1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <linux/kernel.h>
3 #include <linux/errno.h>
5 #include <linux/spinlock.h>
8 #include <linux/memremap.h>
9 #include <linux/pagemap.h>
10 #include <linux/rmap.h>
11 #include <linux/swap.h>
12 #include <linux/swapops.h>
13 #include <linux/secretmem.h>
15 #include <linux/sched/signal.h>
16 #include <linux/rwsem.h>
17 #include <linux/hugetlb.h>
18 #include <linux/migrate.h>
19 #include <linux/mm_inline.h>
20 #include <linux/sched/mm.h>
22 #include <asm/mmu_context.h>
23 #include <asm/tlbflush.h>
27 struct follow_page_context {
28 struct dev_pagemap *pgmap;
29 unsigned int page_mask;
32 static inline void sanity_check_pinned_pages(struct page **pages,
35 if (!IS_ENABLED(CONFIG_DEBUG_VM))
39 * We only pin anonymous pages if they are exclusive. Once pinned, we
40 * can no longer turn them possibly shared and PageAnonExclusive() will
41 * stick around until the page is freed.
43 * We'd like to verify that our pinned anonymous pages are still mapped
44 * exclusively. The issue with anon THP is that we don't know how
45 * they are/were mapped when pinning them. However, for anon
46 * THP we can assume that either the given page (PTE-mapped THP) or
47 * the head page (PMD-mapped THP) should be PageAnonExclusive(). If
48 * neither is the case, there is certainly something wrong.
50 for (; npages; npages--, pages++) {
51 struct page *page = *pages;
52 struct folio *folio = page_folio(page);
54 if (!folio_test_anon(folio))
56 if (!folio_test_large(folio) || folio_test_hugetlb(folio))
57 VM_BUG_ON_PAGE(!PageAnonExclusive(&folio->page), page);
59 /* Either a PTE-mapped or a PMD-mapped THP. */
60 VM_BUG_ON_PAGE(!PageAnonExclusive(&folio->page) &&
61 !PageAnonExclusive(page), page);
66 * Return the folio with ref appropriately incremented,
67 * or NULL if that failed.
69 static inline struct folio *try_get_folio(struct page *page, int refs)
74 folio = page_folio(page);
75 if (WARN_ON_ONCE(folio_ref_count(folio) < 0))
77 if (unlikely(!folio_ref_try_add_rcu(folio, refs)))
81 * At this point we have a stable reference to the folio; but it
82 * could be that between calling page_folio() and the refcount
83 * increment, the folio was split, in which case we'd end up
84 * holding a reference on a folio that has nothing to do with the page
85 * we were given anymore.
86 * So now that the folio is stable, recheck that the page still
87 * belongs to this folio.
89 if (unlikely(page_folio(page) != folio)) {
90 if (!put_devmap_managed_page_refs(&folio->page, refs))
91 folio_put_refs(folio, refs);
99 * try_grab_folio() - Attempt to get or pin a folio.
100 * @page: pointer to page to be grabbed
101 * @refs: the value to (effectively) add to the folio's refcount
102 * @flags: gup flags: these are the FOLL_* flag values.
104 * "grab" names in this file mean, "look at flags to decide whether to use
105 * FOLL_PIN or FOLL_GET behavior, when incrementing the folio's refcount.
107 * Either FOLL_PIN or FOLL_GET (or neither) must be set, but not both at the
108 * same time. (That's true throughout the get_user_pages*() and
109 * pin_user_pages*() APIs.) Cases:
111 * FOLL_GET: folio's refcount will be incremented by @refs.
113 * FOLL_PIN on large folios: folio's refcount will be incremented by
114 * @refs, and its compound_pincount will be incremented by @refs.
116 * FOLL_PIN on single-page folios: folio's refcount will be incremented by
117 * @refs * GUP_PIN_COUNTING_BIAS.
119 * Return: The folio containing @page (with refcount appropriately
120 * incremented) for success, or NULL upon failure. If neither FOLL_GET
121 * nor FOLL_PIN was set, that's considered failure, and furthermore,
122 * a likely bug in the caller, so a warning is also emitted.
124 struct folio *try_grab_folio(struct page *page, int refs, unsigned int flags)
126 if (unlikely(!(flags & FOLL_PCI_P2PDMA) && is_pci_p2pdma_page(page)))
129 if (flags & FOLL_GET)
130 return try_get_folio(page, refs);
131 else if (flags & FOLL_PIN) {
135 * Can't do FOLL_LONGTERM + FOLL_PIN gup fast path if not in a
136 * right zone, so fail and let the caller fall back to the slow
139 if (unlikely((flags & FOLL_LONGTERM) &&
140 !is_longterm_pinnable_page(page)))
144 * CAUTION: Don't use compound_head() on the page before this
145 * point, the result won't be stable.
147 folio = try_get_folio(page, refs);
152 * When pinning a large folio, use an exact count to track it.
154 * However, be sure to *also* increment the normal folio
155 * refcount field at least once, so that the folio really
156 * is pinned. That's why the refcount from the earlier
157 * try_get_folio() is left intact.
159 if (folio_test_large(folio))
160 atomic_add(refs, folio_pincount_ptr(folio));
163 refs * (GUP_PIN_COUNTING_BIAS - 1));
165 * Adjust the pincount before re-checking the PTE for changes.
166 * This is essentially a smp_mb() and is paired with a memory
167 * barrier in page_try_share_anon_rmap().
169 smp_mb__after_atomic();
171 node_stat_mod_folio(folio, NR_FOLL_PIN_ACQUIRED, refs);
180 static void gup_put_folio(struct folio *folio, int refs, unsigned int flags)
182 if (flags & FOLL_PIN) {
183 node_stat_mod_folio(folio, NR_FOLL_PIN_RELEASED, refs);
184 if (folio_test_large(folio))
185 atomic_sub(refs, folio_pincount_ptr(folio));
187 refs *= GUP_PIN_COUNTING_BIAS;
190 if (!put_devmap_managed_page_refs(&folio->page, refs))
191 folio_put_refs(folio, refs);
195 * try_grab_page() - elevate a page's refcount by a flag-dependent amount
196 * @page: pointer to page to be grabbed
197 * @flags: gup flags: these are the FOLL_* flag values.
199 * This might not do anything at all, depending on the flags argument.
201 * "grab" names in this file mean, "look at flags to decide whether to use
202 * FOLL_PIN or FOLL_GET behavior, when incrementing the page's refcount.
204 * Either FOLL_PIN or FOLL_GET (or neither) may be set, but not both at the same
205 * time. Cases: please see the try_grab_folio() documentation, with
208 * Return: 0 for success, or if no action was required (if neither FOLL_PIN
209 * nor FOLL_GET was set, nothing is done). A negative error code for failure:
211 * -ENOMEM FOLL_GET or FOLL_PIN was set, but the page could not
214 int __must_check try_grab_page(struct page *page, unsigned int flags)
216 struct folio *folio = page_folio(page);
218 WARN_ON_ONCE((flags & (FOLL_GET | FOLL_PIN)) == (FOLL_GET | FOLL_PIN));
219 if (WARN_ON_ONCE(folio_ref_count(folio) <= 0))
222 if (unlikely(!(flags & FOLL_PCI_P2PDMA) && is_pci_p2pdma_page(page)))
225 if (flags & FOLL_GET)
226 folio_ref_inc(folio);
227 else if (flags & FOLL_PIN) {
229 * Similar to try_grab_folio(): be sure to *also*
230 * increment the normal page refcount field at least once,
231 * so that the page really is pinned.
233 if (folio_test_large(folio)) {
234 folio_ref_add(folio, 1);
235 atomic_add(1, folio_pincount_ptr(folio));
237 folio_ref_add(folio, GUP_PIN_COUNTING_BIAS);
240 node_stat_mod_folio(folio, NR_FOLL_PIN_ACQUIRED, 1);
247 * unpin_user_page() - release a dma-pinned page
248 * @page: pointer to page to be released
250 * Pages that were pinned via pin_user_pages*() must be released via either
251 * unpin_user_page(), or one of the unpin_user_pages*() routines. This is so
252 * that such pages can be separately tracked and uniquely handled. In
253 * particular, interactions with RDMA and filesystems need special handling.
255 void unpin_user_page(struct page *page)
257 sanity_check_pinned_pages(&page, 1);
258 gup_put_folio(page_folio(page), 1, FOLL_PIN);
260 EXPORT_SYMBOL(unpin_user_page);
262 static inline struct folio *gup_folio_range_next(struct page *start,
263 unsigned long npages, unsigned long i, unsigned int *ntails)
265 struct page *next = nth_page(start, i);
266 struct folio *folio = page_folio(next);
269 if (folio_test_large(folio))
270 nr = min_t(unsigned int, npages - i,
271 folio_nr_pages(folio) - folio_page_idx(folio, next));
277 static inline struct folio *gup_folio_next(struct page **list,
278 unsigned long npages, unsigned long i, unsigned int *ntails)
280 struct folio *folio = page_folio(list[i]);
283 for (nr = i + 1; nr < npages; nr++) {
284 if (page_folio(list[nr]) != folio)
293 * unpin_user_pages_dirty_lock() - release and optionally dirty gup-pinned pages
294 * @pages: array of pages to be maybe marked dirty, and definitely released.
295 * @npages: number of pages in the @pages array.
296 * @make_dirty: whether to mark the pages dirty
298 * "gup-pinned page" refers to a page that has had one of the get_user_pages()
299 * variants called on that page.
301 * For each page in the @pages array, make that page (or its head page, if a
302 * compound page) dirty, if @make_dirty is true, and if the page was previously
303 * listed as clean. In any case, releases all pages using unpin_user_page(),
304 * possibly via unpin_user_pages(), for the non-dirty case.
306 * Please see the unpin_user_page() documentation for details.
308 * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
309 * required, then the caller should a) verify that this is really correct,
310 * because _lock() is usually required, and b) hand code it:
311 * set_page_dirty_lock(), unpin_user_page().
314 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
322 unpin_user_pages(pages, npages);
326 sanity_check_pinned_pages(pages, npages);
327 for (i = 0; i < npages; i += nr) {
328 folio = gup_folio_next(pages, npages, i, &nr);
330 * Checking PageDirty at this point may race with
331 * clear_page_dirty_for_io(), but that's OK. Two key
334 * 1) This code sees the page as already dirty, so it
335 * skips the call to set_page_dirty(). That could happen
336 * because clear_page_dirty_for_io() called
337 * page_mkclean(), followed by set_page_dirty().
338 * However, now the page is going to get written back,
339 * which meets the original intention of setting it
340 * dirty, so all is well: clear_page_dirty_for_io() goes
341 * on to call TestClearPageDirty(), and write the page
344 * 2) This code sees the page as clean, so it calls
345 * set_page_dirty(). The page stays dirty, despite being
346 * written back, so it gets written back again in the
347 * next writeback cycle. This is harmless.
349 if (!folio_test_dirty(folio)) {
351 folio_mark_dirty(folio);
354 gup_put_folio(folio, nr, FOLL_PIN);
357 EXPORT_SYMBOL(unpin_user_pages_dirty_lock);
360 * unpin_user_page_range_dirty_lock() - release and optionally dirty
361 * gup-pinned page range
363 * @page: the starting page of a range maybe marked dirty, and definitely released.
364 * @npages: number of consecutive pages to release.
365 * @make_dirty: whether to mark the pages dirty
367 * "gup-pinned page range" refers to a range of pages that has had one of the
368 * pin_user_pages() variants called on that page.
370 * For the page ranges defined by [page .. page+npages], make that range (or
371 * its head pages, if a compound page) dirty, if @make_dirty is true, and if the
372 * page range was previously listed as clean.
374 * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
375 * required, then the caller should a) verify that this is really correct,
376 * because _lock() is usually required, and b) hand code it:
377 * set_page_dirty_lock(), unpin_user_page().
