1 // SPDX-License-Identifier: GPL-2.0-only
5 * Copyright (C) 1994-1999 Linus Torvalds
9 * This file handles the generic file mmap semantics used by
10 * most "normal" filesystems (but you don't /have/ to use this:
11 * the NFS filesystem used to do this differently, for example)
13 #include <linux/export.h>
14 #include <linux/compiler.h>
15 #include <linux/dax.h>
17 #include <linux/sched/signal.h>
18 #include <linux/uaccess.h>
19 #include <linux/capability.h>
20 #include <linux/kernel_stat.h>
21 #include <linux/gfp.h>
23 #include <linux/swap.h>
24 #include <linux/mman.h>
25 #include <linux/pagemap.h>
26 #include <linux/file.h>
27 #include <linux/uio.h>
28 #include <linux/error-injection.h>
29 #include <linux/hash.h>
30 #include <linux/writeback.h>
31 #include <linux/backing-dev.h>
32 #include <linux/pagevec.h>
33 #include <linux/blkdev.h>
34 #include <linux/security.h>
35 #include <linux/cpuset.h>
36 #include <linux/hugetlb.h>
37 #include <linux/memcontrol.h>
38 #include <linux/cleancache.h>
39 #include <linux/shmem_fs.h>
40 #include <linux/rmap.h>
41 #include <linux/delayacct.h>
42 #include <linux/psi.h>
45 #define CREATE_TRACE_POINTS
46 #include <trace/events/filemap.h>
49 * FIXME: remove all knowledge of the buffer layer from the core VM
51 #include <linux/buffer_head.h> /* for try_to_free_buffers */
56 * Shared mappings implemented 30.11.1994. It's not fully working yet,
59 * Shared mappings now work. 15.8.1995 Bruno.
61 * finished 'unifying' the page and buffer cache and SMP-threaded the
62 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
64 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
70 * ->i_mmap_rwsem (truncate_pagecache)
71 * ->private_lock (__free_pte->__set_page_dirty_buffers)
72 * ->swap_lock (exclusive_swap_page, others)
76 * ->i_mmap_rwsem (truncate->unmap_mapping_range)
80 * ->page_table_lock or pte_lock (various, mainly in memory.c)
81 * ->i_pages lock (arch-dependent flush_dcache_mmap_lock)
84 * ->lock_page (access_process_vm)
86 * ->i_mutex (generic_perform_write)
87 * ->mmap_sem (fault_in_pages_readable->do_page_fault)
90 * sb_lock (fs/fs-writeback.c)
91 * ->i_pages lock (__sync_single_inode)
94 * ->anon_vma.lock (vma_adjust)
97 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
99 * ->page_table_lock or pte_lock
100 * ->swap_lock (try_to_unmap_one)
101 * ->private_lock (try_to_unmap_one)
102 * ->i_pages lock (try_to_unmap_one)
103 * ->pgdat->lru_lock (follow_page->mark_page_accessed)
104 * ->pgdat->lru_lock (check_pte_range->isolate_lru_page)
105 * ->private_lock (page_remove_rmap->set_page_dirty)
106 * ->i_pages lock (page_remove_rmap->set_page_dirty)
107 * bdi.wb->list_lock (page_remove_rmap->set_page_dirty)
108 * ->inode->i_lock (page_remove_rmap->set_page_dirty)
109 * ->memcg->move_lock (page_remove_rmap->lock_page_memcg)
110 * bdi.wb->list_lock (zap_pte_range->set_page_dirty)
111 * ->inode->i_lock (zap_pte_range->set_page_dirty)
112 * ->private_lock (zap_pte_range->__set_page_dirty_buffers)
115 * ->tasklist_lock (memory_failure, collect_procs_ao)
118 static void page_cache_delete(struct address_space *mapping,
119 struct page *page, void *shadow)
121 XA_STATE(xas, &mapping->i_pages, page->index);
124 mapping_set_update(&xas, mapping);
126 /* hugetlb pages are represented by a single entry in the xarray */
127 if (!PageHuge(page)) {
128 xas_set_order(&xas, page->index, compound_order(page));
129 nr = 1U << compound_order(page);
132 VM_BUG_ON_PAGE(!PageLocked(page), page);
133 VM_BUG_ON_PAGE(PageTail(page), page);
134 VM_BUG_ON_PAGE(nr != 1 && shadow, page);
136 xas_store(&xas, shadow);
137 xas_init_marks(&xas);
139 page->mapping = NULL;
140 /* Leave page->index set: truncation lookup relies upon it */
143 mapping->nrexceptional += nr;
145 * Make sure the nrexceptional update is committed before
146 * the nrpages update so that final truncate racing
147 * with reclaim does not see both counters 0 at the
148 * same time and miss a shadow entry.
152 mapping->nrpages -= nr;
155 static void unaccount_page_cache_page(struct address_space *mapping,
161 * if we're uptodate, flush out into the cleancache, otherwise
162 * invalidate any existing cleancache entries. We can't leave
163 * stale data around in the cleancache once our page is gone
165 if (PageUptodate(page) && PageMappedToDisk(page))
166 cleancache_put_page(page);
168 cleancache_invalidate_page(mapping, page);
170 VM_BUG_ON_PAGE(PageTail(page), page);
171 VM_BUG_ON_PAGE(page_mapped(page), page);
172 if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(page_mapped(page))) {
175 pr_alert("BUG: Bad page cache in process %s pfn:%05lx\n",
176 current->comm, page_to_pfn(page));
177 dump_page(page, "still mapped when deleted");
179 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
181 mapcount = page_mapcount(page);
182 if (mapping_exiting(mapping) &&
183 page_count(page) >= mapcount + 2) {
185 * All vmas have already been torn down, so it's
186 * a good bet that actually the page is unmapped,
187 * and we'd prefer not to leak it: if we're wrong,
188 * some other bad page check should catch it later.
190 page_mapcount_reset(page);
191 page_ref_sub(page, mapcount);
195 /* hugetlb pages do not participate in page cache accounting. */
199 nr = hpage_nr_pages(page);
201 __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, -nr);
202 if (PageSwapBacked(page)) {
203 __mod_node_page_state(page_pgdat(page), NR_SHMEM, -nr);
204 if (PageTransHuge(page))
205 __dec_node_page_state(page, NR_SHMEM_THPS);
207 VM_BUG_ON_PAGE(PageTransHuge(page), page);
211 * At this point page must be either written or cleaned by
212 * truncate. Dirty page here signals a bug and loss of
215 * This fixes dirty accounting after removing the page entirely
216 * but leaves PageDirty set: it has no effect for truncated
217 * page and anyway will be cleared before returning page into
220 if (WARN_ON_ONCE(PageDirty(page)))
221 account_page_cleaned(page, mapping, inode_to_wb(mapping->host));
225 * Delete a page from the page cache and free it. Caller has to make
226 * sure the page is locked and that nobody else uses it - or that usage
227 * is safe. The caller must hold the i_pages lock.
229 void __delete_from_page_cache(struct page *page, void *shadow)
231 struct address_space *mapping = page->mapping;
233 trace_mm_filemap_delete_from_page_cache(page);
235 unaccount_page_cache_page(mapping, page);
236 page_cache_delete(mapping, page, shadow);
239 static void page_cache_free_page(struct address_space *mapping,
242 void (*freepage)(struct page *);
244 freepage = mapping->a_ops->freepage;
248 if (PageTransHuge(page) && !PageHuge(page)) {
249 page_ref_sub(page, HPAGE_PMD_NR);
250 VM_BUG_ON_PAGE(page_count(page) <= 0, page);
257 * delete_from_page_cache - delete page from page cache
258 * @page: the page which the kernel is trying to remove from page cache
260 * This must be called only on pages that have been verified to be in the page
261 * cache and locked. It will never put the page into the free list, the caller
262 * has a reference on the page.
264 void delete_from_page_cache(struct page *page)
266 struct address_space *mapping = page_mapping(page);
269 BUG_ON(!PageLocked(page));
270 xa_lock_irqsave(&mapping->i_pages, flags);
271 __delete_from_page_cache(page, NULL);
272 xa_unlock_irqrestore(&mapping->i_pages, flags);
274 page_cache_free_page(mapping, page);
276 EXPORT_SYMBOL(delete_from_page_cache);
279 * page_cache_delete_batch - delete several pages from page cache
280 * @mapping: the mapping to which pages belong
281 * @pvec: pagevec with pages to delete
283 * The function walks over mapping->i_pages and removes pages passed in @pvec
284 * from the mapping. The function expects @pvec to be sorted by page index
285 * and is optimised for it to be dense.
286 * It tolerates holes in @pvec (mapping entries at those indices are not
287 * modified). The function expects only THP head pages to be present in the
290 * The function expects the i_pages lock to be held.
292 static void page_cache_delete_batch(struct address_space *mapping,
293 struct pagevec *pvec)
295 XA_STATE(xas, &mapping->i_pages, pvec->pages[0]->index);
300 mapping_set_update(&xas, mapping);
301 xas_for_each(&xas, page, ULONG_MAX) {
302 if (i >= pagevec_count(pvec))
305 /* A swap/dax/shadow entry got inserted? Skip it. */
306 if (xa_is_value(page))
309 * A page got inserted in our range? Skip it. We have our
310 * pages locked so they are protected from being removed.
311 * If we see a page whose index is higher than ours, it
312 * means our page has been removed, which shouldn't be
313 * possible because we're holding the PageLock.
315 if (page != pvec->pages[i]) {
316 VM_BUG_ON_PAGE(page->index > pvec->pages[i]->index,
321 WARN_ON_ONCE(!PageLocked(page));
323 if (page->index == xas.xa_index)
324 page->mapping = NULL;
325 /* Leave page->index set: truncation lookup relies on it */
328 * Move to the next page in the vector if this is a regular
329 * page or the index is of the last sub-page of this compound
332 if (page->index + (1UL << compound_order(page)) - 1 ==
335 xas_store(&xas, NULL);
338 mapping->nrpages -= total_pages;
341 void delete_from_page_cache_batch(struct address_space *mapping,
342 struct pagevec *pvec)
347 if (!pagevec_count(pvec))
350 xa_lock_irqsave(&mapping->i_pages, flags);
351 for (i = 0; i < pagevec_count(pvec); i++) {
352 trace_mm_filemap_delete_from_page_cache(pvec->pages[i]);
354 unaccount_page_cache_page(mapping, pvec->pages[i]);
356 page_cache_delete_batch(mapping, pvec);
357 xa_unlock_irqrestore(&mapping->i_pages, flags);
359 for (i = 0; i < pagevec_count(pvec); i++)
360 page_cache_free_page(mapping, pvec->pages[i]);
363 int filemap_check_errors(struct address_space *mapping)
366 /* Check for outstanding write errors */
367 if (test_bit(AS_ENOSPC, &mapping->flags) &&
368 test_and_clear_bit(AS_ENOSPC, &mapping->flags))
370 if (test_bit(AS_EIO, &mapping->flags) &&
371 test_and_clear_bit(AS_EIO, &mapping->flags))
375 EXPORT_SYMBOL(filemap_check_errors);
377 static int filemap_check_and_keep_errors(struct address_space *mapping)
379 /* Check for outstanding write errors */
380 if (test_bit(AS_EIO, &mapping->flags))
382 if (test_bit(AS_ENOSPC, &mapping->flags))
388 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
389 * @mapping: address space structure to write
390 * @start: offset in bytes where the range starts
391 * @end: offset in bytes where the range ends (inclusive)
392 * @sync_mode: enable synchronous operation
394 * Start writeback against all of a mapping's dirty pages that lie
395 * within the byte offsets <start, end> inclusive.
