4 * Copyright (C) 1994-1999 Linus Torvalds
8 * This file handles the generic file mmap semantics used by
9 * most "normal" filesystems (but you don't /have/ to use this:
10 * the NFS filesystem used to do this differently, for example)
12 #include <linux/export.h>
13 #include <linux/compiler.h>
14 #include <linux/dax.h>
16 #include <linux/uaccess.h>
17 #include <linux/capability.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/gfp.h>
21 #include <linux/swap.h>
22 #include <linux/mman.h>
23 #include <linux/pagemap.h>
24 #include <linux/file.h>
25 #include <linux/uio.h>
26 #include <linux/hash.h>
27 #include <linux/writeback.h>
28 #include <linux/backing-dev.h>
29 #include <linux/pagevec.h>
30 #include <linux/blkdev.h>
31 #include <linux/security.h>
32 #include <linux/cpuset.h>
33 #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
34 #include <linux/hugetlb.h>
35 #include <linux/memcontrol.h>
36 #include <linux/cleancache.h>
37 #include <linux/rmap.h>
40 #define CREATE_TRACE_POINTS
41 #include <trace/events/filemap.h>
44 * FIXME: remove all knowledge of the buffer layer from the core VM
46 #include <linux/buffer_head.h> /* for try_to_free_buffers */
51 * Shared mappings implemented 30.11.1994. It's not fully working yet,
54 * Shared mappings now work. 15.8.1995 Bruno.
56 * finished 'unifying' the page and buffer cache and SMP-threaded the
57 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
59 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
65 * ->i_mmap_rwsem (truncate_pagecache)
66 * ->private_lock (__free_pte->__set_page_dirty_buffers)
67 * ->swap_lock (exclusive_swap_page, others)
68 * ->mapping->tree_lock
71 * ->i_mmap_rwsem (truncate->unmap_mapping_range)
75 * ->page_table_lock or pte_lock (various, mainly in memory.c)
76 * ->mapping->tree_lock (arch-dependent flush_dcache_mmap_lock)
79 * ->lock_page (access_process_vm)
81 * ->i_mutex (generic_perform_write)
82 * ->mmap_sem (fault_in_pages_readable->do_page_fault)
85 * sb_lock (fs/fs-writeback.c)
86 * ->mapping->tree_lock (__sync_single_inode)
89 * ->anon_vma.lock (vma_adjust)
92 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
94 * ->page_table_lock or pte_lock
95 * ->swap_lock (try_to_unmap_one)
96 * ->private_lock (try_to_unmap_one)
97 * ->tree_lock (try_to_unmap_one)
98 * ->zone_lru_lock(zone) (follow_page->mark_page_accessed)
99 * ->zone_lru_lock(zone) (check_pte_range->isolate_lru_page)
100 * ->private_lock (page_remove_rmap->set_page_dirty)
101 * ->tree_lock (page_remove_rmap->set_page_dirty)
102 * bdi.wb->list_lock (page_remove_rmap->set_page_dirty)
103 * ->inode->i_lock (page_remove_rmap->set_page_dirty)
104 * ->memcg->move_lock (page_remove_rmap->lock_page_memcg)
105 * bdi.wb->list_lock (zap_pte_range->set_page_dirty)
106 * ->inode->i_lock (zap_pte_range->set_page_dirty)
107 * ->private_lock (zap_pte_range->__set_page_dirty_buffers)
110 * ->tasklist_lock (memory_failure, collect_procs_ao)
113 static int page_cache_tree_insert(struct address_space *mapping,
114 struct page *page, void **shadowp)
116 struct radix_tree_node *node;
120 error = __radix_tree_create(&mapping->page_tree, page->index, 0,
127 p = radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
128 if (!radix_tree_exceptional_entry(p))
131 mapping->nrexceptional--;
132 if (!dax_mapping(mapping)) {
136 workingset_node_shadows_dec(node);
138 /* DAX can replace empty locked entry with a hole */
140 (void *)(RADIX_TREE_EXCEPTIONAL_ENTRY |
141 RADIX_DAX_ENTRY_LOCK));
142 /* DAX accounts exceptional entries as normal pages */
144 workingset_node_pages_dec(node);
145 /* Wakeup waiters for exceptional entry lock */
146 dax_wake_mapping_entry_waiter(mapping, page->index,
150 radix_tree_replace_slot(slot, page);
153 workingset_node_pages_inc(node);
155 * Don't track node that contains actual pages.
157 * Avoid acquiring the list_lru lock if already
158 * untracked. The list_empty() test is safe as
159 * node->private_list is protected by
160 * mapping->tree_lock.
162 if (!list_empty(&node->private_list))
163 list_lru_del(&workingset_shadow_nodes,
164 &node->private_list);
169 static void page_cache_tree_delete(struct address_space *mapping,
170 struct page *page, void *shadow)
172 int i, nr = PageHuge(page) ? 1 : hpage_nr_pages(page);
174 VM_BUG_ON_PAGE(!PageLocked(page), page);
175 VM_BUG_ON_PAGE(PageTail(page), page);
176 VM_BUG_ON_PAGE(nr != 1 && shadow, page);
178 for (i = 0; i < nr; i++) {
179 struct radix_tree_node *node;
182 __radix_tree_lookup(&mapping->page_tree, page->index + i,
185 radix_tree_clear_tags(&mapping->page_tree, node, slot);
188 VM_BUG_ON_PAGE(nr != 1, page);
190 * We need a node to properly account shadow
191 * entries. Don't plant any without. XXX
196 radix_tree_replace_slot(slot, shadow);
201 workingset_node_pages_dec(node);
203 workingset_node_shadows_inc(node);
205 if (__radix_tree_delete_node(&mapping->page_tree, node))
209 * Track node that only contains shadow entries. DAX mappings
210 * contain no shadow entries and may contain other exceptional
211 * entries so skip those.
213 * Avoid acquiring the list_lru lock if already tracked.
214 * The list_empty() test is safe as node->private_list is
215 * protected by mapping->tree_lock.
217 if (!dax_mapping(mapping) && !workingset_node_pages(node) &&
218 list_empty(&node->private_list)) {
219 node->private_data = mapping;
220 list_lru_add(&workingset_shadow_nodes,
221 &node->private_list);
226 mapping->nrexceptional += nr;
228 * Make sure the nrexceptional update is committed before
229 * the nrpages update so that final truncate racing
230 * with reclaim does not see both counters 0 at the
231 * same time and miss a shadow entry.
235 mapping->nrpages -= nr;
239 * Delete a page from the page cache and free it. Caller has to make
240 * sure the page is locked and that nobody else uses it - or that usage
241 * is safe. The caller must hold the mapping's tree_lock.
243 void __delete_from_page_cache(struct page *page, void *shadow)
245 struct address_space *mapping = page->mapping;
246 int nr = hpage_nr_pages(page);
248 trace_mm_filemap_delete_from_page_cache(page);
250 * if we're uptodate, flush out into the cleancache, otherwise
251 * invalidate any existing cleancache entries. We can't leave
252 * stale data around in the cleancache once our page is gone
254 if (PageUptodate(page) && PageMappedToDisk(page))
255 cleancache_put_page(page);
257 cleancache_invalidate_page(mapping, page);
259 VM_BUG_ON_PAGE(PageTail(page), page);
260 VM_BUG_ON_PAGE(page_mapped(page), page);
261 if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(page_mapped(page))) {
264 pr_alert("BUG: Bad page cache in process %s pfn:%05lx\n",
265 current->comm, page_to_pfn(page));
266 dump_page(page, "still mapped when deleted");
268 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
270 mapcount = page_mapcount(page);
271 if (mapping_exiting(mapping) &&
272 page_count(page) >= mapcount + 2) {
274 * All vmas have already been torn down, so it's
275 * a good bet that actually the page is unmapped,
276 * and we'd prefer not to leak it: if we're wrong,
277 * some other bad page check should catch it later.
279 page_mapcount_reset(page);
280 page_ref_sub(page, mapcount);
284 page_cache_tree_delete(mapping, page, shadow);
286 page->mapping = NULL;
287 /* Leave page->index set: truncation lookup relies upon it */
289 /* hugetlb pages do not participate in page cache accounting. */
291 __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, -nr);
292 if (PageSwapBacked(page)) {
293 __mod_node_page_state(page_pgdat(page), NR_SHMEM, -nr);
294 if (PageTransHuge(page))
295 __dec_node_page_state(page, NR_SHMEM_THPS);
297 VM_BUG_ON_PAGE(PageTransHuge(page) && !PageHuge(page), page);
301 * At this point page must be either written or cleaned by truncate.
302 * Dirty page here signals a bug and loss of unwritten data.
304 * This fixes dirty accounting after removing the page entirely but
305 * leaves PageDirty set: it has no effect for truncated page and
306 * anyway will be cleared before returning page into buddy allocator.
308 if (WARN_ON_ONCE(PageDirty(page)))
309 account_page_cleaned(page, mapping, inode_to_wb(mapping->host));
313 * delete_from_page_cache - delete page from page cache
314 * @page: the page which the kernel is trying to remove from page cache
316 * This must be called only on pages that have been verified to be in the page
317 * cache and locked. It will never put the page into the free list, the caller
318 * has a reference on the page.
