1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <linux/kernel.h>
3 #include <linux/errno.h>
5 #include <linux/spinlock.h>
8 #include <linux/memremap.h>
9 #include <linux/pagemap.h>
10 #include <linux/rmap.h>
11 #include <linux/swap.h>
12 #include <linux/swapops.h>
13 #include <linux/secretmem.h>
15 #include <linux/sched/signal.h>
16 #include <linux/rwsem.h>
17 #include <linux/hugetlb.h>
18 #include <linux/migrate.h>
19 #include <linux/mm_inline.h>
20 #include <linux/sched/mm.h>
22 #include <asm/mmu_context.h>
23 #include <asm/tlbflush.h>
27 struct follow_page_context {
28 struct dev_pagemap *pgmap;
29 unsigned int page_mask;
32 static inline void sanity_check_pinned_pages(struct page **pages,
35 if (!IS_ENABLED(CONFIG_DEBUG_VM))
39 * We only pin anonymous pages if they are exclusive. Once pinned, we
40 * can no longer turn them possibly shared and PageAnonExclusive() will
41 * stick around until the page is freed.
43 * We'd like to verify that our pinned anonymous pages are still mapped
44 * exclusively. The issue with anon THP is that we don't know how
45 * they are/were mapped when pinning them. However, for anon
46 * THP we can assume that either the given page (PTE-mapped THP) or
47 * the head page (PMD-mapped THP) should be PageAnonExclusive(). If
48 * neither is the case, there is certainly something wrong.
50 for (; npages; npages--, pages++) {
51 struct page *page = *pages;
52 struct folio *folio = page_folio(page);
54 if (!folio_test_anon(folio))
56 if (!folio_test_large(folio) || folio_test_hugetlb(folio))
57 VM_BUG_ON_PAGE(!PageAnonExclusive(&folio->page), page);
59 /* Either a PTE-mapped or a PMD-mapped THP. */
60 VM_BUG_ON_PAGE(!PageAnonExclusive(&folio->page) &&
61 !PageAnonExclusive(page), page);
66 * Return the folio with ref appropriately incremented,
67 * or NULL if that failed.
69 static inline struct folio *try_get_folio(struct page *page, int refs)
74 folio = page_folio(page);
75 if (WARN_ON_ONCE(folio_ref_count(folio) < 0))
77 if (unlikely(!folio_ref_try_add_rcu(folio, refs)))
81 * At this point we have a stable reference to the folio; but it
82 * could be that between calling page_folio() and the refcount
83 * increment, the folio was split, in which case we'd end up
84 * holding a reference on a folio that has nothing to do with the page
85 * we were given anymore.
86 * So now that the folio is stable, recheck that the page still
87 * belongs to this folio.
89 if (unlikely(page_folio(page) != folio)) {
90 if (!put_devmap_managed_page_refs(&folio->page, refs))
91 folio_put_refs(folio, refs);
99 * try_grab_folio() - Attempt to get or pin a folio.
100 * @page: pointer to page to be grabbed
101 * @refs: the value to (effectively) add to the folio's refcount
102 * @flags: gup flags: these are the FOLL_* flag values.
104 * "grab" names in this file mean, "look at flags to decide whether to use
105 * FOLL_PIN or FOLL_GET behavior, when incrementing the folio's refcount.
107 * Either FOLL_PIN or FOLL_GET (or neither) must be set, but not both at the
108 * same time. (That's true throughout the get_user_pages*() and
109 * pin_user_pages*() APIs.) Cases:
111 * FOLL_GET: folio's refcount will be incremented by @refs.
113 * FOLL_PIN on large folios: folio's refcount will be incremented by
114 * @refs, and its compound_pincount will be incremented by @refs.
116 * FOLL_PIN on single-page folios: folio's refcount will be incremented by
117 * @refs * GUP_PIN_COUNTING_BIAS.
119 * Return: The folio containing @page (with refcount appropriately
120 * incremented) for success, or NULL upon failure. If neither FOLL_GET
121 * nor FOLL_PIN was set, that's considered failure, and furthermore,
122 * a likely bug in the caller, so a warning is also emitted.
124 struct folio *try_grab_folio(struct page *page, int refs, unsigned int flags)
126 if (unlikely(!(flags & FOLL_PCI_P2PDMA) && is_pci_p2pdma_page(page)))
129 if (flags & FOLL_GET)
130 return try_get_folio(page, refs);
131 else if (flags & FOLL_PIN) {
135 * Can't do FOLL_LONGTERM + FOLL_PIN gup fast path if not in a
136 * right zone, so fail and let the caller fall back to the slow
139 if (unlikely((flags & FOLL_LONGTERM) &&
140 !is_longterm_pinnable_page(page)))
144 * CAUTION: Don't use compound_head() on the page before this
145 * point, the result won't be stable.
147 folio = try_get_folio(page, refs);
152 * When pinning a large folio, use an exact count to track it.
154 * However, be sure to *also* increment the normal folio
155 * refcount field at least once, so that the folio really
156 * is pinned. That's why the refcount from the earlier
157 * try_get_folio() is left intact.
159 if (folio_test_large(folio))
160 atomic_add(refs, folio_pincount_ptr(folio));
163 refs * (GUP_PIN_COUNTING_BIAS - 1));
165 * Adjust the pincount before re-checking the PTE for changes.
166 * This is essentially a smp_mb() and is paired with a memory
167 * barrier in page_try_share_anon_rmap().
169 smp_mb__after_atomic();
171 node_stat_mod_folio(folio, NR_FOLL_PIN_ACQUIRED, refs);
180 static void gup_put_folio(struct folio *folio, int refs, unsigned int flags)
182 if (flags & FOLL_PIN) {
183 node_stat_mod_folio(folio, NR_FOLL_PIN_RELEASED, refs);
184 if (folio_test_large(folio))
185 atomic_sub(refs, folio_pincount_ptr(folio));
187 refs *= GUP_PIN_COUNTING_BIAS;
190 if (!put_devmap_managed_page_refs(&folio->page, refs))
191 folio_put_refs(folio, refs);
195 * try_grab_page() - elevate a page's refcount by a flag-dependent amount
196 * @page: pointer to page to be grabbed
197 * @flags: gup flags: these are the FOLL_* flag values.
199 * This might not do anything at all, depending on the flags argument.
201 * "grab" names in this file mean, "look at flags to decide whether to use
202 * FOLL_PIN or FOLL_GET behavior, when incrementing the page's refcount.
204 * Either FOLL_PIN or FOLL_GET (or neither) may be set, but not both at the same
205 * time. Cases: please see the try_grab_folio() documentation, with
208 * Return: 0 for success, or if no action was required (if neither FOLL_PIN
209 * nor FOLL_GET was set, nothing is done). A negative error code for failure:
211 * -ENOMEM FOLL_GET or FOLL_PIN was set, but the page could not
214 int __must_check try_grab_page(struct page *page, unsigned int flags)
216 struct folio *folio = page_folio(page);
218 WARN_ON_ONCE((flags & (FOLL_GET | FOLL_PIN)) == (FOLL_GET | FOLL_PIN));
219 if (WARN_ON_ONCE(folio_ref_count(folio) <= 0))
222 if (unlikely(!(flags & FOLL_PCI_P2PDMA) && is_pci_p2pdma_page(page)))
225 if (flags & FOLL_GET)
226 folio_ref_inc(folio);
227 else if (flags & FOLL_PIN) {
229 * Similar to try_grab_folio(): be sure to *also*
230 * increment the normal page refcount field at least once,
231 * so that the page really is pinned.
233 if (folio_test_large(folio)) {
234 folio_ref_add(folio, 1);
235 atomic_add(1, folio_pincount_ptr(folio));
237 folio_ref_add(folio, GUP_PIN_COUNTING_BIAS);
240 node_stat_mod_folio(folio, NR_FOLL_PIN_ACQUIRED, 1);
247 * unpin_user_page() - release a dma-pinned page
248 * @page: pointer to page to be released
250 * Pages that were pinned via pin_user_pages*() must be released via either
251 * unpin_user_page(), or one of the unpin_user_pages*() routines. This is so
252 * that such pages can be separately tracked and uniquely handled. In
253 * particular, interactions with RDMA and filesystems need special handling.
255 void unpin_user_page(struct page *page)
257 sanity_check_pinned_pages(&page, 1);
258 gup_put_folio(page_folio(page), 1, FOLL_PIN);
260 EXPORT_SYMBOL(unpin_user_page);
262 static inline struct folio *gup_folio_range_next(struct page *start,
263 unsigned long npages, unsigned long i, unsigned int *ntails)
265 struct page *next = nth_page(start, i);
266 struct folio *folio = page_folio(next);
269 if (folio_test_large(folio))
270 nr = min_t(unsigned int, npages - i,
271 folio_nr_pages(folio) - folio_page_idx(folio, next));
277 static inline struct folio *gup_folio_next(struct page **list,
278 unsigned long npages, unsigned long i, unsigned int *ntails)
280 struct folio *folio = page_folio(list[i]);
283 for (nr = i + 1; nr < npages; nr++) {
284 if (page_folio(list[nr]) != folio)
293 * unpin_user_pages_dirty_lock() - release and optionally dirty gup-pinned pages
294 * @pages: array of pages to be maybe marked dirty, and definitely released.
295 * @npages: number of pages in the @pages array.
296 * @make_dirty: whether to mark the pages dirty
298 * "gup-pinned page" refers to a page that has had one of the get_user_pages()
299 * variants called on that page.
301 * For each page in the @pages array, make that page (or its head page, if a
302 * compound page) dirty, if @make_dirty is true, and if the page was previously
303 * listed as clean. In any case, releases all pages using unpin_user_page(),
304 * possibly via unpin_user_pages(), for the non-dirty case.
306 * Please see the unpin_user_page() documentation for details.
308 * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
309 * required, then the caller should a) verify that this is really correct,
310 * because _lock() is usually required, and b) hand code it:
311 * set_page_dirty_lock(), unpin_user_page().
314 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
322 unpin_user_pages(pages, npages);
326 sanity_check_pinned_pages(pages, npages);
327 for (i = 0; i < npages; i += nr) {
328 folio = gup_folio_next(pages, npages, i, &nr);
330 * Checking PageDirty at this point may race with
331 * clear_page_dirty_for_io(), but that's OK. Two key
334 * 1) This code sees the page as already dirty, so it
335 * skips the call to set_page_dirty(). That could happen
336 * because clear_page_dirty_for_io() called
337 * page_mkclean(), followed by set_page_dirty().
338 * However, now the page is going to get written back,
339 * which meets the original intention of setting it
340 * dirty, so all is well: clear_page_dirty_for_io() goes
341 * on to call TestClearPageDirty(), and write the page
344 * 2) This code sees the page as clean, so it calls
345 * set_page_dirty(). The page stays dirty, despite being
346 * written back, so it gets written back again in the
347 * next writeback cycle. This is harmless.
349 if (!folio_test_dirty(folio)) {
351 folio_mark_dirty(folio);
354 gup_put_folio(folio, nr, FOLL_PIN);
357 EXPORT_SYMBOL(unpin_user_pages_dirty_lock);
360 * unpin_user_page_range_dirty_lock() - release and optionally dirty
361 * gup-pinned page range
363 * @page: the starting page of a range maybe marked dirty, and definitely released.
364 * @npages: number of consecutive pages to release.
365 * @make_dirty: whether to mark the pages dirty
367 * "gup-pinned page range" refers to a range of pages that has had one of the
368 * pin_user_pages() variants called on that page.