397 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
398 * opposed to a regular memory cleansing writeback. The difference between
399 * these two operations is that if a dirty page/buffer is encountered, it must
400 * be waited upon, and not just skipped over.
402 * Return: %0 on success, negative error code otherwise.
404 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
405 loff_t end, int sync_mode)
408 struct writeback_control wbc = {
409 .sync_mode = sync_mode,
410 .nr_to_write = LONG_MAX,
411 .range_start = start,
415 if (!mapping_cap_writeback_dirty(mapping))
418 wbc_attach_fdatawrite_inode(&wbc, mapping->host);
419 ret = do_writepages(mapping, &wbc);
420 wbc_detach_inode(&wbc);
424 static inline int __filemap_fdatawrite(struct address_space *mapping,
427 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
430 int filemap_fdatawrite(struct address_space *mapping)
432 return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
434 EXPORT_SYMBOL(filemap_fdatawrite);
436 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
439 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
441 EXPORT_SYMBOL(filemap_fdatawrite_range);
444 * filemap_flush - mostly a non-blocking flush
445 * @mapping: target address_space
447 * This is a mostly non-blocking flush. Not suitable for data-integrity
448 * purposes - I/O may not be started against all dirty pages.
450 * Return: %0 on success, negative error code otherwise.
452 int filemap_flush(struct address_space *mapping)
454 return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
456 EXPORT_SYMBOL(filemap_flush);
459 * filemap_range_has_page - check if a page exists in range.
460 * @mapping: address space within which to check
461 * @start_byte: offset in bytes where the range starts
462 * @end_byte: offset in bytes where the range ends (inclusive)
464 * Find at least one page in the range supplied, usually used to check if
465 * direct writing in this range will trigger a writeback.
467 * Return: %true if at least one page exists in the specified range,
470 bool filemap_range_has_page(struct address_space *mapping,
471 loff_t start_byte, loff_t end_byte)
474 XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT);
475 pgoff_t max = end_byte >> PAGE_SHIFT;
477 if (end_byte < start_byte)
482 page = xas_find(&xas, max);
483 if (xas_retry(&xas, page))
485 /* Shadow entries don't count */
486 if (xa_is_value(page))
489 * We don't need to try to pin this page; we're about to
490 * release the RCU lock anyway. It is enough to know that
491 * there was a page here recently.
499 EXPORT_SYMBOL(filemap_range_has_page);
501 static void __filemap_fdatawait_range(struct address_space *mapping,
502 loff_t start_byte, loff_t end_byte)
504 pgoff_t index = start_byte >> PAGE_SHIFT;
505 pgoff_t end = end_byte >> PAGE_SHIFT;
509 if (end_byte < start_byte)
513 while (index <= end) {
516 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index,
517 end, PAGECACHE_TAG_WRITEBACK);
521 for (i = 0; i < nr_pages; i++) {
522 struct page *page = pvec.pages[i];
524 wait_on_page_writeback(page);
525 ClearPageError(page);
527 pagevec_release(&pvec);
533 * filemap_fdatawait_range - wait for writeback to complete
534 * @mapping: address space structure to wait for
535 * @start_byte: offset in bytes where the range starts
536 * @end_byte: offset in bytes where the range ends (inclusive)
538 * Walk the list of under-writeback pages of the given address space
539 * in the given range and wait for all of them. Check error status of
540 * the address space and return it.
542 * Since the error status of the address space is cleared by this function,
543 * callers are responsible for checking the return value and handling and/or
544 * reporting the error.
546 * Return: error status of the address space.
548 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
551 __filemap_fdatawait_range(mapping, start_byte, end_byte);
552 return filemap_check_errors(mapping);
554 EXPORT_SYMBOL(filemap_fdatawait_range);
557 * file_fdatawait_range - wait for writeback to complete
558 * @file: file pointing to address space structure to wait for
559 * @start_byte: offset in bytes where the range starts
560 * @end_byte: offset in bytes where the range ends (inclusive)
562 * Walk the list of under-writeback pages of the address space that file
563 * refers to, in the given range and wait for all of them. Check error
564 * status of the address space vs. the file->f_wb_err cursor and return it.
566 * Since the error status of the file is advanced by this function,
567 * callers are responsible for checking the return value and handling and/or
568 * reporting the error.
570 * Return: error status of the address space vs. the file->f_wb_err cursor.
572 int file_fdatawait_range(struct file *file, loff_t start_byte, loff_t end_byte)
574 struct address_space *mapping = file->f_mapping;
576 __filemap_fdatawait_range(mapping, start_byte, end_byte);
577 return file_check_and_advance_wb_err(file);
579 EXPORT_SYMBOL(file_fdatawait_range);
582 * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
583 * @mapping: address space structure to wait for
585 * Walk the list of under-writeback pages of the given address space
586 * and wait for all of them. Unlike filemap_fdatawait(), this function
587 * does not clear error status of the address space.
589 * Use this function if callers don't handle errors themselves. Expected
590 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
593 * Return: error status of the address space.
595 int filemap_fdatawait_keep_errors(struct address_space *mapping)
597 __filemap_fdatawait_range(mapping, 0, LLONG_MAX);
598 return filemap_check_and_keep_errors(mapping);
600 EXPORT_SYMBOL(filemap_fdatawait_keep_errors);
602 static bool mapping_needs_writeback(struct address_space *mapping)
604 return (!dax_mapping(mapping) && mapping->nrpages) ||
605 (dax_mapping(mapping) && mapping->nrexceptional);
608 int filemap_write_and_wait(struct address_space *mapping)
612 if (mapping_needs_writeback(mapping)) {
613 err = filemap_fdatawrite(mapping);
615 * Even if the above returned error, the pages may be
616 * written partially (e.g. -ENOSPC), so we wait for it.
617 * But the -EIO is special case, it may indicate the worst
618 * thing (e.g. bug) happened, so we avoid waiting for it.
621 int err2 = filemap_fdatawait(mapping);
625 /* Clear any previously stored errors */
626 filemap_check_errors(mapping);
629 err = filemap_check_errors(mapping);
633 EXPORT_SYMBOL(filemap_write_and_wait);
636 * filemap_write_and_wait_range - write out & wait on a file range
637 * @mapping: the address_space for the pages
638 * @lstart: offset in bytes where the range starts
639 * @lend: offset in bytes where the range ends (inclusive)
641 * Write out and wait upon file offsets lstart->lend, inclusive.
643 * Note that @lend is inclusive (describes the last byte to be written) so
644 * that this function can be used to write to the very end-of-file (end = -1).
646 * Return: error status of the address space.
648 int filemap_write_and_wait_range(struct address_space *mapping,
649 loff_t lstart, loff_t lend)
653 if (mapping_needs_writeback(mapping)) {
654 err = __filemap_fdatawrite_range(mapping, lstart, lend,
656 /* See comment of filemap_write_and_wait() */
658 int err2 = filemap_fdatawait_range(mapping,
663 /* Clear any previously stored errors */
664 filemap_check_errors(mapping);
667 err = filemap_check_errors(mapping);
671 EXPORT_SYMBOL(filemap_write_and_wait_range);
673 void __filemap_set_wb_err(struct address_space *mapping, int err)
675 errseq_t eseq = errseq_set(&mapping->wb_err, err);
677 trace_filemap_set_wb_err(mapping, eseq);
679 EXPORT_SYMBOL(__filemap_set_wb_err);
682 * file_check_and_advance_wb_err - report wb error (if any) that was previously
683 * and advance wb_err to current one
684 * @file: struct file on which the error is being reported
686 * When userland calls fsync (or something like nfsd does the equivalent), we
687 * want to report any writeback errors that occurred since the last fsync (or
688 * since the file was opened if there haven't been any).
690 * Grab the wb_err from the mapping. If it matches what we have in the file,
691 * then just quickly return 0. The file is all caught up.
693 * If it doesn't match, then take the mapping value, set the "seen" flag in
694 * it and try to swap it into place. If it works, or another task beat us
695 * to it with the new value, then update the f_wb_err and return the error
696 * portion. The error at this point must be reported via proper channels
697 * (a'la fsync, or NFS COMMIT operation, etc.).
699 * While we handle mapping->wb_err with atomic operations, the f_wb_err
700 * value is protected by the f_lock since we must ensure that it reflects
701 * the latest value swapped in for this file descriptor.
703 * Return: %0 on success, negative error code otherwise.
705 int file_check_and_advance_wb_err(struct file *file)
708 errseq_t old = READ_ONCE(file->f_wb_err);
709 struct address_space *mapping = file->f_mapping;
711 /* Locklessly handle the common case where nothing has changed */
712 if (errseq_check(&mapping->wb_err, old)) {
713 /* Something changed, must use slow path */
714 spin_lock(&file->f_lock);
715 old = file->f_wb_err;
716 err = errseq_check_and_advance(&mapping->wb_err,
718 trace_file_check_and_advance_wb_err(file, old);
719 spin_unlock(&file->f_lock);
723 * We're mostly using this function as a drop in replacement for
724 * filemap_check_errors. Clear AS_EIO/AS_ENOSPC to emulate the effect
725 * that the legacy code would have had on these flags.
727 clear_bit(AS_EIO, &mapping->flags);
728 clear_bit(AS_ENOSPC, &mapping->flags);
731 EXPORT_SYMBOL(file_check_and_advance_wb_err);
734 * file_write_and_wait_range - write out & wait on a file range
735 * @file: file pointing to address_space with pages
736 * @lstart: offset in bytes where the range starts
737 * @lend: offset in bytes where the range ends (inclusive)
739 * Write out and wait upon file offsets lstart->lend, inclusive.
741 * Note that @lend is inclusive (describes the last byte to be written) so
742 * that this function can be used to write to the very end-of-file (end = -1).
744 * After writing out and waiting on the data, we check and advance the
745 * f_wb_err cursor to the latest value, and return any errors detected there.
747 * Return: %0 on success, negative error code otherwise.
749 int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend)
752 struct address_space *mapping = file->f_mapping;
754 if (mapping_needs_writeback(mapping)) {
755 err = __filemap_fdatawrite_range(mapping, lstart, lend,
757 /* See comment of filemap_write_and_wait() */
759 __filemap_fdatawait_range(mapping, lstart, lend);
761 err2 = file_check_and_advance_wb_err(file);
766 EXPORT_SYMBOL(file_write_and_wait_range);
769 * replace_page_cache_page - replace a pagecache page with a new one
770 * @old: page to be replaced
771 * @new: page to replace with
772 * @gfp_mask: allocation mode
774 * This function replaces a page in the pagecache with a new one. On
775 * success it acquires the pagecache reference for the new page and
776 * drops it for the old page. Both the old and new pages must be
777 * locked. This function does not add the new page to the LRU, the
778 * caller must do that.
780 * The remove + add is atomic. This function cannot fail.