320 void delete_from_page_cache(struct page *page)
322 struct address_space *mapping = page_mapping(page);
324 void (*freepage)(struct page *);
326 BUG_ON(!PageLocked(page));
328 freepage = mapping->a_ops->freepage;
330 spin_lock_irqsave(&mapping->tree_lock, flags);
331 __delete_from_page_cache(page, NULL);
332 spin_unlock_irqrestore(&mapping->tree_lock, flags);
337 if (PageTransHuge(page) && !PageHuge(page)) {
338 page_ref_sub(page, HPAGE_PMD_NR);
339 VM_BUG_ON_PAGE(page_count(page) <= 0, page);
344 EXPORT_SYMBOL(delete_from_page_cache);
346 int filemap_check_errors(struct address_space *mapping)
349 /* Check for outstanding write errors */
350 if (test_bit(AS_ENOSPC, &mapping->flags) &&
351 test_and_clear_bit(AS_ENOSPC, &mapping->flags))
353 if (test_bit(AS_EIO, &mapping->flags) &&
354 test_and_clear_bit(AS_EIO, &mapping->flags))
358 EXPORT_SYMBOL(filemap_check_errors);
361 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
362 * @mapping: address space structure to write
363 * @start: offset in bytes where the range starts
364 * @end: offset in bytes where the range ends (inclusive)
365 * @sync_mode: enable synchronous operation
367 * Start writeback against all of a mapping's dirty pages that lie
368 * within the byte offsets <start, end> inclusive.
370 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
371 * opposed to a regular memory cleansing writeback. The difference between
372 * these two operations is that if a dirty page/buffer is encountered, it must
373 * be waited upon, and not just skipped over.
375 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
376 loff_t end, int sync_mode)
379 struct writeback_control wbc = {
380 .sync_mode = sync_mode,
381 .nr_to_write = LONG_MAX,
382 .range_start = start,
386 if (!mapping_cap_writeback_dirty(mapping))
389 wbc_attach_fdatawrite_inode(&wbc, mapping->host);
390 ret = do_writepages(mapping, &wbc);
391 wbc_detach_inode(&wbc);
395 static inline int __filemap_fdatawrite(struct address_space *mapping,
398 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
401 int filemap_fdatawrite(struct address_space *mapping)
403 return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
405 EXPORT_SYMBOL(filemap_fdatawrite);
407 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
410 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
412 EXPORT_SYMBOL(filemap_fdatawrite_range);
415 * filemap_flush - mostly a non-blocking flush
416 * @mapping: target address_space
418 * This is a mostly non-blocking flush. Not suitable for data-integrity
419 * purposes - I/O may not be started against all dirty pages.
421 int filemap_flush(struct address_space *mapping)
423 return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
425 EXPORT_SYMBOL(filemap_flush);
427 static int __filemap_fdatawait_range(struct address_space *mapping,
428 loff_t start_byte, loff_t end_byte)
430 pgoff_t index = start_byte >> PAGE_SHIFT;
431 pgoff_t end = end_byte >> PAGE_SHIFT;
436 if (end_byte < start_byte)
439 pagevec_init(&pvec, 0);
440 while ((index <= end) &&
441 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
442 PAGECACHE_TAG_WRITEBACK,
443 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
446 for (i = 0; i < nr_pages; i++) {
447 struct page *page = pvec.pages[i];
449 /* until radix tree lookup accepts end_index */
450 if (page->index > end)
453 wait_on_page_writeback(page);
454 if (TestClearPageError(page))
457 pagevec_release(&pvec);
465 * filemap_fdatawait_range - wait for writeback to complete
466 * @mapping: address space structure to wait for
467 * @start_byte: offset in bytes where the range starts
468 * @end_byte: offset in bytes where the range ends (inclusive)
470 * Walk the list of under-writeback pages of the given address space
471 * in the given range and wait for all of them. Check error status of
472 * the address space and return it.
474 * Since the error status of the address space is cleared by this function,
475 * callers are responsible for checking the return value and handling and/or
476 * reporting the error.
478 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
483 ret = __filemap_fdatawait_range(mapping, start_byte, end_byte);
484 ret2 = filemap_check_errors(mapping);
490 EXPORT_SYMBOL(filemap_fdatawait_range);
493 * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
494 * @mapping: address space structure to wait for
496 * Walk the list of under-writeback pages of the given address space
497 * and wait for all of them. Unlike filemap_fdatawait(), this function
498 * does not clear error status of the address space.
500 * Use this function if callers don't handle errors themselves. Expected
501 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
504 void filemap_fdatawait_keep_errors(struct address_space *mapping)
506 loff_t i_size = i_size_read(mapping->host);
511 __filemap_fdatawait_range(mapping, 0, i_size - 1);
515 * filemap_fdatawait - wait for all under-writeback pages to complete
516 * @mapping: address space structure to wait for
518 * Walk the list of under-writeback pages of the given address space
519 * and wait for all of them. Check error status of the address space
522 * Since the error status of the address space is cleared by this function,
523 * callers are responsible for checking the return value and handling and/or
524 * reporting the error.
526 int filemap_fdatawait(struct address_space *mapping)
528 loff_t i_size = i_size_read(mapping->host);
533 return filemap_fdatawait_range(mapping, 0, i_size - 1);
535 EXPORT_SYMBOL(filemap_fdatawait);
537 int filemap_write_and_wait(struct address_space *mapping)
541 if ((!dax_mapping(mapping) && mapping->nrpages) ||
542 (dax_mapping(mapping) && mapping->nrexceptional)) {
543 err = filemap_fdatawrite(mapping);
545 * Even if the above returned error, the pages may be
546 * written partially (e.g. -ENOSPC), so we wait for it.
547 * But the -EIO is special case, it may indicate the worst
548 * thing (e.g. bug) happened, so we avoid waiting for it.
551 int err2 = filemap_fdatawait(mapping);
556 err = filemap_check_errors(mapping);
560 EXPORT_SYMBOL(filemap_write_and_wait);
563 * filemap_write_and_wait_range - write out & wait on a file range
564 * @mapping: the address_space for the pages
565 * @lstart: offset in bytes where the range starts
566 * @lend: offset in bytes where the range ends (inclusive)
568 * Write out and wait upon file offsets lstart->lend, inclusive.
570 * Note that `lend' is inclusive (describes the last byte to be written) so
571 * that this function can be used to write to the very end-of-file (end = -1).
573 int filemap_write_and_wait_range(struct address_space *mapping,
574 loff_t lstart, loff_t lend)
578 if ((!dax_mapping(mapping) && mapping->nrpages) ||
579 (dax_mapping(mapping) && mapping->nrexceptional)) {
580 err = __filemap_fdatawrite_range(mapping, lstart, lend,
582 /* See comment of filemap_write_and_wait() */
584 int err2 = filemap_fdatawait_range(mapping,
590 err = filemap_check_errors(mapping);
594 EXPORT_SYMBOL(filemap_write_and_wait_range);
597 * replace_page_cache_page - replace a pagecache page with a new one
598 * @old: page to be replaced
599 * @new: page to replace with
600 * @gfp_mask: allocation mode
602 * This function replaces a page in the pagecache with a new one. On
603 * success it acquires the pagecache reference for the new page and
604 * drops it for the old page. Both the old and new pages must be
605 * locked. This function does not add the new page to the LRU, the
606 * caller must do that.
608 * The remove + add is atomic. The only way this function can fail is
609 * memory allocation failure.
611 int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
615 VM_BUG_ON_PAGE(!PageLocked(old), old);
616 VM_BUG_ON_PAGE(!PageLocked(new), new);
617 VM_BUG_ON_PAGE(new->mapping, new);
619 error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
621 struct address_space *mapping = old->mapping;
622 void (*freepage)(struct page *);
625 pgoff_t offset = old->index;
626 freepage = mapping->a_ops->freepage;
629 new->mapping = mapping;
632 spin_lock_irqsave(&mapping->tree_lock, flags);
633 __delete_from_page_cache(old, NULL);
634 error = page_cache_tree_insert(mapping, new, NULL);
638 * hugetlb pages do not participate in page cache accounting.
641 __inc_node_page_state(new, NR_FILE_PAGES);
642 if (PageSwapBacked(new))
643 __inc_node_page_state(new, NR_SHMEM);
644 spin_unlock_irqrestore(&mapping->tree_lock, flags);
645 mem_cgroup_migrate(old, new);
646 radix_tree_preload_end();
654 EXPORT_SYMBOL_GPL(replace_page_cache_page);
656 static int __add_to_page_cache_locked(struct page *page,
657 struct address_space *mapping,
658 pgoff_t offset, gfp_t gfp_mask,
661 int huge = PageHuge(page);
662 struct mem_cgroup *memcg;
665 VM_BUG_ON_PAGE(!PageLocked(page), page);
666 VM_BUG_ON_PAGE(PageSwapBacked(page), page);
669 error = mem_cgroup_try_charge(page, current->mm,
670 gfp_mask, &memcg, false);
675 error = radix_tree_maybe_preload(gfp_mask & ~__GFP_HIGHMEM);
678 mem_cgroup_cancel_charge(page, memcg, false);
683 page->mapping = mapping;
684 page->index = offset;
686 spin_lock_irq(&mapping->tree_lock);
687 error = page_cache_tree_insert(mapping, page, shadowp);
688 radix_tree_preload_end();
692 /* hugetlb pages do not participate in page cache accounting. */
694 __inc_node_page_state(page, NR_FILE_PAGES);
695 spin_unlock_irq(&mapping->tree_lock);
697 mem_cgroup_commit_charge(page, memcg, false, false);
698 trace_mm_filemap_add_to_page_cache(page);
701 page->mapping = NULL;
702 /* Leave page->index set: truncation relies upon it */
703 spin_unlock_irq(&mapping->tree_lock);
705 mem_cgroup_cancel_charge(page, memcg, false);
711 * add_to_page_cache_locked - add a locked page to the pagecache
713 * @mapping: the page's address_space
714 * @offset: page index
715 * @gfp_mask: page allocation mode
717 * This function is used to add a page to the pagecache. It must be locked.