380 void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages,
387 for (i = 0; i < npages; i += nr) {
388 folio = gup_folio_range_next(page, npages, i, &nr);
389 if (make_dirty && !folio_test_dirty(folio)) {
391 folio_mark_dirty(folio);
394 gup_put_folio(folio, nr, FOLL_PIN);
397 EXPORT_SYMBOL(unpin_user_page_range_dirty_lock);
399 static void unpin_user_pages_lockless(struct page **pages, unsigned long npages)
406 * Don't perform any sanity checks because we might have raced with
407 * fork() and some anonymous pages might now actually be shared --
408 * which is why we're unpinning after all.
410 for (i = 0; i < npages; i += nr) {
411 folio = gup_folio_next(pages, npages, i, &nr);
412 gup_put_folio(folio, nr, FOLL_PIN);
417 * unpin_user_pages() - release an array of gup-pinned pages.
418 * @pages: array of pages to be marked dirty and released.
419 * @npages: number of pages in the @pages array.
421 * For each page in the @pages array, release the page using unpin_user_page().
423 * Please see the unpin_user_page() documentation for details.
425 void unpin_user_pages(struct page **pages, unsigned long npages)
432 * If this WARN_ON() fires, then the system *might* be leaking pages (by
433 * leaving them pinned), but probably not. More likely, gup/pup returned
434 * a hard -ERRNO error to the caller, who erroneously passed it here.
436 if (WARN_ON(IS_ERR_VALUE(npages)))
439 sanity_check_pinned_pages(pages, npages);
440 for (i = 0; i < npages; i += nr) {
441 folio = gup_folio_next(pages, npages, i, &nr);
442 gup_put_folio(folio, nr, FOLL_PIN);
445 EXPORT_SYMBOL(unpin_user_pages);
448 * Set the MMF_HAS_PINNED if not set yet; after set it'll be there for the mm's
449 * lifecycle. Avoid setting the bit unless necessary, or it might cause write
450 * cache bouncing on large SMP machines for concurrent pinned gups.
452 static inline void mm_set_has_pinned_flag(unsigned long *mm_flags)
454 if (!test_bit(MMF_HAS_PINNED, mm_flags))
455 set_bit(MMF_HAS_PINNED, mm_flags);
459 static struct page *no_page_table(struct vm_area_struct *vma,
463 * When core dumping an enormous anonymous area that nobody
464 * has touched so far, we don't want to allocate unnecessary pages or
465 * page tables. Return error instead of NULL to skip handle_mm_fault,
466 * then get_dump_page() will return NULL to leave a hole in the dump.
467 * But we can only make this optimization where a hole would surely
468 * be zero-filled if handle_mm_fault() actually did handle it.
470 if ((flags & FOLL_DUMP) &&
471 (vma_is_anonymous(vma) || !vma->vm_ops->fault))
472 return ERR_PTR(-EFAULT);
476 static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address,
477 pte_t *pte, unsigned int flags)
479 if (flags & FOLL_TOUCH) {
482 if (flags & FOLL_WRITE)
483 entry = pte_mkdirty(entry);
484 entry = pte_mkyoung(entry);
486 if (!pte_same(*pte, entry)) {
487 set_pte_at(vma->vm_mm, address, pte, entry);
488 update_mmu_cache(vma, address, pte);
492 /* Proper page table entry exists, but no corresponding struct page */
496 /* FOLL_FORCE can write to even unwritable PTEs in COW mappings. */
497 static inline bool can_follow_write_pte(pte_t pte, struct page *page,
498 struct vm_area_struct *vma,
501 /* If the pte is writable, we can write to the page. */
505 /* Maybe FOLL_FORCE is set to override it? */
506 if (!(flags & FOLL_FORCE))
509 /* But FOLL_FORCE has no effect on shared mappings */
510 if (vma->vm_flags & (VM_MAYSHARE | VM_SHARED))
513 /* ... or read-only private ones */
514 if (!(vma->vm_flags & VM_MAYWRITE))
517 /* ... or already writable ones that just need to take a write fault */
518 if (vma->vm_flags & VM_WRITE)
522 * See can_change_pte_writable(): we broke COW and could map the page
523 * writable if we have an exclusive anonymous page ...
525 if (!page || !PageAnon(page) || !PageAnonExclusive(page))
528 /* ... and a write-fault isn't required for other reasons. */
529 if (vma_soft_dirty_enabled(vma) && !pte_soft_dirty(pte))
531 return !userfaultfd_pte_wp(vma, pte);
534 static struct page *follow_page_pte(struct vm_area_struct *vma,
535 unsigned long address, pmd_t *pmd, unsigned int flags,
536 struct dev_pagemap **pgmap)
538 struct mm_struct *mm = vma->vm_mm;
544 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
545 if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
546 (FOLL_PIN | FOLL_GET)))
547 return ERR_PTR(-EINVAL);
550 * Considering PTE level hugetlb, like continuous-PTE hugetlb on
551 * ARM64 architecture.
553 if (is_vm_hugetlb_page(vma)) {
554 page = follow_huge_pmd_pte(vma, address, flags);
557 return no_page_table(vma, flags);
561 if (unlikely(pmd_bad(*pmd)))
562 return no_page_table(vma, flags);
564 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
566 if (!pte_present(pte)) {
569 * KSM's break_ksm() relies upon recognizing a ksm page
570 * even while it is being migrated, so for that case we
571 * need migration_entry_wait().
573 if (likely(!(flags & FOLL_MIGRATION)))
577 entry = pte_to_swp_entry(pte);
578 if (!is_migration_entry(entry))
580 pte_unmap_unlock(ptep, ptl);
581 migration_entry_wait(mm, pmd, address);
584 if (pte_protnone(pte) && !gup_can_follow_protnone(flags))
587 page = vm_normal_page(vma, address, pte);
590 * We only care about anon pages in can_follow_write_pte() and don't
591 * have to worry about pte_devmap() because they are never anon.
593 if ((flags & FOLL_WRITE) &&
594 !can_follow_write_pte(pte, page, vma, flags)) {
599 if (!page && pte_devmap(pte) && (flags & (FOLL_GET | FOLL_PIN))) {
601 * Only return device mapping pages in the FOLL_GET or FOLL_PIN
602 * case since they are only valid while holding the pgmap
605 *pgmap = get_dev_pagemap(pte_pfn(pte), *pgmap);
607 page = pte_page(pte);
610 } else if (unlikely(!page)) {
611 if (flags & FOLL_DUMP) {
612 /* Avoid special (like zero) pages in core dumps */
613 page = ERR_PTR(-EFAULT);
617 if (is_zero_pfn(pte_pfn(pte))) {
618 page = pte_page(pte);
620 ret = follow_pfn_pte(vma, address, ptep, flags);
626 if (!pte_write(pte) && gup_must_unshare(flags, page)) {
627 page = ERR_PTR(-EMLINK);
631 VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) &&
632 !PageAnonExclusive(page), page);
634 /* try_grab_page() does nothing unless FOLL_GET or FOLL_PIN is set. */
635 ret = try_grab_page(page, flags);
642 * We need to make the page accessible if and only if we are going
643 * to access its content (the FOLL_PIN case). Please see
644 * Documentation/core-api/pin_user_pages.rst for details.
646 if (flags & FOLL_PIN) {
647 ret = arch_make_page_accessible(page);
649 unpin_user_page(page);
654 if (flags & FOLL_TOUCH) {
655 if ((flags & FOLL_WRITE) &&
656 !pte_dirty(pte) && !PageDirty(page))
657 set_page_dirty(page);
659 * pte_mkyoung() would be more correct here, but atomic care
660 * is needed to avoid losing the dirty bit: it is easier to use
661 * mark_page_accessed().
663 mark_page_accessed(page);
666 pte_unmap_unlock(ptep, ptl);
669 pte_unmap_unlock(ptep, ptl);
672 return no_page_table(vma, flags);
675 static struct page *follow_pmd_mask(struct vm_area_struct *vma,
676 unsigned long address, pud_t *pudp,
678 struct follow_page_context *ctx)
683 struct mm_struct *mm = vma->vm_mm;
685 pmd = pmd_offset(pudp, address);
687 * The READ_ONCE() will stabilize the pmdval in a register or
688 * on the stack so that it will stop changing under the code.
690 pmdval = READ_ONCE(*pmd);
691 if (pmd_none(pmdval))
692 return no_page_table(vma, flags);
693 if (pmd_huge(pmdval) && is_vm_hugetlb_page(vma)) {
694 page = follow_huge_pmd_pte(vma, address, flags);
697 return no_page_table(vma, flags);
699 if (is_hugepd(__hugepd(pmd_val(pmdval)))) {
700 page = follow_huge_pd(vma, address,
701 __hugepd(pmd_val(pmdval)), flags,
705 return no_page_table(vma, flags);
708 if (!pmd_present(pmdval)) {
710 * Should never reach here, if thp migration is not supported;
711 * Otherwise, it must be a thp migration entry.
713 VM_BUG_ON(!thp_migration_supported() ||
714 !is_pmd_migration_entry(pmdval));
716 if (likely(!(flags & FOLL_MIGRATION)))
717 return no_page_table(vma, flags);
719 pmd_migration_entry_wait(mm, pmd);
720 pmdval = READ_ONCE(*pmd);
722 * MADV_DONTNEED may convert the pmd to null because
723 * mmap_lock is held in read mode
725 if (pmd_none(pmdval))
726 return no_page_table(vma, flags);
729 if (pmd_devmap(pmdval)) {
730 ptl = pmd_lock(mm, pmd);
731 page = follow_devmap_pmd(vma, address, pmd, flags, &ctx->pgmap);
736 if (likely(!pmd_trans_huge(pmdval)))
737 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
739 if (pmd_protnone(pmdval) && !gup_can_follow_protnone(flags))
740 return no_page_table(vma, flags);
743 ptl = pmd_lock(mm, pmd);
744 if (unlikely(pmd_none(*pmd))) {
746 return no_page_table(vma, flags);
748 if (unlikely(!pmd_present(*pmd))) {
750 if (likely(!(flags & FOLL_MIGRATION)))
751 return no_page_table(vma, flags);
752 pmd_migration_entry_wait(mm, pmd);
755 if (unlikely(!pmd_trans_huge(*pmd))) {
757 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
759 if (flags & FOLL_SPLIT_PMD) {
761 page = pmd_page(*pmd);
762 if (is_huge_zero_page(page)) {
765 split_huge_pmd(vma, pmd, address);
766 if (pmd_trans_unstable(pmd))
770 split_huge_pmd(vma, pmd, address);
771 ret = pte_alloc(mm, pmd) ? -ENOMEM : 0;
774 return ret ? ERR_PTR(ret) :
775 follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
777 page = follow_trans_huge_pmd(vma, address, pmd, flags);
779 ctx->page_mask = HPAGE_PMD_NR - 1;
783 static struct page *follow_pud_mask(struct vm_area_struct *vma,
784 unsigned long address, p4d_t *p4dp,
786 struct follow_page_context *ctx)
791 struct mm_struct *mm = vma->vm_mm;
793 pud = pud_offset(p4dp, address);
795 return no_page_table(vma, flags);
796 if (pud_huge(*pud) && is_vm_hugetlb_page(vma)) {
797 page = follow_huge_pud(mm, address, pud, flags);
800 return no_page_table(vma, flags);
802 if (is_hugepd(__hugepd(pud_val(*pud)))) {
803 page = follow_huge_pd(vma, address,
804 __hugepd(pud_val(*pud)), flags,
808 return no_page_table(vma, flags);
810 if (pud_devmap(*pud)) {
811 ptl = pud_lock(mm, pud);
812 page = follow_devmap_pud(vma, address, pud, flags, &ctx->pgmap);
817 if (unlikely(pud_bad(*pud)))
818 return no_page_table(vma, flags);
820 return follow_pmd_mask(vma, address, pud, flags, ctx);
823 static struct page *follow_p4d_mask(struct vm_area_struct *vma,
824 unsigned long address, pgd_t *pgdp,
826 struct follow_page_context *ctx)
831 p4d = p4d_offset(pgdp, address);
833 return no_page_table(vma, flags);
834 BUILD_BUG_ON(p4d_huge(*p4d));
835 if (unlikely(p4d_bad(*p4d)))
836 return no_page_table(vma, flags);
838 if (is_hugepd(__hugepd(p4d_val(*p4d)))) {
839 page = follow_huge_pd(vma, address,
840 __hugepd(p4d_val(*p4d)), flags,
844 return no_page_table(vma, flags);
846 return follow_pud_mask(vma, address, p4d, flags, ctx);
850 * follow_page_mask - look up a page descriptor from a user-virtual address
851 * @vma: vm_area_struct mapping @address
852 * @address: virtual address to look up
853 * @flags: flags modifying lookup behaviour
854 * @ctx: contains dev_pagemap for %ZONE_DEVICE memory pinning and a
855 * pointer to output page_mask
857 * @flags can have FOLL_ flags set, defined in <linux/mm.h>
859 * When getting pages from ZONE_DEVICE memory, the @ctx->pgmap caches
860 * the device's dev_pagemap metadata to avoid repeating expensive lookups.
