2455 * If we can't determine whether or not a pte is special, then fail immediately
2456 * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not
2459 * For a futex to be placed on a THP tail page, get_futex_key requires a
2460 * get_user_pages_fast_only implementation that can pin pages. Thus it's still
2461 * useful to have gup_huge_pmd even if we can't operate on ptes.
2463 static int gup_pte_range(pmd_t pmd, pmd_t *pmdp, unsigned long addr,
2464 unsigned long end, unsigned int flags,
2465 struct page **pages, int *nr)
2469 #endif /* CONFIG_ARCH_HAS_PTE_SPECIAL */
2471 #if defined(CONFIG_ARCH_HAS_PTE_DEVMAP) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
2472 static int __gup_device_huge(unsigned long pfn, unsigned long addr,
2473 unsigned long end, unsigned int flags,
2474 struct page **pages, int *nr)
2477 struct dev_pagemap *pgmap = NULL;
2480 struct page *page = pfn_to_page(pfn);
2482 pgmap = get_dev_pagemap(pfn, pgmap);
2483 if (unlikely(!pgmap)) {
2484 undo_dev_pagemap(nr, nr_start, flags, pages);
2487 SetPageReferenced(page);
2489 if (unlikely(!try_grab_page(page, flags))) {
2490 undo_dev_pagemap(nr, nr_start, flags, pages);
2495 } while (addr += PAGE_SIZE, addr != end);
2497 put_dev_pagemap(pgmap);
2501 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2502 unsigned long end, unsigned int flags,
2503 struct page **pages, int *nr)
2505 unsigned long fault_pfn;
2508 fault_pfn = pmd_pfn(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
2509 if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr))
2512 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
2513 undo_dev_pagemap(nr, nr_start, flags, pages);
2519 static int __gup_device_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
2520 unsigned long end, unsigned int flags,
2521 struct page **pages, int *nr)
2523 unsigned long fault_pfn;
2526 fault_pfn = pud_pfn(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
2527 if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr))
2530 if (unlikely(pud_val(orig) != pud_val(*pudp))) {
2531 undo_dev_pagemap(nr, nr_start, flags, pages);
2537 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2538 unsigned long end, unsigned int flags,
2539 struct page **pages, int *nr)
2545 static int __gup_device_huge_pud(pud_t pud, pud_t *pudp, unsigned long addr,
2546 unsigned long end, unsigned int flags,
2547 struct page **pages, int *nr)
2554 static int record_subpages(struct page *page, unsigned long addr,
2555 unsigned long end, struct page **pages)
2559 for (nr = 0; addr != end; nr++, addr += PAGE_SIZE)
2560 pages[nr] = nth_page(page, nr);
2565 #ifdef CONFIG_ARCH_HAS_HUGEPD
2566 static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end,
2569 unsigned long __boundary = (addr + sz) & ~(sz-1);
2570 return (__boundary - 1 < end - 1) ? __boundary : end;
2573 static int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr,
2574 unsigned long end, unsigned int flags,
2575 struct page **pages, int *nr)
2577 unsigned long pte_end;
2579 struct folio *folio;
2583 pte_end = (addr + sz) & ~(sz-1);
2587 pte = huge_ptep_get(ptep);
2589 if (!pte_access_permitted(pte, flags & FOLL_WRITE))
2592 /* hugepages are never "special" */
2593 VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
2595 page = nth_page(pte_page(pte), (addr & (sz - 1)) >> PAGE_SHIFT);
2596 refs = record_subpages(page, addr, end, pages + *nr);
2598 folio = try_grab_folio(page, refs, flags);
2602 if (unlikely(pte_val(pte) != pte_val(*ptep))) {
2603 gup_put_folio(folio, refs, flags);
