1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <linux/kernel.h>
3 #include <linux/errno.h>
5 #include <linux/spinlock.h>
8 #include <linux/memremap.h>
9 #include <linux/pagemap.h>
10 #include <linux/rmap.h>
11 #include <linux/swap.h>
12 #include <linux/swapops.h>
13 #include <linux/secretmem.h>
15 #include <linux/sched/signal.h>
16 #include <linux/rwsem.h>
17 #include <linux/hugetlb.h>
18 #include <linux/migrate.h>
19 #include <linux/mm_inline.h>
20 #include <linux/sched/mm.h>
22 #include <asm/mmu_context.h>
23 #include <asm/tlbflush.h>
27 struct follow_page_context {
28 struct dev_pagemap *pgmap;
29 unsigned int page_mask;
32 static inline void sanity_check_pinned_pages(struct page **pages,
35 if (!IS_ENABLED(CONFIG_DEBUG_VM))
39 * We only pin anonymous pages if they are exclusive. Once pinned, we
40 * can no longer turn them possibly shared and PageAnonExclusive() will
41 * stick around until the page is freed.
43 * We'd like to verify that our pinned anonymous pages are still mapped
44 * exclusively. The issue with anon THP is that we don't know how
45 * they are/were mapped when pinning them. However, for anon
46 * THP we can assume that either the given page (PTE-mapped THP) or
47 * the head page (PMD-mapped THP) should be PageAnonExclusive(). If
48 * neither is the case, there is certainly something wrong.
50 for (; npages; npages--, pages++) {
51 struct page *page = *pages;
52 struct folio *folio = page_folio(page);
54 if (!folio_test_anon(folio))
56 if (!folio_test_large(folio) || folio_test_hugetlb(folio))
57 VM_BUG_ON_PAGE(!PageAnonExclusive(&folio->page), page);
59 /* Either a PTE-mapped or a PMD-mapped THP. */
60 VM_BUG_ON_PAGE(!PageAnonExclusive(&folio->page) &&
61 !PageAnonExclusive(page), page);
66 * Return the folio with ref appropriately incremented,
67 * or NULL if that failed.
69 static inline struct folio *try_get_folio(struct page *page, int refs)
74 folio = page_folio(page);
75 if (WARN_ON_ONCE(folio_ref_count(folio) < 0))
77 if (unlikely(!folio_ref_try_add_rcu(folio, refs)))
81 * At this point we have a stable reference to the folio; but it
82 * could be that between calling page_folio() and the refcount
83 * increment, the folio was split, in which case we'd end up
84 * holding a reference on a folio that has nothing to do with the page
85 * we were given anymore.
86 * So now that the folio is stable, recheck that the page still
87 * belongs to this folio.
89 if (unlikely(page_folio(page) != folio)) {
90 folio_put_refs(folio, refs);
98 * try_grab_folio() - Attempt to get or pin a folio.
99 * @page: pointer to page to be grabbed
100 * @refs: the value to (effectively) add to the folio's refcount
101 * @flags: gup flags: these are the FOLL_* flag values.
103 * "grab" names in this file mean, "look at flags to decide whether to use
104 * FOLL_PIN or FOLL_GET behavior, when incrementing the folio's refcount.
106 * Either FOLL_PIN or FOLL_GET (or neither) must be set, but not both at the
107 * same time. (That's true throughout the get_user_pages*() and
108 * pin_user_pages*() APIs.) Cases:
110 * FOLL_GET: folio's refcount will be incremented by @refs.
112 * FOLL_PIN on large folios: folio's refcount will be incremented by
113 * @refs, and its compound_pincount will be incremented by @refs.
115 * FOLL_PIN on single-page folios: folio's refcount will be incremented by
116 * @refs * GUP_PIN_COUNTING_BIAS.
118 * Return: The folio containing @page (with refcount appropriately
119 * incremented) for success, or NULL upon failure. If neither FOLL_GET
120 * nor FOLL_PIN was set, that's considered failure, and furthermore,
121 * a likely bug in the caller, so a warning is also emitted.
123 struct folio *try_grab_folio(struct page *page, int refs, unsigned int flags)
125 if (flags & FOLL_GET)
126 return try_get_folio(page, refs);
127 else if (flags & FOLL_PIN) {
131 * Can't do FOLL_LONGTERM + FOLL_PIN gup fast path if not in a
132 * right zone, so fail and let the caller fall back to the slow
135 if (unlikely((flags & FOLL_LONGTERM) &&
136 !is_pinnable_page(page)))
140 * CAUTION: Don't use compound_head() on the page before this
141 * point, the result won't be stable.
143 folio = try_get_folio(page, refs);
148 * When pinning a large folio, use an exact count to track it.
150 * However, be sure to *also* increment the normal folio
151 * refcount field at least once, so that the folio really
152 * is pinned. That's why the refcount from the earlier
153 * try_get_folio() is left intact.
155 if (folio_test_large(folio))
156 atomic_add(refs, folio_pincount_ptr(folio));
159 refs * (GUP_PIN_COUNTING_BIAS - 1));
160 node_stat_mod_folio(folio, NR_FOLL_PIN_ACQUIRED, refs);
169 static void gup_put_folio(struct folio *folio, int refs, unsigned int flags)
171 if (flags & FOLL_PIN) {
172 node_stat_mod_folio(folio, NR_FOLL_PIN_RELEASED, refs);
173 if (folio_test_large(folio))
174 atomic_sub(refs, folio_pincount_ptr(folio));
176 refs *= GUP_PIN_COUNTING_BIAS;
179 folio_put_refs(folio, refs);
183 * try_grab_page() - elevate a page's refcount by a flag-dependent amount
184 * @page: pointer to page to be grabbed
185 * @flags: gup flags: these are the FOLL_* flag values.
187 * This might not do anything at all, depending on the flags argument.
189 * "grab" names in this file mean, "look at flags to decide whether to use
190 * FOLL_PIN or FOLL_GET behavior, when incrementing the page's refcount.
192 * Either FOLL_PIN or FOLL_GET (or neither) may be set, but not both at the same
193 * time. Cases: please see the try_grab_folio() documentation, with
196 * Return: true for success, or if no action was required (if neither FOLL_PIN
197 * nor FOLL_GET was set, nothing is done). False for failure: FOLL_GET or
198 * FOLL_PIN was set, but the page could not be grabbed.
200 bool __must_check try_grab_page(struct page *page, unsigned int flags)
202 struct folio *folio = page_folio(page);
204 WARN_ON_ONCE((flags & (FOLL_GET | FOLL_PIN)) == (FOLL_GET | FOLL_PIN));
205 if (WARN_ON_ONCE(folio_ref_count(folio) <= 0))
208 if (flags & FOLL_GET)
209 folio_ref_inc(folio);
210 else if (flags & FOLL_PIN) {
212 * Similar to try_grab_folio(): be sure to *also*
213 * increment the normal page refcount field at least once,
214 * so that the page really is pinned.
216 if (folio_test_large(folio)) {
217 folio_ref_add(folio, 1);
218 atomic_add(1, folio_pincount_ptr(folio));
220 folio_ref_add(folio, GUP_PIN_COUNTING_BIAS);
223 node_stat_mod_folio(folio, NR_FOLL_PIN_ACQUIRED, 1);
230 * unpin_user_page() - release a dma-pinned page
231 * @page: pointer to page to be released
233 * Pages that were pinned via pin_user_pages*() must be released via either
234 * unpin_user_page(), or one of the unpin_user_pages*() routines. This is so
235 * that such pages can be separately tracked and uniquely handled. In
236 * particular, interactions with RDMA and filesystems need special handling.
238 void unpin_user_page(struct page *page)
240 sanity_check_pinned_pages(&page, 1);
241 gup_put_folio(page_folio(page), 1, FOLL_PIN);
243 EXPORT_SYMBOL(unpin_user_page);
245 static inline struct folio *gup_folio_range_next(struct page *start,
246 unsigned long npages, unsigned long i, unsigned int *ntails)
248 struct page *next = nth_page(start, i);
249 struct folio *folio = page_folio(next);
252 if (folio_test_large(folio))
253 nr = min_t(unsigned int, npages - i,
254 folio_nr_pages(folio) - folio_page_idx(folio, next));
260 static inline struct folio *gup_folio_next(struct page **list,
261 unsigned long npages, unsigned long i, unsigned int *ntails)
263 struct folio *folio = page_folio(list[i]);
266 for (nr = i + 1; nr < npages; nr++) {
267 if (page_folio(list[nr]) != folio)
276 * unpin_user_pages_dirty_lock() - release and optionally dirty gup-pinned pages
277 * @pages: array of pages to be maybe marked dirty, and definitely released.
278 * @npages: number of pages in the @pages array.
279 * @make_dirty: whether to mark the pages dirty
281 * "gup-pinned page" refers to a page that has had one of the get_user_pages()
282 * variants called on that page.
284 * For each page in the @pages array, make that page (or its head page, if a
285 * compound page) dirty, if @make_dirty is true, and if the page was previously
286 * listed as clean. In any case, releases all pages using unpin_user_page(),
287 * possibly via unpin_user_pages(), for the non-dirty case.
289 * Please see the unpin_user_page() documentation for details.
291 * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
292 * required, then the caller should a) verify that this is really correct,
293 * because _lock() is usually required, and b) hand code it:
294 * set_page_dirty_lock(), unpin_user_page().
297 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
305 unpin_user_pages(pages, npages);
309 sanity_check_pinned_pages(pages, npages);
310 for (i = 0; i < npages; i += nr) {
311 folio = gup_folio_next(pages, npages, i, &nr);
313 * Checking PageDirty at this point may race with
314 * clear_page_dirty_for_io(), but that's OK. Two key
317 * 1) This code sees the page as already dirty, so it
318 * skips the call to set_page_dirty(). That could happen
319 * because clear_page_dirty_for_io() called
320 * page_mkclean(), followed by set_page_dirty().
321 * However, now the page is going to get written back,
322 * which meets the original intention of setting it
323 * dirty, so all is well: clear_page_dirty_for_io() goes
324 * on to call TestClearPageDirty(), and write the page
327 * 2) This code sees the page as clean, so it calls
328 * set_page_dirty(). The page stays dirty, despite being
329 * written back, so it gets written back again in the
330 * next writeback cycle. This is harmless.
332 if (!folio_test_dirty(folio)) {
334 folio_mark_dirty(folio);
337 gup_put_folio(folio, nr, FOLL_PIN);
340 EXPORT_SYMBOL(unpin_user_pages_dirty_lock);
343 * unpin_user_page_range_dirty_lock() - release and optionally dirty
344 * gup-pinned page range
346 * @page: the starting page of a range maybe marked dirty, and definitely released.
347 * @npages: number of consecutive pages to release.
348 * @make_dirty: whether to mark the pages dirty
350 * "gup-pinned page range" refers to a range of pages that has had one of the
351 * pin_user_pages() variants called on that page.
353 * For the page ranges defined by [page .. page+npages], make that range (or
354 * its head pages, if a compound page) dirty, if @make_dirty is true, and if the
355 * page range was previously listed as clean.
357 * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
358 * required, then the caller should a) verify that this is really correct,
359 * because _lock() is usually required, and b) hand code it:
360 * set_page_dirty_lock(), unpin_user_page().
