1 // SPDX-License-Identifier: GPL-2.0-only
5 * Copyright (C) 1994-1999 Linus Torvalds
9 * This file handles the generic file mmap semantics used by
10 * most "normal" filesystems (but you don't /have/ to use this:
11 * the NFS filesystem used to do this differently, for example)
13 #include <linux/export.h>
14 #include <linux/compiler.h>
15 #include <linux/dax.h>
17 #include <linux/sched/signal.h>
18 #include <linux/uaccess.h>
19 #include <linux/capability.h>
20 #include <linux/kernel_stat.h>
21 #include <linux/gfp.h>
23 #include <linux/swap.h>
24 #include <linux/swapops.h>
25 #include <linux/mman.h>
26 #include <linux/pagemap.h>
27 #include <linux/file.h>
28 #include <linux/uio.h>
29 #include <linux/error-injection.h>
30 #include <linux/hash.h>
31 #include <linux/writeback.h>
32 #include <linux/backing-dev.h>
33 #include <linux/pagevec.h>
34 #include <linux/security.h>
35 #include <linux/cpuset.h>
36 #include <linux/hugetlb.h>
37 #include <linux/memcontrol.h>
38 #include <linux/shmem_fs.h>
39 #include <linux/rmap.h>
40 #include <linux/delayacct.h>
41 #include <linux/psi.h>
42 #include <linux/ramfs.h>
43 #include <linux/page_idle.h>
44 #include <linux/migrate.h>
45 #include <asm/pgalloc.h>
46 #include <asm/tlbflush.h>
49 #define CREATE_TRACE_POINTS
50 #include <trace/events/filemap.h>
53 * FIXME: remove all knowledge of the buffer layer from the core VM
55 #include <linux/buffer_head.h> /* for try_to_free_buffers */
60 * Shared mappings implemented 30.11.1994. It's not fully working yet,
63 * Shared mappings now work. 15.8.1995 Bruno.
65 * finished 'unifying' the page and buffer cache and SMP-threaded the
66 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
68 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
74 * ->i_mmap_rwsem (truncate_pagecache)
75 * ->private_lock (__free_pte->block_dirty_folio)
76 * ->swap_lock (exclusive_swap_page, others)
80 * ->invalidate_lock (acquired by fs in truncate path)
81 * ->i_mmap_rwsem (truncate->unmap_mapping_range)
85 * ->page_table_lock or pte_lock (various, mainly in memory.c)
86 * ->i_pages lock (arch-dependent flush_dcache_mmap_lock)
89 * ->invalidate_lock (filemap_fault)
90 * ->lock_page (filemap_fault, access_process_vm)
92 * ->i_rwsem (generic_perform_write)
93 * ->mmap_lock (fault_in_readable->do_page_fault)
96 * sb_lock (fs/fs-writeback.c)
97 * ->i_pages lock (__sync_single_inode)
100 * ->anon_vma.lock (vma_adjust)
103 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
105 * ->page_table_lock or pte_lock
106 * ->swap_lock (try_to_unmap_one)
107 * ->private_lock (try_to_unmap_one)
108 * ->i_pages lock (try_to_unmap_one)
109 * ->lruvec->lru_lock (follow_page->mark_page_accessed)
110 * ->lruvec->lru_lock (check_pte_range->isolate_lru_page)
111 * ->private_lock (page_remove_rmap->set_page_dirty)
112 * ->i_pages lock (page_remove_rmap->set_page_dirty)
113 * bdi.wb->list_lock (page_remove_rmap->set_page_dirty)
114 * ->inode->i_lock (page_remove_rmap->set_page_dirty)
115 * ->memcg->move_lock (page_remove_rmap->lock_page_memcg)
116 * bdi.wb->list_lock (zap_pte_range->set_page_dirty)
117 * ->inode->i_lock (zap_pte_range->set_page_dirty)
118 * ->private_lock (zap_pte_range->block_dirty_folio)
121 * ->tasklist_lock (memory_failure, collect_procs_ao)
124 static void page_cache_delete(struct address_space *mapping,
125 struct folio *folio, void *shadow)
127 XA_STATE(xas, &mapping->i_pages, folio->index);
130 mapping_set_update(&xas, mapping);
132 /* hugetlb pages are represented by a single entry in the xarray */
133 if (!folio_test_hugetlb(folio)) {
134 xas_set_order(&xas, folio->index, folio_order(folio));
135 nr = folio_nr_pages(folio);
138 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
140 xas_store(&xas, shadow);
141 xas_init_marks(&xas);
143 folio->mapping = NULL;
144 /* Leave page->index set: truncation lookup relies upon it */
145 mapping->nrpages -= nr;
148 static void filemap_unaccount_folio(struct address_space *mapping,
153 VM_BUG_ON_FOLIO(folio_mapped(folio), folio);
154 if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(folio_mapped(folio))) {
155 pr_alert("BUG: Bad page cache in process %s pfn:%05lx\n",
156 current->comm, folio_pfn(folio));
157 dump_page(&folio->page, "still mapped when deleted");
159 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
161 if (mapping_exiting(mapping) && !folio_test_large(folio)) {
162 int mapcount = page_mapcount(&folio->page);
164 if (folio_ref_count(folio) >= mapcount + 2) {
166 * All vmas have already been torn down, so it's
167 * a good bet that actually the page is unmapped
168 * and we'd rather not leak it: if we're wrong,
169 * another bad page check should catch it later.
171 page_mapcount_reset(&folio->page);
172 folio_ref_sub(folio, mapcount);
177 /* hugetlb folios do not participate in page cache accounting. */
178 if (folio_test_hugetlb(folio))
181 nr = folio_nr_pages(folio);
183 __lruvec_stat_mod_folio(folio, NR_FILE_PAGES, -nr);
184 if (folio_test_swapbacked(folio)) {
185 __lruvec_stat_mod_folio(folio, NR_SHMEM, -nr);
186 if (folio_test_pmd_mappable(folio))
187 __lruvec_stat_mod_folio(folio, NR_SHMEM_THPS, -nr);
188 } else if (folio_test_pmd_mappable(folio)) {
189 __lruvec_stat_mod_folio(folio, NR_FILE_THPS, -nr);
190 filemap_nr_thps_dec(mapping);
194 * At this point folio must be either written or cleaned by
195 * truncate. Dirty folio here signals a bug and loss of
196 * unwritten data - on ordinary filesystems.
198 * But it's harmless on in-memory filesystems like tmpfs; and can
199 * occur when a driver which did get_user_pages() sets page dirty
200 * before putting it, while the inode is being finally evicted.
202 * Below fixes dirty accounting after removing the folio entirely
203 * but leaves the dirty flag set: it has no effect for truncated
204 * folio and anyway will be cleared before returning folio to
207 if (WARN_ON_ONCE(folio_test_dirty(folio) &&
208 mapping_can_writeback(mapping)))
209 folio_account_cleaned(folio, inode_to_wb(mapping->host));
213 * Delete a page from the page cache and free it. Caller has to make
214 * sure the page is locked and that nobody else uses it - or that usage
215 * is safe. The caller must hold the i_pages lock.
217 void __filemap_remove_folio(struct folio *folio, void *shadow)
219 struct address_space *mapping = folio->mapping;
221 trace_mm_filemap_delete_from_page_cache(folio);
222 filemap_unaccount_folio(mapping, folio);
223 page_cache_delete(mapping, folio, shadow);
226 void filemap_free_folio(struct address_space *mapping, struct folio *folio)
228 void (*free_folio)(struct folio *);
231 free_folio = mapping->a_ops->free_folio;
235 if (folio_test_large(folio) && !folio_test_hugetlb(folio))
236 refs = folio_nr_pages(folio);
237 folio_put_refs(folio, refs);
241 * filemap_remove_folio - Remove folio from page cache.
244 * This must be called only on folios that are locked and have been
245 * verified to be in the page cache. It will never put the folio into
246 * the free list because the caller has a reference on the page.
248 void filemap_remove_folio(struct folio *folio)
250 struct address_space *mapping = folio->mapping;
252 BUG_ON(!folio_test_locked(folio));
253 spin_lock(&mapping->host->i_lock);
254 xa_lock_irq(&mapping->i_pages);
255 __filemap_remove_folio(folio, NULL);
256 xa_unlock_irq(&mapping->i_pages);
257 if (mapping_shrinkable(mapping))
258 inode_add_lru(mapping->host);
259 spin_unlock(&mapping->host->i_lock);
261 filemap_free_folio(mapping, folio);
265 * page_cache_delete_batch - delete several folios from page cache
266 * @mapping: the mapping to which folios belong
267 * @fbatch: batch of folios to delete
269 * The function walks over mapping->i_pages and removes folios passed in
270 * @fbatch from the mapping. The function expects @fbatch to be sorted
271 * by page index and is optimised for it to be dense.
272 * It tolerates holes in @fbatch (mapping entries at those indices are not
275 * The function expects the i_pages lock to be held.
277 static void page_cache_delete_batch(struct address_space *mapping,
278 struct folio_batch *fbatch)
280 XA_STATE(xas, &mapping->i_pages, fbatch->folios[0]->index);
281 long total_pages = 0;
285 mapping_set_update(&xas, mapping);
286 xas_for_each(&xas, folio, ULONG_MAX) {
287 if (i >= folio_batch_count(fbatch))
290 /* A swap/dax/shadow entry got inserted? Skip it. */
291 if (xa_is_value(folio))
294 * A page got inserted in our range? Skip it. We have our
295 * pages locked so they are protected from being removed.
296 * If we see a page whose index is higher than ours, it
297 * means our page has been removed, which shouldn't be
298 * possible because we're holding the PageLock.
300 if (folio != fbatch->folios[i]) {
301 VM_BUG_ON_FOLIO(folio->index >
302 fbatch->folios[i]->index, folio);
306 WARN_ON_ONCE(!folio_test_locked(folio));
308 folio->mapping = NULL;
309 /* Leave folio->index set: truncation lookup relies on it */
312 xas_store(&xas, NULL);
313 total_pages += folio_nr_pages(folio);
315 mapping->nrpages -= total_pages;
318 void delete_from_page_cache_batch(struct address_space *mapping,
319 struct folio_batch *fbatch)
323 if (!folio_batch_count(fbatch))
326 spin_lock(&mapping->host->i_lock);
327 xa_lock_irq(&mapping->i_pages);
328 for (i = 0; i < folio_batch_count(fbatch); i++) {
329 struct folio *folio = fbatch->folios[i];
331 trace_mm_filemap_delete_from_page_cache(folio);
332 filemap_unaccount_folio(mapping, folio);
334 page_cache_delete_batch(mapping, fbatch);
335 xa_unlock_irq(&mapping->i_pages);
336 if (mapping_shrinkable(mapping))
337 inode_add_lru(mapping->host);
338 spin_unlock(&mapping->host->i_lock);
340 for (i = 0; i < folio_batch_count(fbatch); i++)
341 filemap_free_folio(mapping, fbatch->folios[i]);
344 int filemap_check_errors(struct address_space *mapping)
347 /* Check for outstanding write errors */
348 if (test_bit(AS_ENOSPC, &mapping->flags) &&
349 test_and_clear_bit(AS_ENOSPC, &mapping->flags))
351 if (test_bit(AS_EIO, &mapping->flags) &&
352 test_and_clear_bit(AS_EIO, &mapping->flags))
356 EXPORT_SYMBOL(filemap_check_errors);
358 static int filemap_check_and_keep_errors(struct address_space *mapping)
360 /* Check for outstanding write errors */
361 if (test_bit(AS_EIO, &mapping->flags))
363 if (test_bit(AS_ENOSPC, &mapping->flags))
369 * filemap_fdatawrite_wbc - start writeback on mapping dirty pages in range
370 * @mapping: address space structure to write
371 * @wbc: the writeback_control controlling the writeout
373 * Call writepages on the mapping using the provided wbc to control the
376 * Return: %0 on success, negative error code otherwise.
378 int filemap_fdatawrite_wbc(struct address_space *mapping,
379 struct writeback_control *wbc)
383 if (!mapping_can_writeback(mapping) ||
384 !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
387 wbc_attach_fdatawrite_inode(wbc, mapping->host);
388 ret = do_writepages(mapping, wbc);
389 wbc_detach_inode(wbc);
392 EXPORT_SYMBOL(filemap_fdatawrite_wbc);
395 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
396 * @mapping: address space structure to write
397 * @start: offset in bytes where the range starts
398 * @end: offset in bytes where the range ends (inclusive)
399 * @sync_mode: enable synchronous operation
401 * Start writeback against all of a mapping's dirty pages that lie
402 * within the byte offsets <start, end> inclusive.
404 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
405 * opposed to a regular memory cleansing writeback. The difference between
406 * these two operations is that if a dirty page/buffer is encountered, it must
407 * be waited upon, and not just skipped over.
409 * Return: %0 on success, negative error code otherwise.
411 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
412 loff_t end, int sync_mode)
414 struct writeback_control wbc = {
415 .sync_mode = sync_mode,
416 .nr_to_write = LONG_MAX,
417 .range_start = start,
421 return filemap_fdatawrite_wbc(mapping, &wbc);
424 static inline int __filemap_fdatawrite(struct address_space *mapping,
427 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
430 int filemap_fdatawrite(struct address_space *mapping)
432 return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
434 EXPORT_SYMBOL(filemap_fdatawrite);
436 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
439 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
441 EXPORT_SYMBOL(filemap_fdatawrite_range);
444 * filemap_flush - mostly a non-blocking flush
445 * @mapping: target address_space
447 * This is a mostly non-blocking flush. Not suitable for data-integrity
448 * purposes - I/O may not be started against all dirty pages.
450 * Return: %0 on success, negative error code otherwise.
452 int filemap_flush(struct address_space *mapping)
454 return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
456 EXPORT_SYMBOL(filemap_flush);
459 * filemap_range_has_page - check if a page exists in range.
460 * @mapping: address space within which to check
461 * @start_byte: offset in bytes where the range starts
462 * @end_byte: offset in bytes where the range ends (inclusive)
464 * Find at least one page in the range supplied, usually used to check if
465 * direct writing in this range will trigger a writeback.
467 * Return: %true if at least one page exists in the specified range,
470 bool filemap_range_has_page(struct address_space *mapping,
471 loff_t start_byte, loff_t end_byte)
474 XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT);
475 pgoff_t max = end_byte >> PAGE_SHIFT;
477 if (end_byte < start_byte)
482 page = xas_find(&xas, max);
483 if (xas_retry(&xas, page))
485 /* Shadow entries don't count */
486 if (xa_is_value(page))
489 * We don't need to try to pin this page; we're about to
490 * release the RCU lock anyway. It is enough to know that
491 * there was a page here recently.
