1 // SPDX-License-Identifier: GPL-2.0-only
5 * Copyright (C) 1994-1999 Linus Torvalds
9 * This file handles the generic file mmap semantics used by
10 * most "normal" filesystems (but you don't /have/ to use this:
11 * the NFS filesystem used to do this differently, for example)
13 #include <linux/export.h>
14 #include <linux/compiler.h>
15 #include <linux/dax.h>
17 #include <linux/sched/signal.h>
18 #include <linux/uaccess.h>
19 #include <linux/capability.h>
20 #include <linux/kernel_stat.h>
21 #include <linux/gfp.h>
23 #include <linux/swap.h>
24 #include <linux/mman.h>
25 #include <linux/pagemap.h>
26 #include <linux/file.h>
27 #include <linux/uio.h>
28 #include <linux/error-injection.h>
29 #include <linux/hash.h>
30 #include <linux/writeback.h>
31 #include <linux/backing-dev.h>
32 #include <linux/pagevec.h>
33 #include <linux/security.h>
34 #include <linux/cpuset.h>
35 #include <linux/hugetlb.h>
36 #include <linux/memcontrol.h>
37 #include <linux/cleancache.h>
38 #include <linux/shmem_fs.h>
39 #include <linux/rmap.h>
40 #include <linux/delayacct.h>
41 #include <linux/psi.h>
42 #include <linux/ramfs.h>
43 #include <linux/page_idle.h>
44 #include <asm/pgalloc.h>
45 #include <asm/tlbflush.h>
48 #define CREATE_TRACE_POINTS
49 #include <trace/events/filemap.h>
52 * FIXME: remove all knowledge of the buffer layer from the core VM
54 #include <linux/buffer_head.h> /* for try_to_free_buffers */
59 * Shared mappings implemented 30.11.1994. It's not fully working yet,
62 * Shared mappings now work. 15.8.1995 Bruno.
64 * finished 'unifying' the page and buffer cache and SMP-threaded the
65 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
67 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
73 * ->i_mmap_rwsem (truncate_pagecache)
74 * ->private_lock (__free_pte->__set_page_dirty_buffers)
75 * ->swap_lock (exclusive_swap_page, others)
79 * ->invalidate_lock (acquired by fs in truncate path)
80 * ->i_mmap_rwsem (truncate->unmap_mapping_range)
84 * ->page_table_lock or pte_lock (various, mainly in memory.c)
85 * ->i_pages lock (arch-dependent flush_dcache_mmap_lock)
88 * ->invalidate_lock (filemap_fault)
89 * ->lock_page (filemap_fault, access_process_vm)
91 * ->i_rwsem (generic_perform_write)
92 * ->mmap_lock (fault_in_readable->do_page_fault)
95 * sb_lock (fs/fs-writeback.c)
96 * ->i_pages lock (__sync_single_inode)
99 * ->anon_vma.lock (vma_adjust)
102 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
104 * ->page_table_lock or pte_lock
105 * ->swap_lock (try_to_unmap_one)
106 * ->private_lock (try_to_unmap_one)
107 * ->i_pages lock (try_to_unmap_one)
108 * ->lruvec->lru_lock (follow_page->mark_page_accessed)
109 * ->lruvec->lru_lock (check_pte_range->isolate_lru_page)
110 * ->private_lock (page_remove_rmap->set_page_dirty)
111 * ->i_pages lock (page_remove_rmap->set_page_dirty)
112 * bdi.wb->list_lock (page_remove_rmap->set_page_dirty)
113 * ->inode->i_lock (page_remove_rmap->set_page_dirty)
114 * ->memcg->move_lock (page_remove_rmap->lock_page_memcg)
115 * bdi.wb->list_lock (zap_pte_range->set_page_dirty)
116 * ->inode->i_lock (zap_pte_range->set_page_dirty)
117 * ->private_lock (zap_pte_range->__set_page_dirty_buffers)
120 * ->tasklist_lock (memory_failure, collect_procs_ao)
123 static void page_cache_delete(struct address_space *mapping,
124 struct page *page, void *shadow)
126 XA_STATE(xas, &mapping->i_pages, page->index);
129 mapping_set_update(&xas, mapping);
131 /* hugetlb pages are represented by a single entry in the xarray */
132 if (!PageHuge(page)) {
133 xas_set_order(&xas, page->index, compound_order(page));
134 nr = compound_nr(page);
137 VM_BUG_ON_PAGE(!PageLocked(page), page);
138 VM_BUG_ON_PAGE(PageTail(page), page);
139 VM_BUG_ON_PAGE(nr != 1 && shadow, page);
141 xas_store(&xas, shadow);
142 xas_init_marks(&xas);
144 page->mapping = NULL;
145 /* Leave page->index set: truncation lookup relies upon it */
146 mapping->nrpages -= nr;
149 static void unaccount_page_cache_page(struct address_space *mapping,
155 * if we're uptodate, flush out into the cleancache, otherwise
156 * invalidate any existing cleancache entries. We can't leave
157 * stale data around in the cleancache once our page is gone
159 if (PageUptodate(page) && PageMappedToDisk(page))
160 cleancache_put_page(page);
162 cleancache_invalidate_page(mapping, page);
164 VM_BUG_ON_PAGE(PageTail(page), page);
165 VM_BUG_ON_PAGE(page_mapped(page), page);
166 if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(page_mapped(page))) {
169 pr_alert("BUG: Bad page cache in process %s pfn:%05lx\n",
170 current->comm, page_to_pfn(page));
171 dump_page(page, "still mapped when deleted");
173 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
175 mapcount = page_mapcount(page);
176 if (mapping_exiting(mapping) &&
177 page_count(page) >= mapcount + 2) {
179 * All vmas have already been torn down, so it's
180 * a good bet that actually the page is unmapped,
181 * and we'd prefer not to leak it: if we're wrong,
182 * some other bad page check should catch it later.
184 page_mapcount_reset(page);
185 page_ref_sub(page, mapcount);
189 /* hugetlb pages do not participate in page cache accounting. */
193 nr = thp_nr_pages(page);
195 __mod_lruvec_page_state(page, NR_FILE_PAGES, -nr);
196 if (PageSwapBacked(page)) {
197 __mod_lruvec_page_state(page, NR_SHMEM, -nr);
198 if (PageTransHuge(page))
199 __mod_lruvec_page_state(page, NR_SHMEM_THPS, -nr);
200 } else if (PageTransHuge(page)) {
201 __mod_lruvec_page_state(page, NR_FILE_THPS, -nr);
202 filemap_nr_thps_dec(mapping);
206 * At this point page must be either written or cleaned by
207 * truncate. Dirty page here signals a bug and loss of
210 * This fixes dirty accounting after removing the page entirely
211 * but leaves PageDirty set: it has no effect for truncated
212 * page and anyway will be cleared before returning page into
215 if (WARN_ON_ONCE(PageDirty(page)))
216 account_page_cleaned(page, mapping, inode_to_wb(mapping->host));
220 * Delete a page from the page cache and free it. Caller has to make
221 * sure the page is locked and that nobody else uses it - or that usage
222 * is safe. The caller must hold the i_pages lock.
224 void __delete_from_page_cache(struct page *page, void *shadow)
226 struct address_space *mapping = page->mapping;
228 trace_mm_filemap_delete_from_page_cache(page);
230 unaccount_page_cache_page(mapping, page);
231 page_cache_delete(mapping, page, shadow);
234 static void page_cache_free_page(struct address_space *mapping,
237 void (*freepage)(struct page *);
239 freepage = mapping->a_ops->freepage;
243 if (PageTransHuge(page) && !PageHuge(page)) {
244 page_ref_sub(page, thp_nr_pages(page));
245 VM_BUG_ON_PAGE(page_count(page) <= 0, page);
252 * delete_from_page_cache - delete page from page cache
253 * @page: the page which the kernel is trying to remove from page cache
255 * This must be called only on pages that have been verified to be in the page
256 * cache and locked. It will never put the page into the free list, the caller
257 * has a reference on the page.
259 void delete_from_page_cache(struct page *page)
261 struct address_space *mapping = page_mapping(page);
263 BUG_ON(!PageLocked(page));
264 spin_lock(&mapping->host->i_lock);
265 xa_lock_irq(&mapping->i_pages);
266 __delete_from_page_cache(page, NULL);
267 xa_unlock_irq(&mapping->i_pages);
268 if (mapping_shrinkable(mapping))
269 inode_add_lru(mapping->host);
270 spin_unlock(&mapping->host->i_lock);
272 page_cache_free_page(mapping, page);
274 EXPORT_SYMBOL(delete_from_page_cache);
277 * page_cache_delete_batch - delete several pages from page cache
278 * @mapping: the mapping to which pages belong
279 * @pvec: pagevec with pages to delete
281 * The function walks over mapping->i_pages and removes pages passed in @pvec
282 * from the mapping. The function expects @pvec to be sorted by page index
283 * and is optimised for it to be dense.
284 * It tolerates holes in @pvec (mapping entries at those indices are not
285 * modified). The function expects only THP head pages to be present in the
288 * The function expects the i_pages lock to be held.
290 static void page_cache_delete_batch(struct address_space *mapping,
291 struct pagevec *pvec)
293 XA_STATE(xas, &mapping->i_pages, pvec->pages[0]->index);
298 mapping_set_update(&xas, mapping);
299 xas_for_each(&xas, page, ULONG_MAX) {
300 if (i >= pagevec_count(pvec))
303 /* A swap/dax/shadow entry got inserted? Skip it. */
304 if (xa_is_value(page))
307 * A page got inserted in our range? Skip it. We have our
308 * pages locked so they are protected from being removed.
309 * If we see a page whose index is higher than ours, it
310 * means our page has been removed, which shouldn't be
311 * possible because we're holding the PageLock.
313 if (page != pvec->pages[i]) {
314 VM_BUG_ON_PAGE(page->index > pvec->pages[i]->index,
319 WARN_ON_ONCE(!PageLocked(page));
321 if (page->index == xas.xa_index)
322 page->mapping = NULL;
323 /* Leave page->index set: truncation lookup relies on it */
326 * Move to the next page in the vector if this is a regular
327 * page or the index is of the last sub-page of this compound
330 if (page->index + compound_nr(page) - 1 == xas.xa_index)
332 xas_store(&xas, NULL);
335 mapping->nrpages -= total_pages;
338 void delete_from_page_cache_batch(struct address_space *mapping,
339 struct pagevec *pvec)
343 if (!pagevec_count(pvec))
346 spin_lock(&mapping->host->i_lock);
347 xa_lock_irq(&mapping->i_pages);
348 for (i = 0; i < pagevec_count(pvec); i++) {
349 trace_mm_filemap_delete_from_page_cache(pvec->pages[i]);
351 unaccount_page_cache_page(mapping, pvec->pages[i]);
353 page_cache_delete_batch(mapping, pvec);
354 xa_unlock_irq(&mapping->i_pages);
355 if (mapping_shrinkable(mapping))
356 inode_add_lru(mapping->host);
357 spin_unlock(&mapping->host->i_lock);
359 for (i = 0; i < pagevec_count(pvec); i++)
360 page_cache_free_page(mapping, pvec->pages[i]);
363 int filemap_check_errors(struct address_space *mapping)
366 /* Check for outstanding write errors */
367 if (test_bit(AS_ENOSPC, &mapping->flags) &&
368 test_and_clear_bit(AS_ENOSPC, &mapping->flags))
370 if (test_bit(AS_EIO, &mapping->flags) &&
371 test_and_clear_bit(AS_EIO, &mapping->flags))
375 EXPORT_SYMBOL(filemap_check_errors);
377 static int filemap_check_and_keep_errors(struct address_space *mapping)
379 /* Check for outstanding write errors */
380 if (test_bit(AS_EIO, &mapping->flags))
382 if (test_bit(AS_ENOSPC, &mapping->flags))
388 * filemap_fdatawrite_wbc - start writeback on mapping dirty pages in range
389 * @mapping: address space structure to write
390 * @wbc: the writeback_control controlling the writeout
392 * Call writepages on the mapping using the provided wbc to control the
395 * Return: %0 on success, negative error code otherwise.