862 * When getting an anonymous page and the caller has to trigger unsharing
863 * of a shared anonymous page first, -EMLINK is returned. The caller should
864 * trigger a fault with FAULT_FLAG_UNSHARE set. Note that unsharing is only
865 * relevant with FOLL_PIN and !FOLL_WRITE.
867 * On output, the @ctx->page_mask is set according to the size of the page.
869 * Return: the mapped (struct page *), %NULL if no mapping exists, or
870 * an error pointer if there is a mapping to something not represented
871 * by a page descriptor (see also vm_normal_page()).
873 static struct page *follow_page_mask(struct vm_area_struct *vma,
874 unsigned long address, unsigned int flags,
875 struct follow_page_context *ctx)
879 struct mm_struct *mm = vma->vm_mm;
883 /* make this handle hugepd */
884 page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
886 WARN_ON_ONCE(flags & (FOLL_GET | FOLL_PIN));
890 pgd = pgd_offset(mm, address);
892 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
893 return no_page_table(vma, flags);
895 if (pgd_huge(*pgd)) {
896 page = follow_huge_pgd(mm, address, pgd, flags);
899 return no_page_table(vma, flags);
901 if (is_hugepd(__hugepd(pgd_val(*pgd)))) {
902 page = follow_huge_pd(vma, address,
903 __hugepd(pgd_val(*pgd)), flags,
907 return no_page_table(vma, flags);
910 return follow_p4d_mask(vma, address, pgd, flags, ctx);
913 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
914 unsigned int foll_flags)
916 struct follow_page_context ctx = { NULL };
919 if (vma_is_secretmem(vma))
922 if (foll_flags & FOLL_PIN)
925 page = follow_page_mask(vma, address, foll_flags, &ctx);
927 put_dev_pagemap(ctx.pgmap);
931 static int get_gate_page(struct mm_struct *mm, unsigned long address,
932 unsigned int gup_flags, struct vm_area_struct **vma,
942 /* user gate pages are read-only */
943 if (gup_flags & FOLL_WRITE)
945 if (address > TASK_SIZE)
946 pgd = pgd_offset_k(address);
948 pgd = pgd_offset_gate(mm, address);
951 p4d = p4d_offset(pgd, address);
954 pud = pud_offset(p4d, address);
957 pmd = pmd_offset(pud, address);
958 if (!pmd_present(*pmd))
960 VM_BUG_ON(pmd_trans_huge(*pmd));
961 pte = pte_offset_map(pmd, address);
964 *vma = get_gate_vma(mm);
967 *page = vm_normal_page(*vma, address, *pte);
969 if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(*pte)))
971 *page = pte_page(*pte);
973 ret = try_grab_page(*page, gup_flags);
984 * mmap_lock must be held on entry. If @locked != NULL and *@flags
985 * does not include FOLL_NOWAIT, the mmap_lock may be released. If it
986 * is, *@locked will be set to 0 and -EBUSY returned.
988 static int faultin_page(struct vm_area_struct *vma,
989 unsigned long address, unsigned int *flags, bool unshare,
992 unsigned int fault_flags = 0;
995 if (*flags & FOLL_NOFAULT)
997 if (*flags & FOLL_WRITE)
998 fault_flags |= FAULT_FLAG_WRITE;
999 if (*flags & FOLL_REMOTE)
1000 fault_flags |= FAULT_FLAG_REMOTE;
1002 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
1003 if (*flags & FOLL_NOWAIT)
1004 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT;
1005 if (*flags & FOLL_TRIED) {
1007 * Note: FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_TRIED
1010 fault_flags |= FAULT_FLAG_TRIED;
1013 fault_flags |= FAULT_FLAG_UNSHARE;
1014 /* FAULT_FLAG_WRITE and FAULT_FLAG_UNSHARE are incompatible */
1015 VM_BUG_ON(fault_flags & FAULT_FLAG_WRITE);
1018 ret = handle_mm_fault(vma, address, fault_flags, NULL);
1020 if (ret & VM_FAULT_COMPLETED) {
1022 * With FAULT_FLAG_RETRY_NOWAIT we'll never release the
1023 * mmap lock in the page fault handler. Sanity check this.
1025 WARN_ON_ONCE(fault_flags & FAULT_FLAG_RETRY_NOWAIT);
1029 * We should do the same as VM_FAULT_RETRY, but let's not
1030 * return -EBUSY since that's not reflecting the reality of
1031 * what has happened - we've just fully completed a page
1032 * fault, with the mmap lock released. Use -EAGAIN to show
1033 * that we want to take the mmap lock _again_.
1038 if (ret & VM_FAULT_ERROR) {
1039 int err = vm_fault_to_errno(ret, *flags);
1046 if (ret & VM_FAULT_RETRY) {
1047 if (locked && !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
1055 static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags)
1057 vm_flags_t vm_flags = vma->vm_flags;
1058 int write = (gup_flags & FOLL_WRITE);
1059 int foreign = (gup_flags & FOLL_REMOTE);
1061 if (vm_flags & (VM_IO | VM_PFNMAP))
1064 if (gup_flags & FOLL_ANON && !vma_is_anonymous(vma))
1067 if ((gup_flags & FOLL_LONGTERM) && vma_is_fsdax(vma))
1070 if ((gup_flags & FOLL_LONGTERM) && (gup_flags & FOLL_PCI_P2PDMA))
1073 if (vma_is_secretmem(vma))
1077 if (!(vm_flags & VM_WRITE)) {
1078 if (!(gup_flags & FOLL_FORCE))
1081 * We used to let the write,force case do COW in a
1082 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could
1083 * set a breakpoint in a read-only mapping of an
1084 * executable, without corrupting the file (yet only
1085 * when that file had been opened for writing!).
1086 * Anon pages in shared mappings are surprising: now
1089 if (!is_cow_mapping(vm_flags))
1092 } else if (!(vm_flags & VM_READ)) {
1093 if (!(gup_flags & FOLL_FORCE))
1096 * Is there actually any vma we can reach here which does not
1097 * have VM_MAYREAD set?
1099 if (!(vm_flags & VM_MAYREAD))
1103 * gups are always data accesses, not instruction
1104 * fetches, so execute=false here
1106 if (!arch_vma_access_permitted(vma, write, false, foreign))
1112 * __get_user_pages() - pin user pages in memory
1113 * @mm: mm_struct of target mm
1114 * @start: starting user address
1115 * @nr_pages: number of pages from start to pin
1116 * @gup_flags: flags modifying pin behaviour
1117 * @pages: array that receives pointers to the pages pinned.
1118 * Should be at least nr_pages long. Or NULL, if caller
1119 * only intends to ensure the pages are faulted in.
1120 * @vmas: array of pointers to vmas corresponding to each page.
1121 * Or NULL if the caller does not require them.
1122 * @locked: whether we're still with the mmap_lock held
1124 * Returns either number of pages pinned (which may be less than the
1125 * number requested), or an error. Details about the return value:
1127 * -- If nr_pages is 0, returns 0.
1128 * -- If nr_pages is >0, but no pages were pinned, returns -errno.
1129 * -- If nr_pages is >0, and some pages were pinned, returns the number of
1130 * pages pinned. Again, this may be less than nr_pages.
1131 * -- 0 return value is possible when the fault would need to be retried.
1133 * The caller is responsible for releasing returned @pages, via put_page().
1135 * @vmas are valid only as long as mmap_lock is held.
1137 * Must be called with mmap_lock held. It may be released. See below.
1139 * __get_user_pages walks a process's page tables and takes a reference to
1140 * each struct page that each user address corresponds to at a given
1141 * instant. That is, it takes the page that would be accessed if a user
1142 * thread accesses the given user virtual address at that instant.
1144 * This does not guarantee that the page exists in the user mappings when
1145 * __get_user_pages returns, and there may even be a completely different
1146 * page there in some cases (eg. if mmapped pagecache has been invalidated
1147 * and subsequently re faulted). However it does guarantee that the page
1148 * won't be freed completely. And mostly callers simply care that the page
1149 * contains data that was valid *at some point in time*. Typically, an IO
1150 * or similar operation cannot guarantee anything stronger anyway because
1151 * locks can't be held over the syscall boundary.
1153 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
1154 * the page is written to, set_page_dirty (or set_page_dirty_lock, as
1155 * appropriate) must be called after the page is finished with, and
1156 * before put_page is called.
1158 * If @locked != NULL, *@locked will be set to 0 when mmap_lock is
1159 * released by an up_read(). That can happen if @gup_flags does not
1162 * A caller using such a combination of @locked and @gup_flags
1163 * must therefore hold the mmap_lock for reading only, and recognize
1164 * when it's been released. Otherwise, it must be held for either
1165 * reading or writing and will not be released.
1167 * In most cases, get_user_pages or get_user_pages_fast should be used
1168 * instead of __get_user_pages. __get_user_pages should be used only if
1169 * you need some special @gup_flags.
1171 static long __get_user_pages(struct mm_struct *mm,
1172 unsigned long start, unsigned long nr_pages,
1173 unsigned int gup_flags, struct page **pages,
1174 struct vm_area_struct **vmas, int *locked)
1176 long ret = 0, i = 0;
1177 struct vm_area_struct *vma = NULL;
1178 struct follow_page_context ctx = { NULL };
1183 start = untagged_addr(start);
1185 VM_BUG_ON(!!pages != !!(gup_flags & (FOLL_GET | FOLL_PIN)));
1189 unsigned int foll_flags = gup_flags;
1190 unsigned int page_increm;
1192 /* first iteration or cross vma bound */
1193 if (!vma || start >= vma->vm_end) {
1194 vma = find_extend_vma(mm, start);
1195 if (!vma && in_gate_area(mm, start)) {
1196 ret = get_gate_page(mm, start & PAGE_MASK,
1198 pages ? &pages[i] : NULL);
1209 ret = check_vma_flags(vma, gup_flags);
1213 if (is_vm_hugetlb_page(vma)) {
1214 i = follow_hugetlb_page(mm, vma, pages, vmas,
1215 &start, &nr_pages, i,
1217 if (locked && *locked == 0) {
1219 * We've got a VM_FAULT_RETRY
1220 * and we've lost mmap_lock.
1221 * We must stop here.
1223 BUG_ON(gup_flags & FOLL_NOWAIT);
1231 * If we have a pending SIGKILL, don't keep faulting pages and
1232 * potentially allocating memory.