370 * For the page ranges defined by [page .. page+npages], make that range (or
371 * its head pages, if a compound page) dirty, if @make_dirty is true, and if the
372 * page range was previously listed as clean.
374 * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
375 * required, then the caller should a) verify that this is really correct,
376 * because _lock() is usually required, and b) hand code it:
377 * set_page_dirty_lock(), unpin_user_page().
380 void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages,
387 for (i = 0; i < npages; i += nr) {
388 folio = gup_folio_range_next(page, npages, i, &nr);
389 if (make_dirty && !folio_test_dirty(folio)) {
391 folio_mark_dirty(folio);
394 gup_put_folio(folio, nr, FOLL_PIN);
397 EXPORT_SYMBOL(unpin_user_page_range_dirty_lock);
399 static void unpin_user_pages_lockless(struct page **pages, unsigned long npages)
406 * Don't perform any sanity checks because we might have raced with
407 * fork() and some anonymous pages might now actually be shared --
408 * which is why we're unpinning after all.
410 for (i = 0; i < npages; i += nr) {
411 folio = gup_folio_next(pages, npages, i, &nr);
412 gup_put_folio(folio, nr, FOLL_PIN);
417 * unpin_user_pages() - release an array of gup-pinned pages.
418 * @pages: array of pages to be marked dirty and released.
419 * @npages: number of pages in the @pages array.
421 * For each page in the @pages array, release the page using unpin_user_page().
423 * Please see the unpin_user_page() documentation for details.
425 void unpin_user_pages(struct page **pages, unsigned long npages)
432 * If this WARN_ON() fires, then the system *might* be leaking pages (by
433 * leaving them pinned), but probably not. More likely, gup/pup returned
434 * a hard -ERRNO error to the caller, who erroneously passed it here.
436 if (WARN_ON(IS_ERR_VALUE(npages)))
439 sanity_check_pinned_pages(pages, npages);
440 for (i = 0; i < npages; i += nr) {
441 folio = gup_folio_next(pages, npages, i, &nr);
442 gup_put_folio(folio, nr, FOLL_PIN);
445 EXPORT_SYMBOL(unpin_user_pages);
448 * Set the MMF_HAS_PINNED if not set yet; after set it'll be there for the mm's
449 * lifecycle. Avoid setting the bit unless necessary, or it might cause write
450 * cache bouncing on large SMP machines for concurrent pinned gups.
452 static inline void mm_set_has_pinned_flag(unsigned long *mm_flags)
454 if (!test_bit(MMF_HAS_PINNED, mm_flags))
455 set_bit(MMF_HAS_PINNED, mm_flags);
459 static struct page *no_page_table(struct vm_area_struct *vma,
463 * When core dumping an enormous anonymous area that nobody
464 * has touched so far, we don't want to allocate unnecessary pages or
465 * page tables. Return error instead of NULL to skip handle_mm_fault,
466 * then get_dump_page() will return NULL to leave a hole in the dump.
467 * But we can only make this optimization where a hole would surely
468 * be zero-filled if handle_mm_fault() actually did handle it.
470 if ((flags & FOLL_DUMP) &&
471 (vma_is_anonymous(vma) || !vma->vm_ops->fault))
472 return ERR_PTR(-EFAULT);
476 static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address,
477 pte_t *pte, unsigned int flags)
479 if (flags & FOLL_TOUCH) {
482 if (flags & FOLL_WRITE)
483 entry = pte_mkdirty(entry);
484 entry = pte_mkyoung(entry);
486 if (!pte_same(*pte, entry)) {
487 set_pte_at(vma->vm_mm, address, pte, entry);
488 update_mmu_cache(vma, address, pte);
492 /* Proper page table entry exists, but no corresponding struct page */
496 /* FOLL_FORCE can write to even unwritable PTEs in COW mappings. */
497 static inline bool can_follow_write_pte(pte_t pte, struct page *page,
498 struct vm_area_struct *vma,
501 /* If the pte is writable, we can write to the page. */
505 /* Maybe FOLL_FORCE is set to override it? */
506 if (!(flags & FOLL_FORCE))
509 /* But FOLL_FORCE has no effect on shared mappings */
510 if (vma->vm_flags & (VM_MAYSHARE | VM_SHARED))
513 /* ... or read-only private ones */
514 if (!(vma->vm_flags & VM_MAYWRITE))
517 /* ... or already writable ones that just need to take a write fault */
518 if (vma->vm_flags & VM_WRITE)
522 * See can_change_pte_writable(): we broke COW and could map the page
523 * writable if we have an exclusive anonymous page ...
525 if (!page || !PageAnon(page) || !PageAnonExclusive(page))
528 /* ... and a write-fault isn't required for other reasons. */
529 if (vma_soft_dirty_enabled(vma) && !pte_soft_dirty(pte))
531 return !userfaultfd_pte_wp(vma, pte);
534 static struct page *follow_page_pte(struct vm_area_struct *vma,
535 unsigned long address, pmd_t *pmd, unsigned int flags,
536 struct dev_pagemap **pgmap)
538 struct mm_struct *mm = vma->vm_mm;
544 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
545 if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
546 (FOLL_PIN | FOLL_GET)))
547 return ERR_PTR(-EINVAL);
548 if (unlikely(pmd_bad(*pmd)))
549 return no_page_table(vma, flags);
551 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
553 if (!pte_present(pte))
555 if (pte_protnone(pte) && !gup_can_follow_protnone(flags))
558 page = vm_normal_page(vma, address, pte);
561 * We only care about anon pages in can_follow_write_pte() and don't
562 * have to worry about pte_devmap() because they are never anon.
564 if ((flags & FOLL_WRITE) &&
565 !can_follow_write_pte(pte, page, vma, flags)) {
570 if (!page && pte_devmap(pte) && (flags & (FOLL_GET | FOLL_PIN))) {
572 * Only return device mapping pages in the FOLL_GET or FOLL_PIN
573 * case since they are only valid while holding the pgmap
576 *pgmap = get_dev_pagemap(pte_pfn(pte), *pgmap);
578 page = pte_page(pte);
581 } else if (unlikely(!page)) {
582 if (flags & FOLL_DUMP) {
583 /* Avoid special (like zero) pages in core dumps */
584 page = ERR_PTR(-EFAULT);
588 if (is_zero_pfn(pte_pfn(pte))) {
589 page = pte_page(pte);
591 ret = follow_pfn_pte(vma, address, ptep, flags);
597 if (!pte_write(pte) && gup_must_unshare(vma, flags, page)) {
598 page = ERR_PTR(-EMLINK);
602 VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) &&
603 !PageAnonExclusive(page), page);
605 /* try_grab_page() does nothing unless FOLL_GET or FOLL_PIN is set. */
606 ret = try_grab_page(page, flags);
613 * We need to make the page accessible if and only if we are going
614 * to access its content (the FOLL_PIN case). Please see
615 * Documentation/core-api/pin_user_pages.rst for details.
617 if (flags & FOLL_PIN) {
618 ret = arch_make_page_accessible(page);
620 unpin_user_page(page);
625 if (flags & FOLL_TOUCH) {
626 if ((flags & FOLL_WRITE) &&
627 !pte_dirty(pte) && !PageDirty(page))
628 set_page_dirty(page);
630 * pte_mkyoung() would be more correct here, but atomic care
631 * is needed to avoid losing the dirty bit: it is easier to use
632 * mark_page_accessed().
634 mark_page_accessed(page);
637 pte_unmap_unlock(ptep, ptl);
640 pte_unmap_unlock(ptep, ptl);
643 return no_page_table(vma, flags);
646 static struct page *follow_pmd_mask(struct vm_area_struct *vma,
647 unsigned long address, pud_t *pudp,
649 struct follow_page_context *ctx)
654 struct mm_struct *mm = vma->vm_mm;
656 pmd = pmd_offset(pudp, address);
658 * The READ_ONCE() will stabilize the pmdval in a register or
659 * on the stack so that it will stop changing under the code.
661 pmdval = READ_ONCE(*pmd);
662 if (pmd_none(pmdval))
663 return no_page_table(vma, flags);
664 if (!pmd_present(pmdval))
665 return no_page_table(vma, flags);
666 if (pmd_devmap(pmdval)) {
667 ptl = pmd_lock(mm, pmd);
668 page = follow_devmap_pmd(vma, address, pmd, flags, &ctx->pgmap);
673 if (likely(!pmd_trans_huge(pmdval)))
674 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
676 if (pmd_protnone(pmdval) && !gup_can_follow_protnone(flags))
677 return no_page_table(vma, flags);
679 ptl = pmd_lock(mm, pmd);
680 if (unlikely(!pmd_present(*pmd))) {
682 return no_page_table(vma, flags);
684 if (unlikely(!pmd_trans_huge(*pmd))) {
686 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
688 if (flags & FOLL_SPLIT_PMD) {
690 page = pmd_page(*pmd);
691 if (is_huge_zero_page(page)) {
694 split_huge_pmd(vma, pmd, address);
695 if (pmd_trans_unstable(pmd))
699 split_huge_pmd(vma, pmd, address);
700 ret = pte_alloc(mm, pmd) ? -ENOMEM : 0;
703 return ret ? ERR_PTR(ret) :
704 follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
706 page = follow_trans_huge_pmd(vma, address, pmd, flags);
708 ctx->page_mask = HPAGE_PMD_NR - 1;
712 static struct page *follow_pud_mask(struct vm_area_struct *vma,
713 unsigned long address, p4d_t *p4dp,
715 struct follow_page_context *ctx)
720 struct mm_struct *mm = vma->vm_mm;
722 pud = pud_offset(p4dp, address);
724 return no_page_table(vma, flags);
725 if (pud_devmap(*pud)) {
726 ptl = pud_lock(mm, pud);
727 page = follow_devmap_pud(vma, address, pud, flags, &ctx->pgmap);
732 if (unlikely(pud_bad(*pud)))
733 return no_page_table(vma, flags);
735 return follow_pmd_mask(vma, address, pud, flags, ctx);
738 static struct page *follow_p4d_mask(struct vm_area_struct *vma,
739 unsigned long address, pgd_t *pgdp,
741 struct follow_page_context *ctx)
745 p4d = p4d_offset(pgdp, address);
747 return no_page_table(vma, flags);
748 BUILD_BUG_ON(p4d_huge(*p4d));
749 if (unlikely(p4d_bad(*p4d)))
750 return no_page_table(vma, flags);
752 return follow_pud_mask(vma, address, p4d, flags, ctx);
756 * follow_page_mask - look up a page descriptor from a user-virtual address
757 * @vma: vm_area_struct mapping @address
758 * @address: virtual address to look up
759 * @flags: flags modifying lookup behaviour
760 * @ctx: contains dev_pagemap for %ZONE_DEVICE memory pinning and a
761 * pointer to output page_mask
763 * @flags can have FOLL_ flags set, defined in <linux/mm.h>
765 * When getting pages from ZONE_DEVICE memory, the @ctx->pgmap caches
766 * the device's dev_pagemap metadata to avoid repeating expensive lookups.
768 * When getting an anonymous page and the caller has to trigger unsharing
769 * of a shared anonymous page first, -EMLINK is returned. The caller should
770 * trigger a fault with FAULT_FLAG_UNSHARE set. Note that unsharing is only
771 * relevant with FOLL_PIN and !FOLL_WRITE.
773 * On output, the @ctx->page_mask is set according to the size of the page.
