mm: document tree_lock->zone.lock lockorder
[platform/adaptation/renesas_rcar/renesas_kernel.git] / mm / filemap.c
1 /*
2  *      linux/mm/filemap.c
3  *
4  * Copyright (C) 1994-1999  Linus Torvalds
5  */
6
7 /*
8  * This file handles the generic file mmap semantics used by
9  * most "normal" filesystems (but you don't /have/ to use this:
10  * the NFS filesystem used to do this differently, for example)
11  */
12 #include <linux/module.h>
13 #include <linux/slab.h>
14 #include <linux/compiler.h>
15 #include <linux/fs.h>
16 #include <linux/uaccess.h>
17 #include <linux/aio.h>
18 #include <linux/capability.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/mm.h>
21 #include <linux/swap.h>
22 #include <linux/mman.h>
23 #include <linux/pagemap.h>
24 #include <linux/file.h>
25 #include <linux/uio.h>
26 #include <linux/hash.h>
27 #include <linux/writeback.h>
28 #include <linux/pagevec.h>
29 #include <linux/blkdev.h>
30 #include <linux/security.h>
31 #include <linux/syscalls.h>
32 #include <linux/cpuset.h>
33 #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
34 #include "internal.h"
35
36 /*
37  * FIXME: remove all knowledge of the buffer layer from the core VM
38  */
39 #include <linux/buffer_head.h> /* for generic_osync_inode */
40
41 #include <asm/mman.h>
42
43 static ssize_t
44 generic_file_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov,
45         loff_t offset, unsigned long nr_segs);
46
47 /*
48  * Shared mappings implemented 30.11.1994. It's not fully working yet,
49  * though.
50  *
51  * Shared mappings now work. 15.8.1995  Bruno.
52  *
53  * finished 'unifying' the page and buffer cache and SMP-threaded the
54  * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
55  *
56  * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
57  */
58
59 /*
60  * Lock ordering:
61  *
62  *  ->i_mmap_lock               (vmtruncate)
63  *    ->private_lock            (__free_pte->__set_page_dirty_buffers)
64  *      ->swap_lock             (exclusive_swap_page, others)
65  *        ->mapping->tree_lock
66  *          ->zone.lock
67  *
68  *  ->i_mutex
69  *    ->i_mmap_lock             (truncate->unmap_mapping_range)
70  *
71  *  ->mmap_sem
72  *    ->i_mmap_lock
73  *      ->page_table_lock or pte_lock   (various, mainly in memory.c)
74  *        ->mapping->tree_lock  (arch-dependent flush_dcache_mmap_lock)
75  *
76  *  ->mmap_sem
77  *    ->lock_page               (access_process_vm)
78  *
79  *  ->i_mutex                   (generic_file_buffered_write)
80  *    ->mmap_sem                (fault_in_pages_readable->do_page_fault)
81  *
82  *  ->i_mutex
83  *    ->i_alloc_sem             (various)
84  *
85  *  ->inode_lock
86  *    ->sb_lock                 (fs/fs-writeback.c)
87  *    ->mapping->tree_lock      (__sync_single_inode)
88  *
89  *  ->i_mmap_lock
90  *    ->anon_vma.lock           (vma_adjust)
91  *
92  *  ->anon_vma.lock
93  *    ->page_table_lock or pte_lock     (anon_vma_prepare and various)
94  *
95  *  ->page_table_lock or pte_lock
96  *    ->swap_lock               (try_to_unmap_one)
97  *    ->private_lock            (try_to_unmap_one)
98  *    ->tree_lock               (try_to_unmap_one)
99  *    ->zone.lru_lock           (follow_page->mark_page_accessed)
100  *    ->zone.lru_lock           (check_pte_range->isolate_lru_page)
101  *    ->private_lock            (page_remove_rmap->set_page_dirty)
102  *    ->tree_lock               (page_remove_rmap->set_page_dirty)
103  *    ->inode_lock              (page_remove_rmap->set_page_dirty)
104  *    ->inode_lock              (zap_pte_range->set_page_dirty)
105  *    ->private_lock            (zap_pte_range->__set_page_dirty_buffers)
106  *
107  *  ->task->proc_lock
108  *    ->dcache_lock             (proc_pid_lookup)
109  */
110
111 /*
112  * Remove a page from the page cache and free it. Caller has to make
113  * sure the page is locked and that nobody else uses it - or that usage
114  * is safe.  The caller must hold a write_lock on the mapping's tree_lock.
115  */
116 void __remove_from_page_cache(struct page *page)
117 {
118         struct address_space *mapping = page->mapping;
119
120         radix_tree_delete(&mapping->page_tree, page->index);
121         page->mapping = NULL;
122         mapping->nrpages--;
123         __dec_zone_page_state(page, NR_FILE_PAGES);
124         BUG_ON(page_mapped(page));
125 }
126
127 void remove_from_page_cache(struct page *page)
128 {
129         struct address_space *mapping = page->mapping;
130
131         BUG_ON(!PageLocked(page));
132
133         write_lock_irq(&mapping->tree_lock);
134         __remove_from_page_cache(page);
135         write_unlock_irq(&mapping->tree_lock);
136 }
137
138 static int sync_page(void *word)
139 {
140         struct address_space *mapping;
141         struct page *page;
142
143         page = container_of((unsigned long *)word, struct page, flags);
144
145         /*
146          * page_mapping() is being called without PG_locked held.
147          * Some knowledge of the state and use of the page is used to
148          * reduce the requirements down to a memory barrier.
149          * The danger here is of a stale page_mapping() return value
150          * indicating a struct address_space different from the one it's
151          * associated with when it is associated with one.
152          * After smp_mb(), it's either the correct page_mapping() for
153          * the page, or an old page_mapping() and the page's own
154          * page_mapping() has gone NULL.
155          * The ->sync_page() address_space operation must tolerate
156          * page_mapping() going NULL. By an amazing coincidence,
157          * this comes about because none of the users of the page
158          * in the ->sync_page() methods make essential use of the
159          * page_mapping(), merely passing the page down to the backing
160          * device's unplug functions when it's non-NULL, which in turn
161          * ignore it for all cases but swap, where only page_private(page) is
162          * of interest. When page_mapping() does go NULL, the entire
163          * call stack gracefully ignores the page and returns.
164          * -- wli
165          */
166         smp_mb();
167         mapping = page_mapping(page);
168         if (mapping && mapping->a_ops && mapping->a_ops->sync_page)
169                 mapping->a_ops->sync_page(page);
170         io_schedule();
171         return 0;
172 }
173
174 /**
175  * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
176  * @mapping:    address space structure to write
177  * @start:      offset in bytes where the range starts
178  * @end:        offset in bytes where the range ends (inclusive)
179  * @sync_mode:  enable synchronous operation
180  *
181  * Start writeback against all of a mapping's dirty pages that lie
182  * within the byte offsets <start, end> inclusive.
183  *
184  * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
185  * opposed to a regular memory cleansing writeback.  The difference between
186  * these two operations is that if a dirty page/buffer is encountered, it must
187  * be waited upon, and not just skipped over.
188  */
189 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
190                                 loff_t end, int sync_mode)
191 {
192         int ret;
193         struct writeback_control wbc = {
194                 .sync_mode = sync_mode,
195                 .nr_to_write = mapping->nrpages * 2,
196                 .range_start = start,
197                 .range_end = end,
198         };
199
200         if (!mapping_cap_writeback_dirty(mapping))
201                 return 0;
202
203         ret = do_writepages(mapping, &wbc);
204         return ret;
205 }
206
207 static inline int __filemap_fdatawrite(struct address_space *mapping,
208         int sync_mode)
209 {
210         return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
211 }
212
213 int filemap_fdatawrite(struct address_space *mapping)
214 {
215         return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
216 }
217 EXPORT_SYMBOL(filemap_fdatawrite);
218
219 static int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
220                                 loff_t end)
221 {
222         return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
223 }
224
225 /**
226  * filemap_flush - mostly a non-blocking flush
227  * @mapping:    target address_space
228  *
229  * This is a mostly non-blocking flush.  Not suitable for data-integrity
230  * purposes - I/O may not be started against all dirty pages.
231  */
232 int filemap_flush(struct address_space *mapping)
233 {
234         return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
235 }
236 EXPORT_SYMBOL(filemap_flush);
237
238 /**
239  * wait_on_page_writeback_range - wait for writeback to complete
240  * @mapping:    target address_space
241  * @start:      beginning page index
242  * @end:        ending page index
243  *
244  * Wait for writeback to complete against pages indexed by start->end
245  * inclusive
246  */
247 int wait_on_page_writeback_range(struct address_space *mapping,
248                                 pgoff_t start, pgoff_t end)
249 {
250         struct pagevec pvec;
251         int nr_pages;
252         int ret = 0;
253         pgoff_t index;
254
255         if (end < start)
256                 return 0;
257
258         pagevec_init(&pvec, 0);
259         index = start;
260         while ((index <= end) &&
261                         (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
262                         PAGECACHE_TAG_WRITEBACK,
263                         min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
264                 unsigned i;
265
266                 for (i = 0; i < nr_pages; i++) {
267                         struct page *page = pvec.pages[i];
268
269                         /* until radix tree lookup accepts end_index */
270                         if (page->index > end)
271                                 continue;
272
273                         wait_on_page_writeback(page);
274                         if (PageError(page))
275                                 ret = -EIO;
276                 }
277                 pagevec_release(&pvec);
278                 cond_resched();
279         }
280
281         /* Check for outstanding write errors */
282         if (test_and_clear_bit(AS_ENOSPC, &mapping->flags))
283                 ret = -ENOSPC;
284         if (test_and_clear_bit(AS_EIO, &mapping->flags))
285                 ret = -EIO;
286
287         return ret;
288 }
289
290 /**
291  * sync_page_range - write and wait on all pages in the passed range
292  * @inode:      target inode
293  * @mapping:    target address_space
294  * @pos:        beginning offset in pages to write
295  * @count:      number of bytes to write
296  *
297  * Write and wait upon all the pages in the passed range.  This is a "data
298  * integrity" operation.  It waits upon in-flight writeout before starting and
299  * waiting upon new writeout.  If there was an IO error, return it.
300  *
301  * We need to re-take i_mutex during the generic_osync_inode list walk because
302  * it is otherwise livelockable.
303  */
304 int sync_page_range(struct inode *inode, struct address_space *mapping,
305                         loff_t pos, loff_t count)
306 {
307         pgoff_t start = pos >> PAGE_CACHE_SHIFT;
308         pgoff_t end = (pos + count - 1) >> PAGE_CACHE_SHIFT;
309         int ret;
310
311         if (!mapping_cap_writeback_dirty(mapping) || !count)
312                 return 0;
313         ret = filemap_fdatawrite_range(mapping, pos, pos + count - 1);
314         if (ret == 0) {
315                 mutex_lock(&inode->i_mutex);
316                 ret = generic_osync_inode(inode, mapping, OSYNC_METADATA);
317                 mutex_unlock(&inode->i_mutex);
318         }
319         if (ret == 0)
320                 ret = wait_on_page_writeback_range(mapping, start, end);
321         return ret;
322 }
323 EXPORT_SYMBOL(sync_page_range);
324
325 /**
326  * sync_page_range_nolock
327  * @inode:      target inode
328  * @mapping:    target address_space
329  * @pos:        beginning offset in pages to write
330  * @count:      number of bytes to write
331  *
332  * Note: Holding i_mutex across sync_page_range_nolock() is not a good idea
333  * as it forces O_SYNC writers to different parts of the same file
334  * to be serialised right until io completion.