718 * This function does not add the page to the LRU. The caller must do that.
720 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
721 pgoff_t offset, gfp_t gfp_mask)
723 return __add_to_page_cache_locked(page, mapping, offset,
726 EXPORT_SYMBOL(add_to_page_cache_locked);
728 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
729 pgoff_t offset, gfp_t gfp_mask)
734 __SetPageLocked(page);
735 ret = __add_to_page_cache_locked(page, mapping, offset,
738 __ClearPageLocked(page);
741 * The page might have been evicted from cache only
742 * recently, in which case it should be activated like
743 * any other repeatedly accessed page.
744 * The exception is pages getting rewritten; evicting other
745 * data from the working set, only to cache data that will
746 * get overwritten with something else, is a waste of memory.
748 if (!(gfp_mask & __GFP_WRITE) &&
749 shadow && workingset_refault(shadow)) {
751 workingset_activation(page);
753 ClearPageActive(page);
758 EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
761 struct page *__page_cache_alloc(gfp_t gfp)
766 if (cpuset_do_page_mem_spread()) {
767 unsigned int cpuset_mems_cookie;
769 cpuset_mems_cookie = read_mems_allowed_begin();
770 n = cpuset_mem_spread_node();
771 page = __alloc_pages_node(n, gfp, 0);
772 } while (!page && read_mems_allowed_retry(cpuset_mems_cookie));
776 return alloc_pages(gfp, 0);
778 EXPORT_SYMBOL(__page_cache_alloc);
782 * In order to wait for pages to become available there must be
783 * waitqueues associated with pages. By using a hash table of
784 * waitqueues where the bucket discipline is to maintain all
785 * waiters on the same queue and wake all when any of the pages
786 * become available, and for the woken contexts to check to be
787 * sure the appropriate page became available, this saves space
788 * at a cost of "thundering herd" phenomena during rare hash
791 wait_queue_head_t *page_waitqueue(struct page *page)
793 const struct zone *zone = page_zone(page);
795 return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
797 EXPORT_SYMBOL(page_waitqueue);
799 void wait_on_page_bit(struct page *page, int bit_nr)
801 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
803 if (test_bit(bit_nr, &page->flags))
804 __wait_on_bit(page_waitqueue(page), &wait, bit_wait_io,
805 TASK_UNINTERRUPTIBLE);
807 EXPORT_SYMBOL(wait_on_page_bit);
809 int wait_on_page_bit_killable(struct page *page, int bit_nr)
811 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
813 if (!test_bit(bit_nr, &page->flags))
816 return __wait_on_bit(page_waitqueue(page), &wait,
817 bit_wait_io, TASK_KILLABLE);
820 int wait_on_page_bit_killable_timeout(struct page *page,
821 int bit_nr, unsigned long timeout)
823 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
825 wait.key.timeout = jiffies + timeout;
826 if (!test_bit(bit_nr, &page->flags))
828 return __wait_on_bit(page_waitqueue(page), &wait,
829 bit_wait_io_timeout, TASK_KILLABLE);
831 EXPORT_SYMBOL_GPL(wait_on_page_bit_killable_timeout);
834 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
835 * @page: Page defining the wait queue of interest
836 * @waiter: Waiter to add to the queue
838 * Add an arbitrary @waiter to the wait queue for the nominated @page.
840 void add_page_wait_queue(struct page *page, wait_queue_t *waiter)
842 wait_queue_head_t *q = page_waitqueue(page);
845 spin_lock_irqsave(&q->lock, flags);
846 __add_wait_queue(q, waiter);
847 spin_unlock_irqrestore(&q->lock, flags);
849 EXPORT_SYMBOL_GPL(add_page_wait_queue);
852 * unlock_page - unlock a locked page
855 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
856 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
857 * mechanism between PageLocked pages and PageWriteback pages is shared.
858 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
860 * The mb is necessary to enforce ordering between the clear_bit and the read
861 * of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()).
863 void unlock_page(struct page *page)
865 page = compound_head(page);
866 VM_BUG_ON_PAGE(!PageLocked(page), page);
867 clear_bit_unlock(PG_locked, &page->flags);
868 smp_mb__after_atomic();
869 wake_up_page(page, PG_locked);
871 EXPORT_SYMBOL(unlock_page);
874 * end_page_writeback - end writeback against a page
877 void end_page_writeback(struct page *page)
880 * TestClearPageReclaim could be used here but it is an atomic
881 * operation and overkill in this particular case. Failing to
882 * shuffle a page marked for immediate reclaim is too mild to
883 * justify taking an atomic operation penalty at the end of
884 * ever page writeback.
886 if (PageReclaim(page)) {
887 ClearPageReclaim(page);
888 rotate_reclaimable_page(page);
891 if (!test_clear_page_writeback(page))
894 smp_mb__after_atomic();
895 wake_up_page(page, PG_writeback);
897 EXPORT_SYMBOL(end_page_writeback);
900 * After completing I/O on a page, call this routine to update the page
901 * flags appropriately
903 void page_endio(struct page *page, bool is_write, int err)
907 SetPageUptodate(page);
909 ClearPageUptodate(page);
917 mapping_set_error(page->mapping, err);
919 end_page_writeback(page);
922 EXPORT_SYMBOL_GPL(page_endio);
925 * __lock_page - get a lock on the page, assuming we need to sleep to get it
926 * @page: the page to lock
928 void __lock_page(struct page *page)
930 struct page *page_head = compound_head(page);
931 DEFINE_WAIT_BIT(wait, &page_head->flags, PG_locked);
933 __wait_on_bit_lock(page_waitqueue(page_head), &wait, bit_wait_io,
934 TASK_UNINTERRUPTIBLE);
936 EXPORT_SYMBOL(__lock_page);
938 int __lock_page_killable(struct page *page)
940 struct page *page_head = compound_head(page);
941 DEFINE_WAIT_BIT(wait, &page_head->flags, PG_locked);
943 return __wait_on_bit_lock(page_waitqueue(page_head), &wait,
944 bit_wait_io, TASK_KILLABLE);
946 EXPORT_SYMBOL_GPL(__lock_page_killable);
950 * 1 - page is locked; mmap_sem is still held.
951 * 0 - page is not locked.
952 * mmap_sem has been released (up_read()), unless flags had both
953 * FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
954 * which case mmap_sem is still held.
956 * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1
957 * with the page locked and the mmap_sem unperturbed.
959 int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
962 if (flags & FAULT_FLAG_ALLOW_RETRY) {
964 * CAUTION! In this case, mmap_sem is not released
965 * even though return 0.
967 if (flags & FAULT_FLAG_RETRY_NOWAIT)
970 up_read(&mm->mmap_sem);
971 if (flags & FAULT_FLAG_KILLABLE)
972 wait_on_page_locked_killable(page);
974 wait_on_page_locked(page);
977 if (flags & FAULT_FLAG_KILLABLE) {
980 ret = __lock_page_killable(page);
982 up_read(&mm->mmap_sem);
992 * page_cache_next_hole - find the next hole (not-present entry)
995 * @max_scan: maximum range to search
997 * Search the set [index, min(index+max_scan-1, MAX_INDEX)] for the
998 * lowest indexed hole.
1000 * Returns: the index of the hole if found, otherwise returns an index
1001 * outside of the set specified (in which case 'return - index >=
1002 * max_scan' will be true). In rare cases of index wrap-around, 0 will
1005 * page_cache_next_hole may be called under rcu_read_lock. However,
1006 * like radix_tree_gang_lookup, this will not atomically search a
1007 * snapshot of the tree at a single point in time. For example, if a
1008 * hole is created at index 5, then subsequently a hole is created at
1009 * index 10, page_cache_next_hole covering both indexes may return 10
1010 * if called under rcu_read_lock.
1012 pgoff_t page_cache_next_hole(struct address_space *mapping,
1013 pgoff_t index, unsigned long max_scan)
1017 for (i = 0; i < max_scan; i++) {
1020 page = radix_tree_lookup(&mapping->page_tree, index);
1021 if (!page || radix_tree_exceptional_entry(page))
1030 EXPORT_SYMBOL(page_cache_next_hole);
1033 * page_cache_prev_hole - find the prev hole (not-present entry)
1036 * @max_scan: maximum range to search
1038 * Search backwards in the range [max(index-max_scan+1, 0), index] for
1041 * Returns: the index of the hole if found, otherwise returns an index
1042 * outside of the set specified (in which case 'index - return >=
1043 * max_scan' will be true). In rare cases of wrap-around, ULONG_MAX
1046 * page_cache_prev_hole may be called under rcu_read_lock. However,
1047 * like radix_tree_gang_lookup, this will not atomically search a
1048 * snapshot of the tree at a single point in time. For example, if a
1049 * hole is created at index 10, then subsequently a hole is created at
1050 * index 5, page_cache_prev_hole covering both indexes may return 5 if
1051 * called under rcu_read_lock.
