4 * Copyright (C) 1994-1999 Linus Torvalds
8 * This file handles the generic file mmap semantics used by
9 * most "normal" filesystems (but you don't /have/ to use this:
10 * the NFS filesystem used to do this differently, for example)
12 #include <linux/export.h>
13 #include <linux/compiler.h>
14 #include <linux/dax.h>
16 #include <linux/uaccess.h>
17 #include <linux/capability.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/gfp.h>
21 #include <linux/swap.h>
22 #include <linux/mman.h>
23 #include <linux/pagemap.h>
24 #include <linux/file.h>
25 #include <linux/uio.h>
26 #include <linux/hash.h>
27 #include <linux/writeback.h>
28 #include <linux/backing-dev.h>
29 #include <linux/pagevec.h>
30 #include <linux/blkdev.h>
31 #include <linux/security.h>
32 #include <linux/cpuset.h>
33 #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
34 #include <linux/hugetlb.h>
35 #include <linux/memcontrol.h>
36 #include <linux/cleancache.h>
37 #include <linux/rmap.h>
40 #define CREATE_TRACE_POINTS
41 #include <trace/events/filemap.h>
44 * FIXME: remove all knowledge of the buffer layer from the core VM
46 #include <linux/buffer_head.h> /* for try_to_free_buffers */
51 * Shared mappings implemented 30.11.1994. It's not fully working yet,
54 * Shared mappings now work. 15.8.1995 Bruno.
56 * finished 'unifying' the page and buffer cache and SMP-threaded the
57 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
59 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
65 * ->i_mmap_rwsem (truncate_pagecache)
66 * ->private_lock (__free_pte->__set_page_dirty_buffers)
67 * ->swap_lock (exclusive_swap_page, others)
68 * ->mapping->tree_lock
71 * ->i_mmap_rwsem (truncate->unmap_mapping_range)
75 * ->page_table_lock or pte_lock (various, mainly in memory.c)
76 * ->mapping->tree_lock (arch-dependent flush_dcache_mmap_lock)
79 * ->lock_page (access_process_vm)
81 * ->i_mutex (generic_perform_write)
82 * ->mmap_sem (fault_in_pages_readable->do_page_fault)
85 * sb_lock (fs/fs-writeback.c)
86 * ->mapping->tree_lock (__sync_single_inode)
89 * ->anon_vma.lock (vma_adjust)
92 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
94 * ->page_table_lock or pte_lock
95 * ->swap_lock (try_to_unmap_one)
96 * ->private_lock (try_to_unmap_one)
97 * ->tree_lock (try_to_unmap_one)
98 * ->zone_lru_lock(zone) (follow_page->mark_page_accessed)
99 * ->zone_lru_lock(zone) (check_pte_range->isolate_lru_page)
100 * ->private_lock (page_remove_rmap->set_page_dirty)
101 * ->tree_lock (page_remove_rmap->set_page_dirty)
102 * bdi.wb->list_lock (page_remove_rmap->set_page_dirty)
103 * ->inode->i_lock (page_remove_rmap->set_page_dirty)
104 * ->memcg->move_lock (page_remove_rmap->lock_page_memcg)
105 * bdi.wb->list_lock (zap_pte_range->set_page_dirty)
106 * ->inode->i_lock (zap_pte_range->set_page_dirty)
107 * ->private_lock (zap_pte_range->__set_page_dirty_buffers)
110 * ->tasklist_lock (memory_failure, collect_procs_ao)
113 static void page_cache_tree_delete(struct address_space *mapping,
114 struct page *page, void *shadow)
116 struct radix_tree_node *node;
117 int i, nr = PageHuge(page) ? 1 : hpage_nr_pages(page);
119 VM_BUG_ON_PAGE(!PageLocked(page), page);
120 VM_BUG_ON_PAGE(PageTail(page), page);
121 VM_BUG_ON_PAGE(nr != 1 && shadow, page);
124 mapping->nrexceptional += nr;
126 * Make sure the nrexceptional update is committed before
127 * the nrpages update so that final truncate racing
128 * with reclaim does not see both counters 0 at the
129 * same time and miss a shadow entry.
133 mapping->nrpages -= nr;
135 for (i = 0; i < nr; i++) {
136 node = radix_tree_replace_clear_tags(&mapping->page_tree,
137 page->index + i, shadow);
139 VM_BUG_ON_PAGE(nr != 1, page);
143 workingset_node_pages_dec(node);
145 workingset_node_shadows_inc(node);
147 if (__radix_tree_delete_node(&mapping->page_tree, node))
151 * Track node that only contains shadow entries. DAX mappings
152 * contain no shadow entries and may contain other exceptional
153 * entries so skip those.
155 * Avoid acquiring the list_lru lock if already tracked.
156 * The list_empty() test is safe as node->private_list is
157 * protected by mapping->tree_lock.
159 if (!dax_mapping(mapping) && !workingset_node_pages(node) &&
160 list_empty(&node->private_list)) {
161 node->private_data = mapping;
162 list_lru_add(&workingset_shadow_nodes,
163 &node->private_list);
169 * Delete a page from the page cache and free it. Caller has to make
170 * sure the page is locked and that nobody else uses it - or that usage
171 * is safe. The caller must hold the mapping's tree_lock.
173 void __delete_from_page_cache(struct page *page, void *shadow)
175 struct address_space *mapping = page->mapping;
176 int nr = hpage_nr_pages(page);
178 trace_mm_filemap_delete_from_page_cache(page);
180 * if we're uptodate, flush out into the cleancache, otherwise
181 * invalidate any existing cleancache entries. We can't leave
182 * stale data around in the cleancache once our page is gone
184 if (PageUptodate(page) && PageMappedToDisk(page))
185 cleancache_put_page(page);
187 cleancache_invalidate_page(mapping, page);
189 VM_BUG_ON_PAGE(PageTail(page), page);
190 VM_BUG_ON_PAGE(page_mapped(page), page);
191 if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(page_mapped(page))) {
194 pr_alert("BUG: Bad page cache in process %s pfn:%05lx\n",
195 current->comm, page_to_pfn(page));
196 dump_page(page, "still mapped when deleted");
198 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
200 mapcount = page_mapcount(page);
201 if (mapping_exiting(mapping) &&
202 page_count(page) >= mapcount + 2) {
204 * All vmas have already been torn down, so it's
205 * a good bet that actually the page is unmapped,
206 * and we'd prefer not to leak it: if we're wrong,
207 * some other bad page check should catch it later.
209 page_mapcount_reset(page);
210 page_ref_sub(page, mapcount);
214 page_cache_tree_delete(mapping, page, shadow);
216 page->mapping = NULL;
217 /* Leave page->index set: truncation lookup relies upon it */
219 /* hugetlb pages do not participate in page cache accounting. */
221 __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, -nr);
222 if (PageSwapBacked(page)) {
223 __mod_node_page_state(page_pgdat(page), NR_SHMEM, -nr);
224 if (PageTransHuge(page))
225 __dec_node_page_state(page, NR_SHMEM_THPS);
227 VM_BUG_ON_PAGE(PageTransHuge(page) && !PageHuge(page), page);
231 * At this point page must be either written or cleaned by truncate.
232 * Dirty page here signals a bug and loss of unwritten data.
234 * This fixes dirty accounting after removing the page entirely but
235 * leaves PageDirty set: it has no effect for truncated page and
236 * anyway will be cleared before returning page into buddy allocator.
238 if (WARN_ON_ONCE(PageDirty(page)))
239 account_page_cleaned(page, mapping, inode_to_wb(mapping->host));
243 * delete_from_page_cache - delete page from page cache
244 * @page: the page which the kernel is trying to remove from page cache
246 * This must be called only on pages that have been verified to be in the page
247 * cache and locked. It will never put the page into the free list, the caller
248 * has a reference on the page.
250 void delete_from_page_cache(struct page *page)
252 struct address_space *mapping = page_mapping(page);
254 void (*freepage)(struct page *);
256 BUG_ON(!PageLocked(page));
258 freepage = mapping->a_ops->freepage;
260 spin_lock_irqsave(&mapping->tree_lock, flags);
261 __delete_from_page_cache(page, NULL);
262 spin_unlock_irqrestore(&mapping->tree_lock, flags);
267 if (PageTransHuge(page) && !PageHuge(page)) {
268 page_ref_sub(page, HPAGE_PMD_NR);
269 VM_BUG_ON_PAGE(page_count(page) <= 0, page);
274 EXPORT_SYMBOL(delete_from_page_cache);
276 int filemap_check_errors(struct address_space *mapping)
279 /* Check for outstanding write errors */
280 if (test_bit(AS_ENOSPC, &mapping->flags) &&
281 test_and_clear_bit(AS_ENOSPC, &mapping->flags))
283 if (test_bit(AS_EIO, &mapping->flags) &&
284 test_and_clear_bit(AS_EIO, &mapping->flags))
288 EXPORT_SYMBOL(filemap_check_errors);
291 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
292 * @mapping: address space structure to write
293 * @start: offset in bytes where the range starts
294 * @end: offset in bytes where the range ends (inclusive)
295 * @sync_mode: enable synchronous operation
297 * Start writeback against all of a mapping's dirty pages that lie
298 * within the byte offsets <start, end> inclusive.