335  */
336 int sync_page_range_nolock(struct inode *inode, struct address_space *mapping,
337                            loff_t pos, loff_t count)
338 {
339         pgoff_t start = pos >> PAGE_CACHE_SHIFT;
340         pgoff_t end = (pos + count - 1) >> PAGE_CACHE_SHIFT;
341         int ret;
342
343         if (!mapping_cap_writeback_dirty(mapping) || !count)
344                 return 0;
345         ret = filemap_fdatawrite_range(mapping, pos, pos + count - 1);
346         if (ret == 0)
347                 ret = generic_osync_inode(inode, mapping, OSYNC_METADATA);
348         if (ret == 0)
349                 ret = wait_on_page_writeback_range(mapping, start, end);
350         return ret;
351 }
352 EXPORT_SYMBOL(sync_page_range_nolock);
353
354 /**
355  * filemap_fdatawait - wait for all under-writeback pages to complete
356  * @mapping: address space structure to wait for
357  *
358  * Walk the list of under-writeback pages of the given address space
359  * and wait for all of them.
360  */
361 int filemap_fdatawait(struct address_space *mapping)
362 {
363         loff_t i_size = i_size_read(mapping->host);
364
365         if (i_size == 0)
366                 return 0;
367
368         return wait_on_page_writeback_range(mapping, 0,
369                                 (i_size - 1) >> PAGE_CACHE_SHIFT);
370 }
371 EXPORT_SYMBOL(filemap_fdatawait);
372
373 int filemap_write_and_wait(struct address_space *mapping)
374 {
375         int err = 0;
376
377         if (mapping->nrpages) {
378                 err = filemap_fdatawrite(mapping);
379                 /*
380                  * Even if the above returned error, the pages may be
381                  * written partially (e.g. -ENOSPC), so we wait for it.
382                  * But the -EIO is special case, it may indicate the worst
383                  * thing (e.g. bug) happened, so we avoid waiting for it.
384                  */
385                 if (err != -EIO) {
386                         int err2 = filemap_fdatawait(mapping);
387                         if (!err)
388                                 err = err2;
389                 }
390         }
391         return err;
392 }
393 EXPORT_SYMBOL(filemap_write_and_wait);
394
395 /**
396  * filemap_write_and_wait_range - write out & wait on a file range
397  * @mapping:    the address_space for the pages
398  * @lstart:     offset in bytes where the range starts
399  * @lend:       offset in bytes where the range ends (inclusive)
400  *
401  * Write out and wait upon file offsets lstart->lend, inclusive.
402  *
403  * Note that `lend' is inclusive (describes the last byte to be written) so
404  * that this function can be used to write to the very end-of-file (end = -1).
405  */
406 int filemap_write_and_wait_range(struct address_space *mapping,
407                                  loff_t lstart, loff_t lend)
408 {
409         int err = 0;
410
411         if (mapping->nrpages) {
412                 err = __filemap_fdatawrite_range(mapping, lstart, lend,
413                                                  WB_SYNC_ALL);
414                 /* See comment of filemap_write_and_wait() */
415                 if (err != -EIO) {
416                         int err2 = wait_on_page_writeback_range(mapping,
417                                                 lstart >> PAGE_CACHE_SHIFT,
418                                                 lend >> PAGE_CACHE_SHIFT);
419                         if (!err)
420                                 err = err2;
421                 }
422         }
423         return err;
424 }
425
426 /**
427  * add_to_page_cache - add newly allocated pagecache pages
428  * @page:       page to add
429  * @mapping:    the page's address_space
430  * @offset:     page index
431  * @gfp_mask:   page allocation mode
432  *
433  * This function is used to add newly allocated pagecache pages;
434  * the page is new, so we can just run SetPageLocked() against it.
435  * The other page state flags were set by rmqueue().
436  *
437  * This function does not add the page to the LRU.  The caller must do that.
438  */
439 int add_to_page_cache(struct page *page, struct address_space *mapping,
440                 pgoff_t offset, gfp_t gfp_mask)
441 {
442         int error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
443
444         if (error == 0) {
445                 write_lock_irq(&mapping->tree_lock);
446                 error = radix_tree_insert(&mapping->page_tree, offset, page);
447                 if (!error) {
448                         page_cache_get(page);
449                         SetPageLocked(page);
450                         page->mapping = mapping;
451                         page->index = offset;
452                         mapping->nrpages++;
453                         __inc_zone_page_state(page, NR_FILE_PAGES);
454                 }
455                 write_unlock_irq(&mapping->tree_lock);
456                 radix_tree_preload_end();
457         }
458         return error;
459 }
460 EXPORT_SYMBOL(add_to_page_cache);
461
462 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
463                                 pgoff_t offset, gfp_t gfp_mask)
464 {
465         int ret = add_to_page_cache(page, mapping, offset, gfp_mask);
466         if (ret == 0)
467                 lru_cache_add(page);
468         return ret;
469 }
470
471 #ifdef CONFIG_NUMA
472 struct page *__page_cache_alloc(gfp_t gfp)
473 {
474         if (cpuset_do_page_mem_spread()) {
475                 int n = cpuset_mem_spread_node();
476                 return alloc_pages_node(n, gfp, 0);
477         }
478         return alloc_pages(gfp, 0);
479 }
480 EXPORT_SYMBOL(__page_cache_alloc);
481 #endif
482
483 static int __sleep_on_page_lock(void *word)
484 {
485         io_schedule();
486         return 0;
487 }
488
489 /*
490  * In order to wait for pages to become available there must be
491  * waitqueues associated with pages. By using a hash table of
492  * waitqueues where the bucket discipline is to maintain all
493  * waiters on the same queue and wake all when any of the pages
494  * become available, and for the woken contexts to check to be
495  * sure the appropriate page became available, this saves space
496  * at a cost of "thundering herd" phenomena during rare hash
497  * collisions.
498  */
499 static wait_queue_head_t *page_waitqueue(struct page *page)
500 {
501         const struct zone *zone = page_zone(page);
502
503         return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
504 }
505
506 static inline void wake_up_page(struct page *page, int bit)
507 {
508         __wake_up_bit(page_waitqueue(page), &page->flags, bit);
509 }
510
511 void fastcall wait_on_page_bit(struct page *page, int bit_nr)
512 {
513         DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
514
515         if (test_bit(bit_nr, &page->flags))
516                 __wait_on_bit(page_waitqueue(page), &wait, sync_page,
517                                                         TASK_UNINTERRUPTIBLE);
518 }
519 EXPORT_SYMBOL(wait_on_page_bit);
520
521 /**
522  * unlock_page - unlock a locked page
523  * @page: the page
524  *
525  * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
526  * Also wakes sleepers in wait_on_page_writeback() because the wakeup
527  * mechananism between PageLocked pages and PageWriteback pages is shared.
528  * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
529  *
530  * The first mb is necessary to safely close the critical section opened by the
531  * TestSetPageLocked(), the second mb is necessary to enforce ordering between
532  * the clear_bit and the read of the waitqueue (to avoid SMP races with a
533  * parallel wait_on_page_locked()).
534  */
535 void fastcall unlock_page(struct page *page)
536 {
537         smp_mb__before_clear_bit();
538         if (!TestClearPageLocked(page))
539                 BUG();
540         smp_mb__after_clear_bit(); 
541         wake_up_page(page, PG_locked);
542 }
543 EXPORT_SYMBOL(unlock_page);
544
545 /**
546  * end_page_writeback - end writeback against a page
547  * @page: the page
548  */
549 void end_page_writeback(struct page *page)
550 {
551         if (!TestClearPageReclaim(page) || rotate_reclaimable_page(page)) {
552                 if (!test_clear_page_writeback(page))
553                         BUG();
554         }
555         smp_mb__after_clear_bit();
556         wake_up_page(page, PG_writeback);
557 }
558 EXPORT_SYMBOL(end_page_writeback);
559
560 /**
561  * __lock_page - get a lock on the page, assuming we need to sleep to get it
562  * @page: the page to lock
563  *
564  * Ugly. Running sync_page() in state TASK_UNINTERRUPTIBLE is scary.  If some
565  * random driver's requestfn sets TASK_RUNNING, we could busywait.  However
566  * chances are that on the second loop, the block layer's plug list is empty,
567  * so sync_page() will then return in state TASK_UNINTERRUPTIBLE.
568  */
569 void fastcall __lock_page(struct page *page)
570 {
571         DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
572
573         __wait_on_bit_lock(page_waitqueue(page), &wait, sync_page,
574                                                         TASK_UNINTERRUPTIBLE);
575 }
576 EXPORT_SYMBOL(__lock_page);
577
578 /*
579  * Variant of lock_page that does not require the caller to hold a reference
580  * on the page's mapping.
581  */
582 void fastcall __lock_page_nosync(struct page *page)
583 {
584         DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
585         __wait_on_bit_lock(page_waitqueue(page), &wait, __sleep_on_page_lock,
586                                                         TASK_UNINTERRUPTIBLE);
587 }
588
589 /**
590  * find_get_page - find and get a page reference
591  * @mapping: the address_space to search
592  * @offset: the page index
593  *
594  * Is there a pagecache struct page at the given (mapping, offset) tuple?
595  * If yes, increment its refcount and return it; if no, return NULL.
596  */
597 struct page * find_get_page(struct address_space *mapping, pgoff_t offset)
598 {
599         struct page *page;
600
601         read_lock_irq(&mapping->tree_lock);
602         page = radix_tree_lookup(&mapping->page_tree, offset);
603         if (page)
604                 page_cache_get(page);
605         read_unlock_irq(&mapping->tree_lock);
606         return page;
607 }
608 EXPORT_SYMBOL(find_get_page);
609
610 /**
611  * find_lock_page - locate, pin and lock a pagecache page
612  * @mapping: the address_space to search
613  * @offset: the page index
614  *
615  * Locates the desired pagecache page, locks it, increments its reference
616  * count and returns its address.
617  *
618  * Returns zero if the page was not present. find_lock_page() may sleep.