499 EXPORT_SYMBOL(filemap_range_has_page);
501 static void __filemap_fdatawait_range(struct address_space *mapping,
502 loff_t start_byte, loff_t end_byte)
504 pgoff_t index = start_byte >> PAGE_SHIFT;
505 pgoff_t end = end_byte >> PAGE_SHIFT;
509 if (end_byte < start_byte)
513 while (index <= end) {
516 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index,
517 end, PAGECACHE_TAG_WRITEBACK);
521 for (i = 0; i < nr_pages; i++) {
522 struct page *page = pvec.pages[i];
524 wait_on_page_writeback(page);
525 ClearPageError(page);
527 pagevec_release(&pvec);
533 * filemap_fdatawait_range - wait for writeback to complete
534 * @mapping: address space structure to wait for
535 * @start_byte: offset in bytes where the range starts
536 * @end_byte: offset in bytes where the range ends (inclusive)
538 * Walk the list of under-writeback pages of the given address space
539 * in the given range and wait for all of them. Check error status of
540 * the address space and return it.
542 * Since the error status of the address space is cleared by this function,
543 * callers are responsible for checking the return value and handling and/or
544 * reporting the error.
546 * Return: error status of the address space.
548 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
551 __filemap_fdatawait_range(mapping, start_byte, end_byte);
552 return filemap_check_errors(mapping);
554 EXPORT_SYMBOL(filemap_fdatawait_range);
557 * filemap_fdatawait_range_keep_errors - wait for writeback to complete
558 * @mapping: address space structure to wait for
559 * @start_byte: offset in bytes where the range starts
560 * @end_byte: offset in bytes where the range ends (inclusive)
562 * Walk the list of under-writeback pages of the given address space in the
563 * given range and wait for all of them. Unlike filemap_fdatawait_range(),
564 * this function does not clear error status of the address space.
566 * Use this function if callers don't handle errors themselves. Expected
567 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
570 int filemap_fdatawait_range_keep_errors(struct address_space *mapping,
571 loff_t start_byte, loff_t end_byte)
573 __filemap_fdatawait_range(mapping, start_byte, end_byte);
574 return filemap_check_and_keep_errors(mapping);
576 EXPORT_SYMBOL(filemap_fdatawait_range_keep_errors);
579 * file_fdatawait_range - wait for writeback to complete
580 * @file: file pointing to address space structure to wait for
581 * @start_byte: offset in bytes where the range starts
582 * @end_byte: offset in bytes where the range ends (inclusive)
584 * Walk the list of under-writeback pages of the address space that file
585 * refers to, in the given range and wait for all of them. Check error
586 * status of the address space vs. the file->f_wb_err cursor and return it.
588 * Since the error status of the file is advanced by this function,
589 * callers are responsible for checking the return value and handling and/or
590 * reporting the error.
592 * Return: error status of the address space vs. the file->f_wb_err cursor.
594 int file_fdatawait_range(struct file *file, loff_t start_byte, loff_t end_byte)
596 struct address_space *mapping = file->f_mapping;
598 __filemap_fdatawait_range(mapping, start_byte, end_byte);
599 return file_check_and_advance_wb_err(file);
601 EXPORT_SYMBOL(file_fdatawait_range);
604 * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
605 * @mapping: address space structure to wait for
607 * Walk the list of under-writeback pages of the given address space
608 * and wait for all of them. Unlike filemap_fdatawait(), this function
609 * does not clear error status of the address space.
611 * Use this function if callers don't handle errors themselves. Expected
612 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
615 * Return: error status of the address space.
617 int filemap_fdatawait_keep_errors(struct address_space *mapping)
619 __filemap_fdatawait_range(mapping, 0, LLONG_MAX);
620 return filemap_check_and_keep_errors(mapping);
622 EXPORT_SYMBOL(filemap_fdatawait_keep_errors);
624 /* Returns true if writeback might be needed or already in progress. */
625 static bool mapping_needs_writeback(struct address_space *mapping)
627 return mapping->nrpages;
630 bool filemap_range_has_writeback(struct address_space *mapping,
631 loff_t start_byte, loff_t end_byte)
633 XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT);
634 pgoff_t max = end_byte >> PAGE_SHIFT;
637 if (end_byte < start_byte)
641 xas_for_each(&xas, page, max) {
642 if (xas_retry(&xas, page))
644 if (xa_is_value(page))
646 if (PageDirty(page) || PageLocked(page) || PageWriteback(page))
652 EXPORT_SYMBOL_GPL(filemap_range_has_writeback);
655 * filemap_write_and_wait_range - write out & wait on a file range
656 * @mapping: the address_space for the pages
657 * @lstart: offset in bytes where the range starts
658 * @lend: offset in bytes where the range ends (inclusive)
660 * Write out and wait upon file offsets lstart->lend, inclusive.
662 * Note that @lend is inclusive (describes the last byte to be written) so
663 * that this function can be used to write to the very end-of-file (end = -1).
665 * Return: error status of the address space.
667 int filemap_write_and_wait_range(struct address_space *mapping,
668 loff_t lstart, loff_t lend)
672 if (mapping_needs_writeback(mapping)) {
673 err = __filemap_fdatawrite_range(mapping, lstart, lend,
676 * Even if the above returned error, the pages may be
677 * written partially (e.g. -ENOSPC), so we wait for it.
678 * But the -EIO is special case, it may indicate the worst
679 * thing (e.g. bug) happened, so we avoid waiting for it.
682 __filemap_fdatawait_range(mapping, lstart, lend);
684 err2 = filemap_check_errors(mapping);
689 EXPORT_SYMBOL(filemap_write_and_wait_range);
691 void __filemap_set_wb_err(struct address_space *mapping, int err)
693 errseq_t eseq = errseq_set(&mapping->wb_err, err);
695 trace_filemap_set_wb_err(mapping, eseq);
697 EXPORT_SYMBOL(__filemap_set_wb_err);
700 * file_check_and_advance_wb_err - report wb error (if any) that was previously
701 * and advance wb_err to current one
702 * @file: struct file on which the error is being reported
704 * When userland calls fsync (or something like nfsd does the equivalent), we
705 * want to report any writeback errors that occurred since the last fsync (or
706 * since the file was opened if there haven't been any).
708 * Grab the wb_err from the mapping. If it matches what we have in the file,
709 * then just quickly return 0. The file is all caught up.
711 * If it doesn't match, then take the mapping value, set the "seen" flag in
712 * it and try to swap it into place. If it works, or another task beat us
713 * to it with the new value, then update the f_wb_err and return the error
714 * portion. The error at this point must be reported via proper channels
715 * (a'la fsync, or NFS COMMIT operation, etc.).
717 * While we handle mapping->wb_err with atomic operations, the f_wb_err
718 * value is protected by the f_lock since we must ensure that it reflects
719 * the latest value swapped in for this file descriptor.
721 * Return: %0 on success, negative error code otherwise.
723 int file_check_and_advance_wb_err(struct file *file)
726 errseq_t old = READ_ONCE(file->f_wb_err);
727 struct address_space *mapping = file->f_mapping;
729 /* Locklessly handle the common case where nothing has changed */
730 if (errseq_check(&mapping->wb_err, old)) {
731 /* Something changed, must use slow path */
732 spin_lock(&file->f_lock);
733 old = file->f_wb_err;
734 err = errseq_check_and_advance(&mapping->wb_err,
736 trace_file_check_and_advance_wb_err(file, old);
737 spin_unlock(&file->f_lock);
741 * We're mostly using this function as a drop in replacement for
742 * filemap_check_errors. Clear AS_EIO/AS_ENOSPC to emulate the effect
743 * that the legacy code would have had on these flags.
745 clear_bit(AS_EIO, &mapping->flags);
746 clear_bit(AS_ENOSPC, &mapping->flags);
749 EXPORT_SYMBOL(file_check_and_advance_wb_err);
752 * file_write_and_wait_range - write out & wait on a file range
753 * @file: file pointing to address_space with pages
754 * @lstart: offset in bytes where the range starts
755 * @lend: offset in bytes where the range ends (inclusive)
757 * Write out and wait upon file offsets lstart->lend, inclusive.
759 * Note that @lend is inclusive (describes the last byte to be written) so
760 * that this function can be used to write to the very end-of-file (end = -1).
762 * After writing out and waiting on the data, we check and advance the
763 * f_wb_err cursor to the latest value, and return any errors detected there.
765 * Return: %0 on success, negative error code otherwise.
767 int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend)
770 struct address_space *mapping = file->f_mapping;
772 if (mapping_needs_writeback(mapping)) {
773 err = __filemap_fdatawrite_range(mapping, lstart, lend,
775 /* See comment of filemap_write_and_wait() */
777 __filemap_fdatawait_range(mapping, lstart, lend);
779 err2 = file_check_and_advance_wb_err(file);
784 EXPORT_SYMBOL(file_write_and_wait_range);
787 * replace_page_cache_page - replace a pagecache page with a new one
788 * @old: page to be replaced
789 * @new: page to replace with
791 * This function replaces a page in the pagecache with a new one. On
792 * success it acquires the pagecache reference for the new page and
793 * drops it for the old page. Both the old and new pages must be
794 * locked. This function does not add the new page to the LRU, the
795 * caller must do that.
797 * The remove + add is atomic. This function cannot fail.
799 void replace_page_cache_page(struct page *old, struct page *new)
801 struct folio *fold = page_folio(old);
802 struct folio *fnew = page_folio(new);
803 struct address_space *mapping = old->mapping;
804 void (*free_folio)(struct folio *) = mapping->a_ops->free_folio;
805 pgoff_t offset = old->index;
806 XA_STATE(xas, &mapping->i_pages, offset);
808 VM_BUG_ON_PAGE(!PageLocked(old), old);
809 VM_BUG_ON_PAGE(!PageLocked(new), new);
810 VM_BUG_ON_PAGE(new->mapping, new);
813 new->mapping = mapping;
816 mem_cgroup_migrate(fold, fnew);
819 xas_store(&xas, new);
822 /* hugetlb pages do not participate in page cache accounting. */
824 __dec_lruvec_page_state(old, NR_FILE_PAGES);
826 __inc_lruvec_page_state(new, NR_FILE_PAGES);
827 if (PageSwapBacked(old))
828 __dec_lruvec_page_state(old, NR_SHMEM);
829 if (PageSwapBacked(new))
830 __inc_lruvec_page_state(new, NR_SHMEM);
831 xas_unlock_irq(&xas);
836 EXPORT_SYMBOL_GPL(replace_page_cache_page);
838 noinline int __filemap_add_folio(struct address_space *mapping,
839 struct folio *folio, pgoff_t index, gfp_t gfp, void **shadowp)
841 XA_STATE(xas, &mapping->i_pages, index);
842 int huge = folio_test_hugetlb(folio);
843 bool charged = false;
846 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
847 VM_BUG_ON_FOLIO(folio_test_swapbacked(folio), folio);
848 mapping_set_update(&xas, mapping);
851 int error = mem_cgroup_charge(folio, NULL, gfp);
852 VM_BUG_ON_FOLIO(index & (folio_nr_pages(folio) - 1), folio);
856 xas_set_order(&xas, index, folio_order(folio));
857 nr = folio_nr_pages(folio);
860 gfp &= GFP_RECLAIM_MASK;
861 folio_ref_add(folio, nr);
862 folio->mapping = mapping;
863 folio->index = xas.xa_index;
866 unsigned int order = xa_get_order(xas.xa, xas.xa_index);
867 void *entry, *old = NULL;
869 if (order > folio_order(folio))
870 xas_split_alloc(&xas, xa_load(xas.xa, xas.xa_index),
873 xas_for_each_conflict(&xas, entry) {
875 if (!xa_is_value(entry)) {
876 xas_set_err(&xas, -EEXIST);
884 /* entry may have been split before we acquired lock */
885 order = xa_get_order(xas.xa, xas.xa_index);
886 if (order > folio_order(folio)) {
887 /* How to handle large swap entries? */
888 BUG_ON(shmem_mapping(mapping));
889 xas_split(&xas, old, order);
894 xas_store(&xas, folio);
898 mapping->nrpages += nr;
900 /* hugetlb pages do not participate in page cache accounting */
902 __lruvec_stat_mod_folio(folio, NR_FILE_PAGES, nr);
903 if (folio_test_pmd_mappable(folio))
904 __lruvec_stat_mod_folio(folio,
908 xas_unlock_irq(&xas);
909 } while (xas_nomem(&xas, gfp));
914 trace_mm_filemap_add_to_page_cache(folio);
918 mem_cgroup_uncharge(folio);
919 folio->mapping = NULL;
920 /* Leave page->index set: truncation relies upon it */
921 folio_put_refs(folio, nr);
922 return xas_error(&xas);
924 ALLOW_ERROR_INJECTION(__filemap_add_folio, ERRNO);
926 int filemap_add_folio(struct address_space *mapping, struct folio *folio,
927 pgoff_t index, gfp_t gfp)
932 __folio_set_locked(folio);
933 ret = __filemap_add_folio(mapping, folio, index, gfp, &shadow);
935 __folio_clear_locked(folio);
938 * The folio might have been evicted from cache only
939 * recently, in which case it should be activated like
940 * any other repeatedly accessed folio.
941 * The exception is folios getting rewritten; evicting other
942 * data from the working set, only to cache data that will
943 * get overwritten with something else, is a waste of memory.
945 WARN_ON_ONCE(folio_test_active(folio));
946 if (!(gfp & __GFP_WRITE) && shadow)
947 workingset_refault(folio, shadow);
948 folio_add_lru(folio);
952 EXPORT_SYMBOL_GPL(filemap_add_folio);
955 struct folio *filemap_alloc_folio(gfp_t gfp, unsigned int order)
960 if (cpuset_do_page_mem_spread()) {
961 unsigned int cpuset_mems_cookie;
963 cpuset_mems_cookie = read_mems_allowed_begin();
964 n = cpuset_mem_spread_node();
965 folio = __folio_alloc_node(gfp, order, n);
966 } while (!folio && read_mems_allowed_retry(cpuset_mems_cookie));
970 return folio_alloc(gfp, order);
972 EXPORT_SYMBOL(filemap_alloc_folio);
976 * filemap_invalidate_lock_two - lock invalidate_lock for two mappings
978 * Lock exclusively invalidate_lock of any passed mapping that is not NULL.
