1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <linux/kernel.h>
3 #include <linux/errno.h>
5 #include <linux/spinlock.h>
8 #include <linux/memremap.h>
9 #include <linux/pagemap.h>
10 #include <linux/rmap.h>
11 #include <linux/swap.h>
12 #include <linux/swapops.h>
13 #include <linux/secretmem.h>
15 #include <linux/sched/signal.h>
16 #include <linux/rwsem.h>
17 #include <linux/hugetlb.h>
18 #include <linux/migrate.h>
19 #include <linux/mm_inline.h>
20 #include <linux/sched/mm.h>
22 #include <asm/mmu_context.h>
23 #include <asm/tlbflush.h>
27 struct follow_page_context {
28 struct dev_pagemap *pgmap;
29 unsigned int page_mask;
32 static inline void sanity_check_pinned_pages(struct page **pages,
35 if (!IS_ENABLED(CONFIG_DEBUG_VM))
39 * We only pin anonymous pages if they are exclusive. Once pinned, we
40 * can no longer turn them possibly shared and PageAnonExclusive() will
41 * stick around until the page is freed.
43 * We'd like to verify that our pinned anonymous pages are still mapped
44 * exclusively. The issue with anon THP is that we don't know how
45 * they are/were mapped when pinning them. However, for anon
46 * THP we can assume that either the given page (PTE-mapped THP) or
47 * the head page (PMD-mapped THP) should be PageAnonExclusive(). If
48 * neither is the case, there is certainly something wrong.
50 for (; npages; npages--, pages++) {
51 struct page *page = *pages;
52 struct folio *folio = page_folio(page);
54 if (!folio_test_anon(folio))
56 if (!folio_test_large(folio) || folio_test_hugetlb(folio))
57 VM_BUG_ON_PAGE(!PageAnonExclusive(&folio->page), page);
59 /* Either a PTE-mapped or a PMD-mapped THP. */
60 VM_BUG_ON_PAGE(!PageAnonExclusive(&folio->page) &&
61 !PageAnonExclusive(page), page);
66 * Return the folio with ref appropriately incremented,
67 * or NULL if that failed.
69 static inline struct folio *try_get_folio(struct page *page, int refs)
74 folio = page_folio(page);
75 if (WARN_ON_ONCE(folio_ref_count(folio) < 0))
77 if (unlikely(!folio_ref_try_add_rcu(folio, refs)))
81 * At this point we have a stable reference to the folio; but it
82 * could be that between calling page_folio() and the refcount
83 * increment, the folio was split, in which case we'd end up
84 * holding a reference on a folio that has nothing to do with the page
85 * we were given anymore.
86 * So now that the folio is stable, recheck that the page still
87 * belongs to this folio.
89 if (unlikely(page_folio(page) != folio)) {
90 if (!put_devmap_managed_page_refs(&folio->page, refs))
91 folio_put_refs(folio, refs);
99 * try_grab_folio() - Attempt to get or pin a folio.
100 * @page: pointer to page to be grabbed
101 * @refs: the value to (effectively) add to the folio's refcount
102 * @flags: gup flags: these are the FOLL_* flag values.
104 * "grab" names in this file mean, "look at flags to decide whether to use
105 * FOLL_PIN or FOLL_GET behavior, when incrementing the folio's refcount.
107 * Either FOLL_PIN or FOLL_GET (or neither) must be set, but not both at the
108 * same time. (That's true throughout the get_user_pages*() and
109 * pin_user_pages*() APIs.) Cases:
111 * FOLL_GET: folio's refcount will be incremented by @refs.
113 * FOLL_PIN on large folios: folio's refcount will be incremented by
114 * @refs, and its compound_pincount will be incremented by @refs.
116 * FOLL_PIN on single-page folios: folio's refcount will be incremented by
117 * @refs * GUP_PIN_COUNTING_BIAS.
119 * Return: The folio containing @page (with refcount appropriately
120 * incremented) for success, or NULL upon failure. If neither FOLL_GET
121 * nor FOLL_PIN was set, that's considered failure, and furthermore,
122 * a likely bug in the caller, so a warning is also emitted.
124 struct folio *try_grab_folio(struct page *page, int refs, unsigned int flags)
126 if (flags & FOLL_GET)
127 return try_get_folio(page, refs);
128 else if (flags & FOLL_PIN) {
132 * Can't do FOLL_LONGTERM + FOLL_PIN gup fast path if not in a
133 * right zone, so fail and let the caller fall back to the slow
136 if (unlikely((flags & FOLL_LONGTERM) &&
137 !is_longterm_pinnable_page(page)))
141 * CAUTION: Don't use compound_head() on the page before this
142 * point, the result won't be stable.
144 folio = try_get_folio(page, refs);
149 * When pinning a large folio, use an exact count to track it.
151 * However, be sure to *also* increment the normal folio
152 * refcount field at least once, so that the folio really
153 * is pinned. That's why the refcount from the earlier
154 * try_get_folio() is left intact.
156 if (folio_test_large(folio))
157 atomic_add(refs, folio_pincount_ptr(folio));
160 refs * (GUP_PIN_COUNTING_BIAS - 1));
161 node_stat_mod_folio(folio, NR_FOLL_PIN_ACQUIRED, refs);
170 static void gup_put_folio(struct folio *folio, int refs, unsigned int flags)
172 if (flags & FOLL_PIN) {
173 node_stat_mod_folio(folio, NR_FOLL_PIN_RELEASED, refs);
174 if (folio_test_large(folio))
175 atomic_sub(refs, folio_pincount_ptr(folio));
177 refs *= GUP_PIN_COUNTING_BIAS;
180 if (!put_devmap_managed_page_refs(&folio->page, refs))
181 folio_put_refs(folio, refs);
185 * try_grab_page() - elevate a page's refcount by a flag-dependent amount
186 * @page: pointer to page to be grabbed
187 * @flags: gup flags: these are the FOLL_* flag values.
189 * This might not do anything at all, depending on the flags argument.
191 * "grab" names in this file mean, "look at flags to decide whether to use
192 * FOLL_PIN or FOLL_GET behavior, when incrementing the page's refcount.
194 * Either FOLL_PIN or FOLL_GET (or neither) may be set, but not both at the same
195 * time. Cases: please see the try_grab_folio() documentation, with
198 * Return: true for success, or if no action was required (if neither FOLL_PIN
199 * nor FOLL_GET was set, nothing is done). False for failure: FOLL_GET or
200 * FOLL_PIN was set, but the page could not be grabbed.
202 bool __must_check try_grab_page(struct page *page, unsigned int flags)
204 struct folio *folio = page_folio(page);
206 WARN_ON_ONCE((flags & (FOLL_GET | FOLL_PIN)) == (FOLL_GET | FOLL_PIN));
207 if (WARN_ON_ONCE(folio_ref_count(folio) <= 0))
210 if (flags & FOLL_GET)
211 folio_ref_inc(folio);
212 else if (flags & FOLL_PIN) {
214 * Similar to try_grab_folio(): be sure to *also*
215 * increment the normal page refcount field at least once,
216 * so that the page really is pinned.
218 if (folio_test_large(folio)) {
219 folio_ref_add(folio, 1);
220 atomic_add(1, folio_pincount_ptr(folio));
222 folio_ref_add(folio, GUP_PIN_COUNTING_BIAS);
225 node_stat_mod_folio(folio, NR_FOLL_PIN_ACQUIRED, 1);
232 * unpin_user_page() - release a dma-pinned page
233 * @page: pointer to page to be released
235 * Pages that were pinned via pin_user_pages*() must be released via either
236 * unpin_user_page(), or one of the unpin_user_pages*() routines. This is so
237 * that such pages can be separately tracked and uniquely handled. In
238 * particular, interactions with RDMA and filesystems need special handling.
240 void unpin_user_page(struct page *page)
242 sanity_check_pinned_pages(&page, 1);
243 gup_put_folio(page_folio(page), 1, FOLL_PIN);
245 EXPORT_SYMBOL(unpin_user_page);
247 static inline struct folio *gup_folio_range_next(struct page *start,
248 unsigned long npages, unsigned long i, unsigned int *ntails)
250 struct page *next = nth_page(start, i);
251 struct folio *folio = page_folio(next);
254 if (folio_test_large(folio))
255 nr = min_t(unsigned int, npages - i,
256 folio_nr_pages(folio) - folio_page_idx(folio, next));
262 static inline struct folio *gup_folio_next(struct page **list,
263 unsigned long npages, unsigned long i, unsigned int *ntails)
265 struct folio *folio = page_folio(list[i]);
268 for (nr = i + 1; nr < npages; nr++) {
269 if (page_folio(list[nr]) != folio)
278 * unpin_user_pages_dirty_lock() - release and optionally dirty gup-pinned pages
279 * @pages: array of pages to be maybe marked dirty, and definitely released.
280 * @npages: number of pages in the @pages array.
281 * @make_dirty: whether to mark the pages dirty
283 * "gup-pinned page" refers to a page that has had one of the get_user_pages()
284 * variants called on that page.
286 * For each page in the @pages array, make that page (or its head page, if a
287 * compound page) dirty, if @make_dirty is true, and if the page was previously
288 * listed as clean. In any case, releases all pages using unpin_user_page(),
289 * possibly via unpin_user_pages(), for the non-dirty case.
291 * Please see the unpin_user_page() documentation for details.
293 * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
294 * required, then the caller should a) verify that this is really correct,
295 * because _lock() is usually required, and b) hand code it:
296 * set_page_dirty_lock(), unpin_user_page().
299 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
307 unpin_user_pages(pages, npages);
311 sanity_check_pinned_pages(pages, npages);
312 for (i = 0; i < npages; i += nr) {
313 folio = gup_folio_next(pages, npages, i, &nr);
315 * Checking PageDirty at this point may race with
316 * clear_page_dirty_for_io(), but that's OK. Two key
319 * 1) This code sees the page as already dirty, so it
320 * skips the call to set_page_dirty(). That could happen
321 * because clear_page_dirty_for_io() called
322 * page_mkclean(), followed by set_page_dirty().
323 * However, now the page is going to get written back,
324 * which meets the original intention of setting it
325 * dirty, so all is well: clear_page_dirty_for_io() goes
326 * on to call TestClearPageDirty(), and write the page
329 * 2) This code sees the page as clean, so it calls
330 * set_page_dirty(). The page stays dirty, despite being
331 * written back, so it gets written back again in the
332 * next writeback cycle. This is harmless.
334 if (!folio_test_dirty(folio)) {
336 folio_mark_dirty(folio);
339 gup_put_folio(folio, nr, FOLL_PIN);
342 EXPORT_SYMBOL(unpin_user_pages_dirty_lock);
345 * unpin_user_page_range_dirty_lock() - release and optionally dirty
346 * gup-pinned page range
348 * @page: the starting page of a range maybe marked dirty, and definitely released.
349 * @npages: number of consecutive pages to release.
350 * @make_dirty: whether to mark the pages dirty
352 * "gup-pinned page range" refers to a range of pages that has had one of the
353 * pin_user_pages() variants called on that page.
355 * For the page ranges defined by [page .. page+npages], make that range (or
356 * its head pages, if a compound page) dirty, if @make_dirty is true, and if the
357 * page range was previously listed as clean.
359 * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
360 * required, then the caller should a) verify that this is really correct,
361 * because _lock() is usually required, and b) hand code it:
362 * set_page_dirty_lock(), unpin_user_page().