1053 pgoff_t page_cache_prev_hole(struct address_space *mapping,
1054 pgoff_t index, unsigned long max_scan)
1058 for (i = 0; i < max_scan; i++) {
1061 page = radix_tree_lookup(&mapping->page_tree, index);
1062 if (!page || radix_tree_exceptional_entry(page))
1065 if (index == ULONG_MAX)
1071 EXPORT_SYMBOL(page_cache_prev_hole);
1074 * find_get_entry - find and get a page cache entry
1075 * @mapping: the address_space to search
1076 * @offset: the page cache index
1078 * Looks up the page cache slot at @mapping & @offset. If there is a
1079 * page cache page, it is returned with an increased refcount.
1081 * If the slot holds a shadow entry of a previously evicted page, or a
1082 * swap entry from shmem/tmpfs, it is returned.
1084 * Otherwise, %NULL is returned.
1086 struct page *find_get_entry(struct address_space *mapping, pgoff_t offset)
1089 struct page *head, *page;
1094 pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
1096 page = radix_tree_deref_slot(pagep);
1097 if (unlikely(!page))
1099 if (radix_tree_exception(page)) {
1100 if (radix_tree_deref_retry(page))
1103 * A shadow entry of a recently evicted page,
1104 * or a swap entry from shmem/tmpfs. Return
1105 * it without attempting to raise page count.
1110 head = compound_head(page);
1111 if (!page_cache_get_speculative(head))
1114 /* The page was split under us? */
1115 if (compound_head(page) != head) {
1121 * Has the page moved?
1122 * This is part of the lockless pagecache protocol. See
1123 * include/linux/pagemap.h for details.
1125 if (unlikely(page != *pagep)) {
1135 EXPORT_SYMBOL(find_get_entry);
1138 * find_lock_entry - locate, pin and lock a page cache entry
1139 * @mapping: the address_space to search
1140 * @offset: the page cache index
1142 * Looks up the page cache slot at @mapping & @offset. If there is a
1143 * page cache page, it is returned locked and with an increased
1146 * If the slot holds a shadow entry of a previously evicted page, or a
1147 * swap entry from shmem/tmpfs, it is returned.
1149 * Otherwise, %NULL is returned.
1151 * find_lock_entry() may sleep.
1153 struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset)
1158 page = find_get_entry(mapping, offset);
1159 if (page && !radix_tree_exception(page)) {
1161 /* Has the page been truncated? */
1162 if (unlikely(page_mapping(page) != mapping)) {
1167 VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page);
1171 EXPORT_SYMBOL(find_lock_entry);
1174 * pagecache_get_page - find and get a page reference
1175 * @mapping: the address_space to search
1176 * @offset: the page index
1177 * @fgp_flags: PCG flags
1178 * @gfp_mask: gfp mask to use for the page cache data page allocation
1180 * Looks up the page cache slot at @mapping & @offset.
1182 * PCG flags modify how the page is returned.
1184 * FGP_ACCESSED: the page will be marked accessed
1185 * FGP_LOCK: Page is return locked
1186 * FGP_CREAT: If page is not present then a new page is allocated using
1187 * @gfp_mask and added to the page cache and the VM's LRU
1188 * list. The page is returned locked and with an increased
1189 * refcount. Otherwise, %NULL is returned.
1191 * If FGP_LOCK or FGP_CREAT are specified then the function may sleep even
1192 * if the GFP flags specified for FGP_CREAT are atomic.
1194 * If there is a page cache page, it is returned with an increased refcount.
1196 struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset,
1197 int fgp_flags, gfp_t gfp_mask)
1202 page = find_get_entry(mapping, offset);
1203 if (radix_tree_exceptional_entry(page))
1208 if (fgp_flags & FGP_LOCK) {
1209 if (fgp_flags & FGP_NOWAIT) {
1210 if (!trylock_page(page)) {
1218 /* Has the page been truncated? */
1219 if (unlikely(page->mapping != mapping)) {
1224 VM_BUG_ON_PAGE(page->index != offset, page);
1227 if (page && (fgp_flags & FGP_ACCESSED))
1228 mark_page_accessed(page);
1231 if (!page && (fgp_flags & FGP_CREAT)) {
1233 if ((fgp_flags & FGP_WRITE) && mapping_cap_account_dirty(mapping))
1234 gfp_mask |= __GFP_WRITE;
1235 if (fgp_flags & FGP_NOFS)
1236 gfp_mask &= ~__GFP_FS;
1238 page = __page_cache_alloc(gfp_mask);
1242 if (WARN_ON_ONCE(!(fgp_flags & FGP_LOCK)))
1243 fgp_flags |= FGP_LOCK;
1245 /* Init accessed so avoid atomic mark_page_accessed later */
1246 if (fgp_flags & FGP_ACCESSED)
1247 __SetPageReferenced(page);
1249 err = add_to_page_cache_lru(page, mapping, offset,
1250 gfp_mask & GFP_RECLAIM_MASK);
1251 if (unlikely(err)) {
1261 EXPORT_SYMBOL(pagecache_get_page);
1264 * find_get_entries - gang pagecache lookup
1265 * @mapping: The address_space to search
1266 * @start: The starting page cache index
1267 * @nr_entries: The maximum number of entries
1268 * @entries: Where the resulting entries are placed
1269 * @indices: The cache indices corresponding to the entries in @entries
1271 * find_get_entries() will search for and return a group of up to
1272 * @nr_entries entries in the mapping. The entries are placed at
1273 * @entries. find_get_entries() takes a reference against any actual
1276 * The search returns a group of mapping-contiguous page cache entries
1277 * with ascending indexes. There may be holes in the indices due to
1278 * not-present pages.
1280 * Any shadow entries of evicted pages, or swap entries from
1281 * shmem/tmpfs, are included in the returned array.
1283 * find_get_entries() returns the number of pages and shadow entries
1286 unsigned find_get_entries(struct address_space *mapping,
1287 pgoff_t start, unsigned int nr_entries,
1288 struct page **entries, pgoff_t *indices)
1291 unsigned int ret = 0;
1292 struct radix_tree_iter iter;
1298 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1299 struct page *head, *page;
1301 page = radix_tree_deref_slot(slot);
1302 if (unlikely(!page))
1304 if (radix_tree_exception(page)) {
1305 if (radix_tree_deref_retry(page)) {
1306 slot = radix_tree_iter_retry(&iter);
1310 * A shadow entry of a recently evicted page, a swap
1311 * entry from shmem/tmpfs or a DAX entry. Return it
1312 * without attempting to raise page count.
1317 head = compound_head(page);
1318 if (!page_cache_get_speculative(head))
1321 /* The page was split under us? */
1322 if (compound_head(page) != head) {
1327 /* Has the page moved? */
1328 if (unlikely(page != *slot)) {
1333 indices[ret] = iter.index;
1334 entries[ret] = page;
1335 if (++ret == nr_entries)
1343 * find_get_pages - gang pagecache lookup
1344 * @mapping: The address_space to search
1345 * @start: The starting page index
1346 * @nr_pages: The maximum number of pages
1347 * @pages: Where the resulting pages are placed
1349 * find_get_pages() will search for and return a group of up to
1350 * @nr_pages pages in the mapping. The pages are placed at @pages.
1351 * find_get_pages() takes a reference against the returned pages.
1353 * The search returns a group of mapping-contiguous pages with ascending
1354 * indexes. There may be holes in the indices due to not-present pages.
1356 * find_get_pages() returns the number of pages which were found.
1358 unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
1359 unsigned int nr_pages, struct page **pages)
1361 struct radix_tree_iter iter;
1365 if (unlikely(!nr_pages))
1369 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1370 struct page *head, *page;
1372 page = radix_tree_deref_slot(slot);
1373 if (unlikely(!page))
1376 if (radix_tree_exception(page)) {
1377 if (radix_tree_deref_retry(page)) {
1378 slot = radix_tree_iter_retry(&iter);
1382 * A shadow entry of a recently evicted page,
1383 * or a swap entry from shmem/tmpfs. Skip
1389 head = compound_head(page);
1390 if (!page_cache_get_speculative(head))
1393 /* The page was split under us? */
1394 if (compound_head(page) != head) {
1399 /* Has the page moved? */
1400 if (unlikely(page != *slot)) {
1406 if (++ret == nr_pages)
1415 * find_get_pages_contig - gang contiguous pagecache lookup
1416 * @mapping: The address_space to search
1417 * @index: The starting page index
1418 * @nr_pages: The maximum number of pages
1419 * @pages: Where the resulting pages are placed
1421 * find_get_pages_contig() works exactly like find_get_pages(), except
1422 * that the returned number of pages are guaranteed to be contiguous.
1424 * find_get_pages_contig() returns the number of pages which were found.