980 * @mapping1: the first mapping to lock
981 * @mapping2: the second mapping to lock
983 void filemap_invalidate_lock_two(struct address_space *mapping1,
984 struct address_space *mapping2)
986 if (mapping1 > mapping2)
987 swap(mapping1, mapping2);
989 down_write(&mapping1->invalidate_lock);
990 if (mapping2 && mapping1 != mapping2)
991 down_write_nested(&mapping2->invalidate_lock, 1);
993 EXPORT_SYMBOL(filemap_invalidate_lock_two);
996 * filemap_invalidate_unlock_two - unlock invalidate_lock for two mappings
998 * Unlock exclusive invalidate_lock of any passed mapping that is not NULL.
1000 * @mapping1: the first mapping to unlock
1001 * @mapping2: the second mapping to unlock
1003 void filemap_invalidate_unlock_two(struct address_space *mapping1,
1004 struct address_space *mapping2)
1007 up_write(&mapping1->invalidate_lock);
1008 if (mapping2 && mapping1 != mapping2)
1009 up_write(&mapping2->invalidate_lock);
1011 EXPORT_SYMBOL(filemap_invalidate_unlock_two);
1014 * In order to wait for pages to become available there must be
1015 * waitqueues associated with pages. By using a hash table of
1016 * waitqueues where the bucket discipline is to maintain all
1017 * waiters on the same queue and wake all when any of the pages
1018 * become available, and for the woken contexts to check to be
1019 * sure the appropriate page became available, this saves space
1020 * at a cost of "thundering herd" phenomena during rare hash
1023 #define PAGE_WAIT_TABLE_BITS 8
1024 #define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS)
1025 static wait_queue_head_t folio_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned;
1027 static wait_queue_head_t *folio_waitqueue(struct folio *folio)
1029 return &folio_wait_table[hash_ptr(folio, PAGE_WAIT_TABLE_BITS)];
1032 void __init pagecache_init(void)
1036 for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++)
1037 init_waitqueue_head(&folio_wait_table[i]);
1039 page_writeback_init();
1043 * The page wait code treats the "wait->flags" somewhat unusually, because
1044 * we have multiple different kinds of waits, not just the usual "exclusive"
1049 * (a) no special bits set:
1051 * We're just waiting for the bit to be released, and when a waker
1052 * calls the wakeup function, we set WQ_FLAG_WOKEN and wake it up,
1053 * and remove it from the wait queue.
1055 * Simple and straightforward.
1057 * (b) WQ_FLAG_EXCLUSIVE:
1059 * The waiter is waiting to get the lock, and only one waiter should
1060 * be woken up to avoid any thundering herd behavior. We'll set the
1061 * WQ_FLAG_WOKEN bit, wake it up, and remove it from the wait queue.
1063 * This is the traditional exclusive wait.
1065 * (c) WQ_FLAG_EXCLUSIVE | WQ_FLAG_CUSTOM:
1067 * The waiter is waiting to get the bit, and additionally wants the
1068 * lock to be transferred to it for fair lock behavior. If the lock
1069 * cannot be taken, we stop walking the wait queue without waking
1072 * This is the "fair lock handoff" case, and in addition to setting
1073 * WQ_FLAG_WOKEN, we set WQ_FLAG_DONE to let the waiter easily see
1074 * that it now has the lock.
1076 static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg)
1079 struct wait_page_key *key = arg;
1080 struct wait_page_queue *wait_page
1081 = container_of(wait, struct wait_page_queue, wait);
1083 if (!wake_page_match(wait_page, key))
1087 * If it's a lock handoff wait, we get the bit for it, and
1088 * stop walking (and do not wake it up) if we can't.
1090 flags = wait->flags;
1091 if (flags & WQ_FLAG_EXCLUSIVE) {
1092 if (test_bit(key->bit_nr, &key->folio->flags))
1094 if (flags & WQ_FLAG_CUSTOM) {
1095 if (test_and_set_bit(key->bit_nr, &key->folio->flags))
1097 flags |= WQ_FLAG_DONE;
1102 * We are holding the wait-queue lock, but the waiter that
1103 * is waiting for this will be checking the flags without
1106 * So update the flags atomically, and wake up the waiter
1107 * afterwards to avoid any races. This store-release pairs
1108 * with the load-acquire in folio_wait_bit_common().
1110 smp_store_release(&wait->flags, flags | WQ_FLAG_WOKEN);
1111 wake_up_state(wait->private, mode);
1114 * Ok, we have successfully done what we're waiting for,
1115 * and we can unconditionally remove the wait entry.
1117 * Note that this pairs with the "finish_wait()" in the
1118 * waiter, and has to be the absolute last thing we do.
1119 * After this list_del_init(&wait->entry) the wait entry
1120 * might be de-allocated and the process might even have
1123 list_del_init_careful(&wait->entry);
1124 return (flags & WQ_FLAG_EXCLUSIVE) != 0;
1127 static void folio_wake_bit(struct folio *folio, int bit_nr)
1129 wait_queue_head_t *q = folio_waitqueue(folio);
1130 struct wait_page_key key;
1131 unsigned long flags;
1132 wait_queue_entry_t bookmark;
1135 key.bit_nr = bit_nr;
1139 bookmark.private = NULL;
1140 bookmark.func = NULL;
1141 INIT_LIST_HEAD(&bookmark.entry);
1143 spin_lock_irqsave(&q->lock, flags);
1144 __wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
1146 while (bookmark.flags & WQ_FLAG_BOOKMARK) {
1148 * Take a breather from holding the lock,
1149 * allow pages that finish wake up asynchronously
1150 * to acquire the lock and remove themselves
1153 spin_unlock_irqrestore(&q->lock, flags);
1155 spin_lock_irqsave(&q->lock, flags);
1156 __wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
1160 * It's possible to miss clearing waiters here, when we woke our page
1161 * waiters, but the hashed waitqueue has waiters for other pages on it.
1162 * That's okay, it's a rare case. The next waker will clear it.
1164 * Note that, depending on the page pool (buddy, hugetlb, ZONE_DEVICE,
1165 * other), the flag may be cleared in the course of freeing the page;
1166 * but that is not required for correctness.
1168 if (!waitqueue_active(q) || !key.page_match)
1169 folio_clear_waiters(folio);
1171 spin_unlock_irqrestore(&q->lock, flags);
1174 static void folio_wake(struct folio *folio, int bit)
1176 if (!folio_test_waiters(folio))
1178 folio_wake_bit(folio, bit);
1182 * A choice of three behaviors for folio_wait_bit_common():
1185 EXCLUSIVE, /* Hold ref to page and take the bit when woken, like
1186 * __folio_lock() waiting on then setting PG_locked.
1188 SHARED, /* Hold ref to page and check the bit when woken, like
1189 * folio_wait_writeback() waiting on PG_writeback.
1191 DROP, /* Drop ref to page before wait, no check when woken,
1192 * like folio_put_wait_locked() on PG_locked.
1197 * Attempt to check (or get) the folio flag, and mark us done
1200 static inline bool folio_trylock_flag(struct folio *folio, int bit_nr,
1201 struct wait_queue_entry *wait)
1203 if (wait->flags & WQ_FLAG_EXCLUSIVE) {
1204 if (test_and_set_bit(bit_nr, &folio->flags))
1206 } else if (test_bit(bit_nr, &folio->flags))
1209 wait->flags |= WQ_FLAG_WOKEN | WQ_FLAG_DONE;
1213 /* How many times do we accept lock stealing from under a waiter? */
1214 int sysctl_page_lock_unfairness = 5;
1216 static inline int folio_wait_bit_common(struct folio *folio, int bit_nr,
1217 int state, enum behavior behavior)
1219 wait_queue_head_t *q = folio_waitqueue(folio);
1220 int unfairness = sysctl_page_lock_unfairness;
1221 struct wait_page_queue wait_page;
1222 wait_queue_entry_t *wait = &wait_page.wait;
1223 bool thrashing = false;
1224 bool delayacct = false;
1225 unsigned long pflags;
1227 if (bit_nr == PG_locked &&
1228 !folio_test_uptodate(folio) && folio_test_workingset(folio)) {
1229 if (!folio_test_swapbacked(folio)) {
1230 delayacct_thrashing_start();
1233 psi_memstall_enter(&pflags);
1238 wait->func = wake_page_function;
1239 wait_page.folio = folio;
1240 wait_page.bit_nr = bit_nr;
1244 if (behavior == EXCLUSIVE) {
1245 wait->flags = WQ_FLAG_EXCLUSIVE;
1246 if (--unfairness < 0)
1247 wait->flags |= WQ_FLAG_CUSTOM;
1251 * Do one last check whether we can get the
1252 * page bit synchronously.
1254 * Do the folio_set_waiters() marking before that
1255 * to let any waker we _just_ missed know they
1256 * need to wake us up (otherwise they'll never
1257 * even go to the slow case that looks at the
1258 * page queue), and add ourselves to the wait
1259 * queue if we need to sleep.
1261 * This part needs to be done under the queue
1262 * lock to avoid races.
1264 spin_lock_irq(&q->lock);
1265 folio_set_waiters(folio);
1266 if (!folio_trylock_flag(folio, bit_nr, wait))
1267 __add_wait_queue_entry_tail(q, wait);
1268 spin_unlock_irq(&q->lock);
1271 * From now on, all the logic will be based on
1272 * the WQ_FLAG_WOKEN and WQ_FLAG_DONE flag, to
1273 * see whether the page bit testing has already
1274 * been done by the wake function.
1276 * We can drop our reference to the folio.
1278 if (behavior == DROP)
1282 * Note that until the "finish_wait()", or until
1283 * we see the WQ_FLAG_WOKEN flag, we need to
1284 * be very careful with the 'wait->flags', because
1285 * we may race with a waker that sets them.
1290 set_current_state(state);
1292 /* Loop until we've been woken or interrupted */
1293 flags = smp_load_acquire(&wait->flags);
1294 if (!(flags & WQ_FLAG_WOKEN)) {
1295 if (signal_pending_state(state, current))
1302 /* If we were non-exclusive, we're done */
1303 if (behavior != EXCLUSIVE)
1306 /* If the waker got the lock for us, we're done */
1307 if (flags & WQ_FLAG_DONE)
1311 * Otherwise, if we're getting the lock, we need to
1312 * try to get it ourselves.
1314 * And if that fails, we'll have to retry this all.
1316 if (unlikely(test_and_set_bit(bit_nr, folio_flags(folio, 0))))
1319 wait->flags |= WQ_FLAG_DONE;
1324 * If a signal happened, this 'finish_wait()' may remove the last
1325 * waiter from the wait-queues, but the folio waiters bit will remain
1326 * set. That's ok. The next wakeup will take care of it, and trying
1327 * to do it here would be difficult and prone to races.
1329 finish_wait(q, wait);
1333 delayacct_thrashing_end();
1334 psi_memstall_leave(&pflags);
1338 * NOTE! The wait->flags weren't stable until we've done the
1339 * 'finish_wait()', and we could have exited the loop above due
1340 * to a signal, and had a wakeup event happen after the signal
1341 * test but before the 'finish_wait()'.
1343 * So only after the finish_wait() can we reliably determine
1344 * if we got woken up or not, so we can now figure out the final
1345 * return value based on that state without races.
1347 * Also note that WQ_FLAG_WOKEN is sufficient for a non-exclusive
1348 * waiter, but an exclusive one requires WQ_FLAG_DONE.
1350 if (behavior == EXCLUSIVE)
1351 return wait->flags & WQ_FLAG_DONE ? 0 : -EINTR;
1353 return wait->flags & WQ_FLAG_WOKEN ? 0 : -EINTR;
1356 #ifdef CONFIG_MIGRATION
1358 * migration_entry_wait_on_locked - Wait for a migration entry to be removed
1359 * @entry: migration swap entry.
1360 * @ptep: mapped pte pointer. Will return with the ptep unmapped. Only required
1361 * for pte entries, pass NULL for pmd entries.
1362 * @ptl: already locked ptl. This function will drop the lock.
1364 * Wait for a migration entry referencing the given page to be removed. This is
1365 * equivalent to put_and_wait_on_page_locked(page, TASK_UNINTERRUPTIBLE) except
1366 * this can be called without taking a reference on the page. Instead this
1367 * should be called while holding the ptl for the migration entry referencing
1370 * Returns after unmapping and unlocking the pte/ptl with pte_unmap_unlock().
1372 * This follows the same logic as folio_wait_bit_common() so see the comments
1375 void migration_entry_wait_on_locked(swp_entry_t entry, pte_t *ptep,
1378 struct wait_page_queue wait_page;
1379 wait_queue_entry_t *wait = &wait_page.wait;
1380 bool thrashing = false;
1381 bool delayacct = false;
1382 unsigned long pflags;
1383 wait_queue_head_t *q;
1384 struct folio *folio = page_folio(pfn_swap_entry_to_page(entry));
1386 q = folio_waitqueue(folio);
1387 if (!folio_test_uptodate(folio) && folio_test_workingset(folio)) {
1388 if (!folio_test_swapbacked(folio)) {
1389 delayacct_thrashing_start();
1392 psi_memstall_enter(&pflags);
1397 wait->func = wake_page_function;
1398 wait_page.folio = folio;
1399 wait_page.bit_nr = PG_locked;
1402 spin_lock_irq(&q->lock);
1403 folio_set_waiters(folio);
1404 if (!folio_trylock_flag(folio, PG_locked, wait))
1405 __add_wait_queue_entry_tail(q, wait);
1406 spin_unlock_irq(&q->lock);
1409 * If a migration entry exists for the page the migration path must hold
1410 * a valid reference to the page, and it must take the ptl to remove the
1411 * migration entry. So the page is valid until the ptl is dropped.