365 void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages,
372 for (i = 0; i < npages; i += nr) {
373 folio = gup_folio_range_next(page, npages, i, &nr);
374 if (make_dirty && !folio_test_dirty(folio)) {
376 folio_mark_dirty(folio);
379 gup_put_folio(folio, nr, FOLL_PIN);
382 EXPORT_SYMBOL(unpin_user_page_range_dirty_lock);
384 static void unpin_user_pages_lockless(struct page **pages, unsigned long npages)
391 * Don't perform any sanity checks because we might have raced with
392 * fork() and some anonymous pages might now actually be shared --
393 * which is why we're unpinning after all.
395 for (i = 0; i < npages; i += nr) {
396 folio = gup_folio_next(pages, npages, i, &nr);
397 gup_put_folio(folio, nr, FOLL_PIN);
402 * unpin_user_pages() - release an array of gup-pinned pages.
403 * @pages: array of pages to be marked dirty and released.
404 * @npages: number of pages in the @pages array.
406 * For each page in the @pages array, release the page using unpin_user_page().
408 * Please see the unpin_user_page() documentation for details.
410 void unpin_user_pages(struct page **pages, unsigned long npages)
417 * If this WARN_ON() fires, then the system *might* be leaking pages (by
418 * leaving them pinned), but probably not. More likely, gup/pup returned
419 * a hard -ERRNO error to the caller, who erroneously passed it here.
421 if (WARN_ON(IS_ERR_VALUE(npages)))
424 sanity_check_pinned_pages(pages, npages);
425 for (i = 0; i < npages; i += nr) {
426 folio = gup_folio_next(pages, npages, i, &nr);
427 gup_put_folio(folio, nr, FOLL_PIN);
430 EXPORT_SYMBOL(unpin_user_pages);
433 * Set the MMF_HAS_PINNED if not set yet; after set it'll be there for the mm's
434 * lifecycle. Avoid setting the bit unless necessary, or it might cause write
435 * cache bouncing on large SMP machines for concurrent pinned gups.
437 static inline void mm_set_has_pinned_flag(unsigned long *mm_flags)
439 if (!test_bit(MMF_HAS_PINNED, mm_flags))
440 set_bit(MMF_HAS_PINNED, mm_flags);
444 static struct page *no_page_table(struct vm_area_struct *vma,
448 * When core dumping an enormous anonymous area that nobody
449 * has touched so far, we don't want to allocate unnecessary pages or
450 * page tables. Return error instead of NULL to skip handle_mm_fault,
451 * then get_dump_page() will return NULL to leave a hole in the dump.
452 * But we can only make this optimization where a hole would surely
453 * be zero-filled if handle_mm_fault() actually did handle it.
455 if ((flags & FOLL_DUMP) &&
456 (vma_is_anonymous(vma) || !vma->vm_ops->fault))
457 return ERR_PTR(-EFAULT);
461 static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address,
462 pte_t *pte, unsigned int flags)
464 if (flags & FOLL_TOUCH) {
467 if (flags & FOLL_WRITE)
468 entry = pte_mkdirty(entry);
469 entry = pte_mkyoung(entry);
471 if (!pte_same(*pte, entry)) {
472 set_pte_at(vma->vm_mm, address, pte, entry);
473 update_mmu_cache(vma, address, pte);
477 /* Proper page table entry exists, but no corresponding struct page */
482 * FOLL_FORCE can write to even unwritable pte's, but only
483 * after we've gone through a COW cycle and they are dirty.
485 static inline bool can_follow_write_pte(pte_t pte, unsigned int flags)
487 return pte_write(pte) ||
488 ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pte_dirty(pte));
491 static struct page *follow_page_pte(struct vm_area_struct *vma,
492 unsigned long address, pmd_t *pmd, unsigned int flags,
493 struct dev_pagemap **pgmap)
495 struct mm_struct *mm = vma->vm_mm;
501 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
502 if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
503 (FOLL_PIN | FOLL_GET)))
504 return ERR_PTR(-EINVAL);
506 if (unlikely(pmd_bad(*pmd)))
507 return no_page_table(vma, flags);
509 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
511 if (!pte_present(pte)) {
514 * KSM's break_ksm() relies upon recognizing a ksm page
515 * even while it is being migrated, so for that case we
516 * need migration_entry_wait().
518 if (likely(!(flags & FOLL_MIGRATION)))
522 entry = pte_to_swp_entry(pte);
523 if (!is_migration_entry(entry))
525 pte_unmap_unlock(ptep, ptl);
526 migration_entry_wait(mm, pmd, address);
529 if ((flags & FOLL_NUMA) && pte_protnone(pte))
531 if ((flags & FOLL_WRITE) && !can_follow_write_pte(pte, flags)) {
532 pte_unmap_unlock(ptep, ptl);
536 page = vm_normal_page(vma, address, pte);
537 if (!page && pte_devmap(pte) && (flags & (FOLL_GET | FOLL_PIN))) {
539 * Only return device mapping pages in the FOLL_GET or FOLL_PIN
540 * case since they are only valid while holding the pgmap
543 *pgmap = get_dev_pagemap(pte_pfn(pte), *pgmap);
545 page = pte_page(pte);
548 } else if (unlikely(!page)) {
549 if (flags & FOLL_DUMP) {
550 /* Avoid special (like zero) pages in core dumps */
551 page = ERR_PTR(-EFAULT);
555 if (is_zero_pfn(pte_pfn(pte))) {
556 page = pte_page(pte);
558 ret = follow_pfn_pte(vma, address, ptep, flags);
564 if (!pte_write(pte) && gup_must_unshare(flags, page)) {
565 page = ERR_PTR(-EMLINK);
569 VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) &&
570 !PageAnonExclusive(page), page);
572 /* try_grab_page() does nothing unless FOLL_GET or FOLL_PIN is set. */
573 if (unlikely(!try_grab_page(page, flags))) {
574 page = ERR_PTR(-ENOMEM);
578 * We need to make the page accessible if and only if we are going
579 * to access its content (the FOLL_PIN case). Please see
580 * Documentation/core-api/pin_user_pages.rst for details.
582 if (flags & FOLL_PIN) {
583 ret = arch_make_page_accessible(page);
585 unpin_user_page(page);
590 if (flags & FOLL_TOUCH) {
591 if ((flags & FOLL_WRITE) &&
592 !pte_dirty(pte) && !PageDirty(page))
593 set_page_dirty(page);
595 * pte_mkyoung() would be more correct here, but atomic care
596 * is needed to avoid losing the dirty bit: it is easier to use
597 * mark_page_accessed().
599 mark_page_accessed(page);
602 pte_unmap_unlock(ptep, ptl);
605 pte_unmap_unlock(ptep, ptl);
608 return no_page_table(vma, flags);
611 static struct page *follow_pmd_mask(struct vm_area_struct *vma,
612 unsigned long address, pud_t *pudp,
614 struct follow_page_context *ctx)
619 struct mm_struct *mm = vma->vm_mm;
621 pmd = pmd_offset(pudp, address);
623 * The READ_ONCE() will stabilize the pmdval in a register or
624 * on the stack so that it will stop changing under the code.
626 pmdval = READ_ONCE(*pmd);
627 if (pmd_none(pmdval))
628 return no_page_table(vma, flags);
629 if (pmd_huge(pmdval) && is_vm_hugetlb_page(vma)) {
630 page = follow_huge_pmd(mm, address, pmd, flags);
633 return no_page_table(vma, flags);
635 if (is_hugepd(__hugepd(pmd_val(pmdval)))) {
636 page = follow_huge_pd(vma, address,
637 __hugepd(pmd_val(pmdval)), flags,
641 return no_page_table(vma, flags);
644 if (!pmd_present(pmdval)) {
646 * Should never reach here, if thp migration is not supported;
647 * Otherwise, it must be a thp migration entry.
649 VM_BUG_ON(!thp_migration_supported() ||
650 !is_pmd_migration_entry(pmdval));
652 if (likely(!(flags & FOLL_MIGRATION)))
653 return no_page_table(vma, flags);
655 pmd_migration_entry_wait(mm, pmd);
656 pmdval = READ_ONCE(*pmd);
658 * MADV_DONTNEED may convert the pmd to null because
659 * mmap_lock is held in read mode
661 if (pmd_none(pmdval))
662 return no_page_table(vma, flags);
665 if (pmd_devmap(pmdval)) {
666 ptl = pmd_lock(mm, pmd);
667 page = follow_devmap_pmd(vma, address, pmd, flags, &ctx->pgmap);
672 if (likely(!pmd_trans_huge(pmdval)))
673 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
675 if ((flags & FOLL_NUMA) && pmd_protnone(pmdval))
676 return no_page_table(vma, flags);
679 ptl = pmd_lock(mm, pmd);
680 if (unlikely(pmd_none(*pmd))) {
682 return no_page_table(vma, flags);
684 if (unlikely(!pmd_present(*pmd))) {
686 if (likely(!(flags & FOLL_MIGRATION)))
687 return no_page_table(vma, flags);
688 pmd_migration_entry_wait(mm, pmd);
691 if (unlikely(!pmd_trans_huge(*pmd))) {
693 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
695 if (flags & FOLL_SPLIT_PMD) {
697 page = pmd_page(*pmd);
698 if (is_huge_zero_page(page)) {
701 split_huge_pmd(vma, pmd, address);
702 if (pmd_trans_unstable(pmd))
706 split_huge_pmd(vma, pmd, address);
707 ret = pte_alloc(mm, pmd) ? -ENOMEM : 0;
710 return ret ? ERR_PTR(ret) :
711 follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
713 page = follow_trans_huge_pmd(vma, address, pmd, flags);
715 ctx->page_mask = HPAGE_PMD_NR - 1;
719 static struct page *follow_pud_mask(struct vm_area_struct *vma,
720 unsigned long address, p4d_t *p4dp,
722 struct follow_page_context *ctx)
727 struct mm_struct *mm = vma->vm_mm;
729 pud = pud_offset(p4dp, address);
731 return no_page_table(vma, flags);
732 if (pud_huge(*pud) && is_vm_hugetlb_page(vma)) {
733 page = follow_huge_pud(mm, address, pud, flags);
736 return no_page_table(vma, flags);
738 if (is_hugepd(__hugepd(pud_val(*pud)))) {
739 page = follow_huge_pd(vma, address,
740 __hugepd(pud_val(*pud)), flags,
744 return no_page_table(vma, flags);
746 if (pud_devmap(*pud)) {
747 ptl = pud_lock(mm, pud);
748 page = follow_devmap_pud(vma, address, pud, flags, &ctx->pgmap);
753 if (unlikely(pud_bad(*pud)))
754 return no_page_table(vma, flags);
756 return follow_pmd_mask(vma, address, pud, flags, ctx);
759 static struct page *follow_p4d_mask(struct vm_area_struct *vma,
760 unsigned long address, pgd_t *pgdp,
762 struct follow_page_context *ctx)
767 p4d = p4d_offset(pgdp, address);
769 return no_page_table(vma, flags);
770 BUILD_BUG_ON(p4d_huge(*p4d));
771 if (unlikely(p4d_bad(*p4d)))
772 return no_page_table(vma, flags);
774 if (is_hugepd(__hugepd(p4d_val(*p4d)))) {
775 page = follow_huge_pd(vma, address,
776 __hugepd(p4d_val(*p4d)), flags,
780 return no_page_table(vma, flags);
782 return follow_pud_mask(vma, address, p4d, flags, ctx);
786 * follow_page_mask - look up a page descriptor from a user-virtual address
787 * @vma: vm_area_struct mapping @address
788 * @address: virtual address to look up
789 * @flags: flags modifying lookup behaviour
790 * @ctx: contains dev_pagemap for %ZONE_DEVICE memory pinning and a
791 * pointer to output page_mask
793 * @flags can have FOLL_ flags set, defined in <linux/mm.h>
795 * When getting pages from ZONE_DEVICE memory, the @ctx->pgmap caches
796 * the device's dev_pagemap metadata to avoid repeating expensive lookups.