619  */
620 struct page *find_lock_page(struct address_space *mapping,
621                                 pgoff_t offset)
622 {
623         struct page *page;
624
625 repeat:
626         read_lock_irq(&mapping->tree_lock);
627         page = radix_tree_lookup(&mapping->page_tree, offset);
628         if (page) {
629                 page_cache_get(page);
630                 if (TestSetPageLocked(page)) {
631                         read_unlock_irq(&mapping->tree_lock);
632                         __lock_page(page);
633
634                         /* Has the page been truncated while we slept? */
635                         if (unlikely(page->mapping != mapping)) {
636                                 unlock_page(page);
637                                 page_cache_release(page);
638                                 goto repeat;
639                         }
640                         VM_BUG_ON(page->index != offset);
641                         goto out;
642                 }
643         }
644         read_unlock_irq(&mapping->tree_lock);
645 out:
646         return page;
647 }
648 EXPORT_SYMBOL(find_lock_page);
649
650 /**
651  * find_or_create_page - locate or add a pagecache page
652  * @mapping: the page's address_space
653  * @index: the page's index into the mapping
654  * @gfp_mask: page allocation mode
655  *
656  * Locates a page in the pagecache.  If the page is not present, a new page
657  * is allocated using @gfp_mask and is added to the pagecache and to the VM's
658  * LRU list.  The returned page is locked and has its reference count
659  * incremented.
660  *
661  * find_or_create_page() may sleep, even if @gfp_flags specifies an atomic
662  * allocation!
663  *
664  * find_or_create_page() returns the desired page's address, or zero on
665  * memory exhaustion.
666  */
667 struct page *find_or_create_page(struct address_space *mapping,
668                 pgoff_t index, gfp_t gfp_mask)
669 {
670         struct page *page;
671         int err;
672 repeat:
673         page = find_lock_page(mapping, index);
674         if (!page) {
675                 page = __page_cache_alloc(gfp_mask);
676                 if (!page)
677                         return NULL;
678                 err = add_to_page_cache_lru(page, mapping, index, gfp_mask);
679                 if (unlikely(err)) {
680                         page_cache_release(page);
681                         page = NULL;
682                         if (err == -EEXIST)
683                                 goto repeat;
684                 }
685         }
686         return page;
687 }
688 EXPORT_SYMBOL(find_or_create_page);
689
690 /**
691  * find_get_pages - gang pagecache lookup
692  * @mapping:    The address_space to search
693  * @start:      The starting page index
694  * @nr_pages:   The maximum number of pages
695  * @pages:      Where the resulting pages are placed
696  *
697  * find_get_pages() will search for and return a group of up to
698  * @nr_pages pages in the mapping.  The pages are placed at @pages.
699  * find_get_pages() takes a reference against the returned pages.
700  *
701  * The search returns a group of mapping-contiguous pages with ascending
702  * indexes.  There may be holes in the indices due to not-present pages.
703  *
704  * find_get_pages() returns the number of pages which were found.
705  */
706 unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
707                             unsigned int nr_pages, struct page **pages)
708 {
709         unsigned int i;
710         unsigned int ret;
711
712         read_lock_irq(&mapping->tree_lock);
713         ret = radix_tree_gang_lookup(&mapping->page_tree,
714                                 (void **)pages, start, nr_pages);
715         for (i = 0; i < ret; i++)
716                 page_cache_get(pages[i]);
717         read_unlock_irq(&mapping->tree_lock);
718         return ret;
719 }
720
721 /**
722  * find_get_pages_contig - gang contiguous pagecache lookup
723  * @mapping:    The address_space to search
724  * @index:      The starting page index
725  * @nr_pages:   The maximum number of pages
726  * @pages:      Where the resulting pages are placed
727  *
728  * find_get_pages_contig() works exactly like find_get_pages(), except
729  * that the returned number of pages are guaranteed to be contiguous.
730  *
731  * find_get_pages_contig() returns the number of pages which were found.
732  */
733 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
734                                unsigned int nr_pages, struct page **pages)
735 {
736         unsigned int i;
737         unsigned int ret;
738
739         read_lock_irq(&mapping->tree_lock);
740         ret = radix_tree_gang_lookup(&mapping->page_tree,
741                                 (void **)pages, index, nr_pages);
742         for (i = 0; i < ret; i++) {
743                 if (pages[i]->mapping == NULL || pages[i]->index != index)
744                         break;
745
746                 page_cache_get(pages[i]);
747                 index++;
748         }
749         read_unlock_irq(&mapping->tree_lock);
750         return i;
751 }
752 EXPORT_SYMBOL(find_get_pages_contig);
753
754 /**
755  * find_get_pages_tag - find and return pages that match @tag
756  * @mapping:    the address_space to search
757  * @index:      the starting page index
758  * @tag:        the tag index
759  * @nr_pages:   the maximum number of pages
760  * @pages:      where the resulting pages are placed
761  *
762  * Like find_get_pages, except we only return pages which are tagged with
763  * @tag.   We update @index to index the next page for the traversal.
764  */
765 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
766                         int tag, unsigned int nr_pages, struct page **pages)
767 {
768         unsigned int i;
769         unsigned int ret;
770
771         read_lock_irq(&mapping->tree_lock);
772         ret = radix_tree_gang_lookup_tag(&mapping->page_tree,
773                                 (void **)pages, *index, nr_pages, tag);
774         for (i = 0; i < ret; i++)
775                 page_cache_get(pages[i]);
776         if (ret)
777                 *index = pages[ret - 1]->index + 1;
778         read_unlock_irq(&mapping->tree_lock);
779         return ret;
780 }
781 EXPORT_SYMBOL(find_get_pages_tag);
782
783 /**
784  * grab_cache_page_nowait - returns locked page at given index in given cache
785  * @mapping: target address_space
786  * @index: the page index
787  *
788  * Same as grab_cache_page(), but do not wait if the page is unavailable.
789  * This is intended for speculative data generators, where the data can
790  * be regenerated if the page couldn't be grabbed.  This routine should
791  * be safe to call while holding the lock for another page.
792  *
793  * Clear __GFP_FS when allocating the page to avoid recursion into the fs
794  * and deadlock against the caller's locked page.
795  */
796 struct page *
797 grab_cache_page_nowait(struct address_space *mapping, pgoff_t index)
798 {
799         struct page *page = find_get_page(mapping, index);
800
801         if (page) {
802                 if (!TestSetPageLocked(page))
803                         return page;
804                 page_cache_release(page);
805                 return NULL;
806         }
807         page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~__GFP_FS);
808         if (page && add_to_page_cache_lru(page, mapping, index, GFP_KERNEL)) {
809                 page_cache_release(page);
810                 page = NULL;
811         }
812         return page;
813 }
814 EXPORT_SYMBOL(grab_cache_page_nowait);
815
816 /*
817  * CD/DVDs are error prone. When a medium error occurs, the driver may fail
818  * a _large_ part of the i/o request. Imagine the worst scenario:
819  *
820  *      ---R__________________________________________B__________
821  *         ^ reading here                             ^ bad block(assume 4k)
822  *
823  * read(R) => miss => readahead(R...B) => media error => frustrating retries
824  * => failing the whole request => read(R) => read(R+1) =>
825  * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
826  * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
827  * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
828  *
829  * It is going insane. Fix it by quickly scaling down the readahead size.
830  */
831 static void shrink_readahead_size_eio(struct file *filp,
832                                         struct file_ra_state *ra)
833 {
834         if (!ra->ra_pages)
835                 return;
836
837         ra->ra_pages /= 4;
838 }
839
840 /**
841  * do_generic_mapping_read - generic file read routine
842  * @mapping:    address_space to be read
843  * @_ra:        file's readahead state
844  * @filp:       the file to read
845  * @ppos:       current file position
846  * @desc:       read_descriptor
847  * @actor:      read method
848  *
849  * This is a generic file read routine, and uses the
850  * mapping->a_ops->readpage() function for the actual low-level stuff.
851  *
852  * This is really ugly. But the goto's actually try to clarify some
853  * of the logic when it comes to error handling etc.
854  *
855  * Note the struct file* is only passed for the use of readpage.
856  * It may be NULL.
857  */
858 void do_generic_mapping_read(struct address_space *mapping,
859                              struct file_ra_state *ra,
860                              struct file *filp,
861                              loff_t *ppos,
862                              read_descriptor_t *desc,
863                              read_actor_t actor)
864 {
865         struct inode *inode = mapping->host;
866         pgoff_t index;
867         pgoff_t last_index;
868         pgoff_t prev_index;
869         unsigned long offset;      /* offset into pagecache page */
870         unsigned int prev_offset;
871         int error;
872
873         index = *ppos >> PAGE_CACHE_SHIFT;
874         prev_index = ra->prev_pos >> PAGE_CACHE_SHIFT;
875         prev_offset = ra->prev_pos & (PAGE_CACHE_SIZE-1);
876         last_index = (*ppos + desc->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
877         offset = *ppos & ~PAGE_CACHE_MASK;
878
879         for (;;) {
880                 struct page *page;
881                 pgoff_t end_index;
882                 loff_t isize;
883                 unsigned long nr, ret;
884
885                 cond_resched();
886 find_page:
887                 page = find_get_page(mapping, index);
888                 if (!page) {
889                         page_cache_sync_readahead(mapping,
890                                         ra, filp,
891                                         index, last_index - index);
892                         page = find_get_page(mapping, index);
893                         if (unlikely(page == NULL))
894                                 goto no_cached_page;
895                 }
896                 if (PageReadahead(page)) {
897                         page_cache_async_readahead(mapping,
898                                         ra, filp, page,
899                                         index, last_index - index);
900                 }
901                 if (!PageUptodate(page))
902                         goto page_not_up_to_date;
903 page_ok:
904                 /*
905                  * i_size must be checked after we know the page is Uptodate.
906                  *
907                  * Checking i_size after the check allows us to calculate
908                  * the correct value for "nr", which means the zero-filled
909                  * part of the page is not copied back to userspace (unless
910                  * another truncate extends the file - this is desired though).
911                  */
912
913                 isize = i_size_read(inode);
914                 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
915                 if (unlikely(!isize || index > end_index)) {
916                         page_cache_release(page);
917                         goto out;
918                 }
919
920                 /* nr is the maximum number of bytes to copy from this page */
921                 nr = PAGE_CACHE_SIZE;
922                 if (index == end_index) {
923                         nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
924                         if (nr <= offset) {
925                                 page_cache_release(page);
926                                 goto out;
927                         }
928                 }
929                 nr = nr - offset;
930
931                 /* If users can be writing to this page using arbitrary
932                  * virtual addresses, take care about potential aliasing
933                  * before reading the page on the kernel side.
934                  */
935                 if (mapping_writably_mapped(mapping))
936                         flush_dcache_page(page);
937
938                 /*
939                  * When a sequential read accesses a page several times,
940                  * only mark it as accessed the first time.
941                  */
942                 if (prev_index != index || offset != prev_offset)
943                         mark_page_accessed(page);
944                 prev_index = index;
945
946                 /*
947                  * Ok, we have the page, and it's up-to-date, so
948                  * now we can copy it to user space...
949                  *
950                  * The actor routine returns how many bytes were actually used..
951                  * NOTE! This may not be the same as how much of a user buffer
952                  * we filled up (we may be padding etc), so we can only update
953                  * "pos" here (the actor routine has to update the user buffer
954                  * pointers and the remaining count).