1414 pte_unmap_unlock(ptep, ptl);
1421 set_current_state(TASK_UNINTERRUPTIBLE);
1423 /* Loop until we've been woken or interrupted */
1424 flags = smp_load_acquire(&wait->flags);
1425 if (!(flags & WQ_FLAG_WOKEN)) {
1426 if (signal_pending_state(TASK_UNINTERRUPTIBLE, current))
1435 finish_wait(q, wait);
1439 delayacct_thrashing_end();
1440 psi_memstall_leave(&pflags);
1445 void folio_wait_bit(struct folio *folio, int bit_nr)
1447 folio_wait_bit_common(folio, bit_nr, TASK_UNINTERRUPTIBLE, SHARED);
1449 EXPORT_SYMBOL(folio_wait_bit);
1451 int folio_wait_bit_killable(struct folio *folio, int bit_nr)
1453 return folio_wait_bit_common(folio, bit_nr, TASK_KILLABLE, SHARED);
1455 EXPORT_SYMBOL(folio_wait_bit_killable);
1458 * folio_put_wait_locked - Drop a reference and wait for it to be unlocked
1459 * @folio: The folio to wait for.
1460 * @state: The sleep state (TASK_KILLABLE, TASK_UNINTERRUPTIBLE, etc).
1462 * The caller should hold a reference on @folio. They expect the page to
1463 * become unlocked relatively soon, but do not wish to hold up migration
1464 * (for example) by holding the reference while waiting for the folio to
1465 * come unlocked. After this function returns, the caller should not
1466 * dereference @folio.
1468 * Return: 0 if the folio was unlocked or -EINTR if interrupted by a signal.
1470 int folio_put_wait_locked(struct folio *folio, int state)
1472 return folio_wait_bit_common(folio, PG_locked, state, DROP);
1476 * folio_add_wait_queue - Add an arbitrary waiter to a folio's wait queue
1477 * @folio: Folio defining the wait queue of interest
1478 * @waiter: Waiter to add to the queue
1480 * Add an arbitrary @waiter to the wait queue for the nominated @folio.
1482 void folio_add_wait_queue(struct folio *folio, wait_queue_entry_t *waiter)
1484 wait_queue_head_t *q = folio_waitqueue(folio);
1485 unsigned long flags;
1487 spin_lock_irqsave(&q->lock, flags);
1488 __add_wait_queue_entry_tail(q, waiter);
1489 folio_set_waiters(folio);
1490 spin_unlock_irqrestore(&q->lock, flags);
1492 EXPORT_SYMBOL_GPL(folio_add_wait_queue);
1494 #ifndef clear_bit_unlock_is_negative_byte
1497 * PG_waiters is the high bit in the same byte as PG_lock.
1499 * On x86 (and on many other architectures), we can clear PG_lock and
1500 * test the sign bit at the same time. But if the architecture does
1501 * not support that special operation, we just do this all by hand
1504 * The read of PG_waiters has to be after (or concurrently with) PG_locked
1505 * being cleared, but a memory barrier should be unnecessary since it is
1506 * in the same byte as PG_locked.
1508 static inline bool clear_bit_unlock_is_negative_byte(long nr, volatile void *mem)
1510 clear_bit_unlock(nr, mem);
1511 /* smp_mb__after_atomic(); */
1512 return test_bit(PG_waiters, mem);
1518 * folio_unlock - Unlock a locked folio.
1519 * @folio: The folio.
1521 * Unlocks the folio and wakes up any thread sleeping on the page lock.
1523 * Context: May be called from interrupt or process context. May not be
1524 * called from NMI context.
1526 void folio_unlock(struct folio *folio)
1528 /* Bit 7 allows x86 to check the byte's sign bit */
1529 BUILD_BUG_ON(PG_waiters != 7);
1530 BUILD_BUG_ON(PG_locked > 7);
1531 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
1532 if (clear_bit_unlock_is_negative_byte(PG_locked, folio_flags(folio, 0)))
1533 folio_wake_bit(folio, PG_locked);
1535 EXPORT_SYMBOL(folio_unlock);
1538 * folio_end_private_2 - Clear PG_private_2 and wake any waiters.
1539 * @folio: The folio.
1541 * Clear the PG_private_2 bit on a folio and wake up any sleepers waiting for
1542 * it. The folio reference held for PG_private_2 being set is released.
1544 * This is, for example, used when a netfs folio is being written to a local
1545 * disk cache, thereby allowing writes to the cache for the same folio to be
1548 void folio_end_private_2(struct folio *folio)
1550 VM_BUG_ON_FOLIO(!folio_test_private_2(folio), folio);
1551 clear_bit_unlock(PG_private_2, folio_flags(folio, 0));
1552 folio_wake_bit(folio, PG_private_2);
1555 EXPORT_SYMBOL(folio_end_private_2);
1558 * folio_wait_private_2 - Wait for PG_private_2 to be cleared on a folio.
1559 * @folio: The folio to wait on.
1561 * Wait for PG_private_2 (aka PG_fscache) to be cleared on a folio.
1563 void folio_wait_private_2(struct folio *folio)
1565 while (folio_test_private_2(folio))
1566 folio_wait_bit(folio, PG_private_2);
1568 EXPORT_SYMBOL(folio_wait_private_2);
1571 * folio_wait_private_2_killable - Wait for PG_private_2 to be cleared on a folio.
1572 * @folio: The folio to wait on.
1574 * Wait for PG_private_2 (aka PG_fscache) to be cleared on a folio or until a
1575 * fatal signal is received by the calling task.
1578 * - 0 if successful.
1579 * - -EINTR if a fatal signal was encountered.
1581 int folio_wait_private_2_killable(struct folio *folio)
1585 while (folio_test_private_2(folio)) {
1586 ret = folio_wait_bit_killable(folio, PG_private_2);
1593 EXPORT_SYMBOL(folio_wait_private_2_killable);
1596 * folio_end_writeback - End writeback against a folio.
1597 * @folio: The folio.
1599 void folio_end_writeback(struct folio *folio)
1602 * folio_test_clear_reclaim() could be used here but it is an
1603 * atomic operation and overkill in this particular case. Failing
1604 * to shuffle a folio marked for immediate reclaim is too mild
1605 * a gain to justify taking an atomic operation penalty at the
1606 * end of every folio writeback.
1608 if (folio_test_reclaim(folio)) {
1609 folio_clear_reclaim(folio);
1610 folio_rotate_reclaimable(folio);
1614 * Writeback does not hold a folio reference of its own, relying
1615 * on truncation to wait for the clearing of PG_writeback.
1616 * But here we must make sure that the folio is not freed and
1617 * reused before the folio_wake().
1620 if (!__folio_end_writeback(folio))
1623 smp_mb__after_atomic();
1624 folio_wake(folio, PG_writeback);
1625 acct_reclaim_writeback(folio);
1628 EXPORT_SYMBOL(folio_end_writeback);
1631 * After completing I/O on a page, call this routine to update the page
1632 * flags appropriately
1634 void page_endio(struct page *page, bool is_write, int err)
1638 SetPageUptodate(page);
1640 ClearPageUptodate(page);
1646 struct address_space *mapping;
1649 mapping = page_mapping(page);
1651 mapping_set_error(mapping, err);
1653 end_page_writeback(page);
1656 EXPORT_SYMBOL_GPL(page_endio);
1659 * __folio_lock - Get a lock on the folio, assuming we need to sleep to get it.
1660 * @folio: The folio to lock
1662 void __folio_lock(struct folio *folio)
1664 folio_wait_bit_common(folio, PG_locked, TASK_UNINTERRUPTIBLE,
1667 EXPORT_SYMBOL(__folio_lock);
1669 int __folio_lock_killable(struct folio *folio)
1671 return folio_wait_bit_common(folio, PG_locked, TASK_KILLABLE,
1674 EXPORT_SYMBOL_GPL(__folio_lock_killable);
1676 static int __folio_lock_async(struct folio *folio, struct wait_page_queue *wait)
1678 struct wait_queue_head *q = folio_waitqueue(folio);
1681 wait->folio = folio;
1682 wait->bit_nr = PG_locked;
1684 spin_lock_irq(&q->lock);
1685 __add_wait_queue_entry_tail(q, &wait->wait);
1686 folio_set_waiters(folio);
1687 ret = !folio_trylock(folio);
1689 * If we were successful now, we know we're still on the
1690 * waitqueue as we're still under the lock. This means it's
1691 * safe to remove and return success, we know the callback
1692 * isn't going to trigger.
1695 __remove_wait_queue(q, &wait->wait);
1698 spin_unlock_irq(&q->lock);
1704 * true - folio is locked; mmap_lock is still held.
1705 * false - folio is not locked.
1706 * mmap_lock has been released (mmap_read_unlock(), unless flags had both
1707 * FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
1708 * which case mmap_lock is still held.
1710 * If neither ALLOW_RETRY nor KILLABLE are set, will always return true
1711 * with the folio locked and the mmap_lock unperturbed.
1713 bool __folio_lock_or_retry(struct folio *folio, struct mm_struct *mm,
1716 if (fault_flag_allow_retry_first(flags)) {
1718 * CAUTION! In this case, mmap_lock is not released
1719 * even though return 0.
1721 if (flags & FAULT_FLAG_RETRY_NOWAIT)
1724 mmap_read_unlock(mm);
1725 if (flags & FAULT_FLAG_KILLABLE)
1726 folio_wait_locked_killable(folio);
1728 folio_wait_locked(folio);
1731 if (flags & FAULT_FLAG_KILLABLE) {
1734 ret = __folio_lock_killable(folio);
1736 mmap_read_unlock(mm);
1740 __folio_lock(folio);
1747 * page_cache_next_miss() - Find the next gap in the page cache.
1748 * @mapping: Mapping.
1750 * @max_scan: Maximum range to search.
1752 * Search the range [index, min(index + max_scan - 1, ULONG_MAX)] for the
1753 * gap with the lowest index.
1755 * This function may be called under the rcu_read_lock. However, this will
1756 * not atomically search a snapshot of the cache at a single point in time.
1757 * For example, if a gap is created at index 5, then subsequently a gap is
1758 * created at index 10, page_cache_next_miss covering both indices may
1759 * return 10 if called under the rcu_read_lock.
1761 * Return: The index of the gap if found, otherwise an index outside the
1762 * range specified (in which case 'return - index >= max_scan' will be true).
1763 * In the rare case of index wrap-around, 0 will be returned.
1765 pgoff_t page_cache_next_miss(struct address_space *mapping,
1766 pgoff_t index, unsigned long max_scan)
1768 XA_STATE(xas, &mapping->i_pages, index);
1770 while (max_scan--) {
1771 void *entry = xas_next(&xas);
1772 if (!entry || xa_is_value(entry))
1774 if (xas.xa_index == 0)
1778 return xas.xa_index;
1780 EXPORT_SYMBOL(page_cache_next_miss);
1783 * page_cache_prev_miss() - Find the previous gap in the page cache.
1784 * @mapping: Mapping.
1786 * @max_scan: Maximum range to search.
1788 * Search the range [max(index - max_scan + 1, 0), index] for the
1789 * gap with the highest index.
1791 * This function may be called under the rcu_read_lock. However, this will
1792 * not atomically search a snapshot of the cache at a single point in time.
1793 * For example, if a gap is created at index 10, then subsequently a gap is
1794 * created at index 5, page_cache_prev_miss() covering both indices may
1795 * return 5 if called under the rcu_read_lock.
1797 * Return: The index of the gap if found, otherwise an index outside the
1798 * range specified (in which case 'index - return >= max_scan' will be true).
1799 * In the rare case of wrap-around, ULONG_MAX will be returned.
1801 pgoff_t page_cache_prev_miss(struct address_space *mapping,
1802 pgoff_t index, unsigned long max_scan)
1804 XA_STATE(xas, &mapping->i_pages, index);
1806 while (max_scan--) {
1807 void *entry = xas_prev(&xas);
1808 if (!entry || xa_is_value(entry))
1810 if (xas.xa_index == ULONG_MAX)
1814 return xas.xa_index;
1816 EXPORT_SYMBOL(page_cache_prev_miss);
1819 * Lockless page cache protocol:
1820 * On the lookup side:
1821 * 1. Load the folio from i_pages
1822 * 2. Increment the refcount if it's not zero
1823 * 3. If the folio is not found by xas_reload(), put the refcount and retry
1825 * On the removal side:
1826 * A. Freeze the page (by zeroing the refcount if nobody else has a reference)
1827 * B. Remove the page from i_pages
1828 * C. Return the page to the page allocator
1830 * This means that any page may have its reference count temporarily
1831 * increased by a speculative page cache (or fast GUP) lookup as it can
1832 * be allocated by another user before the RCU grace period expires.
1833 * Because the refcount temporarily acquired here may end up being the
1834 * last refcount on the page, any page allocation must be freeable by
1839 * mapping_get_entry - Get a page cache entry.
1840 * @mapping: the address_space to search
1841 * @index: The page cache index.
1843 * Looks up the page cache entry at @mapping & @index. If it is a folio,
1844 * it is returned with an increased refcount. If it is a shadow entry
1845 * of a previously evicted folio, or a swap entry from shmem/tmpfs,
1846 * it is returned without further action.
1848 * Return: The folio, swap or shadow entry, %NULL if nothing is found.
1850 static void *mapping_get_entry(struct address_space *mapping, pgoff_t index)
1852 XA_STATE(xas, &mapping->i_pages, index);
1853 struct folio *folio;
1858 folio = xas_load(&xas);
1859 if (xas_retry(&xas, folio))
1862 * A shadow entry of a recently evicted page, or a swap entry from
1863 * shmem/tmpfs. Return it without attempting to raise page count.
1865 if (!folio || xa_is_value(folio))
1868 if (!folio_try_get_rcu(folio))
1871 if (unlikely(folio != xas_reload(&xas))) {
1882 * __filemap_get_folio - Find and get a reference to a folio.
1883 * @mapping: The address_space to search.
1884 * @index: The page index.
1885 * @fgp_flags: %FGP flags modify how the folio is returned.
1886 * @gfp: Memory allocation flags to use if %FGP_CREAT is specified.
1888 * Looks up the page cache entry at @mapping & @index.
1890 * @fgp_flags can be zero or more of these flags:
1892 * * %FGP_ACCESSED - The folio will be marked accessed.
1893 * * %FGP_LOCK - The folio is returned locked.
1894 * * %FGP_ENTRY - If there is a shadow / swap / DAX entry, return it
1895 * instead of allocating a new folio to replace it.
1896 * * %FGP_CREAT - If no page is present then a new page is allocated using
1897 * @gfp and added to the page cache and the VM's LRU list.
1898 * The page is returned locked and with an increased refcount.
1899 * * %FGP_FOR_MMAP - The caller wants to do its own locking dance if the
1900 * page is already in cache. If the page was allocated, unlock it before
1901 * returning so the caller can do the same dance.
1902 * * %FGP_WRITE - The page will be written to by the caller.