300 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
301 * opposed to a regular memory cleansing writeback. The difference between
302 * these two operations is that if a dirty page/buffer is encountered, it must
303 * be waited upon, and not just skipped over.
305 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
306 loff_t end, int sync_mode)
309 struct writeback_control wbc = {
310 .sync_mode = sync_mode,
311 .nr_to_write = LONG_MAX,
312 .range_start = start,
316 if (!mapping_cap_writeback_dirty(mapping))
319 wbc_attach_fdatawrite_inode(&wbc, mapping->host);
320 ret = do_writepages(mapping, &wbc);
321 wbc_detach_inode(&wbc);
325 static inline int __filemap_fdatawrite(struct address_space *mapping,
328 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
331 int filemap_fdatawrite(struct address_space *mapping)
333 return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
335 EXPORT_SYMBOL(filemap_fdatawrite);
337 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
340 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
342 EXPORT_SYMBOL(filemap_fdatawrite_range);
345 * filemap_flush - mostly a non-blocking flush
346 * @mapping: target address_space
348 * This is a mostly non-blocking flush. Not suitable for data-integrity
349 * purposes - I/O may not be started against all dirty pages.
351 int filemap_flush(struct address_space *mapping)
353 return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
355 EXPORT_SYMBOL(filemap_flush);
357 static int __filemap_fdatawait_range(struct address_space *mapping,
358 loff_t start_byte, loff_t end_byte)
360 pgoff_t index = start_byte >> PAGE_SHIFT;
361 pgoff_t end = end_byte >> PAGE_SHIFT;
366 if (end_byte < start_byte)
369 pagevec_init(&pvec, 0);
370 while ((index <= end) &&
371 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
372 PAGECACHE_TAG_WRITEBACK,
373 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
376 for (i = 0; i < nr_pages; i++) {
377 struct page *page = pvec.pages[i];
379 /* until radix tree lookup accepts end_index */
380 if (page->index > end)
383 wait_on_page_writeback(page);
384 if (TestClearPageError(page))
387 pagevec_release(&pvec);
395 * filemap_fdatawait_range - wait for writeback to complete
396 * @mapping: address space structure to wait for
397 * @start_byte: offset in bytes where the range starts
398 * @end_byte: offset in bytes where the range ends (inclusive)
400 * Walk the list of under-writeback pages of the given address space
401 * in the given range and wait for all of them. Check error status of
402 * the address space and return it.
404 * Since the error status of the address space is cleared by this function,
405 * callers are responsible for checking the return value and handling and/or
406 * reporting the error.
408 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
413 ret = __filemap_fdatawait_range(mapping, start_byte, end_byte);
414 ret2 = filemap_check_errors(mapping);
420 EXPORT_SYMBOL(filemap_fdatawait_range);
423 * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
424 * @mapping: address space structure to wait for
426 * Walk the list of under-writeback pages of the given address space
427 * and wait for all of them. Unlike filemap_fdatawait(), this function
428 * does not clear error status of the address space.
430 * Use this function if callers don't handle errors themselves. Expected
431 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
434 void filemap_fdatawait_keep_errors(struct address_space *mapping)
436 loff_t i_size = i_size_read(mapping->host);
441 __filemap_fdatawait_range(mapping, 0, i_size - 1);
445 * filemap_fdatawait - wait for all under-writeback pages to complete
446 * @mapping: address space structure to wait for
448 * Walk the list of under-writeback pages of the given address space
449 * and wait for all of them. Check error status of the address space
452 * Since the error status of the address space is cleared by this function,
453 * callers are responsible for checking the return value and handling and/or
454 * reporting the error.
456 int filemap_fdatawait(struct address_space *mapping)
458 loff_t i_size = i_size_read(mapping->host);
463 return filemap_fdatawait_range(mapping, 0, i_size - 1);
465 EXPORT_SYMBOL(filemap_fdatawait);
467 int filemap_write_and_wait(struct address_space *mapping)
471 if ((!dax_mapping(mapping) && mapping->nrpages) ||
472 (dax_mapping(mapping) && mapping->nrexceptional)) {
473 err = filemap_fdatawrite(mapping);
475 * Even if the above returned error, the pages may be
476 * written partially (e.g. -ENOSPC), so we wait for it.
477 * But the -EIO is special case, it may indicate the worst
478 * thing (e.g. bug) happened, so we avoid waiting for it.
481 int err2 = filemap_fdatawait(mapping);
486 err = filemap_check_errors(mapping);
490 EXPORT_SYMBOL(filemap_write_and_wait);
493 * filemap_write_and_wait_range - write out & wait on a file range
494 * @mapping: the address_space for the pages
495 * @lstart: offset in bytes where the range starts
496 * @lend: offset in bytes where the range ends (inclusive)
498 * Write out and wait upon file offsets lstart->lend, inclusive.
500 * Note that `lend' is inclusive (describes the last byte to be written) so
501 * that this function can be used to write to the very end-of-file (end = -1).
503 int filemap_write_and_wait_range(struct address_space *mapping,
504 loff_t lstart, loff_t lend)
508 if ((!dax_mapping(mapping) && mapping->nrpages) ||
509 (dax_mapping(mapping) && mapping->nrexceptional)) {
510 err = __filemap_fdatawrite_range(mapping, lstart, lend,
512 /* See comment of filemap_write_and_wait() */
514 int err2 = filemap_fdatawait_range(mapping,
520 err = filemap_check_errors(mapping);
524 EXPORT_SYMBOL(filemap_write_and_wait_range);
527 * replace_page_cache_page - replace a pagecache page with a new one
528 * @old: page to be replaced
529 * @new: page to replace with
530 * @gfp_mask: allocation mode
532 * This function replaces a page in the pagecache with a new one. On
533 * success it acquires the pagecache reference for the new page and
534 * drops it for the old page. Both the old and new pages must be
535 * locked. This function does not add the new page to the LRU, the
536 * caller must do that.
538 * The remove + add is atomic. The only way this function can fail is
539 * memory allocation failure.
541 int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
545 VM_BUG_ON_PAGE(!PageLocked(old), old);
546 VM_BUG_ON_PAGE(!PageLocked(new), new);
547 VM_BUG_ON_PAGE(new->mapping, new);
549 error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
551 struct address_space *mapping = old->mapping;
552 void (*freepage)(struct page *);
555 pgoff_t offset = old->index;
556 freepage = mapping->a_ops->freepage;
559 new->mapping = mapping;
562 spin_lock_irqsave(&mapping->tree_lock, flags);
563 __delete_from_page_cache(old, NULL);
564 error = radix_tree_insert(&mapping->page_tree, offset, new);
569 * hugetlb pages do not participate in page cache accounting.
572 __inc_node_page_state(new, NR_FILE_PAGES);
573 if (PageSwapBacked(new))
574 __inc_node_page_state(new, NR_SHMEM);
575 spin_unlock_irqrestore(&mapping->tree_lock, flags);
576 mem_cgroup_migrate(old, new);
577 radix_tree_preload_end();
585 EXPORT_SYMBOL_GPL(replace_page_cache_page);
587 static int page_cache_tree_insert(struct address_space *mapping,
588 struct page *page, void **shadowp)
590 struct radix_tree_node *node;
594 error = __radix_tree_create(&mapping->page_tree, page->index, 0,
601 p = radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
602 if (!radix_tree_exceptional_entry(p))
605 mapping->nrexceptional--;
606 if (!dax_mapping(mapping)) {
610 workingset_node_shadows_dec(node);
612 /* DAX can replace empty locked entry with a hole */
614 (void *)(RADIX_TREE_EXCEPTIONAL_ENTRY |
615 RADIX_DAX_ENTRY_LOCK));
616 /* DAX accounts exceptional entries as normal pages */
618 workingset_node_pages_dec(node);
619 /* Wakeup waiters for exceptional entry lock */
620 dax_wake_mapping_entry_waiter(mapping, page->index,
624 radix_tree_replace_slot(slot, page);
627 workingset_node_pages_inc(node);
629 * Don't track node that contains actual pages.
631 * Avoid acquiring the list_lru lock if already
632 * untracked. The list_empty() test is safe as
633 * node->private_list is protected by
634 * mapping->tree_lock.
636 if (!list_empty(&node->private_list))
637 list_lru_del(&workingset_shadow_nodes,
638 &node->private_list);
643 static int __add_to_page_cache_locked(struct page *page,
644 struct address_space *mapping,
645 pgoff_t offset, gfp_t gfp_mask,
648 int huge = PageHuge(page);
649 struct mem_cgroup *memcg;
652 VM_BUG_ON_PAGE(!PageLocked(page), page);
653 VM_BUG_ON_PAGE(PageSwapBacked(page), page);
656 error = mem_cgroup_try_charge(page, current->mm,
657 gfp_mask, &memcg, false);
662 error = radix_tree_maybe_preload(gfp_mask & ~__GFP_HIGHMEM);
665 mem_cgroup_cancel_charge(page, memcg, false);
670 page->mapping = mapping;
671 page->index = offset;
673 spin_lock_irq(&mapping->tree_lock);
674 error = page_cache_tree_insert(mapping, page, shadowp);
675 radix_tree_preload_end();
679 /* hugetlb pages do not participate in page cache accounting. */
681 __inc_node_page_state(page, NR_FILE_PAGES);
682 spin_unlock_irq(&mapping->tree_lock);
684 mem_cgroup_commit_charge(page, memcg, false, false);
685 trace_mm_filemap_add_to_page_cache(page);
688 page->mapping = NULL;
689 /* Leave page->index set: truncation relies upon it */
690 spin_unlock_irq(&mapping->tree_lock);
692 mem_cgroup_cancel_charge(page, memcg, false);
698 * add_to_page_cache_locked - add a locked page to the pagecache
700 * @mapping: the page's address_space
701 * @offset: page index
702 * @gfp_mask: page allocation mode
704 * This function is used to add a page to the pagecache. It must be locked.