397 int filemap_fdatawrite_wbc(struct address_space *mapping,
398 struct writeback_control *wbc)
402 if (!mapping_can_writeback(mapping) ||
403 !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
406 wbc_attach_fdatawrite_inode(wbc, mapping->host);
407 ret = do_writepages(mapping, wbc);
408 wbc_detach_inode(wbc);
411 EXPORT_SYMBOL(filemap_fdatawrite_wbc);
414 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
415 * @mapping: address space structure to write
416 * @start: offset in bytes where the range starts
417 * @end: offset in bytes where the range ends (inclusive)
418 * @sync_mode: enable synchronous operation
420 * Start writeback against all of a mapping's dirty pages that lie
421 * within the byte offsets <start, end> inclusive.
423 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
424 * opposed to a regular memory cleansing writeback. The difference between
425 * these two operations is that if a dirty page/buffer is encountered, it must
426 * be waited upon, and not just skipped over.
428 * Return: %0 on success, negative error code otherwise.
430 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
431 loff_t end, int sync_mode)
433 struct writeback_control wbc = {
434 .sync_mode = sync_mode,
435 .nr_to_write = LONG_MAX,
436 .range_start = start,
440 return filemap_fdatawrite_wbc(mapping, &wbc);
443 static inline int __filemap_fdatawrite(struct address_space *mapping,
446 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
449 int filemap_fdatawrite(struct address_space *mapping)
451 return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
453 EXPORT_SYMBOL(filemap_fdatawrite);
455 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
458 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
460 EXPORT_SYMBOL(filemap_fdatawrite_range);
463 * filemap_flush - mostly a non-blocking flush
464 * @mapping: target address_space
466 * This is a mostly non-blocking flush. Not suitable for data-integrity
467 * purposes - I/O may not be started against all dirty pages.
469 * Return: %0 on success, negative error code otherwise.
471 int filemap_flush(struct address_space *mapping)
473 return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
475 EXPORT_SYMBOL(filemap_flush);
478 * filemap_range_has_page - check if a page exists in range.
479 * @mapping: address space within which to check
480 * @start_byte: offset in bytes where the range starts
481 * @end_byte: offset in bytes where the range ends (inclusive)
483 * Find at least one page in the range supplied, usually used to check if
484 * direct writing in this range will trigger a writeback.
486 * Return: %true if at least one page exists in the specified range,
489 bool filemap_range_has_page(struct address_space *mapping,
490 loff_t start_byte, loff_t end_byte)
493 XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT);
494 pgoff_t max = end_byte >> PAGE_SHIFT;
496 if (end_byte < start_byte)
501 page = xas_find(&xas, max);
502 if (xas_retry(&xas, page))
504 /* Shadow entries don't count */
505 if (xa_is_value(page))
508 * We don't need to try to pin this page; we're about to
509 * release the RCU lock anyway. It is enough to know that
510 * there was a page here recently.
518 EXPORT_SYMBOL(filemap_range_has_page);
520 static void __filemap_fdatawait_range(struct address_space *mapping,
521 loff_t start_byte, loff_t end_byte)
523 pgoff_t index = start_byte >> PAGE_SHIFT;
524 pgoff_t end = end_byte >> PAGE_SHIFT;
528 if (end_byte < start_byte)
532 while (index <= end) {
535 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index,
536 end, PAGECACHE_TAG_WRITEBACK);
540 for (i = 0; i < nr_pages; i++) {
541 struct page *page = pvec.pages[i];
543 wait_on_page_writeback(page);
544 ClearPageError(page);
546 pagevec_release(&pvec);
552 * filemap_fdatawait_range - wait for writeback to complete
553 * @mapping: address space structure to wait for
554 * @start_byte: offset in bytes where the range starts
555 * @end_byte: offset in bytes where the range ends (inclusive)
557 * Walk the list of under-writeback pages of the given address space
558 * in the given range and wait for all of them. Check error status of
559 * the address space and return it.
561 * Since the error status of the address space is cleared by this function,
562 * callers are responsible for checking the return value and handling and/or
563 * reporting the error.
565 * Return: error status of the address space.
567 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
570 __filemap_fdatawait_range(mapping, start_byte, end_byte);
571 return filemap_check_errors(mapping);
573 EXPORT_SYMBOL(filemap_fdatawait_range);
576 * filemap_fdatawait_range_keep_errors - wait for writeback to complete
577 * @mapping: address space structure to wait for
578 * @start_byte: offset in bytes where the range starts
579 * @end_byte: offset in bytes where the range ends (inclusive)
581 * Walk the list of under-writeback pages of the given address space in the
582 * given range and wait for all of them. Unlike filemap_fdatawait_range(),
583 * this function does not clear error status of the address space.
585 * Use this function if callers don't handle errors themselves. Expected
586 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
589 int filemap_fdatawait_range_keep_errors(struct address_space *mapping,
590 loff_t start_byte, loff_t end_byte)
592 __filemap_fdatawait_range(mapping, start_byte, end_byte);
593 return filemap_check_and_keep_errors(mapping);
595 EXPORT_SYMBOL(filemap_fdatawait_range_keep_errors);
598 * file_fdatawait_range - wait for writeback to complete
599 * @file: file pointing to address space structure to wait for
600 * @start_byte: offset in bytes where the range starts
601 * @end_byte: offset in bytes where the range ends (inclusive)
603 * Walk the list of under-writeback pages of the address space that file
604 * refers to, in the given range and wait for all of them. Check error
605 * status of the address space vs. the file->f_wb_err cursor and return it.
607 * Since the error status of the file is advanced by this function,
608 * callers are responsible for checking the return value and handling and/or
609 * reporting the error.
611 * Return: error status of the address space vs. the file->f_wb_err cursor.
613 int file_fdatawait_range(struct file *file, loff_t start_byte, loff_t end_byte)
615 struct address_space *mapping = file->f_mapping;
617 __filemap_fdatawait_range(mapping, start_byte, end_byte);
618 return file_check_and_advance_wb_err(file);
620 EXPORT_SYMBOL(file_fdatawait_range);
623 * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
624 * @mapping: address space structure to wait for
626 * Walk the list of under-writeback pages of the given address space
627 * and wait for all of them. Unlike filemap_fdatawait(), this function
628 * does not clear error status of the address space.
630 * Use this function if callers don't handle errors themselves. Expected
631 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
634 * Return: error status of the address space.
636 int filemap_fdatawait_keep_errors(struct address_space *mapping)
638 __filemap_fdatawait_range(mapping, 0, LLONG_MAX);
639 return filemap_check_and_keep_errors(mapping);
641 EXPORT_SYMBOL(filemap_fdatawait_keep_errors);
643 /* Returns true if writeback might be needed or already in progress. */
644 static bool mapping_needs_writeback(struct address_space *mapping)
646 return mapping->nrpages;
649 static bool filemap_range_has_writeback(struct address_space *mapping,
650 loff_t start_byte, loff_t end_byte)
652 XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT);
653 pgoff_t max = end_byte >> PAGE_SHIFT;
656 if (end_byte < start_byte)
660 xas_for_each(&xas, page, max) {
661 if (xas_retry(&xas, page))
663 if (xa_is_value(page))
665 if (PageDirty(page) || PageLocked(page) || PageWriteback(page))
674 * filemap_range_needs_writeback - check if range potentially needs writeback
675 * @mapping: address space within which to check
676 * @start_byte: offset in bytes where the range starts
677 * @end_byte: offset in bytes where the range ends (inclusive)
679 * Find at least one page in the range supplied, usually used to check if
680 * direct writing in this range will trigger a writeback. Used by O_DIRECT
681 * read/write with IOCB_NOWAIT, to see if the caller needs to do
682 * filemap_write_and_wait_range() before proceeding.
684 * Return: %true if the caller should do filemap_write_and_wait_range() before
685 * doing O_DIRECT to a page in this range, %false otherwise.
687 bool filemap_range_needs_writeback(struct address_space *mapping,
688 loff_t start_byte, loff_t end_byte)
690 if (!mapping_needs_writeback(mapping))
692 if (!mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
693 !mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK))
695 return filemap_range_has_writeback(mapping, start_byte, end_byte);
697 EXPORT_SYMBOL_GPL(filemap_range_needs_writeback);
700 * filemap_write_and_wait_range - write out & wait on a file range
701 * @mapping: the address_space for the pages
702 * @lstart: offset in bytes where the range starts
703 * @lend: offset in bytes where the range ends (inclusive)
705 * Write out and wait upon file offsets lstart->lend, inclusive.
707 * Note that @lend is inclusive (describes the last byte to be written) so
708 * that this function can be used to write to the very end-of-file (end = -1).
710 * Return: error status of the address space.
712 int filemap_write_and_wait_range(struct address_space *mapping,
713 loff_t lstart, loff_t lend)
717 if (mapping_needs_writeback(mapping)) {
718 err = __filemap_fdatawrite_range(mapping, lstart, lend,
721 * Even if the above returned error, the pages may be
722 * written partially (e.g. -ENOSPC), so we wait for it.
723 * But the -EIO is special case, it may indicate the worst
724 * thing (e.g. bug) happened, so we avoid waiting for it.
727 int err2 = filemap_fdatawait_range(mapping,
732 /* Clear any previously stored errors */
733 filemap_check_errors(mapping);
736 err = filemap_check_errors(mapping);
740 EXPORT_SYMBOL(filemap_write_and_wait_range);
742 void __filemap_set_wb_err(struct address_space *mapping, int err)
744 errseq_t eseq = errseq_set(&mapping->wb_err, err);
746 trace_filemap_set_wb_err(mapping, eseq);
748 EXPORT_SYMBOL(__filemap_set_wb_err);
751 * file_check_and_advance_wb_err - report wb error (if any) that was previously
752 * and advance wb_err to current one
753 * @file: struct file on which the error is being reported
755 * When userland calls fsync (or something like nfsd does the equivalent), we
756 * want to report any writeback errors that occurred since the last fsync (or
757 * since the file was opened if there haven't been any).
759 * Grab the wb_err from the mapping. If it matches what we have in the file,
760 * then just quickly return 0. The file is all caught up.
762 * If it doesn't match, then take the mapping value, set the "seen" flag in
763 * it and try to swap it into place. If it works, or another task beat us
764 * to it with the new value, then update the f_wb_err and return the error
765 * portion. The error at this point must be reported via proper channels
766 * (a'la fsync, or NFS COMMIT operation, etc.).
768 * While we handle mapping->wb_err with atomic operations, the f_wb_err
769 * value is protected by the f_lock since we must ensure that it reflects
770 * the latest value swapped in for this file descriptor.
772 * Return: %0 on success, negative error code otherwise.
774 int file_check_and_advance_wb_err(struct file *file)
777 errseq_t old = READ_ONCE(file->f_wb_err);
778 struct address_space *mapping = file->f_mapping;
780 /* Locklessly handle the common case where nothing has changed */
781 if (errseq_check(&mapping->wb_err, old)) {
782 /* Something changed, must use slow path */
783 spin_lock(&file->f_lock);
784 old = file->f_wb_err;
785 err = errseq_check_and_advance(&mapping->wb_err,
787 trace_file_check_and_advance_wb_err(file, old);
788 spin_unlock(&file->f_lock);
792 * We're mostly using this function as a drop in replacement for
793 * filemap_check_errors. Clear AS_EIO/AS_ENOSPC to emulate the effect
794 * that the legacy code would have had on these flags.