1426 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
1427 unsigned int nr_pages, struct page **pages)
1429 struct radix_tree_iter iter;
1431 unsigned int ret = 0;
1433 if (unlikely(!nr_pages))
1437 radix_tree_for_each_contig(slot, &mapping->page_tree, &iter, index) {
1438 struct page *head, *page;
1440 page = radix_tree_deref_slot(slot);
1441 /* The hole, there no reason to continue */
1442 if (unlikely(!page))
1445 if (radix_tree_exception(page)) {
1446 if (radix_tree_deref_retry(page)) {
1447 slot = radix_tree_iter_retry(&iter);
1451 * A shadow entry of a recently evicted page,
1452 * or a swap entry from shmem/tmpfs. Stop
1453 * looking for contiguous pages.
1458 head = compound_head(page);
1459 if (!page_cache_get_speculative(head))
1462 /* The page was split under us? */
1463 if (compound_head(page) != head) {
1468 /* Has the page moved? */
1469 if (unlikely(page != *slot)) {
1475 * must check mapping and index after taking the ref.
1476 * otherwise we can get both false positives and false
1477 * negatives, which is just confusing to the caller.
1479 if (page->mapping == NULL || page_to_pgoff(page) != iter.index) {
1485 if (++ret == nr_pages)
1491 EXPORT_SYMBOL(find_get_pages_contig);
1494 * find_get_pages_tag - find and return pages that match @tag
1495 * @mapping: the address_space to search
1496 * @index: the starting page index
1497 * @tag: the tag index
1498 * @nr_pages: the maximum number of pages
1499 * @pages: where the resulting pages are placed
1501 * Like find_get_pages, except we only return pages which are tagged with
1502 * @tag. We update @index to index the next page for the traversal.
1504 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
1505 int tag, unsigned int nr_pages, struct page **pages)
1507 struct radix_tree_iter iter;
1511 if (unlikely(!nr_pages))
1515 radix_tree_for_each_tagged(slot, &mapping->page_tree,
1516 &iter, *index, tag) {
1517 struct page *head, *page;
1519 page = radix_tree_deref_slot(slot);
1520 if (unlikely(!page))
1523 if (radix_tree_exception(page)) {
1524 if (radix_tree_deref_retry(page)) {
1525 slot = radix_tree_iter_retry(&iter);
1529 * A shadow entry of a recently evicted page.
1531 * Those entries should never be tagged, but
1532 * this tree walk is lockless and the tags are
1533 * looked up in bulk, one radix tree node at a
1534 * time, so there is a sizable window for page
1535 * reclaim to evict a page we saw tagged.
1542 head = compound_head(page);
1543 if (!page_cache_get_speculative(head))
1546 /* The page was split under us? */
1547 if (compound_head(page) != head) {
1552 /* Has the page moved? */
1553 if (unlikely(page != *slot)) {
1559 if (++ret == nr_pages)
1566 *index = pages[ret - 1]->index + 1;
1570 EXPORT_SYMBOL(find_get_pages_tag);
1573 * find_get_entries_tag - find and return entries that match @tag
1574 * @mapping: the address_space to search
1575 * @start: the starting page cache index
1576 * @tag: the tag index
1577 * @nr_entries: the maximum number of entries
1578 * @entries: where the resulting entries are placed
1579 * @indices: the cache indices corresponding to the entries in @entries
1581 * Like find_get_entries, except we only return entries which are tagged with
1584 unsigned find_get_entries_tag(struct address_space *mapping, pgoff_t start,
1585 int tag, unsigned int nr_entries,
1586 struct page **entries, pgoff_t *indices)
1589 unsigned int ret = 0;
1590 struct radix_tree_iter iter;
1596 radix_tree_for_each_tagged(slot, &mapping->page_tree,
1597 &iter, start, tag) {
1598 struct page *head, *page;
1600 page = radix_tree_deref_slot(slot);
1601 if (unlikely(!page))
1603 if (radix_tree_exception(page)) {
1604 if (radix_tree_deref_retry(page)) {
1605 slot = radix_tree_iter_retry(&iter);
1610 * A shadow entry of a recently evicted page, a swap
1611 * entry from shmem/tmpfs or a DAX entry. Return it
1612 * without attempting to raise page count.
1617 head = compound_head(page);
1618 if (!page_cache_get_speculative(head))
1621 /* The page was split under us? */
1622 if (compound_head(page) != head) {
1627 /* Has the page moved? */
1628 if (unlikely(page != *slot)) {
1633 indices[ret] = iter.index;
1634 entries[ret] = page;
1635 if (++ret == nr_entries)
1641 EXPORT_SYMBOL(find_get_entries_tag);
1644 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
1645 * a _large_ part of the i/o request. Imagine the worst scenario:
1647 * ---R__________________________________________B__________
1648 * ^ reading here ^ bad block(assume 4k)
1650 * read(R) => miss => readahead(R...B) => media error => frustrating retries
1651 * => failing the whole request => read(R) => read(R+1) =>
1652 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
1653 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
1654 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
1656 * It is going insane. Fix it by quickly scaling down the readahead size.
1658 static void shrink_readahead_size_eio(struct file *filp,
1659 struct file_ra_state *ra)
1665 * do_generic_file_read - generic file read routine
1666 * @filp: the file to read
1667 * @ppos: current file position
1668 * @iter: data destination
1669 * @written: already copied
1671 * This is a generic file read routine, and uses the
1672 * mapping->a_ops->readpage() function for the actual low-level stuff.
1674 * This is really ugly. But the goto's actually try to clarify some
1675 * of the logic when it comes to error handling etc.
1677 static ssize_t do_generic_file_read(struct file *filp, loff_t *ppos,
1678 struct iov_iter *iter, ssize_t written)
1680 struct address_space *mapping = filp->f_mapping;
1681 struct inode *inode = mapping->host;
1682 struct file_ra_state *ra = &filp->f_ra;
1686 unsigned long offset; /* offset into pagecache page */
1687 unsigned int prev_offset;
1690 index = *ppos >> PAGE_SHIFT;
1691 prev_index = ra->prev_pos >> PAGE_SHIFT;
1692 prev_offset = ra->prev_pos & (PAGE_SIZE-1);
1693 last_index = (*ppos + iter->count + PAGE_SIZE-1) >> PAGE_SHIFT;
1694 offset = *ppos & ~PAGE_MASK;
1700 unsigned long nr, ret;
1704 page = find_get_page(mapping, index);
1706 page_cache_sync_readahead(mapping,
1708 index, last_index - index);
1709 page = find_get_page(mapping, index);
1710 if (unlikely(page == NULL))
1711 goto no_cached_page;
1713 if (PageReadahead(page)) {
1714 page_cache_async_readahead(mapping,
1716 index, last_index - index);
1718 if (!PageUptodate(page)) {
1720 * See comment in do_read_cache_page on why
1721 * wait_on_page_locked is used to avoid unnecessarily
1722 * serialisations and why it's safe.
1724 wait_on_page_locked_killable(page);
1725 if (PageUptodate(page))
1728 if (inode->i_blkbits == PAGE_SHIFT ||
1729 !mapping->a_ops->is_partially_uptodate)
1730 goto page_not_up_to_date;
1731 if (!trylock_page(page))
1732 goto page_not_up_to_date;
1733 /* Did it get truncated before we got the lock? */
1735 goto page_not_up_to_date_locked;
1736 if (!mapping->a_ops->is_partially_uptodate(page,
1737 offset, iter->count))
1738 goto page_not_up_to_date_locked;
1743 * i_size must be checked after we know the page is Uptodate.
1745 * Checking i_size after the check allows us to calculate
1746 * the correct value for "nr", which means the zero-filled
1747 * part of the page is not copied back to userspace (unless
1748 * another truncate extends the file - this is desired though).
1751 isize = i_size_read(inode);
1752 end_index = (isize - 1) >> PAGE_SHIFT;
1753 if (unlikely(!isize || index > end_index)) {
1758 /* nr is the maximum number of bytes to copy from this page */
1760 if (index == end_index) {
1761 nr = ((isize - 1) & ~PAGE_MASK) + 1;
1769 /* If users can be writing to this page using arbitrary
1770 * virtual addresses, take care about potential aliasing
1771 * before reading the page on the kernel side.
1773 if (mapping_writably_mapped(mapping))
1774 flush_dcache_page(page);
1777 * When a sequential read accesses a page several times,
1778 * only mark it as accessed the first time.
1780 if (prev_index != index || offset != prev_offset)
1781 mark_page_accessed(page);
1785 * Ok, we have the page, and it's up-to-date, so
1786 * now we can copy it to user space...
1789 ret = copy_page_to_iter(page, offset, nr, iter);
1791 index += offset >> PAGE_SHIFT;
1792 offset &= ~PAGE_MASK;
1793 prev_offset = offset;
1797 if (!iov_iter_count(iter))
1805 page_not_up_to_date:
1806 /* Get exclusive access to the page ... */
1807 error = lock_page_killable(page);
1808 if (unlikely(error))
1809 goto readpage_error;
1811 page_not_up_to_date_locked:
1812 /* Did it get truncated before we got the lock? */
1813 if (!page->mapping) {
1819 /* Did somebody else fill it already? */
1820 if (PageUptodate(page)) {
1827 * A previous I/O error may have been due to temporary
1828 * failures, eg. multipath errors.
1829 * PG_error will be set again if readpage fails.