775 * Return: the mapped (struct page *), %NULL if no mapping exists, or
776 * an error pointer if there is a mapping to something not represented
777 * by a page descriptor (see also vm_normal_page()).
779 static struct page *follow_page_mask(struct vm_area_struct *vma,
780 unsigned long address, unsigned int flags,
781 struct follow_page_context *ctx)
785 struct mm_struct *mm = vma->vm_mm;
790 * Call hugetlb_follow_page_mask for hugetlb vmas as it will use
791 * special hugetlb page table walking code. This eliminates the
792 * need to check for hugetlb entries in the general walking code.
794 * hugetlb_follow_page_mask is only for follow_page() handling here.
795 * Ordinary GUP uses follow_hugetlb_page for hugetlb processing.
797 if (is_vm_hugetlb_page(vma)) {
798 page = hugetlb_follow_page_mask(vma, address, flags);
800 page = no_page_table(vma, flags);
804 pgd = pgd_offset(mm, address);
806 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
807 return no_page_table(vma, flags);
809 return follow_p4d_mask(vma, address, pgd, flags, ctx);
812 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
813 unsigned int foll_flags)
815 struct follow_page_context ctx = { NULL };
818 if (vma_is_secretmem(vma))
821 if (foll_flags & FOLL_PIN)
824 page = follow_page_mask(vma, address, foll_flags, &ctx);
826 put_dev_pagemap(ctx.pgmap);
830 static int get_gate_page(struct mm_struct *mm, unsigned long address,
831 unsigned int gup_flags, struct vm_area_struct **vma,
841 /* user gate pages are read-only */
842 if (gup_flags & FOLL_WRITE)
844 if (address > TASK_SIZE)
845 pgd = pgd_offset_k(address);
847 pgd = pgd_offset_gate(mm, address);
850 p4d = p4d_offset(pgd, address);
853 pud = pud_offset(p4d, address);
856 pmd = pmd_offset(pud, address);
857 if (!pmd_present(*pmd))
859 VM_BUG_ON(pmd_trans_huge(*pmd));
860 pte = pte_offset_map(pmd, address);
863 *vma = get_gate_vma(mm);
866 *page = vm_normal_page(*vma, address, *pte);
868 if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(*pte)))
870 *page = pte_page(*pte);
872 ret = try_grab_page(*page, gup_flags);
883 * mmap_lock must be held on entry. If @locked != NULL and *@flags
884 * does not include FOLL_NOWAIT, the mmap_lock may be released. If it
885 * is, *@locked will be set to 0 and -EBUSY returned.
887 static int faultin_page(struct vm_area_struct *vma,
888 unsigned long address, unsigned int *flags, bool unshare,
891 unsigned int fault_flags = 0;
894 if (*flags & FOLL_NOFAULT)
896 if (*flags & FOLL_WRITE)
897 fault_flags |= FAULT_FLAG_WRITE;
898 if (*flags & FOLL_REMOTE)
899 fault_flags |= FAULT_FLAG_REMOTE;
901 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
903 * FAULT_FLAG_INTERRUPTIBLE is opt-in. GUP callers must set
904 * FOLL_INTERRUPTIBLE to enable FAULT_FLAG_INTERRUPTIBLE.
905 * That's because some callers may not be prepared to
906 * handle early exits caused by non-fatal signals.
908 if (*flags & FOLL_INTERRUPTIBLE)
909 fault_flags |= FAULT_FLAG_INTERRUPTIBLE;
911 if (*flags & FOLL_NOWAIT)
912 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT;
913 if (*flags & FOLL_TRIED) {
915 * Note: FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_TRIED
918 fault_flags |= FAULT_FLAG_TRIED;
921 fault_flags |= FAULT_FLAG_UNSHARE;
922 /* FAULT_FLAG_WRITE and FAULT_FLAG_UNSHARE are incompatible */
923 VM_BUG_ON(fault_flags & FAULT_FLAG_WRITE);
926 ret = handle_mm_fault(vma, address, fault_flags, NULL);
928 if (ret & VM_FAULT_COMPLETED) {
930 * With FAULT_FLAG_RETRY_NOWAIT we'll never release the
931 * mmap lock in the page fault handler. Sanity check this.
933 WARN_ON_ONCE(fault_flags & FAULT_FLAG_RETRY_NOWAIT);
937 * We should do the same as VM_FAULT_RETRY, but let's not
938 * return -EBUSY since that's not reflecting the reality of
939 * what has happened - we've just fully completed a page
940 * fault, with the mmap lock released. Use -EAGAIN to show
941 * that we want to take the mmap lock _again_.
946 if (ret & VM_FAULT_ERROR) {
947 int err = vm_fault_to_errno(ret, *flags);
954 if (ret & VM_FAULT_RETRY) {
955 if (locked && !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
963 static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags)
965 vm_flags_t vm_flags = vma->vm_flags;
966 int write = (gup_flags & FOLL_WRITE);
967 int foreign = (gup_flags & FOLL_REMOTE);
969 if (vm_flags & (VM_IO | VM_PFNMAP))
972 if (gup_flags & FOLL_ANON && !vma_is_anonymous(vma))
975 if ((gup_flags & FOLL_LONGTERM) && vma_is_fsdax(vma))
978 if ((gup_flags & FOLL_LONGTERM) && (gup_flags & FOLL_PCI_P2PDMA))
981 if (vma_is_secretmem(vma))
985 if (!(vm_flags & VM_WRITE)) {
986 if (!(gup_flags & FOLL_FORCE))
988 /* hugetlb does not support FOLL_FORCE|FOLL_WRITE. */
989 if (is_vm_hugetlb_page(vma))
992 * We used to let the write,force case do COW in a
993 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could
994 * set a breakpoint in a read-only mapping of an
995 * executable, without corrupting the file (yet only
996 * when that file had been opened for writing!).
997 * Anon pages in shared mappings are surprising: now
1000 if (!is_cow_mapping(vm_flags))
1003 } else if (!(vm_flags & VM_READ)) {
1004 if (!(gup_flags & FOLL_FORCE))
1007 * Is there actually any vma we can reach here which does not
1008 * have VM_MAYREAD set?
1010 if (!(vm_flags & VM_MAYREAD))
1014 * gups are always data accesses, not instruction
1015 * fetches, so execute=false here
1017 if (!arch_vma_access_permitted(vma, write, false, foreign))
1023 * __get_user_pages() - pin user pages in memory
1024 * @mm: mm_struct of target mm
1025 * @start: starting user address
1026 * @nr_pages: number of pages from start to pin
1027 * @gup_flags: flags modifying pin behaviour
1028 * @pages: array that receives pointers to the pages pinned.
1029 * Should be at least nr_pages long. Or NULL, if caller
1030 * only intends to ensure the pages are faulted in.
1031 * @vmas: array of pointers to vmas corresponding to each page.
1032 * Or NULL if the caller does not require them.
1033 * @locked: whether we're still with the mmap_lock held
1035 * Returns either number of pages pinned (which may be less than the
1036 * number requested), or an error. Details about the return value:
1038 * -- If nr_pages is 0, returns 0.
1039 * -- If nr_pages is >0, but no pages were pinned, returns -errno.
1040 * -- If nr_pages is >0, and some pages were pinned, returns the number of
1041 * pages pinned. Again, this may be less than nr_pages.
1042 * -- 0 return value is possible when the fault would need to be retried.
1044 * The caller is responsible for releasing returned @pages, via put_page().
1046 * @vmas are valid only as long as mmap_lock is held.
1048 * Must be called with mmap_lock held. It may be released. See below.
1050 * __get_user_pages walks a process's page tables and takes a reference to
1051 * each struct page that each user address corresponds to at a given
1052 * instant. That is, it takes the page that would be accessed if a user
1053 * thread accesses the given user virtual address at that instant.
1055 * This does not guarantee that the page exists in the user mappings when
1056 * __get_user_pages returns, and there may even be a completely different
1057 * page there in some cases (eg. if mmapped pagecache has been invalidated
1058 * and subsequently re faulted). However it does guarantee that the page
1059 * won't be freed completely. And mostly callers simply care that the page
1060 * contains data that was valid *at some point in time*. Typically, an IO
1061 * or similar operation cannot guarantee anything stronger anyway because
1062 * locks can't be held over the syscall boundary.
1064 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
1065 * the page is written to, set_page_dirty (or set_page_dirty_lock, as
1066 * appropriate) must be called after the page is finished with, and
1067 * before put_page is called.
1069 * If @locked != NULL, *@locked will be set to 0 when mmap_lock is
1070 * released by an up_read(). That can happen if @gup_flags does not
1073 * A caller using such a combination of @locked and @gup_flags
1074 * must therefore hold the mmap_lock for reading only, and recognize
1075 * when it's been released. Otherwise, it must be held for either
1076 * reading or writing and will not be released.
1078 * In most cases, get_user_pages or get_user_pages_fast should be used
1079 * instead of __get_user_pages. __get_user_pages should be used only if
1080 * you need some special @gup_flags.
1082 static long __get_user_pages(struct mm_struct *mm,
1083 unsigned long start, unsigned long nr_pages,
1084 unsigned int gup_flags, struct page **pages,
1085 struct vm_area_struct **vmas, int *locked)
1087 long ret = 0, i = 0;
1088 struct vm_area_struct *vma = NULL;
1089 struct follow_page_context ctx = { NULL };
1094 start = untagged_addr(start);
1096 VM_BUG_ON(!!pages != !!(gup_flags & (FOLL_GET | FOLL_PIN)));
1100 unsigned int foll_flags = gup_flags;
1101 unsigned int page_increm;
1103 /* first iteration or cross vma bound */
1104 if (!vma || start >= vma->vm_end) {
1105 vma = find_extend_vma(mm, start);
1106 if (!vma && in_gate_area(mm, start)) {
1107 ret = get_gate_page(mm, start & PAGE_MASK,
1109 pages ? &pages[i] : NULL);
1120 ret = check_vma_flags(vma, gup_flags);
1124 if (is_vm_hugetlb_page(vma)) {
1125 i = follow_hugetlb_page(mm, vma, pages, vmas,
1126 &start, &nr_pages, i,
1128 if (locked && *locked == 0) {
1130 * We've got a VM_FAULT_RETRY
1131 * and we've lost mmap_lock.
1132 * We must stop here.
1134 BUG_ON(gup_flags & FOLL_NOWAIT);
1142 * If we have a pending SIGKILL, don't keep faulting pages and
1143 * potentially allocating memory.
1145 if (fatal_signal_pending(current)) {
1151 page = follow_page_mask(vma, start, foll_flags, &ctx);
1152 if (!page || PTR_ERR(page) == -EMLINK) {
1153 ret = faultin_page(vma, start, &foll_flags,
1154 PTR_ERR(page) == -EMLINK, locked);
1168 } else if (PTR_ERR(page) == -EEXIST) {
1170 * Proper page table entry exists, but no corresponding
1171 * struct page. If the caller expects **pages to be
1172 * filled in, bail out now, because that can't be done
1176 ret = PTR_ERR(page);
1181 } else if (IS_ERR(page)) {
1182 ret = PTR_ERR(page);
1187 flush_anon_page(vma, page, start);
1188 flush_dcache_page(page);
1196 page_increm = 1 + (~(start >> PAGE_SHIFT) & ctx.page_mask);
1197 if (page_increm > nr_pages)
1198 page_increm = nr_pages;
1200 start += page_increm * PAGE_SIZE;
1201 nr_pages -= page_increm;
1205 put_dev_pagemap(ctx.pgmap);
1209 static bool vma_permits_fault(struct vm_area_struct *vma,
1210 unsigned int fault_flags)
1212 bool write = !!(fault_flags & FAULT_FLAG_WRITE);
1213 bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE);
1214 vm_flags_t vm_flags = write ? VM_WRITE : VM_READ;
1216 if (!(vm_flags & vma->vm_flags))
1220 * The architecture might have a hardware protection
1221 * mechanism other than read/write that can deny access.