955                  */
956                 ret = actor(desc, page, offset, nr);
957                 offset += ret;
958                 index += offset >> PAGE_CACHE_SHIFT;
959                 offset &= ~PAGE_CACHE_MASK;
960                 prev_offset = offset;
961
962                 page_cache_release(page);
963                 if (ret == nr && desc->count)
964                         continue;
965                 goto out;
966
967 page_not_up_to_date:
968                 /* Get exclusive access to the page ... */
969                 lock_page(page);
970
971                 /* Did it get truncated before we got the lock? */
972                 if (!page->mapping) {
973                         unlock_page(page);
974                         page_cache_release(page);
975                         continue;
976                 }
977
978                 /* Did somebody else fill it already? */
979                 if (PageUptodate(page)) {
980                         unlock_page(page);
981                         goto page_ok;
982                 }
983
984 readpage:
985                 /* Start the actual read. The read will unlock the page. */
986                 error = mapping->a_ops->readpage(filp, page);
987
988                 if (unlikely(error)) {
989                         if (error == AOP_TRUNCATED_PAGE) {
990                                 page_cache_release(page);
991                                 goto find_page;
992                         }
993                         goto readpage_error;
994                 }
995
996                 if (!PageUptodate(page)) {
997                         lock_page(page);
998                         if (!PageUptodate(page)) {
999                                 if (page->mapping == NULL) {
1000                                         /*
1001                                          * invalidate_inode_pages got it
1002                                          */
1003                                         unlock_page(page);
1004                                         page_cache_release(page);
1005                                         goto find_page;
1006                                 }
1007                                 unlock_page(page);
1008                                 error = -EIO;
1009                                 shrink_readahead_size_eio(filp, ra);
1010                                 goto readpage_error;
1011                         }
1012                         unlock_page(page);
1013                 }
1014
1015                 goto page_ok;
1016
1017 readpage_error:
1018                 /* UHHUH! A synchronous read error occurred. Report it */
1019                 desc->error = error;
1020                 page_cache_release(page);
1021                 goto out;
1022
1023 no_cached_page:
1024                 /*
1025                  * Ok, it wasn't cached, so we need to create a new
1026                  * page..
1027                  */
1028                 page = page_cache_alloc_cold(mapping);
1029                 if (!page) {
1030                         desc->error = -ENOMEM;
1031                         goto out;
1032                 }
1033                 error = add_to_page_cache_lru(page, mapping,
1034                                                 index, GFP_KERNEL);
1035                 if (error) {
1036                         page_cache_release(page);
1037                         if (error == -EEXIST)
1038                                 goto find_page;
1039                         desc->error = error;
1040                         goto out;
1041                 }
1042                 goto readpage;
1043         }
1044
1045 out:
1046         ra->prev_pos = prev_index;
1047         ra->prev_pos <<= PAGE_CACHE_SHIFT;
1048         ra->prev_pos |= prev_offset;
1049
1050         *ppos = ((loff_t)index << PAGE_CACHE_SHIFT) + offset;
1051         if (filp)
1052                 file_accessed(filp);
1053 }
1054 EXPORT_SYMBOL(do_generic_mapping_read);
1055
1056 int file_read_actor(read_descriptor_t *desc, struct page *page,
1057                         unsigned long offset, unsigned long size)
1058 {
1059         char *kaddr;
1060         unsigned long left, count = desc->count;
1061
1062         if (size > count)
1063                 size = count;
1064
1065         /*
1066          * Faults on the destination of a read are common, so do it before
1067          * taking the kmap.
1068          */
1069         if (!fault_in_pages_writeable(desc->arg.buf, size)) {
1070                 kaddr = kmap_atomic(page, KM_USER0);
1071                 left = __copy_to_user_inatomic(desc->arg.buf,
1072                                                 kaddr + offset, size);
1073                 kunmap_atomic(kaddr, KM_USER0);
1074                 if (left == 0)
1075                         goto success;
1076         }
1077
1078         /* Do it the slow way */
1079         kaddr = kmap(page);
1080         left = __copy_to_user(desc->arg.buf, kaddr + offset, size);
1081         kunmap(page);
1082
1083         if (left) {
1084                 size -= left;
1085                 desc->error = -EFAULT;
1086         }
1087 success:
1088         desc->count = count - size;
1089         desc->written += size;
1090         desc->arg.buf += size;
1091         return size;
1092 }
1093
1094 /*
1095  * Performs necessary checks before doing a write
1096  * @iov:        io vector request
1097  * @nr_segs:    number of segments in the iovec
1098  * @count:      number of bytes to write
1099  * @access_flags: type of access: %VERIFY_READ or %VERIFY_WRITE
1100  *
1101  * Adjust number of segments and amount of bytes to write (nr_segs should be
1102  * properly initialized first). Returns appropriate error code that caller
1103  * should return or zero in case that write should be allowed.
1104  */
1105 int generic_segment_checks(const struct iovec *iov,
1106                         unsigned long *nr_segs, size_t *count, int access_flags)
1107 {
1108         unsigned long   seg;
1109         size_t cnt = 0;
1110         for (seg = 0; seg < *nr_segs; seg++) {
1111                 const struct iovec *iv = &iov[seg];
1112
1113                 /*
1114                  * If any segment has a negative length, or the cumulative
1115                  * length ever wraps negative then return -EINVAL.
1116                  */
1117                 cnt += iv->iov_len;
1118                 if (unlikely((ssize_t)(cnt|iv->iov_len) < 0))
1119                         return -EINVAL;
1120                 if (access_ok(access_flags, iv->iov_base, iv->iov_len))
1121                         continue;
1122                 if (seg == 0)
1123                         return -EFAULT;
1124                 *nr_segs = seg;
1125                 cnt -= iv->iov_len;     /* This segment is no good */
1126                 break;
1127         }
1128         *count = cnt;
1129         return 0;
1130 }
1131 EXPORT_SYMBOL(generic_segment_checks);
1132
1133 /**
1134  * generic_file_aio_read - generic filesystem read routine
1135  * @iocb:       kernel I/O control block
1136  * @iov:        io vector request
1137  * @nr_segs:    number of segments in the iovec
1138  * @pos:        current file position
1139  *
1140  * This is the "read()" routine for all filesystems
1141  * that can use the page cache directly.
1142  */
1143 ssize_t
1144 generic_file_aio_read(struct kiocb *iocb, const struct iovec *iov,
1145                 unsigned long nr_segs, loff_t pos)
1146 {
1147         struct file *filp = iocb->ki_filp;
1148         ssize_t retval;
1149         unsigned long seg;
1150         size_t count;
1151         loff_t *ppos = &iocb->ki_pos;
1152
1153         count = 0;
1154         retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1155         if (retval)
1156                 return retval;
1157
1158         /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
1159         if (filp->f_flags & O_DIRECT) {
1160                 loff_t size;
1161                 struct address_space *mapping;
1162                 struct inode *inode;
1163
1164                 mapping = filp->f_mapping;
1165                 inode = mapping->host;
1166                 retval = 0;
1167                 if (!count)
1168                         goto out; /* skip atime */
1169                 size = i_size_read(inode);
1170                 if (pos < size) {
1171                         retval = generic_file_direct_IO(READ, iocb,
1172                                                 iov, pos, nr_segs);
1173                         if (retval > 0)
1174                                 *ppos = pos + retval;
1175                 }
1176                 if (likely(retval != 0)) {
1177                         file_accessed(filp);
1178                         goto out;
1179                 }
1180         }
1181
1182         retval = 0;
1183         if (count) {
1184                 for (seg = 0; seg < nr_segs; seg++) {
1185                         read_descriptor_t desc;
1186
1187                         desc.written = 0;
1188                         desc.arg.buf = iov[seg].iov_base;
1189                         desc.count = iov[seg].iov_len;
1190                         if (desc.count == 0)
1191                                 continue;
1192                         desc.error = 0;
1193                         do_generic_file_read(filp,ppos,&desc,file_read_actor);
1194                         retval += desc.written;
1195                         if (desc.error) {
1196                                 retval = retval ?: desc.error;
1197                                 break;
1198                         }
1199                         if (desc.count > 0)
1200                                 break;
1201                 }
1202         }
1203 out:
1204         return retval;
1205 }
1206 EXPORT_SYMBOL(generic_file_aio_read);
1207
1208 static ssize_t
1209 do_readahead(struct address_space *mapping, struct file *filp,
1210              pgoff_t index, unsigned long nr)
1211 {
1212         if (!mapping || !mapping->a_ops || !mapping->a_ops->readpage)
1213                 return -EINVAL;
1214
1215         force_page_cache_readahead(mapping, filp, index,
1216                                         max_sane_readahead(nr));
1217         return 0;
1218 }
1219
1220 asmlinkage ssize_t sys_readahead(int fd, loff_t offset, size_t count)
1221 {
1222         ssize_t ret;
1223         struct file *file;
1224
1225         ret = -EBADF;
1226         file = fget(fd);
1227         if (file) {
1228                 if (file->f_mode & FMODE_READ) {
1229                         struct address_space *mapping = file->f_mapping;
1230                         pgoff_t start = offset >> PAGE_CACHE_SHIFT;
1231                         pgoff_t end = (offset + count - 1) >> PAGE_CACHE_SHIFT;
1232                         unsigned long len = end - start + 1;
1233                         ret = do_readahead(mapping, file, start, len);
1234                 }
1235                 fput(file);
1236         }
1237         return ret;
1238 }
1239
1240 #ifdef CONFIG_MMU
1241 /**
1242  * page_cache_read - adds requested page to the page cache if not already there
1243  * @file:       file to read
1244  * @offset:     page index
1245  *
1246  * This adds the requested page to the page cache if it isn't already there,
1247  * and schedules an I/O to read in its contents from disk.
1248  */
1249 static int fastcall page_cache_read(struct file * file, pgoff_t offset)
1250 {
1251         struct address_space *mapping = file->f_mapping;
1252         struct page *page; 
1253         int ret;
1254
1255         do {
1256                 page = page_cache_alloc_cold(mapping);
1257                 if (!page)
1258                         return -ENOMEM;
1259
1260                 ret = add_to_page_cache_lru(page, mapping, offset, GFP_KERNEL);
1261                 if (ret == 0)
1262                         ret = mapping->a_ops->readpage(file, page);
1263                 else if (ret == -EEXIST)
1264                         ret = 0; /* losing race to add is OK */
1265
1266                 page_cache_release(page);
1267
1268         } while (ret == AOP_TRUNCATED_PAGE);
1269                 
1270         return ret;
1271 }
1272
1273 #define MMAP_LOTSAMISS  (100)
1274
1275 /**
1276  * filemap_fault - read in file data for page fault handling
1277  * @vma:        vma in which the fault was taken
1278  * @vmf:        struct vm_fault containing details of the fault
1279  *
1280  * filemap_fault() is invoked via the vma operations vector for a
1281  * mapped memory region to read in file data during a page fault.
1282  *
1283  * The goto's are kind of ugly, but this streamlines the normal case of having
1284  * it in the page cache, and handles the special cases reasonably without
1285  * having a lot of duplicated code.