784 int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
786 struct address_space *mapping = old->mapping;
787 void (*freepage)(struct page *) = mapping->a_ops->freepage;
788 pgoff_t offset = old->index;
789 XA_STATE(xas, &mapping->i_pages, offset);
792 VM_BUG_ON_PAGE(!PageLocked(old), old);
793 VM_BUG_ON_PAGE(!PageLocked(new), new);
794 VM_BUG_ON_PAGE(new->mapping, new);
797 new->mapping = mapping;
800 xas_lock_irqsave(&xas, flags);
801 xas_store(&xas, new);
804 /* hugetlb pages do not participate in page cache accounting. */
806 __dec_node_page_state(new, NR_FILE_PAGES);
808 __inc_node_page_state(new, NR_FILE_PAGES);
809 if (PageSwapBacked(old))
810 __dec_node_page_state(new, NR_SHMEM);
811 if (PageSwapBacked(new))
812 __inc_node_page_state(new, NR_SHMEM);
813 xas_unlock_irqrestore(&xas, flags);
814 mem_cgroup_migrate(old, new);
821 EXPORT_SYMBOL_GPL(replace_page_cache_page);
823 static int __add_to_page_cache_locked(struct page *page,
824 struct address_space *mapping,
825 pgoff_t offset, gfp_t gfp_mask,
828 XA_STATE(xas, &mapping->i_pages, offset);
829 int huge = PageHuge(page);
830 struct mem_cgroup *memcg;
834 VM_BUG_ON_PAGE(!PageLocked(page), page);
835 VM_BUG_ON_PAGE(PageSwapBacked(page), page);
836 mapping_set_update(&xas, mapping);
839 error = mem_cgroup_try_charge(page, current->mm,
840 gfp_mask, &memcg, false);
846 page->mapping = mapping;
847 page->index = offset;
851 old = xas_load(&xas);
852 if (old && !xa_is_value(old))
853 xas_set_err(&xas, -EEXIST);
854 xas_store(&xas, page);
858 if (xa_is_value(old)) {
859 mapping->nrexceptional--;
865 /* hugetlb pages do not participate in page cache accounting */
867 __inc_node_page_state(page, NR_FILE_PAGES);
869 xas_unlock_irq(&xas);
870 } while (xas_nomem(&xas, gfp_mask & GFP_RECLAIM_MASK));
876 mem_cgroup_commit_charge(page, memcg, false, false);
877 trace_mm_filemap_add_to_page_cache(page);
880 page->mapping = NULL;
881 /* Leave page->index set: truncation relies upon it */
883 mem_cgroup_cancel_charge(page, memcg, false);
885 return xas_error(&xas);
887 ALLOW_ERROR_INJECTION(__add_to_page_cache_locked, ERRNO);
890 * add_to_page_cache_locked - add a locked page to the pagecache
892 * @mapping: the page's address_space
893 * @offset: page index
894 * @gfp_mask: page allocation mode
896 * This function is used to add a page to the pagecache. It must be locked.
897 * This function does not add the page to the LRU. The caller must do that.
899 * Return: %0 on success, negative error code otherwise.
901 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
902 pgoff_t offset, gfp_t gfp_mask)
904 return __add_to_page_cache_locked(page, mapping, offset,
907 EXPORT_SYMBOL(add_to_page_cache_locked);
909 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
910 pgoff_t offset, gfp_t gfp_mask)
915 __SetPageLocked(page);
916 ret = __add_to_page_cache_locked(page, mapping, offset,
919 __ClearPageLocked(page);
922 * The page might have been evicted from cache only
923 * recently, in which case it should be activated like
924 * any other repeatedly accessed page.
925 * The exception is pages getting rewritten; evicting other
926 * data from the working set, only to cache data that will
927 * get overwritten with something else, is a waste of memory.
929 WARN_ON_ONCE(PageActive(page));
930 if (!(gfp_mask & __GFP_WRITE) && shadow)
931 workingset_refault(page, shadow);
936 EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
939 struct page *__page_cache_alloc(gfp_t gfp)
944 if (cpuset_do_page_mem_spread()) {
945 unsigned int cpuset_mems_cookie;
947 cpuset_mems_cookie = read_mems_allowed_begin();
948 n = cpuset_mem_spread_node();
949 page = __alloc_pages_node(n, gfp, 0);
950 } while (!page && read_mems_allowed_retry(cpuset_mems_cookie));
954 return alloc_pages(gfp, 0);
956 EXPORT_SYMBOL(__page_cache_alloc);
960 * In order to wait for pages to become available there must be
961 * waitqueues associated with pages. By using a hash table of
962 * waitqueues where the bucket discipline is to maintain all
963 * waiters on the same queue and wake all when any of the pages
964 * become available, and for the woken contexts to check to be
965 * sure the appropriate page became available, this saves space
966 * at a cost of "thundering herd" phenomena during rare hash
969 #define PAGE_WAIT_TABLE_BITS 8
970 #define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS)
971 static wait_queue_head_t page_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned;
973 static wait_queue_head_t *page_waitqueue(struct page *page)
975 return &page_wait_table[hash_ptr(page, PAGE_WAIT_TABLE_BITS)];
978 void __init pagecache_init(void)
982 for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++)
983 init_waitqueue_head(&page_wait_table[i]);
985 page_writeback_init();
988 /* This has the same layout as wait_bit_key - see fs/cachefiles/rdwr.c */
989 struct wait_page_key {
995 struct wait_page_queue {
998 wait_queue_entry_t wait;
1001 static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg)
1003 struct wait_page_key *key = arg;
1004 struct wait_page_queue *wait_page
1005 = container_of(wait, struct wait_page_queue, wait);
1007 if (wait_page->page != key->page)
1009 key->page_match = 1;
1011 if (wait_page->bit_nr != key->bit_nr)
1015 * Stop walking if it's locked.
1016 * Is this safe if put_and_wait_on_page_locked() is in use?
1017 * Yes: the waker must hold a reference to this page, and if PG_locked
1018 * has now already been set by another task, that task must also hold
1019 * a reference to the *same usage* of this page; so there is no need
1020 * to walk on to wake even the put_and_wait_on_page_locked() callers.
1022 if (test_bit(key->bit_nr, &key->page->flags))
1025 return autoremove_wake_function(wait, mode, sync, key);
1028 static void wake_up_page_bit(struct page *page, int bit_nr)
1030 wait_queue_head_t *q = page_waitqueue(page);
1031 struct wait_page_key key;
1032 unsigned long flags;
1033 wait_queue_entry_t bookmark;
1036 key.bit_nr = bit_nr;
1040 bookmark.private = NULL;
1041 bookmark.func = NULL;
1042 INIT_LIST_HEAD(&bookmark.entry);
1044 spin_lock_irqsave(&q->lock, flags);
1045 __wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
1047 while (bookmark.flags & WQ_FLAG_BOOKMARK) {
1049 * Take a breather from holding the lock,
1050 * allow pages that finish wake up asynchronously
1051 * to acquire the lock and remove themselves
1054 spin_unlock_irqrestore(&q->lock, flags);
1056 spin_lock_irqsave(&q->lock, flags);
1057 __wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
1061 * It is possible for other pages to have collided on the waitqueue
1062 * hash, so in that case check for a page match. That prevents a long-
1065 * It is still possible to miss a case here, when we woke page waiters
1066 * and removed them from the waitqueue, but there are still other
1069 if (!waitqueue_active(q) || !key.page_match) {
1070 ClearPageWaiters(page);
1072 * It's possible to miss clearing Waiters here, when we woke
1073 * our page waiters, but the hashed waitqueue has waiters for
1074 * other pages on it.
1076 * That's okay, it's a rare case. The next waker will clear it.
1079 spin_unlock_irqrestore(&q->lock, flags);
1082 static void wake_up_page(struct page *page, int bit)
1084 if (!PageWaiters(page))
1086 wake_up_page_bit(page, bit);
1090 * A choice of three behaviors for wait_on_page_bit_common():
1093 EXCLUSIVE, /* Hold ref to page and take the bit when woken, like
1094 * __lock_page() waiting on then setting PG_locked.
1096 SHARED, /* Hold ref to page and check the bit when woken, like
1097 * wait_on_page_writeback() waiting on PG_writeback.
1099 DROP, /* Drop ref to page before wait, no check when woken,
1100 * like put_and_wait_on_page_locked() on PG_locked.
1104 static inline int wait_on_page_bit_common(wait_queue_head_t *q,
1105 struct page *page, int bit_nr, int state, enum behavior behavior)
1107 struct wait_page_queue wait_page;
1108 wait_queue_entry_t *wait = &wait_page.wait;
1110 bool thrashing = false;
1111 bool delayacct = false;
1112 unsigned long pflags;
1115 if (bit_nr == PG_locked &&
1116 !PageUptodate(page) && PageWorkingset(page)) {
1117 if (!PageSwapBacked(page)) {
1118 delayacct_thrashing_start();
1121 psi_memstall_enter(&pflags);
1126 wait->flags = behavior == EXCLUSIVE ? WQ_FLAG_EXCLUSIVE : 0;
1127 wait->func = wake_page_function;
1128 wait_page.page = page;
1129 wait_page.bit_nr = bit_nr;
1132 spin_lock_irq(&q->lock);
1134 if (likely(list_empty(&wait->entry))) {
1135 __add_wait_queue_entry_tail(q, wait);
1136 SetPageWaiters(page);
1139 set_current_state(state);
1141 spin_unlock_irq(&q->lock);
1143 bit_is_set = test_bit(bit_nr, &page->flags);
1144 if (behavior == DROP)
1147 if (likely(bit_is_set))
1150 if (behavior == EXCLUSIVE) {
1151 if (!test_and_set_bit_lock(bit_nr, &page->flags))
1153 } else if (behavior == SHARED) {
1154 if (!test_bit(bit_nr, &page->flags))
1158 if (signal_pending_state(state, current)) {
1163 if (behavior == DROP) {
1165 * We can no longer safely access page->flags:
1166 * even if CONFIG_MEMORY_HOTREMOVE is not enabled,
1167 * there is a risk of waiting forever on a page reused
1168 * for something that keeps it locked indefinitely.
1169 * But best check for -EINTR above before breaking.
1175 finish_wait(q, wait);
1179 delayacct_thrashing_end();
1180 psi_memstall_leave(&pflags);
1184 * A signal could leave PageWaiters set. Clearing it here if
1185 * !waitqueue_active would be possible (by open-coding finish_wait),
1186 * but still fail to catch it in the case of wait hash collision. We
1187 * already can fail to clear wait hash collision cases, so don't
1188 * bother with signals either.
1194 void wait_on_page_bit(struct page *page, int bit_nr)
1196 wait_queue_head_t *q = page_waitqueue(page);
1197 wait_on_page_bit_common(q, page, bit_nr, TASK_UNINTERRUPTIBLE, SHARED);
1199 EXPORT_SYMBOL(wait_on_page_bit);
1201 int wait_on_page_bit_killable(struct page *page, int bit_nr)
1203 wait_queue_head_t *q = page_waitqueue(page);
1204 return wait_on_page_bit_common(q, page, bit_nr, TASK_KILLABLE, SHARED);
1206 EXPORT_SYMBOL(wait_on_page_bit_killable);
1209 * put_and_wait_on_page_locked - Drop a reference and wait for it to be unlocked
1210 * @page: The page to wait for.
1212 * The caller should hold a reference on @page. They expect the page to
1213 * become unlocked relatively soon, but do not wish to hold up migration
1214 * (for example) by holding the reference while waiting for the page to
1215 * come unlocked. After this function returns, the caller should not
1216 * dereference @page.
1218 void put_and_wait_on_page_locked(struct page *page)
1220 wait_queue_head_t *q;
1222 page = compound_head(page);
1223 q = page_waitqueue(page);
1224 wait_on_page_bit_common(q, page, PG_locked, TASK_UNINTERRUPTIBLE, DROP);
1228 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
1229 * @page: Page defining the wait queue of interest
1230 * @waiter: Waiter to add to the queue
1232 * Add an arbitrary @waiter to the wait queue for the nominated @page.