1223 * gup always represents data access, not instruction
1224 * fetches, so execute=false here:
1226 if (!arch_vma_access_permitted(vma, write, false, foreign))
1233 * fixup_user_fault() - manually resolve a user page fault
1234 * @mm: mm_struct of target mm
1235 * @address: user address
1236 * @fault_flags:flags to pass down to handle_mm_fault()
1237 * @unlocked: did we unlock the mmap_lock while retrying, maybe NULL if caller
1238 * does not allow retry. If NULL, the caller must guarantee
1239 * that fault_flags does not contain FAULT_FLAG_ALLOW_RETRY.
1241 * This is meant to be called in the specific scenario where for locking reasons
1242 * we try to access user memory in atomic context (within a pagefault_disable()
1243 * section), this returns -EFAULT, and we want to resolve the user fault before
1246 * Typically this is meant to be used by the futex code.
1248 * The main difference with get_user_pages() is that this function will
1249 * unconditionally call handle_mm_fault() which will in turn perform all the
1250 * necessary SW fixup of the dirty and young bits in the PTE, while
1251 * get_user_pages() only guarantees to update these in the struct page.
1253 * This is important for some architectures where those bits also gate the
1254 * access permission to the page because they are maintained in software. On
1255 * such architectures, gup() will not be enough to make a subsequent access
1258 * This function will not return with an unlocked mmap_lock. So it has not the
1259 * same semantics wrt the @mm->mmap_lock as does filemap_fault().
1261 int fixup_user_fault(struct mm_struct *mm,
1262 unsigned long address, unsigned int fault_flags,
1265 struct vm_area_struct *vma;
1268 address = untagged_addr(address);
1271 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
1274 vma = find_extend_vma(mm, address);
1275 if (!vma || address < vma->vm_start)
1278 if (!vma_permits_fault(vma, fault_flags))
1281 if ((fault_flags & FAULT_FLAG_KILLABLE) &&
1282 fatal_signal_pending(current))
1285 ret = handle_mm_fault(vma, address, fault_flags, NULL);
1287 if (ret & VM_FAULT_COMPLETED) {
1289 * NOTE: it's a pity that we need to retake the lock here
1290 * to pair with the unlock() in the callers. Ideally we
1291 * could tell the callers so they do not need to unlock.
1298 if (ret & VM_FAULT_ERROR) {
1299 int err = vm_fault_to_errno(ret, 0);
1306 if (ret & VM_FAULT_RETRY) {
1309 fault_flags |= FAULT_FLAG_TRIED;
1315 EXPORT_SYMBOL_GPL(fixup_user_fault);
1318 * GUP always responds to fatal signals. When FOLL_INTERRUPTIBLE is
1319 * specified, it'll also respond to generic signals. The caller of GUP
1320 * that has FOLL_INTERRUPTIBLE should take care of the GUP interruption.
1322 static bool gup_signal_pending(unsigned int flags)
1324 if (fatal_signal_pending(current))
1327 if (!(flags & FOLL_INTERRUPTIBLE))
1330 return signal_pending(current);
1334 * Please note that this function, unlike __get_user_pages will not
1335 * return 0 for nr_pages > 0 without FOLL_NOWAIT
1337 static __always_inline long __get_user_pages_locked(struct mm_struct *mm,
1338 unsigned long start,
1339 unsigned long nr_pages,
1340 struct page **pages,
1341 struct vm_area_struct **vmas,
1345 long ret, pages_done;
1349 /* if VM_FAULT_RETRY can be returned, vmas become invalid */
1351 /* check caller initialized locked */
1352 BUG_ON(*locked != 1);
1355 if (flags & FOLL_PIN)
1356 mm_set_has_pinned_flag(&mm->flags);
1359 * FOLL_PIN and FOLL_GET are mutually exclusive. Traditional behavior
1360 * is to set FOLL_GET if the caller wants pages[] filled in (but has
1361 * carelessly failed to specify FOLL_GET), so keep doing that, but only
1362 * for FOLL_GET, not for the newer FOLL_PIN.
1364 * FOLL_PIN always expects pages to be non-null, but no need to assert
1365 * that here, as any failures will be obvious enough.
1367 if (pages && !(flags & FOLL_PIN))
1371 lock_dropped = false;
1373 ret = __get_user_pages(mm, start, nr_pages, flags, pages,
1376 /* VM_FAULT_RETRY couldn't trigger, bypass */
1379 /* VM_FAULT_RETRY or VM_FAULT_COMPLETED cannot return errors */
1382 BUG_ON(ret >= nr_pages);
1393 * VM_FAULT_RETRY didn't trigger or it was a
1401 * VM_FAULT_RETRY triggered, so seek to the faulting offset.
1402 * For the prefault case (!pages) we only update counts.
1406 start += ret << PAGE_SHIFT;
1407 lock_dropped = true;
1411 * Repeat on the address that fired VM_FAULT_RETRY
1412 * with both FAULT_FLAG_ALLOW_RETRY and
1413 * FAULT_FLAG_TRIED. Note that GUP can be interrupted
1414 * by fatal signals of even common signals, depending on
1415 * the caller's request. So we need to check it before we
1416 * start trying again otherwise it can loop forever.
1418 if (gup_signal_pending(flags)) {
1420 pages_done = -EINTR;
1424 ret = mmap_read_lock_killable(mm);
1433 ret = __get_user_pages(mm, start, 1, flags | FOLL_TRIED,
1434 pages, NULL, locked);
1436 /* Continue to retry until we succeeded */
1454 if (lock_dropped && *locked) {
1456 * We must let the caller know we temporarily dropped the lock
1457 * and so the critical section protected by it was lost.
1459 mmap_read_unlock(mm);
1466 * populate_vma_page_range() - populate a range of pages in the vma.
1468 * @start: start address
1470 * @locked: whether the mmap_lock is still held
1472 * This takes care of mlocking the pages too if VM_LOCKED is set.
1474 * Return either number of pages pinned in the vma, or a negative error
1477 * vma->vm_mm->mmap_lock must be held.
1479 * If @locked is NULL, it may be held for read or write and will
1482 * If @locked is non-NULL, it must held for read only and may be
1483 * released. If it's released, *@locked will be set to 0.
1485 long populate_vma_page_range(struct vm_area_struct *vma,
1486 unsigned long start, unsigned long end, int *locked)
1488 struct mm_struct *mm = vma->vm_mm;
1489 unsigned long nr_pages = (end - start) / PAGE_SIZE;
1493 VM_BUG_ON(!PAGE_ALIGNED(start));
1494 VM_BUG_ON(!PAGE_ALIGNED(end));
1495 VM_BUG_ON_VMA(start < vma->vm_start, vma);
1496 VM_BUG_ON_VMA(end > vma->vm_end, vma);
1497 mmap_assert_locked(mm);
1500 * Rightly or wrongly, the VM_LOCKONFAULT case has never used
1501 * faultin_page() to break COW, so it has no work to do here.
1503 if (vma->vm_flags & VM_LOCKONFAULT)
1506 gup_flags = FOLL_TOUCH;
1508 * We want to touch writable mappings with a write fault in order
1509 * to break COW, except for shared mappings because these don't COW
1510 * and we would not want to dirty them for nothing.
1512 if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE)
1513 gup_flags |= FOLL_WRITE;
1516 * We want mlock to succeed for regions that have any permissions
1517 * other than PROT_NONE.
1519 if (vma_is_accessible(vma))
1520 gup_flags |= FOLL_FORCE;
1523 * We made sure addr is within a VMA, so the following will
1524 * not result in a stack expansion that recurses back here.
1526 ret = __get_user_pages(mm, start, nr_pages, gup_flags,
1527 NULL, NULL, locked);
1533 * faultin_vma_page_range() - populate (prefault) page tables inside the
1534 * given VMA range readable/writable
1536 * This takes care of mlocking the pages, too, if VM_LOCKED is set.
1539 * @start: start address
1541 * @write: whether to prefault readable or writable
1542 * @locked: whether the mmap_lock is still held
1544 * Returns either number of processed pages in the vma, or a negative error
1545 * code on error (see __get_user_pages()).
1547 * vma->vm_mm->mmap_lock must be held. The range must be page-aligned and
1548 * covered by the VMA.
1550 * If @locked is NULL, it may be held for read or write and will be unperturbed.
1552 * If @locked is non-NULL, it must held for read only and may be released. If
1553 * it's released, *@locked will be set to 0.
1555 long faultin_vma_page_range(struct vm_area_struct *vma, unsigned long start,
1556 unsigned long end, bool write, int *locked)
1558 struct mm_struct *mm = vma->vm_mm;
1559 unsigned long nr_pages = (end - start) / PAGE_SIZE;
1563 VM_BUG_ON(!PAGE_ALIGNED(start));
1564 VM_BUG_ON(!PAGE_ALIGNED(end));
1565 VM_BUG_ON_VMA(start < vma->vm_start, vma);
1566 VM_BUG_ON_VMA(end > vma->vm_end, vma);
1567 mmap_assert_locked(mm);
1570 * FOLL_TOUCH: Mark page accessed and thereby young; will also mark
1571 * the page dirty with FOLL_WRITE -- which doesn't make a
1572 * difference with !FOLL_FORCE, because the page is writable
1573 * in the page table.
1574 * FOLL_HWPOISON: Return -EHWPOISON instead of -EFAULT when we hit
1576 * !FOLL_FORCE: Require proper access permissions.
1578 gup_flags = FOLL_TOUCH | FOLL_HWPOISON;
1580 gup_flags |= FOLL_WRITE;
1583 * We want to report -EINVAL instead of -EFAULT for any permission
1584 * problems or incompatible mappings.
1586 if (check_vma_flags(vma, gup_flags))
1589 ret = __get_user_pages(mm, start, nr_pages, gup_flags,
1590 NULL, NULL, locked);
1596 * __mm_populate - populate and/or mlock pages within a range of address space.
1598 * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap
1599 * flags. VMAs must be already marked with the desired vm_flags, and
1600 * mmap_lock must not be held.
1602 int __mm_populate(unsigned long start, unsigned long len, int ignore_errors)
1604 struct mm_struct *mm = current->mm;
1605 unsigned long end, nstart, nend;
1606 struct vm_area_struct *vma = NULL;
1612 for (nstart = start; nstart < end; nstart = nend) {
1614 * We want to fault in pages for [nstart; end) address range.
1615 * Find first corresponding VMA.
1620 vma = find_vma_intersection(mm, nstart, end);
1621 } else if (nstart >= vma->vm_end)
1622 vma = find_vma_intersection(mm, vma->vm_end, end);
1627 * Set [nstart; nend) to intersection of desired address
1628 * range with the first VMA. Also, skip undesirable VMA types.
1630 nend = min(end, vma->vm_end);
1631 if (vma->vm_flags & (VM_IO | VM_PFNMAP))
1633 if (nstart < vma->vm_start)
1634 nstart = vma->vm_start;
1636 * Now fault in a range of pages. populate_vma_page_range()
1637 * double checks the vma flags, so that it won't mlock pages
1638 * if the vma was already munlocked.