1903 * * %FGP_NOFS - __GFP_FS will get cleared in gfp.
1904 * * %FGP_NOWAIT - Don't get blocked by page lock.
1905 * * %FGP_STABLE - Wait for the folio to be stable (finished writeback)
1907 * If %FGP_LOCK or %FGP_CREAT are specified then the function may sleep even
1908 * if the %GFP flags specified for %FGP_CREAT are atomic.
1910 * If there is a page cache page, it is returned with an increased refcount.
1912 * Return: The found folio or %NULL otherwise.
1914 struct folio *__filemap_get_folio(struct address_space *mapping, pgoff_t index,
1915 int fgp_flags, gfp_t gfp)
1917 struct folio *folio;
1920 folio = mapping_get_entry(mapping, index);
1921 if (xa_is_value(folio)) {
1922 if (fgp_flags & FGP_ENTRY)
1929 if (fgp_flags & FGP_LOCK) {
1930 if (fgp_flags & FGP_NOWAIT) {
1931 if (!folio_trylock(folio)) {
1939 /* Has the page been truncated? */
1940 if (unlikely(folio->mapping != mapping)) {
1941 folio_unlock(folio);
1945 VM_BUG_ON_FOLIO(!folio_contains(folio, index), folio);
1948 if (fgp_flags & FGP_ACCESSED)
1949 folio_mark_accessed(folio);
1950 else if (fgp_flags & FGP_WRITE) {
1951 /* Clear idle flag for buffer write */
1952 if (folio_test_idle(folio))
1953 folio_clear_idle(folio);
1956 if (fgp_flags & FGP_STABLE)
1957 folio_wait_stable(folio);
1959 if (!folio && (fgp_flags & FGP_CREAT)) {
1961 if ((fgp_flags & FGP_WRITE) && mapping_can_writeback(mapping))
1963 if (fgp_flags & FGP_NOFS)
1965 if (fgp_flags & FGP_NOWAIT) {
1967 gfp |= GFP_NOWAIT | __GFP_NOWARN;
1970 folio = filemap_alloc_folio(gfp, 0);
1974 if (WARN_ON_ONCE(!(fgp_flags & (FGP_LOCK | FGP_FOR_MMAP))))
1975 fgp_flags |= FGP_LOCK;
1977 /* Init accessed so avoid atomic mark_page_accessed later */
1978 if (fgp_flags & FGP_ACCESSED)
1979 __folio_set_referenced(folio);
1981 err = filemap_add_folio(mapping, folio, index, gfp);
1982 if (unlikely(err)) {
1990 * filemap_add_folio locks the page, and for mmap
1991 * we expect an unlocked page.
1993 if (folio && (fgp_flags & FGP_FOR_MMAP))
1994 folio_unlock(folio);
1999 EXPORT_SYMBOL(__filemap_get_folio);
2001 static inline struct folio *find_get_entry(struct xa_state *xas, pgoff_t max,
2004 struct folio *folio;
2007 if (mark == XA_PRESENT)
2008 folio = xas_find(xas, max);
2010 folio = xas_find_marked(xas, max, mark);
2012 if (xas_retry(xas, folio))
2015 * A shadow entry of a recently evicted page, a swap
2016 * entry from shmem/tmpfs or a DAX entry. Return it
2017 * without attempting to raise page count.
2019 if (!folio || xa_is_value(folio))
2022 if (!folio_try_get_rcu(folio))
2025 if (unlikely(folio != xas_reload(xas))) {
2037 * find_get_entries - gang pagecache lookup
2038 * @mapping: The address_space to search
2039 * @start: The starting page cache index
2040 * @end: The final page index (inclusive).
2041 * @fbatch: Where the resulting entries are placed.
2042 * @indices: The cache indices corresponding to the entries in @entries
2044 * find_get_entries() will search for and return a batch of entries in
2045 * the mapping. The entries are placed in @fbatch. find_get_entries()
2046 * takes a reference on any actual folios it returns.
2048 * The entries have ascending indexes. The indices may not be consecutive
2049 * due to not-present entries or large folios.
2051 * Any shadow entries of evicted folios, or swap entries from
2052 * shmem/tmpfs, are included in the returned array.
2054 * Return: The number of entries which were found.
2056 unsigned find_get_entries(struct address_space *mapping, pgoff_t start,
2057 pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices)
2059 XA_STATE(xas, &mapping->i_pages, start);
2060 struct folio *folio;
2063 while ((folio = find_get_entry(&xas, end, XA_PRESENT)) != NULL) {
2064 indices[fbatch->nr] = xas.xa_index;
2065 if (!folio_batch_add(fbatch, folio))
2070 return folio_batch_count(fbatch);
2074 * find_lock_entries - Find a batch of pagecache entries.
2075 * @mapping: The address_space to search.
2076 * @start: The starting page cache index.
2077 * @end: The final page index (inclusive).
2078 * @fbatch: Where the resulting entries are placed.
2079 * @indices: The cache indices of the entries in @fbatch.
2081 * find_lock_entries() will return a batch of entries from @mapping.
2082 * Swap, shadow and DAX entries are included. Folios are returned
2083 * locked and with an incremented refcount. Folios which are locked
2084 * by somebody else or under writeback are skipped. Folios which are
2085 * partially outside the range are not returned.
2087 * The entries have ascending indexes. The indices may not be consecutive
2088 * due to not-present entries, large folios, folios which could not be
2089 * locked or folios under writeback.
2091 * Return: The number of entries which were found.
2093 unsigned find_lock_entries(struct address_space *mapping, pgoff_t start,
2094 pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices)
2096 XA_STATE(xas, &mapping->i_pages, start);
2097 struct folio *folio;
2100 while ((folio = find_get_entry(&xas, end, XA_PRESENT))) {
2101 if (!xa_is_value(folio)) {
2102 if (folio->index < start)
2104 if (folio->index + folio_nr_pages(folio) - 1 > end)
2106 if (!folio_trylock(folio))
2108 if (folio->mapping != mapping ||
2109 folio_test_writeback(folio))
2111 VM_BUG_ON_FOLIO(!folio_contains(folio, xas.xa_index),
2114 indices[fbatch->nr] = xas.xa_index;
2115 if (!folio_batch_add(fbatch, folio))
2119 folio_unlock(folio);
2125 return folio_batch_count(fbatch);
2129 * filemap_get_folios - Get a batch of folios
2130 * @mapping: The address_space to search
2131 * @start: The starting page index
2132 * @end: The final page index (inclusive)
2133 * @fbatch: The batch to fill.
2135 * Search for and return a batch of folios in the mapping starting at
2136 * index @start and up to index @end (inclusive). The folios are returned
2137 * in @fbatch with an elevated reference count.
2139 * The first folio may start before @start; if it does, it will contain
2140 * @start. The final folio may extend beyond @end; if it does, it will
2141 * contain @end. The folios have ascending indices. There may be gaps
2142 * between the folios if there are indices which have no folio in the
2143 * page cache. If folios are added to or removed from the page cache
2144 * while this is running, they may or may not be found by this call.
2146 * Return: The number of folios which were found.
2147 * We also update @start to index the next folio for the traversal.
2149 unsigned filemap_get_folios(struct address_space *mapping, pgoff_t *start,
2150 pgoff_t end, struct folio_batch *fbatch)
2152 XA_STATE(xas, &mapping->i_pages, *start);
2153 struct folio *folio;
2156 while ((folio = find_get_entry(&xas, end, XA_PRESENT)) != NULL) {
2157 /* Skip over shadow, swap and DAX entries */
2158 if (xa_is_value(folio))
2160 if (!folio_batch_add(fbatch, folio)) {
2161 unsigned long nr = folio_nr_pages(folio);
2163 if (folio_test_hugetlb(folio))
2165 *start = folio->index + nr;
2171 * We come here when there is no page beyond @end. We take care to not
2172 * overflow the index @start as it confuses some of the callers. This
2173 * breaks the iteration when there is a page at index -1 but that is
2174 * already broken anyway.
2176 if (end == (pgoff_t)-1)
2177 *start = (pgoff_t)-1;
2183 return folio_batch_count(fbatch);
2185 EXPORT_SYMBOL(filemap_get_folios);
2188 bool folio_more_pages(struct folio *folio, pgoff_t index, pgoff_t max)
2190 if (!folio_test_large(folio) || folio_test_hugetlb(folio))
2194 return index < folio->index + folio_nr_pages(folio) - 1;
2198 * find_get_pages_contig - gang contiguous pagecache lookup
2199 * @mapping: The address_space to search
2200 * @index: The starting page index
2201 * @nr_pages: The maximum number of pages
2202 * @pages: Where the resulting pages are placed
2204 * find_get_pages_contig() works exactly like find_get_pages_range(),
2205 * except that the returned number of pages are guaranteed to be
2208 * Return: the number of pages which were found.
2210 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
2211 unsigned int nr_pages, struct page **pages)
2213 XA_STATE(xas, &mapping->i_pages, index);
2214 struct folio *folio;
2215 unsigned int ret = 0;
2217 if (unlikely(!nr_pages))
2221 for (folio = xas_load(&xas); folio; folio = xas_next(&xas)) {
2222 if (xas_retry(&xas, folio))
2225 * If the entry has been swapped out, we can stop looking.
2226 * No current caller is looking for DAX entries.
2228 if (xa_is_value(folio))
2231 if (!folio_try_get_rcu(folio))
2234 if (unlikely(folio != xas_reload(&xas)))
2238 pages[ret] = folio_file_page(folio, xas.xa_index);
2239 if (++ret == nr_pages)
2241 if (folio_more_pages(folio, xas.xa_index, ULONG_MAX)) {
2243 folio_ref_inc(folio);
2255 EXPORT_SYMBOL(find_get_pages_contig);
2258 * find_get_pages_range_tag - Find and return head pages matching @tag.
2259 * @mapping: the address_space to search
2260 * @index: the starting page index
2261 * @end: The final page index (inclusive)
2262 * @tag: the tag index
2263 * @nr_pages: the maximum number of pages
2264 * @pages: where the resulting pages are placed
2266 * Like find_get_pages_range(), except we only return head pages which are
2267 * tagged with @tag. @index is updated to the index immediately after the
2268 * last page we return, ready for the next iteration.
2270 * Return: the number of pages which were found.
2272 unsigned find_get_pages_range_tag(struct address_space *mapping, pgoff_t *index,
2273 pgoff_t end, xa_mark_t tag, unsigned int nr_pages,
2274 struct page **pages)
2276 XA_STATE(xas, &mapping->i_pages, *index);
2277 struct folio *folio;
2280 if (unlikely(!nr_pages))
2284 while ((folio = find_get_entry(&xas, end, tag))) {
2286 * Shadow entries should never be tagged, but this iteration
2287 * is lockless so there is a window for page reclaim to evict
2288 * a page we saw tagged. Skip over it.
2290 if (xa_is_value(folio))
2293 pages[ret] = &folio->page;
2294 if (++ret == nr_pages) {
2295 *index = folio->index + folio_nr_pages(folio);
2301 * We come here when we got to @end. We take care to not overflow the
2302 * index @index as it confuses some of the callers. This breaks the
2303 * iteration when there is a page at index -1 but that is already
2306 if (end == (pgoff_t)-1)
2307 *index = (pgoff_t)-1;
2315 EXPORT_SYMBOL(find_get_pages_range_tag);
2318 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
2319 * a _large_ part of the i/o request. Imagine the worst scenario:
2321 * ---R__________________________________________B__________
2322 * ^ reading here ^ bad block(assume 4k)
2324 * read(R) => miss => readahead(R...B) => media error => frustrating retries
2325 * => failing the whole request => read(R) => read(R+1) =>
2326 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
2327 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
2328 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
2330 * It is going insane. Fix it by quickly scaling down the readahead size.
2332 static void shrink_readahead_size_eio(struct file_ra_state *ra)
2338 * filemap_get_read_batch - Get a batch of folios for read
2340 * Get a batch of folios which represent a contiguous range of bytes in
2341 * the file. No exceptional entries will be returned. If @index is in
2342 * the middle of a folio, the entire folio will be returned. The last
2343 * folio in the batch may have the readahead flag set or the uptodate flag
2344 * clear so that the caller can take the appropriate action.
2346 static void filemap_get_read_batch(struct address_space *mapping,
2347 pgoff_t index, pgoff_t max, struct folio_batch *fbatch)
2349 XA_STATE(xas, &mapping->i_pages, index);
2350 struct folio *folio;
2353 for (folio = xas_load(&xas); folio; folio = xas_next(&xas)) {
2354 if (xas_retry(&xas, folio))
2356 if (xas.xa_index > max || xa_is_value(folio))
2358 if (xa_is_sibling(folio))
2360 if (!folio_try_get_rcu(folio))
2363 if (unlikely(folio != xas_reload(&xas)))
2366 if (!folio_batch_add(fbatch, folio))
2368 if (!folio_test_uptodate(folio))
2370 if (folio_test_readahead(folio))
2372 xas_advance(&xas, folio->index + folio_nr_pages(folio) - 1);
2382 static int filemap_read_folio(struct file *file, filler_t filler,
2383 struct folio *folio)
2385 bool workingset = folio_test_workingset(folio);
2386 unsigned long pflags;
2390 * A previous I/O error may have been due to temporary failures,
2391 * eg. multipath errors. PG_error will be set again if read_folio
2394 folio_clear_error(folio);
2396 /* Start the actual read. The read will unlock the page. */
2397 if (unlikely(workingset))
2398 psi_memstall_enter(&pflags);
2399 error = filler(file, folio);
2400 if (unlikely(workingset))
2401 psi_memstall_leave(&pflags);
2405 error = folio_wait_locked_killable(folio);
2408 if (folio_test_uptodate(folio))
2411 shrink_readahead_size_eio(&file->f_ra);
2415 static bool filemap_range_uptodate(struct address_space *mapping,
2416 loff_t pos, struct iov_iter *iter, struct folio *folio)
2420 if (folio_test_uptodate(folio))
2422 /* pipes can't handle partially uptodate pages */
2423 if (iov_iter_is_pipe(iter))
2425 if (!mapping->a_ops->is_partially_uptodate)
2427 if (mapping->host->i_blkbits >= folio_shift(folio))
2430 count = iter->count;
2431 if (folio_pos(folio) > pos) {
2432 count -= folio_pos(folio) - pos;
2435 pos -= folio_pos(folio);
2438 return mapping->a_ops->is_partially_uptodate(folio, pos, count);
2441 static int filemap_update_page(struct kiocb *iocb,
2442 struct address_space *mapping, struct iov_iter *iter,
2443 struct folio *folio)
2447 if (iocb->ki_flags & IOCB_NOWAIT) {
2448 if (!filemap_invalidate_trylock_shared(mapping))
2451 filemap_invalidate_lock_shared(mapping);
2454 if (!folio_trylock(folio)) {
2456 if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_NOIO))
2457 goto unlock_mapping;
2458 if (!(iocb->ki_flags & IOCB_WAITQ)) {
2459 filemap_invalidate_unlock_shared(mapping);
2461 * This is where we usually end up waiting for a
2462 * previously submitted readahead to finish.