796 clear_bit(AS_EIO, &mapping->flags);
797 clear_bit(AS_ENOSPC, &mapping->flags);
800 EXPORT_SYMBOL(file_check_and_advance_wb_err);
803 * file_write_and_wait_range - write out & wait on a file range
804 * @file: file pointing to address_space with pages
805 * @lstart: offset in bytes where the range starts
806 * @lend: offset in bytes where the range ends (inclusive)
808 * Write out and wait upon file offsets lstart->lend, inclusive.
810 * Note that @lend is inclusive (describes the last byte to be written) so
811 * that this function can be used to write to the very end-of-file (end = -1).
813 * After writing out and waiting on the data, we check and advance the
814 * f_wb_err cursor to the latest value, and return any errors detected there.
816 * Return: %0 on success, negative error code otherwise.
818 int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend)
821 struct address_space *mapping = file->f_mapping;
823 if (mapping_needs_writeback(mapping)) {
824 err = __filemap_fdatawrite_range(mapping, lstart, lend,
826 /* See comment of filemap_write_and_wait() */
828 __filemap_fdatawait_range(mapping, lstart, lend);
830 err2 = file_check_and_advance_wb_err(file);
835 EXPORT_SYMBOL(file_write_and_wait_range);
838 * replace_page_cache_page - replace a pagecache page with a new one
839 * @old: page to be replaced
840 * @new: page to replace with
842 * This function replaces a page in the pagecache with a new one. On
843 * success it acquires the pagecache reference for the new page and
844 * drops it for the old page. Both the old and new pages must be
845 * locked. This function does not add the new page to the LRU, the
846 * caller must do that.
848 * The remove + add is atomic. This function cannot fail.
850 void replace_page_cache_page(struct page *old, struct page *new)
852 struct folio *fold = page_folio(old);
853 struct folio *fnew = page_folio(new);
854 struct address_space *mapping = old->mapping;
855 void (*freepage)(struct page *) = mapping->a_ops->freepage;
856 pgoff_t offset = old->index;
857 XA_STATE(xas, &mapping->i_pages, offset);
859 VM_BUG_ON_PAGE(!PageLocked(old), old);
860 VM_BUG_ON_PAGE(!PageLocked(new), new);
861 VM_BUG_ON_PAGE(new->mapping, new);
864 new->mapping = mapping;
867 mem_cgroup_migrate(fold, fnew);
870 xas_store(&xas, new);
873 /* hugetlb pages do not participate in page cache accounting. */
875 __dec_lruvec_page_state(old, NR_FILE_PAGES);
877 __inc_lruvec_page_state(new, NR_FILE_PAGES);
878 if (PageSwapBacked(old))
879 __dec_lruvec_page_state(old, NR_SHMEM);
880 if (PageSwapBacked(new))
881 __inc_lruvec_page_state(new, NR_SHMEM);
882 xas_unlock_irq(&xas);
887 EXPORT_SYMBOL_GPL(replace_page_cache_page);
889 noinline int __filemap_add_folio(struct address_space *mapping,
890 struct folio *folio, pgoff_t index, gfp_t gfp, void **shadowp)
892 XA_STATE(xas, &mapping->i_pages, index);
893 int huge = folio_test_hugetlb(folio);
895 bool charged = false;
897 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
898 VM_BUG_ON_FOLIO(folio_test_swapbacked(folio), folio);
899 mapping_set_update(&xas, mapping);
902 folio->mapping = mapping;
903 folio->index = index;
906 error = mem_cgroup_charge(folio, NULL, gfp);
907 VM_BUG_ON_FOLIO(index & (folio_nr_pages(folio) - 1), folio);
913 gfp &= GFP_RECLAIM_MASK;
916 unsigned int order = xa_get_order(xas.xa, xas.xa_index);
917 void *entry, *old = NULL;
919 if (order > folio_order(folio))
920 xas_split_alloc(&xas, xa_load(xas.xa, xas.xa_index),
923 xas_for_each_conflict(&xas, entry) {
925 if (!xa_is_value(entry)) {
926 xas_set_err(&xas, -EEXIST);
934 /* entry may have been split before we acquired lock */
935 order = xa_get_order(xas.xa, xas.xa_index);
936 if (order > folio_order(folio)) {
937 xas_split(&xas, old, order);
942 xas_store(&xas, folio);
948 /* hugetlb pages do not participate in page cache accounting */
950 __lruvec_stat_add_folio(folio, NR_FILE_PAGES);
952 xas_unlock_irq(&xas);
953 } while (xas_nomem(&xas, gfp));
955 if (xas_error(&xas)) {
956 error = xas_error(&xas);
958 mem_cgroup_uncharge(folio);
962 trace_mm_filemap_add_to_page_cache(&folio->page);
965 folio->mapping = NULL;
966 /* Leave page->index set: truncation relies upon it */
970 ALLOW_ERROR_INJECTION(__filemap_add_folio, ERRNO);
973 * add_to_page_cache_locked - add a locked page to the pagecache
975 * @mapping: the page's address_space
976 * @offset: page index
977 * @gfp_mask: page allocation mode
979 * This function is used to add a page to the pagecache. It must be locked.
980 * This function does not add the page to the LRU. The caller must do that.
982 * Return: %0 on success, negative error code otherwise.
984 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
985 pgoff_t offset, gfp_t gfp_mask)
987 return __filemap_add_folio(mapping, page_folio(page), offset,
990 EXPORT_SYMBOL(add_to_page_cache_locked);
992 int filemap_add_folio(struct address_space *mapping, struct folio *folio,
993 pgoff_t index, gfp_t gfp)
998 __folio_set_locked(folio);
999 ret = __filemap_add_folio(mapping, folio, index, gfp, &shadow);
1001 __folio_clear_locked(folio);
1004 * The folio might have been evicted from cache only
1005 * recently, in which case it should be activated like
1006 * any other repeatedly accessed folio.
1007 * The exception is folios getting rewritten; evicting other
1008 * data from the working set, only to cache data that will
1009 * get overwritten with something else, is a waste of memory.
1011 WARN_ON_ONCE(folio_test_active(folio));
1012 if (!(gfp & __GFP_WRITE) && shadow)
1013 workingset_refault(folio, shadow);
1014 folio_add_lru(folio);
1018 EXPORT_SYMBOL_GPL(filemap_add_folio);
1021 struct folio *filemap_alloc_folio(gfp_t gfp, unsigned int order)
1024 struct folio *folio;
1026 if (cpuset_do_page_mem_spread()) {
1027 unsigned int cpuset_mems_cookie;
1029 cpuset_mems_cookie = read_mems_allowed_begin();
1030 n = cpuset_mem_spread_node();
1031 folio = __folio_alloc_node(gfp, order, n);
1032 } while (!folio && read_mems_allowed_retry(cpuset_mems_cookie));
1036 return folio_alloc(gfp, order);
1038 EXPORT_SYMBOL(filemap_alloc_folio);
1042 * filemap_invalidate_lock_two - lock invalidate_lock for two mappings
1044 * Lock exclusively invalidate_lock of any passed mapping that is not NULL.
1046 * @mapping1: the first mapping to lock
1047 * @mapping2: the second mapping to lock
1049 void filemap_invalidate_lock_two(struct address_space *mapping1,
1050 struct address_space *mapping2)
1052 if (mapping1 > mapping2)
1053 swap(mapping1, mapping2);
1055 down_write(&mapping1->invalidate_lock);
1056 if (mapping2 && mapping1 != mapping2)
1057 down_write_nested(&mapping2->invalidate_lock, 1);
1059 EXPORT_SYMBOL(filemap_invalidate_lock_two);
1062 * filemap_invalidate_unlock_two - unlock invalidate_lock for two mappings
1064 * Unlock exclusive invalidate_lock of any passed mapping that is not NULL.
1066 * @mapping1: the first mapping to unlock
1067 * @mapping2: the second mapping to unlock
1069 void filemap_invalidate_unlock_two(struct address_space *mapping1,
1070 struct address_space *mapping2)
1073 up_write(&mapping1->invalidate_lock);
1074 if (mapping2 && mapping1 != mapping2)
1075 up_write(&mapping2->invalidate_lock);
1077 EXPORT_SYMBOL(filemap_invalidate_unlock_two);
1080 * In order to wait for pages to become available there must be
1081 * waitqueues associated with pages. By using a hash table of
1082 * waitqueues where the bucket discipline is to maintain all
1083 * waiters on the same queue and wake all when any of the pages
1084 * become available, and for the woken contexts to check to be
1085 * sure the appropriate page became available, this saves space
1086 * at a cost of "thundering herd" phenomena during rare hash
1089 #define PAGE_WAIT_TABLE_BITS 8
1090 #define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS)
1091 static wait_queue_head_t folio_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned;
1093 static wait_queue_head_t *folio_waitqueue(struct folio *folio)
1095 return &folio_wait_table[hash_ptr(folio, PAGE_WAIT_TABLE_BITS)];
1098 void __init pagecache_init(void)
1102 for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++)
1103 init_waitqueue_head(&folio_wait_table[i]);
1105 page_writeback_init();
1109 * The page wait code treats the "wait->flags" somewhat unusually, because
1110 * we have multiple different kinds of waits, not just the usual "exclusive"
1115 * (a) no special bits set:
1117 * We're just waiting for the bit to be released, and when a waker
1118 * calls the wakeup function, we set WQ_FLAG_WOKEN and wake it up,
1119 * and remove it from the wait queue.
1121 * Simple and straightforward.
1123 * (b) WQ_FLAG_EXCLUSIVE:
1125 * The waiter is waiting to get the lock, and only one waiter should
1126 * be woken up to avoid any thundering herd behavior. We'll set the
1127 * WQ_FLAG_WOKEN bit, wake it up, and remove it from the wait queue.
1129 * This is the traditional exclusive wait.
1131 * (c) WQ_FLAG_EXCLUSIVE | WQ_FLAG_CUSTOM:
1133 * The waiter is waiting to get the bit, and additionally wants the
1134 * lock to be transferred to it for fair lock behavior. If the lock
1135 * cannot be taken, we stop walking the wait queue without waking
1138 * This is the "fair lock handoff" case, and in addition to setting
1139 * WQ_FLAG_WOKEN, we set WQ_FLAG_DONE to let the waiter easily see
1140 * that it now has the lock.
1142 static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg)
1145 struct wait_page_key *key = arg;
1146 struct wait_page_queue *wait_page
1147 = container_of(wait, struct wait_page_queue, wait);
1149 if (!wake_page_match(wait_page, key))
1153 * If it's a lock handoff wait, we get the bit for it, and
1154 * stop walking (and do not wake it up) if we can't.
1156 flags = wait->flags;
1157 if (flags & WQ_FLAG_EXCLUSIVE) {
1158 if (test_bit(key->bit_nr, &key->folio->flags))
1160 if (flags & WQ_FLAG_CUSTOM) {
1161 if (test_and_set_bit(key->bit_nr, &key->folio->flags))
1163 flags |= WQ_FLAG_DONE;
1168 * We are holding the wait-queue lock, but the waiter that
1169 * is waiting for this will be checking the flags without
1172 * So update the flags atomically, and wake up the waiter
1173 * afterwards to avoid any races. This store-release pairs
1174 * with the load-acquire in folio_wait_bit_common().
1176 smp_store_release(&wait->flags, flags | WQ_FLAG_WOKEN);
1177 wake_up_state(wait->private, mode);
1180 * Ok, we have successfully done what we're waiting for,
1181 * and we can unconditionally remove the wait entry.
1183 * Note that this pairs with the "finish_wait()" in the
1184 * waiter, and has to be the absolute last thing we do.