1640 ret = populate_vma_page_range(vma, nstart, nend, &locked);
1642 if (ignore_errors) {
1644 continue; /* continue at next VMA */
1648 nend = nstart + ret * PAGE_SIZE;
1652 mmap_read_unlock(mm);
1653 return ret; /* 0 or negative error code */
1655 #else /* CONFIG_MMU */
1656 static long __get_user_pages_locked(struct mm_struct *mm, unsigned long start,
1657 unsigned long nr_pages, struct page **pages,
1658 struct vm_area_struct **vmas, int *locked,
1659 unsigned int foll_flags)
1661 struct vm_area_struct *vma;
1662 unsigned long vm_flags;
1665 /* calculate required read or write permissions.
1666 * If FOLL_FORCE is set, we only require the "MAY" flags.
1668 vm_flags = (foll_flags & FOLL_WRITE) ?
1669 (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1670 vm_flags &= (foll_flags & FOLL_FORCE) ?
1671 (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1673 for (i = 0; i < nr_pages; i++) {
1674 vma = find_vma(mm, start);
1676 goto finish_or_fault;
1678 /* protect what we can, including chardevs */
1679 if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1680 !(vm_flags & vma->vm_flags))
1681 goto finish_or_fault;
1684 pages[i] = virt_to_page((void *)start);
1690 start = (start + PAGE_SIZE) & PAGE_MASK;
1696 return i ? : -EFAULT;
1698 #endif /* !CONFIG_MMU */
1701 * fault_in_writeable - fault in userspace address range for writing
1702 * @uaddr: start of address range
1703 * @size: size of address range
1705 * Returns the number of bytes not faulted in (like copy_to_user() and
1706 * copy_from_user()).
1708 size_t fault_in_writeable(char __user *uaddr, size_t size)
1710 char __user *start = uaddr, *end;
1712 if (unlikely(size == 0))
1714 if (!user_write_access_begin(uaddr, size))
1716 if (!PAGE_ALIGNED(uaddr)) {
1717 unsafe_put_user(0, uaddr, out);
1718 uaddr = (char __user *)PAGE_ALIGN((unsigned long)uaddr);
1720 end = (char __user *)PAGE_ALIGN((unsigned long)start + size);
1721 if (unlikely(end < start))
1723 while (uaddr != end) {
1724 unsafe_put_user(0, uaddr, out);
1729 user_write_access_end();
1730 if (size > uaddr - start)
1731 return size - (uaddr - start);
1734 EXPORT_SYMBOL(fault_in_writeable);
1737 * fault_in_subpage_writeable - fault in an address range for writing
1738 * @uaddr: start of address range
1739 * @size: size of address range
1741 * Fault in a user address range for writing while checking for permissions at
1742 * sub-page granularity (e.g. arm64 MTE). This function should be used when
1743 * the caller cannot guarantee forward progress of a copy_to_user() loop.
1745 * Returns the number of bytes not faulted in (like copy_to_user() and
1746 * copy_from_user()).
1748 size_t fault_in_subpage_writeable(char __user *uaddr, size_t size)
1753 * Attempt faulting in at page granularity first for page table
1754 * permission checking. The arch-specific probe_subpage_writeable()
1755 * functions may not check for this.
1757 faulted_in = size - fault_in_writeable(uaddr, size);
1759 faulted_in -= probe_subpage_writeable(uaddr, faulted_in);
1761 return size - faulted_in;
1763 EXPORT_SYMBOL(fault_in_subpage_writeable);
1766 * fault_in_safe_writeable - fault in an address range for writing
1767 * @uaddr: start of address range
1768 * @size: length of address range
1770 * Faults in an address range for writing. This is primarily useful when we
1771 * already know that some or all of the pages in the address range aren't in
1774 * Unlike fault_in_writeable(), this function is non-destructive.
1776 * Note that we don't pin or otherwise hold the pages referenced that we fault
1777 * in. There's no guarantee that they'll stay in memory for any duration of
1780 * Returns the number of bytes not faulted in, like copy_to_user() and
1783 size_t fault_in_safe_writeable(const char __user *uaddr, size_t size)
1785 unsigned long start = (unsigned long)uaddr, end;
1786 struct mm_struct *mm = current->mm;
1787 bool unlocked = false;
1789 if (unlikely(size == 0))
1791 end = PAGE_ALIGN(start + size);
1797 if (fixup_user_fault(mm, start, FAULT_FLAG_WRITE, &unlocked))
1799 start = (start + PAGE_SIZE) & PAGE_MASK;
1800 } while (start != end);
1801 mmap_read_unlock(mm);
1803 if (size > (unsigned long)uaddr - start)
1804 return size - ((unsigned long)uaddr - start);
1807 EXPORT_SYMBOL(fault_in_safe_writeable);
1810 * fault_in_readable - fault in userspace address range for reading
1811 * @uaddr: start of user address range
1812 * @size: size of user address range
1814 * Returns the number of bytes not faulted in (like copy_to_user() and
1815 * copy_from_user()).
1817 size_t fault_in_readable(const char __user *uaddr, size_t size)
1819 const char __user *start = uaddr, *end;
1822 if (unlikely(size == 0))
1824 if (!user_read_access_begin(uaddr, size))
1826 if (!PAGE_ALIGNED(uaddr)) {
1827 unsafe_get_user(c, uaddr, out);
1828 uaddr = (const char __user *)PAGE_ALIGN((unsigned long)uaddr);
1830 end = (const char __user *)PAGE_ALIGN((unsigned long)start + size);
1831 if (unlikely(end < start))
1833 while (uaddr != end) {
1834 unsafe_get_user(c, uaddr, out);
1839 user_read_access_end();
1841 if (size > uaddr - start)
1842 return size - (uaddr - start);
1845 EXPORT_SYMBOL(fault_in_readable);
1848 * get_dump_page() - pin user page in memory while writing it to core dump
1849 * @addr: user address
1851 * Returns struct page pointer of user page pinned for dump,
1852 * to be freed afterwards by put_page().
1854 * Returns NULL on any kind of failure - a hole must then be inserted into
1855 * the corefile, to preserve alignment with its headers; and also returns
1856 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
1857 * allowing a hole to be left in the corefile to save disk space.
1859 * Called without mmap_lock (takes and releases the mmap_lock by itself).
1861 #ifdef CONFIG_ELF_CORE
1862 struct page *get_dump_page(unsigned long addr)
1864 struct mm_struct *mm = current->mm;
1869 if (mmap_read_lock_killable(mm))
1871 ret = __get_user_pages_locked(mm, addr, 1, &page, NULL, &locked,
1872 FOLL_FORCE | FOLL_DUMP | FOLL_GET);
1874 mmap_read_unlock(mm);
1875 return (ret == 1) ? page : NULL;
1877 #endif /* CONFIG_ELF_CORE */
1879 #ifdef CONFIG_MIGRATION
1881 * Returns the number of collected pages. Return value is always >= 0.
1883 static unsigned long collect_longterm_unpinnable_pages(
1884 struct list_head *movable_page_list,
1885 unsigned long nr_pages,
1886 struct page **pages)
1888 unsigned long i, collected = 0;
1889 struct folio *prev_folio = NULL;
1890 bool drain_allow = true;
1892 for (i = 0; i < nr_pages; i++) {
1893 struct folio *folio = page_folio(pages[i]);
1895 if (folio == prev_folio)
1899 if (folio_is_longterm_pinnable(folio))
1904 if (folio_is_device_coherent(folio))
1907 if (folio_test_hugetlb(folio)) {
1908 isolate_hugetlb(&folio->page, movable_page_list);
1912 if (!folio_test_lru(folio) && drain_allow) {
1913 lru_add_drain_all();
1914 drain_allow = false;
1917 if (!folio_isolate_lru(folio))
1920 list_add_tail(&folio->lru, movable_page_list);
1921 node_stat_mod_folio(folio,
1922 NR_ISOLATED_ANON + folio_is_file_lru(folio),
1923 folio_nr_pages(folio));
1930 * Unpins all pages and migrates device coherent pages and movable_page_list.
1931 * Returns -EAGAIN if all pages were successfully migrated or -errno for failure
1932 * (or partial success).
1934 static int migrate_longterm_unpinnable_pages(
1935 struct list_head *movable_page_list,
1936 unsigned long nr_pages,
1937 struct page **pages)
1942 for (i = 0; i < nr_pages; i++) {
1943 struct folio *folio = page_folio(pages[i]);
1945 if (folio_is_device_coherent(folio)) {
1947 * Migration will fail if the page is pinned, so convert
1948 * the pin on the source page to a normal reference.
1952 gup_put_folio(folio, 1, FOLL_PIN);
1954 if (migrate_device_coherent_page(&folio->page)) {
1963 * We can't migrate pages with unexpected references, so drop
1964 * the reference obtained by __get_user_pages_locked().
1965 * Migrating pages have been added to movable_page_list after
1966 * calling folio_isolate_lru() which takes a reference so the
1967 * page won't be freed if it's migrating.
1969 unpin_user_page(pages[i]);
1973 if (!list_empty(movable_page_list)) {
1974 struct migration_target_control mtc = {
1975 .nid = NUMA_NO_NODE,
1976 .gfp_mask = GFP_USER | __GFP_NOWARN,
1979 if (migrate_pages(movable_page_list, alloc_migration_target,
1980 NULL, (unsigned long)&mtc, MIGRATE_SYNC,
1981 MR_LONGTERM_PIN, NULL)) {
1987 putback_movable_pages(movable_page_list);
1992 for (i = 0; i < nr_pages; i++)
1994 unpin_user_page(pages[i]);
1995 putback_movable_pages(movable_page_list);
2001 * Check whether all pages are *allowed* to be pinned. Rather confusingly, all
2002 * pages in the range are required to be pinned via FOLL_PIN, before calling
2005 * If any pages in the range are not allowed to be pinned, then this routine
2006 * will migrate those pages away, unpin all the pages in the range and return
2007 * -EAGAIN. The caller should re-pin the entire range with FOLL_PIN and then
2008 * call this routine again.
2010 * If an error other than -EAGAIN occurs, this indicates a migration failure.
2011 * The caller should give up, and propagate the error back up the call stack.
2013 * If everything is OK and all pages in the range are allowed to be pinned, then
2014 * this routine leaves all pages pinned and returns zero for success.
2016 static long check_and_migrate_movable_pages(unsigned long nr_pages,
2017 struct page **pages)
2019 unsigned long collected;
2020 LIST_HEAD(movable_page_list);
2022 collected = collect_longterm_unpinnable_pages(&movable_page_list,
2027 return migrate_longterm_unpinnable_pages(&movable_page_list, nr_pages,
2031 static long check_and_migrate_movable_pages(unsigned long nr_pages,
2032 struct page **pages)
2036 #endif /* CONFIG_MIGRATION */
2039 * __gup_longterm_locked() is a wrapper for __get_user_pages_locked which
2040 * allows us to process the FOLL_LONGTERM flag.