1286  */
1287 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1288 {
1289         int error;
1290         struct file *file = vma->vm_file;
1291         struct address_space *mapping = file->f_mapping;
1292         struct file_ra_state *ra = &file->f_ra;
1293         struct inode *inode = mapping->host;
1294         struct page *page;
1295         unsigned long size;
1296         int did_readaround = 0;
1297         int ret = 0;
1298
1299         size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1300         if (vmf->pgoff >= size)
1301                 goto outside_data_content;
1302
1303         /* If we don't want any read-ahead, don't bother */
1304         if (VM_RandomReadHint(vma))
1305                 goto no_cached_page;
1306
1307         /*
1308          * Do we have something in the page cache already?
1309          */
1310 retry_find:
1311         page = find_lock_page(mapping, vmf->pgoff);
1312         /*
1313          * For sequential accesses, we use the generic readahead logic.
1314          */
1315         if (VM_SequentialReadHint(vma)) {
1316                 if (!page) {
1317                         page_cache_sync_readahead(mapping, ra, file,
1318                                                            vmf->pgoff, 1);
1319                         page = find_lock_page(mapping, vmf->pgoff);
1320                         if (!page)
1321                                 goto no_cached_page;
1322                 }
1323                 if (PageReadahead(page)) {
1324                         page_cache_async_readahead(mapping, ra, file, page,
1325                                                            vmf->pgoff, 1);
1326                 }
1327         }
1328
1329         if (!page) {
1330                 unsigned long ra_pages;
1331
1332                 ra->mmap_miss++;
1333
1334                 /*
1335                  * Do we miss much more than hit in this file? If so,
1336                  * stop bothering with read-ahead. It will only hurt.
1337                  */
1338                 if (ra->mmap_miss > MMAP_LOTSAMISS)
1339                         goto no_cached_page;
1340
1341                 /*
1342                  * To keep the pgmajfault counter straight, we need to
1343                  * check did_readaround, as this is an inner loop.
1344                  */
1345                 if (!did_readaround) {
1346                         ret = VM_FAULT_MAJOR;
1347                         count_vm_event(PGMAJFAULT);
1348                 }
1349                 did_readaround = 1;
1350                 ra_pages = max_sane_readahead(file->f_ra.ra_pages);
1351                 if (ra_pages) {
1352                         pgoff_t start = 0;
1353
1354                         if (vmf->pgoff > ra_pages / 2)
1355                                 start = vmf->pgoff - ra_pages / 2;
1356                         do_page_cache_readahead(mapping, file, start, ra_pages);
1357                 }
1358                 page = find_lock_page(mapping, vmf->pgoff);
1359                 if (!page)
1360                         goto no_cached_page;
1361         }
1362
1363         if (!did_readaround)
1364                 ra->mmap_miss--;
1365
1366         /*
1367          * We have a locked page in the page cache, now we need to check
1368          * that it's up-to-date. If not, it is going to be due to an error.
1369          */
1370         if (unlikely(!PageUptodate(page)))
1371                 goto page_not_uptodate;
1372
1373         /* Must recheck i_size under page lock */
1374         size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1375         if (unlikely(vmf->pgoff >= size)) {
1376                 unlock_page(page);
1377                 page_cache_release(page);
1378                 goto outside_data_content;
1379         }
1380
1381         /*
1382          * Found the page and have a reference on it.
1383          */
1384         mark_page_accessed(page);
1385         ra->prev_pos = (loff_t)page->index << PAGE_CACHE_SHIFT;
1386         vmf->page = page;
1387         return ret | VM_FAULT_LOCKED;
1388
1389 outside_data_content:
1390         /*
1391          * An external ptracer can access pages that normally aren't
1392          * accessible..
1393          */
1394         if (vma->vm_mm == current->mm)
1395                 return VM_FAULT_SIGBUS;
1396
1397         /* Fall through to the non-read-ahead case */
1398 no_cached_page:
1399         /*
1400          * We're only likely to ever get here if MADV_RANDOM is in
1401          * effect.
1402          */
1403         error = page_cache_read(file, vmf->pgoff);
1404
1405         /*
1406          * The page we want has now been added to the page cache.
1407          * In the unlikely event that someone removed it in the
1408          * meantime, we'll just come back here and read it again.
1409          */
1410         if (error >= 0)
1411                 goto retry_find;
1412
1413         /*
1414          * An error return from page_cache_read can result if the
1415          * system is low on memory, or a problem occurs while trying
1416          * to schedule I/O.
1417          */
1418         if (error == -ENOMEM)
1419                 return VM_FAULT_OOM;
1420         return VM_FAULT_SIGBUS;
1421
1422 page_not_uptodate:
1423         /* IO error path */
1424         if (!did_readaround) {
1425                 ret = VM_FAULT_MAJOR;
1426                 count_vm_event(PGMAJFAULT);
1427         }
1428
1429         /*
1430          * Umm, take care of errors if the page isn't up-to-date.
1431          * Try to re-read it _once_. We do this synchronously,
1432          * because there really aren't any performance issues here
1433          * and we need to check for errors.
1434          */
1435         ClearPageError(page);
1436         error = mapping->a_ops->readpage(file, page);
1437         page_cache_release(page);
1438
1439         if (!error || error == AOP_TRUNCATED_PAGE)
1440                 goto retry_find;
1441
1442         /* Things didn't work out. Return zero to tell the mm layer so. */
1443         shrink_readahead_size_eio(file, ra);
1444         return VM_FAULT_SIGBUS;
1445 }
1446 EXPORT_SYMBOL(filemap_fault);
1447
1448 struct vm_operations_struct generic_file_vm_ops = {
1449         .fault          = filemap_fault,
1450 };
1451
1452 /* This is used for a general mmap of a disk file */
1453
1454 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1455 {
1456         struct address_space *mapping = file->f_mapping;
1457
1458         if (!mapping->a_ops->readpage)
1459                 return -ENOEXEC;
1460         file_accessed(file);
1461         vma->vm_ops = &generic_file_vm_ops;
1462         vma->vm_flags |= VM_CAN_NONLINEAR;
1463         return 0;
1464 }
1465
1466 /*
1467  * This is for filesystems which do not implement ->writepage.
1468  */
1469 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
1470 {
1471         if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
1472                 return -EINVAL;
1473         return generic_file_mmap(file, vma);
1474 }
1475 #else
1476 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1477 {
1478         return -ENOSYS;
1479 }
1480 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
1481 {
1482         return -ENOSYS;
1483 }
1484 #endif /* CONFIG_MMU */
1485
1486 EXPORT_SYMBOL(generic_file_mmap);
1487 EXPORT_SYMBOL(generic_file_readonly_mmap);
1488
1489 static struct page *__read_cache_page(struct address_space *mapping,
1490                                 pgoff_t index,
1491                                 int (*filler)(void *,struct page*),
1492                                 void *data)
1493 {
1494         struct page *page;
1495         int err;
1496 repeat:
1497         page = find_get_page(mapping, index);
1498         if (!page) {
1499                 page = page_cache_alloc_cold(mapping);
1500                 if (!page)
1501                         return ERR_PTR(-ENOMEM);
1502                 err = add_to_page_cache_lru(page, mapping, index, GFP_KERNEL);
1503                 if (unlikely(err)) {
1504                         page_cache_release(page);
1505                         if (err == -EEXIST)
1506                                 goto repeat;
1507                         /* Presumably ENOMEM for radix tree node */
1508                         return ERR_PTR(err);
1509                 }
1510                 err = filler(data, page);
1511                 if (err < 0) {
1512                         page_cache_release(page);
1513                         page = ERR_PTR(err);
1514                 }
1515         }
1516         return page;
1517 }
1518
1519 /*
1520  * Same as read_cache_page, but don't wait for page to become unlocked
1521  * after submitting it to the filler.
1522  */
1523 struct page *read_cache_page_async(struct address_space *mapping,
1524                                 pgoff_t index,
1525                                 int (*filler)(void *,struct page*),
1526                                 void *data)
1527 {
1528         struct page *page;
1529         int err;
1530
1531 retry:
1532         page = __read_cache_page(mapping, index, filler, data);
1533         if (IS_ERR(page))
1534                 return page;
1535         if (PageUptodate(page))
1536                 goto out;
1537
1538         lock_page(page);
1539         if (!page->mapping) {
1540                 unlock_page(page);
1541                 page_cache_release(page);
1542                 goto retry;
1543         }
1544         if (PageUptodate(page)) {
1545                 unlock_page(page);
1546                 goto out;
1547         }
1548         err = filler(data, page);
1549         if (err < 0) {
1550                 page_cache_release(page);
1551                 return ERR_PTR(err);
1552         }
1553 out:
1554         mark_page_accessed(page);
1555         return page;
1556 }
1557 EXPORT_SYMBOL(read_cache_page_async);
1558
1559 /**
1560  * read_cache_page - read into page cache, fill it if needed
1561  * @mapping:    the page's address_space
1562  * @index:      the page index
1563  * @filler:     function to perform the read
1564  * @data:       destination for read data
1565  *
1566  * Read into the page cache. If a page already exists, and PageUptodate() is
1567  * not set, try to fill the page then wait for it to become unlocked.
1568  *
1569  * If the page does not get brought uptodate, return -EIO.
1570  */
1571 struct page *read_cache_page(struct address_space *mapping,
1572                                 pgoff_t index,
1573                                 int (*filler)(void *,struct page*),
1574                                 void *data)
1575 {
1576         struct page *page;
1577
1578         page = read_cache_page_async(mapping, index, filler, data);
1579         if (IS_ERR(page))
1580                 goto out;
1581         wait_on_page_locked(page);
1582         if (!PageUptodate(page)) {
1583                 page_cache_release(page);
1584                 page = ERR_PTR(-EIO);
1585         }
1586  out:
1587         return page;
1588 }
1589 EXPORT_SYMBOL(read_cache_page);
1590
1591 /*
1592  * The logic we want is
1593  *
1594  *      if suid or (sgid and xgrp)
1595  *              remove privs
1596  */
1597 int should_remove_suid(struct dentry *dentry)
1598 {
1599         mode_t mode = dentry->d_inode->i_mode;
1600         int kill = 0;
1601
1602         /* suid always must be killed */
1603         if (unlikely(mode & S_ISUID))
1604                 kill = ATTR_KILL_SUID;
1605
1606         /*
1607          * sgid without any exec bits is just a mandatory locking mark; leave
1608          * it alone.  If some exec bits are set, it's a real sgid; kill it.
1609          */
1610         if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1611                 kill |= ATTR_KILL_SGID;
1612
1613         if (unlikely(kill && !capable(CAP_FSETID)))
1614                 return kill;
1615
1616         return 0;
1617 }
1618 EXPORT_SYMBOL(should_remove_suid);
1619
1620 int __remove_suid(struct dentry *dentry, int kill)
1621 {
1622         struct iattr newattrs;
1623
1624         newattrs.ia_valid = ATTR_FORCE | kill;
1625         return notify_change(dentry, &newattrs);
1626 }
1627
1628 int remove_suid(struct dentry *dentry)
1629 {
1630         int kill = should_remove_suid(dentry);
1631
1632         if (unlikely(kill))
1633                 return __remove_suid(dentry, kill);
1634
1635         return 0;
1636 }
1637 EXPORT_SYMBOL(remove_suid);
1638
1639 static size_t __iovec_copy_from_user_inatomic(char *vaddr,
1640                         const struct iovec *iov, size_t base, size_t bytes)
1641 {
1642         size_t copied = 0, left = 0;
1643
1644         while (bytes) {
1645                 char __user *buf = iov->iov_base + base;
1646                 int copy = min(bytes, iov->iov_len - base);
1647
1648                 base = 0;
1649                 left = __copy_from_user_inatomic_nocache(vaddr, buf, copy);
1650                 copied += copy;
1651                 bytes -= copy;
1652                 vaddr += copy;
1653                 iov++;
1654
1655                 if (unlikely(left))
1656                         break;
1657         }
1658         return copied - left;
1659 }
1660
1661 /*
1662  * Copy as much as we can into the page and return the number of bytes which
1663  * were sucessfully copied.  If a fault is encountered then return the number of
1664  * bytes which were copied.