363 void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages,
370 for (i = 0; i < npages; i += nr) {
371 folio = gup_folio_range_next(page, npages, i, &nr);
372 if (make_dirty && !folio_test_dirty(folio)) {
374 folio_mark_dirty(folio);
377 gup_put_folio(folio, nr, FOLL_PIN);
380 EXPORT_SYMBOL(unpin_user_page_range_dirty_lock);
382 static void unpin_user_pages_lockless(struct page **pages, unsigned long npages)
389 * Don't perform any sanity checks because we might have raced with
390 * fork() and some anonymous pages might now actually be shared --
391 * which is why we're unpinning after all.
393 for (i = 0; i < npages; i += nr) {
394 folio = gup_folio_next(pages, npages, i, &nr);
395 gup_put_folio(folio, nr, FOLL_PIN);
400 * unpin_user_pages() - release an array of gup-pinned pages.
401 * @pages: array of pages to be marked dirty and released.
402 * @npages: number of pages in the @pages array.
404 * For each page in the @pages array, release the page using unpin_user_page().
406 * Please see the unpin_user_page() documentation for details.
408 void unpin_user_pages(struct page **pages, unsigned long npages)
415 * If this WARN_ON() fires, then the system *might* be leaking pages (by
416 * leaving them pinned), but probably not. More likely, gup/pup returned
417 * a hard -ERRNO error to the caller, who erroneously passed it here.
419 if (WARN_ON(IS_ERR_VALUE(npages)))
422 sanity_check_pinned_pages(pages, npages);
423 for (i = 0; i < npages; i += nr) {
424 folio = gup_folio_next(pages, npages, i, &nr);
425 gup_put_folio(folio, nr, FOLL_PIN);
428 EXPORT_SYMBOL(unpin_user_pages);
431 * Set the MMF_HAS_PINNED if not set yet; after set it'll be there for the mm's
432 * lifecycle. Avoid setting the bit unless necessary, or it might cause write
433 * cache bouncing on large SMP machines for concurrent pinned gups.
435 static inline void mm_set_has_pinned_flag(unsigned long *mm_flags)
437 if (!test_bit(MMF_HAS_PINNED, mm_flags))
438 set_bit(MMF_HAS_PINNED, mm_flags);
442 static struct page *no_page_table(struct vm_area_struct *vma,
446 * When core dumping an enormous anonymous area that nobody
447 * has touched so far, we don't want to allocate unnecessary pages or
448 * page tables. Return error instead of NULL to skip handle_mm_fault,
449 * then get_dump_page() will return NULL to leave a hole in the dump.
450 * But we can only make this optimization where a hole would surely
451 * be zero-filled if handle_mm_fault() actually did handle it.
453 if ((flags & FOLL_DUMP) &&
454 (vma_is_anonymous(vma) || !vma->vm_ops->fault))
455 return ERR_PTR(-EFAULT);
459 static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address,
460 pte_t *pte, unsigned int flags)
462 if (flags & FOLL_TOUCH) {
465 if (flags & FOLL_WRITE)
466 entry = pte_mkdirty(entry);
467 entry = pte_mkyoung(entry);
469 if (!pte_same(*pte, entry)) {
470 set_pte_at(vma->vm_mm, address, pte, entry);
471 update_mmu_cache(vma, address, pte);
475 /* Proper page table entry exists, but no corresponding struct page */
480 * FOLL_FORCE can write to even unwritable pte's, but only
481 * after we've gone through a COW cycle and they are dirty.
483 static inline bool can_follow_write_pte(pte_t pte, unsigned int flags)
485 return pte_write(pte) ||
486 ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pte_dirty(pte));
489 static struct page *follow_page_pte(struct vm_area_struct *vma,
490 unsigned long address, pmd_t *pmd, unsigned int flags,
491 struct dev_pagemap **pgmap)
493 struct mm_struct *mm = vma->vm_mm;
499 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
500 if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
501 (FOLL_PIN | FOLL_GET)))
502 return ERR_PTR(-EINVAL);
504 if (unlikely(pmd_bad(*pmd)))
505 return no_page_table(vma, flags);
507 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
509 if (!pte_present(pte)) {
512 * KSM's break_ksm() relies upon recognizing a ksm page
513 * even while it is being migrated, so for that case we
514 * need migration_entry_wait().
516 if (likely(!(flags & FOLL_MIGRATION)))
520 entry = pte_to_swp_entry(pte);
521 if (!is_migration_entry(entry))
523 pte_unmap_unlock(ptep, ptl);
524 migration_entry_wait(mm, pmd, address);
527 if ((flags & FOLL_NUMA) && pte_protnone(pte))
529 if ((flags & FOLL_WRITE) && !can_follow_write_pte(pte, flags)) {
530 pte_unmap_unlock(ptep, ptl);
534 page = vm_normal_page(vma, address, pte);
535 if (!page && pte_devmap(pte) && (flags & (FOLL_GET | FOLL_PIN))) {
537 * Only return device mapping pages in the FOLL_GET or FOLL_PIN
538 * case since they are only valid while holding the pgmap
541 *pgmap = get_dev_pagemap(pte_pfn(pte), *pgmap);
543 page = pte_page(pte);
546 } else if (unlikely(!page)) {
547 if (flags & FOLL_DUMP) {
548 /* Avoid special (like zero) pages in core dumps */
549 page = ERR_PTR(-EFAULT);
553 if (is_zero_pfn(pte_pfn(pte))) {
554 page = pte_page(pte);
556 ret = follow_pfn_pte(vma, address, ptep, flags);
562 if (!pte_write(pte) && gup_must_unshare(flags, page)) {
563 page = ERR_PTR(-EMLINK);
567 VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) &&
568 !PageAnonExclusive(page), page);
570 /* try_grab_page() does nothing unless FOLL_GET or FOLL_PIN is set. */
571 if (unlikely(!try_grab_page(page, flags))) {
572 page = ERR_PTR(-ENOMEM);
576 * We need to make the page accessible if and only if we are going
577 * to access its content (the FOLL_PIN case). Please see
578 * Documentation/core-api/pin_user_pages.rst for details.
580 if (flags & FOLL_PIN) {
581 ret = arch_make_page_accessible(page);
583 unpin_user_page(page);
588 if (flags & FOLL_TOUCH) {
589 if ((flags & FOLL_WRITE) &&
590 !pte_dirty(pte) && !PageDirty(page))
591 set_page_dirty(page);
593 * pte_mkyoung() would be more correct here, but atomic care
594 * is needed to avoid losing the dirty bit: it is easier to use
595 * mark_page_accessed().
597 mark_page_accessed(page);
600 pte_unmap_unlock(ptep, ptl);
603 pte_unmap_unlock(ptep, ptl);
606 return no_page_table(vma, flags);
609 static struct page *follow_pmd_mask(struct vm_area_struct *vma,
610 unsigned long address, pud_t *pudp,
612 struct follow_page_context *ctx)
617 struct mm_struct *mm = vma->vm_mm;
619 pmd = pmd_offset(pudp, address);
621 * The READ_ONCE() will stabilize the pmdval in a register or
622 * on the stack so that it will stop changing under the code.
624 pmdval = READ_ONCE(*pmd);
625 if (pmd_none(pmdval))
626 return no_page_table(vma, flags);
627 if (pmd_huge(pmdval) && is_vm_hugetlb_page(vma)) {
628 page = follow_huge_pmd(mm, address, pmd, flags);
631 return no_page_table(vma, flags);
633 if (is_hugepd(__hugepd(pmd_val(pmdval)))) {
634 page = follow_huge_pd(vma, address,
635 __hugepd(pmd_val(pmdval)), flags,
639 return no_page_table(vma, flags);
642 if (!pmd_present(pmdval)) {
644 * Should never reach here, if thp migration is not supported;
645 * Otherwise, it must be a thp migration entry.
647 VM_BUG_ON(!thp_migration_supported() ||
648 !is_pmd_migration_entry(pmdval));
650 if (likely(!(flags & FOLL_MIGRATION)))
651 return no_page_table(vma, flags);
653 pmd_migration_entry_wait(mm, pmd);
654 pmdval = READ_ONCE(*pmd);
656 * MADV_DONTNEED may convert the pmd to null because
657 * mmap_lock is held in read mode
659 if (pmd_none(pmdval))
660 return no_page_table(vma, flags);
663 if (pmd_devmap(pmdval)) {
664 ptl = pmd_lock(mm, pmd);
665 page = follow_devmap_pmd(vma, address, pmd, flags, &ctx->pgmap);
670 if (likely(!pmd_trans_huge(pmdval)))
671 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
673 if ((flags & FOLL_NUMA) && pmd_protnone(pmdval))
674 return no_page_table(vma, flags);
677 ptl = pmd_lock(mm, pmd);
678 if (unlikely(pmd_none(*pmd))) {
680 return no_page_table(vma, flags);
682 if (unlikely(!pmd_present(*pmd))) {
684 if (likely(!(flags & FOLL_MIGRATION)))
685 return no_page_table(vma, flags);
686 pmd_migration_entry_wait(mm, pmd);
689 if (unlikely(!pmd_trans_huge(*pmd))) {
691 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
693 if (flags & FOLL_SPLIT_PMD) {
695 page = pmd_page(*pmd);
696 if (is_huge_zero_page(page)) {
699 split_huge_pmd(vma, pmd, address);
700 if (pmd_trans_unstable(pmd))
704 split_huge_pmd(vma, pmd, address);
705 ret = pte_alloc(mm, pmd) ? -ENOMEM : 0;
708 return ret ? ERR_PTR(ret) :
709 follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
711 page = follow_trans_huge_pmd(vma, address, pmd, flags);
713 ctx->page_mask = HPAGE_PMD_NR - 1;
717 static struct page *follow_pud_mask(struct vm_area_struct *vma,
718 unsigned long address, p4d_t *p4dp,
720 struct follow_page_context *ctx)
725 struct mm_struct *mm = vma->vm_mm;
727 pud = pud_offset(p4dp, address);
729 return no_page_table(vma, flags);
730 if (pud_huge(*pud) && is_vm_hugetlb_page(vma)) {
731 page = follow_huge_pud(mm, address, pud, flags);
734 return no_page_table(vma, flags);
736 if (is_hugepd(__hugepd(pud_val(*pud)))) {
737 page = follow_huge_pd(vma, address,
738 __hugepd(pud_val(*pud)), flags,
742 return no_page_table(vma, flags);
744 if (pud_devmap(*pud)) {
745 ptl = pud_lock(mm, pud);
746 page = follow_devmap_pud(vma, address, pud, flags, &ctx->pgmap);
751 if (unlikely(pud_bad(*pud)))
752 return no_page_table(vma, flags);
754 return follow_pmd_mask(vma, address, pud, flags, ctx);
757 static struct page *follow_p4d_mask(struct vm_area_struct *vma,
758 unsigned long address, pgd_t *pgdp,
760 struct follow_page_context *ctx)
765 p4d = p4d_offset(pgdp, address);
767 return no_page_table(vma, flags);
768 BUILD_BUG_ON(p4d_huge(*p4d));
769 if (unlikely(p4d_bad(*p4d)))
770 return no_page_table(vma, flags);
772 if (is_hugepd(__hugepd(p4d_val(*p4d)))) {
773 page = follow_huge_pd(vma, address,
774 __hugepd(p4d_val(*p4d)), flags,
778 return no_page_table(vma, flags);
780 return follow_pud_mask(vma, address, p4d, flags, ctx);
784 * follow_page_mask - look up a page descriptor from a user-virtual address
785 * @vma: vm_area_struct mapping @address
786 * @address: virtual address to look up
787 * @flags: flags modifying lookup behaviour
788 * @ctx: contains dev_pagemap for %ZONE_DEVICE memory pinning and a
789 * pointer to output page_mask
791 * @flags can have FOLL_ flags set, defined in <linux/mm.h>
793 * When getting pages from ZONE_DEVICE memory, the @ctx->pgmap caches
794 * the device's dev_pagemap metadata to avoid repeating expensive lookups.