2042 static long __gup_longterm_locked(struct mm_struct *mm,
2043 unsigned long start,
2044 unsigned long nr_pages,
2045 struct page **pages,
2046 struct vm_area_struct **vmas,
2048 unsigned int gup_flags)
2050 bool must_unlock = false;
2052 long rc, nr_pinned_pages;
2054 if (locked && WARN_ON_ONCE(!*locked))
2057 if (!(gup_flags & FOLL_LONGTERM))
2058 return __get_user_pages_locked(mm, start, nr_pages, pages, vmas,
2062 * If we get to this point then FOLL_LONGTERM is set, and FOLL_LONGTERM
2063 * implies FOLL_PIN (although the reverse is not true). Therefore it is
2064 * correct to unconditionally call check_and_migrate_movable_pages()
2065 * which assumes pages have been pinned via FOLL_PIN.
2067 * Enforce the above reasoning by asserting that FOLL_PIN is set.
2069 if (WARN_ON(!(gup_flags & FOLL_PIN)))
2071 flags = memalloc_pin_save();
2073 if (locked && !*locked) {
2078 nr_pinned_pages = __get_user_pages_locked(mm, start, nr_pages,
2079 pages, vmas, locked,
2081 if (nr_pinned_pages <= 0) {
2082 rc = nr_pinned_pages;
2085 rc = check_and_migrate_movable_pages(nr_pinned_pages, pages);
2086 } while (rc == -EAGAIN);
2087 memalloc_pin_restore(flags);
2089 if (locked && *locked && must_unlock) {
2090 mmap_read_unlock(mm);
2093 return rc ? rc : nr_pinned_pages;
2096 static bool is_valid_gup_flags(unsigned int gup_flags)
2099 * FOLL_PIN must only be set internally by the pin_user_pages*() APIs,
2100 * never directly by the caller, so enforce that with an assertion:
2102 if (WARN_ON_ONCE(gup_flags & FOLL_PIN))
2105 * FOLL_PIN is a prerequisite to FOLL_LONGTERM. Another way of saying
2106 * that is, FOLL_LONGTERM is a specific case, more restrictive case of
2109 if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
2117 * get_user_pages_remote() - pin user pages in memory
2118 * @mm: mm_struct of target mm
2119 * @start: starting user address
2120 * @nr_pages: number of pages from start to pin
2121 * @gup_flags: flags modifying lookup behaviour
2122 * @pages: array that receives pointers to the pages pinned.
2123 * Should be at least nr_pages long. Or NULL, if caller
2124 * only intends to ensure the pages are faulted in.
2125 * @vmas: array of pointers to vmas corresponding to each page.
2126 * Or NULL if the caller does not require them.
2127 * @locked: pointer to lock flag indicating whether lock is held and
2128 * subsequently whether VM_FAULT_RETRY functionality can be
2129 * utilised. Lock must initially be held.
2131 * Returns either number of pages pinned (which may be less than the
2132 * number requested), or an error. Details about the return value:
2134 * -- If nr_pages is 0, returns 0.
2135 * -- If nr_pages is >0, but no pages were pinned, returns -errno.
2136 * -- If nr_pages is >0, and some pages were pinned, returns the number of
2137 * pages pinned. Again, this may be less than nr_pages.
2139 * The caller is responsible for releasing returned @pages, via put_page().
2141 * @vmas are valid only as long as mmap_lock is held.
2143 * Must be called with mmap_lock held for read or write.
2145 * get_user_pages_remote walks a process's page tables and takes a reference
2146 * to each struct page that each user address corresponds to at a given
2147 * instant. That is, it takes the page that would be accessed if a user
2148 * thread accesses the given user virtual address at that instant.
2150 * This does not guarantee that the page exists in the user mappings when
2151 * get_user_pages_remote returns, and there may even be a completely different
2152 * page there in some cases (eg. if mmapped pagecache has been invalidated
2153 * and subsequently re faulted). However it does guarantee that the page
2154 * won't be freed completely. And mostly callers simply care that the page
2155 * contains data that was valid *at some point in time*. Typically, an IO
2156 * or similar operation cannot guarantee anything stronger anyway because
2157 * locks can't be held over the syscall boundary.
2159 * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page
2160 * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must
2161 * be called after the page is finished with, and before put_page is called.
2163 * get_user_pages_remote is typically used for fewer-copy IO operations,
2164 * to get a handle on the memory by some means other than accesses
2165 * via the user virtual addresses. The pages may be submitted for
2166 * DMA to devices or accessed via their kernel linear mapping (via the
2167 * kmap APIs). Care should be taken to use the correct cache flushing APIs.
2169 * See also get_user_pages_fast, for performance critical applications.
2171 * get_user_pages_remote should be phased out in favor of
2172 * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing
2173 * should use get_user_pages_remote because it cannot pass
2174 * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault.
2176 long get_user_pages_remote(struct mm_struct *mm,
2177 unsigned long start, unsigned long nr_pages,
2178 unsigned int gup_flags, struct page **pages,
2179 struct vm_area_struct **vmas, int *locked)
2181 if (!is_valid_gup_flags(gup_flags))
2184 return __gup_longterm_locked(mm, start, nr_pages, pages, vmas, locked,
2185 gup_flags | FOLL_TOUCH | FOLL_REMOTE);
2187 EXPORT_SYMBOL(get_user_pages_remote);
2189 #else /* CONFIG_MMU */
2190 long get_user_pages_remote(struct mm_struct *mm,
2191 unsigned long start, unsigned long nr_pages,
2192 unsigned int gup_flags, struct page **pages,
2193 struct vm_area_struct **vmas, int *locked)
2197 #endif /* !CONFIG_MMU */
2200 * get_user_pages() - pin user pages in memory
2201 * @start: starting user address
2202 * @nr_pages: number of pages from start to pin
2203 * @gup_flags: flags modifying lookup behaviour
2204 * @pages: array that receives pointers to the pages pinned.
2205 * Should be at least nr_pages long. Or NULL, if caller
2206 * only intends to ensure the pages are faulted in.
2207 * @vmas: array of pointers to vmas corresponding to each page.
2208 * Or NULL if the caller does not require them.
2210 * This is the same as get_user_pages_remote(), just with a less-flexible
2211 * calling convention where we assume that the mm being operated on belongs to
2212 * the current task, and doesn't allow passing of a locked parameter. We also
2213 * obviously don't pass FOLL_REMOTE in here.
2215 long get_user_pages(unsigned long start, unsigned long nr_pages,
2216 unsigned int gup_flags, struct page **pages,
2217 struct vm_area_struct **vmas)
2219 if (!is_valid_gup_flags(gup_flags))
2222 return __gup_longterm_locked(current->mm, start, nr_pages,
2223 pages, vmas, NULL, gup_flags | FOLL_TOUCH);
2225 EXPORT_SYMBOL(get_user_pages);
2228 * get_user_pages_unlocked() is suitable to replace the form:
2230 * mmap_read_lock(mm);
2231 * get_user_pages(mm, ..., pages, NULL);
2232 * mmap_read_unlock(mm);
2236 * get_user_pages_unlocked(mm, ..., pages);
2238 * It is functionally equivalent to get_user_pages_fast so
2239 * get_user_pages_fast should be used instead if specific gup_flags
2240 * (e.g. FOLL_FORCE) are not required.
2242 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2243 struct page **pages, unsigned int gup_flags)
2245 struct mm_struct *mm = current->mm;
2250 ret = __gup_longterm_locked(mm, start, nr_pages, pages, NULL, &locked,
2251 gup_flags | FOLL_TOUCH);
2253 mmap_read_unlock(mm);
2256 EXPORT_SYMBOL(get_user_pages_unlocked);
2261 * get_user_pages_fast attempts to pin user pages by walking the page
2262 * tables directly and avoids taking locks. Thus the walker needs to be
2263 * protected from page table pages being freed from under it, and should
2264 * block any THP splits.
2266 * One way to achieve this is to have the walker disable interrupts, and
2267 * rely on IPIs from the TLB flushing code blocking before the page table
2268 * pages are freed. This is unsuitable for architectures that do not need
2269 * to broadcast an IPI when invalidating TLBs.
2271 * Another way to achieve this is to batch up page table containing pages
2272 * belonging to more than one mm_user, then rcu_sched a callback to free those
2273 * pages. Disabling interrupts will allow the fast_gup walker to both block
2274 * the rcu_sched callback, and an IPI that we broadcast for splitting THPs
2275 * (which is a relatively rare event). The code below adopts this strategy.
2277 * Before activating this code, please be aware that the following assumptions
2278 * are currently made:
2280 * *) Either MMU_GATHER_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to
2281 * free pages containing page tables or TLB flushing requires IPI broadcast.
2283 * *) ptes can be read atomically by the architecture.
2285 * *) access_ok is sufficient to validate userspace address ranges.
2287 * The last two assumptions can be relaxed by the addition of helper functions.
2289 * This code is based heavily on the PowerPC implementation by Nick Piggin.
2291 #ifdef CONFIG_HAVE_FAST_GUP
2293 static void __maybe_unused undo_dev_pagemap(int *nr, int nr_start,
2295 struct page **pages)
2297 while ((*nr) - nr_start) {
2298 struct page *page = pages[--(*nr)];
2300 ClearPageReferenced(page);
2301 if (flags & FOLL_PIN)
2302 unpin_user_page(page);
2308 #ifdef CONFIG_ARCH_HAS_PTE_SPECIAL
2310 * Fast-gup relies on pte change detection to avoid concurrent pgtable
2313 * To pin the page, fast-gup needs to do below in order:
2314 * (1) pin the page (by prefetching pte), then (2) check pte not changed.
2316 * For the rest of pgtable operations where pgtable updates can be racy
2317 * with fast-gup, we need to do (1) clear pte, then (2) check whether page
2320 * Above will work for all pte-level operations, including THP split.
2322 * For THP collapse, it's a bit more complicated because fast-gup may be
2323 * walking a pgtable page that is being freed (pte is still valid but pmd
2324 * can be cleared already). To avoid race in such condition, we need to
2325 * also check pmd here to make sure pmd doesn't change (corresponds to
2326 * pmdp_collapse_flush() in the THP collapse code path).
2328 static int gup_pte_range(pmd_t pmd, pmd_t *pmdp, unsigned long addr,
2329 unsigned long end, unsigned int flags,
2330 struct page **pages, int *nr)
2332 struct dev_pagemap *pgmap = NULL;
2333 int nr_start = *nr, ret = 0;
2336 ptem = ptep = pte_offset_map(&pmd, addr);
2338 pte_t pte = ptep_get_lockless(ptep);
2340 struct folio *folio;
2342 if (pte_protnone(pte) && !gup_can_follow_protnone(flags))
2345 if (!pte_access_permitted(pte, flags & FOLL_WRITE))
2348 if (pte_devmap(pte)) {
2349 if (unlikely(flags & FOLL_LONGTERM))
2352 pgmap = get_dev_pagemap(pte_pfn(pte), pgmap);
2353 if (unlikely(!pgmap)) {
2354 undo_dev_pagemap(nr, nr_start, flags, pages);
2357 } else if (pte_special(pte))
2360 VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
2361 page = pte_page(pte);
2363 folio = try_grab_folio(page, 1, flags);
2367 if (unlikely(page_is_secretmem(page))) {
2368 gup_put_folio(folio, 1, flags);
2372 if (unlikely(pmd_val(pmd) != pmd_val(*pmdp)) ||
2373 unlikely(pte_val(pte) != pte_val(*ptep))) {
2374 gup_put_folio(folio, 1, flags);
2378 if (!pte_write(pte) && gup_must_unshare(NULL, flags, page)) {
2379 gup_put_folio(folio, 1, flags);
2384 * We need to make the page accessible if and only if we are
2385 * going to access its content (the FOLL_PIN case). Please
2386 * see Documentation/core-api/pin_user_pages.rst for
2389 if (flags & FOLL_PIN) {
2390 ret = arch_make_page_accessible(page);
2392 gup_put_folio(folio, 1, flags);
2396 folio_set_referenced(folio);
2399 } while (ptep++, addr += PAGE_SIZE, addr != end);
2405 put_dev_pagemap(pgmap);
2412 * If we can't determine whether or not a pte is special, then fail immediately
2413 * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not
2416 * For a futex to be placed on a THP tail page, get_futex_key requires a
2417 * get_user_pages_fast_only implementation that can pin pages. Thus it's still
2418 * useful to have gup_huge_pmd even if we can't operate on ptes.