705 * This function does not add the page to the LRU. The caller must do that.
707 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
708 pgoff_t offset, gfp_t gfp_mask)
710 return __add_to_page_cache_locked(page, mapping, offset,
713 EXPORT_SYMBOL(add_to_page_cache_locked);
715 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
716 pgoff_t offset, gfp_t gfp_mask)
721 __SetPageLocked(page);
722 ret = __add_to_page_cache_locked(page, mapping, offset,
725 __ClearPageLocked(page);
728 * The page might have been evicted from cache only
729 * recently, in which case it should be activated like
730 * any other repeatedly accessed page.
731 * The exception is pages getting rewritten; evicting other
732 * data from the working set, only to cache data that will
733 * get overwritten with something else, is a waste of memory.
735 if (!(gfp_mask & __GFP_WRITE) &&
736 shadow && workingset_refault(shadow)) {
738 workingset_activation(page);
740 ClearPageActive(page);
745 EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
748 struct page *__page_cache_alloc(gfp_t gfp)
753 if (cpuset_do_page_mem_spread()) {
754 unsigned int cpuset_mems_cookie;
756 cpuset_mems_cookie = read_mems_allowed_begin();
757 n = cpuset_mem_spread_node();
758 page = __alloc_pages_node(n, gfp, 0);
759 } while (!page && read_mems_allowed_retry(cpuset_mems_cookie));
763 return alloc_pages(gfp, 0);
765 EXPORT_SYMBOL(__page_cache_alloc);
769 * In order to wait for pages to become available there must be
770 * waitqueues associated with pages. By using a hash table of
771 * waitqueues where the bucket discipline is to maintain all
772 * waiters on the same queue and wake all when any of the pages
773 * become available, and for the woken contexts to check to be
774 * sure the appropriate page became available, this saves space
775 * at a cost of "thundering herd" phenomena during rare hash
778 wait_queue_head_t *page_waitqueue(struct page *page)
780 const struct zone *zone = page_zone(page);
782 return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
784 EXPORT_SYMBOL(page_waitqueue);
786 void wait_on_page_bit(struct page *page, int bit_nr)
788 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
790 if (test_bit(bit_nr, &page->flags))
791 __wait_on_bit(page_waitqueue(page), &wait, bit_wait_io,
792 TASK_UNINTERRUPTIBLE);
794 EXPORT_SYMBOL(wait_on_page_bit);
796 int wait_on_page_bit_killable(struct page *page, int bit_nr)
798 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
800 if (!test_bit(bit_nr, &page->flags))
803 return __wait_on_bit(page_waitqueue(page), &wait,
804 bit_wait_io, TASK_KILLABLE);
807 int wait_on_page_bit_killable_timeout(struct page *page,
808 int bit_nr, unsigned long timeout)
810 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
812 wait.key.timeout = jiffies + timeout;
813 if (!test_bit(bit_nr, &page->flags))
815 return __wait_on_bit(page_waitqueue(page), &wait,
816 bit_wait_io_timeout, TASK_KILLABLE);
818 EXPORT_SYMBOL_GPL(wait_on_page_bit_killable_timeout);
821 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
822 * @page: Page defining the wait queue of interest
823 * @waiter: Waiter to add to the queue
825 * Add an arbitrary @waiter to the wait queue for the nominated @page.
827 void add_page_wait_queue(struct page *page, wait_queue_t *waiter)
829 wait_queue_head_t *q = page_waitqueue(page);
832 spin_lock_irqsave(&q->lock, flags);
833 __add_wait_queue(q, waiter);
834 spin_unlock_irqrestore(&q->lock, flags);
836 EXPORT_SYMBOL_GPL(add_page_wait_queue);
839 * unlock_page - unlock a locked page
842 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
843 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
844 * mechanism between PageLocked pages and PageWriteback pages is shared.
845 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
847 * The mb is necessary to enforce ordering between the clear_bit and the read
848 * of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()).
850 void unlock_page(struct page *page)
852 page = compound_head(page);
853 VM_BUG_ON_PAGE(!PageLocked(page), page);
854 clear_bit_unlock(PG_locked, &page->flags);
855 smp_mb__after_atomic();
856 wake_up_page(page, PG_locked);
858 EXPORT_SYMBOL(unlock_page);
861 * end_page_writeback - end writeback against a page
864 void end_page_writeback(struct page *page)
867 * TestClearPageReclaim could be used here but it is an atomic
868 * operation and overkill in this particular case. Failing to
869 * shuffle a page marked for immediate reclaim is too mild to
870 * justify taking an atomic operation penalty at the end of
871 * ever page writeback.
873 if (PageReclaim(page)) {
874 ClearPageReclaim(page);
875 rotate_reclaimable_page(page);
878 if (!test_clear_page_writeback(page))
881 smp_mb__after_atomic();
882 wake_up_page(page, PG_writeback);
884 EXPORT_SYMBOL(end_page_writeback);
887 * After completing I/O on a page, call this routine to update the page
888 * flags appropriately
890 void page_endio(struct page *page, bool is_write, int err)
894 SetPageUptodate(page);
896 ClearPageUptodate(page);
904 mapping_set_error(page->mapping, err);
906 end_page_writeback(page);
909 EXPORT_SYMBOL_GPL(page_endio);
912 * __lock_page - get a lock on the page, assuming we need to sleep to get it
913 * @page: the page to lock
915 void __lock_page(struct page *page)
917 struct page *page_head = compound_head(page);
918 DEFINE_WAIT_BIT(wait, &page_head->flags, PG_locked);
920 __wait_on_bit_lock(page_waitqueue(page_head), &wait, bit_wait_io,
921 TASK_UNINTERRUPTIBLE);
923 EXPORT_SYMBOL(__lock_page);
925 int __lock_page_killable(struct page *page)
927 struct page *page_head = compound_head(page);
928 DEFINE_WAIT_BIT(wait, &page_head->flags, PG_locked);
930 return __wait_on_bit_lock(page_waitqueue(page_head), &wait,
931 bit_wait_io, TASK_KILLABLE);
933 EXPORT_SYMBOL_GPL(__lock_page_killable);
937 * 1 - page is locked; mmap_sem is still held.
938 * 0 - page is not locked.
939 * mmap_sem has been released (up_read()), unless flags had both
940 * FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
941 * which case mmap_sem is still held.
943 * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1
944 * with the page locked and the mmap_sem unperturbed.
946 int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
949 if (flags & FAULT_FLAG_ALLOW_RETRY) {
951 * CAUTION! In this case, mmap_sem is not released
952 * even though return 0.
954 if (flags & FAULT_FLAG_RETRY_NOWAIT)
957 up_read(&mm->mmap_sem);
958 if (flags & FAULT_FLAG_KILLABLE)
959 wait_on_page_locked_killable(page);
961 wait_on_page_locked(page);
964 if (flags & FAULT_FLAG_KILLABLE) {
967 ret = __lock_page_killable(page);
969 up_read(&mm->mmap_sem);
979 * page_cache_next_hole - find the next hole (not-present entry)
982 * @max_scan: maximum range to search
984 * Search the set [index, min(index+max_scan-1, MAX_INDEX)] for the
985 * lowest indexed hole.
987 * Returns: the index of the hole if found, otherwise returns an index
988 * outside of the set specified (in which case 'return - index >=
989 * max_scan' will be true). In rare cases of index wrap-around, 0 will
992 * page_cache_next_hole may be called under rcu_read_lock. However,
993 * like radix_tree_gang_lookup, this will not atomically search a
994 * snapshot of the tree at a single point in time. For example, if a
995 * hole is created at index 5, then subsequently a hole is created at
996 * index 10, page_cache_next_hole covering both indexes may return 10
997 * if called under rcu_read_lock.
999 pgoff_t page_cache_next_hole(struct address_space *mapping,
1000 pgoff_t index, unsigned long max_scan)
1004 for (i = 0; i < max_scan; i++) {
1007 page = radix_tree_lookup(&mapping->page_tree, index);
1008 if (!page || radix_tree_exceptional_entry(page))
1017 EXPORT_SYMBOL(page_cache_next_hole);
1020 * page_cache_prev_hole - find the prev hole (not-present entry)
1023 * @max_scan: maximum range to search
1025 * Search backwards in the range [max(index-max_scan+1, 0), index] for
1028 * Returns: the index of the hole if found, otherwise returns an index
1029 * outside of the set specified (in which case 'index - return >=
1030 * max_scan' will be true). In rare cases of wrap-around, ULONG_MAX
1033 * page_cache_prev_hole may be called under rcu_read_lock. However,
1034 * like radix_tree_gang_lookup, this will not atomically search a
1035 * snapshot of the tree at a single point in time. For example, if a
1036 * hole is created at index 10, then subsequently a hole is created at
1037 * index 5, page_cache_prev_hole covering both indexes may return 5 if
1038 * called under rcu_read_lock.