2464 folio_put_wait_locked(folio, TASK_KILLABLE);
2465 return AOP_TRUNCATED_PAGE;
2467 error = __folio_lock_async(folio, iocb->ki_waitq);
2469 goto unlock_mapping;
2472 error = AOP_TRUNCATED_PAGE;
2473 if (!folio->mapping)
2477 if (filemap_range_uptodate(mapping, iocb->ki_pos, iter, folio))
2481 if (iocb->ki_flags & (IOCB_NOIO | IOCB_NOWAIT | IOCB_WAITQ))
2484 error = filemap_read_folio(iocb->ki_filp, mapping->a_ops->read_folio,
2486 goto unlock_mapping;
2488 folio_unlock(folio);
2490 filemap_invalidate_unlock_shared(mapping);
2491 if (error == AOP_TRUNCATED_PAGE)
2496 static int filemap_create_folio(struct file *file,
2497 struct address_space *mapping, pgoff_t index,
2498 struct folio_batch *fbatch)
2500 struct folio *folio;
2503 folio = filemap_alloc_folio(mapping_gfp_mask(mapping), 0);
2508 * Protect against truncate / hole punch. Grabbing invalidate_lock
2509 * here assures we cannot instantiate and bring uptodate new
2510 * pagecache folios after evicting page cache during truncate
2511 * and before actually freeing blocks. Note that we could
2512 * release invalidate_lock after inserting the folio into
2513 * the page cache as the locked folio would then be enough to
2514 * synchronize with hole punching. But there are code paths
2515 * such as filemap_update_page() filling in partially uptodate
2516 * pages or ->readahead() that need to hold invalidate_lock
2517 * while mapping blocks for IO so let's hold the lock here as
2518 * well to keep locking rules simple.
2520 filemap_invalidate_lock_shared(mapping);
2521 error = filemap_add_folio(mapping, folio, index,
2522 mapping_gfp_constraint(mapping, GFP_KERNEL));
2523 if (error == -EEXIST)
2524 error = AOP_TRUNCATED_PAGE;
2528 error = filemap_read_folio(file, mapping->a_ops->read_folio, folio);
2532 filemap_invalidate_unlock_shared(mapping);
2533 folio_batch_add(fbatch, folio);
2536 filemap_invalidate_unlock_shared(mapping);
2541 static int filemap_readahead(struct kiocb *iocb, struct file *file,
2542 struct address_space *mapping, struct folio *folio,
2545 DEFINE_READAHEAD(ractl, file, &file->f_ra, mapping, folio->index);
2547 if (iocb->ki_flags & IOCB_NOIO)
2549 page_cache_async_ra(&ractl, folio, last_index - folio->index);
2553 static int filemap_get_pages(struct kiocb *iocb, struct iov_iter *iter,
2554 struct folio_batch *fbatch)
2556 struct file *filp = iocb->ki_filp;
2557 struct address_space *mapping = filp->f_mapping;
2558 struct file_ra_state *ra = &filp->f_ra;
2559 pgoff_t index = iocb->ki_pos >> PAGE_SHIFT;
2561 struct folio *folio;
2564 last_index = DIV_ROUND_UP(iocb->ki_pos + iter->count, PAGE_SIZE);
2566 if (fatal_signal_pending(current))
2569 filemap_get_read_batch(mapping, index, last_index, fbatch);
2570 if (!folio_batch_count(fbatch)) {
2571 if (iocb->ki_flags & IOCB_NOIO)
2573 page_cache_sync_readahead(mapping, ra, filp, index,
2574 last_index - index);
2575 filemap_get_read_batch(mapping, index, last_index, fbatch);
2577 if (!folio_batch_count(fbatch)) {
2578 if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_WAITQ))
2580 err = filemap_create_folio(filp, mapping,
2581 iocb->ki_pos >> PAGE_SHIFT, fbatch);
2582 if (err == AOP_TRUNCATED_PAGE)
2587 folio = fbatch->folios[folio_batch_count(fbatch) - 1];
2588 if (folio_test_readahead(folio)) {
2589 err = filemap_readahead(iocb, filp, mapping, folio, last_index);
2593 if (!folio_test_uptodate(folio)) {
2594 if ((iocb->ki_flags & IOCB_WAITQ) &&
2595 folio_batch_count(fbatch) > 1)
2596 iocb->ki_flags |= IOCB_NOWAIT;
2597 err = filemap_update_page(iocb, mapping, iter, folio);
2606 if (likely(--fbatch->nr))
2608 if (err == AOP_TRUNCATED_PAGE)
2613 static inline bool pos_same_folio(loff_t pos1, loff_t pos2, struct folio *folio)
2615 unsigned int shift = folio_shift(folio);
2617 return (pos1 >> shift == pos2 >> shift);
2621 * filemap_read - Read data from the page cache.
2622 * @iocb: The iocb to read.
2623 * @iter: Destination for the data.
2624 * @already_read: Number of bytes already read by the caller.
2626 * Copies data from the page cache. If the data is not currently present,
2627 * uses the readahead and read_folio address_space operations to fetch it.
2629 * Return: Total number of bytes copied, including those already read by
2630 * the caller. If an error happens before any bytes are copied, returns
2631 * a negative error number.
2633 ssize_t filemap_read(struct kiocb *iocb, struct iov_iter *iter,
2634 ssize_t already_read)
2636 struct file *filp = iocb->ki_filp;
2637 struct file_ra_state *ra = &filp->f_ra;
2638 struct address_space *mapping = filp->f_mapping;
2639 struct inode *inode = mapping->host;
2640 struct folio_batch fbatch;
2642 bool writably_mapped;
2643 loff_t isize, end_offset;
2645 if (unlikely(iocb->ki_pos >= inode->i_sb->s_maxbytes))
2647 if (unlikely(!iov_iter_count(iter)))
2650 iov_iter_truncate(iter, inode->i_sb->s_maxbytes);
2651 folio_batch_init(&fbatch);
2657 * If we've already successfully copied some data, then we
2658 * can no longer safely return -EIOCBQUEUED. Hence mark
2659 * an async read NOWAIT at that point.
2661 if ((iocb->ki_flags & IOCB_WAITQ) && already_read)
2662 iocb->ki_flags |= IOCB_NOWAIT;
2664 if (unlikely(iocb->ki_pos >= i_size_read(inode)))
2667 error = filemap_get_pages(iocb, iter, &fbatch);
2672 * i_size must be checked after we know the pages are Uptodate.
2674 * Checking i_size after the check allows us to calculate
2675 * the correct value for "nr", which means the zero-filled
2676 * part of the page is not copied back to userspace (unless
2677 * another truncate extends the file - this is desired though).
2679 isize = i_size_read(inode);
2680 if (unlikely(iocb->ki_pos >= isize))
2682 end_offset = min_t(loff_t, isize, iocb->ki_pos + iter->count);
2685 * Once we start copying data, we don't want to be touching any
2686 * cachelines that might be contended:
2688 writably_mapped = mapping_writably_mapped(mapping);
2691 * When a read accesses the same folio several times, only
2692 * mark it as accessed the first time.
2694 if (!pos_same_folio(iocb->ki_pos, ra->prev_pos - 1,
2696 folio_mark_accessed(fbatch.folios[0]);
2698 for (i = 0; i < folio_batch_count(&fbatch); i++) {
2699 struct folio *folio = fbatch.folios[i];
2700 size_t fsize = folio_size(folio);
2701 size_t offset = iocb->ki_pos & (fsize - 1);
2702 size_t bytes = min_t(loff_t, end_offset - iocb->ki_pos,
2706 if (end_offset < folio_pos(folio))
2709 folio_mark_accessed(folio);
2711 * If users can be writing to this folio using arbitrary
2712 * virtual addresses, take care of potential aliasing
2713 * before reading the folio on the kernel side.
2715 if (writably_mapped)
2716 flush_dcache_folio(folio);
2718 copied = copy_folio_to_iter(folio, offset, bytes, iter);
2720 already_read += copied;
2721 iocb->ki_pos += copied;
2722 ra->prev_pos = iocb->ki_pos;
2724 if (copied < bytes) {
2730 for (i = 0; i < folio_batch_count(&fbatch); i++)
2731 folio_put(fbatch.folios[i]);
2732 folio_batch_init(&fbatch);
2733 } while (iov_iter_count(iter) && iocb->ki_pos < isize && !error);
2735 file_accessed(filp);
2737 return already_read ? already_read : error;
2739 EXPORT_SYMBOL_GPL(filemap_read);
2742 * generic_file_read_iter - generic filesystem read routine
2743 * @iocb: kernel I/O control block
2744 * @iter: destination for the data read
2746 * This is the "read_iter()" routine for all filesystems
2747 * that can use the page cache directly.
2749 * The IOCB_NOWAIT flag in iocb->ki_flags indicates that -EAGAIN shall
2750 * be returned when no data can be read without waiting for I/O requests
2751 * to complete; it doesn't prevent readahead.
2753 * The IOCB_NOIO flag in iocb->ki_flags indicates that no new I/O
2754 * requests shall be made for the read or for readahead. When no data
2755 * can be read, -EAGAIN shall be returned. When readahead would be
2756 * triggered, a partial, possibly empty read shall be returned.
2759 * * number of bytes copied, even for partial reads
2760 * * negative error code (or 0 if IOCB_NOIO) if nothing was read
2763 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
2765 size_t count = iov_iter_count(iter);
2769 return 0; /* skip atime */
2771 if (iocb->ki_flags & IOCB_DIRECT) {
2772 struct file *file = iocb->ki_filp;
2773 struct address_space *mapping = file->f_mapping;
2774 struct inode *inode = mapping->host;
2776 if (iocb->ki_flags & IOCB_NOWAIT) {
2777 if (filemap_range_needs_writeback(mapping, iocb->ki_pos,
2778 iocb->ki_pos + count - 1))
2781 retval = filemap_write_and_wait_range(mapping,
2783 iocb->ki_pos + count - 1);
2788 file_accessed(file);
2790 retval = mapping->a_ops->direct_IO(iocb, iter);
2792 iocb->ki_pos += retval;
2795 if (retval != -EIOCBQUEUED)
2796 iov_iter_revert(iter, count - iov_iter_count(iter));
2799 * Btrfs can have a short DIO read if we encounter
2800 * compressed extents, so if there was an error, or if
2801 * we've already read everything we wanted to, or if
2802 * there was a short read because we hit EOF, go ahead
2803 * and return. Otherwise fallthrough to buffered io for
2804 * the rest of the read. Buffered reads will not work for
2805 * DAX files, so don't bother trying.
2807 if (retval < 0 || !count || IS_DAX(inode))
2809 if (iocb->ki_pos >= i_size_read(inode))
2813 return filemap_read(iocb, iter, retval);
2815 EXPORT_SYMBOL(generic_file_read_iter);
2817 static inline loff_t folio_seek_hole_data(struct xa_state *xas,
2818 struct address_space *mapping, struct folio *folio,
2819 loff_t start, loff_t end, bool seek_data)
2821 const struct address_space_operations *ops = mapping->a_ops;
2822 size_t offset, bsz = i_blocksize(mapping->host);
2824 if (xa_is_value(folio) || folio_test_uptodate(folio))
2825 return seek_data ? start : end;
2826 if (!ops->is_partially_uptodate)
2827 return seek_data ? end : start;
2832 if (unlikely(folio->mapping != mapping))
2835 offset = offset_in_folio(folio, start) & ~(bsz - 1);
2838 if (ops->is_partially_uptodate(folio, offset, bsz) ==
2841 start = (start + bsz) & ~(bsz - 1);
2843 } while (offset < folio_size(folio));
2845 folio_unlock(folio);
2850 static inline size_t seek_folio_size(struct xa_state *xas, struct folio *folio)
2852 if (xa_is_value(folio))
2853 return PAGE_SIZE << xa_get_order(xas->xa, xas->xa_index);
2854 return folio_size(folio);
2858 * mapping_seek_hole_data - Seek for SEEK_DATA / SEEK_HOLE in the page cache.
2859 * @mapping: Address space to search.
2860 * @start: First byte to consider.
2861 * @end: Limit of search (exclusive).
2862 * @whence: Either SEEK_HOLE or SEEK_DATA.
2864 * If the page cache knows which blocks contain holes and which blocks
2865 * contain data, your filesystem can use this function to implement
2866 * SEEK_HOLE and SEEK_DATA. This is useful for filesystems which are
2867 * entirely memory-based such as tmpfs, and filesystems which support
2868 * unwritten extents.
2870 * Return: The requested offset on success, or -ENXIO if @whence specifies
2871 * SEEK_DATA and there is no data after @start. There is an implicit hole
2872 * after @end - 1, so SEEK_HOLE returns @end if all the bytes between @start
2873 * and @end contain data.
2875 loff_t mapping_seek_hole_data(struct address_space *mapping, loff_t start,
2876 loff_t end, int whence)
2878 XA_STATE(xas, &mapping->i_pages, start >> PAGE_SHIFT);
2879 pgoff_t max = (end - 1) >> PAGE_SHIFT;
2880 bool seek_data = (whence == SEEK_DATA);
2881 struct folio *folio;
2887 while ((folio = find_get_entry(&xas, max, XA_PRESENT))) {
2888 loff_t pos = (u64)xas.xa_index << PAGE_SHIFT;
2897 seek_size = seek_folio_size(&xas, folio);
2898 pos = round_up((u64)pos + 1, seek_size);
2899 start = folio_seek_hole_data(&xas, mapping, folio, start, pos,
2905 if (seek_size > PAGE_SIZE)
2906 xas_set(&xas, pos >> PAGE_SHIFT);
2907 if (!xa_is_value(folio))
2914 if (folio && !xa_is_value(folio))
2922 #define MMAP_LOTSAMISS (100)
2924 * lock_folio_maybe_drop_mmap - lock the page, possibly dropping the mmap_lock
2925 * @vmf - the vm_fault for this fault.