2420 static int gup_pte_range(pmd_t pmd, pmd_t *pmdp, unsigned long addr,
2421 unsigned long end, unsigned int flags,
2422 struct page **pages, int *nr)
2426 #endif /* CONFIG_ARCH_HAS_PTE_SPECIAL */
2428 #if defined(CONFIG_ARCH_HAS_PTE_DEVMAP) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
2429 static int __gup_device_huge(unsigned long pfn, unsigned long addr,
2430 unsigned long end, unsigned int flags,
2431 struct page **pages, int *nr)
2434 struct dev_pagemap *pgmap = NULL;
2437 struct page *page = pfn_to_page(pfn);
2439 pgmap = get_dev_pagemap(pfn, pgmap);
2440 if (unlikely(!pgmap)) {
2441 undo_dev_pagemap(nr, nr_start, flags, pages);
2445 if (!(flags & FOLL_PCI_P2PDMA) && is_pci_p2pdma_page(page)) {
2446 undo_dev_pagemap(nr, nr_start, flags, pages);
2450 SetPageReferenced(page);
2452 if (unlikely(try_grab_page(page, flags))) {
2453 undo_dev_pagemap(nr, nr_start, flags, pages);
2458 } while (addr += PAGE_SIZE, addr != end);
2460 put_dev_pagemap(pgmap);
2464 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2465 unsigned long end, unsigned int flags,
2466 struct page **pages, int *nr)
2468 unsigned long fault_pfn;
2471 fault_pfn = pmd_pfn(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
2472 if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr))
2475 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
2476 undo_dev_pagemap(nr, nr_start, flags, pages);
2482 static int __gup_device_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
2483 unsigned long end, unsigned int flags,
2484 struct page **pages, int *nr)
2486 unsigned long fault_pfn;
2489 fault_pfn = pud_pfn(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
2490 if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr))
2493 if (unlikely(pud_val(orig) != pud_val(*pudp))) {
2494 undo_dev_pagemap(nr, nr_start, flags, pages);
2500 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2501 unsigned long end, unsigned int flags,
2502 struct page **pages, int *nr)
2508 static int __gup_device_huge_pud(pud_t pud, pud_t *pudp, unsigned long addr,
2509 unsigned long end, unsigned int flags,
2510 struct page **pages, int *nr)
2517 static int record_subpages(struct page *page, unsigned long addr,
2518 unsigned long end, struct page **pages)
2522 for (nr = 0; addr != end; nr++, addr += PAGE_SIZE)
2523 pages[nr] = nth_page(page, nr);
2528 #ifdef CONFIG_ARCH_HAS_HUGEPD
2529 static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end,
2532 unsigned long __boundary = (addr + sz) & ~(sz-1);
2533 return (__boundary - 1 < end - 1) ? __boundary : end;
2536 static int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr,
2537 unsigned long end, unsigned int flags,
2538 struct page **pages, int *nr)
2540 unsigned long pte_end;
2542 struct folio *folio;
2546 pte_end = (addr + sz) & ~(sz-1);
2550 pte = huge_ptep_get(ptep);
2552 if (!pte_access_permitted(pte, flags & FOLL_WRITE))
2555 /* hugepages are never "special" */
2556 VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
2558 page = nth_page(pte_page(pte), (addr & (sz - 1)) >> PAGE_SHIFT);
2559 refs = record_subpages(page, addr, end, pages + *nr);
2561 folio = try_grab_folio(page, refs, flags);
2565 if (unlikely(pte_val(pte) != pte_val(*ptep))) {
2566 gup_put_folio(folio, refs, flags);
2570 if (!pte_write(pte) && gup_must_unshare(NULL, flags, &folio->page)) {
2571 gup_put_folio(folio, refs, flags);
2576 folio_set_referenced(folio);
2580 static int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
2581 unsigned int pdshift, unsigned long end, unsigned int flags,
2582 struct page **pages, int *nr)
2585 unsigned long sz = 1UL << hugepd_shift(hugepd);
2588 ptep = hugepte_offset(hugepd, addr, pdshift);
2590 next = hugepte_addr_end(addr, end, sz);
2591 if (!gup_hugepte(ptep, sz, addr, end, flags, pages, nr))
2593 } while (ptep++, addr = next, addr != end);
2598 static inline int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
2599 unsigned int pdshift, unsigned long end, unsigned int flags,
2600 struct page **pages, int *nr)
2604 #endif /* CONFIG_ARCH_HAS_HUGEPD */
2606 static int gup_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2607 unsigned long end, unsigned int flags,
2608 struct page **pages, int *nr)
2611 struct folio *folio;
2614 if (!pmd_access_permitted(orig, flags & FOLL_WRITE))
2617 if (pmd_devmap(orig)) {
2618 if (unlikely(flags & FOLL_LONGTERM))
2620 return __gup_device_huge_pmd(orig, pmdp, addr, end, flags,
2624 page = nth_page(pmd_page(orig), (addr & ~PMD_MASK) >> PAGE_SHIFT);
2625 refs = record_subpages(page, addr, end, pages + *nr);
2627 folio = try_grab_folio(page, refs, flags);
2631 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
2632 gup_put_folio(folio, refs, flags);
2636 if (!pmd_write(orig) && gup_must_unshare(NULL, flags, &folio->page)) {
2637 gup_put_folio(folio, refs, flags);
2642 folio_set_referenced(folio);
2646 static int gup_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
2647 unsigned long end, unsigned int flags,
2648 struct page **pages, int *nr)
2651 struct folio *folio;
2654 if (!pud_access_permitted(orig, flags & FOLL_WRITE))
2657 if (pud_devmap(orig)) {
2658 if (unlikely(flags & FOLL_LONGTERM))
2660 return __gup_device_huge_pud(orig, pudp, addr, end, flags,
2664 page = nth_page(pud_page(orig), (addr & ~PUD_MASK) >> PAGE_SHIFT);
2665 refs = record_subpages(page, addr, end, pages + *nr);
2667 folio = try_grab_folio(page, refs, flags);
2671 if (unlikely(pud_val(orig) != pud_val(*pudp))) {
2672 gup_put_folio(folio, refs, flags);
2676 if (!pud_write(orig) && gup_must_unshare(NULL, flags, &folio->page)) {
2677 gup_put_folio(folio, refs, flags);
2682 folio_set_referenced(folio);
2686 static int gup_huge_pgd(pgd_t orig, pgd_t *pgdp, unsigned long addr,
2687 unsigned long end, unsigned int flags,
2688 struct page **pages, int *nr)
2692 struct folio *folio;
2694 if (!pgd_access_permitted(orig, flags & FOLL_WRITE))
2697 BUILD_BUG_ON(pgd_devmap(orig));
2699 page = nth_page(pgd_page(orig), (addr & ~PGDIR_MASK) >> PAGE_SHIFT);
2700 refs = record_subpages(page, addr, end, pages + *nr);
2702 folio = try_grab_folio(page, refs, flags);
2706 if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) {
2707 gup_put_folio(folio, refs, flags);
2712 folio_set_referenced(folio);
2716 static int gup_pmd_range(pud_t *pudp, pud_t pud, unsigned long addr, unsigned long end,
2717 unsigned int flags, struct page **pages, int *nr)
2722 pmdp = pmd_offset_lockless(pudp, pud, addr);
2724 pmd_t pmd = READ_ONCE(*pmdp);
2726 next = pmd_addr_end(addr, end);
2727 if (!pmd_present(pmd))
2730 if (unlikely(pmd_trans_huge(pmd) || pmd_huge(pmd) ||
2732 if (pmd_protnone(pmd) &&
2733 !gup_can_follow_protnone(flags))
2736 if (!gup_huge_pmd(pmd, pmdp, addr, next, flags,
2740 } else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd))))) {
2742 * architecture have different format for hugetlbfs
2743 * pmd format and THP pmd format
2745 if (!gup_huge_pd(__hugepd(pmd_val(pmd)), addr,
2746 PMD_SHIFT, next, flags, pages, nr))
2748 } else if (!gup_pte_range(pmd, pmdp, addr, next, flags, pages, nr))
2750 } while (pmdp++, addr = next, addr != end);
2755 static int gup_pud_range(p4d_t *p4dp, p4d_t p4d, unsigned long addr, unsigned long end,
2756 unsigned int flags, struct page **pages, int *nr)
2761 pudp = pud_offset_lockless(p4dp, p4d, addr);
2763 pud_t pud = READ_ONCE(*pudp);
2765 next = pud_addr_end(addr, end);
2766 if (unlikely(!pud_present(pud)))
2768 if (unlikely(pud_huge(pud) || pud_devmap(pud))) {
2769 if (!gup_huge_pud(pud, pudp, addr, next, flags,
2772 } else if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) {
2773 if (!gup_huge_pd(__hugepd(pud_val(pud)), addr,
2774 PUD_SHIFT, next, flags, pages, nr))
2776 } else if (!gup_pmd_range(pudp, pud, addr, next, flags, pages, nr))
2778 } while (pudp++, addr = next, addr != end);
2783 static int gup_p4d_range(pgd_t *pgdp, pgd_t pgd, unsigned long addr, unsigned long end,
2784 unsigned int flags, struct page **pages, int *nr)
2789 p4dp = p4d_offset_lockless(pgdp, pgd, addr);
2791 p4d_t p4d = READ_ONCE(*p4dp);
2793 next = p4d_addr_end(addr, end);
2796 BUILD_BUG_ON(p4d_huge(p4d));
2797 if (unlikely(is_hugepd(__hugepd(p4d_val(p4d))))) {
2798 if (!gup_huge_pd(__hugepd(p4d_val(p4d)), addr,
2799 P4D_SHIFT, next, flags, pages, nr))
2801 } else if (!gup_pud_range(p4dp, p4d, addr, next, flags, pages, nr))
2803 } while (p4dp++, addr = next, addr != end);
2808 static void gup_pgd_range(unsigned long addr, unsigned long end,
2809 unsigned int flags, struct page **pages, int *nr)
2814 pgdp = pgd_offset(current->mm, addr);
2816 pgd_t pgd = READ_ONCE(*pgdp);
2818 next = pgd_addr_end(addr, end);
2821 if (unlikely(pgd_huge(pgd))) {
2822 if (!gup_huge_pgd(pgd, pgdp, addr, next, flags,
2825 } else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd))))) {
2826 if (!gup_huge_pd(__hugepd(pgd_val(pgd)), addr,
2827 PGDIR_SHIFT, next, flags, pages, nr))
2829 } else if (!gup_p4d_range(pgdp, pgd, addr, next, flags, pages, nr))
2831 } while (pgdp++, addr = next, addr != end);
2834 static inline void gup_pgd_range(unsigned long addr, unsigned long end,
2835 unsigned int flags, struct page **pages, int *nr)
2838 #endif /* CONFIG_HAVE_FAST_GUP */
2840 #ifndef gup_fast_permitted
2842 * Check if it's allowed to use get_user_pages_fast_only() for the range, or
2843 * we need to fall back to the slow version:
2845 static bool gup_fast_permitted(unsigned long start, unsigned long end)
2851 static unsigned long lockless_pages_from_mm(unsigned long start,
2853 unsigned int gup_flags,
2854 struct page **pages)
2856 unsigned long flags;
2860 if (!IS_ENABLED(CONFIG_HAVE_FAST_GUP) ||
2861 !gup_fast_permitted(start, end))
2864 if (gup_flags & FOLL_PIN) {
2865 seq = raw_read_seqcount(¤t->mm->write_protect_seq);
2871 * Disable interrupts. The nested form is used, in order to allow full,
2872 * general purpose use of this routine.