1040 pgoff_t page_cache_prev_hole(struct address_space *mapping,
1041 pgoff_t index, unsigned long max_scan)
1045 for (i = 0; i < max_scan; i++) {
1048 page = radix_tree_lookup(&mapping->page_tree, index);
1049 if (!page || radix_tree_exceptional_entry(page))
1052 if (index == ULONG_MAX)
1058 EXPORT_SYMBOL(page_cache_prev_hole);
1061 * find_get_entry - find and get a page cache entry
1062 * @mapping: the address_space to search
1063 * @offset: the page cache index
1065 * Looks up the page cache slot at @mapping & @offset. If there is a
1066 * page cache page, it is returned with an increased refcount.
1068 * If the slot holds a shadow entry of a previously evicted page, or a
1069 * swap entry from shmem/tmpfs, it is returned.
1071 * Otherwise, %NULL is returned.
1073 struct page *find_get_entry(struct address_space *mapping, pgoff_t offset)
1076 struct page *head, *page;
1081 pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
1083 page = radix_tree_deref_slot(pagep);
1084 if (unlikely(!page))
1086 if (radix_tree_exception(page)) {
1087 if (radix_tree_deref_retry(page))
1090 * A shadow entry of a recently evicted page,
1091 * or a swap entry from shmem/tmpfs. Return
1092 * it without attempting to raise page count.
1097 head = compound_head(page);
1098 if (!page_cache_get_speculative(head))
1101 /* The page was split under us? */
1102 if (compound_head(page) != head) {
1108 * Has the page moved?
1109 * This is part of the lockless pagecache protocol. See
1110 * include/linux/pagemap.h for details.
1112 if (unlikely(page != *pagep)) {
1122 EXPORT_SYMBOL(find_get_entry);
1125 * find_lock_entry - locate, pin and lock a page cache entry
1126 * @mapping: the address_space to search
1127 * @offset: the page cache index
1129 * Looks up the page cache slot at @mapping & @offset. If there is a
1130 * page cache page, it is returned locked and with an increased
1133 * If the slot holds a shadow entry of a previously evicted page, or a
1134 * swap entry from shmem/tmpfs, it is returned.
1136 * Otherwise, %NULL is returned.
1138 * find_lock_entry() may sleep.
1140 struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset)
1145 page = find_get_entry(mapping, offset);
1146 if (page && !radix_tree_exception(page)) {
1148 /* Has the page been truncated? */
1149 if (unlikely(page_mapping(page) != mapping)) {
1154 VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page);
1158 EXPORT_SYMBOL(find_lock_entry);
1161 * pagecache_get_page - find and get a page reference
1162 * @mapping: the address_space to search
1163 * @offset: the page index
1164 * @fgp_flags: PCG flags
1165 * @gfp_mask: gfp mask to use for the page cache data page allocation
1167 * Looks up the page cache slot at @mapping & @offset.
1169 * PCG flags modify how the page is returned.
1171 * FGP_ACCESSED: the page will be marked accessed
1172 * FGP_LOCK: Page is return locked
1173 * FGP_CREAT: If page is not present then a new page is allocated using
1174 * @gfp_mask and added to the page cache and the VM's LRU
1175 * list. The page is returned locked and with an increased
1176 * refcount. Otherwise, %NULL is returned.
1178 * If FGP_LOCK or FGP_CREAT are specified then the function may sleep even
1179 * if the GFP flags specified for FGP_CREAT are atomic.
1181 * If there is a page cache page, it is returned with an increased refcount.
1183 struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset,
1184 int fgp_flags, gfp_t gfp_mask)
1189 page = find_get_entry(mapping, offset);
1190 if (radix_tree_exceptional_entry(page))
1195 if (fgp_flags & FGP_LOCK) {
1196 if (fgp_flags & FGP_NOWAIT) {
1197 if (!trylock_page(page)) {
1205 /* Has the page been truncated? */
1206 if (unlikely(page->mapping != mapping)) {
1211 VM_BUG_ON_PAGE(page->index != offset, page);
1214 if (page && (fgp_flags & FGP_ACCESSED))
1215 mark_page_accessed(page);
1218 if (!page && (fgp_flags & FGP_CREAT)) {
1220 if ((fgp_flags & FGP_WRITE) && mapping_cap_account_dirty(mapping))
1221 gfp_mask |= __GFP_WRITE;
1222 if (fgp_flags & FGP_NOFS)
1223 gfp_mask &= ~__GFP_FS;
1225 page = __page_cache_alloc(gfp_mask);
1229 if (WARN_ON_ONCE(!(fgp_flags & FGP_LOCK)))
1230 fgp_flags |= FGP_LOCK;
1232 /* Init accessed so avoid atomic mark_page_accessed later */
1233 if (fgp_flags & FGP_ACCESSED)
1234 __SetPageReferenced(page);
1236 err = add_to_page_cache_lru(page, mapping, offset,
1237 gfp_mask & GFP_RECLAIM_MASK);
1238 if (unlikely(err)) {
1248 EXPORT_SYMBOL(pagecache_get_page);
1251 * find_get_entries - gang pagecache lookup
1252 * @mapping: The address_space to search
1253 * @start: The starting page cache index
1254 * @nr_entries: The maximum number of entries
1255 * @entries: Where the resulting entries are placed
1256 * @indices: The cache indices corresponding to the entries in @entries
1258 * find_get_entries() will search for and return a group of up to
1259 * @nr_entries entries in the mapping. The entries are placed at
1260 * @entries. find_get_entries() takes a reference against any actual
1263 * The search returns a group of mapping-contiguous page cache entries
1264 * with ascending indexes. There may be holes in the indices due to
1265 * not-present pages.
1267 * Any shadow entries of evicted pages, or swap entries from
1268 * shmem/tmpfs, are included in the returned array.
1270 * find_get_entries() returns the number of pages and shadow entries
1273 unsigned find_get_entries(struct address_space *mapping,
1274 pgoff_t start, unsigned int nr_entries,
1275 struct page **entries, pgoff_t *indices)
1278 unsigned int ret = 0;
1279 struct radix_tree_iter iter;
1285 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1286 struct page *head, *page;
1288 page = radix_tree_deref_slot(slot);
1289 if (unlikely(!page))
1291 if (radix_tree_exception(page)) {
1292 if (radix_tree_deref_retry(page)) {
1293 slot = radix_tree_iter_retry(&iter);
1297 * A shadow entry of a recently evicted page, a swap
1298 * entry from shmem/tmpfs or a DAX entry. Return it
1299 * without attempting to raise page count.
1304 head = compound_head(page);
1305 if (!page_cache_get_speculative(head))
1308 /* The page was split under us? */
1309 if (compound_head(page) != head) {
1314 /* Has the page moved? */
1315 if (unlikely(page != *slot)) {
1320 indices[ret] = iter.index;
1321 entries[ret] = page;
1322 if (++ret == nr_entries)
1330 * find_get_pages - gang pagecache lookup
1331 * @mapping: The address_space to search
1332 * @start: The starting page index
1333 * @nr_pages: The maximum number of pages
1334 * @pages: Where the resulting pages are placed
1336 * find_get_pages() will search for and return a group of up to
1337 * @nr_pages pages in the mapping. The pages are placed at @pages.
1338 * find_get_pages() takes a reference against the returned pages.
1340 * The search returns a group of mapping-contiguous pages with ascending
1341 * indexes. There may be holes in the indices due to not-present pages.
1343 * find_get_pages() returns the number of pages which were found.
1345 unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
1346 unsigned int nr_pages, struct page **pages)
1348 struct radix_tree_iter iter;
1352 if (unlikely(!nr_pages))
1356 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1357 struct page *head, *page;
1359 page = radix_tree_deref_slot(slot);
1360 if (unlikely(!page))
1363 if (radix_tree_exception(page)) {
1364 if (radix_tree_deref_retry(page)) {
1365 slot = radix_tree_iter_retry(&iter);
1369 * A shadow entry of a recently evicted page,
1370 * or a swap entry from shmem/tmpfs. Skip
1376 head = compound_head(page);
1377 if (!page_cache_get_speculative(head))
1380 /* The page was split under us? */
1381 if (compound_head(page) != head) {
1386 /* Has the page moved? */
1387 if (unlikely(page != *slot)) {
1393 if (++ret == nr_pages)
1402 * find_get_pages_contig - gang contiguous pagecache lookup
1403 * @mapping: The address_space to search
1404 * @index: The starting page index
1405 * @nr_pages: The maximum number of pages
1406 * @pages: Where the resulting pages are placed
1408 * find_get_pages_contig() works exactly like find_get_pages(), except
1409 * that the returned number of pages are guaranteed to be contiguous.
1411 * find_get_pages_contig() returns the number of pages which were found.