798 * When getting an anonymous page and the caller has to trigger unsharing
799 * of a shared anonymous page first, -EMLINK is returned. The caller should
800 * trigger a fault with FAULT_FLAG_UNSHARE set. Note that unsharing is only
801 * relevant with FOLL_PIN and !FOLL_WRITE.
803 * On output, the @ctx->page_mask is set according to the size of the page.
805 * Return: the mapped (struct page *), %NULL if no mapping exists, or
806 * an error pointer if there is a mapping to something not represented
807 * by a page descriptor (see also vm_normal_page()).
809 static struct page *follow_page_mask(struct vm_area_struct *vma,
810 unsigned long address, unsigned int flags,
811 struct follow_page_context *ctx)
815 struct mm_struct *mm = vma->vm_mm;
819 /* make this handle hugepd */
820 page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
822 WARN_ON_ONCE(flags & (FOLL_GET | FOLL_PIN));
826 pgd = pgd_offset(mm, address);
828 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
829 return no_page_table(vma, flags);
831 if (pgd_huge(*pgd)) {
832 page = follow_huge_pgd(mm, address, pgd, flags);
835 return no_page_table(vma, flags);
837 if (is_hugepd(__hugepd(pgd_val(*pgd)))) {
838 page = follow_huge_pd(vma, address,
839 __hugepd(pgd_val(*pgd)), flags,
843 return no_page_table(vma, flags);
846 return follow_p4d_mask(vma, address, pgd, flags, ctx);
849 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
850 unsigned int foll_flags)
852 struct follow_page_context ctx = { NULL };
855 if (vma_is_secretmem(vma))
858 if (foll_flags & FOLL_PIN)
861 page = follow_page_mask(vma, address, foll_flags, &ctx);
863 put_dev_pagemap(ctx.pgmap);
867 static int get_gate_page(struct mm_struct *mm, unsigned long address,
868 unsigned int gup_flags, struct vm_area_struct **vma,
878 /* user gate pages are read-only */
879 if (gup_flags & FOLL_WRITE)
881 if (address > TASK_SIZE)
882 pgd = pgd_offset_k(address);
884 pgd = pgd_offset_gate(mm, address);
887 p4d = p4d_offset(pgd, address);
890 pud = pud_offset(p4d, address);
893 pmd = pmd_offset(pud, address);
894 if (!pmd_present(*pmd))
896 VM_BUG_ON(pmd_trans_huge(*pmd));
897 pte = pte_offset_map(pmd, address);
900 *vma = get_gate_vma(mm);
903 *page = vm_normal_page(*vma, address, *pte);
905 if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(*pte)))
907 *page = pte_page(*pte);
909 if (unlikely(!try_grab_page(*page, gup_flags))) {
921 * mmap_lock must be held on entry. If @locked != NULL and *@flags
922 * does not include FOLL_NOWAIT, the mmap_lock may be released. If it
923 * is, *@locked will be set to 0 and -EBUSY returned.
925 static int faultin_page(struct vm_area_struct *vma,
926 unsigned long address, unsigned int *flags, bool unshare,
929 unsigned int fault_flags = 0;
932 if (*flags & FOLL_NOFAULT)
934 if (*flags & FOLL_WRITE)
935 fault_flags |= FAULT_FLAG_WRITE;
936 if (*flags & FOLL_REMOTE)
937 fault_flags |= FAULT_FLAG_REMOTE;
939 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
940 if (*flags & FOLL_NOWAIT)
941 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT;
942 if (*flags & FOLL_TRIED) {
944 * Note: FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_TRIED
947 fault_flags |= FAULT_FLAG_TRIED;
950 fault_flags |= FAULT_FLAG_UNSHARE;
951 /* FAULT_FLAG_WRITE and FAULT_FLAG_UNSHARE are incompatible */
952 VM_BUG_ON(fault_flags & FAULT_FLAG_WRITE);
955 ret = handle_mm_fault(vma, address, fault_flags, NULL);
957 if (ret & VM_FAULT_COMPLETED) {
959 * With FAULT_FLAG_RETRY_NOWAIT we'll never release the
960 * mmap lock in the page fault handler. Sanity check this.
962 WARN_ON_ONCE(fault_flags & FAULT_FLAG_RETRY_NOWAIT);
966 * We should do the same as VM_FAULT_RETRY, but let's not
967 * return -EBUSY since that's not reflecting the reality of
968 * what has happened - we've just fully completed a page
969 * fault, with the mmap lock released. Use -EAGAIN to show
970 * that we want to take the mmap lock _again_.
975 if (ret & VM_FAULT_ERROR) {
976 int err = vm_fault_to_errno(ret, *flags);
983 if (ret & VM_FAULT_RETRY) {
984 if (locked && !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
990 * The VM_FAULT_WRITE bit tells us that do_wp_page has broken COW when
991 * necessary, even if maybe_mkwrite decided not to set pte_write. We
992 * can thus safely do subsequent page lookups as if they were reads.
993 * But only do so when looping for pte_write is futile: in some cases
994 * userspace may also be wanting to write to the gotten user page,
995 * which a read fault here might prevent (a readonly page might get
996 * reCOWed by userspace write).
998 if ((ret & VM_FAULT_WRITE) && !(vma->vm_flags & VM_WRITE))
1003 static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags)
1005 vm_flags_t vm_flags = vma->vm_flags;
1006 int write = (gup_flags & FOLL_WRITE);
1007 int foreign = (gup_flags & FOLL_REMOTE);
1009 if (vm_flags & (VM_IO | VM_PFNMAP))
1012 if (gup_flags & FOLL_ANON && !vma_is_anonymous(vma))
1015 if ((gup_flags & FOLL_LONGTERM) && vma_is_fsdax(vma))
1018 if (vma_is_secretmem(vma))
1022 if (!(vm_flags & VM_WRITE)) {
1023 if (!(gup_flags & FOLL_FORCE))
1026 * We used to let the write,force case do COW in a
1027 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could
1028 * set a breakpoint in a read-only mapping of an
1029 * executable, without corrupting the file (yet only
1030 * when that file had been opened for writing!).
1031 * Anon pages in shared mappings are surprising: now
1034 if (!is_cow_mapping(vm_flags))
1037 } else if (!(vm_flags & VM_READ)) {
1038 if (!(gup_flags & FOLL_FORCE))
1041 * Is there actually any vma we can reach here which does not
1042 * have VM_MAYREAD set?
1044 if (!(vm_flags & VM_MAYREAD))
1048 * gups are always data accesses, not instruction
1049 * fetches, so execute=false here
1051 if (!arch_vma_access_permitted(vma, write, false, foreign))
1057 * __get_user_pages() - pin user pages in memory
1058 * @mm: mm_struct of target mm
1059 * @start: starting user address
1060 * @nr_pages: number of pages from start to pin
1061 * @gup_flags: flags modifying pin behaviour
1062 * @pages: array that receives pointers to the pages pinned.
1063 * Should be at least nr_pages long. Or NULL, if caller
1064 * only intends to ensure the pages are faulted in.
1065 * @vmas: array of pointers to vmas corresponding to each page.
1066 * Or NULL if the caller does not require them.
1067 * @locked: whether we're still with the mmap_lock held
1069 * Returns either number of pages pinned (which may be less than the
1070 * number requested), or an error. Details about the return value:
1072 * -- If nr_pages is 0, returns 0.
1073 * -- If nr_pages is >0, but no pages were pinned, returns -errno.
1074 * -- If nr_pages is >0, and some pages were pinned, returns the number of
1075 * pages pinned. Again, this may be less than nr_pages.
1076 * -- 0 return value is possible when the fault would need to be retried.
1078 * The caller is responsible for releasing returned @pages, via put_page().
1080 * @vmas are valid only as long as mmap_lock is held.
1082 * Must be called with mmap_lock held. It may be released. See below.
1084 * __get_user_pages walks a process's page tables and takes a reference to
1085 * each struct page that each user address corresponds to at a given
1086 * instant. That is, it takes the page that would be accessed if a user
1087 * thread accesses the given user virtual address at that instant.
1089 * This does not guarantee that the page exists in the user mappings when
1090 * __get_user_pages returns, and there may even be a completely different
1091 * page there in some cases (eg. if mmapped pagecache has been invalidated
1092 * and subsequently re faulted). However it does guarantee that the page
1093 * won't be freed completely. And mostly callers simply care that the page
1094 * contains data that was valid *at some point in time*. Typically, an IO
1095 * or similar operation cannot guarantee anything stronger anyway because
1096 * locks can't be held over the syscall boundary.
1098 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
1099 * the page is written to, set_page_dirty (or set_page_dirty_lock, as
1100 * appropriate) must be called after the page is finished with, and
1101 * before put_page is called.
1103 * If @locked != NULL, *@locked will be set to 0 when mmap_lock is
1104 * released by an up_read(). That can happen if @gup_flags does not
1107 * A caller using such a combination of @locked and @gup_flags
1108 * must therefore hold the mmap_lock for reading only, and recognize
1109 * when it's been released. Otherwise, it must be held for either
1110 * reading or writing and will not be released.
1112 * In most cases, get_user_pages or get_user_pages_fast should be used
1113 * instead of __get_user_pages. __get_user_pages should be used only if
1114 * you need some special @gup_flags.
1116 static long __get_user_pages(struct mm_struct *mm,
1117 unsigned long start, unsigned long nr_pages,
1118 unsigned int gup_flags, struct page **pages,
1119 struct vm_area_struct **vmas, int *locked)
1121 long ret = 0, i = 0;
1122 struct vm_area_struct *vma = NULL;
1123 struct follow_page_context ctx = { NULL };
1128 start = untagged_addr(start);
1130 VM_BUG_ON(!!pages != !!(gup_flags & (FOLL_GET | FOLL_PIN)));
1133 * If FOLL_FORCE is set then do not force a full fault as the hinting
1134 * fault information is unrelated to the reference behaviour of a task
1135 * using the address space
1137 if (!(gup_flags & FOLL_FORCE))
1138 gup_flags |= FOLL_NUMA;
1142 unsigned int foll_flags = gup_flags;
1143 unsigned int page_increm;
1145 /* first iteration or cross vma bound */
1146 if (!vma || start >= vma->vm_end) {
1147 vma = find_extend_vma(mm, start);
1148 if (!vma && in_gate_area(mm, start)) {
1149 ret = get_gate_page(mm, start & PAGE_MASK,
1151 pages ? &pages[i] : NULL);
1162 ret = check_vma_flags(vma, gup_flags);
1166 if (is_vm_hugetlb_page(vma)) {
1167 i = follow_hugetlb_page(mm, vma, pages, vmas,
1168 &start, &nr_pages, i,
1170 if (locked && *locked == 0) {
1172 * We've got a VM_FAULT_RETRY
1173 * and we've lost mmap_lock.