1234 if (fatal_signal_pending(current)) {
1240 page = follow_page_mask(vma, start, foll_flags, &ctx);
1241 if (!page || PTR_ERR(page) == -EMLINK) {
1242 ret = faultin_page(vma, start, &foll_flags,
1243 PTR_ERR(page) == -EMLINK, locked);
1257 } else if (PTR_ERR(page) == -EEXIST) {
1259 * Proper page table entry exists, but no corresponding
1260 * struct page. If the caller expects **pages to be
1261 * filled in, bail out now, because that can't be done
1265 ret = PTR_ERR(page);
1270 } else if (IS_ERR(page)) {
1271 ret = PTR_ERR(page);
1276 flush_anon_page(vma, page, start);
1277 flush_dcache_page(page);
1285 page_increm = 1 + (~(start >> PAGE_SHIFT) & ctx.page_mask);
1286 if (page_increm > nr_pages)
1287 page_increm = nr_pages;
1289 start += page_increm * PAGE_SIZE;
1290 nr_pages -= page_increm;
1294 put_dev_pagemap(ctx.pgmap);
1298 static bool vma_permits_fault(struct vm_area_struct *vma,
1299 unsigned int fault_flags)
1301 bool write = !!(fault_flags & FAULT_FLAG_WRITE);
1302 bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE);
1303 vm_flags_t vm_flags = write ? VM_WRITE : VM_READ;
1305 if (!(vm_flags & vma->vm_flags))
1309 * The architecture might have a hardware protection
1310 * mechanism other than read/write that can deny access.
1312 * gup always represents data access, not instruction
1313 * fetches, so execute=false here:
1315 if (!arch_vma_access_permitted(vma, write, false, foreign))
1322 * fixup_user_fault() - manually resolve a user page fault
1323 * @mm: mm_struct of target mm
1324 * @address: user address
1325 * @fault_flags:flags to pass down to handle_mm_fault()
1326 * @unlocked: did we unlock the mmap_lock while retrying, maybe NULL if caller
1327 * does not allow retry. If NULL, the caller must guarantee
1328 * that fault_flags does not contain FAULT_FLAG_ALLOW_RETRY.
1330 * This is meant to be called in the specific scenario where for locking reasons
1331 * we try to access user memory in atomic context (within a pagefault_disable()
1332 * section), this returns -EFAULT, and we want to resolve the user fault before
1335 * Typically this is meant to be used by the futex code.
1337 * The main difference with get_user_pages() is that this function will
1338 * unconditionally call handle_mm_fault() which will in turn perform all the
1339 * necessary SW fixup of the dirty and young bits in the PTE, while
1340 * get_user_pages() only guarantees to update these in the struct page.
1342 * This is important for some architectures where those bits also gate the
1343 * access permission to the page because they are maintained in software. On
1344 * such architectures, gup() will not be enough to make a subsequent access
1347 * This function will not return with an unlocked mmap_lock. So it has not the
1348 * same semantics wrt the @mm->mmap_lock as does filemap_fault().
1350 int fixup_user_fault(struct mm_struct *mm,
1351 unsigned long address, unsigned int fault_flags,
1354 struct vm_area_struct *vma;
1357 address = untagged_addr(address);
1360 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
1363 vma = find_extend_vma(mm, address);
1364 if (!vma || address < vma->vm_start)
1367 if (!vma_permits_fault(vma, fault_flags))
1370 if ((fault_flags & FAULT_FLAG_KILLABLE) &&
1371 fatal_signal_pending(current))
1374 ret = handle_mm_fault(vma, address, fault_flags, NULL);
1376 if (ret & VM_FAULT_COMPLETED) {
1378 * NOTE: it's a pity that we need to retake the lock here
1379 * to pair with the unlock() in the callers. Ideally we
1380 * could tell the callers so they do not need to unlock.
1387 if (ret & VM_FAULT_ERROR) {
1388 int err = vm_fault_to_errno(ret, 0);
1395 if (ret & VM_FAULT_RETRY) {
1398 fault_flags |= FAULT_FLAG_TRIED;
1404 EXPORT_SYMBOL_GPL(fixup_user_fault);
1407 * Please note that this function, unlike __get_user_pages will not
1408 * return 0 for nr_pages > 0 without FOLL_NOWAIT
1410 static __always_inline long __get_user_pages_locked(struct mm_struct *mm,
1411 unsigned long start,
1412 unsigned long nr_pages,
1413 struct page **pages,
1414 struct vm_area_struct **vmas,
1418 long ret, pages_done;
1422 /* if VM_FAULT_RETRY can be returned, vmas become invalid */
1424 /* check caller initialized locked */
1425 BUG_ON(*locked != 1);
1428 if (flags & FOLL_PIN)
1429 mm_set_has_pinned_flag(&mm->flags);
1432 * FOLL_PIN and FOLL_GET are mutually exclusive. Traditional behavior
1433 * is to set FOLL_GET if the caller wants pages[] filled in (but has
1434 * carelessly failed to specify FOLL_GET), so keep doing that, but only
1435 * for FOLL_GET, not for the newer FOLL_PIN.
1437 * FOLL_PIN always expects pages to be non-null, but no need to assert
1438 * that here, as any failures will be obvious enough.
1440 if (pages && !(flags & FOLL_PIN))
1444 lock_dropped = false;
1446 ret = __get_user_pages(mm, start, nr_pages, flags, pages,
1449 /* VM_FAULT_RETRY couldn't trigger, bypass */
1452 /* VM_FAULT_RETRY or VM_FAULT_COMPLETED cannot return errors */
1455 BUG_ON(ret >= nr_pages);
1466 * VM_FAULT_RETRY didn't trigger or it was a
1474 * VM_FAULT_RETRY triggered, so seek to the faulting offset.
1475 * For the prefault case (!pages) we only update counts.
1479 start += ret << PAGE_SHIFT;
1480 lock_dropped = true;
1484 * Repeat on the address that fired VM_FAULT_RETRY
1485 * with both FAULT_FLAG_ALLOW_RETRY and
1486 * FAULT_FLAG_TRIED. Note that GUP can be interrupted
1487 * by fatal signals, so we need to check it before we
1488 * start trying again otherwise it can loop forever.
1491 if (fatal_signal_pending(current)) {
1493 pages_done = -EINTR;
1497 ret = mmap_read_lock_killable(mm);
1506 ret = __get_user_pages(mm, start, 1, flags | FOLL_TRIED,
1507 pages, NULL, locked);
1509 /* Continue to retry until we succeeded */
1527 if (lock_dropped && *locked) {
1529 * We must let the caller know we temporarily dropped the lock
1530 * and so the critical section protected by it was lost.
1532 mmap_read_unlock(mm);
1539 * populate_vma_page_range() - populate a range of pages in the vma.
1541 * @start: start address
1543 * @locked: whether the mmap_lock is still held
1545 * This takes care of mlocking the pages too if VM_LOCKED is set.
1547 * Return either number of pages pinned in the vma, or a negative error
1550 * vma->vm_mm->mmap_lock must be held.
1552 * If @locked is NULL, it may be held for read or write and will
1555 * If @locked is non-NULL, it must held for read only and may be
1556 * released. If it's released, *@locked will be set to 0.
1558 long populate_vma_page_range(struct vm_area_struct *vma,
1559 unsigned long start, unsigned long end, int *locked)
1561 struct mm_struct *mm = vma->vm_mm;
1562 unsigned long nr_pages = (end - start) / PAGE_SIZE;
1566 VM_BUG_ON(!PAGE_ALIGNED(start));
1567 VM_BUG_ON(!PAGE_ALIGNED(end));
1568 VM_BUG_ON_VMA(start < vma->vm_start, vma);
1569 VM_BUG_ON_VMA(end > vma->vm_end, vma);
1570 mmap_assert_locked(mm);
1573 * Rightly or wrongly, the VM_LOCKONFAULT case has never used
1574 * faultin_page() to break COW, so it has no work to do here.
1576 if (vma->vm_flags & VM_LOCKONFAULT)
1579 gup_flags = FOLL_TOUCH;
1581 * We want to touch writable mappings with a write fault in order
1582 * to break COW, except for shared mappings because these don't COW
1583 * and we would not want to dirty them for nothing.
1585 if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE)
1586 gup_flags |= FOLL_WRITE;
1589 * We want mlock to succeed for regions that have any permissions
1590 * other than PROT_NONE.
1592 if (vma_is_accessible(vma))
1593 gup_flags |= FOLL_FORCE;
1596 * We made sure addr is within a VMA, so the following will
1597 * not result in a stack expansion that recurses back here.
1599 ret = __get_user_pages(mm, start, nr_pages, gup_flags,
1600 NULL, NULL, locked);
1606 * faultin_vma_page_range() - populate (prefault) page tables inside the
1607 * given VMA range readable/writable
1609 * This takes care of mlocking the pages, too, if VM_LOCKED is set.
1612 * @start: start address
1614 * @write: whether to prefault readable or writable
1615 * @locked: whether the mmap_lock is still held
1617 * Returns either number of processed pages in the vma, or a negative error
1618 * code on error (see __get_user_pages()).
1620 * vma->vm_mm->mmap_lock must be held. The range must be page-aligned and
1621 * covered by the VMA.
1623 * If @locked is NULL, it may be held for read or write and will be unperturbed.
1625 * If @locked is non-NULL, it must held for read only and may be released. If
1626 * it's released, *@locked will be set to 0.
1628 long faultin_vma_page_range(struct vm_area_struct *vma, unsigned long start,
1629 unsigned long end, bool write, int *locked)
1631 struct mm_struct *mm = vma->vm_mm;
1632 unsigned long nr_pages = (end - start) / PAGE_SIZE;
1636 VM_BUG_ON(!PAGE_ALIGNED(start));
1637 VM_BUG_ON(!PAGE_ALIGNED(end));
1638 VM_BUG_ON_VMA(start < vma->vm_start, vma);
1639 VM_BUG_ON_VMA(end > vma->vm_end, vma);
1640 mmap_assert_locked(mm);
1643 * FOLL_TOUCH: Mark page accessed and thereby young; will also mark
1644 * the page dirty with FOLL_WRITE -- which doesn't make a
1645 * difference with !FOLL_FORCE, because the page is writable
1646 * in the page table.
1647 * FOLL_HWPOISON: Return -EHWPOISON instead of -EFAULT when we hit
1649 * !FOLL_FORCE: Require proper access permissions.
1651 gup_flags = FOLL_TOUCH | FOLL_HWPOISON;
1653 gup_flags |= FOLL_WRITE;
1656 * We want to report -EINVAL instead of -EFAULT for any permission
1657 * problems or incompatible mappings.
1659 if (check_vma_flags(vma, gup_flags))
1662 ret = __get_user_pages(mm, start, nr_pages, gup_flags,
1663 NULL, NULL, locked);
1669 * __mm_populate - populate and/or mlock pages within a range of address space.
1671 * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap
1672 * flags. VMAs must be already marked with the desired vm_flags, and
1673 * mmap_lock must not be held.
1675 int __mm_populate(unsigned long start, unsigned long len, int ignore_errors)
1677 struct mm_struct *mm = current->mm;
1678 unsigned long end, nstart, nend;
1679 struct vm_area_struct *vma = NULL;
1685 for (nstart = start; nstart < end; nstart = nend) {
1687 * We want to fault in pages for [nstart; end) address range.
1688 * Find first corresponding VMA.
1693 vma = find_vma_intersection(mm, nstart, end);
1694 } else if (nstart >= vma->vm_end)
1695 vma = find_vma_intersection(mm, vma->vm_end, end);
1700 * Set [nstart; nend) to intersection of desired address
1701 * range with the first VMA. Also, skip undesirable VMA types.
1703 nend = min(end, vma->vm_end);
1704 if (vma->vm_flags & (VM_IO | VM_PFNMAP))
1706 if (nstart < vma->vm_start)
1707 nstart = vma->vm_start;
1709 * Now fault in a range of pages. populate_vma_page_range()
1710 * double checks the vma flags, so that it won't mlock pages
1711 * if the vma was already munlocked.