1413 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
1414 unsigned int nr_pages, struct page **pages)
1416 struct radix_tree_iter iter;
1418 unsigned int ret = 0;
1420 if (unlikely(!nr_pages))
1424 radix_tree_for_each_contig(slot, &mapping->page_tree, &iter, index) {
1425 struct page *head, *page;
1427 page = radix_tree_deref_slot(slot);
1428 /* The hole, there no reason to continue */
1429 if (unlikely(!page))
1432 if (radix_tree_exception(page)) {
1433 if (radix_tree_deref_retry(page)) {
1434 slot = radix_tree_iter_retry(&iter);
1438 * A shadow entry of a recently evicted page,
1439 * or a swap entry from shmem/tmpfs. Stop
1440 * looking for contiguous pages.
1445 head = compound_head(page);
1446 if (!page_cache_get_speculative(head))
1449 /* The page was split under us? */
1450 if (compound_head(page) != head) {
1455 /* Has the page moved? */
1456 if (unlikely(page != *slot)) {
1462 * must check mapping and index after taking the ref.
1463 * otherwise we can get both false positives and false
1464 * negatives, which is just confusing to the caller.
1466 if (page->mapping == NULL || page_to_pgoff(page) != iter.index) {
1472 if (++ret == nr_pages)
1478 EXPORT_SYMBOL(find_get_pages_contig);
1481 * find_get_pages_tag - find and return pages that match @tag
1482 * @mapping: the address_space to search
1483 * @index: the starting page index
1484 * @tag: the tag index
1485 * @nr_pages: the maximum number of pages
1486 * @pages: where the resulting pages are placed
1488 * Like find_get_pages, except we only return pages which are tagged with
1489 * @tag. We update @index to index the next page for the traversal.
1491 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
1492 int tag, unsigned int nr_pages, struct page **pages)
1494 struct radix_tree_iter iter;
1498 if (unlikely(!nr_pages))
1502 radix_tree_for_each_tagged(slot, &mapping->page_tree,
1503 &iter, *index, tag) {
1504 struct page *head, *page;
1506 page = radix_tree_deref_slot(slot);
1507 if (unlikely(!page))
1510 if (radix_tree_exception(page)) {
1511 if (radix_tree_deref_retry(page)) {
1512 slot = radix_tree_iter_retry(&iter);
1516 * A shadow entry of a recently evicted page.
1518 * Those entries should never be tagged, but
1519 * this tree walk is lockless and the tags are
1520 * looked up in bulk, one radix tree node at a
1521 * time, so there is a sizable window for page
1522 * reclaim to evict a page we saw tagged.
1529 head = compound_head(page);
1530 if (!page_cache_get_speculative(head))
1533 /* The page was split under us? */
1534 if (compound_head(page) != head) {
1539 /* Has the page moved? */
1540 if (unlikely(page != *slot)) {
1546 if (++ret == nr_pages)
1553 *index = pages[ret - 1]->index + 1;
1557 EXPORT_SYMBOL(find_get_pages_tag);
1560 * find_get_entries_tag - find and return entries that match @tag
1561 * @mapping: the address_space to search
1562 * @start: the starting page cache index
1563 * @tag: the tag index
1564 * @nr_entries: the maximum number of entries
1565 * @entries: where the resulting entries are placed
1566 * @indices: the cache indices corresponding to the entries in @entries
1568 * Like find_get_entries, except we only return entries which are tagged with
1571 unsigned find_get_entries_tag(struct address_space *mapping, pgoff_t start,
1572 int tag, unsigned int nr_entries,
1573 struct page **entries, pgoff_t *indices)
1576 unsigned int ret = 0;
1577 struct radix_tree_iter iter;
1583 radix_tree_for_each_tagged(slot, &mapping->page_tree,
1584 &iter, start, tag) {
1585 struct page *head, *page;
1587 page = radix_tree_deref_slot(slot);
1588 if (unlikely(!page))
1590 if (radix_tree_exception(page)) {
1591 if (radix_tree_deref_retry(page)) {
1592 slot = radix_tree_iter_retry(&iter);
1597 * A shadow entry of a recently evicted page, a swap
1598 * entry from shmem/tmpfs or a DAX entry. Return it
1599 * without attempting to raise page count.
1604 head = compound_head(page);
1605 if (!page_cache_get_speculative(head))
1608 /* The page was split under us? */
1609 if (compound_head(page) != head) {
1614 /* Has the page moved? */
1615 if (unlikely(page != *slot)) {
1620 indices[ret] = iter.index;
1621 entries[ret] = page;
1622 if (++ret == nr_entries)
1628 EXPORT_SYMBOL(find_get_entries_tag);
1631 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
1632 * a _large_ part of the i/o request. Imagine the worst scenario:
1634 * ---R__________________________________________B__________
1635 * ^ reading here ^ bad block(assume 4k)
1637 * read(R) => miss => readahead(R...B) => media error => frustrating retries
1638 * => failing the whole request => read(R) => read(R+1) =>
1639 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
1640 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
1641 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
1643 * It is going insane. Fix it by quickly scaling down the readahead size.
1645 static void shrink_readahead_size_eio(struct file *filp,
1646 struct file_ra_state *ra)
1652 * do_generic_file_read - generic file read routine
1653 * @filp: the file to read
1654 * @ppos: current file position
1655 * @iter: data destination
1656 * @written: already copied
1658 * This is a generic file read routine, and uses the
1659 * mapping->a_ops->readpage() function for the actual low-level stuff.
1661 * This is really ugly. But the goto's actually try to clarify some
1662 * of the logic when it comes to error handling etc.
1664 static ssize_t do_generic_file_read(struct file *filp, loff_t *ppos,
1665 struct iov_iter *iter, ssize_t written)
1667 struct address_space *mapping = filp->f_mapping;
1668 struct inode *inode = mapping->host;
1669 struct file_ra_state *ra = &filp->f_ra;
1673 unsigned long offset; /* offset into pagecache page */
1674 unsigned int prev_offset;
1677 index = *ppos >> PAGE_SHIFT;
1678 prev_index = ra->prev_pos >> PAGE_SHIFT;
1679 prev_offset = ra->prev_pos & (PAGE_SIZE-1);
1680 last_index = (*ppos + iter->count + PAGE_SIZE-1) >> PAGE_SHIFT;
1681 offset = *ppos & ~PAGE_MASK;
1687 unsigned long nr, ret;
1691 page = find_get_page(mapping, index);
1693 page_cache_sync_readahead(mapping,
1695 index, last_index - index);
1696 page = find_get_page(mapping, index);
1697 if (unlikely(page == NULL))
1698 goto no_cached_page;
1700 if (PageReadahead(page)) {
1701 page_cache_async_readahead(mapping,
1703 index, last_index - index);
1705 if (!PageUptodate(page)) {
1707 * See comment in do_read_cache_page on why
1708 * wait_on_page_locked is used to avoid unnecessarily
1709 * serialisations and why it's safe.
1711 wait_on_page_locked_killable(page);
1712 if (PageUptodate(page))
1715 if (inode->i_blkbits == PAGE_SHIFT ||
1716 !mapping->a_ops->is_partially_uptodate)
1717 goto page_not_up_to_date;
1718 if (!trylock_page(page))
1719 goto page_not_up_to_date;
1720 /* Did it get truncated before we got the lock? */
1722 goto page_not_up_to_date_locked;
1723 if (!mapping->a_ops->is_partially_uptodate(page,
1724 offset, iter->count))
1725 goto page_not_up_to_date_locked;
1730 * i_size must be checked after we know the page is Uptodate.
1732 * Checking i_size after the check allows us to calculate
1733 * the correct value for "nr", which means the zero-filled
1734 * part of the page is not copied back to userspace (unless
1735 * another truncate extends the file - this is desired though).
1738 isize = i_size_read(inode);
1739 end_index = (isize - 1) >> PAGE_SHIFT;
1740 if (unlikely(!isize || index > end_index)) {
1745 /* nr is the maximum number of bytes to copy from this page */
1747 if (index == end_index) {
1748 nr = ((isize - 1) & ~PAGE_MASK) + 1;
1756 /* If users can be writing to this page using arbitrary
1757 * virtual addresses, take care about potential aliasing
1758 * before reading the page on the kernel side.
1760 if (mapping_writably_mapped(mapping))
1761 flush_dcache_page(page);
1764 * When a sequential read accesses a page several times,
1765 * only mark it as accessed the first time.
1767 if (prev_index != index || offset != prev_offset)
1768 mark_page_accessed(page);
1772 * Ok, we have the page, and it's up-to-date, so
1773 * now we can copy it to user space...
1776 ret = copy_page_to_iter(page, offset, nr, iter);
1778 index += offset >> PAGE_SHIFT;
1779 offset &= ~PAGE_MASK;
1780 prev_offset = offset;
1784 if (!iov_iter_count(iter))
1792 page_not_up_to_date:
1793 /* Get exclusive access to the page ... */
1794 error = lock_page_killable(page);
1795 if (unlikely(error))
1796 goto readpage_error;
1798 page_not_up_to_date_locked:
1799 /* Did it get truncated before we got the lock? */
1800 if (!page->mapping) {
1806 /* Did somebody else fill it already? */
1807 if (PageUptodate(page)) {
1814 * A previous I/O error may have been due to temporary
1815 * failures, eg. multipath errors.
1816 * PG_error will be set again if readpage fails.