2607 if (!pte_write(pte) && gup_must_unshare(flags, &folio->page)) {
2608 gup_put_folio(folio, refs, flags);
2613 folio_set_referenced(folio);
2617 static int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
2618 unsigned int pdshift, unsigned long end, unsigned int flags,
2619 struct page **pages, int *nr)
2622 unsigned long sz = 1UL << hugepd_shift(hugepd);
2625 ptep = hugepte_offset(hugepd, addr, pdshift);
2627 next = hugepte_addr_end(addr, end, sz);
2628 if (!gup_hugepte(ptep, sz, addr, end, flags, pages, nr))
2630 } while (ptep++, addr = next, addr != end);
2635 static inline int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
2636 unsigned int pdshift, unsigned long end, unsigned int flags,
2637 struct page **pages, int *nr)
2641 #endif /* CONFIG_ARCH_HAS_HUGEPD */
2643 static int gup_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2644 unsigned long end, unsigned int flags,
2645 struct page **pages, int *nr)
2648 struct folio *folio;
2651 if (!pmd_access_permitted(orig, flags & FOLL_WRITE))
2654 if (pmd_devmap(orig)) {
2655 if (unlikely(flags & FOLL_LONGTERM))
2657 return __gup_device_huge_pmd(orig, pmdp, addr, end, flags,
2661 page = nth_page(pmd_page(orig), (addr & ~PMD_MASK) >> PAGE_SHIFT);
2662 refs = record_subpages(page, addr, end, pages + *nr);
2664 folio = try_grab_folio(page, refs, flags);
2668 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
2669 gup_put_folio(folio, refs, flags);
2673 if (!pmd_write(orig) && gup_must_unshare(flags, &folio->page)) {
2674 gup_put_folio(folio, refs, flags);
2679 folio_set_referenced(folio);
2683 static int gup_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
2684 unsigned long end, unsigned int flags,
2685 struct page **pages, int *nr)
2688 struct folio *folio;
2691 if (!pud_access_permitted(orig, flags & FOLL_WRITE))
2694 if (pud_devmap(orig)) {
2695 if (unlikely(flags & FOLL_LONGTERM))
2697 return __gup_device_huge_pud(orig, pudp, addr, end, flags,
2701 page = nth_page(pud_page(orig), (addr & ~PUD_MASK) >> PAGE_SHIFT);
2702 refs = record_subpages(page, addr, end, pages + *nr);
2704 folio = try_grab_folio(page, refs, flags);
2708 if (unlikely(pud_val(orig) != pud_val(*pudp))) {
2709 gup_put_folio(folio, refs, flags);
2713 if (!pud_write(orig) && gup_must_unshare(flags, &folio->page)) {
2714 gup_put_folio(folio, refs, flags);
2719 folio_set_referenced(folio);
2723 static int gup_huge_pgd(pgd_t orig, pgd_t *pgdp, unsigned long addr,
2724 unsigned long end, unsigned int flags,
2725 struct page **pages, int *nr)
2729 struct folio *folio;
2731 if (!pgd_access_permitted(orig, flags & FOLL_WRITE))
2734 BUILD_BUG_ON(pgd_devmap(orig));
2736 page = nth_page(pgd_page(orig), (addr & ~PGDIR_MASK) >> PAGE_SHIFT);
2737 refs = record_subpages(page, addr, end, pages + *nr);
2739 folio = try_grab_folio(page, refs, flags);
2743 if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) {
2744 gup_put_folio(folio, refs, flags);
2749 folio_set_referenced(folio);
2753 static int gup_pmd_range(pud_t *pudp, pud_t pud, unsigned long addr, unsigned long end,
2754 unsigned int flags, struct page **pages, int *nr)
2759 pmdp = pmd_offset_lockless(pudp, pud, addr);
2761 pmd_t pmd = READ_ONCE(*pmdp);
2763 next = pmd_addr_end(addr, end);
2764 if (!pmd_present(pmd))
2767 if (unlikely(pmd_trans_huge(pmd) || pmd_huge(pmd) ||
2770 * NUMA hinting faults need to be handled in the GUP
2771 * slowpath for accounting purposes and so that they
2772 * can be serialised against THP migration.