1713 ret = populate_vma_page_range(vma, nstart, nend, &locked);
1715 if (ignore_errors) {
1717 continue; /* continue at next VMA */
1721 nend = nstart + ret * PAGE_SIZE;
1725 mmap_read_unlock(mm);
1726 return ret; /* 0 or negative error code */
1728 #else /* CONFIG_MMU */
1729 static long __get_user_pages_locked(struct mm_struct *mm, unsigned long start,
1730 unsigned long nr_pages, struct page **pages,
1731 struct vm_area_struct **vmas, int *locked,
1732 unsigned int foll_flags)
1734 struct vm_area_struct *vma;
1735 unsigned long vm_flags;
1738 /* calculate required read or write permissions.
1739 * If FOLL_FORCE is set, we only require the "MAY" flags.
1741 vm_flags = (foll_flags & FOLL_WRITE) ?
1742 (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1743 vm_flags &= (foll_flags & FOLL_FORCE) ?
1744 (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1746 for (i = 0; i < nr_pages; i++) {
1747 vma = find_vma(mm, start);
1749 goto finish_or_fault;
1751 /* protect what we can, including chardevs */
1752 if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1753 !(vm_flags & vma->vm_flags))
1754 goto finish_or_fault;
1757 pages[i] = virt_to_page((void *)start);
1763 start = (start + PAGE_SIZE) & PAGE_MASK;
1769 return i ? : -EFAULT;
1771 #endif /* !CONFIG_MMU */
1774 * fault_in_writeable - fault in userspace address range for writing
1775 * @uaddr: start of address range
1776 * @size: size of address range
1778 * Returns the number of bytes not faulted in (like copy_to_user() and
1779 * copy_from_user()).
1781 size_t fault_in_writeable(char __user *uaddr, size_t size)
1783 char __user *start = uaddr, *end;
1785 if (unlikely(size == 0))
1787 if (!user_write_access_begin(uaddr, size))
1789 if (!PAGE_ALIGNED(uaddr)) {
1790 unsafe_put_user(0, uaddr, out);
1791 uaddr = (char __user *)PAGE_ALIGN((unsigned long)uaddr);
1793 end = (char __user *)PAGE_ALIGN((unsigned long)start + size);
1794 if (unlikely(end < start))
1796 while (uaddr != end) {
1797 unsafe_put_user(0, uaddr, out);
1802 user_write_access_end();
1803 if (size > uaddr - start)
1804 return size - (uaddr - start);
1807 EXPORT_SYMBOL(fault_in_writeable);
1810 * fault_in_subpage_writeable - fault in an address range for writing
1811 * @uaddr: start of address range
1812 * @size: size of address range
1814 * Fault in a user address range for writing while checking for permissions at
1815 * sub-page granularity (e.g. arm64 MTE). This function should be used when
1816 * the caller cannot guarantee forward progress of a copy_to_user() loop.
1818 * Returns the number of bytes not faulted in (like copy_to_user() and
1819 * copy_from_user()).
1821 size_t fault_in_subpage_writeable(char __user *uaddr, size_t size)
1826 * Attempt faulting in at page granularity first for page table
1827 * permission checking. The arch-specific probe_subpage_writeable()
1828 * functions may not check for this.
1830 faulted_in = size - fault_in_writeable(uaddr, size);
1832 faulted_in -= probe_subpage_writeable(uaddr, faulted_in);
1834 return size - faulted_in;
1836 EXPORT_SYMBOL(fault_in_subpage_writeable);
1839 * fault_in_safe_writeable - fault in an address range for writing
1840 * @uaddr: start of address range
1841 * @size: length of address range
1843 * Faults in an address range for writing. This is primarily useful when we
1844 * already know that some or all of the pages in the address range aren't in
1847 * Unlike fault_in_writeable(), this function is non-destructive.
1849 * Note that we don't pin or otherwise hold the pages referenced that we fault
1850 * in. There's no guarantee that they'll stay in memory for any duration of
1853 * Returns the number of bytes not faulted in, like copy_to_user() and
1856 size_t fault_in_safe_writeable(const char __user *uaddr, size_t size)
1858 unsigned long start = (unsigned long)uaddr, end;
1859 struct mm_struct *mm = current->mm;
1860 bool unlocked = false;
1862 if (unlikely(size == 0))
1864 end = PAGE_ALIGN(start + size);
1870 if (fixup_user_fault(mm, start, FAULT_FLAG_WRITE, &unlocked))
1872 start = (start + PAGE_SIZE) & PAGE_MASK;
1873 } while (start != end);
1874 mmap_read_unlock(mm);
1876 if (size > (unsigned long)uaddr - start)
1877 return size - ((unsigned long)uaddr - start);
1880 EXPORT_SYMBOL(fault_in_safe_writeable);
1883 * fault_in_readable - fault in userspace address range for reading
1884 * @uaddr: start of user address range
1885 * @size: size of user address range
1887 * Returns the number of bytes not faulted in (like copy_to_user() and
1888 * copy_from_user()).
1890 size_t fault_in_readable(const char __user *uaddr, size_t size)
1892 const char __user *start = uaddr, *end;
1895 if (unlikely(size == 0))
1897 if (!user_read_access_begin(uaddr, size))
1899 if (!PAGE_ALIGNED(uaddr)) {
1900 unsafe_get_user(c, uaddr, out);
1901 uaddr = (const char __user *)PAGE_ALIGN((unsigned long)uaddr);
1903 end = (const char __user *)PAGE_ALIGN((unsigned long)start + size);
1904 if (unlikely(end < start))
1906 while (uaddr != end) {
1907 unsafe_get_user(c, uaddr, out);
1912 user_read_access_end();
1914 if (size > uaddr - start)
1915 return size - (uaddr - start);
1918 EXPORT_SYMBOL(fault_in_readable);
1921 * get_dump_page() - pin user page in memory while writing it to core dump
1922 * @addr: user address
1924 * Returns struct page pointer of user page pinned for dump,
1925 * to be freed afterwards by put_page().
1927 * Returns NULL on any kind of failure - a hole must then be inserted into
1928 * the corefile, to preserve alignment with its headers; and also returns
1929 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
1930 * allowing a hole to be left in the corefile to save disk space.
1932 * Called without mmap_lock (takes and releases the mmap_lock by itself).
1934 #ifdef CONFIG_ELF_CORE
1935 struct page *get_dump_page(unsigned long addr)
1937 struct mm_struct *mm = current->mm;
1942 if (mmap_read_lock_killable(mm))
1944 ret = __get_user_pages_locked(mm, addr, 1, &page, NULL, &locked,
1945 FOLL_FORCE | FOLL_DUMP | FOLL_GET);
1947 mmap_read_unlock(mm);
1948 return (ret == 1) ? page : NULL;
1950 #endif /* CONFIG_ELF_CORE */
1952 #ifdef CONFIG_MIGRATION
1954 * Returns the number of collected pages. Return value is always >= 0.
1956 static unsigned long collect_longterm_unpinnable_pages(
1957 struct list_head *movable_page_list,
1958 unsigned long nr_pages,
1959 struct page **pages)
1961 unsigned long i, collected = 0;
1962 struct folio *prev_folio = NULL;
1963 bool drain_allow = true;
1965 for (i = 0; i < nr_pages; i++) {
1966 struct folio *folio = page_folio(pages[i]);
1968 if (folio == prev_folio)
1972 if (folio_is_longterm_pinnable(folio))
1977 if (folio_is_device_coherent(folio))
1980 if (folio_test_hugetlb(folio)) {
1981 isolate_hugetlb(&folio->page, movable_page_list);
1985 if (!folio_test_lru(folio) && drain_allow) {
1986 lru_add_drain_all();
1987 drain_allow = false;
1990 if (!folio_isolate_lru(folio))
1993 list_add_tail(&folio->lru, movable_page_list);
1994 node_stat_mod_folio(folio,
1995 NR_ISOLATED_ANON + folio_is_file_lru(folio),
1996 folio_nr_pages(folio));
2003 * Unpins all pages and migrates device coherent pages and movable_page_list.
2004 * Returns -EAGAIN if all pages were successfully migrated or -errno for failure
2005 * (or partial success).
2007 static int migrate_longterm_unpinnable_pages(
2008 struct list_head *movable_page_list,
2009 unsigned long nr_pages,
2010 struct page **pages)
2015 for (i = 0; i < nr_pages; i++) {
2016 struct folio *folio = page_folio(pages[i]);
2018 if (folio_is_device_coherent(folio)) {
2020 * Migration will fail if the page is pinned, so convert
2021 * the pin on the source page to a normal reference.
2025 gup_put_folio(folio, 1, FOLL_PIN);
2027 if (migrate_device_coherent_page(&folio->page)) {
2036 * We can't migrate pages with unexpected references, so drop
2037 * the reference obtained by __get_user_pages_locked().
2038 * Migrating pages have been added to movable_page_list after
2039 * calling folio_isolate_lru() which takes a reference so the
2040 * page won't be freed if it's migrating.
2042 unpin_user_page(pages[i]);
2046 if (!list_empty(movable_page_list)) {
2047 struct migration_target_control mtc = {
2048 .nid = NUMA_NO_NODE,
2049 .gfp_mask = GFP_USER | __GFP_NOWARN,
2052 if (migrate_pages(movable_page_list, alloc_migration_target,
2053 NULL, (unsigned long)&mtc, MIGRATE_SYNC,
2054 MR_LONGTERM_PIN, NULL)) {
2060 putback_movable_pages(movable_page_list);
2065 for (i = 0; i < nr_pages; i++)
2067 unpin_user_page(pages[i]);
2068 putback_movable_pages(movable_page_list);
2074 * Check whether all pages are *allowed* to be pinned. Rather confusingly, all
2075 * pages in the range are required to be pinned via FOLL_PIN, before calling
2078 * If any pages in the range are not allowed to be pinned, then this routine
2079 * will migrate those pages away, unpin all the pages in the range and return
2080 * -EAGAIN. The caller should re-pin the entire range with FOLL_PIN and then
2081 * call this routine again.
2083 * If an error other than -EAGAIN occurs, this indicates a migration failure.
2084 * The caller should give up, and propagate the error back up the call stack.
2086 * If everything is OK and all pages in the range are allowed to be pinned, then
2087 * this routine leaves all pages pinned and returns zero for success.
2089 static long check_and_migrate_movable_pages(unsigned long nr_pages,
2090 struct page **pages)
2092 unsigned long collected;
2093 LIST_HEAD(movable_page_list);
2095 collected = collect_longterm_unpinnable_pages(&movable_page_list,
2100 return migrate_longterm_unpinnable_pages(&movable_page_list, nr_pages,
2104 static long check_and_migrate_movable_pages(unsigned long nr_pages,
2105 struct page **pages)
2109 #endif /* CONFIG_MIGRATION */
2112 * __gup_longterm_locked() is a wrapper for __get_user_pages_locked which
2113 * allows us to process the FOLL_LONGTERM flag.
2115 static long __gup_longterm_locked(struct mm_struct *mm,
2116 unsigned long start,
2117 unsigned long nr_pages,
2118 struct page **pages,
2119 struct vm_area_struct **vmas,
2120 unsigned int gup_flags)
2123 long rc, nr_pinned_pages;
2125 if (!(gup_flags & FOLL_LONGTERM))
2126 return __get_user_pages_locked(mm, start, nr_pages, pages, vmas,
2130 * If we get to this point then FOLL_LONGTERM is set, and FOLL_LONGTERM
2131 * implies FOLL_PIN (although the reverse is not true). Therefore it is
2132 * correct to unconditionally call check_and_migrate_movable_pages()
2133 * which assumes pages have been pinned via FOLL_PIN.
2135 * Enforce the above reasoning by asserting that FOLL_PIN is set.