796 * When getting an anonymous page and the caller has to trigger unsharing
797 * of a shared anonymous page first, -EMLINK is returned. The caller should
798 * trigger a fault with FAULT_FLAG_UNSHARE set. Note that unsharing is only
799 * relevant with FOLL_PIN and !FOLL_WRITE.
801 * On output, the @ctx->page_mask is set according to the size of the page.
803 * Return: the mapped (struct page *), %NULL if no mapping exists, or
804 * an error pointer if there is a mapping to something not represented
805 * by a page descriptor (see also vm_normal_page()).
807 static struct page *follow_page_mask(struct vm_area_struct *vma,
808 unsigned long address, unsigned int flags,
809 struct follow_page_context *ctx)
813 struct mm_struct *mm = vma->vm_mm;
817 /* make this handle hugepd */
818 page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
820 WARN_ON_ONCE(flags & (FOLL_GET | FOLL_PIN));
824 pgd = pgd_offset(mm, address);
826 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
827 return no_page_table(vma, flags);
829 if (pgd_huge(*pgd)) {
830 page = follow_huge_pgd(mm, address, pgd, flags);
833 return no_page_table(vma, flags);
835 if (is_hugepd(__hugepd(pgd_val(*pgd)))) {
836 page = follow_huge_pd(vma, address,
837 __hugepd(pgd_val(*pgd)), flags,
841 return no_page_table(vma, flags);
844 return follow_p4d_mask(vma, address, pgd, flags, ctx);
847 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
848 unsigned int foll_flags)
850 struct follow_page_context ctx = { NULL };
853 if (vma_is_secretmem(vma))
856 if (foll_flags & FOLL_PIN)
859 page = follow_page_mask(vma, address, foll_flags, &ctx);
861 put_dev_pagemap(ctx.pgmap);
865 static int get_gate_page(struct mm_struct *mm, unsigned long address,
866 unsigned int gup_flags, struct vm_area_struct **vma,
876 /* user gate pages are read-only */
877 if (gup_flags & FOLL_WRITE)
879 if (address > TASK_SIZE)
880 pgd = pgd_offset_k(address);
882 pgd = pgd_offset_gate(mm, address);
885 p4d = p4d_offset(pgd, address);
888 pud = pud_offset(p4d, address);
891 pmd = pmd_offset(pud, address);
892 if (!pmd_present(*pmd))
894 VM_BUG_ON(pmd_trans_huge(*pmd));
895 pte = pte_offset_map(pmd, address);
898 *vma = get_gate_vma(mm);
901 *page = vm_normal_page(*vma, address, *pte);
903 if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(*pte)))
905 *page = pte_page(*pte);
907 if (unlikely(!try_grab_page(*page, gup_flags))) {
919 * mmap_lock must be held on entry. If @locked != NULL and *@flags
920 * does not include FOLL_NOWAIT, the mmap_lock may be released. If it
921 * is, *@locked will be set to 0 and -EBUSY returned.
923 static int faultin_page(struct vm_area_struct *vma,
924 unsigned long address, unsigned int *flags, bool unshare,
927 unsigned int fault_flags = 0;
930 if (*flags & FOLL_NOFAULT)
932 if (*flags & FOLL_WRITE)
933 fault_flags |= FAULT_FLAG_WRITE;
934 if (*flags & FOLL_REMOTE)
935 fault_flags |= FAULT_FLAG_REMOTE;
937 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
938 if (*flags & FOLL_NOWAIT)
939 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT;
940 if (*flags & FOLL_TRIED) {
942 * Note: FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_TRIED
945 fault_flags |= FAULT_FLAG_TRIED;
948 fault_flags |= FAULT_FLAG_UNSHARE;
949 /* FAULT_FLAG_WRITE and FAULT_FLAG_UNSHARE are incompatible */
950 VM_BUG_ON(fault_flags & FAULT_FLAG_WRITE);
953 ret = handle_mm_fault(vma, address, fault_flags, NULL);
954 if (ret & VM_FAULT_ERROR) {
955 int err = vm_fault_to_errno(ret, *flags);
962 if (ret & VM_FAULT_RETRY) {
963 if (locked && !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
969 * The VM_FAULT_WRITE bit tells us that do_wp_page has broken COW when
970 * necessary, even if maybe_mkwrite decided not to set pte_write. We
971 * can thus safely do subsequent page lookups as if they were reads.
972 * But only do so when looping for pte_write is futile: in some cases
973 * userspace may also be wanting to write to the gotten user page,
974 * which a read fault here might prevent (a readonly page might get
975 * reCOWed by userspace write).
977 if ((ret & VM_FAULT_WRITE) && !(vma->vm_flags & VM_WRITE))
982 static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags)
984 vm_flags_t vm_flags = vma->vm_flags;
985 int write = (gup_flags & FOLL_WRITE);
986 int foreign = (gup_flags & FOLL_REMOTE);
988 if (vm_flags & (VM_IO | VM_PFNMAP))
991 if (gup_flags & FOLL_ANON && !vma_is_anonymous(vma))
994 if ((gup_flags & FOLL_LONGTERM) && vma_is_fsdax(vma))
997 if (vma_is_secretmem(vma))
1001 if (!(vm_flags & VM_WRITE)) {
1002 if (!(gup_flags & FOLL_FORCE))
1005 * We used to let the write,force case do COW in a
1006 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could
1007 * set a breakpoint in a read-only mapping of an
1008 * executable, without corrupting the file (yet only
1009 * when that file had been opened for writing!).
1010 * Anon pages in shared mappings are surprising: now
1013 if (!is_cow_mapping(vm_flags))
1016 } else if (!(vm_flags & VM_READ)) {
1017 if (!(gup_flags & FOLL_FORCE))
1020 * Is there actually any vma we can reach here which does not
1021 * have VM_MAYREAD set?
1023 if (!(vm_flags & VM_MAYREAD))
1027 * gups are always data accesses, not instruction
1028 * fetches, so execute=false here
1030 if (!arch_vma_access_permitted(vma, write, false, foreign))
1036 * __get_user_pages() - pin user pages in memory
1037 * @mm: mm_struct of target mm
1038 * @start: starting user address
1039 * @nr_pages: number of pages from start to pin
1040 * @gup_flags: flags modifying pin behaviour
1041 * @pages: array that receives pointers to the pages pinned.
1042 * Should be at least nr_pages long. Or NULL, if caller
1043 * only intends to ensure the pages are faulted in.
1044 * @vmas: array of pointers to vmas corresponding to each page.
1045 * Or NULL if the caller does not require them.
1046 * @locked: whether we're still with the mmap_lock held
1048 * Returns either number of pages pinned (which may be less than the
1049 * number requested), or an error. Details about the return value:
1051 * -- If nr_pages is 0, returns 0.
1052 * -- If nr_pages is >0, but no pages were pinned, returns -errno.
1053 * -- If nr_pages is >0, and some pages were pinned, returns the number of
1054 * pages pinned. Again, this may be less than nr_pages.
1055 * -- 0 return value is possible when the fault would need to be retried.
1057 * The caller is responsible for releasing returned @pages, via put_page().
1059 * @vmas are valid only as long as mmap_lock is held.
1061 * Must be called with mmap_lock held. It may be released. See below.
1063 * __get_user_pages walks a process's page tables and takes a reference to
1064 * each struct page that each user address corresponds to at a given
1065 * instant. That is, it takes the page that would be accessed if a user
1066 * thread accesses the given user virtual address at that instant.
1068 * This does not guarantee that the page exists in the user mappings when
1069 * __get_user_pages returns, and there may even be a completely different
1070 * page there in some cases (eg. if mmapped pagecache has been invalidated
1071 * and subsequently re faulted). However it does guarantee that the page
1072 * won't be freed completely. And mostly callers simply care that the page
1073 * contains data that was valid *at some point in time*. Typically, an IO
1074 * or similar operation cannot guarantee anything stronger anyway because
1075 * locks can't be held over the syscall boundary.
1077 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
1078 * the page is written to, set_page_dirty (or set_page_dirty_lock, as
1079 * appropriate) must be called after the page is finished with, and
1080 * before put_page is called.
1082 * If @locked != NULL, *@locked will be set to 0 when mmap_lock is
1083 * released by an up_read(). That can happen if @gup_flags does not
1086 * A caller using such a combination of @locked and @gup_flags
1087 * must therefore hold the mmap_lock for reading only, and recognize
1088 * when it's been released. Otherwise, it must be held for either
1089 * reading or writing and will not be released.
1091 * In most cases, get_user_pages or get_user_pages_fast should be used
1092 * instead of __get_user_pages. __get_user_pages should be used only if
1093 * you need some special @gup_flags.
1095 static long __get_user_pages(struct mm_struct *mm,
1096 unsigned long start, unsigned long nr_pages,
1097 unsigned int gup_flags, struct page **pages,
1098 struct vm_area_struct **vmas, int *locked)
1100 long ret = 0, i = 0;
1101 struct vm_area_struct *vma = NULL;
1102 struct follow_page_context ctx = { NULL };
1107 start = untagged_addr(start);
1109 VM_BUG_ON(!!pages != !!(gup_flags & (FOLL_GET | FOLL_PIN)));
1112 * If FOLL_FORCE is set then do not force a full fault as the hinting
1113 * fault information is unrelated to the reference behaviour of a task
1114 * using the address space
1116 if (!(gup_flags & FOLL_FORCE))
1117 gup_flags |= FOLL_NUMA;
1121 unsigned int foll_flags = gup_flags;
1122 unsigned int page_increm;
1124 /* first iteration or cross vma bound */
1125 if (!vma || start >= vma->vm_end) {
1126 vma = find_extend_vma(mm, start);
1127 if (!vma && in_gate_area(mm, start)) {
1128 ret = get_gate_page(mm, start & PAGE_MASK,
1130 pages ? &pages[i] : NULL);
1141 ret = check_vma_flags(vma, gup_flags);
1145 if (is_vm_hugetlb_page(vma)) {
1146 i = follow_hugetlb_page(mm, vma, pages, vmas,
1147 &start, &nr_pages, i,
1149 if (locked && *locked == 0) {
1151 * We've got a VM_FAULT_RETRY
1152 * and we've lost mmap_lock.
1153 * We must stop here.