1174 * We must stop here.
1176 BUG_ON(gup_flags & FOLL_NOWAIT);
1184 * If we have a pending SIGKILL, don't keep faulting pages and
1185 * potentially allocating memory.
1187 if (fatal_signal_pending(current)) {
1193 page = follow_page_mask(vma, start, foll_flags, &ctx);
1194 if (!page || PTR_ERR(page) == -EMLINK) {
1195 ret = faultin_page(vma, start, &foll_flags,
1196 PTR_ERR(page) == -EMLINK, locked);
1210 } else if (PTR_ERR(page) == -EEXIST) {
1212 * Proper page table entry exists, but no corresponding
1213 * struct page. If the caller expects **pages to be
1214 * filled in, bail out now, because that can't be done
1218 ret = PTR_ERR(page);
1223 } else if (IS_ERR(page)) {
1224 ret = PTR_ERR(page);
1229 flush_anon_page(vma, page, start);
1230 flush_dcache_page(page);
1238 page_increm = 1 + (~(start >> PAGE_SHIFT) & ctx.page_mask);
1239 if (page_increm > nr_pages)
1240 page_increm = nr_pages;
1242 start += page_increm * PAGE_SIZE;
1243 nr_pages -= page_increm;
1247 put_dev_pagemap(ctx.pgmap);
1251 static bool vma_permits_fault(struct vm_area_struct *vma,
1252 unsigned int fault_flags)
1254 bool write = !!(fault_flags & FAULT_FLAG_WRITE);
1255 bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE);
1256 vm_flags_t vm_flags = write ? VM_WRITE : VM_READ;
1258 if (!(vm_flags & vma->vm_flags))
1262 * The architecture might have a hardware protection
1263 * mechanism other than read/write that can deny access.
1265 * gup always represents data access, not instruction
1266 * fetches, so execute=false here:
1268 if (!arch_vma_access_permitted(vma, write, false, foreign))
1275 * fixup_user_fault() - manually resolve a user page fault
1276 * @mm: mm_struct of target mm
1277 * @address: user address
1278 * @fault_flags:flags to pass down to handle_mm_fault()
1279 * @unlocked: did we unlock the mmap_lock while retrying, maybe NULL if caller
1280 * does not allow retry. If NULL, the caller must guarantee
1281 * that fault_flags does not contain FAULT_FLAG_ALLOW_RETRY.
1283 * This is meant to be called in the specific scenario where for locking reasons
1284 * we try to access user memory in atomic context (within a pagefault_disable()
1285 * section), this returns -EFAULT, and we want to resolve the user fault before
1288 * Typically this is meant to be used by the futex code.
1290 * The main difference with get_user_pages() is that this function will
1291 * unconditionally call handle_mm_fault() which will in turn perform all the
1292 * necessary SW fixup of the dirty and young bits in the PTE, while
1293 * get_user_pages() only guarantees to update these in the struct page.
1295 * This is important for some architectures where those bits also gate the
1296 * access permission to the page because they are maintained in software. On
1297 * such architectures, gup() will not be enough to make a subsequent access
1300 * This function will not return with an unlocked mmap_lock. So it has not the
1301 * same semantics wrt the @mm->mmap_lock as does filemap_fault().
1303 int fixup_user_fault(struct mm_struct *mm,
1304 unsigned long address, unsigned int fault_flags,
1307 struct vm_area_struct *vma;
1310 address = untagged_addr(address);
1313 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
1316 vma = find_extend_vma(mm, address);
1317 if (!vma || address < vma->vm_start)
1320 if (!vma_permits_fault(vma, fault_flags))
1323 if ((fault_flags & FAULT_FLAG_KILLABLE) &&
1324 fatal_signal_pending(current))
1327 ret = handle_mm_fault(vma, address, fault_flags, NULL);
1329 if (ret & VM_FAULT_COMPLETED) {
1331 * NOTE: it's a pity that we need to retake the lock here
1332 * to pair with the unlock() in the callers. Ideally we
1333 * could tell the callers so they do not need to unlock.
1340 if (ret & VM_FAULT_ERROR) {
1341 int err = vm_fault_to_errno(ret, 0);
1348 if (ret & VM_FAULT_RETRY) {
1351 fault_flags |= FAULT_FLAG_TRIED;
1357 EXPORT_SYMBOL_GPL(fixup_user_fault);
1360 * Please note that this function, unlike __get_user_pages will not
1361 * return 0 for nr_pages > 0 without FOLL_NOWAIT
1363 static __always_inline long __get_user_pages_locked(struct mm_struct *mm,
1364 unsigned long start,
1365 unsigned long nr_pages,
1366 struct page **pages,
1367 struct vm_area_struct **vmas,
1371 long ret, pages_done;
1375 /* if VM_FAULT_RETRY can be returned, vmas become invalid */
1377 /* check caller initialized locked */
1378 BUG_ON(*locked != 1);
1381 if (flags & FOLL_PIN)
1382 mm_set_has_pinned_flag(&mm->flags);
1385 * FOLL_PIN and FOLL_GET are mutually exclusive. Traditional behavior
1386 * is to set FOLL_GET if the caller wants pages[] filled in (but has
1387 * carelessly failed to specify FOLL_GET), so keep doing that, but only
1388 * for FOLL_GET, not for the newer FOLL_PIN.
1390 * FOLL_PIN always expects pages to be non-null, but no need to assert
1391 * that here, as any failures will be obvious enough.
1393 if (pages && !(flags & FOLL_PIN))
1397 lock_dropped = false;
1399 ret = __get_user_pages(mm, start, nr_pages, flags, pages,
1402 /* VM_FAULT_RETRY couldn't trigger, bypass */
1405 /* VM_FAULT_RETRY or VM_FAULT_COMPLETED cannot return errors */
1408 BUG_ON(ret >= nr_pages);
1419 * VM_FAULT_RETRY didn't trigger or it was a
1427 * VM_FAULT_RETRY triggered, so seek to the faulting offset.
1428 * For the prefault case (!pages) we only update counts.
1432 start += ret << PAGE_SHIFT;
1433 lock_dropped = true;
1437 * Repeat on the address that fired VM_FAULT_RETRY
1438 * with both FAULT_FLAG_ALLOW_RETRY and
1439 * FAULT_FLAG_TRIED. Note that GUP can be interrupted
1440 * by fatal signals, so we need to check it before we
1441 * start trying again otherwise it can loop forever.
1444 if (fatal_signal_pending(current)) {
1446 pages_done = -EINTR;
1450 ret = mmap_read_lock_killable(mm);
1459 ret = __get_user_pages(mm, start, 1, flags | FOLL_TRIED,
1460 pages, NULL, locked);
1462 /* Continue to retry until we succeeded */
1480 if (lock_dropped && *locked) {
1482 * We must let the caller know we temporarily dropped the lock
1483 * and so the critical section protected by it was lost.
1485 mmap_read_unlock(mm);
1492 * populate_vma_page_range() - populate a range of pages in the vma.
1494 * @start: start address
1496 * @locked: whether the mmap_lock is still held
1498 * This takes care of mlocking the pages too if VM_LOCKED is set.
1500 * Return either number of pages pinned in the vma, or a negative error
1503 * vma->vm_mm->mmap_lock must be held.
1505 * If @locked is NULL, it may be held for read or write and will
1508 * If @locked is non-NULL, it must held for read only and may be
1509 * released. If it's released, *@locked will be set to 0.
1511 long populate_vma_page_range(struct vm_area_struct *vma,
1512 unsigned long start, unsigned long end, int *locked)
1514 struct mm_struct *mm = vma->vm_mm;
1515 unsigned long nr_pages = (end - start) / PAGE_SIZE;
1519 VM_BUG_ON(!PAGE_ALIGNED(start));
1520 VM_BUG_ON(!PAGE_ALIGNED(end));
1521 VM_BUG_ON_VMA(start < vma->vm_start, vma);
1522 VM_BUG_ON_VMA(end > vma->vm_end, vma);
1523 mmap_assert_locked(mm);
1526 * Rightly or wrongly, the VM_LOCKONFAULT case has never used
1527 * faultin_page() to break COW, so it has no work to do here.
1529 if (vma->vm_flags & VM_LOCKONFAULT)
1532 gup_flags = FOLL_TOUCH;
1534 * We want to touch writable mappings with a write fault in order
1535 * to break COW, except for shared mappings because these don't COW
1536 * and we would not want to dirty them for nothing.
1538 if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE)
1539 gup_flags |= FOLL_WRITE;
1542 * We want mlock to succeed for regions that have any permissions
1543 * other than PROT_NONE.
1545 if (vma_is_accessible(vma))
1546 gup_flags |= FOLL_FORCE;
1549 * We made sure addr is within a VMA, so the following will
1550 * not result in a stack expansion that recurses back here.
1552 ret = __get_user_pages(mm, start, nr_pages, gup_flags,
1553 NULL, NULL, locked);
1559 * faultin_vma_page_range() - populate (prefault) page tables inside the
1560 * given VMA range readable/writable
1562 * This takes care of mlocking the pages, too, if VM_LOCKED is set.
1565 * @start: start address
1567 * @write: whether to prefault readable or writable
1568 * @locked: whether the mmap_lock is still held
1570 * Returns either number of processed pages in the vma, or a negative error
1571 * code on error (see __get_user_pages()).
1573 * vma->vm_mm->mmap_lock must be held. The range must be page-aligned and
1574 * covered by the VMA.
1576 * If @locked is NULL, it may be held for read or write and will be unperturbed.
1578 * If @locked is non-NULL, it must held for read only and may be released. If
1579 * it's released, *@locked will be set to 0.
1581 long faultin_vma_page_range(struct vm_area_struct *vma, unsigned long start,
1582 unsigned long end, bool write, int *locked)
1584 struct mm_struct *mm = vma->vm_mm;
1585 unsigned long nr_pages = (end - start) / PAGE_SIZE;
1589 VM_BUG_ON(!PAGE_ALIGNED(start));
1590 VM_BUG_ON(!PAGE_ALIGNED(end));
1591 VM_BUG_ON_VMA(start < vma->vm_start, vma);
1592 VM_BUG_ON_VMA(end > vma->vm_end, vma);
1593 mmap_assert_locked(mm);
1596 * FOLL_TOUCH: Mark page accessed and thereby young; will also mark
1597 * the page dirty with FOLL_WRITE -- which doesn't make a
1598 * difference with !FOLL_FORCE, because the page is writable
1599 * in the page table.
1600 * FOLL_HWPOISON: Return -EHWPOISON instead of -EFAULT when we hit
1602 * !FOLL_FORCE: Require proper access permissions.
1604 gup_flags = FOLL_TOUCH | FOLL_HWPOISON;
1606 gup_flags |= FOLL_WRITE;
1609 * We want to report -EINVAL instead of -EFAULT for any permission
1610 * problems or incompatible mappings.
1612 if (check_vma_flags(vma, gup_flags))
1615 ret = __get_user_pages(mm, start, nr_pages, gup_flags,
1616 NULL, NULL, locked);
1622 * __mm_populate - populate and/or mlock pages within a range of address space.
1624 * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap
1625 * flags. VMAs must be already marked with the desired vm_flags, and
1626 * mmap_lock must not be held.
1628 int __mm_populate(unsigned long start, unsigned long len, int ignore_errors)
1630 struct mm_struct *mm = current->mm;
1631 unsigned long end, nstart, nend;
1632 struct vm_area_struct *vma = NULL;
1638 for (nstart = start; nstart < end; nstart = nend) {
1640 * We want to fault in pages for [nstart; end) address range.