2874 * With interrupts disabled, we block page table pages from being freed
2875 * from under us. See struct mmu_table_batch comments in
2876 * include/asm-generic/tlb.h for more details.
2878 * We do not adopt an rcu_read_lock() here as we also want to block IPIs
2879 * that come from THPs splitting.
2881 local_irq_save(flags);
2882 gup_pgd_range(start, end, gup_flags, pages, &nr_pinned);
2883 local_irq_restore(flags);
2886 * When pinning pages for DMA there could be a concurrent write protect
2887 * from fork() via copy_page_range(), in this case always fail fast GUP.
2889 if (gup_flags & FOLL_PIN) {
2890 if (read_seqcount_retry(¤t->mm->write_protect_seq, seq)) {
2891 unpin_user_pages_lockless(pages, nr_pinned);
2894 sanity_check_pinned_pages(pages, nr_pinned);
2900 static int internal_get_user_pages_fast(unsigned long start,
2901 unsigned long nr_pages,
2902 unsigned int gup_flags,
2903 struct page **pages)
2905 unsigned long len, end;
2906 unsigned long nr_pinned;
2909 if (WARN_ON_ONCE(gup_flags & ~(FOLL_WRITE | FOLL_LONGTERM |
2910 FOLL_FORCE | FOLL_PIN | FOLL_GET |
2911 FOLL_FAST_ONLY | FOLL_NOFAULT |
2915 if (gup_flags & FOLL_PIN)
2916 mm_set_has_pinned_flag(¤t->mm->flags);
2918 if (!(gup_flags & FOLL_FAST_ONLY))
2919 might_lock_read(¤t->mm->mmap_lock);
2921 start = untagged_addr(start) & PAGE_MASK;
2922 len = nr_pages << PAGE_SHIFT;
2923 if (check_add_overflow(start, len, &end))
2925 if (unlikely(!access_ok((void __user *)start, len)))
2928 nr_pinned = lockless_pages_from_mm(start, end, gup_flags, pages);
2929 if (nr_pinned == nr_pages || gup_flags & FOLL_FAST_ONLY)
2932 /* Slow path: try to get the remaining pages with get_user_pages */
2933 start += nr_pinned << PAGE_SHIFT;
2935 ret = get_user_pages_unlocked(start, nr_pages - nr_pinned, pages,
2939 * The caller has to unpin the pages we already pinned so
2940 * returning -errno is not an option
2946 return ret + nr_pinned;
2950 * get_user_pages_fast_only() - pin user pages in memory
2951 * @start: starting user address
2952 * @nr_pages: number of pages from start to pin
2953 * @gup_flags: flags modifying pin behaviour
2954 * @pages: array that receives pointers to the pages pinned.
2955 * Should be at least nr_pages long.
2957 * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to
2959 * Note a difference with get_user_pages_fast: this always returns the
2960 * number of pages pinned, 0 if no pages were pinned.
2962 * If the architecture does not support this function, simply return with no
2965 * Careful, careful! COW breaking can go either way, so a non-write
2966 * access can get ambiguous page results. If you call this function without
2967 * 'write' set, you'd better be sure that you're ok with that ambiguity.
2969 int get_user_pages_fast_only(unsigned long start, int nr_pages,
2970 unsigned int gup_flags, struct page **pages)
2974 * Internally (within mm/gup.c), gup fast variants must set FOLL_GET,
2975 * because gup fast is always a "pin with a +1 page refcount" request.
2977 * FOLL_FAST_ONLY is required in order to match the API description of
2978 * this routine: no fall back to regular ("slow") GUP.
2980 gup_flags |= FOLL_GET | FOLL_FAST_ONLY;
2982 nr_pinned = internal_get_user_pages_fast(start, nr_pages, gup_flags,
2986 * As specified in the API description above, this routine is not
2987 * allowed to return negative values. However, the common core
2988 * routine internal_get_user_pages_fast() *can* return -errno.
2989 * Therefore, correct for that here:
2996 EXPORT_SYMBOL_GPL(get_user_pages_fast_only);
2999 * get_user_pages_fast() - pin user pages in memory
3000 * @start: starting user address
3001 * @nr_pages: number of pages from start to pin
3002 * @gup_flags: flags modifying pin behaviour
3003 * @pages: array that receives pointers to the pages pinned.
3004 * Should be at least nr_pages long.
3006 * Attempt to pin user pages in memory without taking mm->mmap_lock.
3007 * If not successful, it will fall back to taking the lock and
3008 * calling get_user_pages().
3010 * Returns number of pages pinned. This may be fewer than the number requested.
3011 * If nr_pages is 0 or negative, returns 0. If no pages were pinned, returns
3014 int get_user_pages_fast(unsigned long start, int nr_pages,
3015 unsigned int gup_flags, struct page **pages)
3017 if (!is_valid_gup_flags(gup_flags))
3021 * The caller may or may not have explicitly set FOLL_GET; either way is
3022 * OK. However, internally (within mm/gup.c), gup fast variants must set
3023 * FOLL_GET, because gup fast is always a "pin with a +1 page refcount"
3026 gup_flags |= FOLL_GET;
3027 return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
3029 EXPORT_SYMBOL_GPL(get_user_pages_fast);
3032 * pin_user_pages_fast() - pin user pages in memory without taking locks
3034 * @start: starting user address
3035 * @nr_pages: number of pages from start to pin
3036 * @gup_flags: flags modifying pin behaviour
3037 * @pages: array that receives pointers to the pages pinned.
3038 * Should be at least nr_pages long.
3040 * Nearly the same as get_user_pages_fast(), except that FOLL_PIN is set. See
3041 * get_user_pages_fast() for documentation on the function arguments, because
3042 * the arguments here are identical.
3044 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
3045 * see Documentation/core-api/pin_user_pages.rst for further details.
3047 int pin_user_pages_fast(unsigned long start, int nr_pages,
3048 unsigned int gup_flags, struct page **pages)
3050 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
3051 if (WARN_ON_ONCE(gup_flags & FOLL_GET))
3054 if (WARN_ON_ONCE(!pages))
3057 gup_flags |= FOLL_PIN;
3058 return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
3060 EXPORT_SYMBOL_GPL(pin_user_pages_fast);
3063 * This is the FOLL_PIN equivalent of get_user_pages_fast_only(). Behavior
3064 * is the same, except that this one sets FOLL_PIN instead of FOLL_GET.
3066 * The API rules are the same, too: no negative values may be returned.
3068 int pin_user_pages_fast_only(unsigned long start, int nr_pages,
3069 unsigned int gup_flags, struct page **pages)
3074 * FOLL_GET and FOLL_PIN are mutually exclusive. Note that the API
3075 * rules require returning 0, rather than -errno:
3077 if (WARN_ON_ONCE(gup_flags & FOLL_GET))
3080 if (WARN_ON_ONCE(!pages))
3083 * FOLL_FAST_ONLY is required in order to match the API description of
3084 * this routine: no fall back to regular ("slow") GUP.
3086 gup_flags |= (FOLL_PIN | FOLL_FAST_ONLY);
3087 nr_pinned = internal_get_user_pages_fast(start, nr_pages, gup_flags,
3090 * This routine is not allowed to return negative values. However,
3091 * internal_get_user_pages_fast() *can* return -errno. Therefore,
3092 * correct for that here:
3099 EXPORT_SYMBOL_GPL(pin_user_pages_fast_only);
3102 * pin_user_pages_remote() - pin pages of a remote process
3104 * @mm: mm_struct of target mm
3105 * @start: starting user address
3106 * @nr_pages: number of pages from start to pin
3107 * @gup_flags: flags modifying lookup behaviour
3108 * @pages: array that receives pointers to the pages pinned.
3109 * Should be at least nr_pages long.
3110 * @vmas: array of pointers to vmas corresponding to each page.
3111 * Or NULL if the caller does not require them.
3112 * @locked: pointer to lock flag indicating whether lock is held and
3113 * subsequently whether VM_FAULT_RETRY functionality can be
3114 * utilised. Lock must initially be held.
3116 * Nearly the same as get_user_pages_remote(), except that FOLL_PIN is set. See
3117 * get_user_pages_remote() for documentation on the function arguments, because
3118 * the arguments here are identical.
3120 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
3121 * see Documentation/core-api/pin_user_pages.rst for details.
3123 long pin_user_pages_remote(struct mm_struct *mm,
3124 unsigned long start, unsigned long nr_pages,
3125 unsigned int gup_flags, struct page **pages,
3126 struct vm_area_struct **vmas, int *locked)
3128 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
3129 if (WARN_ON_ONCE(gup_flags & FOLL_GET))
3132 if (WARN_ON_ONCE(!pages))
3135 return __gup_longterm_locked(mm, start, nr_pages, pages, vmas, locked,
3136 gup_flags | FOLL_PIN | FOLL_TOUCH |
3139 EXPORT_SYMBOL(pin_user_pages_remote);
3142 * pin_user_pages() - pin user pages in memory for use by other devices
3144 * @start: starting user address
3145 * @nr_pages: number of pages from start to pin
3146 * @gup_flags: flags modifying lookup behaviour
3147 * @pages: array that receives pointers to the pages pinned.
3148 * Should be at least nr_pages long.
3149 * @vmas: array of pointers to vmas corresponding to each page.
3150 * Or NULL if the caller does not require them.
3152 * Nearly the same as get_user_pages(), except that FOLL_TOUCH is not set, and
3155 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
3156 * see Documentation/core-api/pin_user_pages.rst for details.
3158 long pin_user_pages(unsigned long start, unsigned long nr_pages,
3159 unsigned int gup_flags, struct page **pages,
3160 struct vm_area_struct **vmas)
3162 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
3163 if (WARN_ON_ONCE(gup_flags & FOLL_GET))
3166 if (WARN_ON_ONCE(!pages))
3169 gup_flags |= FOLL_PIN;
3170 return __gup_longterm_locked(current->mm, start, nr_pages,
3171 pages, vmas, NULL, gup_flags);
3173 EXPORT_SYMBOL(pin_user_pages);
3176 * pin_user_pages_unlocked() is the FOLL_PIN variant of
3177 * get_user_pages_unlocked(). Behavior is the same, except that this one sets
3178 * FOLL_PIN and rejects FOLL_GET.
3180 long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
3181 struct page **pages, unsigned int gup_flags)
3183 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
3184 if (WARN_ON_ONCE(gup_flags & FOLL_GET))
3187 if (WARN_ON_ONCE(!pages))
3190 gup_flags |= FOLL_PIN;
3191 return get_user_pages_unlocked(start, nr_pages, pages, gup_flags);
3193 EXPORT_SYMBOL(pin_user_pages_unlocked);