1185 * After this list_del_init(&wait->entry) the wait entry
1186 * might be de-allocated and the process might even have
1189 list_del_init_careful(&wait->entry);
1190 return (flags & WQ_FLAG_EXCLUSIVE) != 0;
1193 static void folio_wake_bit(struct folio *folio, int bit_nr)
1195 wait_queue_head_t *q = folio_waitqueue(folio);
1196 struct wait_page_key key;
1197 unsigned long flags;
1198 wait_queue_entry_t bookmark;
1201 key.bit_nr = bit_nr;
1205 bookmark.private = NULL;
1206 bookmark.func = NULL;
1207 INIT_LIST_HEAD(&bookmark.entry);
1209 spin_lock_irqsave(&q->lock, flags);
1210 __wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
1212 while (bookmark.flags & WQ_FLAG_BOOKMARK) {
1214 * Take a breather from holding the lock,
1215 * allow pages that finish wake up asynchronously
1216 * to acquire the lock and remove themselves
1219 spin_unlock_irqrestore(&q->lock, flags);
1221 spin_lock_irqsave(&q->lock, flags);
1222 __wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
1226 * It is possible for other pages to have collided on the waitqueue
1227 * hash, so in that case check for a page match. That prevents a long-
1230 * It is still possible to miss a case here, when we woke page waiters
1231 * and removed them from the waitqueue, but there are still other
1234 if (!waitqueue_active(q) || !key.page_match) {
1235 folio_clear_waiters(folio);
1237 * It's possible to miss clearing Waiters here, when we woke
1238 * our page waiters, but the hashed waitqueue has waiters for
1239 * other pages on it.
1241 * That's okay, it's a rare case. The next waker will clear it.
1244 spin_unlock_irqrestore(&q->lock, flags);
1247 static void folio_wake(struct folio *folio, int bit)
1249 if (!folio_test_waiters(folio))
1251 folio_wake_bit(folio, bit);
1255 * A choice of three behaviors for folio_wait_bit_common():
1258 EXCLUSIVE, /* Hold ref to page and take the bit when woken, like
1259 * __folio_lock() waiting on then setting PG_locked.
1261 SHARED, /* Hold ref to page and check the bit when woken, like
1262 * wait_on_page_writeback() waiting on PG_writeback.
1264 DROP, /* Drop ref to page before wait, no check when woken,
1265 * like put_and_wait_on_page_locked() on PG_locked.
1270 * Attempt to check (or get) the folio flag, and mark us done
1273 static inline bool folio_trylock_flag(struct folio *folio, int bit_nr,
1274 struct wait_queue_entry *wait)
1276 if (wait->flags & WQ_FLAG_EXCLUSIVE) {
1277 if (test_and_set_bit(bit_nr, &folio->flags))
1279 } else if (test_bit(bit_nr, &folio->flags))
1282 wait->flags |= WQ_FLAG_WOKEN | WQ_FLAG_DONE;
1286 /* How many times do we accept lock stealing from under a waiter? */
1287 int sysctl_page_lock_unfairness = 5;
1289 static inline int folio_wait_bit_common(struct folio *folio, int bit_nr,
1290 int state, enum behavior behavior)
1292 wait_queue_head_t *q = folio_waitqueue(folio);
1293 int unfairness = sysctl_page_lock_unfairness;
1294 struct wait_page_queue wait_page;
1295 wait_queue_entry_t *wait = &wait_page.wait;
1296 bool thrashing = false;
1297 bool delayacct = false;
1298 unsigned long pflags;
1300 if (bit_nr == PG_locked &&
1301 !folio_test_uptodate(folio) && folio_test_workingset(folio)) {
1302 if (!folio_test_swapbacked(folio)) {
1303 delayacct_thrashing_start();
1306 psi_memstall_enter(&pflags);
1311 wait->func = wake_page_function;
1312 wait_page.folio = folio;
1313 wait_page.bit_nr = bit_nr;
1317 if (behavior == EXCLUSIVE) {
1318 wait->flags = WQ_FLAG_EXCLUSIVE;
1319 if (--unfairness < 0)
1320 wait->flags |= WQ_FLAG_CUSTOM;
1324 * Do one last check whether we can get the
1325 * page bit synchronously.
1327 * Do the folio_set_waiters() marking before that
1328 * to let any waker we _just_ missed know they
1329 * need to wake us up (otherwise they'll never
1330 * even go to the slow case that looks at the
1331 * page queue), and add ourselves to the wait
1332 * queue if we need to sleep.
1334 * This part needs to be done under the queue
1335 * lock to avoid races.
1337 spin_lock_irq(&q->lock);
1338 folio_set_waiters(folio);
1339 if (!folio_trylock_flag(folio, bit_nr, wait))
1340 __add_wait_queue_entry_tail(q, wait);
1341 spin_unlock_irq(&q->lock);
1344 * From now on, all the logic will be based on
1345 * the WQ_FLAG_WOKEN and WQ_FLAG_DONE flag, to
1346 * see whether the page bit testing has already
1347 * been done by the wake function.
1349 * We can drop our reference to the folio.
1351 if (behavior == DROP)
1355 * Note that until the "finish_wait()", or until
1356 * we see the WQ_FLAG_WOKEN flag, we need to
1357 * be very careful with the 'wait->flags', because
1358 * we may race with a waker that sets them.
1363 set_current_state(state);
1365 /* Loop until we've been woken or interrupted */
1366 flags = smp_load_acquire(&wait->flags);
1367 if (!(flags & WQ_FLAG_WOKEN)) {
1368 if (signal_pending_state(state, current))
1375 /* If we were non-exclusive, we're done */
1376 if (behavior != EXCLUSIVE)
1379 /* If the waker got the lock for us, we're done */
1380 if (flags & WQ_FLAG_DONE)
1384 * Otherwise, if we're getting the lock, we need to
1385 * try to get it ourselves.
1387 * And if that fails, we'll have to retry this all.
1389 if (unlikely(test_and_set_bit(bit_nr, folio_flags(folio, 0))))
1392 wait->flags |= WQ_FLAG_DONE;
1397 * If a signal happened, this 'finish_wait()' may remove the last
1398 * waiter from the wait-queues, but the folio waiters bit will remain
1399 * set. That's ok. The next wakeup will take care of it, and trying
1400 * to do it here would be difficult and prone to races.
1402 finish_wait(q, wait);
1406 delayacct_thrashing_end();
1407 psi_memstall_leave(&pflags);
1411 * NOTE! The wait->flags weren't stable until we've done the
1412 * 'finish_wait()', and we could have exited the loop above due
1413 * to a signal, and had a wakeup event happen after the signal
1414 * test but before the 'finish_wait()'.
1416 * So only after the finish_wait() can we reliably determine
1417 * if we got woken up or not, so we can now figure out the final
1418 * return value based on that state without races.
1420 * Also note that WQ_FLAG_WOKEN is sufficient for a non-exclusive
1421 * waiter, but an exclusive one requires WQ_FLAG_DONE.
1423 if (behavior == EXCLUSIVE)
1424 return wait->flags & WQ_FLAG_DONE ? 0 : -EINTR;
1426 return wait->flags & WQ_FLAG_WOKEN ? 0 : -EINTR;
1429 void folio_wait_bit(struct folio *folio, int bit_nr)
1431 folio_wait_bit_common(folio, bit_nr, TASK_UNINTERRUPTIBLE, SHARED);
1433 EXPORT_SYMBOL(folio_wait_bit);
1435 int folio_wait_bit_killable(struct folio *folio, int bit_nr)
1437 return folio_wait_bit_common(folio, bit_nr, TASK_KILLABLE, SHARED);
1439 EXPORT_SYMBOL(folio_wait_bit_killable);
1442 * put_and_wait_on_page_locked - Drop a reference and wait for it to be unlocked
1443 * @page: The page to wait for.
1444 * @state: The sleep state (TASK_KILLABLE, TASK_UNINTERRUPTIBLE, etc).
1446 * The caller should hold a reference on @page. They expect the page to
1447 * become unlocked relatively soon, but do not wish to hold up migration
1448 * (for example) by holding the reference while waiting for the page to
1449 * come unlocked. After this function returns, the caller should not
1450 * dereference @page.
1452 * Return: 0 if the page was unlocked or -EINTR if interrupted by a signal.
1454 int put_and_wait_on_page_locked(struct page *page, int state)
1456 return folio_wait_bit_common(page_folio(page), PG_locked, state,
1461 * folio_add_wait_queue - Add an arbitrary waiter to a folio's wait queue
1462 * @folio: Folio defining the wait queue of interest
1463 * @waiter: Waiter to add to the queue
1465 * Add an arbitrary @waiter to the wait queue for the nominated @folio.
1467 void folio_add_wait_queue(struct folio *folio, wait_queue_entry_t *waiter)
1469 wait_queue_head_t *q = folio_waitqueue(folio);
1470 unsigned long flags;
1472 spin_lock_irqsave(&q->lock, flags);
1473 __add_wait_queue_entry_tail(q, waiter);
1474 folio_set_waiters(folio);
1475 spin_unlock_irqrestore(&q->lock, flags);
1477 EXPORT_SYMBOL_GPL(folio_add_wait_queue);
1479 #ifndef clear_bit_unlock_is_negative_byte
1482 * PG_waiters is the high bit in the same byte as PG_lock.
1484 * On x86 (and on many other architectures), we can clear PG_lock and
1485 * test the sign bit at the same time. But if the architecture does
1486 * not support that special operation, we just do this all by hand
1489 * The read of PG_waiters has to be after (or concurrently with) PG_locked
1490 * being cleared, but a memory barrier should be unnecessary since it is
1491 * in the same byte as PG_locked.
1493 static inline bool clear_bit_unlock_is_negative_byte(long nr, volatile void *mem)
1495 clear_bit_unlock(nr, mem);
1496 /* smp_mb__after_atomic(); */
1497 return test_bit(PG_waiters, mem);
1503 * folio_unlock - Unlock a locked folio.
1504 * @folio: The folio.
1506 * Unlocks the folio and wakes up any thread sleeping on the page lock.
1508 * Context: May be called from interrupt or process context. May not be
1509 * called from NMI context.
1511 void folio_unlock(struct folio *folio)
1513 /* Bit 7 allows x86 to check the byte's sign bit */
1514 BUILD_BUG_ON(PG_waiters != 7);
1515 BUILD_BUG_ON(PG_locked > 7);
1516 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
1517 if (clear_bit_unlock_is_negative_byte(PG_locked, folio_flags(folio, 0)))
1518 folio_wake_bit(folio, PG_locked);
1520 EXPORT_SYMBOL(folio_unlock);
1523 * folio_end_private_2 - Clear PG_private_2 and wake any waiters.
1524 * @folio: The folio.
1526 * Clear the PG_private_2 bit on a folio and wake up any sleepers waiting for
1527 * it. The folio reference held for PG_private_2 being set is released.
1529 * This is, for example, used when a netfs folio is being written to a local
1530 * disk cache, thereby allowing writes to the cache for the same folio to be
1533 void folio_end_private_2(struct folio *folio)
1535 VM_BUG_ON_FOLIO(!folio_test_private_2(folio), folio);
1536 clear_bit_unlock(PG_private_2, folio_flags(folio, 0));
1537 folio_wake_bit(folio, PG_private_2);
1540 EXPORT_SYMBOL(folio_end_private_2);
1543 * folio_wait_private_2 - Wait for PG_private_2 to be cleared on a folio.
1544 * @folio: The folio to wait on.
1546 * Wait for PG_private_2 (aka PG_fscache) to be cleared on a folio.
1548 void folio_wait_private_2(struct folio *folio)
1550 while (folio_test_private_2(folio))
1551 folio_wait_bit(folio, PG_private_2);
1553 EXPORT_SYMBOL(folio_wait_private_2);
1556 * folio_wait_private_2_killable - Wait for PG_private_2 to be cleared on a folio.