1641 * Find first corresponding VMA.
1646 vma = find_vma(mm, nstart);
1647 } else if (nstart >= vma->vm_end)
1649 if (!vma || vma->vm_start >= end)
1652 * Set [nstart; nend) to intersection of desired address
1653 * range with the first VMA. Also, skip undesirable VMA types.
1655 nend = min(end, vma->vm_end);
1656 if (vma->vm_flags & (VM_IO | VM_PFNMAP))
1658 if (nstart < vma->vm_start)
1659 nstart = vma->vm_start;
1661 * Now fault in a range of pages. populate_vma_page_range()
1662 * double checks the vma flags, so that it won't mlock pages
1663 * if the vma was already munlocked.
1665 ret = populate_vma_page_range(vma, nstart, nend, &locked);
1667 if (ignore_errors) {
1669 continue; /* continue at next VMA */
1673 nend = nstart + ret * PAGE_SIZE;
1677 mmap_read_unlock(mm);
1678 return ret; /* 0 or negative error code */
1680 #else /* CONFIG_MMU */
1681 static long __get_user_pages_locked(struct mm_struct *mm, unsigned long start,
1682 unsigned long nr_pages, struct page **pages,
1683 struct vm_area_struct **vmas, int *locked,
1684 unsigned int foll_flags)
1686 struct vm_area_struct *vma;
1687 unsigned long vm_flags;
1690 /* calculate required read or write permissions.
1691 * If FOLL_FORCE is set, we only require the "MAY" flags.
1693 vm_flags = (foll_flags & FOLL_WRITE) ?
1694 (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1695 vm_flags &= (foll_flags & FOLL_FORCE) ?
1696 (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1698 for (i = 0; i < nr_pages; i++) {
1699 vma = find_vma(mm, start);
1701 goto finish_or_fault;
1703 /* protect what we can, including chardevs */
1704 if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1705 !(vm_flags & vma->vm_flags))
1706 goto finish_or_fault;
1709 pages[i] = virt_to_page((void *)start);
1715 start = (start + PAGE_SIZE) & PAGE_MASK;
1721 return i ? : -EFAULT;
1723 #endif /* !CONFIG_MMU */
1726 * fault_in_writeable - fault in userspace address range for writing
1727 * @uaddr: start of address range
1728 * @size: size of address range
1730 * Returns the number of bytes not faulted in (like copy_to_user() and
1731 * copy_from_user()).
1733 size_t fault_in_writeable(char __user *uaddr, size_t size)
1735 char __user *start = uaddr, *end;
1737 if (unlikely(size == 0))
1739 if (!user_write_access_begin(uaddr, size))
1741 if (!PAGE_ALIGNED(uaddr)) {
1742 unsafe_put_user(0, uaddr, out);
1743 uaddr = (char __user *)PAGE_ALIGN((unsigned long)uaddr);
1745 end = (char __user *)PAGE_ALIGN((unsigned long)start + size);
1746 if (unlikely(end < start))
1748 while (uaddr != end) {
1749 unsafe_put_user(0, uaddr, out);
1754 user_write_access_end();
1755 if (size > uaddr - start)
1756 return size - (uaddr - start);
1759 EXPORT_SYMBOL(fault_in_writeable);
1762 * fault_in_subpage_writeable - fault in an address range for writing
1763 * @uaddr: start of address range
1764 * @size: size of address range
1766 * Fault in a user address range for writing while checking for permissions at
1767 * sub-page granularity (e.g. arm64 MTE). This function should be used when
1768 * the caller cannot guarantee forward progress of a copy_to_user() loop.
1770 * Returns the number of bytes not faulted in (like copy_to_user() and
1771 * copy_from_user()).
1773 size_t fault_in_subpage_writeable(char __user *uaddr, size_t size)
1778 * Attempt faulting in at page granularity first for page table
1779 * permission checking. The arch-specific probe_subpage_writeable()
1780 * functions may not check for this.
1782 faulted_in = size - fault_in_writeable(uaddr, size);
1784 faulted_in -= probe_subpage_writeable(uaddr, faulted_in);
1786 return size - faulted_in;
1788 EXPORT_SYMBOL(fault_in_subpage_writeable);
1791 * fault_in_safe_writeable - fault in an address range for writing
1792 * @uaddr: start of address range
1793 * @size: length of address range
1795 * Faults in an address range for writing. This is primarily useful when we
1796 * already know that some or all of the pages in the address range aren't in
1799 * Unlike fault_in_writeable(), this function is non-destructive.
1801 * Note that we don't pin or otherwise hold the pages referenced that we fault
1802 * in. There's no guarantee that they'll stay in memory for any duration of
1805 * Returns the number of bytes not faulted in, like copy_to_user() and
1808 size_t fault_in_safe_writeable(const char __user *uaddr, size_t size)
1810 unsigned long start = (unsigned long)uaddr, end;
1811 struct mm_struct *mm = current->mm;
1812 bool unlocked = false;
1814 if (unlikely(size == 0))
1816 end = PAGE_ALIGN(start + size);
1822 if (fixup_user_fault(mm, start, FAULT_FLAG_WRITE, &unlocked))
1824 start = (start + PAGE_SIZE) & PAGE_MASK;
1825 } while (start != end);
1826 mmap_read_unlock(mm);
1828 if (size > (unsigned long)uaddr - start)
1829 return size - ((unsigned long)uaddr - start);
1832 EXPORT_SYMBOL(fault_in_safe_writeable);
1835 * fault_in_readable - fault in userspace address range for reading
1836 * @uaddr: start of user address range
1837 * @size: size of user address range
1839 * Returns the number of bytes not faulted in (like copy_to_user() and
1840 * copy_from_user()).
1842 size_t fault_in_readable(const char __user *uaddr, size_t size)
1844 const char __user *start = uaddr, *end;
1847 if (unlikely(size == 0))
1849 if (!user_read_access_begin(uaddr, size))
1851 if (!PAGE_ALIGNED(uaddr)) {
1852 unsafe_get_user(c, uaddr, out);
1853 uaddr = (const char __user *)PAGE_ALIGN((unsigned long)uaddr);
1855 end = (const char __user *)PAGE_ALIGN((unsigned long)start + size);
1856 if (unlikely(end < start))
1858 while (uaddr != end) {
1859 unsafe_get_user(c, uaddr, out);
1864 user_read_access_end();
1866 if (size > uaddr - start)
1867 return size - (uaddr - start);
1870 EXPORT_SYMBOL(fault_in_readable);
1873 * get_dump_page() - pin user page in memory while writing it to core dump
1874 * @addr: user address
1876 * Returns struct page pointer of user page pinned for dump,
1877 * to be freed afterwards by put_page().
1879 * Returns NULL on any kind of failure - a hole must then be inserted into
1880 * the corefile, to preserve alignment with its headers; and also returns
1881 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
1882 * allowing a hole to be left in the corefile to save disk space.
1884 * Called without mmap_lock (takes and releases the mmap_lock by itself).
1886 #ifdef CONFIG_ELF_CORE
1887 struct page *get_dump_page(unsigned long addr)
1889 struct mm_struct *mm = current->mm;
1894 if (mmap_read_lock_killable(mm))
1896 ret = __get_user_pages_locked(mm, addr, 1, &page, NULL, &locked,
1897 FOLL_FORCE | FOLL_DUMP | FOLL_GET);
1899 mmap_read_unlock(mm);
1900 return (ret == 1) ? page : NULL;
1902 #endif /* CONFIG_ELF_CORE */
1904 #ifdef CONFIG_MIGRATION
1906 * Check whether all pages are pinnable, if so return number of pages. If some
1907 * pages are not pinnable, migrate them, and unpin all pages. Return zero if
1908 * pages were migrated, or if some pages were not successfully isolated.
1909 * Return negative error if migration fails.
1911 static long check_and_migrate_movable_pages(unsigned long nr_pages,
1912 struct page **pages,
1913 unsigned int gup_flags)
1915 unsigned long isolation_error_count = 0, i;
1916 struct folio *prev_folio = NULL;
1917 LIST_HEAD(movable_page_list);
1918 bool drain_allow = true, coherent_pages = false;
1921 for (i = 0; i < nr_pages; i++) {
1922 struct folio *folio = page_folio(pages[i]);
1924 if (folio == prev_folio)
1929 * Device coherent pages are managed by a driver and should not
1930 * be pinned indefinitely as it prevents the driver moving the
1931 * page. So when trying to pin with FOLL_LONGTERM instead try
1932 * to migrate the page out of device memory.
1934 if (folio_is_device_coherent(folio)) {
1936 * We always want a new GUP lookup with device coherent
1940 coherent_pages = true;
1943 * Migration will fail if the page is pinned, so convert
1944 * the pin on the source page to a normal reference.
1946 if (gup_flags & FOLL_PIN) {
1947 get_page(&folio->page);
1948 unpin_user_page(&folio->page);
1951 ret = migrate_device_coherent_page(&folio->page);
1958 if (folio_is_longterm_pinnable(folio))
1961 * Try to move out any movable page before pinning the range.
1963 if (folio_test_hugetlb(folio)) {
1964 if (isolate_hugetlb(&folio->page,
1965 &movable_page_list))
1966 isolation_error_count++;
1970 if (!folio_test_lru(folio) && drain_allow) {
1971 lru_add_drain_all();
1972 drain_allow = false;
1975 if (folio_isolate_lru(folio)) {
1976 isolation_error_count++;
1979 list_add_tail(&folio->lru, &movable_page_list);
1980 node_stat_mod_folio(folio,
1981 NR_ISOLATED_ANON + folio_is_file_lru(folio),
1982 folio_nr_pages(folio));
1985 if (!list_empty(&movable_page_list) || isolation_error_count ||
1990 * If list is empty, and no isolation errors, means that all pages are
1991 * in the correct zone.
1997 * pages[i] might be NULL if any device coherent pages were found.
1999 for (i = 0; i < nr_pages; i++) {
2003 if (gup_flags & FOLL_PIN)
2004 unpin_user_page(pages[i]);
2009 if (!list_empty(&movable_page_list)) {
2010 struct migration_target_control mtc = {
2011 .nid = NUMA_NO_NODE,
2012 .gfp_mask = GFP_USER | __GFP_NOWARN,
2015 ret = migrate_pages(&movable_page_list, alloc_migration_target,
2016 NULL, (unsigned long)&mtc, MIGRATE_SYNC,
2017 MR_LONGTERM_PIN, NULL);
2018 if (ret > 0) /* number of pages not migrated */
2022 if (ret && !list_empty(&movable_page_list))
2023 putback_movable_pages(&movable_page_list);
2027 static long check_and_migrate_movable_pages(unsigned long nr_pages,
2028 struct page **pages,
2029 unsigned int gup_flags)
2033 #endif /* CONFIG_MIGRATION */
2036 * __gup_longterm_locked() is a wrapper for __get_user_pages_locked which
2037 * allows us to process the FOLL_LONGTERM flag.