1155 BUG_ON(gup_flags & FOLL_NOWAIT);
1163 * If we have a pending SIGKILL, don't keep faulting pages and
1164 * potentially allocating memory.
1166 if (fatal_signal_pending(current)) {
1172 page = follow_page_mask(vma, start, foll_flags, &ctx);
1173 if (!page || PTR_ERR(page) == -EMLINK) {
1174 ret = faultin_page(vma, start, &foll_flags,
1175 PTR_ERR(page) == -EMLINK, locked);
1188 } else if (PTR_ERR(page) == -EEXIST) {
1190 * Proper page table entry exists, but no corresponding
1191 * struct page. If the caller expects **pages to be
1192 * filled in, bail out now, because that can't be done
1196 ret = PTR_ERR(page);
1201 } else if (IS_ERR(page)) {
1202 ret = PTR_ERR(page);
1207 flush_anon_page(vma, page, start);
1208 flush_dcache_page(page);
1216 page_increm = 1 + (~(start >> PAGE_SHIFT) & ctx.page_mask);
1217 if (page_increm > nr_pages)
1218 page_increm = nr_pages;
1220 start += page_increm * PAGE_SIZE;
1221 nr_pages -= page_increm;
1225 put_dev_pagemap(ctx.pgmap);
1229 static bool vma_permits_fault(struct vm_area_struct *vma,
1230 unsigned int fault_flags)
1232 bool write = !!(fault_flags & FAULT_FLAG_WRITE);
1233 bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE);
1234 vm_flags_t vm_flags = write ? VM_WRITE : VM_READ;
1236 if (!(vm_flags & vma->vm_flags))
1240 * The architecture might have a hardware protection
1241 * mechanism other than read/write that can deny access.
1243 * gup always represents data access, not instruction
1244 * fetches, so execute=false here:
1246 if (!arch_vma_access_permitted(vma, write, false, foreign))
1253 * fixup_user_fault() - manually resolve a user page fault
1254 * @mm: mm_struct of target mm
1255 * @address: user address
1256 * @fault_flags:flags to pass down to handle_mm_fault()
1257 * @unlocked: did we unlock the mmap_lock while retrying, maybe NULL if caller
1258 * does not allow retry. If NULL, the caller must guarantee
1259 * that fault_flags does not contain FAULT_FLAG_ALLOW_RETRY.
1261 * This is meant to be called in the specific scenario where for locking reasons
1262 * we try to access user memory in atomic context (within a pagefault_disable()
1263 * section), this returns -EFAULT, and we want to resolve the user fault before
1266 * Typically this is meant to be used by the futex code.
1268 * The main difference with get_user_pages() is that this function will
1269 * unconditionally call handle_mm_fault() which will in turn perform all the
1270 * necessary SW fixup of the dirty and young bits in the PTE, while
1271 * get_user_pages() only guarantees to update these in the struct page.
1273 * This is important for some architectures where those bits also gate the
1274 * access permission to the page because they are maintained in software. On
1275 * such architectures, gup() will not be enough to make a subsequent access
1278 * This function will not return with an unlocked mmap_lock. So it has not the
1279 * same semantics wrt the @mm->mmap_lock as does filemap_fault().
1281 int fixup_user_fault(struct mm_struct *mm,
1282 unsigned long address, unsigned int fault_flags,
1285 struct vm_area_struct *vma;
1288 address = untagged_addr(address);
1291 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
1294 vma = find_extend_vma(mm, address);
1295 if (!vma || address < vma->vm_start)
1298 if (!vma_permits_fault(vma, fault_flags))
1301 if ((fault_flags & FAULT_FLAG_KILLABLE) &&
1302 fatal_signal_pending(current))
1305 ret = handle_mm_fault(vma, address, fault_flags, NULL);
1306 if (ret & VM_FAULT_ERROR) {
1307 int err = vm_fault_to_errno(ret, 0);
1314 if (ret & VM_FAULT_RETRY) {
1317 fault_flags |= FAULT_FLAG_TRIED;
1323 EXPORT_SYMBOL_GPL(fixup_user_fault);
1326 * Please note that this function, unlike __get_user_pages will not
1327 * return 0 for nr_pages > 0 without FOLL_NOWAIT
1329 static __always_inline long __get_user_pages_locked(struct mm_struct *mm,
1330 unsigned long start,
1331 unsigned long nr_pages,
1332 struct page **pages,
1333 struct vm_area_struct **vmas,
1337 long ret, pages_done;
1341 /* if VM_FAULT_RETRY can be returned, vmas become invalid */
1343 /* check caller initialized locked */
1344 BUG_ON(*locked != 1);
1347 if (flags & FOLL_PIN)
1348 mm_set_has_pinned_flag(&mm->flags);
1351 * FOLL_PIN and FOLL_GET are mutually exclusive. Traditional behavior
1352 * is to set FOLL_GET if the caller wants pages[] filled in (but has
1353 * carelessly failed to specify FOLL_GET), so keep doing that, but only
1354 * for FOLL_GET, not for the newer FOLL_PIN.
1356 * FOLL_PIN always expects pages to be non-null, but no need to assert
1357 * that here, as any failures will be obvious enough.
1359 if (pages && !(flags & FOLL_PIN))
1363 lock_dropped = false;
1365 ret = __get_user_pages(mm, start, nr_pages, flags, pages,
1368 /* VM_FAULT_RETRY couldn't trigger, bypass */
1371 /* VM_FAULT_RETRY cannot return errors */
1374 BUG_ON(ret >= nr_pages);
1385 * VM_FAULT_RETRY didn't trigger or it was a
1393 * VM_FAULT_RETRY triggered, so seek to the faulting offset.
1394 * For the prefault case (!pages) we only update counts.
1398 start += ret << PAGE_SHIFT;
1399 lock_dropped = true;
1403 * Repeat on the address that fired VM_FAULT_RETRY
1404 * with both FAULT_FLAG_ALLOW_RETRY and
1405 * FAULT_FLAG_TRIED. Note that GUP can be interrupted
1406 * by fatal signals, so we need to check it before we
1407 * start trying again otherwise it can loop forever.
1410 if (fatal_signal_pending(current)) {
1412 pages_done = -EINTR;
1416 ret = mmap_read_lock_killable(mm);
1425 ret = __get_user_pages(mm, start, 1, flags | FOLL_TRIED,
1426 pages, NULL, locked);
1428 /* Continue to retry until we succeeded */
1446 if (lock_dropped && *locked) {
1448 * We must let the caller know we temporarily dropped the lock
1449 * and so the critical section protected by it was lost.
1451 mmap_read_unlock(mm);
1458 * populate_vma_page_range() - populate a range of pages in the vma.
1460 * @start: start address
1462 * @locked: whether the mmap_lock is still held
1464 * This takes care of mlocking the pages too if VM_LOCKED is set.
1466 * Return either number of pages pinned in the vma, or a negative error
1469 * vma->vm_mm->mmap_lock must be held.
1471 * If @locked is NULL, it may be held for read or write and will
1474 * If @locked is non-NULL, it must held for read only and may be
1475 * released. If it's released, *@locked will be set to 0.
1477 long populate_vma_page_range(struct vm_area_struct *vma,
1478 unsigned long start, unsigned long end, int *locked)
1480 struct mm_struct *mm = vma->vm_mm;
1481 unsigned long nr_pages = (end - start) / PAGE_SIZE;
1485 VM_BUG_ON(!PAGE_ALIGNED(start));
1486 VM_BUG_ON(!PAGE_ALIGNED(end));
1487 VM_BUG_ON_VMA(start < vma->vm_start, vma);
1488 VM_BUG_ON_VMA(end > vma->vm_end, vma);
1489 mmap_assert_locked(mm);
1492 * Rightly or wrongly, the VM_LOCKONFAULT case has never used
1493 * faultin_page() to break COW, so it has no work to do here.
1495 if (vma->vm_flags & VM_LOCKONFAULT)
1498 gup_flags = FOLL_TOUCH;
1500 * We want to touch writable mappings with a write fault in order
1501 * to break COW, except for shared mappings because these don't COW
1502 * and we would not want to dirty them for nothing.
1504 if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE)
1505 gup_flags |= FOLL_WRITE;
1508 * We want mlock to succeed for regions that have any permissions
1509 * other than PROT_NONE.
1511 if (vma_is_accessible(vma))
1512 gup_flags |= FOLL_FORCE;
1515 * We made sure addr is within a VMA, so the following will
1516 * not result in a stack expansion that recurses back here.
1518 ret = __get_user_pages(mm, start, nr_pages, gup_flags,
1519 NULL, NULL, locked);
1525 * faultin_vma_page_range() - populate (prefault) page tables inside the
1526 * given VMA range readable/writable
1528 * This takes care of mlocking the pages, too, if VM_LOCKED is set.
1531 * @start: start address
1533 * @write: whether to prefault readable or writable
1534 * @locked: whether the mmap_lock is still held
1536 * Returns either number of processed pages in the vma, or a negative error
1537 * code on error (see __get_user_pages()).
1539 * vma->vm_mm->mmap_lock must be held. The range must be page-aligned and
1540 * covered by the VMA.
1542 * If @locked is NULL, it may be held for read or write and will be unperturbed.
1544 * If @locked is non-NULL, it must held for read only and may be released. If
1545 * it's released, *@locked will be set to 0.
1547 long faultin_vma_page_range(struct vm_area_struct *vma, unsigned long start,
1548 unsigned long end, bool write, int *locked)
1550 struct mm_struct *mm = vma->vm_mm;
1551 unsigned long nr_pages = (end - start) / PAGE_SIZE;
1555 VM_BUG_ON(!PAGE_ALIGNED(start));
1556 VM_BUG_ON(!PAGE_ALIGNED(end));
1557 VM_BUG_ON_VMA(start < vma->vm_start, vma);
1558 VM_BUG_ON_VMA(end > vma->vm_end, vma);
1559 mmap_assert_locked(mm);
1562 * FOLL_TOUCH: Mark page accessed and thereby young; will also mark
1563 * the page dirty with FOLL_WRITE -- which doesn't make a
1564 * difference with !FOLL_FORCE, because the page is writable
1565 * in the page table.
1566 * FOLL_HWPOISON: Return -EHWPOISON instead of -EFAULT when we hit
1568 * !FOLL_FORCE: Require proper access permissions.
1570 gup_flags = FOLL_TOUCH | FOLL_HWPOISON;
1572 gup_flags |= FOLL_WRITE;
1575 * We want to report -EINVAL instead of -EFAULT for any permission
1576 * problems or incompatible mappings.
1578 if (check_vma_flags(vma, gup_flags))
1581 ret = __get_user_pages(mm, start, nr_pages, gup_flags,
1582 NULL, NULL, locked);
1588 * __mm_populate - populate and/or mlock pages within a range of address space.
1590 * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap
1591 * flags. VMAs must be already marked with the desired vm_flags, and
1592 * mmap_lock must not be held.
1594 int __mm_populate(unsigned long start, unsigned long len, int ignore_errors)
1596 struct mm_struct *mm = current->mm;
1597 unsigned long end, nstart, nend;
1598 struct vm_area_struct *vma = NULL;
1604 for (nstart = start; nstart < end; nstart = nend) {
1606 * We want to fault in pages for [nstart; end) address range.