1665  */
1666 size_t iov_iter_copy_from_user_atomic(struct page *page,
1667                 struct iov_iter *i, unsigned long offset, size_t bytes)
1668 {
1669         char *kaddr;
1670         size_t copied;
1671
1672         BUG_ON(!in_atomic());
1673         kaddr = kmap_atomic(page, KM_USER0);
1674         if (likely(i->nr_segs == 1)) {
1675                 int left;
1676                 char __user *buf = i->iov->iov_base + i->iov_offset;
1677                 left = __copy_from_user_inatomic_nocache(kaddr + offset,
1678                                                         buf, bytes);
1679                 copied = bytes - left;
1680         } else {
1681                 copied = __iovec_copy_from_user_inatomic(kaddr + offset,
1682                                                 i->iov, i->iov_offset, bytes);
1683         }
1684         kunmap_atomic(kaddr, KM_USER0);
1685
1686         return copied;
1687 }
1688 EXPORT_SYMBOL(iov_iter_copy_from_user_atomic);
1689
1690 /*
1691  * This has the same sideeffects and return value as
1692  * iov_iter_copy_from_user_atomic().
1693  * The difference is that it attempts to resolve faults.
1694  * Page must not be locked.
1695  */
1696 size_t iov_iter_copy_from_user(struct page *page,
1697                 struct iov_iter *i, unsigned long offset, size_t bytes)
1698 {
1699         char *kaddr;
1700         size_t copied;
1701
1702         kaddr = kmap(page);
1703         if (likely(i->nr_segs == 1)) {
1704                 int left;
1705                 char __user *buf = i->iov->iov_base + i->iov_offset;
1706                 left = __copy_from_user_nocache(kaddr + offset, buf, bytes);
1707                 copied = bytes - left;
1708         } else {
1709                 copied = __iovec_copy_from_user_inatomic(kaddr + offset,
1710                                                 i->iov, i->iov_offset, bytes);
1711         }
1712         kunmap(page);
1713         return copied;
1714 }
1715 EXPORT_SYMBOL(iov_iter_copy_from_user);
1716
1717 static void __iov_iter_advance_iov(struct iov_iter *i, size_t bytes)
1718 {
1719         if (likely(i->nr_segs == 1)) {
1720                 i->iov_offset += bytes;
1721         } else {
1722                 const struct iovec *iov = i->iov;
1723                 size_t base = i->iov_offset;
1724
1725                 while (bytes) {
1726                         int copy = min(bytes, iov->iov_len - base);
1727
1728                         bytes -= copy;
1729                         base += copy;
1730                         if (iov->iov_len == base) {
1731                                 iov++;
1732                                 base = 0;
1733                         }
1734                 }
1735                 i->iov = iov;
1736                 i->iov_offset = base;
1737         }
1738 }
1739
1740 void iov_iter_advance(struct iov_iter *i, size_t bytes)
1741 {
1742         BUG_ON(i->count < bytes);
1743
1744         __iov_iter_advance_iov(i, bytes);
1745         i->count -= bytes;
1746 }
1747 EXPORT_SYMBOL(iov_iter_advance);
1748
1749 /*
1750  * Fault in the first iovec of the given iov_iter, to a maximum length
1751  * of bytes. Returns 0 on success, or non-zero if the memory could not be
1752  * accessed (ie. because it is an invalid address).
1753  *
1754  * writev-intensive code may want this to prefault several iovecs -- that
1755  * would be possible (callers must not rely on the fact that _only_ the
1756  * first iovec will be faulted with the current implementation).
1757  */
1758 int iov_iter_fault_in_readable(struct iov_iter *i, size_t bytes)
1759 {
1760         char __user *buf = i->iov->iov_base + i->iov_offset;
1761         bytes = min(bytes, i->iov->iov_len - i->iov_offset);
1762         return fault_in_pages_readable(buf, bytes);
1763 }
1764 EXPORT_SYMBOL(iov_iter_fault_in_readable);
1765
1766 /*
1767  * Return the count of just the current iov_iter segment.
1768  */
1769 size_t iov_iter_single_seg_count(struct iov_iter *i)
1770 {
1771         const struct iovec *iov = i->iov;
1772         if (i->nr_segs == 1)
1773                 return i->count;
1774         else
1775                 return min(i->count, iov->iov_len - i->iov_offset);
1776 }
1777 EXPORT_SYMBOL(iov_iter_single_seg_count);
1778
1779 /*
1780  * Performs necessary checks before doing a write
1781  *
1782  * Can adjust writing position or amount of bytes to write.
1783  * Returns appropriate error code that caller should return or
1784  * zero in case that write should be allowed.
1785  */
1786 inline int generic_write_checks(struct file *file, loff_t *pos, size_t *count, int isblk)
1787 {
1788         struct inode *inode = file->f_mapping->host;
1789         unsigned long limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
1790
1791         if (unlikely(*pos < 0))
1792                 return -EINVAL;
1793
1794         if (!isblk) {
1795                 /* FIXME: this is for backwards compatibility with 2.4 */
1796                 if (file->f_flags & O_APPEND)
1797                         *pos = i_size_read(inode);
1798
1799                 if (limit != RLIM_INFINITY) {
1800                         if (*pos >= limit) {
1801                                 send_sig(SIGXFSZ, current, 0);
1802                                 return -EFBIG;
1803                         }
1804                         if (*count > limit - (typeof(limit))*pos) {
1805                                 *count = limit - (typeof(limit))*pos;
1806                         }
1807                 }
1808         }
1809
1810         /*
1811          * LFS rule
1812          */
1813         if (unlikely(*pos + *count > MAX_NON_LFS &&
1814                                 !(file->f_flags & O_LARGEFILE))) {
1815                 if (*pos >= MAX_NON_LFS) {
1816                         return -EFBIG;
1817                 }
1818                 if (*count > MAX_NON_LFS - (unsigned long)*pos) {
1819                         *count = MAX_NON_LFS - (unsigned long)*pos;
1820                 }
1821         }
1822
1823         /*
1824          * Are we about to exceed the fs block limit ?
1825          *
1826          * If we have written data it becomes a short write.  If we have
1827          * exceeded without writing data we send a signal and return EFBIG.
1828          * Linus frestrict idea will clean these up nicely..
1829          */
1830         if (likely(!isblk)) {
1831                 if (unlikely(*pos >= inode->i_sb->s_maxbytes)) {
1832                         if (*count || *pos > inode->i_sb->s_maxbytes) {
1833                                 return -EFBIG;
1834                         }
1835                         /* zero-length writes at ->s_maxbytes are OK */
1836                 }
1837
1838                 if (unlikely(*pos + *count > inode->i_sb->s_maxbytes))
1839                         *count = inode->i_sb->s_maxbytes - *pos;
1840         } else {
1841 #ifdef CONFIG_BLOCK
1842                 loff_t isize;
1843                 if (bdev_read_only(I_BDEV(inode)))
1844                         return -EPERM;
1845                 isize = i_size_read(inode);
1846                 if (*pos >= isize) {
1847                         if (*count || *pos > isize)
1848                                 return -ENOSPC;
1849                 }
1850
1851                 if (*pos + *count > isize)
1852                         *count = isize - *pos;
1853 #else
1854                 return -EPERM;
1855 #endif
1856         }
1857         return 0;
1858 }
1859 EXPORT_SYMBOL(generic_write_checks);
1860
1861 int pagecache_write_begin(struct file *file, struct address_space *mapping,
1862                                 loff_t pos, unsigned len, unsigned flags,
1863                                 struct page **pagep, void **fsdata)
1864 {
1865         const struct address_space_operations *aops = mapping->a_ops;
1866
1867         if (aops->write_begin) {
1868                 return aops->write_begin(file, mapping, pos, len, flags,
1869                                                         pagep, fsdata);
1870         } else {
1871                 int ret;
1872                 pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1873                 unsigned offset = pos & (PAGE_CACHE_SIZE - 1);
1874                 struct inode *inode = mapping->host;
1875                 struct page *page;
1876 again:
1877                 page = __grab_cache_page(mapping, index);
1878                 *pagep = page;
1879                 if (!page)
1880                         return -ENOMEM;
1881
1882                 if (flags & AOP_FLAG_UNINTERRUPTIBLE && !PageUptodate(page)) {
1883                         /*
1884                          * There is no way to resolve a short write situation
1885                          * for a !Uptodate page (except by double copying in
1886                          * the caller done by generic_perform_write_2copy).
1887                          *
1888                          * Instead, we have to bring it uptodate here.
1889                          */
1890                         ret = aops->readpage(file, page);
1891                         page_cache_release(page);
1892                         if (ret) {
1893                                 if (ret == AOP_TRUNCATED_PAGE)
1894                                         goto again;
1895                                 return ret;
1896                         }
1897                         goto again;
1898                 }
1899
1900                 ret = aops->prepare_write(file, page, offset, offset+len);
1901                 if (ret) {
1902                         unlock_page(page);
1903                         page_cache_release(page);
1904                         if (pos + len > inode->i_size)
1905                                 vmtruncate(inode, inode->i_size);
1906                 }
1907                 return ret;
1908         }
1909 }
1910 EXPORT_SYMBOL(pagecache_write_begin);
1911
1912 int pagecache_write_end(struct file *file, struct address_space *mapping,
1913                                 loff_t pos, unsigned len, unsigned copied,
1914                                 struct page *page, void *fsdata)
1915 {
1916         const struct address_space_operations *aops = mapping->a_ops;
1917         int ret;
1918
1919         if (aops->write_end) {
1920                 mark_page_accessed(page);
1921                 ret = aops->write_end(file, mapping, pos, len, copied,
1922                                                         page, fsdata);
1923         } else {
1924                 unsigned offset = pos & (PAGE_CACHE_SIZE - 1);
1925                 struct inode *inode = mapping->host;
1926
1927                 flush_dcache_page(page);
1928                 ret = aops->commit_write(file, page, offset, offset+len);
1929                 unlock_page(page);
1930                 mark_page_accessed(page);
1931                 page_cache_release(page);
1932
1933                 if (ret < 0) {
1934                         if (pos + len > inode->i_size)
1935                                 vmtruncate(inode, inode->i_size);
1936                 } else if (ret > 0)
1937                         ret = min_t(size_t, copied, ret);
1938                 else
1939                         ret = copied;
1940         }
1941
1942         return ret;
1943 }
1944 EXPORT_SYMBOL(pagecache_write_end);
1945
1946 ssize_t
1947 generic_file_direct_write(struct kiocb *iocb, const struct iovec *iov,
1948                 unsigned long *nr_segs, loff_t pos, loff_t *ppos,
1949                 size_t count, size_t ocount)
1950 {
1951         struct file     *file = iocb->ki_filp;
1952         struct address_space *mapping = file->f_mapping;
1953         struct inode    *inode = mapping->host;
1954         ssize_t         written;
1955
1956         if (count != ocount)
1957                 *nr_segs = iov_shorten((struct iovec *)iov, *nr_segs, count);
1958
1959         written = generic_file_direct_IO(WRITE, iocb, iov, pos, *nr_segs);
1960         if (written > 0) {
1961                 loff_t end = pos + written;
1962                 if (end > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
1963                         i_size_write(inode,  end);
1964                         mark_inode_dirty(inode);
1965                 }
1966                 *ppos = end;
1967         }
1968
1969         /*
1970          * Sync the fs metadata but not the minor inode changes and
1971          * of course not the data as we did direct DMA for the IO.