2137 if (WARN_ON(!(gup_flags & FOLL_PIN)))
2139 flags = memalloc_pin_save();
2141 nr_pinned_pages = __get_user_pages_locked(mm, start, nr_pages,
2144 if (nr_pinned_pages <= 0) {
2145 rc = nr_pinned_pages;
2148 rc = check_and_migrate_movable_pages(nr_pinned_pages, pages);
2149 } while (rc == -EAGAIN);
2150 memalloc_pin_restore(flags);
2152 return rc ? rc : nr_pinned_pages;
2155 static bool is_valid_gup_flags(unsigned int gup_flags)
2158 * FOLL_PIN must only be set internally by the pin_user_pages*() APIs,
2159 * never directly by the caller, so enforce that with an assertion:
2161 if (WARN_ON_ONCE(gup_flags & FOLL_PIN))
2164 * FOLL_PIN is a prerequisite to FOLL_LONGTERM. Another way of saying
2165 * that is, FOLL_LONGTERM is a specific case, more restrictive case of
2168 if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
2175 static long __get_user_pages_remote(struct mm_struct *mm,
2176 unsigned long start, unsigned long nr_pages,
2177 unsigned int gup_flags, struct page **pages,
2178 struct vm_area_struct **vmas, int *locked)
2181 * Parts of FOLL_LONGTERM behavior are incompatible with
2182 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
2183 * vmas. However, this only comes up if locked is set, and there are
2184 * callers that do request FOLL_LONGTERM, but do not set locked. So,
2185 * allow what we can.
2187 if (gup_flags & FOLL_LONGTERM) {
2188 if (WARN_ON_ONCE(locked))
2191 * This will check the vmas (even if our vmas arg is NULL)
2192 * and return -ENOTSUPP if DAX isn't allowed in this case:
2194 return __gup_longterm_locked(mm, start, nr_pages, pages,
2195 vmas, gup_flags | FOLL_TOUCH |
2199 return __get_user_pages_locked(mm, start, nr_pages, pages, vmas,
2201 gup_flags | FOLL_TOUCH | FOLL_REMOTE);
2205 * get_user_pages_remote() - pin user pages in memory
2206 * @mm: mm_struct of target mm
2207 * @start: starting user address
2208 * @nr_pages: number of pages from start to pin
2209 * @gup_flags: flags modifying lookup behaviour
2210 * @pages: array that receives pointers to the pages pinned.
2211 * Should be at least nr_pages long. Or NULL, if caller
2212 * only intends to ensure the pages are faulted in.
2213 * @vmas: array of pointers to vmas corresponding to each page.
2214 * Or NULL if the caller does not require them.
2215 * @locked: pointer to lock flag indicating whether lock is held and
2216 * subsequently whether VM_FAULT_RETRY functionality can be
2217 * utilised. Lock must initially be held.
2219 * Returns either number of pages pinned (which may be less than the
2220 * number requested), or an error. Details about the return value:
2222 * -- If nr_pages is 0, returns 0.
2223 * -- If nr_pages is >0, but no pages were pinned, returns -errno.
2224 * -- If nr_pages is >0, and some pages were pinned, returns the number of
2225 * pages pinned. Again, this may be less than nr_pages.
2227 * The caller is responsible for releasing returned @pages, via put_page().
2229 * @vmas are valid only as long as mmap_lock is held.
2231 * Must be called with mmap_lock held for read or write.
2233 * get_user_pages_remote walks a process's page tables and takes a reference
2234 * to each struct page that each user address corresponds to at a given
2235 * instant. That is, it takes the page that would be accessed if a user
2236 * thread accesses the given user virtual address at that instant.
2238 * This does not guarantee that the page exists in the user mappings when
2239 * get_user_pages_remote returns, and there may even be a completely different
2240 * page there in some cases (eg. if mmapped pagecache has been invalidated
2241 * and subsequently re faulted). However it does guarantee that the page
2242 * won't be freed completely. And mostly callers simply care that the page
2243 * contains data that was valid *at some point in time*. Typically, an IO
2244 * or similar operation cannot guarantee anything stronger anyway because
2245 * locks can't be held over the syscall boundary.
2247 * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page
2248 * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must
2249 * be called after the page is finished with, and before put_page is called.
2251 * get_user_pages_remote is typically used for fewer-copy IO operations,
2252 * to get a handle on the memory by some means other than accesses
2253 * via the user virtual addresses. The pages may be submitted for
2254 * DMA to devices or accessed via their kernel linear mapping (via the
2255 * kmap APIs). Care should be taken to use the correct cache flushing APIs.
2257 * See also get_user_pages_fast, for performance critical applications.
2259 * get_user_pages_remote should be phased out in favor of
2260 * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing
2261 * should use get_user_pages_remote because it cannot pass
2262 * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault.
2264 long get_user_pages_remote(struct mm_struct *mm,
2265 unsigned long start, unsigned long nr_pages,
2266 unsigned int gup_flags, struct page **pages,
2267 struct vm_area_struct **vmas, int *locked)
2269 if (!is_valid_gup_flags(gup_flags))
2272 return __get_user_pages_remote(mm, start, nr_pages, gup_flags,
2273 pages, vmas, locked);
2275 EXPORT_SYMBOL(get_user_pages_remote);
2277 #else /* CONFIG_MMU */
2278 long get_user_pages_remote(struct mm_struct *mm,
2279 unsigned long start, unsigned long nr_pages,
2280 unsigned int gup_flags, struct page **pages,
2281 struct vm_area_struct **vmas, int *locked)
2286 static long __get_user_pages_remote(struct mm_struct *mm,
2287 unsigned long start, unsigned long nr_pages,
2288 unsigned int gup_flags, struct page **pages,
2289 struct vm_area_struct **vmas, int *locked)
2293 #endif /* !CONFIG_MMU */
2296 * get_user_pages() - pin user pages in memory
2297 * @start: starting user address
2298 * @nr_pages: number of pages from start to pin
2299 * @gup_flags: flags modifying lookup behaviour
2300 * @pages: array that receives pointers to the pages pinned.
2301 * Should be at least nr_pages long. Or NULL, if caller
2302 * only intends to ensure the pages are faulted in.
2303 * @vmas: array of pointers to vmas corresponding to each page.
2304 * Or NULL if the caller does not require them.
2306 * This is the same as get_user_pages_remote(), just with a less-flexible
2307 * calling convention where we assume that the mm being operated on belongs to
2308 * the current task, and doesn't allow passing of a locked parameter. We also
2309 * obviously don't pass FOLL_REMOTE in here.
2311 long get_user_pages(unsigned long start, unsigned long nr_pages,
2312 unsigned int gup_flags, struct page **pages,
2313 struct vm_area_struct **vmas)
2315 if (!is_valid_gup_flags(gup_flags))
2318 return __gup_longterm_locked(current->mm, start, nr_pages,
2319 pages, vmas, gup_flags | FOLL_TOUCH);
2321 EXPORT_SYMBOL(get_user_pages);
2324 * get_user_pages_unlocked() is suitable to replace the form:
2326 * mmap_read_lock(mm);
2327 * get_user_pages(mm, ..., pages, NULL);
2328 * mmap_read_unlock(mm);
2332 * get_user_pages_unlocked(mm, ..., pages);
2334 * It is functionally equivalent to get_user_pages_fast so
2335 * get_user_pages_fast should be used instead if specific gup_flags
2336 * (e.g. FOLL_FORCE) are not required.
2338 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2339 struct page **pages, unsigned int gup_flags)
2341 struct mm_struct *mm = current->mm;
2346 * FIXME: Current FOLL_LONGTERM behavior is incompatible with
2347 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
2348 * vmas. As there are no users of this flag in this call we simply
2349 * disallow this option for now.
2351 if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
2355 ret = __get_user_pages_locked(mm, start, nr_pages, pages, NULL,
2356 &locked, gup_flags | FOLL_TOUCH);
2358 mmap_read_unlock(mm);
2361 EXPORT_SYMBOL(get_user_pages_unlocked);
2366 * get_user_pages_fast attempts to pin user pages by walking the page
2367 * tables directly and avoids taking locks. Thus the walker needs to be
2368 * protected from page table pages being freed from under it, and should
2369 * block any THP splits.
2371 * One way to achieve this is to have the walker disable interrupts, and
2372 * rely on IPIs from the TLB flushing code blocking before the page table
2373 * pages are freed. This is unsuitable for architectures that do not need
2374 * to broadcast an IPI when invalidating TLBs.
2376 * Another way to achieve this is to batch up page table containing pages
2377 * belonging to more than one mm_user, then rcu_sched a callback to free those
2378 * pages. Disabling interrupts will allow the fast_gup walker to both block
2379 * the rcu_sched callback, and an IPI that we broadcast for splitting THPs
2380 * (which is a relatively rare event). The code below adopts this strategy.
2382 * Before activating this code, please be aware that the following assumptions
2383 * are currently made:
2385 * *) Either MMU_GATHER_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to
2386 * free pages containing page tables or TLB flushing requires IPI broadcast.
2388 * *) ptes can be read atomically by the architecture.
2390 * *) access_ok is sufficient to validate userspace address ranges.
2392 * The last two assumptions can be relaxed by the addition of helper functions.
2394 * This code is based heavily on the PowerPC implementation by Nick Piggin.
2396 #ifdef CONFIG_HAVE_FAST_GUP
2398 static void __maybe_unused undo_dev_pagemap(int *nr, int nr_start,
2400 struct page **pages)
2402 while ((*nr) - nr_start) {
2403 struct page *page = pages[--(*nr)];
2405 ClearPageReferenced(page);
2406 if (flags & FOLL_PIN)
2407 unpin_user_page(page);
2413 #ifdef CONFIG_ARCH_HAS_PTE_SPECIAL
2415 * Fast-gup relies on pte change detection to avoid concurrent pgtable
2418 * To pin the page, fast-gup needs to do below in order:
2419 * (1) pin the page (by prefetching pte), then (2) check pte not changed.
2421 * For the rest of pgtable operations where pgtable updates can be racy
2422 * with fast-gup, we need to do (1) clear pte, then (2) check whether page
2425 * Above will work for all pte-level operations, including THP split.
2427 * For THP collapse, it's a bit more complicated because fast-gup may be
2428 * walking a pgtable page that is being freed (pte is still valid but pmd
2429 * can be cleared already). To avoid race in such condition, we need to
2430 * also check pmd here to make sure pmd doesn't change (corresponds to
2431 * pmdp_collapse_flush() in the THP collapse code path).
2433 static int gup_pte_range(pmd_t pmd, pmd_t *pmdp, unsigned long addr,
2434 unsigned long end, unsigned int flags,
2435 struct page **pages, int *nr)
2437 struct dev_pagemap *pgmap = NULL;
2438 int nr_start = *nr, ret = 0;
2441 ptem = ptep = pte_offset_map(&pmd, addr);
2443 pte_t pte = ptep_get_lockless(ptep);
2445 struct folio *folio;
2447 if (pte_protnone(pte) && !gup_can_follow_protnone(flags))
2450 if (!pte_access_permitted(pte, flags & FOLL_WRITE))
2453 if (pte_devmap(pte)) {
2454 if (unlikely(flags & FOLL_LONGTERM))
2457 pgmap = get_dev_pagemap(pte_pfn(pte), pgmap);
2458 if (unlikely(!pgmap)) {
2459 undo_dev_pagemap(nr, nr_start, flags, pages);
2462 } else if (pte_special(pte))
2465 VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
2466 page = pte_page(pte);
2468 folio = try_grab_folio(page, 1, flags);
2472 if (unlikely(page_is_secretmem(page))) {
2473 gup_put_folio(folio, 1, flags);
2477 if (unlikely(pmd_val(pmd) != pmd_val(*pmdp)) ||
2478 unlikely(pte_val(pte) != pte_val(*ptep))) {
2479 gup_put_folio(folio, 1, flags);
2483 if (!pte_write(pte) && gup_must_unshare(flags, page)) {
2484 gup_put_folio(folio, 1, flags);
2489 * We need to make the page accessible if and only if we are
2490 * going to access its content (the FOLL_PIN case). Please
2491 * see Documentation/core-api/pin_user_pages.rst for
2494 if (flags & FOLL_PIN) {
2495 ret = arch_make_page_accessible(page);
2497 gup_put_folio(folio, 1, flags);
2501 folio_set_referenced(folio);
2504 } while (ptep++, addr += PAGE_SIZE, addr != end);
2510 put_dev_pagemap(pgmap);
2517 * If we can't determine whether or not a pte is special, then fail immediately
2518 * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not
2521 * For a futex to be placed on a THP tail page, get_futex_key requires a
2522 * get_user_pages_fast_only implementation that can pin pages. Thus it's still
2523 * useful to have gup_huge_pmd even if we can't operate on ptes.