1607 * Find first corresponding VMA.
1612 vma = find_vma(mm, nstart);
1613 } else if (nstart >= vma->vm_end)
1615 if (!vma || vma->vm_start >= end)
1618 * Set [nstart; nend) to intersection of desired address
1619 * range with the first VMA. Also, skip undesirable VMA types.
1621 nend = min(end, vma->vm_end);
1622 if (vma->vm_flags & (VM_IO | VM_PFNMAP))
1624 if (nstart < vma->vm_start)
1625 nstart = vma->vm_start;
1627 * Now fault in a range of pages. populate_vma_page_range()
1628 * double checks the vma flags, so that it won't mlock pages
1629 * if the vma was already munlocked.
1631 ret = populate_vma_page_range(vma, nstart, nend, &locked);
1633 if (ignore_errors) {
1635 continue; /* continue at next VMA */
1639 nend = nstart + ret * PAGE_SIZE;
1643 mmap_read_unlock(mm);
1644 return ret; /* 0 or negative error code */
1646 #else /* CONFIG_MMU */
1647 static long __get_user_pages_locked(struct mm_struct *mm, unsigned long start,
1648 unsigned long nr_pages, struct page **pages,
1649 struct vm_area_struct **vmas, int *locked,
1650 unsigned int foll_flags)
1652 struct vm_area_struct *vma;
1653 unsigned long vm_flags;
1656 /* calculate required read or write permissions.
1657 * If FOLL_FORCE is set, we only require the "MAY" flags.
1659 vm_flags = (foll_flags & FOLL_WRITE) ?
1660 (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1661 vm_flags &= (foll_flags & FOLL_FORCE) ?
1662 (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1664 for (i = 0; i < nr_pages; i++) {
1665 vma = find_vma(mm, start);
1667 goto finish_or_fault;
1669 /* protect what we can, including chardevs */
1670 if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1671 !(vm_flags & vma->vm_flags))
1672 goto finish_or_fault;
1675 pages[i] = virt_to_page(start);
1681 start = (start + PAGE_SIZE) & PAGE_MASK;
1687 return i ? : -EFAULT;
1689 #endif /* !CONFIG_MMU */
1692 * fault_in_writeable - fault in userspace address range for writing
1693 * @uaddr: start of address range
1694 * @size: size of address range
1696 * Returns the number of bytes not faulted in (like copy_to_user() and
1697 * copy_from_user()).
1699 size_t fault_in_writeable(char __user *uaddr, size_t size)
1701 char __user *start = uaddr, *end;
1703 if (unlikely(size == 0))
1705 if (!user_write_access_begin(uaddr, size))
1707 if (!PAGE_ALIGNED(uaddr)) {
1708 unsafe_put_user(0, uaddr, out);
1709 uaddr = (char __user *)PAGE_ALIGN((unsigned long)uaddr);
1711 end = (char __user *)PAGE_ALIGN((unsigned long)start + size);
1712 if (unlikely(end < start))
1714 while (uaddr != end) {
1715 unsafe_put_user(0, uaddr, out);
1720 user_write_access_end();
1721 if (size > uaddr - start)
1722 return size - (uaddr - start);
1725 EXPORT_SYMBOL(fault_in_writeable);
1728 * fault_in_subpage_writeable - fault in an address range for writing
1729 * @uaddr: start of address range
1730 * @size: size of address range
1732 * Fault in a user address range for writing while checking for permissions at
1733 * sub-page granularity (e.g. arm64 MTE). This function should be used when
1734 * the caller cannot guarantee forward progress of a copy_to_user() loop.
1736 * Returns the number of bytes not faulted in (like copy_to_user() and
1737 * copy_from_user()).
1739 size_t fault_in_subpage_writeable(char __user *uaddr, size_t size)
1744 * Attempt faulting in at page granularity first for page table
1745 * permission checking. The arch-specific probe_subpage_writeable()
1746 * functions may not check for this.
1748 faulted_in = size - fault_in_writeable(uaddr, size);
1750 faulted_in -= probe_subpage_writeable(uaddr, faulted_in);
1752 return size - faulted_in;
1754 EXPORT_SYMBOL(fault_in_subpage_writeable);
1757 * fault_in_safe_writeable - fault in an address range for writing
1758 * @uaddr: start of address range
1759 * @size: length of address range
1761 * Faults in an address range for writing. This is primarily useful when we
1762 * already know that some or all of the pages in the address range aren't in
1765 * Unlike fault_in_writeable(), this function is non-destructive.
1767 * Note that we don't pin or otherwise hold the pages referenced that we fault
1768 * in. There's no guarantee that they'll stay in memory for any duration of
1771 * Returns the number of bytes not faulted in, like copy_to_user() and
1774 size_t fault_in_safe_writeable(const char __user *uaddr, size_t size)
1776 unsigned long start = (unsigned long)uaddr, end;
1777 struct mm_struct *mm = current->mm;
1778 bool unlocked = false;
1780 if (unlikely(size == 0))
1782 end = PAGE_ALIGN(start + size);
1788 if (fixup_user_fault(mm, start, FAULT_FLAG_WRITE, &unlocked))
1790 start = (start + PAGE_SIZE) & PAGE_MASK;
1791 } while (start != end);
1792 mmap_read_unlock(mm);
1794 if (size > (unsigned long)uaddr - start)
1795 return size - ((unsigned long)uaddr - start);
1798 EXPORT_SYMBOL(fault_in_safe_writeable);
1801 * fault_in_readable - fault in userspace address range for reading
1802 * @uaddr: start of user address range
1803 * @size: size of user address range
1805 * Returns the number of bytes not faulted in (like copy_to_user() and
1806 * copy_from_user()).
1808 size_t fault_in_readable(const char __user *uaddr, size_t size)
1810 const char __user *start = uaddr, *end;
1813 if (unlikely(size == 0))
1815 if (!user_read_access_begin(uaddr, size))
1817 if (!PAGE_ALIGNED(uaddr)) {
1818 unsafe_get_user(c, uaddr, out);
1819 uaddr = (const char __user *)PAGE_ALIGN((unsigned long)uaddr);
1821 end = (const char __user *)PAGE_ALIGN((unsigned long)start + size);
1822 if (unlikely(end < start))
1824 while (uaddr != end) {
1825 unsafe_get_user(c, uaddr, out);
1830 user_read_access_end();
1832 if (size > uaddr - start)
1833 return size - (uaddr - start);
1836 EXPORT_SYMBOL(fault_in_readable);
1839 * get_dump_page() - pin user page in memory while writing it to core dump
1840 * @addr: user address
1842 * Returns struct page pointer of user page pinned for dump,
1843 * to be freed afterwards by put_page().
1845 * Returns NULL on any kind of failure - a hole must then be inserted into
1846 * the corefile, to preserve alignment with its headers; and also returns
1847 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
1848 * allowing a hole to be left in the corefile to save disk space.
1850 * Called without mmap_lock (takes and releases the mmap_lock by itself).
1852 #ifdef CONFIG_ELF_CORE
1853 struct page *get_dump_page(unsigned long addr)
1855 struct mm_struct *mm = current->mm;
1860 if (mmap_read_lock_killable(mm))
1862 ret = __get_user_pages_locked(mm, addr, 1, &page, NULL, &locked,
1863 FOLL_FORCE | FOLL_DUMP | FOLL_GET);
1865 mmap_read_unlock(mm);
1866 return (ret == 1) ? page : NULL;
1868 #endif /* CONFIG_ELF_CORE */
1870 #ifdef CONFIG_MIGRATION
1872 * Check whether all pages are pinnable, if so return number of pages. If some
1873 * pages are not pinnable, migrate them, and unpin all pages. Return zero if
1874 * pages were migrated, or if some pages were not successfully isolated.
1875 * Return negative error if migration fails.
1877 static long check_and_migrate_movable_pages(unsigned long nr_pages,
1878 struct page **pages,
1879 unsigned int gup_flags)
1881 unsigned long isolation_error_count = 0, i;
1882 struct folio *prev_folio = NULL;
1883 LIST_HEAD(movable_page_list);
1884 bool drain_allow = true;
1887 for (i = 0; i < nr_pages; i++) {
1888 struct folio *folio = page_folio(pages[i]);
1890 if (folio == prev_folio)
1894 if (folio_is_pinnable(folio))
1898 * Try to move out any movable page before pinning the range.
1900 if (folio_test_hugetlb(folio)) {
1901 if (!isolate_huge_page(&folio->page,
1902 &movable_page_list))
1903 isolation_error_count++;
1907 if (!folio_test_lru(folio) && drain_allow) {
1908 lru_add_drain_all();
1909 drain_allow = false;
1912 if (folio_isolate_lru(folio)) {
1913 isolation_error_count++;
1916 list_add_tail(&folio->lru, &movable_page_list);
1917 node_stat_mod_folio(folio,
1918 NR_ISOLATED_ANON + folio_is_file_lru(folio),
1919 folio_nr_pages(folio));
1922 if (!list_empty(&movable_page_list) || isolation_error_count)
1926 * If list is empty, and no isolation errors, means that all pages are
1927 * in the correct zone.
1932 if (gup_flags & FOLL_PIN) {
1933 unpin_user_pages(pages, nr_pages);
1935 for (i = 0; i < nr_pages; i++)
1939 if (!list_empty(&movable_page_list)) {
1940 struct migration_target_control mtc = {
1941 .nid = NUMA_NO_NODE,
1942 .gfp_mask = GFP_USER | __GFP_NOWARN,
1945 ret = migrate_pages(&movable_page_list, alloc_migration_target,
1946 NULL, (unsigned long)&mtc, MIGRATE_SYNC,
1947 MR_LONGTERM_PIN, NULL);
1948 if (ret > 0) /* number of pages not migrated */
1952 if (ret && !list_empty(&movable_page_list))
1953 putback_movable_pages(&movable_page_list);
1957 static long check_and_migrate_movable_pages(unsigned long nr_pages,
1958 struct page **pages,
1959 unsigned int gup_flags)
1963 #endif /* CONFIG_MIGRATION */
1966 * __gup_longterm_locked() is a wrapper for __get_user_pages_locked which
1967 * allows us to process the FOLL_LONGTERM flag.
1969 static long __gup_longterm_locked(struct mm_struct *mm,
1970 unsigned long start,
1971 unsigned long nr_pages,
1972 struct page **pages,
1973 struct vm_area_struct **vmas,
1974 unsigned int gup_flags)
1979 if (!(gup_flags & FOLL_LONGTERM))
1980 return __get_user_pages_locked(mm, start, nr_pages, pages, vmas,
1982 flags = memalloc_pin_save();
1984 rc = __get_user_pages_locked(mm, start, nr_pages, pages, vmas,
1988 rc = check_and_migrate_movable_pages(rc, pages, gup_flags);
1990 memalloc_pin_restore(flags);
1995 static bool is_valid_gup_flags(unsigned int gup_flags)
1998 * FOLL_PIN must only be set internally by the pin_user_pages*() APIs,
1999 * never directly by the caller, so enforce that with an assertion:
2001 if (WARN_ON_ONCE(gup_flags & FOLL_PIN))
2004 * FOLL_PIN is a prerequisite to FOLL_LONGTERM. Another way of saying
2005 * that is, FOLL_LONGTERM is a specific case, more restrictive case of
2008 if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
2015 static long __get_user_pages_remote(struct mm_struct *mm,
2016 unsigned long start, unsigned long nr_pages,
2017 unsigned int gup_flags, struct page **pages,
2018 struct vm_area_struct **vmas, int *locked)
2021 * Parts of FOLL_LONGTERM behavior are incompatible with
2022 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
2023 * vmas. However, this only comes up if locked is set, and there are
2024 * callers that do request FOLL_LONGTERM, but do not set locked. So,
2025 * allow what we can.