2039 static long __gup_longterm_locked(struct mm_struct *mm,
2040 unsigned long start,
2041 unsigned long nr_pages,
2042 struct page **pages,
2043 struct vm_area_struct **vmas,
2044 unsigned int gup_flags)
2049 if (!(gup_flags & FOLL_LONGTERM))
2050 return __get_user_pages_locked(mm, start, nr_pages, pages, vmas,
2052 flags = memalloc_pin_save();
2054 rc = __get_user_pages_locked(mm, start, nr_pages, pages, vmas,
2058 rc = check_and_migrate_movable_pages(rc, pages, gup_flags);
2060 memalloc_pin_restore(flags);
2065 static bool is_valid_gup_flags(unsigned int gup_flags)
2068 * FOLL_PIN must only be set internally by the pin_user_pages*() APIs,
2069 * never directly by the caller, so enforce that with an assertion:
2071 if (WARN_ON_ONCE(gup_flags & FOLL_PIN))
2074 * FOLL_PIN is a prerequisite to FOLL_LONGTERM. Another way of saying
2075 * that is, FOLL_LONGTERM is a specific case, more restrictive case of
2078 if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
2085 static long __get_user_pages_remote(struct mm_struct *mm,
2086 unsigned long start, unsigned long nr_pages,
2087 unsigned int gup_flags, struct page **pages,
2088 struct vm_area_struct **vmas, int *locked)
2091 * Parts of FOLL_LONGTERM behavior are incompatible with
2092 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
2093 * vmas. However, this only comes up if locked is set, and there are
2094 * callers that do request FOLL_LONGTERM, but do not set locked. So,
2095 * allow what we can.
2097 if (gup_flags & FOLL_LONGTERM) {
2098 if (WARN_ON_ONCE(locked))
2101 * This will check the vmas (even if our vmas arg is NULL)
2102 * and return -ENOTSUPP if DAX isn't allowed in this case:
2104 return __gup_longterm_locked(mm, start, nr_pages, pages,
2105 vmas, gup_flags | FOLL_TOUCH |
2109 return __get_user_pages_locked(mm, start, nr_pages, pages, vmas,
2111 gup_flags | FOLL_TOUCH | FOLL_REMOTE);
2115 * get_user_pages_remote() - pin user pages in memory
2116 * @mm: mm_struct of target mm
2117 * @start: starting user address
2118 * @nr_pages: number of pages from start to pin
2119 * @gup_flags: flags modifying lookup behaviour
2120 * @pages: array that receives pointers to the pages pinned.
2121 * Should be at least nr_pages long. Or NULL, if caller
2122 * only intends to ensure the pages are faulted in.
2123 * @vmas: array of pointers to vmas corresponding to each page.
2124 * Or NULL if the caller does not require them.
2125 * @locked: pointer to lock flag indicating whether lock is held and
2126 * subsequently whether VM_FAULT_RETRY functionality can be
2127 * utilised. Lock must initially be held.
2129 * Returns either number of pages pinned (which may be less than the
2130 * number requested), or an error. Details about the return value:
2132 * -- If nr_pages is 0, returns 0.
2133 * -- If nr_pages is >0, but no pages were pinned, returns -errno.
2134 * -- If nr_pages is >0, and some pages were pinned, returns the number of
2135 * pages pinned. Again, this may be less than nr_pages.
2137 * The caller is responsible for releasing returned @pages, via put_page().
2139 * @vmas are valid only as long as mmap_lock is held.
2141 * Must be called with mmap_lock held for read or write.
2143 * get_user_pages_remote walks a process's page tables and takes a reference
2144 * to each struct page that each user address corresponds to at a given
2145 * instant. That is, it takes the page that would be accessed if a user
2146 * thread accesses the given user virtual address at that instant.
2148 * This does not guarantee that the page exists in the user mappings when
2149 * get_user_pages_remote returns, and there may even be a completely different
2150 * page there in some cases (eg. if mmapped pagecache has been invalidated
2151 * and subsequently re faulted). However it does guarantee that the page
2152 * won't be freed completely. And mostly callers simply care that the page
2153 * contains data that was valid *at some point in time*. Typically, an IO
2154 * or similar operation cannot guarantee anything stronger anyway because
2155 * locks can't be held over the syscall boundary.
2157 * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page
2158 * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must
2159 * be called after the page is finished with, and before put_page is called.
2161 * get_user_pages_remote is typically used for fewer-copy IO operations,
2162 * to get a handle on the memory by some means other than accesses
2163 * via the user virtual addresses. The pages may be submitted for
2164 * DMA to devices or accessed via their kernel linear mapping (via the
2165 * kmap APIs). Care should be taken to use the correct cache flushing APIs.
2167 * See also get_user_pages_fast, for performance critical applications.
2169 * get_user_pages_remote should be phased out in favor of
2170 * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing
2171 * should use get_user_pages_remote because it cannot pass
2172 * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault.
2174 long get_user_pages_remote(struct mm_struct *mm,
2175 unsigned long start, unsigned long nr_pages,
2176 unsigned int gup_flags, struct page **pages,
2177 struct vm_area_struct **vmas, int *locked)
2179 if (!is_valid_gup_flags(gup_flags))
2182 return __get_user_pages_remote(mm, start, nr_pages, gup_flags,
2183 pages, vmas, locked);
2185 EXPORT_SYMBOL(get_user_pages_remote);
2187 #else /* CONFIG_MMU */
2188 long get_user_pages_remote(struct mm_struct *mm,
2189 unsigned long start, unsigned long nr_pages,
2190 unsigned int gup_flags, struct page **pages,
2191 struct vm_area_struct **vmas, int *locked)
2196 static long __get_user_pages_remote(struct mm_struct *mm,
2197 unsigned long start, unsigned long nr_pages,
2198 unsigned int gup_flags, struct page **pages,
2199 struct vm_area_struct **vmas, int *locked)
2203 #endif /* !CONFIG_MMU */
2206 * get_user_pages() - pin user pages in memory
2207 * @start: starting user address
2208 * @nr_pages: number of pages from start to pin
2209 * @gup_flags: flags modifying lookup behaviour
2210 * @pages: array that receives pointers to the pages pinned.
2211 * Should be at least nr_pages long. Or NULL, if caller
2212 * only intends to ensure the pages are faulted in.
2213 * @vmas: array of pointers to vmas corresponding to each page.
2214 * Or NULL if the caller does not require them.
2216 * This is the same as get_user_pages_remote(), just with a less-flexible
2217 * calling convention where we assume that the mm being operated on belongs to
2218 * the current task, and doesn't allow passing of a locked parameter. We also
2219 * obviously don't pass FOLL_REMOTE in here.
2221 long get_user_pages(unsigned long start, unsigned long nr_pages,
2222 unsigned int gup_flags, struct page **pages,
2223 struct vm_area_struct **vmas)
2225 if (!is_valid_gup_flags(gup_flags))
2228 return __gup_longterm_locked(current->mm, start, nr_pages,
2229 pages, vmas, gup_flags | FOLL_TOUCH);
2231 EXPORT_SYMBOL(get_user_pages);
2234 * get_user_pages_unlocked() is suitable to replace the form:
2236 * mmap_read_lock(mm);
2237 * get_user_pages(mm, ..., pages, NULL);
2238 * mmap_read_unlock(mm);
2242 * get_user_pages_unlocked(mm, ..., pages);
2244 * It is functionally equivalent to get_user_pages_fast so
2245 * get_user_pages_fast should be used instead if specific gup_flags
2246 * (e.g. FOLL_FORCE) are not required.
2248 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2249 struct page **pages, unsigned int gup_flags)
2251 struct mm_struct *mm = current->mm;
2256 * FIXME: Current FOLL_LONGTERM behavior is incompatible with
2257 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
2258 * vmas. As there are no users of this flag in this call we simply
2259 * disallow this option for now.
2261 if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
2265 ret = __get_user_pages_locked(mm, start, nr_pages, pages, NULL,
2266 &locked, gup_flags | FOLL_TOUCH);
2268 mmap_read_unlock(mm);
2271 EXPORT_SYMBOL(get_user_pages_unlocked);
2276 * get_user_pages_fast attempts to pin user pages by walking the page
2277 * tables directly and avoids taking locks. Thus the walker needs to be
2278 * protected from page table pages being freed from under it, and should
2279 * block any THP splits.
2281 * One way to achieve this is to have the walker disable interrupts, and
2282 * rely on IPIs from the TLB flushing code blocking before the page table
2283 * pages are freed. This is unsuitable for architectures that do not need
2284 * to broadcast an IPI when invalidating TLBs.
2286 * Another way to achieve this is to batch up page table containing pages
2287 * belonging to more than one mm_user, then rcu_sched a callback to free those
2288 * pages. Disabling interrupts will allow the fast_gup walker to both block
2289 * the rcu_sched callback, and an IPI that we broadcast for splitting THPs
2290 * (which is a relatively rare event). The code below adopts this strategy.
2292 * Before activating this code, please be aware that the following assumptions
2293 * are currently made:
2295 * *) Either MMU_GATHER_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to
2296 * free pages containing page tables or TLB flushing requires IPI broadcast.
2298 * *) ptes can be read atomically by the architecture.
2300 * *) access_ok is sufficient to validate userspace address ranges.
2302 * The last two assumptions can be relaxed by the addition of helper functions.
2304 * This code is based heavily on the PowerPC implementation by Nick Piggin.
2306 #ifdef CONFIG_HAVE_FAST_GUP
2308 static void __maybe_unused undo_dev_pagemap(int *nr, int nr_start,
2310 struct page **pages)
2312 while ((*nr) - nr_start) {
2313 struct page *page = pages[--(*nr)];
2315 ClearPageReferenced(page);
2316 if (flags & FOLL_PIN)
2317 unpin_user_page(page);
2323 #ifdef CONFIG_ARCH_HAS_PTE_SPECIAL
2324 static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
2325 unsigned int flags, struct page **pages, int *nr)
2327 struct dev_pagemap *pgmap = NULL;
2328 int nr_start = *nr, ret = 0;
2331 ptem = ptep = pte_offset_map(&pmd, addr);
2333 pte_t pte = ptep_get_lockless(ptep);
2335 struct folio *folio;
2338 * Similar to the PMD case below, NUMA hinting must take slow
2339 * path using the pte_protnone check.
2341 if (pte_protnone(pte))
2344 if (!pte_access_permitted(pte, flags & FOLL_WRITE))
2347 if (pte_devmap(pte)) {
2348 if (unlikely(flags & FOLL_LONGTERM))
2351 pgmap = get_dev_pagemap(pte_pfn(pte), pgmap);
2352 if (unlikely(!pgmap)) {
2353 undo_dev_pagemap(nr, nr_start, flags, pages);
2356 } else if (pte_special(pte))
2359 VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
2360 page = pte_page(pte);
2362 folio = try_grab_folio(page, 1, flags);
2366 if (unlikely(page_is_secretmem(page))) {
2367 gup_put_folio(folio, 1, flags);
2371 if (unlikely(pte_val(pte) != pte_val(*ptep))) {
2372 gup_put_folio(folio, 1, flags);
2376 if (!pte_write(pte) && gup_must_unshare(flags, page)) {
2377 gup_put_folio(folio, 1, flags);
2382 * We need to make the page accessible if and only if we are
2383 * going to access its content (the FOLL_PIN case). Please
2384 * see Documentation/core-api/pin_user_pages.rst for
2387 if (flags & FOLL_PIN) {
2388 ret = arch_make_page_accessible(page);
2390 gup_put_folio(folio, 1, flags);
2394 folio_set_referenced(folio);
2397 } while (ptep++, addr += PAGE_SIZE, addr != end);
2403 put_dev_pagemap(pgmap);
2410 * If we can't determine whether or not a pte is special, then fail immediately
2411 * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not
2414 * For a futex to be placed on a THP tail page, get_futex_key requires a
2415 * get_user_pages_fast_only implementation that can pin pages. Thus it's still
2416 * useful to have gup_huge_pmd even if we can't operate on ptes.