1234 void add_page_wait_queue(struct page *page, wait_queue_entry_t *waiter)
1236 wait_queue_head_t *q = page_waitqueue(page);
1237 unsigned long flags;
1239 spin_lock_irqsave(&q->lock, flags);
1240 __add_wait_queue_entry_tail(q, waiter);
1241 SetPageWaiters(page);
1242 spin_unlock_irqrestore(&q->lock, flags);
1244 EXPORT_SYMBOL_GPL(add_page_wait_queue);
1246 #ifndef clear_bit_unlock_is_negative_byte
1249 * PG_waiters is the high bit in the same byte as PG_lock.
1251 * On x86 (and on many other architectures), we can clear PG_lock and
1252 * test the sign bit at the same time. But if the architecture does
1253 * not support that special operation, we just do this all by hand
1256 * The read of PG_waiters has to be after (or concurrently with) PG_locked
1257 * being cleared, but a memory barrier should be unneccssary since it is
1258 * in the same byte as PG_locked.
1260 static inline bool clear_bit_unlock_is_negative_byte(long nr, volatile void *mem)
1262 clear_bit_unlock(nr, mem);
1263 /* smp_mb__after_atomic(); */
1264 return test_bit(PG_waiters, mem);
1270 * unlock_page - unlock a locked page
1273 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
1274 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
1275 * mechanism between PageLocked pages and PageWriteback pages is shared.
1276 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
1278 * Note that this depends on PG_waiters being the sign bit in the byte
1279 * that contains PG_locked - thus the BUILD_BUG_ON(). That allows us to
1280 * clear the PG_locked bit and test PG_waiters at the same time fairly
1281 * portably (architectures that do LL/SC can test any bit, while x86 can
1282 * test the sign bit).
1284 void unlock_page(struct page *page)
1286 BUILD_BUG_ON(PG_waiters != 7);
1287 page = compound_head(page);
1288 VM_BUG_ON_PAGE(!PageLocked(page), page);
1289 if (clear_bit_unlock_is_negative_byte(PG_locked, &page->flags))
1290 wake_up_page_bit(page, PG_locked);
1292 EXPORT_SYMBOL(unlock_page);
1295 * end_page_writeback - end writeback against a page
1298 void end_page_writeback(struct page *page)
1301 * TestClearPageReclaim could be used here but it is an atomic
1302 * operation and overkill in this particular case. Failing to
1303 * shuffle a page marked for immediate reclaim is too mild to
1304 * justify taking an atomic operation penalty at the end of
1305 * ever page writeback.
1307 if (PageReclaim(page)) {
1308 ClearPageReclaim(page);
1309 rotate_reclaimable_page(page);
1312 if (!test_clear_page_writeback(page))
1315 smp_mb__after_atomic();
1316 wake_up_page(page, PG_writeback);
1318 EXPORT_SYMBOL(end_page_writeback);
1321 * After completing I/O on a page, call this routine to update the page
1322 * flags appropriately
1324 void page_endio(struct page *page, bool is_write, int err)
1328 SetPageUptodate(page);
1330 ClearPageUptodate(page);
1336 struct address_space *mapping;
1339 mapping = page_mapping(page);
1341 mapping_set_error(mapping, err);
1343 end_page_writeback(page);
1346 EXPORT_SYMBOL_GPL(page_endio);
1349 * __lock_page - get a lock on the page, assuming we need to sleep to get it
1350 * @__page: the page to lock
1352 void __lock_page(struct page *__page)
1354 struct page *page = compound_head(__page);
1355 wait_queue_head_t *q = page_waitqueue(page);
1356 wait_on_page_bit_common(q, page, PG_locked, TASK_UNINTERRUPTIBLE,
1359 EXPORT_SYMBOL(__lock_page);
1361 int __lock_page_killable(struct page *__page)
1363 struct page *page = compound_head(__page);
1364 wait_queue_head_t *q = page_waitqueue(page);
1365 return wait_on_page_bit_common(q, page, PG_locked, TASK_KILLABLE,
1368 EXPORT_SYMBOL_GPL(__lock_page_killable);
1372 * 1 - page is locked; mmap_sem is still held.
1373 * 0 - page is not locked.
1374 * mmap_sem has been released (up_read()), unless flags had both
1375 * FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
1376 * which case mmap_sem is still held.
1378 * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1
1379 * with the page locked and the mmap_sem unperturbed.
1381 int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
1384 if (flags & FAULT_FLAG_ALLOW_RETRY) {
1386 * CAUTION! In this case, mmap_sem is not released
1387 * even though return 0.
1389 if (flags & FAULT_FLAG_RETRY_NOWAIT)
1392 up_read(&mm->mmap_sem);
1393 if (flags & FAULT_FLAG_KILLABLE)
1394 wait_on_page_locked_killable(page);
1396 wait_on_page_locked(page);
1399 if (flags & FAULT_FLAG_KILLABLE) {
1402 ret = __lock_page_killable(page);
1404 up_read(&mm->mmap_sem);
1414 * page_cache_next_miss() - Find the next gap in the page cache.
1415 * @mapping: Mapping.
1417 * @max_scan: Maximum range to search.
1419 * Search the range [index, min(index + max_scan - 1, ULONG_MAX)] for the
1420 * gap with the lowest index.
1422 * This function may be called under the rcu_read_lock. However, this will
1423 * not atomically search a snapshot of the cache at a single point in time.
1424 * For example, if a gap is created at index 5, then subsequently a gap is
1425 * created at index 10, page_cache_next_miss covering both indices may
1426 * return 10 if called under the rcu_read_lock.
1428 * Return: The index of the gap if found, otherwise an index outside the
1429 * range specified (in which case 'return - index >= max_scan' will be true).
1430 * In the rare case of index wrap-around, 0 will be returned.
1432 pgoff_t page_cache_next_miss(struct address_space *mapping,
1433 pgoff_t index, unsigned long max_scan)
1435 XA_STATE(xas, &mapping->i_pages, index);
1437 while (max_scan--) {
1438 void *entry = xas_next(&xas);
1439 if (!entry || xa_is_value(entry))
1441 if (xas.xa_index == 0)
1445 return xas.xa_index;
1447 EXPORT_SYMBOL(page_cache_next_miss);
1450 * page_cache_prev_miss() - Find the previous gap in the page cache.
1451 * @mapping: Mapping.
1453 * @max_scan: Maximum range to search.
1455 * Search the range [max(index - max_scan + 1, 0), index] for the
1456 * gap with the highest index.
1458 * This function may be called under the rcu_read_lock. However, this will
1459 * not atomically search a snapshot of the cache at a single point in time.
1460 * For example, if a gap is created at index 10, then subsequently a gap is
1461 * created at index 5, page_cache_prev_miss() covering both indices may
1462 * return 5 if called under the rcu_read_lock.
1464 * Return: The index of the gap if found, otherwise an index outside the
1465 * range specified (in which case 'index - return >= max_scan' will be true).
1466 * In the rare case of wrap-around, ULONG_MAX will be returned.
1468 pgoff_t page_cache_prev_miss(struct address_space *mapping,
1469 pgoff_t index, unsigned long max_scan)
1471 XA_STATE(xas, &mapping->i_pages, index);
1473 while (max_scan--) {
1474 void *entry = xas_prev(&xas);
1475 if (!entry || xa_is_value(entry))
1477 if (xas.xa_index == ULONG_MAX)
1481 return xas.xa_index;
1483 EXPORT_SYMBOL(page_cache_prev_miss);
1486 * find_get_entry - find and get a page cache entry
1487 * @mapping: the address_space to search
1488 * @offset: the page cache index
1490 * Looks up the page cache slot at @mapping & @offset. If there is a
1491 * page cache page, it is returned with an increased refcount.
1493 * If the slot holds a shadow entry of a previously evicted page, or a
1494 * swap entry from shmem/tmpfs, it is returned.
1496 * Return: the found page or shadow entry, %NULL if nothing is found.
1498 struct page *find_get_entry(struct address_space *mapping, pgoff_t offset)
1500 XA_STATE(xas, &mapping->i_pages, offset);
1506 page = xas_load(&xas);
1507 if (xas_retry(&xas, page))
1510 * A shadow entry of a recently evicted page, or a swap entry from
1511 * shmem/tmpfs. Return it without attempting to raise page count.
1513 if (!page || xa_is_value(page))
1516 if (!page_cache_get_speculative(page))
1520 * Has the page moved or been split?
1521 * This is part of the lockless pagecache protocol. See
1522 * include/linux/pagemap.h for details.
1524 if (unlikely(page != xas_reload(&xas))) {
1528 page = find_subpage(page, offset);
1534 EXPORT_SYMBOL(find_get_entry);
1537 * find_lock_entry - locate, pin and lock a page cache entry
1538 * @mapping: the address_space to search
1539 * @offset: the page cache index
1541 * Looks up the page cache slot at @mapping & @offset. If there is a
1542 * page cache page, it is returned locked and with an increased
1545 * If the slot holds a shadow entry of a previously evicted page, or a
1546 * swap entry from shmem/tmpfs, it is returned.
1548 * find_lock_entry() may sleep.
1550 * Return: the found page or shadow entry, %NULL if nothing is found.
1552 struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset)
1557 page = find_get_entry(mapping, offset);
1558 if (page && !xa_is_value(page)) {
1560 /* Has the page been truncated? */
1561 if (unlikely(page_mapping(page) != mapping)) {
1566 VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page);
1570 EXPORT_SYMBOL(find_lock_entry);
1573 * pagecache_get_page - find and get a page reference
1574 * @mapping: the address_space to search
1575 * @offset: the page index
1576 * @fgp_flags: PCG flags
1577 * @gfp_mask: gfp mask to use for the page cache data page allocation
1579 * Looks up the page cache slot at @mapping & @offset.
1581 * PCG flags modify how the page is returned.
1583 * @fgp_flags can be:
1585 * - FGP_ACCESSED: the page will be marked accessed
1586 * - FGP_LOCK: Page is return locked
1587 * - FGP_CREAT: If page is not present then a new page is allocated using
1588 * @gfp_mask and added to the page cache and the VM's LRU
1589 * list. The page is returned locked and with an increased
1591 * - FGP_FOR_MMAP: Similar to FGP_CREAT, only we want to allow the caller to do
1592 * its own locking dance if the page is already in cache, or unlock the page
1593 * before returning if we had to add the page to pagecache.
1595 * If FGP_LOCK or FGP_CREAT are specified then the function may sleep even
1596 * if the GFP flags specified for FGP_CREAT are atomic.
1598 * If there is a page cache page, it is returned with an increased refcount.
1600 * Return: the found page or %NULL otherwise.