1972          * i_mutex is held, which protects generic_osync_inode() from
1973          * livelocking.  AIO O_DIRECT ops attempt to sync metadata here.
1974          */
1975         if ((written >= 0 || written == -EIOCBQUEUED) &&
1976             ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
1977                 int err = generic_osync_inode(inode, mapping, OSYNC_METADATA);
1978                 if (err < 0)
1979                         written = err;
1980         }
1981         return written;
1982 }
1983 EXPORT_SYMBOL(generic_file_direct_write);
1984
1985 /*
1986  * Find or create a page at the given pagecache position. Return the locked
1987  * page. This function is specifically for buffered writes.
1988  */
1989 struct page *__grab_cache_page(struct address_space *mapping, pgoff_t index)
1990 {
1991         int status;
1992         struct page *page;
1993 repeat:
1994         page = find_lock_page(mapping, index);
1995         if (likely(page))
1996                 return page;
1997
1998         page = page_cache_alloc(mapping);
1999         if (!page)
2000                 return NULL;
2001         status = add_to_page_cache_lru(page, mapping, index, GFP_KERNEL);
2002         if (unlikely(status)) {
2003                 page_cache_release(page);
2004                 if (status == -EEXIST)
2005                         goto repeat;
2006                 return NULL;
2007         }
2008         return page;
2009 }
2010 EXPORT_SYMBOL(__grab_cache_page);
2011
2012 static ssize_t generic_perform_write_2copy(struct file *file,
2013                                 struct iov_iter *i, loff_t pos)
2014 {
2015         struct address_space *mapping = file->f_mapping;
2016         const struct address_space_operations *a_ops = mapping->a_ops;
2017         struct inode *inode = mapping->host;
2018         long status = 0;
2019         ssize_t written = 0;
2020
2021         do {
2022                 struct page *src_page;
2023                 struct page *page;
2024                 pgoff_t index;          /* Pagecache index for current page */
2025                 unsigned long offset;   /* Offset into pagecache page */
2026                 unsigned long bytes;    /* Bytes to write to page */
2027                 size_t copied;          /* Bytes copied from user */
2028
2029                 offset = (pos & (PAGE_CACHE_SIZE - 1));
2030                 index = pos >> PAGE_CACHE_SHIFT;
2031                 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2032                                                 iov_iter_count(i));
2033
2034                 /*
2035                  * a non-NULL src_page indicates that we're doing the
2036                  * copy via get_user_pages and kmap.
2037                  */
2038                 src_page = NULL;
2039
2040                 /*
2041                  * Bring in the user page that we will copy from _first_.
2042                  * Otherwise there's a nasty deadlock on copying from the
2043                  * same page as we're writing to, without it being marked
2044                  * up-to-date.
2045                  *
2046                  * Not only is this an optimisation, but it is also required
2047                  * to check that the address is actually valid, when atomic
2048                  * usercopies are used, below.
2049                  */
2050                 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2051                         status = -EFAULT;
2052                         break;
2053                 }
2054
2055                 page = __grab_cache_page(mapping, index);
2056                 if (!page) {
2057                         status = -ENOMEM;
2058                         break;
2059                 }
2060
2061                 /*
2062                  * non-uptodate pages cannot cope with short copies, and we
2063                  * cannot take a pagefault with the destination page locked.
2064                  * So pin the source page to copy it.
2065                  */
2066                 if (!PageUptodate(page) && !segment_eq(get_fs(), KERNEL_DS)) {
2067                         unlock_page(page);
2068
2069                         src_page = alloc_page(GFP_KERNEL);
2070                         if (!src_page) {
2071                                 page_cache_release(page);
2072                                 status = -ENOMEM;
2073                                 break;
2074                         }
2075
2076                         /*
2077                          * Cannot get_user_pages with a page locked for the
2078                          * same reason as we can't take a page fault with a
2079                          * page locked (as explained below).
2080                          */
2081                         copied = iov_iter_copy_from_user(src_page, i,
2082                                                                 offset, bytes);
2083                         if (unlikely(copied == 0)) {
2084                                 status = -EFAULT;
2085                                 page_cache_release(page);
2086                                 page_cache_release(src_page);
2087                                 break;
2088                         }
2089                         bytes = copied;
2090
2091                         lock_page(page);
2092                         /*
2093                          * Can't handle the page going uptodate here, because
2094                          * that means we would use non-atomic usercopies, which
2095                          * zero out the tail of the page, which can cause
2096                          * zeroes to become transiently visible. We could just
2097                          * use a non-zeroing copy, but the APIs aren't too
2098                          * consistent.
2099                          */
2100                         if (unlikely(!page->mapping || PageUptodate(page))) {
2101                                 unlock_page(page);
2102                                 page_cache_release(page);
2103                                 page_cache_release(src_page);
2104                                 continue;
2105                         }
2106                 }
2107
2108                 status = a_ops->prepare_write(file, page, offset, offset+bytes);
2109                 if (unlikely(status))
2110                         goto fs_write_aop_error;
2111
2112                 if (!src_page) {
2113                         /*
2114                          * Must not enter the pagefault handler here, because
2115                          * we hold the page lock, so we might recursively
2116                          * deadlock on the same lock, or get an ABBA deadlock
2117                          * against a different lock, or against the mmap_sem
2118                          * (which nests outside the page lock).  So increment
2119                          * preempt count, and use _atomic usercopies.
2120                          *
2121                          * The page is uptodate so we are OK to encounter a
2122                          * short copy: if unmodified parts of the page are
2123                          * marked dirty and written out to disk, it doesn't
2124                          * really matter.
2125                          */
2126                         pagefault_disable();
2127                         copied = iov_iter_copy_from_user_atomic(page, i,
2128                                                                 offset, bytes);
2129                         pagefault_enable();
2130                 } else {
2131                         void *src, *dst;
2132                         src = kmap_atomic(src_page, KM_USER0);
2133                         dst = kmap_atomic(page, KM_USER1);
2134                         memcpy(dst + offset, src + offset, bytes);
2135                         kunmap_atomic(dst, KM_USER1);
2136                         kunmap_atomic(src, KM_USER0);
2137                         copied = bytes;
2138                 }
2139                 flush_dcache_page(page);
2140
2141                 status = a_ops->commit_write(file, page, offset, offset+bytes);
2142                 if (unlikely(status < 0))
2143                         goto fs_write_aop_error;
2144                 if (unlikely(status > 0)) /* filesystem did partial write */
2145                         copied = min_t(size_t, copied, status);
2146
2147                 unlock_page(page);
2148                 mark_page_accessed(page);
2149                 page_cache_release(page);
2150                 if (src_page)
2151                         page_cache_release(src_page);
2152
2153                 iov_iter_advance(i, copied);
2154                 pos += copied;
2155                 written += copied;
2156
2157                 balance_dirty_pages_ratelimited(mapping);
2158                 cond_resched();
2159                 continue;
2160
2161 fs_write_aop_error:
2162                 unlock_page(page);
2163                 page_cache_release(page);
2164                 if (src_page)
2165                         page_cache_release(src_page);
2166
2167                 /*
2168                  * prepare_write() may have instantiated a few blocks
2169                  * outside i_size.  Trim these off again. Don't need
2170                  * i_size_read because we hold i_mutex.
2171                  */
2172                 if (pos + bytes > inode->i_size)
2173                         vmtruncate(inode, inode->i_size);
2174                 break;
2175         } while (iov_iter_count(i));
2176
2177         return written ? written : status;
2178 }
2179
2180 static ssize_t generic_perform_write(struct file *file,
2181                                 struct iov_iter *i, loff_t pos)
2182 {
2183         struct address_space *mapping = file->f_mapping;
2184         const struct address_space_operations *a_ops = mapping->a_ops;
2185         long status = 0;
2186         ssize_t written = 0;
2187         unsigned int flags = 0;
2188
2189         /*
2190          * Copies from kernel address space cannot fail (NFSD is a big user).
2191          */
2192         if (segment_eq(get_fs(), KERNEL_DS))
2193                 flags |= AOP_FLAG_UNINTERRUPTIBLE;
2194
2195         do {
2196                 struct page *page;
2197                 pgoff_t index;          /* Pagecache index for current page */
2198                 unsigned long offset;   /* Offset into pagecache page */
2199                 unsigned long bytes;    /* Bytes to write to page */
2200                 size_t copied;          /* Bytes copied from user */
2201                 void *fsdata;
2202
2203                 offset = (pos & (PAGE_CACHE_SIZE - 1));
2204                 index = pos >> PAGE_CACHE_SHIFT;
2205                 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2206                                                 iov_iter_count(i));
2207
2208 again:
2209
2210                 /*
2211                  * Bring in the user page that we will copy from _first_.
2212                  * Otherwise there's a nasty deadlock on copying from the
2213                  * same page as we're writing to, without it being marked
2214                  * up-to-date.
2215                  *
2216                  * Not only is this an optimisation, but it is also required
2217                  * to check that the address is actually valid, when atomic
2218                  * usercopies are used, below.
2219                  */
2220                 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2221                         status = -EFAULT;
2222                         break;
2223                 }
2224
2225                 status = a_ops->write_begin(file, mapping, pos, bytes, flags,
2226                                                 &page, &fsdata);
2227                 if (unlikely(status))
2228                         break;
2229
2230                 pagefault_disable();
2231                 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
2232                 pagefault_enable();
2233                 flush_dcache_page(page);
2234
2235                 status = a_ops->write_end(file, mapping, pos, bytes, copied,
2236                                                 page, fsdata);
2237                 if (unlikely(status < 0))
2238                         break;
2239                 copied = status;
2240
2241                 cond_resched();
2242
2243                 if (unlikely(copied == 0)) {
2244                         /*
2245                          * If we were unable to copy any data at all, we must
2246                          * fall back to a single segment length write.
2247                          *
2248                          * If we didn't fallback here, we could livelock
2249                          * because not all segments in the iov can be copied at
2250                          * once without a pagefault.