2774 if (pmd_protnone(pmd))
2777 if (!gup_huge_pmd(pmd, pmdp, addr, next, flags,
2781 } else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd))))) {
2783 * architecture have different format for hugetlbfs
2784 * pmd format and THP pmd format
2786 if (!gup_huge_pd(__hugepd(pmd_val(pmd)), addr,
2787 PMD_SHIFT, next, flags, pages, nr))
2789 } else if (!gup_pte_range(pmd, pmdp, addr, next, flags, pages, nr))
2791 } while (pmdp++, addr = next, addr != end);
2796 static int gup_pud_range(p4d_t *p4dp, p4d_t p4d, unsigned long addr, unsigned long end,
2797 unsigned int flags, struct page **pages, int *nr)
2802 pudp = pud_offset_lockless(p4dp, p4d, addr);
2804 pud_t pud = READ_ONCE(*pudp);
2806 next = pud_addr_end(addr, end);
2807 if (unlikely(!pud_present(pud)))
2809 if (unlikely(pud_huge(pud))) {
2810 if (!gup_huge_pud(pud, pudp, addr, next, flags,
2813 } else if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) {
2814 if (!gup_huge_pd(__hugepd(pud_val(pud)), addr,
2815 PUD_SHIFT, next, flags, pages, nr))
2817 } else if (!gup_pmd_range(pudp, pud, addr, next, flags, pages, nr))
2819 } while (pudp++, addr = next, addr != end);
2824 static int gup_p4d_range(pgd_t *pgdp, pgd_t pgd, unsigned long addr, unsigned long end,
2825 unsigned int flags, struct page **pages, int *nr)
2830 p4dp = p4d_offset_lockless(pgdp, pgd, addr);
2832 p4d_t p4d = READ_ONCE(*p4dp);
2834 next = p4d_addr_end(addr, end);
2837 BUILD_BUG_ON(p4d_huge(p4d));
2838 if (unlikely(is_hugepd(__hugepd(p4d_val(p4d))))) {
2839 if (!gup_huge_pd(__hugepd(p4d_val(p4d)), addr,
2840 P4D_SHIFT, next, flags, pages, nr))
2842 } else if (!gup_pud_range(p4dp, p4d, addr, next, flags, pages, nr))
2844 } while (p4dp++, addr = next, addr != end);
2849 static void gup_pgd_range(unsigned long addr, unsigned long end,
2850 unsigned int flags, struct page **pages, int *nr)
2855 pgdp = pgd_offset(current->mm, addr);
2857 pgd_t pgd = READ_ONCE(*pgdp);
2859 next = pgd_addr_end(addr, end);
2862 if (unlikely(pgd_huge(pgd))) {
2863 if (!gup_huge_pgd(pgd, pgdp, addr, next, flags,
2866 } else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd))))) {
2867 if (!gup_huge_pd(__hugepd(pgd_val(pgd)), addr,
2868 PGDIR_SHIFT, next, flags, pages, nr))
2870 } else if (!gup_p4d_range(pgdp, pgd, addr, next, flags, pages, nr))
2872 } while (pgdp++, addr = next, addr != end);
2875 static inline void gup_pgd_range(unsigned long addr, unsigned long end,
2876 unsigned int flags, struct page **pages, int *nr)
2879 #endif /* CONFIG_HAVE_FAST_GUP */
2881 #ifndef gup_fast_permitted
2883 * Check if it's allowed to use get_user_pages_fast_only() for the range, or
2884 * we need to fall back to the slow version:
2886 static bool gup_fast_permitted(unsigned long start, unsigned long end)
2892 static int __gup_longterm_unlocked(unsigned long start, int nr_pages,
2893 unsigned int gup_flags, struct page **pages)
2898 * FIXME: FOLL_LONGTERM does not work with
2899 * get_user_pages_unlocked() (see comments in that function)
2901 if (gup_flags & FOLL_LONGTERM) {
2902 mmap_read_lock(current->mm);
2903 ret = __gup_longterm_locked(current->mm,
2905 pages, NULL, gup_flags);
2906 mmap_read_unlock(current->mm);
2908 ret = get_user_pages_unlocked(start, nr_pages,
2915 static unsigned long lockless_pages_from_mm(unsigned long start,
2917 unsigned int gup_flags,
2918 struct page **pages)
2920 unsigned long flags;
2924 if (!IS_ENABLED(CONFIG_HAVE_FAST_GUP) ||
2925 !gup_fast_permitted(start, end))
2928 if (gup_flags & FOLL_PIN) {
2929 seq = raw_read_seqcount(¤t->mm->write_protect_seq);
2935 * Disable interrupts. The nested form is used, in order to allow full,
2936 * general purpose use of this routine.