1602 struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset,
1603 int fgp_flags, gfp_t gfp_mask)
1608 page = find_get_entry(mapping, offset);
1609 if (xa_is_value(page))
1614 if (fgp_flags & FGP_LOCK) {
1615 if (fgp_flags & FGP_NOWAIT) {
1616 if (!trylock_page(page)) {
1624 /* Has the page been truncated? */
1625 if (unlikely(page->mapping != mapping)) {
1630 VM_BUG_ON_PAGE(page->index != offset, page);
1633 if (fgp_flags & FGP_ACCESSED)
1634 mark_page_accessed(page);
1637 if (!page && (fgp_flags & FGP_CREAT)) {
1639 if ((fgp_flags & FGP_WRITE) && mapping_cap_account_dirty(mapping))
1640 gfp_mask |= __GFP_WRITE;
1641 if (fgp_flags & FGP_NOFS)
1642 gfp_mask &= ~__GFP_FS;
1644 page = __page_cache_alloc(gfp_mask);
1648 if (WARN_ON_ONCE(!(fgp_flags & (FGP_LOCK | FGP_FOR_MMAP))))
1649 fgp_flags |= FGP_LOCK;
1651 /* Init accessed so avoid atomic mark_page_accessed later */
1652 if (fgp_flags & FGP_ACCESSED)
1653 __SetPageReferenced(page);
1655 err = add_to_page_cache_lru(page, mapping, offset, gfp_mask);
1656 if (unlikely(err)) {
1664 * add_to_page_cache_lru locks the page, and for mmap we expect
1667 if (page && (fgp_flags & FGP_FOR_MMAP))
1673 EXPORT_SYMBOL(pagecache_get_page);
1676 * find_get_entries - gang pagecache lookup
1677 * @mapping: The address_space to search
1678 * @start: The starting page cache index
1679 * @nr_entries: The maximum number of entries
1680 * @entries: Where the resulting entries are placed
1681 * @indices: The cache indices corresponding to the entries in @entries
1683 * find_get_entries() will search for and return a group of up to
1684 * @nr_entries entries in the mapping. The entries are placed at
1685 * @entries. find_get_entries() takes a reference against any actual
1688 * The search returns a group of mapping-contiguous page cache entries
1689 * with ascending indexes. There may be holes in the indices due to
1690 * not-present pages.
1692 * Any shadow entries of evicted pages, or swap entries from
1693 * shmem/tmpfs, are included in the returned array.
1695 * Return: the number of pages and shadow entries which were found.
1697 unsigned find_get_entries(struct address_space *mapping,
1698 pgoff_t start, unsigned int nr_entries,
1699 struct page **entries, pgoff_t *indices)
1701 XA_STATE(xas, &mapping->i_pages, start);
1703 unsigned int ret = 0;
1709 xas_for_each(&xas, page, ULONG_MAX) {
1710 if (xas_retry(&xas, page))
1713 * A shadow entry of a recently evicted page, a swap
1714 * entry from shmem/tmpfs or a DAX entry. Return it
1715 * without attempting to raise page count.
1717 if (xa_is_value(page))
1720 if (!page_cache_get_speculative(page))
1723 /* Has the page moved or been split? */
1724 if (unlikely(page != xas_reload(&xas)))
1726 page = find_subpage(page, xas.xa_index);
1729 indices[ret] = xas.xa_index;
1730 entries[ret] = page;
1731 if (++ret == nr_entries)
1744 * find_get_pages_range - gang pagecache lookup
1745 * @mapping: The address_space to search
1746 * @start: The starting page index
1747 * @end: The final page index (inclusive)
1748 * @nr_pages: The maximum number of pages
1749 * @pages: Where the resulting pages are placed
1751 * find_get_pages_range() will search for and return a group of up to @nr_pages
1752 * pages in the mapping starting at index @start and up to index @end
1753 * (inclusive). The pages are placed at @pages. find_get_pages_range() takes
1754 * a reference against the returned pages.
1756 * The search returns a group of mapping-contiguous pages with ascending
1757 * indexes. There may be holes in the indices due to not-present pages.
1758 * We also update @start to index the next page for the traversal.
1760 * Return: the number of pages which were found. If this number is
1761 * smaller than @nr_pages, the end of specified range has been
1764 unsigned find_get_pages_range(struct address_space *mapping, pgoff_t *start,
1765 pgoff_t end, unsigned int nr_pages,
1766 struct page **pages)
1768 XA_STATE(xas, &mapping->i_pages, *start);
1772 if (unlikely(!nr_pages))
1776 xas_for_each(&xas, page, end) {
1777 if (xas_retry(&xas, page))
1779 /* Skip over shadow, swap and DAX entries */
1780 if (xa_is_value(page))
1783 if (!page_cache_get_speculative(page))
1786 /* Has the page moved or been split? */
1787 if (unlikely(page != xas_reload(&xas)))
1790 pages[ret] = find_subpage(page, xas.xa_index);
1791 if (++ret == nr_pages) {
1792 *start = xas.xa_index + 1;
1803 * We come here when there is no page beyond @end. We take care to not
1804 * overflow the index @start as it confuses some of the callers. This
1805 * breaks the iteration when there is a page at index -1 but that is
1806 * already broken anyway.
1808 if (end == (pgoff_t)-1)
1809 *start = (pgoff_t)-1;
1819 * find_get_pages_contig - gang contiguous pagecache lookup
1820 * @mapping: The address_space to search
1821 * @index: The starting page index
1822 * @nr_pages: The maximum number of pages
1823 * @pages: Where the resulting pages are placed
1825 * find_get_pages_contig() works exactly like find_get_pages(), except
1826 * that the returned number of pages are guaranteed to be contiguous.
1828 * Return: the number of pages which were found.
1830 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
1831 unsigned int nr_pages, struct page **pages)
1833 XA_STATE(xas, &mapping->i_pages, index);
1835 unsigned int ret = 0;
1837 if (unlikely(!nr_pages))
1841 for (page = xas_load(&xas); page; page = xas_next(&xas)) {
1842 if (xas_retry(&xas, page))
1845 * If the entry has been swapped out, we can stop looking.
1846 * No current caller is looking for DAX entries.
1848 if (xa_is_value(page))
1851 if (!page_cache_get_speculative(page))
1854 /* Has the page moved or been split? */
1855 if (unlikely(page != xas_reload(&xas)))
1858 pages[ret] = find_subpage(page, xas.xa_index);
1859 if (++ret == nr_pages)
1870 EXPORT_SYMBOL(find_get_pages_contig);
1873 * find_get_pages_range_tag - find and return pages in given range matching @tag
1874 * @mapping: the address_space to search
1875 * @index: the starting page index
1876 * @end: The final page index (inclusive)
1877 * @tag: the tag index
1878 * @nr_pages: the maximum number of pages
1879 * @pages: where the resulting pages are placed
1881 * Like find_get_pages, except we only return pages which are tagged with
1882 * @tag. We update @index to index the next page for the traversal.
1884 * Return: the number of pages which were found.
1886 unsigned find_get_pages_range_tag(struct address_space *mapping, pgoff_t *index,
1887 pgoff_t end, xa_mark_t tag, unsigned int nr_pages,
1888 struct page **pages)
1890 XA_STATE(xas, &mapping->i_pages, *index);
1894 if (unlikely(!nr_pages))
1898 xas_for_each_marked(&xas, page, end, tag) {
1899 if (xas_retry(&xas, page))
1902 * Shadow entries should never be tagged, but this iteration
1903 * is lockless so there is a window for page reclaim to evict
1904 * a page we saw tagged. Skip over it.
1906 if (xa_is_value(page))
1909 if (!page_cache_get_speculative(page))
1912 /* Has the page moved or been split? */
1913 if (unlikely(page != xas_reload(&xas)))
1916 pages[ret] = find_subpage(page, xas.xa_index);
1917 if (++ret == nr_pages) {
1918 *index = xas.xa_index + 1;
1929 * We come here when we got to @end. We take care to not overflow the
1930 * index @index as it confuses some of the callers. This breaks the
1931 * iteration when there is a page at index -1 but that is already
1934 if (end == (pgoff_t)-1)
1935 *index = (pgoff_t)-1;
1943 EXPORT_SYMBOL(find_get_pages_range_tag);
1946 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
1947 * a _large_ part of the i/o request. Imagine the worst scenario:
1949 * ---R__________________________________________B__________
1950 * ^ reading here ^ bad block(assume 4k)
1952 * read(R) => miss => readahead(R...B) => media error => frustrating retries
1953 * => failing the whole request => read(R) => read(R+1) =>
1954 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
1955 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
1956 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
1958 * It is going insane. Fix it by quickly scaling down the readahead size.
1960 static void shrink_readahead_size_eio(struct file *filp,
1961 struct file_ra_state *ra)
1967 * generic_file_buffered_read - generic file read routine
1968 * @iocb: the iocb to read
1969 * @iter: data destination
1970 * @written: already copied
1972 * This is a generic file read routine, and uses the
1973 * mapping->a_ops->readpage() function for the actual low-level stuff.
1975 * This is really ugly. But the goto's actually try to clarify some
1976 * of the logic when it comes to error handling etc.
1979 * * total number of bytes copied, including those the were already @written
1980 * * negative error code if nothing was copied
1982 static ssize_t generic_file_buffered_read(struct kiocb *iocb,
1983 struct iov_iter *iter, ssize_t written)
1985 struct file *filp = iocb->ki_filp;
1986 struct address_space *mapping = filp->f_mapping;
1987 struct inode *inode = mapping->host;
1988 struct file_ra_state *ra = &filp->f_ra;
1989 loff_t *ppos = &iocb->ki_pos;
1993 unsigned long offset; /* offset into pagecache page */
1994 unsigned int prev_offset;
1997 if (unlikely(*ppos >= inode->i_sb->s_maxbytes))
1999 iov_iter_truncate(iter, inode->i_sb->s_maxbytes);
2001 index = *ppos >> PAGE_SHIFT;
2002 prev_index = ra->prev_pos >> PAGE_SHIFT;
2003 prev_offset = ra->prev_pos & (PAGE_SIZE-1);
2004 last_index = (*ppos + iter->count + PAGE_SIZE-1) >> PAGE_SHIFT;
2005 offset = *ppos & ~PAGE_MASK;
2011 unsigned long nr, ret;
2015 if (fatal_signal_pending(current)) {
2020 page = find_get_page(mapping, index);
2022 if (iocb->ki_flags & IOCB_NOWAIT)
2024 page_cache_sync_readahead(mapping,
2026 index, last_index - index);
2027 page = find_get_page(mapping, index);
2028 if (unlikely(page == NULL))
2029 goto no_cached_page;
2031 if (PageReadahead(page)) {
2032 page_cache_async_readahead(mapping,
2034 index, last_index - index);
2036 if (!PageUptodate(page)) {
2037 if (iocb->ki_flags & IOCB_NOWAIT) {
2043 * See comment in do_read_cache_page on why
2044 * wait_on_page_locked is used to avoid unnecessarily
2045 * serialisations and why it's safe.
2047 error = wait_on_page_locked_killable(page);
2048 if (unlikely(error))
2049 goto readpage_error;
2050 if (PageUptodate(page))
2053 if (inode->i_blkbits == PAGE_SHIFT ||
2054 !mapping->a_ops->is_partially_uptodate)
2055 goto page_not_up_to_date;
2056 /* pipes can't handle partially uptodate pages */
2057 if (unlikely(iov_iter_is_pipe(iter)))
2058 goto page_not_up_to_date;
2059 if (!trylock_page(page))
2060 goto page_not_up_to_date;
2061 /* Did it get truncated before we got the lock? */
2063 goto page_not_up_to_date_locked;
2064 if (!mapping->a_ops->is_partially_uptodate(page,
2065 offset, iter->count))
2066 goto page_not_up_to_date_locked;
2071 * i_size must be checked after we know the page is Uptodate.
2073 * Checking i_size after the check allows us to calculate
2074 * the correct value for "nr", which means the zero-filled
2075 * part of the page is not copied back to userspace (unless
2076 * another truncate extends the file - this is desired though).