2926 * @folio - the folio to lock.
2927 * @fpin - the pointer to the file we may pin (or is already pinned).
2929 * This works similar to lock_folio_or_retry in that it can drop the
2930 * mmap_lock. It differs in that it actually returns the folio locked
2931 * if it returns 1 and 0 if it couldn't lock the folio. If we did have
2932 * to drop the mmap_lock then fpin will point to the pinned file and
2933 * needs to be fput()'ed at a later point.
2935 static int lock_folio_maybe_drop_mmap(struct vm_fault *vmf, struct folio *folio,
2938 if (folio_trylock(folio))
2942 * NOTE! This will make us return with VM_FAULT_RETRY, but with
2943 * the mmap_lock still held. That's how FAULT_FLAG_RETRY_NOWAIT
2944 * is supposed to work. We have way too many special cases..
2946 if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
2949 *fpin = maybe_unlock_mmap_for_io(vmf, *fpin);
2950 if (vmf->flags & FAULT_FLAG_KILLABLE) {
2951 if (__folio_lock_killable(folio)) {
2953 * We didn't have the right flags to drop the mmap_lock,
2954 * but all fault_handlers only check for fatal signals
2955 * if we return VM_FAULT_RETRY, so we need to drop the
2956 * mmap_lock here and return 0 if we don't have a fpin.
2959 mmap_read_unlock(vmf->vma->vm_mm);
2963 __folio_lock(folio);
2969 * Synchronous readahead happens when we don't even find a page in the page
2970 * cache at all. We don't want to perform IO under the mmap sem, so if we have
2971 * to drop the mmap sem we return the file that was pinned in order for us to do
2972 * that. If we didn't pin a file then we return NULL. The file that is
2973 * returned needs to be fput()'ed when we're done with it.
2975 static struct file *do_sync_mmap_readahead(struct vm_fault *vmf)
2977 struct file *file = vmf->vma->vm_file;
2978 struct file_ra_state *ra = &file->f_ra;
2979 struct address_space *mapping = file->f_mapping;
2980 DEFINE_READAHEAD(ractl, file, ra, mapping, vmf->pgoff);
2981 struct file *fpin = NULL;
2982 unsigned long vm_flags = vmf->vma->vm_flags;
2983 unsigned int mmap_miss;
2985 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2986 /* Use the readahead code, even if readahead is disabled */
2987 if (vm_flags & VM_HUGEPAGE) {
2988 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
2989 ractl._index &= ~((unsigned long)HPAGE_PMD_NR - 1);
2990 ra->size = HPAGE_PMD_NR;
2992 * Fetch two PMD folios, so we get the chance to actually
2993 * readahead, unless we've been told not to.
2995 if (!(vm_flags & VM_RAND_READ))
2997 ra->async_size = HPAGE_PMD_NR;
2998 page_cache_ra_order(&ractl, ra, HPAGE_PMD_ORDER);
3003 /* If we don't want any read-ahead, don't bother */
3004 if (vm_flags & VM_RAND_READ)
3009 if (vm_flags & VM_SEQ_READ) {
3010 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3011 page_cache_sync_ra(&ractl, ra->ra_pages);
3015 /* Avoid banging the cache line if not needed */
3016 mmap_miss = READ_ONCE(ra->mmap_miss);
3017 if (mmap_miss < MMAP_LOTSAMISS * 10)
3018 WRITE_ONCE(ra->mmap_miss, ++mmap_miss);
3021 * Do we miss much more than hit in this file? If so,
3022 * stop bothering with read-ahead. It will only hurt.
3024 if (mmap_miss > MMAP_LOTSAMISS)
3030 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3031 ra->start = max_t(long, 0, vmf->pgoff - ra->ra_pages / 2);
3032 ra->size = ra->ra_pages;
3033 ra->async_size = ra->ra_pages / 4;
3034 ractl._index = ra->start;
3035 page_cache_ra_order(&ractl, ra, 0);
3040 * Asynchronous readahead happens when we find the page and PG_readahead,
3041 * so we want to possibly extend the readahead further. We return the file that
3042 * was pinned if we have to drop the mmap_lock in order to do IO.
3044 static struct file *do_async_mmap_readahead(struct vm_fault *vmf,
3045 struct folio *folio)
3047 struct file *file = vmf->vma->vm_file;
3048 struct file_ra_state *ra = &file->f_ra;
3049 DEFINE_READAHEAD(ractl, file, ra, file->f_mapping, vmf->pgoff);
3050 struct file *fpin = NULL;
3051 unsigned int mmap_miss;
3053 /* If we don't want any read-ahead, don't bother */
3054 if (vmf->vma->vm_flags & VM_RAND_READ || !ra->ra_pages)
3057 mmap_miss = READ_ONCE(ra->mmap_miss);
3059 WRITE_ONCE(ra->mmap_miss, --mmap_miss);
3061 if (folio_test_readahead(folio)) {
3062 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3063 page_cache_async_ra(&ractl, folio, ra->ra_pages);
3069 * filemap_fault - read in file data for page fault handling
3070 * @vmf: struct vm_fault containing details of the fault
3072 * filemap_fault() is invoked via the vma operations vector for a
3073 * mapped memory region to read in file data during a page fault.
3075 * The goto's are kind of ugly, but this streamlines the normal case of having
3076 * it in the page cache, and handles the special cases reasonably without
3077 * having a lot of duplicated code.
3079 * vma->vm_mm->mmap_lock must be held on entry.
3081 * If our return value has VM_FAULT_RETRY set, it's because the mmap_lock
3082 * may be dropped before doing I/O or by lock_folio_maybe_drop_mmap().
3084 * If our return value does not have VM_FAULT_RETRY set, the mmap_lock
3085 * has not been released.
3087 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
3089 * Return: bitwise-OR of %VM_FAULT_ codes.
3091 vm_fault_t filemap_fault(struct vm_fault *vmf)
3094 struct file *file = vmf->vma->vm_file;
3095 struct file *fpin = NULL;
3096 struct address_space *mapping = file->f_mapping;
3097 struct inode *inode = mapping->host;
3098 pgoff_t max_idx, index = vmf->pgoff;
3099 struct folio *folio;
3101 bool mapping_locked = false;
3103 max_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3104 if (unlikely(index >= max_idx))
3105 return VM_FAULT_SIGBUS;
3108 * Do we have something in the page cache already?
3110 folio = filemap_get_folio(mapping, index);
3111 if (likely(folio)) {
3113 * We found the page, so try async readahead before waiting for
3116 if (!(vmf->flags & FAULT_FLAG_TRIED))
3117 fpin = do_async_mmap_readahead(vmf, folio);
3118 if (unlikely(!folio_test_uptodate(folio))) {
3119 filemap_invalidate_lock_shared(mapping);
3120 mapping_locked = true;
3123 /* No page in the page cache at all */
3124 count_vm_event(PGMAJFAULT);
3125 count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT);
3126 ret = VM_FAULT_MAJOR;
3127 fpin = do_sync_mmap_readahead(vmf);
3130 * See comment in filemap_create_folio() why we need
3133 if (!mapping_locked) {
3134 filemap_invalidate_lock_shared(mapping);
3135 mapping_locked = true;
3137 folio = __filemap_get_folio(mapping, index,
3138 FGP_CREAT|FGP_FOR_MMAP,
3143 filemap_invalidate_unlock_shared(mapping);
3144 return VM_FAULT_OOM;
3148 if (!lock_folio_maybe_drop_mmap(vmf, folio, &fpin))
3151 /* Did it get truncated? */
3152 if (unlikely(folio->mapping != mapping)) {
3153 folio_unlock(folio);
3157 VM_BUG_ON_FOLIO(!folio_contains(folio, index), folio);
3160 * We have a locked page in the page cache, now we need to check
3161 * that it's up-to-date. If not, it is going to be due to an error.
3163 if (unlikely(!folio_test_uptodate(folio))) {
3165 * The page was in cache and uptodate and now it is not.
3166 * Strange but possible since we didn't hold the page lock all
3167 * the time. Let's drop everything get the invalidate lock and
3170 if (!mapping_locked) {
3171 folio_unlock(folio);
3175 goto page_not_uptodate;
3179 * We've made it this far and we had to drop our mmap_lock, now is the
3180 * time to return to the upper layer and have it re-find the vma and
3184 folio_unlock(folio);
3188 filemap_invalidate_unlock_shared(mapping);
3191 * Found the page and have a reference on it.
3192 * We must recheck i_size under page lock.
3194 max_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3195 if (unlikely(index >= max_idx)) {
3196 folio_unlock(folio);
3198 return VM_FAULT_SIGBUS;
3201 vmf->page = folio_file_page(folio, index);
3202 return ret | VM_FAULT_LOCKED;
3206 * Umm, take care of errors if the page isn't up-to-date.
3207 * Try to re-read it _once_. We do this synchronously,
3208 * because there really aren't any performance issues here
3209 * and we need to check for errors.
3211 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3212 error = filemap_read_folio(file, mapping->a_ops->read_folio, folio);
3217 if (!error || error == AOP_TRUNCATED_PAGE)
3219 filemap_invalidate_unlock_shared(mapping);
3221 return VM_FAULT_SIGBUS;
3225 * We dropped the mmap_lock, we need to return to the fault handler to
3226 * re-find the vma and come back and find our hopefully still populated
3232 filemap_invalidate_unlock_shared(mapping);
3235 return ret | VM_FAULT_RETRY;
3237 EXPORT_SYMBOL(filemap_fault);
3239 static bool filemap_map_pmd(struct vm_fault *vmf, struct page *page)
3241 struct mm_struct *mm = vmf->vma->vm_mm;
3243 /* Huge page is mapped? No need to proceed. */
3244 if (pmd_trans_huge(*vmf->pmd)) {
3250 if (pmd_none(*vmf->pmd) && PageTransHuge(page)) {
3251 vm_fault_t ret = do_set_pmd(vmf, page);
3253 /* The page is mapped successfully, reference consumed. */
3259 if (pmd_none(*vmf->pmd))
3260 pmd_install(mm, vmf->pmd, &vmf->prealloc_pte);
3262 /* See comment in handle_pte_fault() */
3263 if (pmd_devmap_trans_unstable(vmf->pmd)) {
3272 static struct folio *next_uptodate_page(struct folio *folio,
3273 struct address_space *mapping,
3274 struct xa_state *xas, pgoff_t end_pgoff)
3276 unsigned long max_idx;
3281 if (xas_retry(xas, folio))
3283 if (xa_is_value(folio))
3285 if (folio_test_locked(folio))
3287 if (!folio_try_get_rcu(folio))
3289 /* Has the page moved or been split? */
3290 if (unlikely(folio != xas_reload(xas)))
3292 if (!folio_test_uptodate(folio) || folio_test_readahead(folio))
3294 if (!folio_trylock(folio))
3296 if (folio->mapping != mapping)
3298 if (!folio_test_uptodate(folio))
3300 max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
3301 if (xas->xa_index >= max_idx)
3305 folio_unlock(folio);
3308 } while ((folio = xas_next_entry(xas, end_pgoff)) != NULL);
3313 static inline struct folio *first_map_page(struct address_space *mapping,
3314 struct xa_state *xas,
3317 return next_uptodate_page(xas_find(xas, end_pgoff),
3318 mapping, xas, end_pgoff);
3321 static inline struct folio *next_map_page(struct address_space *mapping,
3322 struct xa_state *xas,
3325 return next_uptodate_page(xas_next_entry(xas, end_pgoff),
3326 mapping, xas, end_pgoff);
3329 vm_fault_t filemap_map_pages(struct vm_fault *vmf,
3330 pgoff_t start_pgoff, pgoff_t end_pgoff)
3332 struct vm_area_struct *vma = vmf->vma;
3333 struct file *file = vma->vm_file;
3334 struct address_space *mapping = file->f_mapping;
3335 pgoff_t last_pgoff = start_pgoff;
3337 XA_STATE(xas, &mapping->i_pages, start_pgoff);
3338 struct folio *folio;
3340 unsigned int mmap_miss = READ_ONCE(file->f_ra.mmap_miss);
3344 folio = first_map_page(mapping, &xas, end_pgoff);
3348 if (filemap_map_pmd(vmf, &folio->page)) {
3349 ret = VM_FAULT_NOPAGE;
3353 addr = vma->vm_start + ((start_pgoff - vma->vm_pgoff) << PAGE_SHIFT);
3354 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, addr, &vmf->ptl);
3357 page = folio_file_page(folio, xas.xa_index);
3358 if (PageHWPoison(page))
3364 addr += (xas.xa_index - last_pgoff) << PAGE_SHIFT;
3365 vmf->pte += xas.xa_index - last_pgoff;
3366 last_pgoff = xas.xa_index;
3369 * NOTE: If there're PTE markers, we'll leave them to be
3370 * handled in the specific fault path, and it'll prohibit the
3371 * fault-around logic.
3373 if (!pte_none(*vmf->pte))
3376 /* We're about to handle the fault */
3377 if (vmf->address == addr)
3378 ret = VM_FAULT_NOPAGE;
3380 do_set_pte(vmf, page, addr);
3381 /* no need to invalidate: a not-present page won't be cached */
3382 update_mmu_cache(vma, addr, vmf->pte);
3383 if (folio_more_pages(folio, xas.xa_index, end_pgoff)) {
3385 folio_ref_inc(folio);
3388 folio_unlock(folio);
3391 if (folio_more_pages(folio, xas.xa_index, end_pgoff)) {
3395 folio_unlock(folio);
3397 } while ((folio = next_map_page(mapping, &xas, end_pgoff)) != NULL);
3398 pte_unmap_unlock(vmf->pte, vmf->ptl);
3401 WRITE_ONCE(file->f_ra.mmap_miss, mmap_miss);
3404 EXPORT_SYMBOL(filemap_map_pages);
3406 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
3408 struct address_space *mapping = vmf->vma->vm_file->f_mapping;
3409 struct folio *folio = page_folio(vmf->page);
3410 vm_fault_t ret = VM_FAULT_LOCKED;
3412 sb_start_pagefault(mapping->host->i_sb);
3413 file_update_time(vmf->vma->vm_file);
3415 if (folio->mapping != mapping) {
3416 folio_unlock(folio);
3417 ret = VM_FAULT_NOPAGE;
3421 * We mark the folio dirty already here so that when freeze is in
3422 * progress, we are guaranteed that writeback during freezing will
3423 * see the dirty folio and writeprotect it again.