2938 * With interrupts disabled, we block page table pages from being freed
2939 * from under us. See struct mmu_table_batch comments in
2940 * include/asm-generic/tlb.h for more details.
2942 * We do not adopt an rcu_read_lock() here as we also want to block IPIs
2943 * that come from THPs splitting.
2945 local_irq_save(flags);
2946 gup_pgd_range(start, end, gup_flags, pages, &nr_pinned);
2947 local_irq_restore(flags);
2950 * When pinning pages for DMA there could be a concurrent write protect
2951 * from fork() via copy_page_range(), in this case always fail fast GUP.
2953 if (gup_flags & FOLL_PIN) {
2954 if (read_seqcount_retry(¤t->mm->write_protect_seq, seq)) {
2955 unpin_user_pages_lockless(pages, nr_pinned);
2958 sanity_check_pinned_pages(pages, nr_pinned);
2964 static int internal_get_user_pages_fast(unsigned long start,
2965 unsigned long nr_pages,
2966 unsigned int gup_flags,
2967 struct page **pages)
2969 unsigned long len, end;
2970 unsigned long nr_pinned;
2973 if (WARN_ON_ONCE(gup_flags & ~(FOLL_WRITE | FOLL_LONGTERM |
2974 FOLL_FORCE | FOLL_PIN | FOLL_GET |
2975 FOLL_FAST_ONLY | FOLL_NOFAULT)))
2978 if (gup_flags & FOLL_PIN)
2979 mm_set_has_pinned_flag(¤t->mm->flags);
2981 if (!(gup_flags & FOLL_FAST_ONLY))
2982 might_lock_read(¤t->mm->mmap_lock);
2984 start = untagged_addr(start) & PAGE_MASK;
2985 len = nr_pages << PAGE_SHIFT;
2986 if (check_add_overflow(start, len, &end))
2988 if (unlikely(!access_ok((void __user *)start, len)))
2991 nr_pinned = lockless_pages_from_mm(start, end, gup_flags, pages);
2992 if (nr_pinned == nr_pages || gup_flags & FOLL_FAST_ONLY)
2995 /* Slow path: try to get the remaining pages with get_user_pages */
2996 start += nr_pinned << PAGE_SHIFT;
2998 ret = __gup_longterm_unlocked(start, nr_pages - nr_pinned, gup_flags,
3002 * The caller has to unpin the pages we already pinned so
3003 * returning -errno is not an option
3009 return ret + nr_pinned;
3013 * get_user_pages_fast_only() - pin user pages in memory
3014 * @start: starting user address
3015 * @nr_pages: number of pages from start to pin
3016 * @gup_flags: flags modifying pin behaviour
3017 * @pages: array that receives pointers to the pages pinned.
3018 * Should be at least nr_pages long.
3020 * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to
3022 * Note a difference with get_user_pages_fast: this always returns the
3023 * number of pages pinned, 0 if no pages were pinned.
3025 * If the architecture does not support this function, simply return with no
3028 * Careful, careful! COW breaking can go either way, so a non-write
3029 * access can get ambiguous page results. If you call this function without
3030 * 'write' set, you'd better be sure that you're ok with that ambiguity.