2079 isize = i_size_read(inode);
2080 end_index = (isize - 1) >> PAGE_SHIFT;
2081 if (unlikely(!isize || index > end_index)) {
2086 /* nr is the maximum number of bytes to copy from this page */
2088 if (index == end_index) {
2089 nr = ((isize - 1) & ~PAGE_MASK) + 1;
2097 /* If users can be writing to this page using arbitrary
2098 * virtual addresses, take care about potential aliasing
2099 * before reading the page on the kernel side.
2101 if (mapping_writably_mapped(mapping))
2102 flush_dcache_page(page);
2105 * When a sequential read accesses a page several times,
2106 * only mark it as accessed the first time.
2108 if (prev_index != index || offset != prev_offset)
2109 mark_page_accessed(page);
2113 * Ok, we have the page, and it's up-to-date, so
2114 * now we can copy it to user space...
2117 ret = copy_page_to_iter(page, offset, nr, iter);
2119 index += offset >> PAGE_SHIFT;
2120 offset &= ~PAGE_MASK;
2121 prev_offset = offset;
2125 if (!iov_iter_count(iter))
2133 page_not_up_to_date:
2134 /* Get exclusive access to the page ... */
2135 error = lock_page_killable(page);
2136 if (unlikely(error))
2137 goto readpage_error;
2139 page_not_up_to_date_locked:
2140 /* Did it get truncated before we got the lock? */
2141 if (!page->mapping) {
2147 /* Did somebody else fill it already? */
2148 if (PageUptodate(page)) {
2155 * A previous I/O error may have been due to temporary
2156 * failures, eg. multipath errors.
2157 * PG_error will be set again if readpage fails.
2159 ClearPageError(page);
2160 /* Start the actual read. The read will unlock the page. */
2161 error = mapping->a_ops->readpage(filp, page);
2163 if (unlikely(error)) {
2164 if (error == AOP_TRUNCATED_PAGE) {
2169 goto readpage_error;
2172 if (!PageUptodate(page)) {
2173 error = lock_page_killable(page);
2174 if (unlikely(error))
2175 goto readpage_error;
2176 if (!PageUptodate(page)) {
2177 if (page->mapping == NULL) {
2179 * invalidate_mapping_pages got it
2186 shrink_readahead_size_eio(filp, ra);
2188 goto readpage_error;
2196 /* UHHUH! A synchronous read error occurred. Report it */
2202 * Ok, it wasn't cached, so we need to create a new
2205 page = page_cache_alloc(mapping);
2210 error = add_to_page_cache_lru(page, mapping, index,
2211 mapping_gfp_constraint(mapping, GFP_KERNEL));
2214 if (error == -EEXIST) {
2226 ra->prev_pos = prev_index;
2227 ra->prev_pos <<= PAGE_SHIFT;
2228 ra->prev_pos |= prev_offset;
2230 *ppos = ((loff_t)index << PAGE_SHIFT) + offset;
2231 file_accessed(filp);
2232 return written ? written : error;
2236 * generic_file_read_iter - generic filesystem read routine
2237 * @iocb: kernel I/O control block
2238 * @iter: destination for the data read
2240 * This is the "read_iter()" routine for all filesystems
2241 * that can use the page cache directly.
2243 * * number of bytes copied, even for partial reads
2244 * * negative error code if nothing was read
2247 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
2249 size_t count = iov_iter_count(iter);
2253 goto out; /* skip atime */
2255 if (iocb->ki_flags & IOCB_DIRECT) {
2256 struct file *file = iocb->ki_filp;
2257 struct address_space *mapping = file->f_mapping;
2258 struct inode *inode = mapping->host;
2261 size = i_size_read(inode);
2262 if (iocb->ki_flags & IOCB_NOWAIT) {
2263 if (filemap_range_has_page(mapping, iocb->ki_pos,
2264 iocb->ki_pos + count - 1))
2267 retval = filemap_write_and_wait_range(mapping,
2269 iocb->ki_pos + count - 1);
2274 file_accessed(file);
2276 retval = mapping->a_ops->direct_IO(iocb, iter);
2278 iocb->ki_pos += retval;
2281 iov_iter_revert(iter, count - iov_iter_count(iter));
2284 * Btrfs can have a short DIO read if we encounter
2285 * compressed extents, so if there was an error, or if
2286 * we've already read everything we wanted to, or if
2287 * there was a short read because we hit EOF, go ahead
2288 * and return. Otherwise fallthrough to buffered io for
2289 * the rest of the read. Buffered reads will not work for
2290 * DAX files, so don't bother trying.
2292 if (retval < 0 || !count || iocb->ki_pos >= size ||
2297 retval = generic_file_buffered_read(iocb, iter, retval);
2301 EXPORT_SYMBOL(generic_file_read_iter);
2304 #define MMAP_LOTSAMISS (100)
2305 static struct file *maybe_unlock_mmap_for_io(struct vm_fault *vmf,
2308 int flags = vmf->flags;
2314 * FAULT_FLAG_RETRY_NOWAIT means we don't want to wait on page locks or
2315 * anything, so we only pin the file and drop the mmap_sem if only
2316 * FAULT_FLAG_ALLOW_RETRY is set.
2318 if ((flags & (FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT)) ==
2319 FAULT_FLAG_ALLOW_RETRY) {
2320 fpin = get_file(vmf->vma->vm_file);
2321 up_read(&vmf->vma->vm_mm->mmap_sem);
2327 * lock_page_maybe_drop_mmap - lock the page, possibly dropping the mmap_sem
2328 * @vmf - the vm_fault for this fault.
2329 * @page - the page to lock.
2330 * @fpin - the pointer to the file we may pin (or is already pinned).
2332 * This works similar to lock_page_or_retry in that it can drop the mmap_sem.
2333 * It differs in that it actually returns the page locked if it returns 1 and 0
2334 * if it couldn't lock the page. If we did have to drop the mmap_sem then fpin
2335 * will point to the pinned file and needs to be fput()'ed at a later point.
2337 static int lock_page_maybe_drop_mmap(struct vm_fault *vmf, struct page *page,
2340 if (trylock_page(page))
2344 * NOTE! This will make us return with VM_FAULT_RETRY, but with
2345 * the mmap_sem still held. That's how FAULT_FLAG_RETRY_NOWAIT
2346 * is supposed to work. We have way too many special cases..
2348 if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
2351 *fpin = maybe_unlock_mmap_for_io(vmf, *fpin);
2352 if (vmf->flags & FAULT_FLAG_KILLABLE) {
2353 if (__lock_page_killable(page)) {
2355 * We didn't have the right flags to drop the mmap_sem,
2356 * but all fault_handlers only check for fatal signals
2357 * if we return VM_FAULT_RETRY, so we need to drop the
2358 * mmap_sem here and return 0 if we don't have a fpin.
2361 up_read(&vmf->vma->vm_mm->mmap_sem);
2371 * Synchronous readahead happens when we don't even find a page in the page
2372 * cache at all. We don't want to perform IO under the mmap sem, so if we have
2373 * to drop the mmap sem we return the file that was pinned in order for us to do
2374 * that. If we didn't pin a file then we return NULL. The file that is
2375 * returned needs to be fput()'ed when we're done with it.
2377 static struct file *do_sync_mmap_readahead(struct vm_fault *vmf)
2379 struct file *file = vmf->vma->vm_file;
2380 struct file_ra_state *ra = &file->f_ra;
2381 struct address_space *mapping = file->f_mapping;
2382 struct file *fpin = NULL;
2383 pgoff_t offset = vmf->pgoff;
2385 /* If we don't want any read-ahead, don't bother */
2386 if (vmf->vma->vm_flags & VM_RAND_READ)
2391 if (vmf->vma->vm_flags & VM_SEQ_READ) {
2392 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
2393 page_cache_sync_readahead(mapping, ra, file, offset,
2398 /* Avoid banging the cache line if not needed */
2399 if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
2403 * Do we miss much more than hit in this file? If so,
2404 * stop bothering with read-ahead. It will only hurt.
2406 if (ra->mmap_miss > MMAP_LOTSAMISS)
2412 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
2413 ra->start = max_t(long, 0, offset - ra->ra_pages / 2);
2414 ra->size = ra->ra_pages;
2415 ra->async_size = ra->ra_pages / 4;
2416 ra_submit(ra, mapping, file);
2421 * Asynchronous readahead happens when we find the page and PG_readahead,
2422 * so we want to possibly extend the readahead further. We return the file that
2423 * was pinned if we have to drop the mmap_sem in order to do IO.
2425 static struct file *do_async_mmap_readahead(struct vm_fault *vmf,
2428 struct file *file = vmf->vma->vm_file;
2429 struct file_ra_state *ra = &file->f_ra;
2430 struct address_space *mapping = file->f_mapping;
2431 struct file *fpin = NULL;
2432 pgoff_t offset = vmf->pgoff;
2434 /* If we don't want any read-ahead, don't bother */
2435 if (vmf->vma->vm_flags & VM_RAND_READ)
2437 if (ra->mmap_miss > 0)
2439 if (PageReadahead(page)) {
2440 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
2441 page_cache_async_readahead(mapping, ra, file,
2442 page, offset, ra->ra_pages);
2448 * filemap_fault - read in file data for page fault handling
2449 * @vmf: struct vm_fault containing details of the fault
2451 * filemap_fault() is invoked via the vma operations vector for a
2452 * mapped memory region to read in file data during a page fault.
2454 * The goto's are kind of ugly, but this streamlines the normal case of having
2455 * it in the page cache, and handles the special cases reasonably without
2456 * having a lot of duplicated code.
2458 * vma->vm_mm->mmap_sem must be held on entry.
2460 * If our return value has VM_FAULT_RETRY set, it's because
2461 * lock_page_or_retry() returned 0.
2462 * The mmap_sem has usually been released in this case.
2463 * See __lock_page_or_retry() for the exception.
2465 * If our return value does not have VM_FAULT_RETRY set, the mmap_sem
2466 * has not been released.
2468 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
2470 * Return: bitwise-OR of %VM_FAULT_ codes.
2472 vm_fault_t filemap_fault(struct vm_fault *vmf)
2475 struct file *file = vmf->vma->vm_file;
2476 struct file *fpin = NULL;
2477 struct address_space *mapping = file->f_mapping;
2478 struct file_ra_state *ra = &file->f_ra;
2479 struct inode *inode = mapping->host;
2480 pgoff_t offset = vmf->pgoff;
2485 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2486 if (unlikely(offset >= max_off))
2487 return VM_FAULT_SIGBUS;
2490 * Do we have something in the page cache already?
2492 page = find_get_page(mapping, offset);
2493 if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
2495 * We found the page, so try async readahead before
2496 * waiting for the lock.
2498 fpin = do_async_mmap_readahead(vmf, page);
2500 /* No page in the page cache at all */
2501 count_vm_event(PGMAJFAULT);
2502 count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT);
2503 ret = VM_FAULT_MAJOR;
2504 fpin = do_sync_mmap_readahead(vmf);
2506 page = pagecache_get_page(mapping, offset,
2507 FGP_CREAT|FGP_FOR_MMAP,
2512 return vmf_error(-ENOMEM);
2516 if (!lock_page_maybe_drop_mmap(vmf, page, &fpin))
2519 /* Did it get truncated? */
2520 if (unlikely(page->mapping != mapping)) {
2525 VM_BUG_ON_PAGE(page->index != offset, page);
2528 * We have a locked page in the page cache, now we need to check
2529 * that it's up-to-date. If not, it is going to be due to an error.
2531 if (unlikely(!PageUptodate(page)))
2532 goto page_not_uptodate;
2535 * We've made it this far and we had to drop our mmap_sem, now is the
2536 * time to return to the upper layer and have it re-find the vma and
2545 * Found the page and have a reference on it.