1831 ClearPageError(page);
1832 /* Start the actual read. The read will unlock the page. */
1833 error = mapping->a_ops->readpage(filp, page);
1835 if (unlikely(error)) {
1836 if (error == AOP_TRUNCATED_PAGE) {
1841 goto readpage_error;
1844 if (!PageUptodate(page)) {
1845 error = lock_page_killable(page);
1846 if (unlikely(error))
1847 goto readpage_error;
1848 if (!PageUptodate(page)) {
1849 if (page->mapping == NULL) {
1851 * invalidate_mapping_pages got it
1858 shrink_readahead_size_eio(filp, ra);
1860 goto readpage_error;
1868 /* UHHUH! A synchronous read error occurred. Report it */
1874 * Ok, it wasn't cached, so we need to create a new
1877 page = page_cache_alloc_cold(mapping);
1882 error = add_to_page_cache_lru(page, mapping, index,
1883 mapping_gfp_constraint(mapping, GFP_KERNEL));
1886 if (error == -EEXIST) {
1896 ra->prev_pos = prev_index;
1897 ra->prev_pos <<= PAGE_SHIFT;
1898 ra->prev_pos |= prev_offset;
1900 *ppos = ((loff_t)index << PAGE_SHIFT) + offset;
1901 file_accessed(filp);
1902 return written ? written : error;
1906 * generic_file_read_iter - generic filesystem read routine
1907 * @iocb: kernel I/O control block
1908 * @iter: destination for the data read
1910 * This is the "read_iter()" routine for all filesystems
1911 * that can use the page cache directly.
1914 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
1916 struct file *file = iocb->ki_filp;
1918 size_t count = iov_iter_count(iter);
1921 goto out; /* skip atime */
1923 if (iocb->ki_flags & IOCB_DIRECT) {
1924 struct address_space *mapping = file->f_mapping;
1925 struct inode *inode = mapping->host;
1926 struct iov_iter data = *iter;
1929 size = i_size_read(inode);
1930 retval = filemap_write_and_wait_range(mapping, iocb->ki_pos,
1931 iocb->ki_pos + count - 1);
1935 file_accessed(file);
1937 retval = mapping->a_ops->direct_IO(iocb, &data);
1939 iocb->ki_pos += retval;
1940 iov_iter_advance(iter, retval);
1944 * Btrfs can have a short DIO read if we encounter
1945 * compressed extents, so if there was an error, or if
1946 * we've already read everything we wanted to, or if
1947 * there was a short read because we hit EOF, go ahead
1948 * and return. Otherwise fallthrough to buffered io for
1949 * the rest of the read. Buffered reads will not work for
1950 * DAX files, so don't bother trying.
1952 if (retval < 0 || !iov_iter_count(iter) || iocb->ki_pos >= size ||
1957 retval = do_generic_file_read(file, &iocb->ki_pos, iter, retval);
1961 EXPORT_SYMBOL(generic_file_read_iter);
1965 * page_cache_read - adds requested page to the page cache if not already there
1966 * @file: file to read
1967 * @offset: page index
1968 * @gfp_mask: memory allocation flags
1970 * This adds the requested page to the page cache if it isn't already there,
1971 * and schedules an I/O to read in its contents from disk.
1973 static int page_cache_read(struct file *file, pgoff_t offset, gfp_t gfp_mask)
1975 struct address_space *mapping = file->f_mapping;
1980 page = __page_cache_alloc(gfp_mask|__GFP_COLD);
1984 ret = add_to_page_cache_lru(page, mapping, offset, gfp_mask & GFP_KERNEL);
1986 ret = mapping->a_ops->readpage(file, page);
1987 else if (ret == -EEXIST)
1988 ret = 0; /* losing race to add is OK */
1992 } while (ret == AOP_TRUNCATED_PAGE);
1997 #define MMAP_LOTSAMISS (100)
2000 * Synchronous readahead happens when we don't even find
2001 * a page in the page cache at all.
2003 static void do_sync_mmap_readahead(struct vm_area_struct *vma,
2004 struct file_ra_state *ra,
2008 struct address_space *mapping = file->f_mapping;
2010 /* If we don't want any read-ahead, don't bother */
2011 if (vma->vm_flags & VM_RAND_READ)
2016 if (vma->vm_flags & VM_SEQ_READ) {
2017 page_cache_sync_readahead(mapping, ra, file, offset,
2022 /* Avoid banging the cache line if not needed */
2023 if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
2027 * Do we miss much more than hit in this file? If so,
2028 * stop bothering with read-ahead. It will only hurt.
2030 if (ra->mmap_miss > MMAP_LOTSAMISS)
2036 ra->start = max_t(long, 0, offset - ra->ra_pages / 2);
2037 ra->size = ra->ra_pages;
2038 ra->async_size = ra->ra_pages / 4;
2039 ra_submit(ra, mapping, file);
2043 * Asynchronous readahead happens when we find the page and PG_readahead,
2044 * so we want to possibly extend the readahead further..
2046 static void do_async_mmap_readahead(struct vm_area_struct *vma,
2047 struct file_ra_state *ra,
2052 struct address_space *mapping = file->f_mapping;
2054 /* If we don't want any read-ahead, don't bother */
2055 if (vma->vm_flags & VM_RAND_READ)
2057 if (ra->mmap_miss > 0)
2059 if (PageReadahead(page))
2060 page_cache_async_readahead(mapping, ra, file,
2061 page, offset, ra->ra_pages);
2065 * filemap_fault - read in file data for page fault handling
2066 * @vma: vma in which the fault was taken
2067 * @vmf: struct vm_fault containing details of the fault
2069 * filemap_fault() is invoked via the vma operations vector for a
2070 * mapped memory region to read in file data during a page fault.
2072 * The goto's are kind of ugly, but this streamlines the normal case of having
2073 * it in the page cache, and handles the special cases reasonably without
2074 * having a lot of duplicated code.
2076 * vma->vm_mm->mmap_sem must be held on entry.
2078 * If our return value has VM_FAULT_RETRY set, it's because
2079 * lock_page_or_retry() returned 0.
2080 * The mmap_sem has usually been released in this case.
2081 * See __lock_page_or_retry() for the exception.
2083 * If our return value does not have VM_FAULT_RETRY set, the mmap_sem
2084 * has not been released.
2086 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
2088 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2091 struct file *file = vma->vm_file;
2092 struct address_space *mapping = file->f_mapping;
2093 struct file_ra_state *ra = &file->f_ra;
2094 struct inode *inode = mapping->host;
2095 pgoff_t offset = vmf->pgoff;
2100 size = round_up(i_size_read(inode), PAGE_SIZE);
2101 if (offset >= size >> PAGE_SHIFT)
2102 return VM_FAULT_SIGBUS;
2105 * Do we have something in the page cache already?
2107 page = find_get_page(mapping, offset);
2108 if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
2110 * We found the page, so try async readahead before
2111 * waiting for the lock.
2113 do_async_mmap_readahead(vma, ra, file, page, offset);
2115 /* No page in the page cache at all */
2116 do_sync_mmap_readahead(vma, ra, file, offset);
2117 count_vm_event(PGMAJFAULT);
2118 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
2119 ret = VM_FAULT_MAJOR;
2121 page = find_get_page(mapping, offset);
2123 goto no_cached_page;
2126 if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags)) {
2128 return ret | VM_FAULT_RETRY;
2131 /* Did it get truncated? */
2132 if (unlikely(page->mapping != mapping)) {
2137 VM_BUG_ON_PAGE(page->index != offset, page);
2140 * We have a locked page in the page cache, now we need to check
2141 * that it's up-to-date. If not, it is going to be due to an error.
2143 if (unlikely(!PageUptodate(page)))
2144 goto page_not_uptodate;
2147 * Found the page and have a reference on it.
2148 * We must recheck i_size under page lock.
2150 size = round_up(i_size_read(inode), PAGE_SIZE);
2151 if (unlikely(offset >= size >> PAGE_SHIFT)) {
2154 return VM_FAULT_SIGBUS;
2158 return ret | VM_FAULT_LOCKED;
2162 * We're only likely to ever get here if MADV_RANDOM is in
2165 error = page_cache_read(file, offset, vmf->gfp_mask);
2168 * The page we want has now been added to the page cache.
2169 * In the unlikely event that someone removed it in the
2170 * meantime, we'll just come back here and read it again.
2176 * An error return from page_cache_read can result if the
2177 * system is low on memory, or a problem occurs while trying
2180 if (error == -ENOMEM)
2181 return VM_FAULT_OOM;
2182 return VM_FAULT_SIGBUS;
2186 * Umm, take care of errors if the page isn't up-to-date.
2187 * Try to re-read it _once_. We do this synchronously,
2188 * because there really aren't any performance issues here
2189 * and we need to check for errors.