1557 * @folio: The folio to wait on.
1559 * Wait for PG_private_2 (aka PG_fscache) to be cleared on a folio or until a
1560 * fatal signal is received by the calling task.
1563 * - 0 if successful.
1564 * - -EINTR if a fatal signal was encountered.
1566 int folio_wait_private_2_killable(struct folio *folio)
1570 while (folio_test_private_2(folio)) {
1571 ret = folio_wait_bit_killable(folio, PG_private_2);
1578 EXPORT_SYMBOL(folio_wait_private_2_killable);
1581 * folio_end_writeback - End writeback against a folio.
1582 * @folio: The folio.
1584 void folio_end_writeback(struct folio *folio)
1587 * folio_test_clear_reclaim() could be used here but it is an
1588 * atomic operation and overkill in this particular case. Failing
1589 * to shuffle a folio marked for immediate reclaim is too mild
1590 * a gain to justify taking an atomic operation penalty at the
1591 * end of every folio writeback.
1593 if (folio_test_reclaim(folio)) {
1594 folio_clear_reclaim(folio);
1595 folio_rotate_reclaimable(folio);
1599 * Writeback does not hold a folio reference of its own, relying
1600 * on truncation to wait for the clearing of PG_writeback.
1601 * But here we must make sure that the folio is not freed and
1602 * reused before the folio_wake().
1605 if (!__folio_end_writeback(folio))
1608 smp_mb__after_atomic();
1609 folio_wake(folio, PG_writeback);
1610 acct_reclaim_writeback(folio);
1613 EXPORT_SYMBOL(folio_end_writeback);
1616 * After completing I/O on a page, call this routine to update the page
1617 * flags appropriately
1619 void page_endio(struct page *page, bool is_write, int err)
1623 SetPageUptodate(page);
1625 ClearPageUptodate(page);
1631 struct address_space *mapping;
1634 mapping = page_mapping(page);
1636 mapping_set_error(mapping, err);
1638 end_page_writeback(page);
1641 EXPORT_SYMBOL_GPL(page_endio);
1644 * __folio_lock - Get a lock on the folio, assuming we need to sleep to get it.
1645 * @folio: The folio to lock
1647 void __folio_lock(struct folio *folio)
1649 folio_wait_bit_common(folio, PG_locked, TASK_UNINTERRUPTIBLE,
1652 EXPORT_SYMBOL(__folio_lock);
1654 int __folio_lock_killable(struct folio *folio)
1656 return folio_wait_bit_common(folio, PG_locked, TASK_KILLABLE,
1659 EXPORT_SYMBOL_GPL(__folio_lock_killable);
1661 static int __folio_lock_async(struct folio *folio, struct wait_page_queue *wait)
1663 struct wait_queue_head *q = folio_waitqueue(folio);
1666 wait->folio = folio;
1667 wait->bit_nr = PG_locked;
1669 spin_lock_irq(&q->lock);
1670 __add_wait_queue_entry_tail(q, &wait->wait);
1671 folio_set_waiters(folio);
1672 ret = !folio_trylock(folio);
1674 * If we were successful now, we know we're still on the
1675 * waitqueue as we're still under the lock. This means it's
1676 * safe to remove and return success, we know the callback
1677 * isn't going to trigger.
1680 __remove_wait_queue(q, &wait->wait);
1683 spin_unlock_irq(&q->lock);
1689 * true - folio is locked; mmap_lock is still held.
1690 * false - folio is not locked.
1691 * mmap_lock has been released (mmap_read_unlock(), unless flags had both
1692 * FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
1693 * which case mmap_lock is still held.
1695 * If neither ALLOW_RETRY nor KILLABLE are set, will always return true
1696 * with the folio locked and the mmap_lock unperturbed.
1698 bool __folio_lock_or_retry(struct folio *folio, struct mm_struct *mm,
1701 if (fault_flag_allow_retry_first(flags)) {
1703 * CAUTION! In this case, mmap_lock is not released
1704 * even though return 0.
1706 if (flags & FAULT_FLAG_RETRY_NOWAIT)
1709 mmap_read_unlock(mm);
1710 if (flags & FAULT_FLAG_KILLABLE)
1711 folio_wait_locked_killable(folio);
1713 folio_wait_locked(folio);
1716 if (flags & FAULT_FLAG_KILLABLE) {
1719 ret = __folio_lock_killable(folio);
1721 mmap_read_unlock(mm);
1725 __folio_lock(folio);
1732 * page_cache_next_miss() - Find the next gap in the page cache.
1733 * @mapping: Mapping.
1735 * @max_scan: Maximum range to search.
1737 * Search the range [index, min(index + max_scan - 1, ULONG_MAX)] for the
1738 * gap with the lowest index.
1740 * This function may be called under the rcu_read_lock. However, this will
1741 * not atomically search a snapshot of the cache at a single point in time.
1742 * For example, if a gap is created at index 5, then subsequently a gap is
1743 * created at index 10, page_cache_next_miss covering both indices may
1744 * return 10 if called under the rcu_read_lock.
1746 * Return: The index of the gap if found, otherwise an index outside the
1747 * range specified (in which case 'return - index >= max_scan' will be true).
1748 * In the rare case of index wrap-around, 0 will be returned.
1750 pgoff_t page_cache_next_miss(struct address_space *mapping,
1751 pgoff_t index, unsigned long max_scan)
1753 XA_STATE(xas, &mapping->i_pages, index);
1755 while (max_scan--) {
1756 void *entry = xas_next(&xas);
1757 if (!entry || xa_is_value(entry))
1759 if (xas.xa_index == 0)
1763 return xas.xa_index;
1765 EXPORT_SYMBOL(page_cache_next_miss);
1768 * page_cache_prev_miss() - Find the previous gap in the page cache.
1769 * @mapping: Mapping.
1771 * @max_scan: Maximum range to search.
1773 * Search the range [max(index - max_scan + 1, 0), index] for the
1774 * gap with the highest index.
1776 * This function may be called under the rcu_read_lock. However, this will
1777 * not atomically search a snapshot of the cache at a single point in time.
1778 * For example, if a gap is created at index 10, then subsequently a gap is
1779 * created at index 5, page_cache_prev_miss() covering both indices may
1780 * return 5 if called under the rcu_read_lock.
1782 * Return: The index of the gap if found, otherwise an index outside the
1783 * range specified (in which case 'index - return >= max_scan' will be true).
1784 * In the rare case of wrap-around, ULONG_MAX will be returned.
1786 pgoff_t page_cache_prev_miss(struct address_space *mapping,
1787 pgoff_t index, unsigned long max_scan)
1789 XA_STATE(xas, &mapping->i_pages, index);
1791 while (max_scan--) {
1792 void *entry = xas_prev(&xas);
1793 if (!entry || xa_is_value(entry))
1795 if (xas.xa_index == ULONG_MAX)
1799 return xas.xa_index;
1801 EXPORT_SYMBOL(page_cache_prev_miss);
1804 * Lockless page cache protocol:
1805 * On the lookup side:
1806 * 1. Load the folio from i_pages
1807 * 2. Increment the refcount if it's not zero
1808 * 3. If the folio is not found by xas_reload(), put the refcount and retry
1810 * On the removal side:
1811 * A. Freeze the page (by zeroing the refcount if nobody else has a reference)
1812 * B. Remove the page from i_pages
1813 * C. Return the page to the page allocator
1815 * This means that any page may have its reference count temporarily
1816 * increased by a speculative page cache (or fast GUP) lookup as it can
1817 * be allocated by another user before the RCU grace period expires.
1818 * Because the refcount temporarily acquired here may end up being the
1819 * last refcount on the page, any page allocation must be freeable by
1824 * mapping_get_entry - Get a page cache entry.
1825 * @mapping: the address_space to search
1826 * @index: The page cache index.
1828 * Looks up the page cache entry at @mapping & @index. If it is a folio,
1829 * it is returned with an increased refcount. If it is a shadow entry
1830 * of a previously evicted folio, or a swap entry from shmem/tmpfs,
1831 * it is returned without further action.
1833 * Return: The folio, swap or shadow entry, %NULL if nothing is found.
1835 static void *mapping_get_entry(struct address_space *mapping, pgoff_t index)
1837 XA_STATE(xas, &mapping->i_pages, index);
1838 struct folio *folio;
1843 folio = xas_load(&xas);
1844 if (xas_retry(&xas, folio))
1847 * A shadow entry of a recently evicted page, or a swap entry from
1848 * shmem/tmpfs. Return it without attempting to raise page count.
1850 if (!folio || xa_is_value(folio))
1853 if (!folio_try_get_rcu(folio))
1856 if (unlikely(folio != xas_reload(&xas))) {
1867 * __filemap_get_folio - Find and get a reference to a folio.
1868 * @mapping: The address_space to search.
1869 * @index: The page index.
1870 * @fgp_flags: %FGP flags modify how the folio is returned.
1871 * @gfp: Memory allocation flags to use if %FGP_CREAT is specified.
1873 * Looks up the page cache entry at @mapping & @index.
1875 * @fgp_flags can be zero or more of these flags:
1877 * * %FGP_ACCESSED - The folio will be marked accessed.
1878 * * %FGP_LOCK - The folio is returned locked.
1879 * * %FGP_ENTRY - If there is a shadow / swap / DAX entry, return it
1880 * instead of allocating a new folio to replace it.
1881 * * %FGP_CREAT - If no page is present then a new page is allocated using
1882 * @gfp and added to the page cache and the VM's LRU list.
1883 * The page is returned locked and with an increased refcount.
1884 * * %FGP_FOR_MMAP - The caller wants to do its own locking dance if the
1885 * page is already in cache. If the page was allocated, unlock it before
1886 * returning so the caller can do the same dance.
1887 * * %FGP_WRITE - The page will be written to by the caller.
1888 * * %FGP_NOFS - __GFP_FS will get cleared in gfp.
1889 * * %FGP_NOWAIT - Don't get blocked by page lock.
1890 * * %FGP_STABLE - Wait for the folio to be stable (finished writeback)
1892 * If %FGP_LOCK or %FGP_CREAT are specified then the function may sleep even
1893 * if the %GFP flags specified for %FGP_CREAT are atomic.
1895 * If there is a page cache page, it is returned with an increased refcount.
1897 * Return: The found folio or %NULL otherwise.
1899 struct folio *__filemap_get_folio(struct address_space *mapping, pgoff_t index,
1900 int fgp_flags, gfp_t gfp)
1902 struct folio *folio;
1905 folio = mapping_get_entry(mapping, index);
1906 if (xa_is_value(folio)) {
1907 if (fgp_flags & FGP_ENTRY)
1914 if (fgp_flags & FGP_LOCK) {
1915 if (fgp_flags & FGP_NOWAIT) {
1916 if (!folio_trylock(folio)) {
1924 /* Has the page been truncated? */
1925 if (unlikely(folio->mapping != mapping)) {
1926 folio_unlock(folio);
1930 VM_BUG_ON_FOLIO(!folio_contains(folio, index), folio);
1933 if (fgp_flags & FGP_ACCESSED)
1934 folio_mark_accessed(folio);
1935 else if (fgp_flags & FGP_WRITE) {
1936 /* Clear idle flag for buffer write */
1937 if (folio_test_idle(folio))
1938 folio_clear_idle(folio);
1941 if (fgp_flags & FGP_STABLE)
1942 folio_wait_stable(folio);
1944 if (!folio && (fgp_flags & FGP_CREAT)) {
1946 if ((fgp_flags & FGP_WRITE) && mapping_can_writeback(mapping))
1948 if (fgp_flags & FGP_NOFS)
1951 folio = filemap_alloc_folio(gfp, 0);
1955 if (WARN_ON_ONCE(!(fgp_flags & (FGP_LOCK | FGP_FOR_MMAP))))
1956 fgp_flags |= FGP_LOCK;
1958 /* Init accessed so avoid atomic mark_page_accessed later */
1959 if (fgp_flags & FGP_ACCESSED)
1960 __folio_set_referenced(folio);
1962 err = filemap_add_folio(mapping, folio, index, gfp);
1963 if (unlikely(err)) {
1971 * filemap_add_folio locks the page, and for mmap
1972 * we expect an unlocked page.