2546 * We must recheck i_size under page lock.
2548 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2549 if (unlikely(offset >= max_off)) {
2552 return VM_FAULT_SIGBUS;
2556 return ret | VM_FAULT_LOCKED;
2560 * Umm, take care of errors if the page isn't up-to-date.
2561 * Try to re-read it _once_. We do this synchronously,
2562 * because there really aren't any performance issues here
2563 * and we need to check for errors.
2565 ClearPageError(page);
2566 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
2567 error = mapping->a_ops->readpage(file, page);
2569 wait_on_page_locked(page);
2570 if (!PageUptodate(page))
2577 if (!error || error == AOP_TRUNCATED_PAGE)
2580 /* Things didn't work out. Return zero to tell the mm layer so. */
2581 shrink_readahead_size_eio(file, ra);
2582 return VM_FAULT_SIGBUS;
2586 * We dropped the mmap_sem, we need to return to the fault handler to
2587 * re-find the vma and come back and find our hopefully still populated
2594 return ret | VM_FAULT_RETRY;
2596 EXPORT_SYMBOL(filemap_fault);
2598 void filemap_map_pages(struct vm_fault *vmf,
2599 pgoff_t start_pgoff, pgoff_t end_pgoff)
2601 struct file *file = vmf->vma->vm_file;
2602 struct address_space *mapping = file->f_mapping;
2603 pgoff_t last_pgoff = start_pgoff;
2604 unsigned long max_idx;
2605 XA_STATE(xas, &mapping->i_pages, start_pgoff);
2609 xas_for_each(&xas, page, end_pgoff) {
2610 if (xas_retry(&xas, page))
2612 if (xa_is_value(page))
2616 * Check for a locked page first, as a speculative
2617 * reference may adversely influence page migration.
2619 if (PageLocked(page))
2621 if (!page_cache_get_speculative(page))
2624 /* Has the page moved or been split? */
2625 if (unlikely(page != xas_reload(&xas)))
2627 page = find_subpage(page, xas.xa_index);
2629 if (!PageUptodate(page) ||
2630 PageReadahead(page) ||
2633 if (!trylock_page(page))
2636 if (page->mapping != mapping || !PageUptodate(page))
2639 max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
2640 if (page->index >= max_idx)
2643 if (file->f_ra.mmap_miss > 0)
2644 file->f_ra.mmap_miss--;
2646 vmf->address += (xas.xa_index - last_pgoff) << PAGE_SHIFT;
2648 vmf->pte += xas.xa_index - last_pgoff;
2649 last_pgoff = xas.xa_index;
2650 if (alloc_set_pte(vmf, NULL, page))
2659 /* Huge page is mapped? No need to proceed. */
2660 if (pmd_trans_huge(*vmf->pmd))
2665 EXPORT_SYMBOL(filemap_map_pages);
2667 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
2669 struct page *page = vmf->page;
2670 struct inode *inode = file_inode(vmf->vma->vm_file);
2671 vm_fault_t ret = VM_FAULT_LOCKED;
2673 sb_start_pagefault(inode->i_sb);
2674 file_update_time(vmf->vma->vm_file);
2676 if (page->mapping != inode->i_mapping) {
2678 ret = VM_FAULT_NOPAGE;
2682 * We mark the page dirty already here so that when freeze is in
2683 * progress, we are guaranteed that writeback during freezing will
2684 * see the dirty page and writeprotect it again.
2686 set_page_dirty(page);
2687 wait_for_stable_page(page);
2689 sb_end_pagefault(inode->i_sb);
2693 const struct vm_operations_struct generic_file_vm_ops = {
2694 .fault = filemap_fault,
2695 .map_pages = filemap_map_pages,
2696 .page_mkwrite = filemap_page_mkwrite,
2699 /* This is used for a general mmap of a disk file */
2701 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2703 struct address_space *mapping = file->f_mapping;
2705 if (!mapping->a_ops->readpage)
2707 file_accessed(file);
2708 vma->vm_ops = &generic_file_vm_ops;
2713 * This is for filesystems which do not implement ->writepage.
2715 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
2717 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
2719 return generic_file_mmap(file, vma);
2722 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
2724 return VM_FAULT_SIGBUS;
2726 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2730 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
2734 #endif /* CONFIG_MMU */
2736 EXPORT_SYMBOL(filemap_page_mkwrite);
2737 EXPORT_SYMBOL(generic_file_mmap);
2738 EXPORT_SYMBOL(generic_file_readonly_mmap);
2740 static struct page *wait_on_page_read(struct page *page)
2742 if (!IS_ERR(page)) {
2743 wait_on_page_locked(page);
2744 if (!PageUptodate(page)) {
2746 page = ERR_PTR(-EIO);
2752 static struct page *do_read_cache_page(struct address_space *mapping,
2754 int (*filler)(void *, struct page *),
2761 page = find_get_page(mapping, index);
2763 page = __page_cache_alloc(gfp);
2765 return ERR_PTR(-ENOMEM);
2766 err = add_to_page_cache_lru(page, mapping, index, gfp);
2767 if (unlikely(err)) {
2771 /* Presumably ENOMEM for xarray node */
2772 return ERR_PTR(err);
2776 err = filler(data, page);
2779 return ERR_PTR(err);
2782 page = wait_on_page_read(page);
2787 if (PageUptodate(page))
2791 * Page is not up to date and may be locked due one of the following
2792 * case a: Page is being filled and the page lock is held
2793 * case b: Read/write error clearing the page uptodate status
2794 * case c: Truncation in progress (page locked)
2795 * case d: Reclaim in progress
2797 * Case a, the page will be up to date when the page is unlocked.
2798 * There is no need to serialise on the page lock here as the page
2799 * is pinned so the lock gives no additional protection. Even if the
2800 * the page is truncated, the data is still valid if PageUptodate as
2801 * it's a race vs truncate race.
2802 * Case b, the page will not be up to date
2803 * Case c, the page may be truncated but in itself, the data may still
2804 * be valid after IO completes as it's a read vs truncate race. The
2805 * operation must restart if the page is not uptodate on unlock but
2806 * otherwise serialising on page lock to stabilise the mapping gives
2807 * no additional guarantees to the caller as the page lock is
2808 * released before return.
2809 * Case d, similar to truncation. If reclaim holds the page lock, it
2810 * will be a race with remove_mapping that determines if the mapping
2811 * is valid on unlock but otherwise the data is valid and there is
2812 * no need to serialise with page lock.
2814 * As the page lock gives no additional guarantee, we optimistically
2815 * wait on the page to be unlocked and check if it's up to date and
2816 * use the page if it is. Otherwise, the page lock is required to
2817 * distinguish between the different cases. The motivation is that we
2818 * avoid spurious serialisations and wakeups when multiple processes
2819 * wait on the same page for IO to complete.
2821 wait_on_page_locked(page);
2822 if (PageUptodate(page))
2825 /* Distinguish between all the cases under the safety of the lock */
2828 /* Case c or d, restart the operation */
2829 if (!page->mapping) {
2835 /* Someone else locked and filled the page in a very small window */
2836 if (PageUptodate(page)) {
2843 mark_page_accessed(page);
2848 * read_cache_page - read into page cache, fill it if needed
2849 * @mapping: the page's address_space
2850 * @index: the page index
2851 * @filler: function to perform the read
2852 * @data: first arg to filler(data, page) function, often left as NULL
2854 * Read into the page cache. If a page already exists, and PageUptodate() is
2855 * not set, try to fill the page and wait for it to become unlocked.
2857 * If the page does not get brought uptodate, return -EIO.
2859 * Return: up to date page on success, ERR_PTR() on failure.
2861 struct page *read_cache_page(struct address_space *mapping,
2863 int (*filler)(void *, struct page *),
2866 return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
2868 EXPORT_SYMBOL(read_cache_page);
2871 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
2872 * @mapping: the page's address_space
2873 * @index: the page index
2874 * @gfp: the page allocator flags to use if allocating
2876 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
2877 * any new page allocations done using the specified allocation flags.
2879 * If the page does not get brought uptodate, return -EIO.
2881 * Return: up to date page on success, ERR_PTR() on failure.
2883 struct page *read_cache_page_gfp(struct address_space *mapping,
2887 filler_t *filler = (filler_t *)mapping->a_ops->readpage;
2889 return do_read_cache_page(mapping, index, filler, NULL, gfp);
2891 EXPORT_SYMBOL(read_cache_page_gfp);
2894 * Don't operate on ranges the page cache doesn't support, and don't exceed the
2895 * LFS limits. If pos is under the limit it becomes a short access. If it
2896 * exceeds the limit we return -EFBIG.
2898 static int generic_access_check_limits(struct file *file, loff_t pos,
2901 struct inode *inode = file->f_mapping->host;
2902 loff_t max_size = inode->i_sb->s_maxbytes;
2904 if (!(file->f_flags & O_LARGEFILE))
2905 max_size = MAX_NON_LFS;
2907 if (unlikely(pos >= max_size))
2909 *count = min(*count, max_size - pos);
2913 static int generic_write_check_limits(struct file *file, loff_t pos,
2916 loff_t limit = rlimit(RLIMIT_FSIZE);
2918 if (limit != RLIM_INFINITY) {
2920 send_sig(SIGXFSZ, current, 0);
2923 *count = min(*count, limit - pos);
2926 return generic_access_check_limits(file, pos, count);
2930 * Performs necessary checks before doing a write
2932 * Can adjust writing position or amount of bytes to write.
2933 * Returns appropriate error code that caller should return or
2934 * zero in case that write should be allowed.
2936 inline ssize_t generic_write_checks(struct kiocb *iocb, struct iov_iter *from)
2938 struct file *file = iocb->ki_filp;
2939 struct inode *inode = file->f_mapping->host;
2943 if (!iov_iter_count(from))
2946 /* FIXME: this is for backwards compatibility with 2.4 */
2947 if (iocb->ki_flags & IOCB_APPEND)
2948 iocb->ki_pos = i_size_read(inode);
2950 if ((iocb->ki_flags & IOCB_NOWAIT) && !(iocb->ki_flags & IOCB_DIRECT))
2953 count = iov_iter_count(from);
2954 ret = generic_write_check_limits(file, iocb->ki_pos, &count);
2958 iov_iter_truncate(from, count);
2959 return iov_iter_count(from);
2961 EXPORT_SYMBOL(generic_write_checks);
2964 * Performs necessary checks before doing a clone.
2966 * Can adjust amount of bytes to clone.
2967 * Returns appropriate error code that caller should return or
2968 * zero in case the clone should be allowed.
2970 int generic_remap_checks(struct file *file_in, loff_t pos_in,
2971 struct file *file_out, loff_t pos_out,
2972 loff_t *req_count, unsigned int remap_flags)
2974 struct inode *inode_in = file_in->f_mapping->host;
2975 struct inode *inode_out = file_out->f_mapping->host;
2976 uint64_t count = *req_count;
2978 loff_t size_in, size_out;
2979 loff_t bs = inode_out->i_sb->s_blocksize;
2982 /* The start of both ranges must be aligned to an fs block. */
2983 if (!IS_ALIGNED(pos_in, bs) || !IS_ALIGNED(pos_out, bs))
2986 /* Ensure offsets don't wrap. */
2987 if (pos_in + count < pos_in || pos_out + count < pos_out)
2990 size_in = i_size_read(inode_in);
2991 size_out = i_size_read(inode_out);
2993 /* Dedupe requires both ranges to be within EOF. */
2994 if ((remap_flags & REMAP_FILE_DEDUP) &&
2995 (pos_in >= size_in || pos_in + count > size_in ||
2996 pos_out >= size_out || pos_out + count > size_out))
2999 /* Ensure the infile range is within the infile. */
3000 if (pos_in >= size_in)
3002 count = min(count, size_in - (uint64_t)pos_in);
3004 ret = generic_access_check_limits(file_in, pos_in, &count);
3008 ret = generic_write_check_limits(file_out, pos_out, &count);
3013 * If the user wanted us to link to the infile's EOF, round up to the
3014 * next block boundary for this check.