3032 int get_user_pages_fast_only(unsigned long start, int nr_pages,
3033 unsigned int gup_flags, struct page **pages)
3037 * Internally (within mm/gup.c), gup fast variants must set FOLL_GET,
3038 * because gup fast is always a "pin with a +1 page refcount" request.
3040 * FOLL_FAST_ONLY is required in order to match the API description of
3041 * this routine: no fall back to regular ("slow") GUP.
3043 gup_flags |= FOLL_GET | FOLL_FAST_ONLY;
3045 nr_pinned = internal_get_user_pages_fast(start, nr_pages, gup_flags,
3049 * As specified in the API description above, this routine is not
3050 * allowed to return negative values. However, the common core
3051 * routine internal_get_user_pages_fast() *can* return -errno.
3052 * Therefore, correct for that here:
3059 EXPORT_SYMBOL_GPL(get_user_pages_fast_only);
3062 * get_user_pages_fast() - pin user pages in memory
3063 * @start: starting user address
3064 * @nr_pages: number of pages from start to pin
3065 * @gup_flags: flags modifying pin behaviour
3066 * @pages: array that receives pointers to the pages pinned.
3067 * Should be at least nr_pages long.
3069 * Attempt to pin user pages in memory without taking mm->mmap_lock.
3070 * If not successful, it will fall back to taking the lock and
3071 * calling get_user_pages().
3073 * Returns number of pages pinned. This may be fewer than the number requested.
3074 * If nr_pages is 0 or negative, returns 0. If no pages were pinned, returns
3077 int get_user_pages_fast(unsigned long start, int nr_pages,
3078 unsigned int gup_flags, struct page **pages)
3080 if (!is_valid_gup_flags(gup_flags))
3084 * The caller may or may not have explicitly set FOLL_GET; either way is
3085 * OK. However, internally (within mm/gup.c), gup fast variants must set
3086 * FOLL_GET, because gup fast is always a "pin with a +1 page refcount"
3089 gup_flags |= FOLL_GET;
3090 return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
3092 EXPORT_SYMBOL_GPL(get_user_pages_fast);
3095 * pin_user_pages_fast() - pin user pages in memory without taking locks
3097 * @start: starting user address
3098 * @nr_pages: number of pages from start to pin
3099 * @gup_flags: flags modifying pin behaviour
3100 * @pages: array that receives pointers to the pages pinned.
3101 * Should be at least nr_pages long.
3103 * Nearly the same as get_user_pages_fast(), except that FOLL_PIN is set. See
3104 * get_user_pages_fast() for documentation on the function arguments, because
3105 * the arguments here are identical.
3107 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
3108 * see Documentation/core-api/pin_user_pages.rst for further details.
3110 int pin_user_pages_fast(unsigned long start, int nr_pages,
3111 unsigned int gup_flags, struct page **pages)
3113 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
3114 if (WARN_ON_ONCE(gup_flags & FOLL_GET))
3117 if (WARN_ON_ONCE(!pages))
3120 gup_flags |= FOLL_PIN;
3121 return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
3123 EXPORT_SYMBOL_GPL(pin_user_pages_fast);
3126 * This is the FOLL_PIN equivalent of get_user_pages_fast_only(). Behavior
3127 * is the same, except that this one sets FOLL_PIN instead of FOLL_GET.
3129 * The API rules are the same, too: no negative values may be returned.
3131 int pin_user_pages_fast_only(unsigned long start, int nr_pages,
3132 unsigned int gup_flags, struct page **pages)
3137 * FOLL_GET and FOLL_PIN are mutually exclusive. Note that the API
3138 * rules require returning 0, rather than -errno:
3140 if (WARN_ON_ONCE(gup_flags & FOLL_GET))
3143 if (WARN_ON_ONCE(!pages))
3146 * FOLL_FAST_ONLY is required in order to match the API description of
3147 * this routine: no fall back to regular ("slow") GUP.