1818 ClearPageError(page);
1819 /* Start the actual read. The read will unlock the page. */
1820 error = mapping->a_ops->readpage(filp, page);
1822 if (unlikely(error)) {
1823 if (error == AOP_TRUNCATED_PAGE) {
1828 goto readpage_error;
1831 if (!PageUptodate(page)) {
1832 error = lock_page_killable(page);
1833 if (unlikely(error))
1834 goto readpage_error;
1835 if (!PageUptodate(page)) {
1836 if (page->mapping == NULL) {
1838 * invalidate_mapping_pages got it
1845 shrink_readahead_size_eio(filp, ra);
1847 goto readpage_error;
1855 /* UHHUH! A synchronous read error occurred. Report it */
1861 * Ok, it wasn't cached, so we need to create a new
1864 page = page_cache_alloc_cold(mapping);
1869 error = add_to_page_cache_lru(page, mapping, index,
1870 mapping_gfp_constraint(mapping, GFP_KERNEL));
1873 if (error == -EEXIST) {
1883 ra->prev_pos = prev_index;
1884 ra->prev_pos <<= PAGE_SHIFT;
1885 ra->prev_pos |= prev_offset;
1887 *ppos = ((loff_t)index << PAGE_SHIFT) + offset;
1888 file_accessed(filp);
1889 return written ? written : error;
1893 * generic_file_read_iter - generic filesystem read routine
1894 * @iocb: kernel I/O control block
1895 * @iter: destination for the data read
1897 * This is the "read_iter()" routine for all filesystems
1898 * that can use the page cache directly.
1901 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
1903 struct file *file = iocb->ki_filp;
1905 size_t count = iov_iter_count(iter);
1908 goto out; /* skip atime */
1910 if (iocb->ki_flags & IOCB_DIRECT) {
1911 struct address_space *mapping = file->f_mapping;
1912 struct inode *inode = mapping->host;
1915 size = i_size_read(inode);
1916 retval = filemap_write_and_wait_range(mapping, iocb->ki_pos,
1917 iocb->ki_pos + count - 1);
1919 struct iov_iter data = *iter;
1920 retval = mapping->a_ops->direct_IO(iocb, &data);
1924 iocb->ki_pos += retval;
1925 iov_iter_advance(iter, retval);
1929 * Btrfs can have a short DIO read if we encounter
1930 * compressed extents, so if there was an error, or if
1931 * we've already read everything we wanted to, or if
1932 * there was a short read because we hit EOF, go ahead
1933 * and return. Otherwise fallthrough to buffered io for
1934 * the rest of the read. Buffered reads will not work for
1935 * DAX files, so don't bother trying.
1937 if (retval < 0 || !iov_iter_count(iter) || iocb->ki_pos >= size ||
1939 file_accessed(file);
1944 retval = do_generic_file_read(file, &iocb->ki_pos, iter, retval);
1948 EXPORT_SYMBOL(generic_file_read_iter);
1952 * page_cache_read - adds requested page to the page cache if not already there
1953 * @file: file to read
1954 * @offset: page index
1955 * @gfp_mask: memory allocation flags
1957 * This adds the requested page to the page cache if it isn't already there,
1958 * and schedules an I/O to read in its contents from disk.
1960 static int page_cache_read(struct file *file, pgoff_t offset, gfp_t gfp_mask)
1962 struct address_space *mapping = file->f_mapping;
1967 page = __page_cache_alloc(gfp_mask|__GFP_COLD);
1971 ret = add_to_page_cache_lru(page, mapping, offset, gfp_mask & GFP_KERNEL);
1973 ret = mapping->a_ops->readpage(file, page);
1974 else if (ret == -EEXIST)
1975 ret = 0; /* losing race to add is OK */
1979 } while (ret == AOP_TRUNCATED_PAGE);
1984 #define MMAP_LOTSAMISS (100)
1987 * Synchronous readahead happens when we don't even find
1988 * a page in the page cache at all.
1990 static void do_sync_mmap_readahead(struct vm_area_struct *vma,
1991 struct file_ra_state *ra,
1995 struct address_space *mapping = file->f_mapping;
1997 /* If we don't want any read-ahead, don't bother */
1998 if (vma->vm_flags & VM_RAND_READ)
2003 if (vma->vm_flags & VM_SEQ_READ) {
2004 page_cache_sync_readahead(mapping, ra, file, offset,
2009 /* Avoid banging the cache line if not needed */
2010 if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
2014 * Do we miss much more than hit in this file? If so,
2015 * stop bothering with read-ahead. It will only hurt.
2017 if (ra->mmap_miss > MMAP_LOTSAMISS)
2023 ra->start = max_t(long, 0, offset - ra->ra_pages / 2);
2024 ra->size = ra->ra_pages;
2025 ra->async_size = ra->ra_pages / 4;
2026 ra_submit(ra, mapping, file);
2030 * Asynchronous readahead happens when we find the page and PG_readahead,
2031 * so we want to possibly extend the readahead further..
2033 static void do_async_mmap_readahead(struct vm_area_struct *vma,
2034 struct file_ra_state *ra,
2039 struct address_space *mapping = file->f_mapping;
2041 /* If we don't want any read-ahead, don't bother */
2042 if (vma->vm_flags & VM_RAND_READ)
2044 if (ra->mmap_miss > 0)
2046 if (PageReadahead(page))
2047 page_cache_async_readahead(mapping, ra, file,
2048 page, offset, ra->ra_pages);
2052 * filemap_fault - read in file data for page fault handling
2053 * @vma: vma in which the fault was taken
2054 * @vmf: struct vm_fault containing details of the fault
2056 * filemap_fault() is invoked via the vma operations vector for a
2057 * mapped memory region to read in file data during a page fault.
2059 * The goto's are kind of ugly, but this streamlines the normal case of having
2060 * it in the page cache, and handles the special cases reasonably without
2061 * having a lot of duplicated code.
2063 * vma->vm_mm->mmap_sem must be held on entry.
2065 * If our return value has VM_FAULT_RETRY set, it's because
2066 * lock_page_or_retry() returned 0.
2067 * The mmap_sem has usually been released in this case.
2068 * See __lock_page_or_retry() for the exception.
2070 * If our return value does not have VM_FAULT_RETRY set, the mmap_sem
2071 * has not been released.
2073 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
2075 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2078 struct file *file = vma->vm_file;
2079 struct address_space *mapping = file->f_mapping;
2080 struct file_ra_state *ra = &file->f_ra;
2081 struct inode *inode = mapping->host;
2082 pgoff_t offset = vmf->pgoff;
2087 size = round_up(i_size_read(inode), PAGE_SIZE);
2088 if (offset >= size >> PAGE_SHIFT)
2089 return VM_FAULT_SIGBUS;
2092 * Do we have something in the page cache already?
2094 page = find_get_page(mapping, offset);
2095 if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
2097 * We found the page, so try async readahead before
2098 * waiting for the lock.
2100 do_async_mmap_readahead(vma, ra, file, page, offset);
2102 /* No page in the page cache at all */
2103 do_sync_mmap_readahead(vma, ra, file, offset);
2104 count_vm_event(PGMAJFAULT);
2105 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
2106 ret = VM_FAULT_MAJOR;
2108 page = find_get_page(mapping, offset);
2110 goto no_cached_page;
2113 if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags)) {
2115 return ret | VM_FAULT_RETRY;
2118 /* Did it get truncated? */
2119 if (unlikely(page->mapping != mapping)) {
2124 VM_BUG_ON_PAGE(page->index != offset, page);
2127 * We have a locked page in the page cache, now we need to check
2128 * that it's up-to-date. If not, it is going to be due to an error.
2130 if (unlikely(!PageUptodate(page)))
2131 goto page_not_uptodate;
2134 * Found the page and have a reference on it.
2135 * We must recheck i_size under page lock.
2137 size = round_up(i_size_read(inode), PAGE_SIZE);
2138 if (unlikely(offset >= size >> PAGE_SHIFT)) {
2141 return VM_FAULT_SIGBUS;
2145 return ret | VM_FAULT_LOCKED;
2149 * We're only likely to ever get here if MADV_RANDOM is in
2152 error = page_cache_read(file, offset, vmf->gfp_mask);
2155 * The page we want has now been added to the page cache.
2156 * In the unlikely event that someone removed it in the
2157 * meantime, we'll just come back here and read it again.
2163 * An error return from page_cache_read can result if the
2164 * system is low on memory, or a problem occurs while trying
2167 if (error == -ENOMEM)
2168 return VM_FAULT_OOM;
2169 return VM_FAULT_SIGBUS;
2173 * Umm, take care of errors if the page isn't up-to-date.
2174 * Try to re-read it _once_. We do this synchronously,
2175 * because there really aren't any performance issues here
2176 * and we need to check for errors.