2251                          */
2252                         bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2253                                                 iov_iter_single_seg_count(i));
2254                         goto again;
2255                 }
2256                 iov_iter_advance(i, copied);
2257                 pos += copied;
2258                 written += copied;
2259
2260                 balance_dirty_pages_ratelimited(mapping);
2261
2262         } while (iov_iter_count(i));
2263
2264         return written ? written : status;
2265 }
2266
2267 ssize_t
2268 generic_file_buffered_write(struct kiocb *iocb, const struct iovec *iov,
2269                 unsigned long nr_segs, loff_t pos, loff_t *ppos,
2270                 size_t count, ssize_t written)
2271 {
2272         struct file *file = iocb->ki_filp;
2273         struct address_space *mapping = file->f_mapping;
2274         const struct address_space_operations *a_ops = mapping->a_ops;
2275         struct inode *inode = mapping->host;
2276         ssize_t status;
2277         struct iov_iter i;
2278
2279         iov_iter_init(&i, iov, nr_segs, count, written);
2280         if (a_ops->write_begin)
2281                 status = generic_perform_write(file, &i, pos);
2282         else
2283                 status = generic_perform_write_2copy(file, &i, pos);
2284
2285         if (likely(status >= 0)) {
2286                 written += status;
2287                 *ppos = pos + status;
2288
2289                 /*
2290                  * For now, when the user asks for O_SYNC, we'll actually give
2291                  * O_DSYNC
2292                  */
2293                 if (unlikely((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2294                         if (!a_ops->writepage || !is_sync_kiocb(iocb))
2295                                 status = generic_osync_inode(inode, mapping,
2296                                                 OSYNC_METADATA|OSYNC_DATA);
2297                 }
2298         }
2299         
2300         /*
2301          * If we get here for O_DIRECT writes then we must have fallen through
2302          * to buffered writes (block instantiation inside i_size).  So we sync
2303          * the file data here, to try to honour O_DIRECT expectations.
2304          */
2305         if (unlikely(file->f_flags & O_DIRECT) && written)
2306                 status = filemap_write_and_wait(mapping);
2307
2308         return written ? written : status;
2309 }
2310 EXPORT_SYMBOL(generic_file_buffered_write);
2311
2312 static ssize_t
2313 __generic_file_aio_write_nolock(struct kiocb *iocb, const struct iovec *iov,
2314                                 unsigned long nr_segs, loff_t *ppos)
2315 {
2316         struct file *file = iocb->ki_filp;
2317         struct address_space * mapping = file->f_mapping;
2318         size_t ocount;          /* original count */
2319         size_t count;           /* after file limit checks */
2320         struct inode    *inode = mapping->host;
2321         loff_t          pos;
2322         ssize_t         written;
2323         ssize_t         err;
2324
2325         ocount = 0;
2326         err = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ);
2327         if (err)
2328                 return err;
2329
2330         count = ocount;
2331         pos = *ppos;
2332
2333         vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
2334
2335         /* We can write back this queue in page reclaim */
2336         current->backing_dev_info = mapping->backing_dev_info;
2337         written = 0;
2338
2339         err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
2340         if (err)
2341                 goto out;
2342
2343         if (count == 0)
2344                 goto out;
2345
2346         err = remove_suid(file->f_path.dentry);
2347         if (err)
2348                 goto out;
2349
2350         file_update_time(file);
2351
2352         /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
2353         if (unlikely(file->f_flags & O_DIRECT)) {
2354                 loff_t endbyte;
2355                 ssize_t written_buffered;
2356
2357                 written = generic_file_direct_write(iocb, iov, &nr_segs, pos,
2358                                                         ppos, count, ocount);
2359                 if (written < 0 || written == count)
2360                         goto out;
2361                 /*
2362                  * direct-io write to a hole: fall through to buffered I/O
2363                  * for completing the rest of the request.
2364                  */
2365                 pos += written;
2366                 count -= written;
2367                 written_buffered = generic_file_buffered_write(iocb, iov,
2368                                                 nr_segs, pos, ppos, count,
2369                                                 written);
2370                 /*
2371                  * If generic_file_buffered_write() retuned a synchronous error
2372                  * then we want to return the number of bytes which were
2373                  * direct-written, or the error code if that was zero.  Note
2374                  * that this differs from normal direct-io semantics, which
2375                  * will return -EFOO even if some bytes were written.
2376                  */
2377                 if (written_buffered < 0) {
2378                         err = written_buffered;
2379                         goto out;
2380                 }
2381
2382                 /*
2383                  * We need to ensure that the page cache pages are written to
2384                  * disk and invalidated to preserve the expected O_DIRECT
2385                  * semantics.
2386                  */
2387                 endbyte = pos + written_buffered - written - 1;
2388                 err = do_sync_mapping_range(file->f_mapping, pos, endbyte,
2389                                             SYNC_FILE_RANGE_WAIT_BEFORE|
2390                                             SYNC_FILE_RANGE_WRITE|
2391                                             SYNC_FILE_RANGE_WAIT_AFTER);
2392                 if (err == 0) {
2393                         written = written_buffered;
2394                         invalidate_mapping_pages(mapping,
2395                                                  pos >> PAGE_CACHE_SHIFT,
2396                                                  endbyte >> PAGE_CACHE_SHIFT);
2397                 } else {
2398                         /*
2399                          * We don't know how much we wrote, so just return
2400                          * the number of bytes which were direct-written
2401                          */
2402                 }
2403         } else {
2404                 written = generic_file_buffered_write(iocb, iov, nr_segs,
2405                                 pos, ppos, count, written);
2406         }
2407 out:
2408         current->backing_dev_info = NULL;
2409         return written ? written : err;
2410 }
2411
2412 ssize_t generic_file_aio_write_nolock(struct kiocb *iocb,
2413                 const struct iovec *iov, unsigned long nr_segs, loff_t pos)
2414 {
2415         struct file *file = iocb->ki_filp;
2416         struct address_space *mapping = file->f_mapping;
2417         struct inode *inode = mapping->host;
2418         ssize_t ret;
2419
2420         BUG_ON(iocb->ki_pos != pos);
2421
2422         ret = __generic_file_aio_write_nolock(iocb, iov, nr_segs,
2423                         &iocb->ki_pos);
2424
2425         if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2426                 ssize_t err;
2427
2428                 err = sync_page_range_nolock(inode, mapping, pos, ret);
2429                 if (err < 0)
2430                         ret = err;
2431         }
2432         return ret;
2433 }
2434 EXPORT_SYMBOL(generic_file_aio_write_nolock);
2435
2436 ssize_t generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2437                 unsigned long nr_segs, loff_t pos)
2438 {
2439         struct file *file = iocb->ki_filp;
2440         struct address_space *mapping = file->f_mapping;
2441         struct inode *inode = mapping->host;
2442         ssize_t ret;
2443
2444         BUG_ON(iocb->ki_pos != pos);
2445
2446         mutex_lock(&inode->i_mutex);
2447         ret = __generic_file_aio_write_nolock(iocb, iov, nr_segs,
2448                         &iocb->ki_pos);
2449         mutex_unlock(&inode->i_mutex);
2450
2451         if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2452                 ssize_t err;
2453
2454                 err = sync_page_range(inode, mapping, pos, ret);
2455                 if (err < 0)
2456                         ret = err;
2457         }
2458         return ret;
2459 }
2460 EXPORT_SYMBOL(generic_file_aio_write);
2461
2462 /*
2463  * Called under i_mutex for writes to S_ISREG files.   Returns -EIO if something
2464  * went wrong during pagecache shootdown.
2465  */
2466 static ssize_t
2467 generic_file_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov,
2468         loff_t offset, unsigned long nr_segs)
2469 {
2470         struct file *file = iocb->ki_filp;
2471         struct address_space *mapping = file->f_mapping;
2472         ssize_t retval;
2473         size_t write_len;
2474         pgoff_t end = 0; /* silence gcc */
2475
2476         /*
2477          * If it's a write, unmap all mmappings of the file up-front.  This
2478          * will cause any pte dirty bits to be propagated into the pageframes
2479          * for the subsequent filemap_write_and_wait().
2480          */
2481         if (rw == WRITE) {
2482                 write_len = iov_length(iov, nr_segs);
2483                 end = (offset + write_len - 1) >> PAGE_CACHE_SHIFT;
2484                 if (mapping_mapped(mapping))
2485                         unmap_mapping_range(mapping, offset, write_len, 0);
2486         }
2487
2488         retval = filemap_write_and_wait(mapping);
2489         if (retval)
2490                 goto out;
2491
2492         /*
2493          * After a write we want buffered reads to be sure to go to disk to get
2494          * the new data.  We invalidate clean cached page from the region we're
2495          * about to write.  We do this *before* the write so that we can return
2496          * -EIO without clobbering -EIOCBQUEUED from ->direct_IO().
2497          */
2498         if (rw == WRITE && mapping->nrpages) {
2499                 retval = invalidate_inode_pages2_range(mapping,
2500                                         offset >> PAGE_CACHE_SHIFT, end);
2501                 if (retval)
2502                         goto out;
2503         }
2504
2505         retval = mapping->a_ops->direct_IO(rw, iocb, iov, offset, nr_segs);
2506         if (retval)
2507                 goto out;
2508
2509         /*
2510          * Finally, try again to invalidate clean pages which might have been
2511          * faulted in by get_user_pages() if the source of the write was an
2512          * mmap()ed region of the file we're writing.  That's a pretty crazy
2513          * thing to do, so we don't support it 100%.  If this invalidation
2514          * fails and we have -EIOCBQUEUED we ignore the failure.
2515          */
2516         if (rw == WRITE && mapping->nrpages) {
2517                 int err = invalidate_inode_pages2_range(mapping,
2518                                               offset >> PAGE_CACHE_SHIFT, end);
2519                 if (err && retval >= 0)
2520                         retval = err;
2521         }
2522 out:
2523         return retval;
2524 }
2525
2526 /**
2527  * try_to_release_page() - release old fs-specific metadata on a page
2528  *
2529  * @page: the page which the kernel is trying to free
2530  * @gfp_mask: memory allocation flags (and I/O mode)
2531  *
2532  * The address_space is to try to release any data against the page
2533  * (presumably at page->private).  If the release was successful, return `1'.
2534  * Otherwise return zero.
2535  *
2536  * The @gfp_mask argument specifies whether I/O may be performed to release
2537  * this page (__GFP_IO), and whether the call may block (__GFP_WAIT).
2538  *
2539  * NOTE: @gfp_mask may go away, and this function may become non-blocking.
2540  */
2541 int try_to_release_page(struct page *page, gfp_t gfp_mask)
2542 {
2543         struct address_space * const mapping = page->mapping;
2544
2545         BUG_ON(!PageLocked(page));
2546         if (PageWriteback(page))
2547                 return 0;
2548
2549         if (mapping && mapping->a_ops->releasepage)
2550                 return mapping->a_ops->releasepage(page, gfp_mask);
2551         return try_to_free_buffers(page);
2552 }
2553
2554 EXPORT_SYMBOL(try_to_release_page);