2191 ClearPageError(page);
2192 error = mapping->a_ops->readpage(file, page);
2194 wait_on_page_locked(page);
2195 if (!PageUptodate(page))
2200 if (!error || error == AOP_TRUNCATED_PAGE)
2203 /* Things didn't work out. Return zero to tell the mm layer so. */
2204 shrink_readahead_size_eio(file, ra);
2205 return VM_FAULT_SIGBUS;
2207 EXPORT_SYMBOL(filemap_fault);
2209 void filemap_map_pages(struct fault_env *fe,
2210 pgoff_t start_pgoff, pgoff_t end_pgoff)
2212 struct radix_tree_iter iter;
2214 struct file *file = fe->vma->vm_file;
2215 struct address_space *mapping = file->f_mapping;
2216 pgoff_t last_pgoff = start_pgoff;
2218 struct page *head, *page;
2221 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter,
2223 if (iter.index > end_pgoff)
2226 page = radix_tree_deref_slot(slot);
2227 if (unlikely(!page))
2229 if (radix_tree_exception(page)) {
2230 if (radix_tree_deref_retry(page)) {
2231 slot = radix_tree_iter_retry(&iter);
2237 head = compound_head(page);
2238 if (!page_cache_get_speculative(head))
2241 /* The page was split under us? */
2242 if (compound_head(page) != head) {
2247 /* Has the page moved? */
2248 if (unlikely(page != *slot)) {
2253 if (!PageUptodate(page) ||
2254 PageReadahead(page) ||
2257 if (!trylock_page(page))
2260 if (page->mapping != mapping || !PageUptodate(page))
2263 size = round_up(i_size_read(mapping->host), PAGE_SIZE);
2264 if (page->index >= size >> PAGE_SHIFT)
2267 if (file->f_ra.mmap_miss > 0)
2268 file->f_ra.mmap_miss--;
2270 fe->address += (iter.index - last_pgoff) << PAGE_SHIFT;
2272 fe->pte += iter.index - last_pgoff;
2273 last_pgoff = iter.index;
2274 if (alloc_set_pte(fe, NULL, page))
2283 /* Huge page is mapped? No need to proceed. */
2284 if (pmd_trans_huge(*fe->pmd))
2286 if (iter.index == end_pgoff)
2291 EXPORT_SYMBOL(filemap_map_pages);
2293 int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
2295 struct page *page = vmf->page;
2296 struct inode *inode = file_inode(vma->vm_file);
2297 int ret = VM_FAULT_LOCKED;
2299 sb_start_pagefault(inode->i_sb);
2300 file_update_time(vma->vm_file);
2302 if (page->mapping != inode->i_mapping) {
2304 ret = VM_FAULT_NOPAGE;
2308 * We mark the page dirty already here so that when freeze is in
2309 * progress, we are guaranteed that writeback during freezing will
2310 * see the dirty page and writeprotect it again.
2312 set_page_dirty(page);
2313 wait_for_stable_page(page);
2315 sb_end_pagefault(inode->i_sb);
2318 EXPORT_SYMBOL(filemap_page_mkwrite);
2320 const struct vm_operations_struct generic_file_vm_ops = {
2321 .fault = filemap_fault,
2322 .map_pages = filemap_map_pages,
2323 .page_mkwrite = filemap_page_mkwrite,
2326 /* This is used for a general mmap of a disk file */
2328 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2330 struct address_space *mapping = file->f_mapping;
2332 if (!mapping->a_ops->readpage)
2334 file_accessed(file);
2335 vma->vm_ops = &generic_file_vm_ops;
2340 * This is for filesystems which do not implement ->writepage.
2342 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
2344 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
2346 return generic_file_mmap(file, vma);
2349 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2353 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
2357 #endif /* CONFIG_MMU */
2359 EXPORT_SYMBOL(generic_file_mmap);
2360 EXPORT_SYMBOL(generic_file_readonly_mmap);
2362 static struct page *wait_on_page_read(struct page *page)
2364 if (!IS_ERR(page)) {
2365 wait_on_page_locked(page);
2366 if (!PageUptodate(page)) {
2368 page = ERR_PTR(-EIO);
2374 static struct page *do_read_cache_page(struct address_space *mapping,
2376 int (*filler)(void *, struct page *),
2383 page = find_get_page(mapping, index);
2385 page = __page_cache_alloc(gfp | __GFP_COLD);
2387 return ERR_PTR(-ENOMEM);
2388 err = add_to_page_cache_lru(page, mapping, index, gfp);
2389 if (unlikely(err)) {
2393 /* Presumably ENOMEM for radix tree node */
2394 return ERR_PTR(err);
2398 err = filler(data, page);
2401 return ERR_PTR(err);
2404 page = wait_on_page_read(page);
2409 if (PageUptodate(page))
2413 * Page is not up to date and may be locked due one of the following
2414 * case a: Page is being filled and the page lock is held
2415 * case b: Read/write error clearing the page uptodate status
2416 * case c: Truncation in progress (page locked)
2417 * case d: Reclaim in progress
2419 * Case a, the page will be up to date when the page is unlocked.
2420 * There is no need to serialise on the page lock here as the page
2421 * is pinned so the lock gives no additional protection. Even if the
2422 * the page is truncated, the data is still valid if PageUptodate as
2423 * it's a race vs truncate race.
2424 * Case b, the page will not be up to date
2425 * Case c, the page may be truncated but in itself, the data may still
2426 * be valid after IO completes as it's a read vs truncate race. The
2427 * operation must restart if the page is not uptodate on unlock but
2428 * otherwise serialising on page lock to stabilise the mapping gives
2429 * no additional guarantees to the caller as the page lock is
2430 * released before return.
2431 * Case d, similar to truncation. If reclaim holds the page lock, it
2432 * will be a race with remove_mapping that determines if the mapping
2433 * is valid on unlock but otherwise the data is valid and there is
2434 * no need to serialise with page lock.
2436 * As the page lock gives no additional guarantee, we optimistically
2437 * wait on the page to be unlocked and check if it's up to date and
2438 * use the page if it is. Otherwise, the page lock is required to
2439 * distinguish between the different cases. The motivation is that we
2440 * avoid spurious serialisations and wakeups when multiple processes
2441 * wait on the same page for IO to complete.
2443 wait_on_page_locked(page);
2444 if (PageUptodate(page))
2447 /* Distinguish between all the cases under the safety of the lock */
2450 /* Case c or d, restart the operation */
2451 if (!page->mapping) {
2457 /* Someone else locked and filled the page in a very small window */
2458 if (PageUptodate(page)) {
2465 mark_page_accessed(page);
2470 * read_cache_page - read into page cache, fill it if needed
2471 * @mapping: the page's address_space
2472 * @index: the page index
2473 * @filler: function to perform the read
2474 * @data: first arg to filler(data, page) function, often left as NULL
2476 * Read into the page cache. If a page already exists, and PageUptodate() is
2477 * not set, try to fill the page and wait for it to become unlocked.
2479 * If the page does not get brought uptodate, return -EIO.
2481 struct page *read_cache_page(struct address_space *mapping,
2483 int (*filler)(void *, struct page *),
2486 return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
2488 EXPORT_SYMBOL(read_cache_page);
2491 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
2492 * @mapping: the page's address_space
2493 * @index: the page index
2494 * @gfp: the page allocator flags to use if allocating
2496 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
2497 * any new page allocations done using the specified allocation flags.
2499 * If the page does not get brought uptodate, return -EIO.
2501 struct page *read_cache_page_gfp(struct address_space *mapping,
2505 filler_t *filler = (filler_t *)mapping->a_ops->readpage;
2507 return do_read_cache_page(mapping, index, filler, NULL, gfp);
2509 EXPORT_SYMBOL(read_cache_page_gfp);
2512 * Performs necessary checks before doing a write
2514 * Can adjust writing position or amount of bytes to write.
2515 * Returns appropriate error code that caller should return or
2516 * zero in case that write should be allowed.
2518 inline ssize_t generic_write_checks(struct kiocb *iocb, struct iov_iter *from)
2520 struct file *file = iocb->ki_filp;
2521 struct inode *inode = file->f_mapping->host;
2522 unsigned long limit = rlimit(RLIMIT_FSIZE);
2525 if (!iov_iter_count(from))
2528 /* FIXME: this is for backwards compatibility with 2.4 */
2529 if (iocb->ki_flags & IOCB_APPEND)
2530 iocb->ki_pos = i_size_read(inode);
2534 if (limit != RLIM_INFINITY) {
2535 if (iocb->ki_pos >= limit) {
2536 send_sig(SIGXFSZ, current, 0);
2539 iov_iter_truncate(from, limit - (unsigned long)pos);
2545 if (unlikely(pos + iov_iter_count(from) > MAX_NON_LFS &&
2546 !(file->f_flags & O_LARGEFILE))) {
2547 if (pos >= MAX_NON_LFS)
2549 iov_iter_truncate(from, MAX_NON_LFS - (unsigned long)pos);
2553 * Are we about to exceed the fs block limit ?
2555 * If we have written data it becomes a short write. If we have
2556 * exceeded without writing data we send a signal and return EFBIG.
2557 * Linus frestrict idea will clean these up nicely..