2178 ClearPageError(page);
2179 error = mapping->a_ops->readpage(file, page);
2181 wait_on_page_locked(page);
2182 if (!PageUptodate(page))
2187 if (!error || error == AOP_TRUNCATED_PAGE)
2190 /* Things didn't work out. Return zero to tell the mm layer so. */
2191 shrink_readahead_size_eio(file, ra);
2192 return VM_FAULT_SIGBUS;
2194 EXPORT_SYMBOL(filemap_fault);
2196 void filemap_map_pages(struct fault_env *fe,
2197 pgoff_t start_pgoff, pgoff_t end_pgoff)
2199 struct radix_tree_iter iter;
2201 struct file *file = fe->vma->vm_file;
2202 struct address_space *mapping = file->f_mapping;
2203 pgoff_t last_pgoff = start_pgoff;
2205 struct page *head, *page;
2208 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter,
2210 if (iter.index > end_pgoff)
2213 page = radix_tree_deref_slot(slot);
2214 if (unlikely(!page))
2216 if (radix_tree_exception(page)) {
2217 if (radix_tree_deref_retry(page)) {
2218 slot = radix_tree_iter_retry(&iter);
2224 head = compound_head(page);
2225 if (!page_cache_get_speculative(head))
2228 /* The page was split under us? */
2229 if (compound_head(page) != head) {
2234 /* Has the page moved? */
2235 if (unlikely(page != *slot)) {
2240 if (!PageUptodate(page) ||
2241 PageReadahead(page) ||
2244 if (!trylock_page(page))
2247 if (page->mapping != mapping || !PageUptodate(page))
2250 size = round_up(i_size_read(mapping->host), PAGE_SIZE);
2251 if (page->index >= size >> PAGE_SHIFT)
2254 if (file->f_ra.mmap_miss > 0)
2255 file->f_ra.mmap_miss--;
2257 fe->address += (iter.index - last_pgoff) << PAGE_SHIFT;
2259 fe->pte += iter.index - last_pgoff;
2260 last_pgoff = iter.index;
2261 if (alloc_set_pte(fe, NULL, page))
2270 /* Huge page is mapped? No need to proceed. */
2271 if (pmd_trans_huge(*fe->pmd))
2273 if (iter.index == end_pgoff)
2278 EXPORT_SYMBOL(filemap_map_pages);
2280 int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
2282 struct page *page = vmf->page;
2283 struct inode *inode = file_inode(vma->vm_file);
2284 int ret = VM_FAULT_LOCKED;
2286 sb_start_pagefault(inode->i_sb);
2287 file_update_time(vma->vm_file);
2289 if (page->mapping != inode->i_mapping) {
2291 ret = VM_FAULT_NOPAGE;
2295 * We mark the page dirty already here so that when freeze is in
2296 * progress, we are guaranteed that writeback during freezing will
2297 * see the dirty page and writeprotect it again.
2299 set_page_dirty(page);
2300 wait_for_stable_page(page);
2302 sb_end_pagefault(inode->i_sb);
2305 EXPORT_SYMBOL(filemap_page_mkwrite);
2307 const struct vm_operations_struct generic_file_vm_ops = {
2308 .fault = filemap_fault,
2309 .map_pages = filemap_map_pages,
2310 .page_mkwrite = filemap_page_mkwrite,
2313 /* This is used for a general mmap of a disk file */
2315 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2317 struct address_space *mapping = file->f_mapping;
2319 if (!mapping->a_ops->readpage)
2321 file_accessed(file);
2322 vma->vm_ops = &generic_file_vm_ops;
2327 * This is for filesystems which do not implement ->writepage.
2329 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
2331 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
2333 return generic_file_mmap(file, vma);
2336 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2340 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
2344 #endif /* CONFIG_MMU */
2346 EXPORT_SYMBOL(generic_file_mmap);
2347 EXPORT_SYMBOL(generic_file_readonly_mmap);
2349 static struct page *wait_on_page_read(struct page *page)
2351 if (!IS_ERR(page)) {
2352 wait_on_page_locked(page);
2353 if (!PageUptodate(page)) {
2355 page = ERR_PTR(-EIO);
2361 static struct page *do_read_cache_page(struct address_space *mapping,
2363 int (*filler)(void *, struct page *),
2370 page = find_get_page(mapping, index);
2372 page = __page_cache_alloc(gfp | __GFP_COLD);
2374 return ERR_PTR(-ENOMEM);
2375 err = add_to_page_cache_lru(page, mapping, index, gfp);
2376 if (unlikely(err)) {
2380 /* Presumably ENOMEM for radix tree node */
2381 return ERR_PTR(err);
2385 err = filler(data, page);
2388 return ERR_PTR(err);
2391 page = wait_on_page_read(page);
2396 if (PageUptodate(page))
2400 * Page is not up to date and may be locked due one of the following
2401 * case a: Page is being filled and the page lock is held
2402 * case b: Read/write error clearing the page uptodate status
2403 * case c: Truncation in progress (page locked)
2404 * case d: Reclaim in progress
2406 * Case a, the page will be up to date when the page is unlocked.
2407 * There is no need to serialise on the page lock here as the page
2408 * is pinned so the lock gives no additional protection. Even if the
2409 * the page is truncated, the data is still valid if PageUptodate as
2410 * it's a race vs truncate race.
2411 * Case b, the page will not be up to date
2412 * Case c, the page may be truncated but in itself, the data may still
2413 * be valid after IO completes as it's a read vs truncate race. The
2414 * operation must restart if the page is not uptodate on unlock but
2415 * otherwise serialising on page lock to stabilise the mapping gives
2416 * no additional guarantees to the caller as the page lock is
2417 * released before return.
2418 * Case d, similar to truncation. If reclaim holds the page lock, it
2419 * will be a race with remove_mapping that determines if the mapping
2420 * is valid on unlock but otherwise the data is valid and there is
2421 * no need to serialise with page lock.
2423 * As the page lock gives no additional guarantee, we optimistically
2424 * wait on the page to be unlocked and check if it's up to date and
2425 * use the page if it is. Otherwise, the page lock is required to
2426 * distinguish between the different cases. The motivation is that we
2427 * avoid spurious serialisations and wakeups when multiple processes
2428 * wait on the same page for IO to complete.
2430 wait_on_page_locked(page);
2431 if (PageUptodate(page))
2434 /* Distinguish between all the cases under the safety of the lock */
2437 /* Case c or d, restart the operation */
2438 if (!page->mapping) {
2444 /* Someone else locked and filled the page in a very small window */
2445 if (PageUptodate(page)) {
2452 mark_page_accessed(page);
2457 * read_cache_page - read into page cache, fill it if needed
2458 * @mapping: the page's address_space
2459 * @index: the page index
2460 * @filler: function to perform the read
2461 * @data: first arg to filler(data, page) function, often left as NULL
2463 * Read into the page cache. If a page already exists, and PageUptodate() is
2464 * not set, try to fill the page and wait for it to become unlocked.
2466 * If the page does not get brought uptodate, return -EIO.
2468 struct page *read_cache_page(struct address_space *mapping,
2470 int (*filler)(void *, struct page *),
2473 return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
2475 EXPORT_SYMBOL(read_cache_page);
2478 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
2479 * @mapping: the page's address_space
2480 * @index: the page index
2481 * @gfp: the page allocator flags to use if allocating
2483 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
2484 * any new page allocations done using the specified allocation flags.
2486 * If the page does not get brought uptodate, return -EIO.
2488 struct page *read_cache_page_gfp(struct address_space *mapping,
2492 filler_t *filler = (filler_t *)mapping->a_ops->readpage;
2494 return do_read_cache_page(mapping, index, filler, NULL, gfp);
2496 EXPORT_SYMBOL(read_cache_page_gfp);
2499 * Performs necessary checks before doing a write
2501 * Can adjust writing position or amount of bytes to write.
2502 * Returns appropriate error code that caller should return or
2503 * zero in case that write should be allowed.
2505 inline ssize_t generic_write_checks(struct kiocb *iocb, struct iov_iter *from)
2507 struct file *file = iocb->ki_filp;
2508 struct inode *inode = file->f_mapping->host;
2509 unsigned long limit = rlimit(RLIMIT_FSIZE);
2512 if (!iov_iter_count(from))
2515 /* FIXME: this is for backwards compatibility with 2.4 */
2516 if (iocb->ki_flags & IOCB_APPEND)
2517 iocb->ki_pos = i_size_read(inode);
2521 if (limit != RLIM_INFINITY) {
2522 if (iocb->ki_pos >= limit) {
2523 send_sig(SIGXFSZ, current, 0);
2526 iov_iter_truncate(from, limit - (unsigned long)pos);
2532 if (unlikely(pos + iov_iter_count(from) > MAX_NON_LFS &&
2533 !(file->f_flags & O_LARGEFILE))) {
2534 if (pos >= MAX_NON_LFS)
2536 iov_iter_truncate(from, MAX_NON_LFS - (unsigned long)pos);
2540 * Are we about to exceed the fs block limit ?
2542 * If we have written data it becomes a short write. If we have
2543 * exceeded without writing data we send a signal and return EFBIG.
2544 * Linus frestrict idea will clean these up nicely..