2418 static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
2419 unsigned int flags, struct page **pages, int *nr)
2423 #endif /* CONFIG_ARCH_HAS_PTE_SPECIAL */
2425 #if defined(CONFIG_ARCH_HAS_PTE_DEVMAP) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
2426 static int __gup_device_huge(unsigned long pfn, unsigned long addr,
2427 unsigned long end, unsigned int flags,
2428 struct page **pages, int *nr)
2431 struct dev_pagemap *pgmap = NULL;
2434 struct page *page = pfn_to_page(pfn);
2436 pgmap = get_dev_pagemap(pfn, pgmap);
2437 if (unlikely(!pgmap)) {
2438 undo_dev_pagemap(nr, nr_start, flags, pages);
2441 SetPageReferenced(page);
2443 if (unlikely(!try_grab_page(page, flags))) {
2444 undo_dev_pagemap(nr, nr_start, flags, pages);
2449 } while (addr += PAGE_SIZE, addr != end);
2451 put_dev_pagemap(pgmap);
2455 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2456 unsigned long end, unsigned int flags,
2457 struct page **pages, int *nr)
2459 unsigned long fault_pfn;
2462 fault_pfn = pmd_pfn(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
2463 if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr))
2466 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
2467 undo_dev_pagemap(nr, nr_start, flags, pages);
2473 static int __gup_device_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
2474 unsigned long end, unsigned int flags,
2475 struct page **pages, int *nr)
2477 unsigned long fault_pfn;
2480 fault_pfn = pud_pfn(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
2481 if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr))
2484 if (unlikely(pud_val(orig) != pud_val(*pudp))) {
2485 undo_dev_pagemap(nr, nr_start, flags, pages);
2491 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2492 unsigned long end, unsigned int flags,
2493 struct page **pages, int *nr)
2499 static int __gup_device_huge_pud(pud_t pud, pud_t *pudp, unsigned long addr,
2500 unsigned long end, unsigned int flags,
2501 struct page **pages, int *nr)
2508 static int record_subpages(struct page *page, unsigned long addr,
2509 unsigned long end, struct page **pages)
2513 for (nr = 0; addr != end; nr++, addr += PAGE_SIZE)
2514 pages[nr] = nth_page(page, nr);
2519 #ifdef CONFIG_ARCH_HAS_HUGEPD
2520 static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end,
2523 unsigned long __boundary = (addr + sz) & ~(sz-1);
2524 return (__boundary - 1 < end - 1) ? __boundary : end;
2527 static int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr,
2528 unsigned long end, unsigned int flags,
2529 struct page **pages, int *nr)
2531 unsigned long pte_end;
2533 struct folio *folio;
2537 pte_end = (addr + sz) & ~(sz-1);
2541 pte = huge_ptep_get(ptep);
2543 if (!pte_access_permitted(pte, flags & FOLL_WRITE))
2546 /* hugepages are never "special" */
2547 VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
2549 page = nth_page(pte_page(pte), (addr & (sz - 1)) >> PAGE_SHIFT);
2550 refs = record_subpages(page, addr, end, pages + *nr);
2552 folio = try_grab_folio(page, refs, flags);
2556 if (unlikely(pte_val(pte) != pte_val(*ptep))) {
2557 gup_put_folio(folio, refs, flags);
2561 if (!pte_write(pte) && gup_must_unshare(flags, &folio->page)) {
2562 gup_put_folio(folio, refs, flags);
2567 folio_set_referenced(folio);
2571 static int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
2572 unsigned int pdshift, unsigned long end, unsigned int flags,
2573 struct page **pages, int *nr)
2576 unsigned long sz = 1UL << hugepd_shift(hugepd);
2579 ptep = hugepte_offset(hugepd, addr, pdshift);
2581 next = hugepte_addr_end(addr, end, sz);
2582 if (!gup_hugepte(ptep, sz, addr, end, flags, pages, nr))
2584 } while (ptep++, addr = next, addr != end);
2589 static inline int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
2590 unsigned int pdshift, unsigned long end, unsigned int flags,
2591 struct page **pages, int *nr)
2595 #endif /* CONFIG_ARCH_HAS_HUGEPD */
2597 static int gup_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2598 unsigned long end, unsigned int flags,
2599 struct page **pages, int *nr)
2602 struct folio *folio;
2605 if (!pmd_access_permitted(orig, flags & FOLL_WRITE))
2608 if (pmd_devmap(orig)) {
2609 if (unlikely(flags & FOLL_LONGTERM))
2611 return __gup_device_huge_pmd(orig, pmdp, addr, end, flags,
2615 page = nth_page(pmd_page(orig), (addr & ~PMD_MASK) >> PAGE_SHIFT);
2616 refs = record_subpages(page, addr, end, pages + *nr);
2618 folio = try_grab_folio(page, refs, flags);
2622 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
2623 gup_put_folio(folio, refs, flags);
2627 if (!pmd_write(orig) && gup_must_unshare(flags, &folio->page)) {
2628 gup_put_folio(folio, refs, flags);
2633 folio_set_referenced(folio);
2637 static int gup_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
2638 unsigned long end, unsigned int flags,
2639 struct page **pages, int *nr)
2642 struct folio *folio;
2645 if (!pud_access_permitted(orig, flags & FOLL_WRITE))
2648 if (pud_devmap(orig)) {
2649 if (unlikely(flags & FOLL_LONGTERM))
2651 return __gup_device_huge_pud(orig, pudp, addr, end, flags,
2655 page = nth_page(pud_page(orig), (addr & ~PUD_MASK) >> PAGE_SHIFT);
2656 refs = record_subpages(page, addr, end, pages + *nr);
2658 folio = try_grab_folio(page, refs, flags);
2662 if (unlikely(pud_val(orig) != pud_val(*pudp))) {
2663 gup_put_folio(folio, refs, flags);
2667 if (!pud_write(orig) && gup_must_unshare(flags, &folio->page)) {
2668 gup_put_folio(folio, refs, flags);
2673 folio_set_referenced(folio);
2677 static int gup_huge_pgd(pgd_t orig, pgd_t *pgdp, unsigned long addr,
2678 unsigned long end, unsigned int flags,
2679 struct page **pages, int *nr)
2683 struct folio *folio;
2685 if (!pgd_access_permitted(orig, flags & FOLL_WRITE))
2688 BUILD_BUG_ON(pgd_devmap(orig));
2690 page = nth_page(pgd_page(orig), (addr & ~PGDIR_MASK) >> PAGE_SHIFT);
2691 refs = record_subpages(page, addr, end, pages + *nr);
2693 folio = try_grab_folio(page, refs, flags);
2697 if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) {
2698 gup_put_folio(folio, refs, flags);
2703 folio_set_referenced(folio);
2707 static int gup_pmd_range(pud_t *pudp, pud_t pud, unsigned long addr, unsigned long end,
2708 unsigned int flags, struct page **pages, int *nr)
2713 pmdp = pmd_offset_lockless(pudp, pud, addr);
2715 pmd_t pmd = READ_ONCE(*pmdp);
2717 next = pmd_addr_end(addr, end);
2718 if (!pmd_present(pmd))
2721 if (unlikely(pmd_trans_huge(pmd) || pmd_huge(pmd) ||
2724 * NUMA hinting faults need to be handled in the GUP
2725 * slowpath for accounting purposes and so that they
2726 * can be serialised against THP migration.
2728 if (pmd_protnone(pmd))
2731 if (!gup_huge_pmd(pmd, pmdp, addr, next, flags,
2735 } else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd))))) {
2737 * architecture have different format for hugetlbfs
2738 * pmd format and THP pmd format
2740 if (!gup_huge_pd(__hugepd(pmd_val(pmd)), addr,
2741 PMD_SHIFT, next, flags, pages, nr))
2743 } else if (!gup_pte_range(pmd, addr, next, flags, pages, nr))
2745 } while (pmdp++, addr = next, addr != end);
2750 static int gup_pud_range(p4d_t *p4dp, p4d_t p4d, unsigned long addr, unsigned long end,
2751 unsigned int flags, struct page **pages, int *nr)
2756 pudp = pud_offset_lockless(p4dp, p4d, addr);
2758 pud_t pud = READ_ONCE(*pudp);
2760 next = pud_addr_end(addr, end);
2761 if (unlikely(!pud_present(pud)))
2763 if (unlikely(pud_huge(pud))) {
2764 if (!gup_huge_pud(pud, pudp, addr, next, flags,
2767 } else if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) {
2768 if (!gup_huge_pd(__hugepd(pud_val(pud)), addr,
2769 PUD_SHIFT, next, flags, pages, nr))
2771 } else if (!gup_pmd_range(pudp, pud, addr, next, flags, pages, nr))
2773 } while (pudp++, addr = next, addr != end);
2778 static int gup_p4d_range(pgd_t *pgdp, pgd_t pgd, unsigned long addr, unsigned long end,
2779 unsigned int flags, struct page **pages, int *nr)
2784 p4dp = p4d_offset_lockless(pgdp, pgd, addr);
2786 p4d_t p4d = READ_ONCE(*p4dp);
2788 next = p4d_addr_end(addr, end);
2791 BUILD_BUG_ON(p4d_huge(p4d));
2792 if (unlikely(is_hugepd(__hugepd(p4d_val(p4d))))) {
2793 if (!gup_huge_pd(__hugepd(p4d_val(p4d)), addr,
2794 P4D_SHIFT, next, flags, pages, nr))
2796 } else if (!gup_pud_range(p4dp, p4d, addr, next, flags, pages, nr))
2798 } while (p4dp++, addr = next, addr != end);
2803 static void gup_pgd_range(unsigned long addr, unsigned long end,
2804 unsigned int flags, struct page **pages, int *nr)
2809 pgdp = pgd_offset(current->mm, addr);
2811 pgd_t pgd = READ_ONCE(*pgdp);
2813 next = pgd_addr_end(addr, end);
2816 if (unlikely(pgd_huge(pgd))) {
2817 if (!gup_huge_pgd(pgd, pgdp, addr, next, flags,
2820 } else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd))))) {
2821 if (!gup_huge_pd(__hugepd(pgd_val(pgd)), addr,
2822 PGDIR_SHIFT, next, flags, pages, nr))
2824 } else if (!gup_p4d_range(pgdp, pgd, addr, next, flags, pages, nr))
2826 } while (pgdp++, addr = next, addr != end);
2829 static inline void gup_pgd_range(unsigned long addr, unsigned long end,
2830 unsigned int flags, struct page **pages, int *nr)
2833 #endif /* CONFIG_HAVE_FAST_GUP */
2835 #ifndef gup_fast_permitted
2837 * Check if it's allowed to use get_user_pages_fast_only() for the range, or
2838 * we need to fall back to the slow version:
2840 static bool gup_fast_permitted(unsigned long start, unsigned long end)
2846 static int __gup_longterm_unlocked(unsigned long start, int nr_pages,
2847 unsigned int gup_flags, struct page **pages)
2852 * FIXME: FOLL_LONGTERM does not work with
2853 * get_user_pages_unlocked() (see comments in that function)
2855 if (gup_flags & FOLL_LONGTERM) {
2856 mmap_read_lock(current->mm);
2857 ret = __gup_longterm_locked(current->mm,
2859 pages, NULL, gup_flags);
2860 mmap_read_unlock(current->mm);
2862 ret = get_user_pages_unlocked(start, nr_pages,
2869 static unsigned long lockless_pages_from_mm(unsigned long start,
2871 unsigned int gup_flags,
2872 struct page **pages)
2874 unsigned long flags;
2878 if (!IS_ENABLED(CONFIG_HAVE_FAST_GUP) ||
2879 !gup_fast_permitted(start, end))
2882 if (gup_flags & FOLL_PIN) {
2883 seq = raw_read_seqcount(¤t->mm->write_protect_seq);
2889 * Disable interrupts. The nested form is used, in order to allow full,
2890 * general purpose use of this routine.