2027 if (gup_flags & FOLL_LONGTERM) {
2028 if (WARN_ON_ONCE(locked))
2031 * This will check the vmas (even if our vmas arg is NULL)
2032 * and return -ENOTSUPP if DAX isn't allowed in this case:
2034 return __gup_longterm_locked(mm, start, nr_pages, pages,
2035 vmas, gup_flags | FOLL_TOUCH |
2039 return __get_user_pages_locked(mm, start, nr_pages, pages, vmas,
2041 gup_flags | FOLL_TOUCH | FOLL_REMOTE);
2045 * get_user_pages_remote() - pin user pages in memory
2046 * @mm: mm_struct of target mm
2047 * @start: starting user address
2048 * @nr_pages: number of pages from start to pin
2049 * @gup_flags: flags modifying lookup behaviour
2050 * @pages: array that receives pointers to the pages pinned.
2051 * Should be at least nr_pages long. Or NULL, if caller
2052 * only intends to ensure the pages are faulted in.
2053 * @vmas: array of pointers to vmas corresponding to each page.
2054 * Or NULL if the caller does not require them.
2055 * @locked: pointer to lock flag indicating whether lock is held and
2056 * subsequently whether VM_FAULT_RETRY functionality can be
2057 * utilised. Lock must initially be held.
2059 * Returns either number of pages pinned (which may be less than the
2060 * number requested), or an error. Details about the return value:
2062 * -- If nr_pages is 0, returns 0.
2063 * -- If nr_pages is >0, but no pages were pinned, returns -errno.
2064 * -- If nr_pages is >0, and some pages were pinned, returns the number of
2065 * pages pinned. Again, this may be less than nr_pages.
2067 * The caller is responsible for releasing returned @pages, via put_page().
2069 * @vmas are valid only as long as mmap_lock is held.
2071 * Must be called with mmap_lock held for read or write.
2073 * get_user_pages_remote walks a process's page tables and takes a reference
2074 * to each struct page that each user address corresponds to at a given
2075 * instant. That is, it takes the page that would be accessed if a user
2076 * thread accesses the given user virtual address at that instant.
2078 * This does not guarantee that the page exists in the user mappings when
2079 * get_user_pages_remote returns, and there may even be a completely different
2080 * page there in some cases (eg. if mmapped pagecache has been invalidated
2081 * and subsequently re faulted). However it does guarantee that the page
2082 * won't be freed completely. And mostly callers simply care that the page
2083 * contains data that was valid *at some point in time*. Typically, an IO
2084 * or similar operation cannot guarantee anything stronger anyway because
2085 * locks can't be held over the syscall boundary.
2087 * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page
2088 * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must
2089 * be called after the page is finished with, and before put_page is called.
2091 * get_user_pages_remote is typically used for fewer-copy IO operations,
2092 * to get a handle on the memory by some means other than accesses
2093 * via the user virtual addresses. The pages may be submitted for
2094 * DMA to devices or accessed via their kernel linear mapping (via the
2095 * kmap APIs). Care should be taken to use the correct cache flushing APIs.
2097 * See also get_user_pages_fast, for performance critical applications.
2099 * get_user_pages_remote should be phased out in favor of
2100 * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing
2101 * should use get_user_pages_remote because it cannot pass
2102 * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault.
2104 long get_user_pages_remote(struct mm_struct *mm,
2105 unsigned long start, unsigned long nr_pages,
2106 unsigned int gup_flags, struct page **pages,
2107 struct vm_area_struct **vmas, int *locked)
2109 if (!is_valid_gup_flags(gup_flags))
2112 return __get_user_pages_remote(mm, start, nr_pages, gup_flags,
2113 pages, vmas, locked);
2115 EXPORT_SYMBOL(get_user_pages_remote);
2117 #else /* CONFIG_MMU */
2118 long get_user_pages_remote(struct mm_struct *mm,
2119 unsigned long start, unsigned long nr_pages,
2120 unsigned int gup_flags, struct page **pages,
2121 struct vm_area_struct **vmas, int *locked)
2126 static long __get_user_pages_remote(struct mm_struct *mm,
2127 unsigned long start, unsigned long nr_pages,
2128 unsigned int gup_flags, struct page **pages,
2129 struct vm_area_struct **vmas, int *locked)
2133 #endif /* !CONFIG_MMU */
2136 * get_user_pages() - pin user pages in memory
2137 * @start: starting user address
2138 * @nr_pages: number of pages from start to pin
2139 * @gup_flags: flags modifying lookup behaviour
2140 * @pages: array that receives pointers to the pages pinned.
2141 * Should be at least nr_pages long. Or NULL, if caller
2142 * only intends to ensure the pages are faulted in.
2143 * @vmas: array of pointers to vmas corresponding to each page.
2144 * Or NULL if the caller does not require them.
2146 * This is the same as get_user_pages_remote(), just with a less-flexible
2147 * calling convention where we assume that the mm being operated on belongs to
2148 * the current task, and doesn't allow passing of a locked parameter. We also
2149 * obviously don't pass FOLL_REMOTE in here.
2151 long get_user_pages(unsigned long start, unsigned long nr_pages,
2152 unsigned int gup_flags, struct page **pages,
2153 struct vm_area_struct **vmas)
2155 if (!is_valid_gup_flags(gup_flags))
2158 return __gup_longterm_locked(current->mm, start, nr_pages,
2159 pages, vmas, gup_flags | FOLL_TOUCH);
2161 EXPORT_SYMBOL(get_user_pages);
2164 * get_user_pages_unlocked() is suitable to replace the form:
2166 * mmap_read_lock(mm);
2167 * get_user_pages(mm, ..., pages, NULL);
2168 * mmap_read_unlock(mm);
2172 * get_user_pages_unlocked(mm, ..., pages);
2174 * It is functionally equivalent to get_user_pages_fast so
2175 * get_user_pages_fast should be used instead if specific gup_flags
2176 * (e.g. FOLL_FORCE) are not required.
2178 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2179 struct page **pages, unsigned int gup_flags)
2181 struct mm_struct *mm = current->mm;
2186 * FIXME: Current FOLL_LONGTERM behavior is incompatible with
2187 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
2188 * vmas. As there are no users of this flag in this call we simply
2189 * disallow this option for now.
2191 if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
2195 ret = __get_user_pages_locked(mm, start, nr_pages, pages, NULL,
2196 &locked, gup_flags | FOLL_TOUCH);
2198 mmap_read_unlock(mm);
2201 EXPORT_SYMBOL(get_user_pages_unlocked);
2206 * get_user_pages_fast attempts to pin user pages by walking the page
2207 * tables directly and avoids taking locks. Thus the walker needs to be
2208 * protected from page table pages being freed from under it, and should
2209 * block any THP splits.
2211 * One way to achieve this is to have the walker disable interrupts, and
2212 * rely on IPIs from the TLB flushing code blocking before the page table
2213 * pages are freed. This is unsuitable for architectures that do not need
2214 * to broadcast an IPI when invalidating TLBs.
2216 * Another way to achieve this is to batch up page table containing pages
2217 * belonging to more than one mm_user, then rcu_sched a callback to free those
2218 * pages. Disabling interrupts will allow the fast_gup walker to both block
2219 * the rcu_sched callback, and an IPI that we broadcast for splitting THPs
2220 * (which is a relatively rare event). The code below adopts this strategy.
2222 * Before activating this code, please be aware that the following assumptions
2223 * are currently made:
2225 * *) Either MMU_GATHER_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to
2226 * free pages containing page tables or TLB flushing requires IPI broadcast.
2228 * *) ptes can be read atomically by the architecture.
2230 * *) access_ok is sufficient to validate userspace address ranges.
2232 * The last two assumptions can be relaxed by the addition of helper functions.
2234 * This code is based heavily on the PowerPC implementation by Nick Piggin.
2236 #ifdef CONFIG_HAVE_FAST_GUP
2238 static void __maybe_unused undo_dev_pagemap(int *nr, int nr_start,
2240 struct page **pages)
2242 while ((*nr) - nr_start) {
2243 struct page *page = pages[--(*nr)];
2245 ClearPageReferenced(page);
2246 if (flags & FOLL_PIN)
2247 unpin_user_page(page);
2253 #ifdef CONFIG_ARCH_HAS_PTE_SPECIAL
2254 static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
2255 unsigned int flags, struct page **pages, int *nr)
2257 struct dev_pagemap *pgmap = NULL;
2258 int nr_start = *nr, ret = 0;
2261 ptem = ptep = pte_offset_map(&pmd, addr);
2263 pte_t pte = ptep_get_lockless(ptep);
2265 struct folio *folio;
2268 * Similar to the PMD case below, NUMA hinting must take slow
2269 * path using the pte_protnone check.
2271 if (pte_protnone(pte))
2274 if (!pte_access_permitted(pte, flags & FOLL_WRITE))
2277 if (pte_devmap(pte)) {
2278 if (unlikely(flags & FOLL_LONGTERM))
2281 pgmap = get_dev_pagemap(pte_pfn(pte), pgmap);
2282 if (unlikely(!pgmap)) {
2283 undo_dev_pagemap(nr, nr_start, flags, pages);
2286 } else if (pte_special(pte))
2289 VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
2290 page = pte_page(pte);
2292 folio = try_grab_folio(page, 1, flags);
2296 if (unlikely(page_is_secretmem(page))) {
2297 gup_put_folio(folio, 1, flags);
2301 if (unlikely(pte_val(pte) != pte_val(*ptep))) {
2302 gup_put_folio(folio, 1, flags);
2306 if (!pte_write(pte) && gup_must_unshare(flags, page)) {
2307 gup_put_folio(folio, 1, flags);
2312 * We need to make the page accessible if and only if we are
2313 * going to access its content (the FOLL_PIN case). Please
2314 * see Documentation/core-api/pin_user_pages.rst for
2317 if (flags & FOLL_PIN) {
2318 ret = arch_make_page_accessible(page);
2320 gup_put_folio(folio, 1, flags);
2324 folio_set_referenced(folio);
2327 } while (ptep++, addr += PAGE_SIZE, addr != end);
2333 put_dev_pagemap(pgmap);
2340 * If we can't determine whether or not a pte is special, then fail immediately
2341 * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not
2344 * For a futex to be placed on a THP tail page, get_futex_key requires a
2345 * get_user_pages_fast_only implementation that can pin pages. Thus it's still
2346 * useful to have gup_huge_pmd even if we can't operate on ptes.