3016 * Otherwise, make sure the count is also block-aligned, having
3017 * already confirmed the starting offsets' block alignment.
3019 if (pos_in + count == size_in) {
3020 bcount = ALIGN(size_in, bs) - pos_in;
3022 if (!IS_ALIGNED(count, bs))
3023 count = ALIGN_DOWN(count, bs);
3027 /* Don't allow overlapped cloning within the same file. */
3028 if (inode_in == inode_out &&
3029 pos_out + bcount > pos_in &&
3030 pos_out < pos_in + bcount)
3034 * We shortened the request but the caller can't deal with that, so
3035 * bounce the request back to userspace.
3037 if (*req_count != count && !(remap_flags & REMAP_FILE_CAN_SHORTEN))
3044 int pagecache_write_begin(struct file *file, struct address_space *mapping,
3045 loff_t pos, unsigned len, unsigned flags,
3046 struct page **pagep, void **fsdata)
3048 const struct address_space_operations *aops = mapping->a_ops;
3050 return aops->write_begin(file, mapping, pos, len, flags,
3053 EXPORT_SYMBOL(pagecache_write_begin);
3055 int pagecache_write_end(struct file *file, struct address_space *mapping,
3056 loff_t pos, unsigned len, unsigned copied,
3057 struct page *page, void *fsdata)
3059 const struct address_space_operations *aops = mapping->a_ops;
3061 return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
3063 EXPORT_SYMBOL(pagecache_write_end);
3066 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from)
3068 struct file *file = iocb->ki_filp;
3069 struct address_space *mapping = file->f_mapping;
3070 struct inode *inode = mapping->host;
3071 loff_t pos = iocb->ki_pos;
3076 write_len = iov_iter_count(from);
3077 end = (pos + write_len - 1) >> PAGE_SHIFT;
3079 if (iocb->ki_flags & IOCB_NOWAIT) {
3080 /* If there are pages to writeback, return */
3081 if (filemap_range_has_page(inode->i_mapping, pos,
3082 pos + write_len - 1))
3085 written = filemap_write_and_wait_range(mapping, pos,
3086 pos + write_len - 1);
3092 * After a write we want buffered reads to be sure to go to disk to get
3093 * the new data. We invalidate clean cached page from the region we're
3094 * about to write. We do this *before* the write so that we can return
3095 * without clobbering -EIOCBQUEUED from ->direct_IO().
3097 written = invalidate_inode_pages2_range(mapping,
3098 pos >> PAGE_SHIFT, end);
3100 * If a page can not be invalidated, return 0 to fall back
3101 * to buffered write.
3104 if (written == -EBUSY)
3109 written = mapping->a_ops->direct_IO(iocb, from);
3112 * Finally, try again to invalidate clean pages which might have been
3113 * cached by non-direct readahead, or faulted in by get_user_pages()
3114 * if the source of the write was an mmap'ed region of the file
3115 * we're writing. Either one is a pretty crazy thing to do,
3116 * so we don't support it 100%. If this invalidation
3117 * fails, tough, the write still worked...
3119 * Most of the time we do not need this since dio_complete() will do
3120 * the invalidation for us. However there are some file systems that
3121 * do not end up with dio_complete() being called, so let's not break
3122 * them by removing it completely
3124 if (mapping->nrpages)
3125 invalidate_inode_pages2_range(mapping,
3126 pos >> PAGE_SHIFT, end);
3130 write_len -= written;
3131 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
3132 i_size_write(inode, pos);
3133 mark_inode_dirty(inode);
3137 iov_iter_revert(from, write_len - iov_iter_count(from));
3141 EXPORT_SYMBOL(generic_file_direct_write);
3144 * Find or create a page at the given pagecache position. Return the locked
3145 * page. This function is specifically for buffered writes.
3147 struct page *grab_cache_page_write_begin(struct address_space *mapping,
3148 pgoff_t index, unsigned flags)
3151 int fgp_flags = FGP_LOCK|FGP_WRITE|FGP_CREAT;
3153 if (flags & AOP_FLAG_NOFS)
3154 fgp_flags |= FGP_NOFS;
3156 page = pagecache_get_page(mapping, index, fgp_flags,
3157 mapping_gfp_mask(mapping));
3159 wait_for_stable_page(page);
3163 EXPORT_SYMBOL(grab_cache_page_write_begin);
3165 ssize_t generic_perform_write(struct file *file,
3166 struct iov_iter *i, loff_t pos)
3168 struct address_space *mapping = file->f_mapping;
3169 const struct address_space_operations *a_ops = mapping->a_ops;
3171 ssize_t written = 0;
3172 unsigned int flags = 0;
3176 unsigned long offset; /* Offset into pagecache page */
3177 unsigned long bytes; /* Bytes to write to page */
3178 size_t copied; /* Bytes copied from user */
3181 offset = (pos & (PAGE_SIZE - 1));
3182 bytes = min_t(unsigned long, PAGE_SIZE - offset,
3187 * Bring in the user page that we will copy from _first_.
3188 * Otherwise there's a nasty deadlock on copying from the
3189 * same page as we're writing to, without it being marked
3192 * Not only is this an optimisation, but it is also required
3193 * to check that the address is actually valid, when atomic
3194 * usercopies are used, below.
3196 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
3201 if (fatal_signal_pending(current)) {
3206 status = a_ops->write_begin(file, mapping, pos, bytes, flags,
3208 if (unlikely(status < 0))
3211 if (mapping_writably_mapped(mapping))
3212 flush_dcache_page(page);
3214 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
3215 flush_dcache_page(page);
3217 status = a_ops->write_end(file, mapping, pos, bytes, copied,
3219 if (unlikely(status < 0))
3225 iov_iter_advance(i, copied);
3226 if (unlikely(copied == 0)) {
3228 * If we were unable to copy any data at all, we must
3229 * fall back to a single segment length write.
3231 * If we didn't fallback here, we could livelock
3232 * because not all segments in the iov can be copied at
3233 * once without a pagefault.
3235 bytes = min_t(unsigned long, PAGE_SIZE - offset,
3236 iov_iter_single_seg_count(i));
3242 balance_dirty_pages_ratelimited(mapping);
3243 } while (iov_iter_count(i));
3245 return written ? written : status;
3247 EXPORT_SYMBOL(generic_perform_write);
3250 * __generic_file_write_iter - write data to a file
3251 * @iocb: IO state structure (file, offset, etc.)
3252 * @from: iov_iter with data to write
3254 * This function does all the work needed for actually writing data to a
3255 * file. It does all basic checks, removes SUID from the file, updates
3256 * modification times and calls proper subroutines depending on whether we
3257 * do direct IO or a standard buffered write.
3259 * It expects i_mutex to be grabbed unless we work on a block device or similar
3260 * object which does not need locking at all.
3262 * This function does *not* take care of syncing data in case of O_SYNC write.
3263 * A caller has to handle it. This is mainly due to the fact that we want to
3264 * avoid syncing under i_mutex.
3267 * * number of bytes written, even for truncated writes
3268 * * negative error code if no data has been written at all
3270 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
3272 struct file *file = iocb->ki_filp;
3273 struct address_space * mapping = file->f_mapping;
3274 struct inode *inode = mapping->host;
3275 ssize_t written = 0;
3279 /* We can write back this queue in page reclaim */
3280 current->backing_dev_info = inode_to_bdi(inode);
3281 err = file_remove_privs(file);
3285 err = file_update_time(file);
3289 if (iocb->ki_flags & IOCB_DIRECT) {
3290 loff_t pos, endbyte;
3292 written = generic_file_direct_write(iocb, from);
3294 * If the write stopped short of completing, fall back to
3295 * buffered writes. Some filesystems do this for writes to
3296 * holes, for example. For DAX files, a buffered write will
3297 * not succeed (even if it did, DAX does not handle dirty
3298 * page-cache pages correctly).
3300 if (written < 0 || !iov_iter_count(from) || IS_DAX(inode))
3303 status = generic_perform_write(file, from, pos = iocb->ki_pos);
3305 * If generic_perform_write() returned a synchronous error
3306 * then we want to return the number of bytes which were
3307 * direct-written, or the error code if that was zero. Note
3308 * that this differs from normal direct-io semantics, which
3309 * will return -EFOO even if some bytes were written.
3311 if (unlikely(status < 0)) {
3316 * We need to ensure that the page cache pages are written to
3317 * disk and invalidated to preserve the expected O_DIRECT
3320 endbyte = pos + status - 1;
3321 err = filemap_write_and_wait_range(mapping, pos, endbyte);
3323 iocb->ki_pos = endbyte + 1;
3325 invalidate_mapping_pages(mapping,
3327 endbyte >> PAGE_SHIFT);
3330 * We don't know how much we wrote, so just return
3331 * the number of bytes which were direct-written
3335 written = generic_perform_write(file, from, iocb->ki_pos);
3336 if (likely(written > 0))
3337 iocb->ki_pos += written;
3340 current->backing_dev_info = NULL;
3341 return written ? written : err;
3343 EXPORT_SYMBOL(__generic_file_write_iter);
3346 * generic_file_write_iter - write data to a file
3347 * @iocb: IO state structure
3348 * @from: iov_iter with data to write
3350 * This is a wrapper around __generic_file_write_iter() to be used by most
3351 * filesystems. It takes care of syncing the file in case of O_SYNC file
3352 * and acquires i_mutex as needed.
3354 * * negative error code if no data has been written at all of
3355 * vfs_fsync_range() failed for a synchronous write
3356 * * number of bytes written, even for truncated writes
3358 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
3360 struct file *file = iocb->ki_filp;
3361 struct inode *inode = file->f_mapping->host;
3365 ret = generic_write_checks(iocb, from);
3367 ret = __generic_file_write_iter(iocb, from);
3368 inode_unlock(inode);
3371 ret = generic_write_sync(iocb, ret);
3374 EXPORT_SYMBOL(generic_file_write_iter);
3377 * try_to_release_page() - release old fs-specific metadata on a page
3379 * @page: the page which the kernel is trying to free
3380 * @gfp_mask: memory allocation flags (and I/O mode)
3382 * The address_space is to try to release any data against the page
3383 * (presumably at page->private).
3385 * This may also be called if PG_fscache is set on a page, indicating that the
3386 * page is known to the local caching routines.
3388 * The @gfp_mask argument specifies whether I/O may be performed to release
3389 * this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS).
3391 * Return: %1 if the release was successful, otherwise return zero.
3393 int try_to_release_page(struct page *page, gfp_t gfp_mask)
3395 struct address_space * const mapping = page->mapping;
3397 BUG_ON(!PageLocked(page));
3398 if (PageWriteback(page))
3401 if (mapping && mapping->a_ops->releasepage)
3402 return mapping->a_ops->releasepage(page, gfp_mask);
3403 return try_to_free_buffers(page);
3406 EXPORT_SYMBOL(try_to_release_page);