2892 * With interrupts disabled, we block page table pages from being freed
2893 * from under us. See struct mmu_table_batch comments in
2894 * include/asm-generic/tlb.h for more details.
2896 * We do not adopt an rcu_read_lock() here as we also want to block IPIs
2897 * that come from THPs splitting.
2899 local_irq_save(flags);
2900 gup_pgd_range(start, end, gup_flags, pages, &nr_pinned);
2901 local_irq_restore(flags);
2904 * When pinning pages for DMA there could be a concurrent write protect
2905 * from fork() via copy_page_range(), in this case always fail fast GUP.
2907 if (gup_flags & FOLL_PIN) {
2908 if (read_seqcount_retry(¤t->mm->write_protect_seq, seq)) {
2909 unpin_user_pages_lockless(pages, nr_pinned);
2912 sanity_check_pinned_pages(pages, nr_pinned);
2918 static int internal_get_user_pages_fast(unsigned long start,
2919 unsigned long nr_pages,
2920 unsigned int gup_flags,
2921 struct page **pages)
2923 unsigned long len, end;
2924 unsigned long nr_pinned;
2927 if (WARN_ON_ONCE(gup_flags & ~(FOLL_WRITE | FOLL_LONGTERM |
2928 FOLL_FORCE | FOLL_PIN | FOLL_GET |
2929 FOLL_FAST_ONLY | FOLL_NOFAULT)))
2932 if (gup_flags & FOLL_PIN)
2933 mm_set_has_pinned_flag(¤t->mm->flags);
2935 if (!(gup_flags & FOLL_FAST_ONLY))
2936 might_lock_read(¤t->mm->mmap_lock);
2938 start = untagged_addr(start) & PAGE_MASK;
2939 len = nr_pages << PAGE_SHIFT;
2940 if (check_add_overflow(start, len, &end))
2942 if (unlikely(!access_ok((void __user *)start, len)))
2945 nr_pinned = lockless_pages_from_mm(start, end, gup_flags, pages);
2946 if (nr_pinned == nr_pages || gup_flags & FOLL_FAST_ONLY)
2949 /* Slow path: try to get the remaining pages with get_user_pages */
2950 start += nr_pinned << PAGE_SHIFT;
2952 ret = __gup_longterm_unlocked(start, nr_pages - nr_pinned, gup_flags,
2956 * The caller has to unpin the pages we already pinned so
2957 * returning -errno is not an option
2963 return ret + nr_pinned;
2967 * get_user_pages_fast_only() - pin user pages in memory
2968 * @start: starting user address
2969 * @nr_pages: number of pages from start to pin
2970 * @gup_flags: flags modifying pin behaviour
2971 * @pages: array that receives pointers to the pages pinned.
2972 * Should be at least nr_pages long.
2974 * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to
2976 * Note a difference with get_user_pages_fast: this always returns the
2977 * number of pages pinned, 0 if no pages were pinned.
2979 * If the architecture does not support this function, simply return with no
2982 * Careful, careful! COW breaking can go either way, so a non-write
2983 * access can get ambiguous page results. If you call this function without
2984 * 'write' set, you'd better be sure that you're ok with that ambiguity.
2986 int get_user_pages_fast_only(unsigned long start, int nr_pages,
2987 unsigned int gup_flags, struct page **pages)
2991 * Internally (within mm/gup.c), gup fast variants must set FOLL_GET,
2992 * because gup fast is always a "pin with a +1 page refcount" request.
2994 * FOLL_FAST_ONLY is required in order to match the API description of
2995 * this routine: no fall back to regular ("slow") GUP.
2997 gup_flags |= FOLL_GET | FOLL_FAST_ONLY;
2999 nr_pinned = internal_get_user_pages_fast(start, nr_pages, gup_flags,
3003 * As specified in the API description above, this routine is not
3004 * allowed to return negative values. However, the common core
3005 * routine internal_get_user_pages_fast() *can* return -errno.
3006 * Therefore, correct for that here:
3013 EXPORT_SYMBOL_GPL(get_user_pages_fast_only);
3016 * get_user_pages_fast() - pin user pages in memory
3017 * @start: starting user address
3018 * @nr_pages: number of pages from start to pin
3019 * @gup_flags: flags modifying pin behaviour
3020 * @pages: array that receives pointers to the pages pinned.
3021 * Should be at least nr_pages long.
3023 * Attempt to pin user pages in memory without taking mm->mmap_lock.
3024 * If not successful, it will fall back to taking the lock and
3025 * calling get_user_pages().
3027 * Returns number of pages pinned. This may be fewer than the number requested.
3028 * If nr_pages is 0 or negative, returns 0. If no pages were pinned, returns
3031 int get_user_pages_fast(unsigned long start, int nr_pages,
3032 unsigned int gup_flags, struct page **pages)
3034 if (!is_valid_gup_flags(gup_flags))
3038 * The caller may or may not have explicitly set FOLL_GET; either way is
3039 * OK. However, internally (within mm/gup.c), gup fast variants must set
3040 * FOLL_GET, because gup fast is always a "pin with a +1 page refcount"
3043 gup_flags |= FOLL_GET;
3044 return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
3046 EXPORT_SYMBOL_GPL(get_user_pages_fast);
3049 * pin_user_pages_fast() - pin user pages in memory without taking locks
3051 * @start: starting user address
3052 * @nr_pages: number of pages from start to pin
3053 * @gup_flags: flags modifying pin behaviour
3054 * @pages: array that receives pointers to the pages pinned.
3055 * Should be at least nr_pages long.
3057 * Nearly the same as get_user_pages_fast(), except that FOLL_PIN is set. See
3058 * get_user_pages_fast() for documentation on the function arguments, because
3059 * the arguments here are identical.
3061 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
3062 * see Documentation/core-api/pin_user_pages.rst for further details.
3064 int pin_user_pages_fast(unsigned long start, int nr_pages,
3065 unsigned int gup_flags, struct page **pages)
3067 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
3068 if (WARN_ON_ONCE(gup_flags & FOLL_GET))
3071 if (WARN_ON_ONCE(!pages))
3074 gup_flags |= FOLL_PIN;
3075 return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
3077 EXPORT_SYMBOL_GPL(pin_user_pages_fast);
3080 * This is the FOLL_PIN equivalent of get_user_pages_fast_only(). Behavior
3081 * is the same, except that this one sets FOLL_PIN instead of FOLL_GET.
3083 * The API rules are the same, too: no negative values may be returned.
3085 int pin_user_pages_fast_only(unsigned long start, int nr_pages,
3086 unsigned int gup_flags, struct page **pages)
3091 * FOLL_GET and FOLL_PIN are mutually exclusive. Note that the API
3092 * rules require returning 0, rather than -errno:
3094 if (WARN_ON_ONCE(gup_flags & FOLL_GET))
3097 if (WARN_ON_ONCE(!pages))
3100 * FOLL_FAST_ONLY is required in order to match the API description of
3101 * this routine: no fall back to regular ("slow") GUP.
3103 gup_flags |= (FOLL_PIN | FOLL_FAST_ONLY);
3104 nr_pinned = internal_get_user_pages_fast(start, nr_pages, gup_flags,
3107 * This routine is not allowed to return negative values. However,
3108 * internal_get_user_pages_fast() *can* return -errno. Therefore,
3109 * correct for that here:
3116 EXPORT_SYMBOL_GPL(pin_user_pages_fast_only);
3119 * pin_user_pages_remote() - pin pages of a remote process
3121 * @mm: mm_struct of target mm
3122 * @start: starting user address
3123 * @nr_pages: number of pages from start to pin
3124 * @gup_flags: flags modifying lookup behaviour
3125 * @pages: array that receives pointers to the pages pinned.
3126 * Should be at least nr_pages long.
3127 * @vmas: array of pointers to vmas corresponding to each page.
3128 * Or NULL if the caller does not require them.
3129 * @locked: pointer to lock flag indicating whether lock is held and
3130 * subsequently whether VM_FAULT_RETRY functionality can be
3131 * utilised. Lock must initially be held.
3133 * Nearly the same as get_user_pages_remote(), except that FOLL_PIN is set. See
3134 * get_user_pages_remote() for documentation on the function arguments, because
3135 * the arguments here are identical.
3137 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
3138 * see Documentation/core-api/pin_user_pages.rst for details.
3140 long pin_user_pages_remote(struct mm_struct *mm,
3141 unsigned long start, unsigned long nr_pages,
3142 unsigned int gup_flags, struct page **pages,
3143 struct vm_area_struct **vmas, int *locked)
3145 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
3146 if (WARN_ON_ONCE(gup_flags & FOLL_GET))
3149 if (WARN_ON_ONCE(!pages))
3152 gup_flags |= FOLL_PIN;
3153 return __get_user_pages_remote(mm, start, nr_pages, gup_flags,
3154 pages, vmas, locked);
3156 EXPORT_SYMBOL(pin_user_pages_remote);
3159 * pin_user_pages() - pin user pages in memory for use by other devices
3161 * @start: starting user address
3162 * @nr_pages: number of pages from start to pin
3163 * @gup_flags: flags modifying lookup behaviour
3164 * @pages: array that receives pointers to the pages pinned.
3165 * Should be at least nr_pages long.
3166 * @vmas: array of pointers to vmas corresponding to each page.
3167 * Or NULL if the caller does not require them.
3169 * Nearly the same as get_user_pages(), except that FOLL_TOUCH is not set, and
3172 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
3173 * see Documentation/core-api/pin_user_pages.rst for details.
3175 long pin_user_pages(unsigned long start, unsigned long nr_pages,
3176 unsigned int gup_flags, struct page **pages,
3177 struct vm_area_struct **vmas)
3179 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
3180 if (WARN_ON_ONCE(gup_flags & FOLL_GET))
3183 if (WARN_ON_ONCE(!pages))
3186 gup_flags |= FOLL_PIN;
3187 return __gup_longterm_locked(current->mm, start, nr_pages,
3188 pages, vmas, gup_flags);
3190 EXPORT_SYMBOL(pin_user_pages);
3193 * pin_user_pages_unlocked() is the FOLL_PIN variant of
3194 * get_user_pages_unlocked(). Behavior is the same, except that this one sets
3195 * FOLL_PIN and rejects FOLL_GET.
3197 long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
3198 struct page **pages, unsigned int gup_flags)
3200 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
3201 if (WARN_ON_ONCE(gup_flags & FOLL_GET))
3204 if (WARN_ON_ONCE(!pages))
3207 gup_flags |= FOLL_PIN;
3208 return get_user_pages_unlocked(start, nr_pages, pages, gup_flags);
3210 EXPORT_SYMBOL(pin_user_pages_unlocked);