3149 gup_flags |= (FOLL_PIN | FOLL_FAST_ONLY);
3150 nr_pinned = internal_get_user_pages_fast(start, nr_pages, gup_flags,
3153 * This routine is not allowed to return negative values. However,
3154 * internal_get_user_pages_fast() *can* return -errno. Therefore,
3155 * correct for that here:
3162 EXPORT_SYMBOL_GPL(pin_user_pages_fast_only);
3165 * pin_user_pages_remote() - pin pages of a remote process
3167 * @mm: mm_struct of target mm
3168 * @start: starting user address
3169 * @nr_pages: number of pages from start to pin
3170 * @gup_flags: flags modifying lookup behaviour
3171 * @pages: array that receives pointers to the pages pinned.
3172 * Should be at least nr_pages long.
3173 * @vmas: array of pointers to vmas corresponding to each page.
3174 * Or NULL if the caller does not require them.
3175 * @locked: pointer to lock flag indicating whether lock is held and
3176 * subsequently whether VM_FAULT_RETRY functionality can be
3177 * utilised. Lock must initially be held.
3179 * Nearly the same as get_user_pages_remote(), except that FOLL_PIN is set. See
3180 * get_user_pages_remote() for documentation on the function arguments, because
3181 * the arguments here are identical.
3183 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
3184 * see Documentation/core-api/pin_user_pages.rst for details.
3186 long pin_user_pages_remote(struct mm_struct *mm,
3187 unsigned long start, unsigned long nr_pages,
3188 unsigned int gup_flags, struct page **pages,
3189 struct vm_area_struct **vmas, int *locked)
3191 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
3192 if (WARN_ON_ONCE(gup_flags & FOLL_GET))
3195 if (WARN_ON_ONCE(!pages))
3198 gup_flags |= FOLL_PIN;
3199 return __get_user_pages_remote(mm, start, nr_pages, gup_flags,
3200 pages, vmas, locked);
3202 EXPORT_SYMBOL(pin_user_pages_remote);
3205 * pin_user_pages() - pin user pages in memory for use by other devices
3207 * @start: starting user address
3208 * @nr_pages: number of pages from start to pin
3209 * @gup_flags: flags modifying lookup behaviour
3210 * @pages: array that receives pointers to the pages pinned.
3211 * Should be at least nr_pages long.
3212 * @vmas: array of pointers to vmas corresponding to each page.
3213 * Or NULL if the caller does not require them.
3215 * Nearly the same as get_user_pages(), except that FOLL_TOUCH is not set, and
3218 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
3219 * see Documentation/core-api/pin_user_pages.rst for details.
3221 long pin_user_pages(unsigned long start, unsigned long nr_pages,
3222 unsigned int gup_flags, struct page **pages,
3223 struct vm_area_struct **vmas)
3225 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
3226 if (WARN_ON_ONCE(gup_flags & FOLL_GET))
3229 if (WARN_ON_ONCE(!pages))
3232 gup_flags |= FOLL_PIN;
3233 return __gup_longterm_locked(current->mm, start, nr_pages,
3234 pages, vmas, gup_flags);
3236 EXPORT_SYMBOL(pin_user_pages);
3239 * pin_user_pages_unlocked() is the FOLL_PIN variant of
3240 * get_user_pages_unlocked(). Behavior is the same, except that this one sets
3241 * FOLL_PIN and rejects FOLL_GET.
3243 long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
3244 struct page **pages, unsigned int gup_flags)
3246 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
3247 if (WARN_ON_ONCE(gup_flags & FOLL_GET))
3250 if (WARN_ON_ONCE(!pages))
3253 gup_flags |= FOLL_PIN;
3254 return get_user_pages_unlocked(start, nr_pages, pages, gup_flags);
3256 EXPORT_SYMBOL(pin_user_pages_unlocked);