1974 if (folio && (fgp_flags & FGP_FOR_MMAP))
1975 folio_unlock(folio);
1980 EXPORT_SYMBOL(__filemap_get_folio);
1982 static inline struct page *find_get_entry(struct xa_state *xas, pgoff_t max,
1988 if (mark == XA_PRESENT)
1989 page = xas_find(xas, max);
1991 page = xas_find_marked(xas, max, mark);
1993 if (xas_retry(xas, page))
1996 * A shadow entry of a recently evicted page, a swap
1997 * entry from shmem/tmpfs or a DAX entry. Return it
1998 * without attempting to raise page count.
2000 if (!page || xa_is_value(page))
2003 if (!page_cache_get_speculative(page))
2006 /* Has the page moved or been split? */
2007 if (unlikely(page != xas_reload(xas))) {
2019 * find_get_entries - gang pagecache lookup
2020 * @mapping: The address_space to search
2021 * @start: The starting page cache index
2022 * @end: The final page index (inclusive).
2023 * @pvec: Where the resulting entries are placed.
2024 * @indices: The cache indices corresponding to the entries in @entries
2026 * find_get_entries() will search for and return a batch of entries in
2027 * the mapping. The entries are placed in @pvec. find_get_entries()
2028 * takes a reference on any actual pages it returns.
2030 * The search returns a group of mapping-contiguous page cache entries
2031 * with ascending indexes. There may be holes in the indices due to
2032 * not-present pages.
2034 * Any shadow entries of evicted pages, or swap entries from
2035 * shmem/tmpfs, are included in the returned array.
2037 * If it finds a Transparent Huge Page, head or tail, find_get_entries()
2038 * stops at that page: the caller is likely to have a better way to handle
2039 * the compound page as a whole, and then skip its extent, than repeatedly
2040 * calling find_get_entries() to return all its tails.
2042 * Return: the number of pages and shadow entries which were found.
2044 unsigned find_get_entries(struct address_space *mapping, pgoff_t start,
2045 pgoff_t end, struct pagevec *pvec, pgoff_t *indices)
2047 XA_STATE(xas, &mapping->i_pages, start);
2049 unsigned int ret = 0;
2050 unsigned nr_entries = PAGEVEC_SIZE;
2053 while ((page = find_get_entry(&xas, end, XA_PRESENT))) {
2055 * Terminate early on finding a THP, to allow the caller to
2056 * handle it all at once; but continue if this is hugetlbfs.
2058 if (!xa_is_value(page) && PageTransHuge(page) &&
2060 page = find_subpage(page, xas.xa_index);
2061 nr_entries = ret + 1;
2064 indices[ret] = xas.xa_index;
2065 pvec->pages[ret] = page;
2066 if (++ret == nr_entries)
2076 * find_lock_entries - Find a batch of pagecache entries.
2077 * @mapping: The address_space to search.
2078 * @start: The starting page cache index.
2079 * @end: The final page index (inclusive).
2080 * @pvec: Where the resulting entries are placed.
2081 * @indices: The cache indices of the entries in @pvec.
2083 * find_lock_entries() will return a batch of entries from @mapping.
2084 * Swap, shadow and DAX entries are included. Pages are returned
2085 * locked and with an incremented refcount. Pages which are locked by
2086 * somebody else or under writeback are skipped. Only the head page of
2087 * a THP is returned. Pages which are partially outside the range are
2090 * The entries have ascending indexes. The indices may not be consecutive
2091 * due to not-present entries, THP pages, pages which could not be locked
2092 * or pages under writeback.
2094 * Return: The number of entries which were found.
2096 unsigned find_lock_entries(struct address_space *mapping, pgoff_t start,
2097 pgoff_t end, struct pagevec *pvec, pgoff_t *indices)
2099 XA_STATE(xas, &mapping->i_pages, start);
2103 while ((page = find_get_entry(&xas, end, XA_PRESENT))) {
2104 if (!xa_is_value(page)) {
2105 if (page->index < start)
2107 if (page->index + thp_nr_pages(page) - 1 > end)
2109 if (!trylock_page(page))
2111 if (page->mapping != mapping || PageWriteback(page))
2113 VM_BUG_ON_PAGE(!thp_contains(page, xas.xa_index),
2116 indices[pvec->nr] = xas.xa_index;
2117 if (!pagevec_add(pvec, page))
2125 if (!xa_is_value(page) && PageTransHuge(page)) {
2126 unsigned int nr_pages = thp_nr_pages(page);
2128 /* Final THP may cross MAX_LFS_FILESIZE on 32-bit */
2129 xas_set(&xas, page->index + nr_pages);
2130 if (xas.xa_index < nr_pages)
2136 return pagevec_count(pvec);
2140 * find_get_pages_range - gang pagecache lookup
2141 * @mapping: The address_space to search
2142 * @start: The starting page index
2143 * @end: The final page index (inclusive)
2144 * @nr_pages: The maximum number of pages
2145 * @pages: Where the resulting pages are placed
2147 * find_get_pages_range() will search for and return a group of up to @nr_pages
2148 * pages in the mapping starting at index @start and up to index @end
2149 * (inclusive). The pages are placed at @pages. find_get_pages_range() takes
2150 * a reference against the returned pages.
2152 * The search returns a group of mapping-contiguous pages with ascending
2153 * indexes. There may be holes in the indices due to not-present pages.
2154 * We also update @start to index the next page for the traversal.
2156 * Return: the number of pages which were found. If this number is
2157 * smaller than @nr_pages, the end of specified range has been
2160 unsigned find_get_pages_range(struct address_space *mapping, pgoff_t *start,
2161 pgoff_t end, unsigned int nr_pages,
2162 struct page **pages)
2164 XA_STATE(xas, &mapping->i_pages, *start);
2168 if (unlikely(!nr_pages))
2172 while ((page = find_get_entry(&xas, end, XA_PRESENT))) {
2173 /* Skip over shadow, swap and DAX entries */
2174 if (xa_is_value(page))
2177 pages[ret] = find_subpage(page, xas.xa_index);
2178 if (++ret == nr_pages) {
2179 *start = xas.xa_index + 1;
2185 * We come here when there is no page beyond @end. We take care to not
2186 * overflow the index @start as it confuses some of the callers. This
2187 * breaks the iteration when there is a page at index -1 but that is
2188 * already broken anyway.
2190 if (end == (pgoff_t)-1)
2191 *start = (pgoff_t)-1;
2201 * find_get_pages_contig - gang contiguous pagecache lookup
2202 * @mapping: The address_space to search
2203 * @index: The starting page index
2204 * @nr_pages: The maximum number of pages
2205 * @pages: Where the resulting pages are placed
2207 * find_get_pages_contig() works exactly like find_get_pages(), except
2208 * that the returned number of pages are guaranteed to be contiguous.
2210 * Return: the number of pages which were found.
2212 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
2213 unsigned int nr_pages, struct page **pages)
2215 XA_STATE(xas, &mapping->i_pages, index);
2217 unsigned int ret = 0;
2219 if (unlikely(!nr_pages))
2223 for (page = xas_load(&xas); page; page = xas_next(&xas)) {
2224 if (xas_retry(&xas, page))
2227 * If the entry has been swapped out, we can stop looking.
2228 * No current caller is looking for DAX entries.
2230 if (xa_is_value(page))
2233 if (!page_cache_get_speculative(page))
2236 /* Has the page moved or been split? */
2237 if (unlikely(page != xas_reload(&xas)))
2240 pages[ret] = find_subpage(page, xas.xa_index);
2241 if (++ret == nr_pages)
2252 EXPORT_SYMBOL(find_get_pages_contig);
2255 * find_get_pages_range_tag - Find and return head pages matching @tag.
2256 * @mapping: the address_space to search
2257 * @index: the starting page index
2258 * @end: The final page index (inclusive)
2259 * @tag: the tag index
2260 * @nr_pages: the maximum number of pages
2261 * @pages: where the resulting pages are placed
2263 * Like find_get_pages(), except we only return head pages which are tagged
2264 * with @tag. @index is updated to the index immediately after the last
2265 * page we return, ready for the next iteration.
2267 * Return: the number of pages which were found.
2269 unsigned find_get_pages_range_tag(struct address_space *mapping, pgoff_t *index,
2270 pgoff_t end, xa_mark_t tag, unsigned int nr_pages,
2271 struct page **pages)
2273 XA_STATE(xas, &mapping->i_pages, *index);
2277 if (unlikely(!nr_pages))
2281 while ((page = find_get_entry(&xas, end, tag))) {
2283 * Shadow entries should never be tagged, but this iteration
2284 * is lockless so there is a window for page reclaim to evict
2285 * a page we saw tagged. Skip over it.
2287 if (xa_is_value(page))
2291 if (++ret == nr_pages) {
2292 *index = page->index + thp_nr_pages(page);
2298 * We come here when we got to @end. We take care to not overflow the
2299 * index @index as it confuses some of the callers. This breaks the
2300 * iteration when there is a page at index -1 but that is already
2303 if (end == (pgoff_t)-1)
2304 *index = (pgoff_t)-1;
2312 EXPORT_SYMBOL(find_get_pages_range_tag);
2315 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
2316 * a _large_ part of the i/o request. Imagine the worst scenario:
2318 * ---R__________________________________________B__________
2319 * ^ reading here ^ bad block(assume 4k)
2321 * read(R) => miss => readahead(R...B) => media error => frustrating retries
2322 * => failing the whole request => read(R) => read(R+1) =>
2323 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
2324 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
2325 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
2327 * It is going insane. Fix it by quickly scaling down the readahead size.
2329 static void shrink_readahead_size_eio(struct file_ra_state *ra)
2335 * filemap_get_read_batch - Get a batch of pages for read
2337 * Get a batch of pages which represent a contiguous range of bytes
2338 * in the file. No tail pages will be returned. If @index is in the
2339 * middle of a THP, the entire THP will be returned. The last page in
2340 * the batch may have Readahead set or be not Uptodate so that the
2341 * caller can take the appropriate action.