2559 if (unlikely(pos >= inode->i_sb->s_maxbytes))
2562 iov_iter_truncate(from, inode->i_sb->s_maxbytes - pos);
2563 return iov_iter_count(from);
2565 EXPORT_SYMBOL(generic_write_checks);
2567 int pagecache_write_begin(struct file *file, struct address_space *mapping,
2568 loff_t pos, unsigned len, unsigned flags,
2569 struct page **pagep, void **fsdata)
2571 const struct address_space_operations *aops = mapping->a_ops;
2573 return aops->write_begin(file, mapping, pos, len, flags,
2576 EXPORT_SYMBOL(pagecache_write_begin);
2578 int pagecache_write_end(struct file *file, struct address_space *mapping,
2579 loff_t pos, unsigned len, unsigned copied,
2580 struct page *page, void *fsdata)
2582 const struct address_space_operations *aops = mapping->a_ops;
2584 return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
2586 EXPORT_SYMBOL(pagecache_write_end);
2589 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from)
2591 struct file *file = iocb->ki_filp;
2592 struct address_space *mapping = file->f_mapping;
2593 struct inode *inode = mapping->host;
2594 loff_t pos = iocb->ki_pos;
2598 struct iov_iter data;
2600 write_len = iov_iter_count(from);
2601 end = (pos + write_len - 1) >> PAGE_SHIFT;
2603 written = filemap_write_and_wait_range(mapping, pos, pos + write_len - 1);
2608 * After a write we want buffered reads to be sure to go to disk to get
2609 * the new data. We invalidate clean cached page from the region we're
2610 * about to write. We do this *before* the write so that we can return
2611 * without clobbering -EIOCBQUEUED from ->direct_IO().
2613 if (mapping->nrpages) {
2614 written = invalidate_inode_pages2_range(mapping,
2615 pos >> PAGE_SHIFT, end);
2617 * If a page can not be invalidated, return 0 to fall back
2618 * to buffered write.
2621 if (written == -EBUSY)
2628 written = mapping->a_ops->direct_IO(iocb, &data);
2631 * Finally, try again to invalidate clean pages which might have been
2632 * cached by non-direct readahead, or faulted in by get_user_pages()
2633 * if the source of the write was an mmap'ed region of the file
2634 * we're writing. Either one is a pretty crazy thing to do,
2635 * so we don't support it 100%. If this invalidation
2636 * fails, tough, the write still worked...
2638 if (mapping->nrpages) {
2639 invalidate_inode_pages2_range(mapping,
2640 pos >> PAGE_SHIFT, end);
2645 iov_iter_advance(from, written);
2646 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2647 i_size_write(inode, pos);
2648 mark_inode_dirty(inode);
2655 EXPORT_SYMBOL(generic_file_direct_write);
2658 * Find or create a page at the given pagecache position. Return the locked
2659 * page. This function is specifically for buffered writes.
2661 struct page *grab_cache_page_write_begin(struct address_space *mapping,
2662 pgoff_t index, unsigned flags)
2665 int fgp_flags = FGP_LOCK|FGP_WRITE|FGP_CREAT;
2667 if (flags & AOP_FLAG_NOFS)
2668 fgp_flags |= FGP_NOFS;
2670 page = pagecache_get_page(mapping, index, fgp_flags,
2671 mapping_gfp_mask(mapping));
2673 wait_for_stable_page(page);
2677 EXPORT_SYMBOL(grab_cache_page_write_begin);
2679 ssize_t generic_perform_write(struct file *file,
2680 struct iov_iter *i, loff_t pos)
2682 struct address_space *mapping = file->f_mapping;
2683 const struct address_space_operations *a_ops = mapping->a_ops;
2685 ssize_t written = 0;
2686 unsigned int flags = 0;
2689 * Copies from kernel address space cannot fail (NFSD is a big user).
2691 if (!iter_is_iovec(i))
2692 flags |= AOP_FLAG_UNINTERRUPTIBLE;
2696 unsigned long offset; /* Offset into pagecache page */
2697 unsigned long bytes; /* Bytes to write to page */
2698 size_t copied; /* Bytes copied from user */
2701 offset = (pos & (PAGE_SIZE - 1));
2702 bytes = min_t(unsigned long, PAGE_SIZE - offset,
2707 * Bring in the user page that we will copy from _first_.
2708 * Otherwise there's a nasty deadlock on copying from the
2709 * same page as we're writing to, without it being marked
2712 * Not only is this an optimisation, but it is also required
2713 * to check that the address is actually valid, when atomic
2714 * usercopies are used, below.
2716 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2721 if (fatal_signal_pending(current)) {
2726 status = a_ops->write_begin(file, mapping, pos, bytes, flags,
2728 if (unlikely(status < 0))
2731 if (mapping_writably_mapped(mapping))
2732 flush_dcache_page(page);
2734 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
2735 flush_dcache_page(page);
2737 status = a_ops->write_end(file, mapping, pos, bytes, copied,
2739 if (unlikely(status < 0))
2745 iov_iter_advance(i, copied);
2746 if (unlikely(copied == 0)) {
2748 * If we were unable to copy any data at all, we must
2749 * fall back to a single segment length write.
2751 * If we didn't fallback here, we could livelock
2752 * because not all segments in the iov can be copied at
2753 * once without a pagefault.
2755 bytes = min_t(unsigned long, PAGE_SIZE - offset,
2756 iov_iter_single_seg_count(i));
2762 balance_dirty_pages_ratelimited(mapping);
2763 } while (iov_iter_count(i));
2765 return written ? written : status;
2767 EXPORT_SYMBOL(generic_perform_write);
2770 * __generic_file_write_iter - write data to a file
2771 * @iocb: IO state structure (file, offset, etc.)
2772 * @from: iov_iter with data to write
2774 * This function does all the work needed for actually writing data to a
2775 * file. It does all basic checks, removes SUID from the file, updates
2776 * modification times and calls proper subroutines depending on whether we
2777 * do direct IO or a standard buffered write.
2779 * It expects i_mutex to be grabbed unless we work on a block device or similar
2780 * object which does not need locking at all.
2782 * This function does *not* take care of syncing data in case of O_SYNC write.
2783 * A caller has to handle it. This is mainly due to the fact that we want to
2784 * avoid syncing under i_mutex.
2786 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
2788 struct file *file = iocb->ki_filp;
2789 struct address_space * mapping = file->f_mapping;
2790 struct inode *inode = mapping->host;
2791 ssize_t written = 0;
2795 /* We can write back this queue in page reclaim */
2796 current->backing_dev_info = inode_to_bdi(inode);
2797 err = file_remove_privs(file);
2801 err = file_update_time(file);
2805 if (iocb->ki_flags & IOCB_DIRECT) {
2806 loff_t pos, endbyte;
2808 written = generic_file_direct_write(iocb, from);
2810 * If the write stopped short of completing, fall back to
2811 * buffered writes. Some filesystems do this for writes to
2812 * holes, for example. For DAX files, a buffered write will
2813 * not succeed (even if it did, DAX does not handle dirty
2814 * page-cache pages correctly).
2816 if (written < 0 || !iov_iter_count(from) || IS_DAX(inode))
2819 status = generic_perform_write(file, from, pos = iocb->ki_pos);
2821 * If generic_perform_write() returned a synchronous error
2822 * then we want to return the number of bytes which were
2823 * direct-written, or the error code if that was zero. Note
2824 * that this differs from normal direct-io semantics, which
2825 * will return -EFOO even if some bytes were written.
2827 if (unlikely(status < 0)) {
2832 * We need to ensure that the page cache pages are written to
2833 * disk and invalidated to preserve the expected O_DIRECT
2836 endbyte = pos + status - 1;
2837 err = filemap_write_and_wait_range(mapping, pos, endbyte);
2839 iocb->ki_pos = endbyte + 1;
2841 invalidate_mapping_pages(mapping,
2843 endbyte >> PAGE_SHIFT);
2846 * We don't know how much we wrote, so just return
2847 * the number of bytes which were direct-written
2851 written = generic_perform_write(file, from, iocb->ki_pos);
2852 if (likely(written > 0))
2853 iocb->ki_pos += written;
2856 current->backing_dev_info = NULL;
2857 return written ? written : err;
2859 EXPORT_SYMBOL(__generic_file_write_iter);
2862 * generic_file_write_iter - write data to a file
2863 * @iocb: IO state structure
2864 * @from: iov_iter with data to write
2866 * This is a wrapper around __generic_file_write_iter() to be used by most
2867 * filesystems. It takes care of syncing the file in case of O_SYNC file
2868 * and acquires i_mutex as needed.
2870 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
2872 struct file *file = iocb->ki_filp;
2873 struct inode *inode = file->f_mapping->host;
2877 ret = generic_write_checks(iocb, from);
2879 ret = __generic_file_write_iter(iocb, from);
2880 inode_unlock(inode);
2883 ret = generic_write_sync(iocb, ret);
2886 EXPORT_SYMBOL(generic_file_write_iter);
2889 * try_to_release_page() - release old fs-specific metadata on a page
2891 * @page: the page which the kernel is trying to free
2892 * @gfp_mask: memory allocation flags (and I/O mode)
2894 * The address_space is to try to release any data against the page
2895 * (presumably at page->private). If the release was successful, return `1'.
2896 * Otherwise return zero.
2898 * This may also be called if PG_fscache is set on a page, indicating that the
2899 * page is known to the local caching routines.
2901 * The @gfp_mask argument specifies whether I/O may be performed to release
2902 * this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS).
2905 int try_to_release_page(struct page *page, gfp_t gfp_mask)
2907 struct address_space * const mapping = page->mapping;
2909 BUG_ON(!PageLocked(page));
2910 if (PageWriteback(page))
2913 if (mapping && mapping->a_ops->releasepage)
2914 return mapping->a_ops->releasepage(page, gfp_mask);
2915 return try_to_free_buffers(page);
2918 EXPORT_SYMBOL(try_to_release_page);