2546 if (unlikely(pos >= inode->i_sb->s_maxbytes))
2549 iov_iter_truncate(from, inode->i_sb->s_maxbytes - pos);
2550 return iov_iter_count(from);
2552 EXPORT_SYMBOL(generic_write_checks);
2554 int pagecache_write_begin(struct file *file, struct address_space *mapping,
2555 loff_t pos, unsigned len, unsigned flags,
2556 struct page **pagep, void **fsdata)
2558 const struct address_space_operations *aops = mapping->a_ops;
2560 return aops->write_begin(file, mapping, pos, len, flags,
2563 EXPORT_SYMBOL(pagecache_write_begin);
2565 int pagecache_write_end(struct file *file, struct address_space *mapping,
2566 loff_t pos, unsigned len, unsigned copied,
2567 struct page *page, void *fsdata)
2569 const struct address_space_operations *aops = mapping->a_ops;
2571 return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
2573 EXPORT_SYMBOL(pagecache_write_end);
2576 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from)
2578 struct file *file = iocb->ki_filp;
2579 struct address_space *mapping = file->f_mapping;
2580 struct inode *inode = mapping->host;
2581 loff_t pos = iocb->ki_pos;
2585 struct iov_iter data;
2587 write_len = iov_iter_count(from);
2588 end = (pos + write_len - 1) >> PAGE_SHIFT;
2590 written = filemap_write_and_wait_range(mapping, pos, pos + write_len - 1);
2595 * After a write we want buffered reads to be sure to go to disk to get
2596 * the new data. We invalidate clean cached page from the region we're
2597 * about to write. We do this *before* the write so that we can return
2598 * without clobbering -EIOCBQUEUED from ->direct_IO().
2600 if (mapping->nrpages) {
2601 written = invalidate_inode_pages2_range(mapping,
2602 pos >> PAGE_SHIFT, end);
2604 * If a page can not be invalidated, return 0 to fall back
2605 * to buffered write.
2608 if (written == -EBUSY)
2615 written = mapping->a_ops->direct_IO(iocb, &data);
2618 * Finally, try again to invalidate clean pages which might have been
2619 * cached by non-direct readahead, or faulted in by get_user_pages()
2620 * if the source of the write was an mmap'ed region of the file
2621 * we're writing. Either one is a pretty crazy thing to do,
2622 * so we don't support it 100%. If this invalidation
2623 * fails, tough, the write still worked...
2625 if (mapping->nrpages) {
2626 invalidate_inode_pages2_range(mapping,
2627 pos >> PAGE_SHIFT, end);
2632 iov_iter_advance(from, written);
2633 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2634 i_size_write(inode, pos);
2635 mark_inode_dirty(inode);
2642 EXPORT_SYMBOL(generic_file_direct_write);
2645 * Find or create a page at the given pagecache position. Return the locked
2646 * page. This function is specifically for buffered writes.
2648 struct page *grab_cache_page_write_begin(struct address_space *mapping,
2649 pgoff_t index, unsigned flags)
2652 int fgp_flags = FGP_LOCK|FGP_WRITE|FGP_CREAT;
2654 if (flags & AOP_FLAG_NOFS)
2655 fgp_flags |= FGP_NOFS;
2657 page = pagecache_get_page(mapping, index, fgp_flags,
2658 mapping_gfp_mask(mapping));
2660 wait_for_stable_page(page);
2664 EXPORT_SYMBOL(grab_cache_page_write_begin);
2666 ssize_t generic_perform_write(struct file *file,
2667 struct iov_iter *i, loff_t pos)
2669 struct address_space *mapping = file->f_mapping;
2670 const struct address_space_operations *a_ops = mapping->a_ops;
2672 ssize_t written = 0;
2673 unsigned int flags = 0;
2676 * Copies from kernel address space cannot fail (NFSD is a big user).
2678 if (!iter_is_iovec(i))
2679 flags |= AOP_FLAG_UNINTERRUPTIBLE;
2683 unsigned long offset; /* Offset into pagecache page */
2684 unsigned long bytes; /* Bytes to write to page */
2685 size_t copied; /* Bytes copied from user */
2688 offset = (pos & (PAGE_SIZE - 1));
2689 bytes = min_t(unsigned long, PAGE_SIZE - offset,
2694 * Bring in the user page that we will copy from _first_.
2695 * Otherwise there's a nasty deadlock on copying from the
2696 * same page as we're writing to, without it being marked
2699 * Not only is this an optimisation, but it is also required
2700 * to check that the address is actually valid, when atomic
2701 * usercopies are used, below.
2703 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2708 if (fatal_signal_pending(current)) {
2713 status = a_ops->write_begin(file, mapping, pos, bytes, flags,
2715 if (unlikely(status < 0))
2718 if (mapping_writably_mapped(mapping))
2719 flush_dcache_page(page);
2721 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
2722 flush_dcache_page(page);
2724 status = a_ops->write_end(file, mapping, pos, bytes, copied,
2726 if (unlikely(status < 0))
2732 iov_iter_advance(i, copied);
2733 if (unlikely(copied == 0)) {
2735 * If we were unable to copy any data at all, we must
2736 * fall back to a single segment length write.
2738 * If we didn't fallback here, we could livelock
2739 * because not all segments in the iov can be copied at
2740 * once without a pagefault.
2742 bytes = min_t(unsigned long, PAGE_SIZE - offset,
2743 iov_iter_single_seg_count(i));
2749 balance_dirty_pages_ratelimited(mapping);
2750 } while (iov_iter_count(i));
2752 return written ? written : status;
2754 EXPORT_SYMBOL(generic_perform_write);
2757 * __generic_file_write_iter - write data to a file
2758 * @iocb: IO state structure (file, offset, etc.)
2759 * @from: iov_iter with data to write
2761 * This function does all the work needed for actually writing data to a
2762 * file. It does all basic checks, removes SUID from the file, updates
2763 * modification times and calls proper subroutines depending on whether we
2764 * do direct IO or a standard buffered write.
2766 * It expects i_mutex to be grabbed unless we work on a block device or similar
2767 * object which does not need locking at all.
2769 * This function does *not* take care of syncing data in case of O_SYNC write.
2770 * A caller has to handle it. This is mainly due to the fact that we want to
2771 * avoid syncing under i_mutex.
2773 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
2775 struct file *file = iocb->ki_filp;
2776 struct address_space * mapping = file->f_mapping;
2777 struct inode *inode = mapping->host;
2778 ssize_t written = 0;
2782 /* We can write back this queue in page reclaim */
2783 current->backing_dev_info = inode_to_bdi(inode);
2784 err = file_remove_privs(file);
2788 err = file_update_time(file);
2792 if (iocb->ki_flags & IOCB_DIRECT) {
2793 loff_t pos, endbyte;
2795 written = generic_file_direct_write(iocb, from);
2797 * If the write stopped short of completing, fall back to
2798 * buffered writes. Some filesystems do this for writes to
2799 * holes, for example. For DAX files, a buffered write will
2800 * not succeed (even if it did, DAX does not handle dirty
2801 * page-cache pages correctly).
2803 if (written < 0 || !iov_iter_count(from) || IS_DAX(inode))
2806 status = generic_perform_write(file, from, pos = iocb->ki_pos);
2808 * If generic_perform_write() returned a synchronous error
2809 * then we want to return the number of bytes which were
2810 * direct-written, or the error code if that was zero. Note
2811 * that this differs from normal direct-io semantics, which
2812 * will return -EFOO even if some bytes were written.
2814 if (unlikely(status < 0)) {
2819 * We need to ensure that the page cache pages are written to
2820 * disk and invalidated to preserve the expected O_DIRECT
2823 endbyte = pos + status - 1;
2824 err = filemap_write_and_wait_range(mapping, pos, endbyte);
2826 iocb->ki_pos = endbyte + 1;
2828 invalidate_mapping_pages(mapping,
2830 endbyte >> PAGE_SHIFT);
2833 * We don't know how much we wrote, so just return
2834 * the number of bytes which were direct-written
2838 written = generic_perform_write(file, from, iocb->ki_pos);
2839 if (likely(written > 0))
2840 iocb->ki_pos += written;
2843 current->backing_dev_info = NULL;
2844 return written ? written : err;
2846 EXPORT_SYMBOL(__generic_file_write_iter);
2849 * generic_file_write_iter - write data to a file
2850 * @iocb: IO state structure
2851 * @from: iov_iter with data to write
2853 * This is a wrapper around __generic_file_write_iter() to be used by most
2854 * filesystems. It takes care of syncing the file in case of O_SYNC file
2855 * and acquires i_mutex as needed.
2857 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
2859 struct file *file = iocb->ki_filp;
2860 struct inode *inode = file->f_mapping->host;
2864 ret = generic_write_checks(iocb, from);
2866 ret = __generic_file_write_iter(iocb, from);
2867 inode_unlock(inode);
2870 ret = generic_write_sync(iocb, ret);
2873 EXPORT_SYMBOL(generic_file_write_iter);
2876 * try_to_release_page() - release old fs-specific metadata on a page
2878 * @page: the page which the kernel is trying to free
2879 * @gfp_mask: memory allocation flags (and I/O mode)
2881 * The address_space is to try to release any data against the page
2882 * (presumably at page->private). If the release was successful, return `1'.
2883 * Otherwise return zero.
2885 * This may also be called if PG_fscache is set on a page, indicating that the
2886 * page is known to the local caching routines.
2888 * The @gfp_mask argument specifies whether I/O may be performed to release
2889 * this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS).
2892 int try_to_release_page(struct page *page, gfp_t gfp_mask)
2894 struct address_space * const mapping = page->mapping;
2896 BUG_ON(!PageLocked(page));
2897 if (PageWriteback(page))
2900 if (mapping && mapping->a_ops->releasepage)
2901 return mapping->a_ops->releasepage(page, gfp_mask);
2902 return try_to_free_buffers(page);
2905 EXPORT_SYMBOL(try_to_release_page);