2343 static void filemap_get_read_batch(struct address_space *mapping,
2344 pgoff_t index, pgoff_t max, struct pagevec *pvec)
2346 XA_STATE(xas, &mapping->i_pages, index);
2350 for (head = xas_load(&xas); head; head = xas_next(&xas)) {
2351 if (xas_retry(&xas, head))
2353 if (xas.xa_index > max || xa_is_value(head))
2355 if (!page_cache_get_speculative(head))
2358 /* Has the page moved or been split? */
2359 if (unlikely(head != xas_reload(&xas)))
2362 if (!pagevec_add(pvec, head))
2364 if (!PageUptodate(head))
2366 if (PageReadahead(head))
2368 xas.xa_index = head->index + thp_nr_pages(head) - 1;
2369 xas.xa_offset = (xas.xa_index >> xas.xa_shift) & XA_CHUNK_MASK;
2379 static int filemap_read_page(struct file *file, struct address_space *mapping,
2385 * A previous I/O error may have been due to temporary failures,
2386 * eg. multipath errors. PG_error will be set again if readpage
2389 ClearPageError(page);
2390 /* Start the actual read. The read will unlock the page. */
2391 error = mapping->a_ops->readpage(file, page);
2395 error = wait_on_page_locked_killable(page);
2398 if (PageUptodate(page))
2400 shrink_readahead_size_eio(&file->f_ra);
2404 static bool filemap_range_uptodate(struct address_space *mapping,
2405 loff_t pos, struct iov_iter *iter, struct page *page)
2409 if (PageUptodate(page))
2411 /* pipes can't handle partially uptodate pages */
2412 if (iov_iter_is_pipe(iter))
2414 if (!mapping->a_ops->is_partially_uptodate)
2416 if (mapping->host->i_blkbits >= (PAGE_SHIFT + thp_order(page)))
2419 count = iter->count;
2420 if (page_offset(page) > pos) {
2421 count -= page_offset(page) - pos;
2424 pos -= page_offset(page);
2427 return mapping->a_ops->is_partially_uptodate(page, pos, count);
2430 static int filemap_update_page(struct kiocb *iocb,
2431 struct address_space *mapping, struct iov_iter *iter,
2434 struct folio *folio = page_folio(page);
2437 if (iocb->ki_flags & IOCB_NOWAIT) {
2438 if (!filemap_invalidate_trylock_shared(mapping))
2441 filemap_invalidate_lock_shared(mapping);
2444 if (!folio_trylock(folio)) {
2446 if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_NOIO))
2447 goto unlock_mapping;
2448 if (!(iocb->ki_flags & IOCB_WAITQ)) {
2449 filemap_invalidate_unlock_shared(mapping);
2450 put_and_wait_on_page_locked(&folio->page, TASK_KILLABLE);
2451 return AOP_TRUNCATED_PAGE;
2453 error = __folio_lock_async(folio, iocb->ki_waitq);
2455 goto unlock_mapping;
2458 error = AOP_TRUNCATED_PAGE;
2459 if (!folio->mapping)
2463 if (filemap_range_uptodate(mapping, iocb->ki_pos, iter, &folio->page))
2467 if (iocb->ki_flags & (IOCB_NOIO | IOCB_NOWAIT | IOCB_WAITQ))
2470 error = filemap_read_page(iocb->ki_filp, mapping, &folio->page);
2471 goto unlock_mapping;
2473 folio_unlock(folio);
2475 filemap_invalidate_unlock_shared(mapping);
2476 if (error == AOP_TRUNCATED_PAGE)
2481 static int filemap_create_page(struct file *file,
2482 struct address_space *mapping, pgoff_t index,
2483 struct pagevec *pvec)
2488 page = page_cache_alloc(mapping);
2493 * Protect against truncate / hole punch. Grabbing invalidate_lock here
2494 * assures we cannot instantiate and bring uptodate new pagecache pages
2495 * after evicting page cache during truncate and before actually
2496 * freeing blocks. Note that we could release invalidate_lock after
2497 * inserting the page into page cache as the locked page would then be
2498 * enough to synchronize with hole punching. But there are code paths
2499 * such as filemap_update_page() filling in partially uptodate pages or
2500 * ->readpages() that need to hold invalidate_lock while mapping blocks
2501 * for IO so let's hold the lock here as well to keep locking rules
2504 filemap_invalidate_lock_shared(mapping);
2505 error = add_to_page_cache_lru(page, mapping, index,
2506 mapping_gfp_constraint(mapping, GFP_KERNEL));
2507 if (error == -EEXIST)
2508 error = AOP_TRUNCATED_PAGE;
2512 error = filemap_read_page(file, mapping, page);
2516 filemap_invalidate_unlock_shared(mapping);
2517 pagevec_add(pvec, page);
2520 filemap_invalidate_unlock_shared(mapping);
2525 static int filemap_readahead(struct kiocb *iocb, struct file *file,
2526 struct address_space *mapping, struct page *page,
2529 if (iocb->ki_flags & IOCB_NOIO)
2531 page_cache_async_readahead(mapping, &file->f_ra, file, page,
2532 page->index, last_index - page->index);
2536 static int filemap_get_pages(struct kiocb *iocb, struct iov_iter *iter,
2537 struct pagevec *pvec)
2539 struct file *filp = iocb->ki_filp;
2540 struct address_space *mapping = filp->f_mapping;
2541 struct file_ra_state *ra = &filp->f_ra;
2542 pgoff_t index = iocb->ki_pos >> PAGE_SHIFT;
2547 last_index = DIV_ROUND_UP(iocb->ki_pos + iter->count, PAGE_SIZE);
2549 if (fatal_signal_pending(current))
2552 filemap_get_read_batch(mapping, index, last_index, pvec);
2553 if (!pagevec_count(pvec)) {
2554 if (iocb->ki_flags & IOCB_NOIO)
2556 page_cache_sync_readahead(mapping, ra, filp, index,
2557 last_index - index);
2558 filemap_get_read_batch(mapping, index, last_index, pvec);
2560 if (!pagevec_count(pvec)) {
2561 if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_WAITQ))
2563 err = filemap_create_page(filp, mapping,
2564 iocb->ki_pos >> PAGE_SHIFT, pvec);
2565 if (err == AOP_TRUNCATED_PAGE)
2570 page = pvec->pages[pagevec_count(pvec) - 1];
2571 if (PageReadahead(page)) {
2572 err = filemap_readahead(iocb, filp, mapping, page, last_index);
2576 if (!PageUptodate(page)) {
2577 if ((iocb->ki_flags & IOCB_WAITQ) && pagevec_count(pvec) > 1)
2578 iocb->ki_flags |= IOCB_NOWAIT;
2579 err = filemap_update_page(iocb, mapping, iter, page);
2588 if (likely(--pvec->nr))
2590 if (err == AOP_TRUNCATED_PAGE)
2596 * filemap_read - Read data from the page cache.
2597 * @iocb: The iocb to read.
2598 * @iter: Destination for the data.
2599 * @already_read: Number of bytes already read by the caller.
2601 * Copies data from the page cache. If the data is not currently present,
2602 * uses the readahead and readpage address_space operations to fetch it.
2604 * Return: Total number of bytes copied, including those already read by
2605 * the caller. If an error happens before any bytes are copied, returns
2606 * a negative error number.
2608 ssize_t filemap_read(struct kiocb *iocb, struct iov_iter *iter,
2609 ssize_t already_read)
2611 struct file *filp = iocb->ki_filp;
2612 struct file_ra_state *ra = &filp->f_ra;
2613 struct address_space *mapping = filp->f_mapping;
2614 struct inode *inode = mapping->host;
2615 struct pagevec pvec;
2617 bool writably_mapped;
2618 loff_t isize, end_offset;
2620 if (unlikely(iocb->ki_pos >= inode->i_sb->s_maxbytes))
2622 if (unlikely(!iov_iter_count(iter)))
2625 iov_iter_truncate(iter, inode->i_sb->s_maxbytes);
2626 pagevec_init(&pvec);
2632 * If we've already successfully copied some data, then we
2633 * can no longer safely return -EIOCBQUEUED. Hence mark
2634 * an async read NOWAIT at that point.
2636 if ((iocb->ki_flags & IOCB_WAITQ) && already_read)
2637 iocb->ki_flags |= IOCB_NOWAIT;
2639 if (unlikely(iocb->ki_pos >= i_size_read(inode)))
2642 error = filemap_get_pages(iocb, iter, &pvec);
2647 * i_size must be checked after we know the pages are Uptodate.
2649 * Checking i_size after the check allows us to calculate
2650 * the correct value for "nr", which means the zero-filled
2651 * part of the page is not copied back to userspace (unless
2652 * another truncate extends the file - this is desired though).
2654 isize = i_size_read(inode);
2655 if (unlikely(iocb->ki_pos >= isize))
2657 end_offset = min_t(loff_t, isize, iocb->ki_pos + iter->count);
2660 * Once we start copying data, we don't want to be touching any
2661 * cachelines that might be contended:
2663 writably_mapped = mapping_writably_mapped(mapping);
2666 * When a sequential read accesses a page several times, only
2667 * mark it as accessed the first time.
2669 if (iocb->ki_pos >> PAGE_SHIFT !=
2670 ra->prev_pos >> PAGE_SHIFT)
2671 mark_page_accessed(pvec.pages[0]);
2673 for (i = 0; i < pagevec_count(&pvec); i++) {
2674 struct page *page = pvec.pages[i];
2675 size_t page_size = thp_size(page);
2676 size_t offset = iocb->ki_pos & (page_size - 1);
2677 size_t bytes = min_t(loff_t, end_offset - iocb->ki_pos,
2678 page_size - offset);
2681 if (end_offset < page_offset(page))
2684 mark_page_accessed(page);
2686 * If users can be writing to this page using arbitrary
2687 * virtual addresses, take care about potential aliasing
2688 * before reading the page on the kernel side.
2690 if (writably_mapped) {
2693 for (j = 0; j < thp_nr_pages(page); j++)
2694 flush_dcache_page(page + j);
2697 copied = copy_page_to_iter(page, offset, bytes, iter);
2699 already_read += copied;
2700 iocb->ki_pos += copied;
2701 ra->prev_pos = iocb->ki_pos;
2703 if (copied < bytes) {
2709 for (i = 0; i < pagevec_count(&pvec); i++)
2710 put_page(pvec.pages[i]);
2711 pagevec_reinit(&pvec);
2712 } while (iov_iter_count(iter) && iocb->ki_pos < isize && !error);
2714 file_accessed(filp);
2716 return already_read ? already_read : error;
2718 EXPORT_SYMBOL_GPL(filemap_read);
2721 * generic_file_read_iter - generic filesystem read routine
2722 * @iocb: kernel I/O control block
2723 * @iter: destination for the data read
2725 * This is the "read_iter()" routine for all filesystems
2726 * that can use the page cache directly.
2728 * The IOCB_NOWAIT flag in iocb->ki_flags indicates that -EAGAIN shall
2729 * be returned when no data can be read without waiting for I/O requests
2730 * to complete; it doesn't prevent readahead.
2732 * The IOCB_NOIO flag in iocb->ki_flags indicates that no new I/O
2733 * requests shall be made for the read or for readahead. When no data
2734 * can be read, -EAGAIN shall be returned. When readahead would be
2735 * triggered, a partial, possibly empty read shall be returned.
2738 * * number of bytes copied, even for partial reads
2739 * * negative error code (or 0 if IOCB_NOIO) if nothing was read
2742 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
2744 size_t count = iov_iter_count(iter);
2748 return 0; /* skip atime */
2750 if (iocb->ki_flags & IOCB_DIRECT) {
2751 struct file *file = iocb->ki_filp;
2752 struct address_space *mapping = file->f_mapping;
2753 struct inode *inode = mapping->host;
2755 if (iocb->ki_flags & IOCB_NOWAIT) {
2756 if (filemap_range_needs_writeback(mapping, iocb->ki_pos,
2757 iocb->ki_pos + count - 1))
2760 retval = filemap_write_and_wait_range(mapping,
2762 iocb->ki_pos + count - 1);
2767 file_accessed(file);
2769 retval = mapping->a_ops->direct_IO(iocb, iter);
2771 iocb->ki_pos += retval;
2774 if (retval != -EIOCBQUEUED)
2775 iov_iter_revert(iter, count - iov_iter_count(iter));
2778 * Btrfs can have a short DIO read if we encounter
2779 * compressed extents, so if there was an error, or if
2780 * we've already read everything we wanted to, or if
2781 * there was a short read because we hit EOF, go ahead
2782 * and return. Otherwise fallthrough to buffered io for
2783 * the rest of the read. Buffered reads will not work for
2784 * DAX files, so don't bother trying.