2348 static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
2349 unsigned int flags, struct page **pages, int *nr)
2353 #endif /* CONFIG_ARCH_HAS_PTE_SPECIAL */
2355 #if defined(CONFIG_ARCH_HAS_PTE_DEVMAP) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
2356 static int __gup_device_huge(unsigned long pfn, unsigned long addr,
2357 unsigned long end, unsigned int flags,
2358 struct page **pages, int *nr)
2361 struct dev_pagemap *pgmap = NULL;
2364 struct page *page = pfn_to_page(pfn);
2366 pgmap = get_dev_pagemap(pfn, pgmap);
2367 if (unlikely(!pgmap)) {
2368 undo_dev_pagemap(nr, nr_start, flags, pages);
2371 SetPageReferenced(page);
2373 if (unlikely(!try_grab_page(page, flags))) {
2374 undo_dev_pagemap(nr, nr_start, flags, pages);
2379 } while (addr += PAGE_SIZE, addr != end);
2381 put_dev_pagemap(pgmap);
2385 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2386 unsigned long end, unsigned int flags,
2387 struct page **pages, int *nr)
2389 unsigned long fault_pfn;
2392 fault_pfn = pmd_pfn(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
2393 if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr))
2396 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
2397 undo_dev_pagemap(nr, nr_start, flags, pages);
2403 static int __gup_device_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
2404 unsigned long end, unsigned int flags,
2405 struct page **pages, int *nr)
2407 unsigned long fault_pfn;
2410 fault_pfn = pud_pfn(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
2411 if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr))
2414 if (unlikely(pud_val(orig) != pud_val(*pudp))) {
2415 undo_dev_pagemap(nr, nr_start, flags, pages);
2421 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2422 unsigned long end, unsigned int flags,
2423 struct page **pages, int *nr)
2429 static int __gup_device_huge_pud(pud_t pud, pud_t *pudp, unsigned long addr,
2430 unsigned long end, unsigned int flags,
2431 struct page **pages, int *nr)
2438 static int record_subpages(struct page *page, unsigned long addr,
2439 unsigned long end, struct page **pages)
2443 for (nr = 0; addr != end; nr++, addr += PAGE_SIZE)
2444 pages[nr] = nth_page(page, nr);
2449 #ifdef CONFIG_ARCH_HAS_HUGEPD
2450 static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end,
2453 unsigned long __boundary = (addr + sz) & ~(sz-1);
2454 return (__boundary - 1 < end - 1) ? __boundary : end;
2457 static int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr,
2458 unsigned long end, unsigned int flags,
2459 struct page **pages, int *nr)
2461 unsigned long pte_end;
2463 struct folio *folio;
2467 pte_end = (addr + sz) & ~(sz-1);
2471 pte = huge_ptep_get(ptep);
2473 if (!pte_access_permitted(pte, flags & FOLL_WRITE))
2476 /* hugepages are never "special" */
2477 VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
2479 page = nth_page(pte_page(pte), (addr & (sz - 1)) >> PAGE_SHIFT);
2480 refs = record_subpages(page, addr, end, pages + *nr);
2482 folio = try_grab_folio(page, refs, flags);
2486 if (unlikely(pte_val(pte) != pte_val(*ptep))) {
2487 gup_put_folio(folio, refs, flags);
2491 if (!pte_write(pte) && gup_must_unshare(flags, &folio->page)) {
2492 gup_put_folio(folio, refs, flags);
2497 folio_set_referenced(folio);
2501 static int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
2502 unsigned int pdshift, unsigned long end, unsigned int flags,
2503 struct page **pages, int *nr)
2506 unsigned long sz = 1UL << hugepd_shift(hugepd);
2509 ptep = hugepte_offset(hugepd, addr, pdshift);
2511 next = hugepte_addr_end(addr, end, sz);
2512 if (!gup_hugepte(ptep, sz, addr, end, flags, pages, nr))
2514 } while (ptep++, addr = next, addr != end);
2519 static inline int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
2520 unsigned int pdshift, unsigned long end, unsigned int flags,
2521 struct page **pages, int *nr)
2525 #endif /* CONFIG_ARCH_HAS_HUGEPD */
2527 static int gup_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2528 unsigned long end, unsigned int flags,
2529 struct page **pages, int *nr)
2532 struct folio *folio;
2535 if (!pmd_access_permitted(orig, flags & FOLL_WRITE))
2538 if (pmd_devmap(orig)) {
2539 if (unlikely(flags & FOLL_LONGTERM))
2541 return __gup_device_huge_pmd(orig, pmdp, addr, end, flags,
2545 page = nth_page(pmd_page(orig), (addr & ~PMD_MASK) >> PAGE_SHIFT);
2546 refs = record_subpages(page, addr, end, pages + *nr);
2548 folio = try_grab_folio(page, refs, flags);
2552 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
2553 gup_put_folio(folio, refs, flags);
2557 if (!pmd_write(orig) && gup_must_unshare(flags, &folio->page)) {
2558 gup_put_folio(folio, refs, flags);
2563 folio_set_referenced(folio);
2567 static int gup_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
2568 unsigned long end, unsigned int flags,
2569 struct page **pages, int *nr)
2572 struct folio *folio;
2575 if (!pud_access_permitted(orig, flags & FOLL_WRITE))
2578 if (pud_devmap(orig)) {
2579 if (unlikely(flags & FOLL_LONGTERM))
2581 return __gup_device_huge_pud(orig, pudp, addr, end, flags,
2585 page = nth_page(pud_page(orig), (addr & ~PUD_MASK) >> PAGE_SHIFT);
2586 refs = record_subpages(page, addr, end, pages + *nr);
2588 folio = try_grab_folio(page, refs, flags);
2592 if (unlikely(pud_val(orig) != pud_val(*pudp))) {
2593 gup_put_folio(folio, refs, flags);
2597 if (!pud_write(orig) && gup_must_unshare(flags, &folio->page)) {
2598 gup_put_folio(folio, refs, flags);
2603 folio_set_referenced(folio);
2607 static int gup_huge_pgd(pgd_t orig, pgd_t *pgdp, unsigned long addr,
2608 unsigned long end, unsigned int flags,
2609 struct page **pages, int *nr)
2613 struct folio *folio;
2615 if (!pgd_access_permitted(orig, flags & FOLL_WRITE))
2618 BUILD_BUG_ON(pgd_devmap(orig));
2620 page = nth_page(pgd_page(orig), (addr & ~PGDIR_MASK) >> PAGE_SHIFT);
2621 refs = record_subpages(page, addr, end, pages + *nr);
2623 folio = try_grab_folio(page, refs, flags);
2627 if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) {
2628 gup_put_folio(folio, refs, flags);
2633 folio_set_referenced(folio);
2637 static int gup_pmd_range(pud_t *pudp, pud_t pud, unsigned long addr, unsigned long end,
2638 unsigned int flags, struct page **pages, int *nr)
2643 pmdp = pmd_offset_lockless(pudp, pud, addr);
2645 pmd_t pmd = READ_ONCE(*pmdp);
2647 next = pmd_addr_end(addr, end);
2648 if (!pmd_present(pmd))
2651 if (unlikely(pmd_trans_huge(pmd) || pmd_huge(pmd) ||
2654 * NUMA hinting faults need to be handled in the GUP
2655 * slowpath for accounting purposes and so that they
2656 * can be serialised against THP migration.
2658 if (pmd_protnone(pmd))
2661 if (!gup_huge_pmd(pmd, pmdp, addr, next, flags,
2665 } else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd))))) {
2667 * architecture have different format for hugetlbfs
2668 * pmd format and THP pmd format
2670 if (!gup_huge_pd(__hugepd(pmd_val(pmd)), addr,
2671 PMD_SHIFT, next, flags, pages, nr))
2673 } else if (!gup_pte_range(pmd, addr, next, flags, pages, nr))
2675 } while (pmdp++, addr = next, addr != end);
2680 static int gup_pud_range(p4d_t *p4dp, p4d_t p4d, unsigned long addr, unsigned long end,
2681 unsigned int flags, struct page **pages, int *nr)
2686 pudp = pud_offset_lockless(p4dp, p4d, addr);
2688 pud_t pud = READ_ONCE(*pudp);
2690 next = pud_addr_end(addr, end);
2691 if (unlikely(!pud_present(pud)))
2693 if (unlikely(pud_huge(pud))) {
2694 if (!gup_huge_pud(pud, pudp, addr, next, flags,
2697 } else if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) {
2698 if (!gup_huge_pd(__hugepd(pud_val(pud)), addr,
2699 PUD_SHIFT, next, flags, pages, nr))
2701 } else if (!gup_pmd_range(pudp, pud, addr, next, flags, pages, nr))
2703 } while (pudp++, addr = next, addr != end);
2708 static int gup_p4d_range(pgd_t *pgdp, pgd_t pgd, unsigned long addr, unsigned long end,
2709 unsigned int flags, struct page **pages, int *nr)
2714 p4dp = p4d_offset_lockless(pgdp, pgd, addr);
2716 p4d_t p4d = READ_ONCE(*p4dp);
2718 next = p4d_addr_end(addr, end);
2721 BUILD_BUG_ON(p4d_huge(p4d));
2722 if (unlikely(is_hugepd(__hugepd(p4d_val(p4d))))) {
2723 if (!gup_huge_pd(__hugepd(p4d_val(p4d)), addr,
2724 P4D_SHIFT, next, flags, pages, nr))
2726 } else if (!gup_pud_range(p4dp, p4d, addr, next, flags, pages, nr))
2728 } while (p4dp++, addr = next, addr != end);
2733 static void gup_pgd_range(unsigned long addr, unsigned long end,
2734 unsigned int flags, struct page **pages, int *nr)
2739 pgdp = pgd_offset(current->mm, addr);
2741 pgd_t pgd = READ_ONCE(*pgdp);
2743 next = pgd_addr_end(addr, end);
2746 if (unlikely(pgd_huge(pgd))) {
2747 if (!gup_huge_pgd(pgd, pgdp, addr, next, flags,
2750 } else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd))))) {
2751 if (!gup_huge_pd(__hugepd(pgd_val(pgd)), addr,
2752 PGDIR_SHIFT, next, flags, pages, nr))
2754 } else if (!gup_p4d_range(pgdp, pgd, addr, next, flags, pages, nr))
2756 } while (pgdp++, addr = next, addr != end);
2759 static inline void gup_pgd_range(unsigned long addr, unsigned long end,
2760 unsigned int flags, struct page **pages, int *nr)
2763 #endif /* CONFIG_HAVE_FAST_GUP */
2765 #ifndef gup_fast_permitted
2767 * Check if it's allowed to use get_user_pages_fast_only() for the range, or
2768 * we need to fall back to the slow version:
2770 static bool gup_fast_permitted(unsigned long start, unsigned long end)
2776 static int __gup_longterm_unlocked(unsigned long start, int nr_pages,
2777 unsigned int gup_flags, struct page **pages)
2782 * FIXME: FOLL_LONGTERM does not work with
2783 * get_user_pages_unlocked() (see comments in that function)
2785 if (gup_flags & FOLL_LONGTERM) {
2786 mmap_read_lock(current->mm);
2787 ret = __gup_longterm_locked(current->mm,
2789 pages, NULL, gup_flags);
2790 mmap_read_unlock(current->mm);
2792 ret = get_user_pages_unlocked(start, nr_pages,
2799 static unsigned long lockless_pages_from_mm(unsigned long start,
2801 unsigned int gup_flags,
2802 struct page **pages)
2804 unsigned long flags;
2808 if (!IS_ENABLED(CONFIG_HAVE_FAST_GUP) ||
2809 !gup_fast_permitted(start, end))
2812 if (gup_flags & FOLL_PIN) {
2813 seq = raw_read_seqcount(¤t->mm->write_protect_seq);
2819 * Disable interrupts. The nested form is used, in order to allow full,
2820 * general purpose use of this routine.