2525 static int gup_pte_range(pmd_t pmd, pmd_t *pmdp, unsigned long addr,
2526 unsigned long end, unsigned int flags,
2527 struct page **pages, int *nr)
2531 #endif /* CONFIG_ARCH_HAS_PTE_SPECIAL */
2533 #if defined(CONFIG_ARCH_HAS_PTE_DEVMAP) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
2534 static int __gup_device_huge(unsigned long pfn, unsigned long addr,
2535 unsigned long end, unsigned int flags,
2536 struct page **pages, int *nr)
2539 struct dev_pagemap *pgmap = NULL;
2542 struct page *page = pfn_to_page(pfn);
2544 pgmap = get_dev_pagemap(pfn, pgmap);
2545 if (unlikely(!pgmap)) {
2546 undo_dev_pagemap(nr, nr_start, flags, pages);
2550 if (!(flags & FOLL_PCI_P2PDMA) && is_pci_p2pdma_page(page)) {
2551 undo_dev_pagemap(nr, nr_start, flags, pages);
2555 SetPageReferenced(page);
2557 if (unlikely(try_grab_page(page, flags))) {
2558 undo_dev_pagemap(nr, nr_start, flags, pages);
2563 } while (addr += PAGE_SIZE, addr != end);
2565 put_dev_pagemap(pgmap);
2569 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2570 unsigned long end, unsigned int flags,
2571 struct page **pages, int *nr)
2573 unsigned long fault_pfn;
2576 fault_pfn = pmd_pfn(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
2577 if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr))
2580 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
2581 undo_dev_pagemap(nr, nr_start, flags, pages);
2587 static int __gup_device_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
2588 unsigned long end, unsigned int flags,
2589 struct page **pages, int *nr)
2591 unsigned long fault_pfn;
2594 fault_pfn = pud_pfn(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
2595 if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr))
2598 if (unlikely(pud_val(orig) != pud_val(*pudp))) {
2599 undo_dev_pagemap(nr, nr_start, flags, pages);
2605 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2606 unsigned long end, unsigned int flags,
2607 struct page **pages, int *nr)
2613 static int __gup_device_huge_pud(pud_t pud, pud_t *pudp, unsigned long addr,
2614 unsigned long end, unsigned int flags,
2615 struct page **pages, int *nr)
2622 static int record_subpages(struct page *page, unsigned long addr,
2623 unsigned long end, struct page **pages)
2627 for (nr = 0; addr != end; nr++, addr += PAGE_SIZE)
2628 pages[nr] = nth_page(page, nr);
2633 #ifdef CONFIG_ARCH_HAS_HUGEPD
2634 static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end,
2637 unsigned long __boundary = (addr + sz) & ~(sz-1);
2638 return (__boundary - 1 < end - 1) ? __boundary : end;
2641 static int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr,
2642 unsigned long end, unsigned int flags,
2643 struct page **pages, int *nr)
2645 unsigned long pte_end;
2647 struct folio *folio;
2651 pte_end = (addr + sz) & ~(sz-1);
2655 pte = huge_ptep_get(ptep);
2657 if (!pte_access_permitted(pte, flags & FOLL_WRITE))
2660 /* hugepages are never "special" */
2661 VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
2663 page = nth_page(pte_page(pte), (addr & (sz - 1)) >> PAGE_SHIFT);
2664 refs = record_subpages(page, addr, end, pages + *nr);
2666 folio = try_grab_folio(page, refs, flags);
2670 if (unlikely(pte_val(pte) != pte_val(*ptep))) {
2671 gup_put_folio(folio, refs, flags);
2675 if (!pte_write(pte) && gup_must_unshare(flags, &folio->page)) {
2676 gup_put_folio(folio, refs, flags);
2681 folio_set_referenced(folio);
2685 static int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
2686 unsigned int pdshift, unsigned long end, unsigned int flags,
2687 struct page **pages, int *nr)
2690 unsigned long sz = 1UL << hugepd_shift(hugepd);
2693 ptep = hugepte_offset(hugepd, addr, pdshift);
2695 next = hugepte_addr_end(addr, end, sz);
2696 if (!gup_hugepte(ptep, sz, addr, end, flags, pages, nr))
2698 } while (ptep++, addr = next, addr != end);
2703 static inline int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
2704 unsigned int pdshift, unsigned long end, unsigned int flags,
2705 struct page **pages, int *nr)
2709 #endif /* CONFIG_ARCH_HAS_HUGEPD */
2711 static int gup_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2712 unsigned long end, unsigned int flags,
2713 struct page **pages, int *nr)
2716 struct folio *folio;
2719 if (!pmd_access_permitted(orig, flags & FOLL_WRITE))
2722 if (pmd_devmap(orig)) {
2723 if (unlikely(flags & FOLL_LONGTERM))
2725 return __gup_device_huge_pmd(orig, pmdp, addr, end, flags,
2729 page = nth_page(pmd_page(orig), (addr & ~PMD_MASK) >> PAGE_SHIFT);
2730 refs = record_subpages(page, addr, end, pages + *nr);
2732 folio = try_grab_folio(page, refs, flags);
2736 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
2737 gup_put_folio(folio, refs, flags);
2741 if (!pmd_write(orig) && gup_must_unshare(flags, &folio->page)) {
2742 gup_put_folio(folio, refs, flags);
2747 folio_set_referenced(folio);
2751 static int gup_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
2752 unsigned long end, unsigned int flags,
2753 struct page **pages, int *nr)
2756 struct folio *folio;
2759 if (!pud_access_permitted(orig, flags & FOLL_WRITE))
2762 if (pud_devmap(orig)) {
2763 if (unlikely(flags & FOLL_LONGTERM))
2765 return __gup_device_huge_pud(orig, pudp, addr, end, flags,
2769 page = nth_page(pud_page(orig), (addr & ~PUD_MASK) >> PAGE_SHIFT);
2770 refs = record_subpages(page, addr, end, pages + *nr);
2772 folio = try_grab_folio(page, refs, flags);
2776 if (unlikely(pud_val(orig) != pud_val(*pudp))) {
2777 gup_put_folio(folio, refs, flags);
2781 if (!pud_write(orig) && gup_must_unshare(flags, &folio->page)) {
2782 gup_put_folio(folio, refs, flags);
2787 folio_set_referenced(folio);
2791 static int gup_huge_pgd(pgd_t orig, pgd_t *pgdp, unsigned long addr,
2792 unsigned long end, unsigned int flags,
2793 struct page **pages, int *nr)
2797 struct folio *folio;
2799 if (!pgd_access_permitted(orig, flags & FOLL_WRITE))
2802 BUILD_BUG_ON(pgd_devmap(orig));
2804 page = nth_page(pgd_page(orig), (addr & ~PGDIR_MASK) >> PAGE_SHIFT);
2805 refs = record_subpages(page, addr, end, pages + *nr);
2807 folio = try_grab_folio(page, refs, flags);
2811 if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) {
2812 gup_put_folio(folio, refs, flags);
2817 folio_set_referenced(folio);
2821 static int gup_pmd_range(pud_t *pudp, pud_t pud, unsigned long addr, unsigned long end,
2822 unsigned int flags, struct page **pages, int *nr)
2827 pmdp = pmd_offset_lockless(pudp, pud, addr);
2829 pmd_t pmd = READ_ONCE(*pmdp);
2831 next = pmd_addr_end(addr, end);
2832 if (!pmd_present(pmd))
2835 if (unlikely(pmd_trans_huge(pmd) || pmd_huge(pmd) ||
2837 if (pmd_protnone(pmd) &&
2838 !gup_can_follow_protnone(flags))
2841 if (!gup_huge_pmd(pmd, pmdp, addr, next, flags,
2845 } else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd))))) {
2847 * architecture have different format for hugetlbfs
2848 * pmd format and THP pmd format
2850 if (!gup_huge_pd(__hugepd(pmd_val(pmd)), addr,
2851 PMD_SHIFT, next, flags, pages, nr))
2853 } else if (!gup_pte_range(pmd, pmdp, addr, next, flags, pages, nr))
2855 } while (pmdp++, addr = next, addr != end);
2860 static int gup_pud_range(p4d_t *p4dp, p4d_t p4d, unsigned long addr, unsigned long end,
2861 unsigned int flags, struct page **pages, int *nr)
2866 pudp = pud_offset_lockless(p4dp, p4d, addr);
2868 pud_t pud = READ_ONCE(*pudp);
2870 next = pud_addr_end(addr, end);
2871 if (unlikely(!pud_present(pud)))
2873 if (unlikely(pud_huge(pud) || pud_devmap(pud))) {
2874 if (!gup_huge_pud(pud, pudp, addr, next, flags,
2877 } else if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) {
2878 if (!gup_huge_pd(__hugepd(pud_val(pud)), addr,
2879 PUD_SHIFT, next, flags, pages, nr))
2881 } else if (!gup_pmd_range(pudp, pud, addr, next, flags, pages, nr))
2883 } while (pudp++, addr = next, addr != end);
2888 static int gup_p4d_range(pgd_t *pgdp, pgd_t pgd, unsigned long addr, unsigned long end,
2889 unsigned int flags, struct page **pages, int *nr)
2894 p4dp = p4d_offset_lockless(pgdp, pgd, addr);
2896 p4d_t p4d = READ_ONCE(*p4dp);
2898 next = p4d_addr_end(addr, end);
2901 BUILD_BUG_ON(p4d_huge(p4d));
2902 if (unlikely(is_hugepd(__hugepd(p4d_val(p4d))))) {
2903 if (!gup_huge_pd(__hugepd(p4d_val(p4d)), addr,
2904 P4D_SHIFT, next, flags, pages, nr))
2906 } else if (!gup_pud_range(p4dp, p4d, addr, next, flags, pages, nr))
2908 } while (p4dp++, addr = next, addr != end);
2913 static void gup_pgd_range(unsigned long addr, unsigned long end,
2914 unsigned int flags, struct page **pages, int *nr)
2919 pgdp = pgd_offset(current->mm, addr);
2921 pgd_t pgd = READ_ONCE(*pgdp);
2923 next = pgd_addr_end(addr, end);
2926 if (unlikely(pgd_huge(pgd))) {
2927 if (!gup_huge_pgd(pgd, pgdp, addr, next, flags,
2930 } else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd))))) {
2931 if (!gup_huge_pd(__hugepd(pgd_val(pgd)), addr,
2932 PGDIR_SHIFT, next, flags, pages, nr))
2934 } else if (!gup_p4d_range(pgdp, pgd, addr, next, flags, pages, nr))
2936 } while (pgdp++, addr = next, addr != end);
2939 static inline void gup_pgd_range(unsigned long addr, unsigned long end,
2940 unsigned int flags, struct page **pages, int *nr)
2943 #endif /* CONFIG_HAVE_FAST_GUP */
2945 #ifndef gup_fast_permitted
2947 * Check if it's allowed to use get_user_pages_fast_only() for the range, or
2948 * we need to fall back to the slow version:
2950 static bool gup_fast_permitted(unsigned long start, unsigned long end)
2956 static int __gup_longterm_unlocked(unsigned long start, int nr_pages,
2957 unsigned int gup_flags, struct page **pages)
2962 * FIXME: FOLL_LONGTERM does not work with
2963 * get_user_pages_unlocked() (see comments in that function)
2965 if (gup_flags & FOLL_LONGTERM) {
2966 mmap_read_lock(current->mm);
2967 ret = __gup_longterm_locked(current->mm,
2969 pages, NULL, gup_flags);
2970 mmap_read_unlock(current->mm);
2972 ret = get_user_pages_unlocked(start, nr_pages,
2979 static unsigned long lockless_pages_from_mm(unsigned long start,
2981 unsigned int gup_flags,
2982 struct page **pages)
2984 unsigned long flags;
2988 if (!IS_ENABLED(CONFIG_HAVE_FAST_GUP) ||
2989 !gup_fast_permitted(start, end))
2992 if (gup_flags & FOLL_PIN) {
2993 seq = raw_read_seqcount(¤t->mm->write_protect_seq);
2999 * Disable interrupts. The nested form is used, in order to allow full,
3000 * general purpose use of this routine.