3425 folio_mark_dirty(folio);
3426 folio_wait_stable(folio);
3428 sb_end_pagefault(mapping->host->i_sb);
3432 const struct vm_operations_struct generic_file_vm_ops = {
3433 .fault = filemap_fault,
3434 .map_pages = filemap_map_pages,
3435 .page_mkwrite = filemap_page_mkwrite,
3438 /* This is used for a general mmap of a disk file */
3440 int generic_file_mmap(struct file *file, struct vm_area_struct *vma)
3442 struct address_space *mapping = file->f_mapping;
3444 if (!mapping->a_ops->read_folio)
3446 file_accessed(file);
3447 vma->vm_ops = &generic_file_vm_ops;
3452 * This is for filesystems which do not implement ->writepage.
3454 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
3456 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
3458 return generic_file_mmap(file, vma);
3461 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
3463 return VM_FAULT_SIGBUS;
3465 int generic_file_mmap(struct file *file, struct vm_area_struct *vma)
3469 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
3473 #endif /* CONFIG_MMU */
3475 EXPORT_SYMBOL(filemap_page_mkwrite);
3476 EXPORT_SYMBOL(generic_file_mmap);
3477 EXPORT_SYMBOL(generic_file_readonly_mmap);
3479 static struct folio *do_read_cache_folio(struct address_space *mapping,
3480 pgoff_t index, filler_t filler, struct file *file, gfp_t gfp)
3482 struct folio *folio;
3486 filler = mapping->a_ops->read_folio;
3488 folio = filemap_get_folio(mapping, index);
3490 folio = filemap_alloc_folio(gfp, 0);
3492 return ERR_PTR(-ENOMEM);
3493 err = filemap_add_folio(mapping, folio, index, gfp);
3494 if (unlikely(err)) {
3498 /* Presumably ENOMEM for xarray node */
3499 return ERR_PTR(err);
3504 if (folio_test_uptodate(folio))
3507 if (!folio_trylock(folio)) {
3508 folio_put_wait_locked(folio, TASK_UNINTERRUPTIBLE);
3512 /* Folio was truncated from mapping */
3513 if (!folio->mapping) {
3514 folio_unlock(folio);
3519 /* Someone else locked and filled the page in a very small window */
3520 if (folio_test_uptodate(folio)) {
3521 folio_unlock(folio);
3526 err = filemap_read_folio(file, filler, folio);
3529 if (err == AOP_TRUNCATED_PAGE)
3531 return ERR_PTR(err);
3535 folio_mark_accessed(folio);
3540 * read_cache_folio - Read into page cache, fill it if needed.
3541 * @mapping: The address_space to read from.
3542 * @index: The index to read.
3543 * @filler: Function to perform the read, or NULL to use aops->read_folio().
3544 * @file: Passed to filler function, may be NULL if not required.
3546 * Read one page into the page cache. If it succeeds, the folio returned
3547 * will contain @index, but it may not be the first page of the folio.
3549 * If the filler function returns an error, it will be returned to the
3552 * Context: May sleep. Expects mapping->invalidate_lock to be held.
3553 * Return: An uptodate folio on success, ERR_PTR() on failure.
3555 struct folio *read_cache_folio(struct address_space *mapping, pgoff_t index,
3556 filler_t filler, struct file *file)
3558 return do_read_cache_folio(mapping, index, filler, file,
3559 mapping_gfp_mask(mapping));
3561 EXPORT_SYMBOL(read_cache_folio);
3563 static struct page *do_read_cache_page(struct address_space *mapping,
3564 pgoff_t index, filler_t *filler, struct file *file, gfp_t gfp)
3566 struct folio *folio;
3568 folio = do_read_cache_folio(mapping, index, filler, file, gfp);
3570 return &folio->page;
3571 return folio_file_page(folio, index);
3574 struct page *read_cache_page(struct address_space *mapping,
3575 pgoff_t index, filler_t *filler, struct file *file)
3577 return do_read_cache_page(mapping, index, filler, file,
3578 mapping_gfp_mask(mapping));
3580 EXPORT_SYMBOL(read_cache_page);
3583 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
3584 * @mapping: the page's address_space
3585 * @index: the page index
3586 * @gfp: the page allocator flags to use if allocating
3588 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
3589 * any new page allocations done using the specified allocation flags.
3591 * If the page does not get brought uptodate, return -EIO.
3593 * The function expects mapping->invalidate_lock to be already held.
3595 * Return: up to date page on success, ERR_PTR() on failure.
3597 struct page *read_cache_page_gfp(struct address_space *mapping,
3601 return do_read_cache_page(mapping, index, NULL, NULL, gfp);
3603 EXPORT_SYMBOL(read_cache_page_gfp);
3606 * Warn about a page cache invalidation failure during a direct I/O write.
3608 void dio_warn_stale_pagecache(struct file *filp)
3610 static DEFINE_RATELIMIT_STATE(_rs, 86400 * HZ, DEFAULT_RATELIMIT_BURST);
3614 errseq_set(&filp->f_mapping->wb_err, -EIO);
3615 if (__ratelimit(&_rs)) {
3616 path = file_path(filp, pathname, sizeof(pathname));
3619 pr_crit("Page cache invalidation failure on direct I/O. Possible data corruption due to collision with buffered I/O!\n");
3620 pr_crit("File: %s PID: %d Comm: %.20s\n", path, current->pid,
3626 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from)
3628 struct file *file = iocb->ki_filp;
3629 struct address_space *mapping = file->f_mapping;
3630 struct inode *inode = mapping->host;
3631 loff_t pos = iocb->ki_pos;
3636 write_len = iov_iter_count(from);
3637 end = (pos + write_len - 1) >> PAGE_SHIFT;
3639 if (iocb->ki_flags & IOCB_NOWAIT) {
3640 /* If there are pages to writeback, return */
3641 if (filemap_range_has_page(file->f_mapping, pos,
3642 pos + write_len - 1))
3645 written = filemap_write_and_wait_range(mapping, pos,
3646 pos + write_len - 1);
3652 * After a write we want buffered reads to be sure to go to disk to get
3653 * the new data. We invalidate clean cached page from the region we're
3654 * about to write. We do this *before* the write so that we can return
3655 * without clobbering -EIOCBQUEUED from ->direct_IO().
3657 written = invalidate_inode_pages2_range(mapping,
3658 pos >> PAGE_SHIFT, end);
3660 * If a page can not be invalidated, return 0 to fall back
3661 * to buffered write.
3664 if (written == -EBUSY)
3669 written = mapping->a_ops->direct_IO(iocb, from);
3672 * Finally, try again to invalidate clean pages which might have been
3673 * cached by non-direct readahead, or faulted in by get_user_pages()
3674 * if the source of the write was an mmap'ed region of the file
3675 * we're writing. Either one is a pretty crazy thing to do,
3676 * so we don't support it 100%. If this invalidation
3677 * fails, tough, the write still worked...
3679 * Most of the time we do not need this since dio_complete() will do
3680 * the invalidation for us. However there are some file systems that
3681 * do not end up with dio_complete() being called, so let's not break
3682 * them by removing it completely.
3684 * Noticeable example is a blkdev_direct_IO().
3686 * Skip invalidation for async writes or if mapping has no pages.
3688 if (written > 0 && mapping->nrpages &&
3689 invalidate_inode_pages2_range(mapping, pos >> PAGE_SHIFT, end))
3690 dio_warn_stale_pagecache(file);
3694 write_len -= written;
3695 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
3696 i_size_write(inode, pos);
3697 mark_inode_dirty(inode);
3701 if (written != -EIOCBQUEUED)
3702 iov_iter_revert(from, write_len - iov_iter_count(from));
3706 EXPORT_SYMBOL(generic_file_direct_write);
3708 ssize_t generic_perform_write(struct kiocb *iocb, struct iov_iter *i)
3710 struct file *file = iocb->ki_filp;
3711 loff_t pos = iocb->ki_pos;
3712 struct address_space *mapping = file->f_mapping;
3713 const struct address_space_operations *a_ops = mapping->a_ops;
3715 ssize_t written = 0;
3719 unsigned long offset; /* Offset into pagecache page */
3720 unsigned long bytes; /* Bytes to write to page */
3721 size_t copied; /* Bytes copied from user */
3724 offset = (pos & (PAGE_SIZE - 1));
3725 bytes = min_t(unsigned long, PAGE_SIZE - offset,
3730 * Bring in the user page that we will copy from _first_.
3731 * Otherwise there's a nasty deadlock on copying from the
3732 * same page as we're writing to, without it being marked
3735 if (unlikely(fault_in_iov_iter_readable(i, bytes) == bytes)) {
3740 if (fatal_signal_pending(current)) {
3745 status = a_ops->write_begin(file, mapping, pos, bytes,
3747 if (unlikely(status < 0))
3750 if (mapping_writably_mapped(mapping))
3751 flush_dcache_page(page);
3753 copied = copy_page_from_iter_atomic(page, offset, bytes, i);
3754 flush_dcache_page(page);
3756 status = a_ops->write_end(file, mapping, pos, bytes, copied,
3758 if (unlikely(status != copied)) {
3759 iov_iter_revert(i, copied - max(status, 0L));
3760 if (unlikely(status < 0))
3765 if (unlikely(status == 0)) {
3767 * A short copy made ->write_end() reject the
3768 * thing entirely. Might be memory poisoning
3769 * halfway through, might be a race with munmap,
3770 * might be severe memory pressure.
3779 balance_dirty_pages_ratelimited(mapping);
3780 } while (iov_iter_count(i));
3782 return written ? written : status;
3784 EXPORT_SYMBOL(generic_perform_write);
3787 * __generic_file_write_iter - write data to a file
3788 * @iocb: IO state structure (file, offset, etc.)
3789 * @from: iov_iter with data to write
3791 * This function does all the work needed for actually writing data to a
3792 * file. It does all basic checks, removes SUID from the file, updates
3793 * modification times and calls proper subroutines depending on whether we
3794 * do direct IO or a standard buffered write.
3796 * It expects i_rwsem to be grabbed unless we work on a block device or similar
3797 * object which does not need locking at all.
3799 * This function does *not* take care of syncing data in case of O_SYNC write.
3800 * A caller has to handle it. This is mainly due to the fact that we want to
3801 * avoid syncing under i_rwsem.
3804 * * number of bytes written, even for truncated writes
3805 * * negative error code if no data has been written at all
3807 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
3809 struct file *file = iocb->ki_filp;
3810 struct address_space *mapping = file->f_mapping;
3811 struct inode *inode = mapping->host;
3812 ssize_t written = 0;
3816 /* We can write back this queue in page reclaim */
3817 current->backing_dev_info = inode_to_bdi(inode);
3818 err = file_remove_privs(file);
3822 err = file_update_time(file);
3826 if (iocb->ki_flags & IOCB_DIRECT) {
3827 loff_t pos, endbyte;
3829 written = generic_file_direct_write(iocb, from);
3831 * If the write stopped short of completing, fall back to
3832 * buffered writes. Some filesystems do this for writes to
3833 * holes, for example. For DAX files, a buffered write will
3834 * not succeed (even if it did, DAX does not handle dirty
3835 * page-cache pages correctly).
3837 if (written < 0 || !iov_iter_count(from) || IS_DAX(inode))
3841 status = generic_perform_write(iocb, from);
3843 * If generic_perform_write() returned a synchronous error
3844 * then we want to return the number of bytes which were
3845 * direct-written, or the error code if that was zero. Note
3846 * that this differs from normal direct-io semantics, which
3847 * will return -EFOO even if some bytes were written.
3849 if (unlikely(status < 0)) {
3854 * We need to ensure that the page cache pages are written to
3855 * disk and invalidated to preserve the expected O_DIRECT
3858 endbyte = pos + status - 1;
3859 err = filemap_write_and_wait_range(mapping, pos, endbyte);
3861 iocb->ki_pos = endbyte + 1;
3863 invalidate_mapping_pages(mapping,
3865 endbyte >> PAGE_SHIFT);
3868 * We don't know how much we wrote, so just return
3869 * the number of bytes which were direct-written
3873 written = generic_perform_write(iocb, from);
3874 if (likely(written > 0))
3875 iocb->ki_pos += written;
3878 current->backing_dev_info = NULL;
3879 return written ? written : err;
3881 EXPORT_SYMBOL(__generic_file_write_iter);
3884 * generic_file_write_iter - write data to a file
3885 * @iocb: IO state structure
3886 * @from: iov_iter with data to write
3888 * This is a wrapper around __generic_file_write_iter() to be used by most
3889 * filesystems. It takes care of syncing the file in case of O_SYNC file
3890 * and acquires i_rwsem as needed.
3892 * * negative error code if no data has been written at all of
3893 * vfs_fsync_range() failed for a synchronous write
3894 * * number of bytes written, even for truncated writes
3896 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
3898 struct file *file = iocb->ki_filp;
3899 struct inode *inode = file->f_mapping->host;
3903 ret = generic_write_checks(iocb, from);
3905 ret = __generic_file_write_iter(iocb, from);
3906 inode_unlock(inode);
3909 ret = generic_write_sync(iocb, ret);
3912 EXPORT_SYMBOL(generic_file_write_iter);
3915 * filemap_release_folio() - Release fs-specific metadata on a folio.
3916 * @folio: The folio which the kernel is trying to free.
3917 * @gfp: Memory allocation flags (and I/O mode).
3919 * The address_space is trying to release any data attached to a folio
3920 * (presumably at folio->private).
3922 * This will also be called if the private_2 flag is set on a page,
3923 * indicating that the folio has other metadata associated with it.
3925 * The @gfp argument specifies whether I/O may be performed to release
3926 * this page (__GFP_IO), and whether the call may block
3927 * (__GFP_RECLAIM & __GFP_FS).
3929 * Return: %true if the release was successful, otherwise %false.
3931 bool filemap_release_folio(struct folio *folio, gfp_t gfp)
3933 struct address_space * const mapping = folio->mapping;
3935 BUG_ON(!folio_test_locked(folio));
3936 if (folio_test_writeback(folio))
3939 if (mapping && mapping->a_ops->release_folio)
3940 return mapping->a_ops->release_folio(folio, gfp);
3941 return try_to_free_buffers(folio);
3943 EXPORT_SYMBOL(filemap_release_folio);