2822 * With interrupts disabled, we block page table pages from being freed
2823 * from under us. See struct mmu_table_batch comments in
2824 * include/asm-generic/tlb.h for more details.
2826 * We do not adopt an rcu_read_lock() here as we also want to block IPIs
2827 * that come from THPs splitting.
2829 local_irq_save(flags);
2830 gup_pgd_range(start, end, gup_flags, pages, &nr_pinned);
2831 local_irq_restore(flags);
2834 * When pinning pages for DMA there could be a concurrent write protect
2835 * from fork() via copy_page_range(), in this case always fail fast GUP.
2837 if (gup_flags & FOLL_PIN) {
2838 if (read_seqcount_retry(¤t->mm->write_protect_seq, seq)) {
2839 unpin_user_pages_lockless(pages, nr_pinned);
2842 sanity_check_pinned_pages(pages, nr_pinned);
2848 static int internal_get_user_pages_fast(unsigned long start,
2849 unsigned long nr_pages,
2850 unsigned int gup_flags,
2851 struct page **pages)
2853 unsigned long len, end;
2854 unsigned long nr_pinned;
2857 if (WARN_ON_ONCE(gup_flags & ~(FOLL_WRITE | FOLL_LONGTERM |
2858 FOLL_FORCE | FOLL_PIN | FOLL_GET |
2859 FOLL_FAST_ONLY | FOLL_NOFAULT)))
2862 if (gup_flags & FOLL_PIN)
2863 mm_set_has_pinned_flag(¤t->mm->flags);
2865 if (!(gup_flags & FOLL_FAST_ONLY))
2866 might_lock_read(¤t->mm->mmap_lock);
2868 start = untagged_addr(start) & PAGE_MASK;
2869 len = nr_pages << PAGE_SHIFT;
2870 if (check_add_overflow(start, len, &end))
2872 if (unlikely(!access_ok((void __user *)start, len)))
2875 nr_pinned = lockless_pages_from_mm(start, end, gup_flags, pages);
2876 if (nr_pinned == nr_pages || gup_flags & FOLL_FAST_ONLY)
2879 /* Slow path: try to get the remaining pages with get_user_pages */
2880 start += nr_pinned << PAGE_SHIFT;
2882 ret = __gup_longterm_unlocked(start, nr_pages - nr_pinned, gup_flags,
2886 * The caller has to unpin the pages we already pinned so
2887 * returning -errno is not an option
2893 return ret + nr_pinned;
2897 * get_user_pages_fast_only() - pin user pages in memory
2898 * @start: starting user address
2899 * @nr_pages: number of pages from start to pin
2900 * @gup_flags: flags modifying pin behaviour
2901 * @pages: array that receives pointers to the pages pinned.
2902 * Should be at least nr_pages long.
2904 * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to
2906 * Note a difference with get_user_pages_fast: this always returns the
2907 * number of pages pinned, 0 if no pages were pinned.
2909 * If the architecture does not support this function, simply return with no
2912 * Careful, careful! COW breaking can go either way, so a non-write
2913 * access can get ambiguous page results. If you call this function without
2914 * 'write' set, you'd better be sure that you're ok with that ambiguity.
2916 int get_user_pages_fast_only(unsigned long start, int nr_pages,
2917 unsigned int gup_flags, struct page **pages)
2921 * Internally (within mm/gup.c), gup fast variants must set FOLL_GET,
2922 * because gup fast is always a "pin with a +1 page refcount" request.
2924 * FOLL_FAST_ONLY is required in order to match the API description of
2925 * this routine: no fall back to regular ("slow") GUP.
2927 gup_flags |= FOLL_GET | FOLL_FAST_ONLY;
2929 nr_pinned = internal_get_user_pages_fast(start, nr_pages, gup_flags,
2933 * As specified in the API description above, this routine is not
2934 * allowed to return negative values. However, the common core
2935 * routine internal_get_user_pages_fast() *can* return -errno.
2936 * Therefore, correct for that here:
2943 EXPORT_SYMBOL_GPL(get_user_pages_fast_only);
2946 * get_user_pages_fast() - pin user pages in memory
2947 * @start: starting user address
2948 * @nr_pages: number of pages from start to pin
2949 * @gup_flags: flags modifying pin behaviour
2950 * @pages: array that receives pointers to the pages pinned.
2951 * Should be at least nr_pages long.
2953 * Attempt to pin user pages in memory without taking mm->mmap_lock.
2954 * If not successful, it will fall back to taking the lock and
2955 * calling get_user_pages().
2957 * Returns number of pages pinned. This may be fewer than the number requested.
2958 * If nr_pages is 0 or negative, returns 0. If no pages were pinned, returns
2961 int get_user_pages_fast(unsigned long start, int nr_pages,
2962 unsigned int gup_flags, struct page **pages)
2964 if (!is_valid_gup_flags(gup_flags))
2968 * The caller may or may not have explicitly set FOLL_GET; either way is
2969 * OK. However, internally (within mm/gup.c), gup fast variants must set
2970 * FOLL_GET, because gup fast is always a "pin with a +1 page refcount"
2973 gup_flags |= FOLL_GET;
2974 return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
2976 EXPORT_SYMBOL_GPL(get_user_pages_fast);
2979 * pin_user_pages_fast() - pin user pages in memory without taking locks
2981 * @start: starting user address
2982 * @nr_pages: number of pages from start to pin
2983 * @gup_flags: flags modifying pin behaviour
2984 * @pages: array that receives pointers to the pages pinned.
2985 * Should be at least nr_pages long.
2987 * Nearly the same as get_user_pages_fast(), except that FOLL_PIN is set. See
2988 * get_user_pages_fast() for documentation on the function arguments, because
2989 * the arguments here are identical.
2991 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
2992 * see Documentation/core-api/pin_user_pages.rst for further details.
2994 int pin_user_pages_fast(unsigned long start, int nr_pages,
2995 unsigned int gup_flags, struct page **pages)
2997 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
2998 if (WARN_ON_ONCE(gup_flags & FOLL_GET))
3001 if (WARN_ON_ONCE(!pages))
3004 gup_flags |= FOLL_PIN;
3005 return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
3007 EXPORT_SYMBOL_GPL(pin_user_pages_fast);
3010 * This is the FOLL_PIN equivalent of get_user_pages_fast_only(). Behavior
3011 * is the same, except that this one sets FOLL_PIN instead of FOLL_GET.
3013 * The API rules are the same, too: no negative values may be returned.
3015 int pin_user_pages_fast_only(unsigned long start, int nr_pages,
3016 unsigned int gup_flags, struct page **pages)
3021 * FOLL_GET and FOLL_PIN are mutually exclusive. Note that the API
3022 * rules require returning 0, rather than -errno:
3024 if (WARN_ON_ONCE(gup_flags & FOLL_GET))
3027 if (WARN_ON_ONCE(!pages))
3030 * FOLL_FAST_ONLY is required in order to match the API description of
3031 * this routine: no fall back to regular ("slow") GUP.
3033 gup_flags |= (FOLL_PIN | FOLL_FAST_ONLY);
3034 nr_pinned = internal_get_user_pages_fast(start, nr_pages, gup_flags,
3037 * This routine is not allowed to return negative values. However,
3038 * internal_get_user_pages_fast() *can* return -errno. Therefore,
3039 * correct for that here:
3046 EXPORT_SYMBOL_GPL(pin_user_pages_fast_only);
3049 * pin_user_pages_remote() - pin pages of a remote process
3051 * @mm: mm_struct of target mm
3052 * @start: starting user address
3053 * @nr_pages: number of pages from start to pin
3054 * @gup_flags: flags modifying lookup behaviour
3055 * @pages: array that receives pointers to the pages pinned.
3056 * Should be at least nr_pages long.
3057 * @vmas: array of pointers to vmas corresponding to each page.
3058 * Or NULL if the caller does not require them.
3059 * @locked: pointer to lock flag indicating whether lock is held and
3060 * subsequently whether VM_FAULT_RETRY functionality can be
3061 * utilised. Lock must initially be held.
3063 * Nearly the same as get_user_pages_remote(), except that FOLL_PIN is set. See
3064 * get_user_pages_remote() for documentation on the function arguments, because
3065 * the arguments here are identical.
3067 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
3068 * see Documentation/core-api/pin_user_pages.rst for details.
3070 long pin_user_pages_remote(struct mm_struct *mm,
3071 unsigned long start, unsigned long nr_pages,
3072 unsigned int gup_flags, struct page **pages,
3073 struct vm_area_struct **vmas, int *locked)
3075 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
3076 if (WARN_ON_ONCE(gup_flags & FOLL_GET))
3079 if (WARN_ON_ONCE(!pages))
3082 gup_flags |= FOLL_PIN;
3083 return __get_user_pages_remote(mm, start, nr_pages, gup_flags,
3084 pages, vmas, locked);
3086 EXPORT_SYMBOL(pin_user_pages_remote);
3089 * pin_user_pages() - pin user pages in memory for use by other devices
3091 * @start: starting user address
3092 * @nr_pages: number of pages from start to pin
3093 * @gup_flags: flags modifying lookup behaviour
3094 * @pages: array that receives pointers to the pages pinned.
3095 * Should be at least nr_pages long.
3096 * @vmas: array of pointers to vmas corresponding to each page.
3097 * Or NULL if the caller does not require them.
3099 * Nearly the same as get_user_pages(), except that FOLL_TOUCH is not set, and
3102 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
3103 * see Documentation/core-api/pin_user_pages.rst for details.
3105 long pin_user_pages(unsigned long start, unsigned long nr_pages,
3106 unsigned int gup_flags, struct page **pages,
3107 struct vm_area_struct **vmas)
3109 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
3110 if (WARN_ON_ONCE(gup_flags & FOLL_GET))
3113 if (WARN_ON_ONCE(!pages))
3116 gup_flags |= FOLL_PIN;
3117 return __gup_longterm_locked(current->mm, start, nr_pages,
3118 pages, vmas, gup_flags);
3120 EXPORT_SYMBOL(pin_user_pages);
3123 * pin_user_pages_unlocked() is the FOLL_PIN variant of
3124 * get_user_pages_unlocked(). Behavior is the same, except that this one sets
3125 * FOLL_PIN and rejects FOLL_GET.
3127 long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
3128 struct page **pages, unsigned int gup_flags)
3130 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
3131 if (WARN_ON_ONCE(gup_flags & FOLL_GET))
3134 if (WARN_ON_ONCE(!pages))
3137 gup_flags |= FOLL_PIN;
3138 return get_user_pages_unlocked(start, nr_pages, pages, gup_flags);
3140 EXPORT_SYMBOL(pin_user_pages_unlocked);