3002 * With interrupts disabled, we block page table pages from being freed
3003 * from under us. See struct mmu_table_batch comments in
3004 * include/asm-generic/tlb.h for more details.
3006 * We do not adopt an rcu_read_lock() here as we also want to block IPIs
3007 * that come from THPs splitting.
3009 local_irq_save(flags);
3010 gup_pgd_range(start, end, gup_flags, pages, &nr_pinned);
3011 local_irq_restore(flags);
3014 * When pinning pages for DMA there could be a concurrent write protect
3015 * from fork() via copy_page_range(), in this case always fail fast GUP.
3017 if (gup_flags & FOLL_PIN) {
3018 if (read_seqcount_retry(¤t->mm->write_protect_seq, seq)) {
3019 unpin_user_pages_lockless(pages, nr_pinned);
3022 sanity_check_pinned_pages(pages, nr_pinned);
3028 static int internal_get_user_pages_fast(unsigned long start,
3029 unsigned long nr_pages,
3030 unsigned int gup_flags,
3031 struct page **pages)
3033 unsigned long len, end;
3034 unsigned long nr_pinned;
3037 if (WARN_ON_ONCE(gup_flags & ~(FOLL_WRITE | FOLL_LONGTERM |
3038 FOLL_FORCE | FOLL_PIN | FOLL_GET |
3039 FOLL_FAST_ONLY | FOLL_NOFAULT |
3043 if (gup_flags & FOLL_PIN)
3044 mm_set_has_pinned_flag(¤t->mm->flags);
3046 if (!(gup_flags & FOLL_FAST_ONLY))
3047 might_lock_read(¤t->mm->mmap_lock);
3049 start = untagged_addr(start) & PAGE_MASK;
3050 len = nr_pages << PAGE_SHIFT;
3051 if (check_add_overflow(start, len, &end))
3053 if (unlikely(!access_ok((void __user *)start, len)))
3056 nr_pinned = lockless_pages_from_mm(start, end, gup_flags, pages);
3057 if (nr_pinned == nr_pages || gup_flags & FOLL_FAST_ONLY)
3060 /* Slow path: try to get the remaining pages with get_user_pages */
3061 start += nr_pinned << PAGE_SHIFT;
3063 ret = __gup_longterm_unlocked(start, nr_pages - nr_pinned, gup_flags,
3067 * The caller has to unpin the pages we already pinned so
3068 * returning -errno is not an option
3074 return ret + nr_pinned;
3078 * get_user_pages_fast_only() - pin user pages in memory
3079 * @start: starting user address
3080 * @nr_pages: number of pages from start to pin
3081 * @gup_flags: flags modifying pin behaviour
3082 * @pages: array that receives pointers to the pages pinned.
3083 * Should be at least nr_pages long.
3085 * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to
3087 * Note a difference with get_user_pages_fast: this always returns the
3088 * number of pages pinned, 0 if no pages were pinned.
3090 * If the architecture does not support this function, simply return with no
3093 * Careful, careful! COW breaking can go either way, so a non-write
3094 * access can get ambiguous page results. If you call this function without
3095 * 'write' set, you'd better be sure that you're ok with that ambiguity.
3097 int get_user_pages_fast_only(unsigned long start, int nr_pages,
3098 unsigned int gup_flags, struct page **pages)
3102 * Internally (within mm/gup.c), gup fast variants must set FOLL_GET,
3103 * because gup fast is always a "pin with a +1 page refcount" request.
3105 * FOLL_FAST_ONLY is required in order to match the API description of
3106 * this routine: no fall back to regular ("slow") GUP.
3108 gup_flags |= FOLL_GET | FOLL_FAST_ONLY;
3110 nr_pinned = internal_get_user_pages_fast(start, nr_pages, gup_flags,
3114 * As specified in the API description above, this routine is not
3115 * allowed to return negative values. However, the common core
3116 * routine internal_get_user_pages_fast() *can* return -errno.
3117 * Therefore, correct for that here:
3124 EXPORT_SYMBOL_GPL(get_user_pages_fast_only);
3127 * get_user_pages_fast() - pin user pages in memory
3128 * @start: starting user address
3129 * @nr_pages: number of pages from start to pin
3130 * @gup_flags: flags modifying pin behaviour
3131 * @pages: array that receives pointers to the pages pinned.
3132 * Should be at least nr_pages long.
3134 * Attempt to pin user pages in memory without taking mm->mmap_lock.
3135 * If not successful, it will fall back to taking the lock and
3136 * calling get_user_pages().
3138 * Returns number of pages pinned. This may be fewer than the number requested.
3139 * If nr_pages is 0 or negative, returns 0. If no pages were pinned, returns
3142 int get_user_pages_fast(unsigned long start, int nr_pages,
3143 unsigned int gup_flags, struct page **pages)
3145 if (!is_valid_gup_flags(gup_flags))
3149 * The caller may or may not have explicitly set FOLL_GET; either way is
3150 * OK. However, internally (within mm/gup.c), gup fast variants must set
3151 * FOLL_GET, because gup fast is always a "pin with a +1 page refcount"
3154 gup_flags |= FOLL_GET;
3155 return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
3157 EXPORT_SYMBOL_GPL(get_user_pages_fast);
3160 * pin_user_pages_fast() - pin user pages in memory without taking locks
3162 * @start: starting user address
3163 * @nr_pages: number of pages from start to pin
3164 * @gup_flags: flags modifying pin behaviour
3165 * @pages: array that receives pointers to the pages pinned.
3166 * Should be at least nr_pages long.
3168 * Nearly the same as get_user_pages_fast(), except that FOLL_PIN is set. See
3169 * get_user_pages_fast() for documentation on the function arguments, because
3170 * the arguments here are identical.
3172 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
3173 * see Documentation/core-api/pin_user_pages.rst for further details.
3175 int pin_user_pages_fast(unsigned long start, int nr_pages,
3176 unsigned int gup_flags, struct page **pages)
3178 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
3179 if (WARN_ON_ONCE(gup_flags & FOLL_GET))
3182 if (WARN_ON_ONCE(!pages))
3185 gup_flags |= FOLL_PIN;
3186 return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
3188 EXPORT_SYMBOL_GPL(pin_user_pages_fast);
3191 * This is the FOLL_PIN equivalent of get_user_pages_fast_only(). Behavior
3192 * is the same, except that this one sets FOLL_PIN instead of FOLL_GET.
3194 * The API rules are the same, too: no negative values may be returned.
3196 int pin_user_pages_fast_only(unsigned long start, int nr_pages,
3197 unsigned int gup_flags, struct page **pages)
3202 * FOLL_GET and FOLL_PIN are mutually exclusive. Note that the API
3203 * rules require returning 0, rather than -errno:
3205 if (WARN_ON_ONCE(gup_flags & FOLL_GET))
3208 if (WARN_ON_ONCE(!pages))
3211 * FOLL_FAST_ONLY is required in order to match the API description of
3212 * this routine: no fall back to regular ("slow") GUP.
3214 gup_flags |= (FOLL_PIN | FOLL_FAST_ONLY);
3215 nr_pinned = internal_get_user_pages_fast(start, nr_pages, gup_flags,
3218 * This routine is not allowed to return negative values. However,
3219 * internal_get_user_pages_fast() *can* return -errno. Therefore,
3220 * correct for that here:
3227 EXPORT_SYMBOL_GPL(pin_user_pages_fast_only);
3230 * pin_user_pages_remote() - pin pages of a remote process
3232 * @mm: mm_struct of target mm
3233 * @start: starting user address
3234 * @nr_pages: number of pages from start to pin
3235 * @gup_flags: flags modifying lookup behaviour
3236 * @pages: array that receives pointers to the pages pinned.
3237 * Should be at least nr_pages long.
3238 * @vmas: array of pointers to vmas corresponding to each page.
3239 * Or NULL if the caller does not require them.
3240 * @locked: pointer to lock flag indicating whether lock is held and
3241 * subsequently whether VM_FAULT_RETRY functionality can be
3242 * utilised. Lock must initially be held.
3244 * Nearly the same as get_user_pages_remote(), except that FOLL_PIN is set. See
3245 * get_user_pages_remote() for documentation on the function arguments, because
3246 * the arguments here are identical.
3248 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
3249 * see Documentation/core-api/pin_user_pages.rst for details.
3251 long pin_user_pages_remote(struct mm_struct *mm,
3252 unsigned long start, unsigned long nr_pages,
3253 unsigned int gup_flags, struct page **pages,
3254 struct vm_area_struct **vmas, int *locked)
3256 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
3257 if (WARN_ON_ONCE(gup_flags & FOLL_GET))
3260 if (WARN_ON_ONCE(!pages))
3263 gup_flags |= FOLL_PIN;
3264 return __get_user_pages_remote(mm, start, nr_pages, gup_flags,
3265 pages, vmas, locked);
3267 EXPORT_SYMBOL(pin_user_pages_remote);
3270 * pin_user_pages() - pin user pages in memory for use by other devices
3272 * @start: starting user address
3273 * @nr_pages: number of pages from start to pin
3274 * @gup_flags: flags modifying lookup behaviour
3275 * @pages: array that receives pointers to the pages pinned.
3276 * Should be at least nr_pages long.
3277 * @vmas: array of pointers to vmas corresponding to each page.
3278 * Or NULL if the caller does not require them.
3280 * Nearly the same as get_user_pages(), except that FOLL_TOUCH is not set, and
3283 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
3284 * see Documentation/core-api/pin_user_pages.rst for details.
3286 long pin_user_pages(unsigned long start, unsigned long nr_pages,
3287 unsigned int gup_flags, struct page **pages,
3288 struct vm_area_struct **vmas)
3290 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
3291 if (WARN_ON_ONCE(gup_flags & FOLL_GET))
3294 if (WARN_ON_ONCE(!pages))
3297 gup_flags |= FOLL_PIN;
3298 return __gup_longterm_locked(current->mm, start, nr_pages,
3299 pages, vmas, gup_flags);
3301 EXPORT_SYMBOL(pin_user_pages);
3304 * pin_user_pages_unlocked() is the FOLL_PIN variant of
3305 * get_user_pages_unlocked(). Behavior is the same, except that this one sets
3306 * FOLL_PIN and rejects FOLL_GET.
3308 long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
3309 struct page **pages, unsigned int gup_flags)
3311 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
3312 if (WARN_ON_ONCE(gup_flags & FOLL_GET))
3315 if (WARN_ON_ONCE(!pages))
3318 gup_flags |= FOLL_PIN;
3319 return get_user_pages_unlocked(start, nr_pages, pages, gup_flags);
3321 EXPORT_SYMBOL(pin_user_pages_unlocked);