2786 if (retval < 0 || !count || IS_DAX(inode))
2788 if (iocb->ki_pos >= i_size_read(inode))
2792 return filemap_read(iocb, iter, retval);
2794 EXPORT_SYMBOL(generic_file_read_iter);
2796 static inline loff_t page_seek_hole_data(struct xa_state *xas,
2797 struct address_space *mapping, struct page *page,
2798 loff_t start, loff_t end, bool seek_data)
2800 const struct address_space_operations *ops = mapping->a_ops;
2801 size_t offset, bsz = i_blocksize(mapping->host);
2803 if (xa_is_value(page) || PageUptodate(page))
2804 return seek_data ? start : end;
2805 if (!ops->is_partially_uptodate)
2806 return seek_data ? end : start;
2811 if (unlikely(page->mapping != mapping))
2814 offset = offset_in_thp(page, start) & ~(bsz - 1);
2817 if (ops->is_partially_uptodate(page, offset, bsz) == seek_data)
2819 start = (start + bsz) & ~(bsz - 1);
2821 } while (offset < thp_size(page));
2829 unsigned int seek_page_size(struct xa_state *xas, struct page *page)
2831 if (xa_is_value(page))
2832 return PAGE_SIZE << xa_get_order(xas->xa, xas->xa_index);
2833 return thp_size(page);
2837 * mapping_seek_hole_data - Seek for SEEK_DATA / SEEK_HOLE in the page cache.
2838 * @mapping: Address space to search.
2839 * @start: First byte to consider.
2840 * @end: Limit of search (exclusive).
2841 * @whence: Either SEEK_HOLE or SEEK_DATA.
2843 * If the page cache knows which blocks contain holes and which blocks
2844 * contain data, your filesystem can use this function to implement
2845 * SEEK_HOLE and SEEK_DATA. This is useful for filesystems which are
2846 * entirely memory-based such as tmpfs, and filesystems which support
2847 * unwritten extents.
2849 * Return: The requested offset on success, or -ENXIO if @whence specifies
2850 * SEEK_DATA and there is no data after @start. There is an implicit hole
2851 * after @end - 1, so SEEK_HOLE returns @end if all the bytes between @start
2852 * and @end contain data.
2854 loff_t mapping_seek_hole_data(struct address_space *mapping, loff_t start,
2855 loff_t end, int whence)
2857 XA_STATE(xas, &mapping->i_pages, start >> PAGE_SHIFT);
2858 pgoff_t max = (end - 1) >> PAGE_SHIFT;
2859 bool seek_data = (whence == SEEK_DATA);
2866 while ((page = find_get_entry(&xas, max, XA_PRESENT))) {
2867 loff_t pos = (u64)xas.xa_index << PAGE_SHIFT;
2868 unsigned int seek_size;
2876 seek_size = seek_page_size(&xas, page);
2877 pos = round_up(pos + 1, seek_size);
2878 start = page_seek_hole_data(&xas, mapping, page, start, pos,
2884 if (seek_size > PAGE_SIZE)
2885 xas_set(&xas, pos >> PAGE_SHIFT);
2886 if (!xa_is_value(page))
2893 if (page && !xa_is_value(page))
2901 #define MMAP_LOTSAMISS (100)
2903 * lock_page_maybe_drop_mmap - lock the page, possibly dropping the mmap_lock
2904 * @vmf - the vm_fault for this fault.
2905 * @page - the page to lock.
2906 * @fpin - the pointer to the file we may pin (or is already pinned).
2908 * This works similar to lock_page_or_retry in that it can drop the mmap_lock.
2909 * It differs in that it actually returns the page locked if it returns 1 and 0
2910 * if it couldn't lock the page. If we did have to drop the mmap_lock then fpin
2911 * will point to the pinned file and needs to be fput()'ed at a later point.
2913 static int lock_page_maybe_drop_mmap(struct vm_fault *vmf, struct page *page,
2916 struct folio *folio = page_folio(page);
2918 if (folio_trylock(folio))
2922 * NOTE! This will make us return with VM_FAULT_RETRY, but with
2923 * the mmap_lock still held. That's how FAULT_FLAG_RETRY_NOWAIT
2924 * is supposed to work. We have way too many special cases..
2926 if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
2929 *fpin = maybe_unlock_mmap_for_io(vmf, *fpin);
2930 if (vmf->flags & FAULT_FLAG_KILLABLE) {
2931 if (__folio_lock_killable(folio)) {
2933 * We didn't have the right flags to drop the mmap_lock,
2934 * but all fault_handlers only check for fatal signals
2935 * if we return VM_FAULT_RETRY, so we need to drop the
2936 * mmap_lock here and return 0 if we don't have a fpin.
2939 mmap_read_unlock(vmf->vma->vm_mm);
2943 __folio_lock(folio);
2949 * Synchronous readahead happens when we don't even find a page in the page
2950 * cache at all. We don't want to perform IO under the mmap sem, so if we have
2951 * to drop the mmap sem we return the file that was pinned in order for us to do
2952 * that. If we didn't pin a file then we return NULL. The file that is
2953 * returned needs to be fput()'ed when we're done with it.
2955 static struct file *do_sync_mmap_readahead(struct vm_fault *vmf)
2957 struct file *file = vmf->vma->vm_file;
2958 struct file_ra_state *ra = &file->f_ra;
2959 struct address_space *mapping = file->f_mapping;
2960 DEFINE_READAHEAD(ractl, file, ra, mapping, vmf->pgoff);
2961 struct file *fpin = NULL;
2962 unsigned int mmap_miss;
2964 /* If we don't want any read-ahead, don't bother */
2965 if (vmf->vma->vm_flags & VM_RAND_READ)
2970 if (vmf->vma->vm_flags & VM_SEQ_READ) {
2971 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
2972 page_cache_sync_ra(&ractl, ra->ra_pages);
2976 /* Avoid banging the cache line if not needed */
2977 mmap_miss = READ_ONCE(ra->mmap_miss);
2978 if (mmap_miss < MMAP_LOTSAMISS * 10)
2979 WRITE_ONCE(ra->mmap_miss, ++mmap_miss);
2982 * Do we miss much more than hit in this file? If so,
2983 * stop bothering with read-ahead. It will only hurt.
2985 if (mmap_miss > MMAP_LOTSAMISS)
2991 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
2992 ra->start = max_t(long, 0, vmf->pgoff - ra->ra_pages / 2);
2993 ra->size = ra->ra_pages;
2994 ra->async_size = ra->ra_pages / 4;
2995 ractl._index = ra->start;
2996 do_page_cache_ra(&ractl, ra->size, ra->async_size);
3001 * Asynchronous readahead happens when we find the page and PG_readahead,
3002 * so we want to possibly extend the readahead further. We return the file that
3003 * was pinned if we have to drop the mmap_lock in order to do IO.
3005 static struct file *do_async_mmap_readahead(struct vm_fault *vmf,
3008 struct file *file = vmf->vma->vm_file;
3009 struct file_ra_state *ra = &file->f_ra;
3010 struct address_space *mapping = file->f_mapping;
3011 struct file *fpin = NULL;
3012 unsigned int mmap_miss;
3013 pgoff_t offset = vmf->pgoff;
3015 /* If we don't want any read-ahead, don't bother */
3016 if (vmf->vma->vm_flags & VM_RAND_READ || !ra->ra_pages)
3018 mmap_miss = READ_ONCE(ra->mmap_miss);
3020 WRITE_ONCE(ra->mmap_miss, --mmap_miss);
3021 if (PageReadahead(page)) {
3022 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3023 page_cache_async_readahead(mapping, ra, file,
3024 page, offset, ra->ra_pages);
3030 * filemap_fault - read in file data for page fault handling
3031 * @vmf: struct vm_fault containing details of the fault
3033 * filemap_fault() is invoked via the vma operations vector for a
3034 * mapped memory region to read in file data during a page fault.
3036 * The goto's are kind of ugly, but this streamlines the normal case of having
3037 * it in the page cache, and handles the special cases reasonably without
3038 * having a lot of duplicated code.
3040 * vma->vm_mm->mmap_lock must be held on entry.
3042 * If our return value has VM_FAULT_RETRY set, it's because the mmap_lock
3043 * may be dropped before doing I/O or by lock_page_maybe_drop_mmap().
3045 * If our return value does not have VM_FAULT_RETRY set, the mmap_lock
3046 * has not been released.
3048 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
3050 * Return: bitwise-OR of %VM_FAULT_ codes.
3052 vm_fault_t filemap_fault(struct vm_fault *vmf)
3055 struct file *file = vmf->vma->vm_file;
3056 struct file *fpin = NULL;
3057 struct address_space *mapping = file->f_mapping;
3058 struct inode *inode = mapping->host;
3059 pgoff_t offset = vmf->pgoff;
3063 bool mapping_locked = false;
3065 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3066 if (unlikely(offset >= max_off))
3067 return VM_FAULT_SIGBUS;
3070 * Do we have something in the page cache already?
3072 page = find_get_page(mapping, offset);
3075 * We found the page, so try async readahead before waiting for
3078 if (!(vmf->flags & FAULT_FLAG_TRIED))
3079 fpin = do_async_mmap_readahead(vmf, page);
3080 if (unlikely(!PageUptodate(page))) {
3081 filemap_invalidate_lock_shared(mapping);
3082 mapping_locked = true;
3085 /* No page in the page cache at all */
3086 count_vm_event(PGMAJFAULT);
3087 count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT);
3088 ret = VM_FAULT_MAJOR;
3089 fpin = do_sync_mmap_readahead(vmf);
3092 * See comment in filemap_create_page() why we need
3095 if (!mapping_locked) {
3096 filemap_invalidate_lock_shared(mapping);
3097 mapping_locked = true;
3099 page = pagecache_get_page(mapping, offset,
3100 FGP_CREAT|FGP_FOR_MMAP,
3105 filemap_invalidate_unlock_shared(mapping);
3106 return VM_FAULT_OOM;
3110 if (!lock_page_maybe_drop_mmap(vmf, page, &fpin))
3113 /* Did it get truncated? */
3114 if (unlikely(compound_head(page)->mapping != mapping)) {
3119 VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page);
3122 * We have a locked page in the page cache, now we need to check
3123 * that it's up-to-date. If not, it is going to be due to an error.
3125 if (unlikely(!PageUptodate(page))) {
3127 * The page was in cache and uptodate and now it is not.
3128 * Strange but possible since we didn't hold the page lock all
3129 * the time. Let's drop everything get the invalidate lock and
3132 if (!mapping_locked) {
3137 goto page_not_uptodate;
3141 * We've made it this far and we had to drop our mmap_lock, now is the
3142 * time to return to the upper layer and have it re-find the vma and
3150 filemap_invalidate_unlock_shared(mapping);
3153 * Found the page and have a reference on it.
3154 * We must recheck i_size under page lock.
3156 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3157 if (unlikely(offset >= max_off)) {
3160 return VM_FAULT_SIGBUS;
3164 return ret | VM_FAULT_LOCKED;
3168 * Umm, take care of errors if the page isn't up-to-date.
3169 * Try to re-read it _once_. We do this synchronously,
3170 * because there really aren't any performance issues here
3171 * and we need to check for errors.
3173 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3174 error = filemap_read_page(file, mapping, page);
3179 if (!error || error == AOP_TRUNCATED_PAGE)
3181 filemap_invalidate_unlock_shared(mapping);
3183 return VM_FAULT_SIGBUS;
3187 * We dropped the mmap_lock, we need to return to the fault handler to
3188 * re-find the vma and come back and find our hopefully still populated
3194 filemap_invalidate_unlock_shared(mapping);
3197 return ret | VM_FAULT_RETRY;
3199 EXPORT_SYMBOL(filemap_fault);
3201 static bool filemap_map_pmd(struct vm_fault *vmf, struct page *page)
3203 struct mm_struct *mm = vmf->vma->vm_mm;
3205 /* Huge page is mapped? No need to proceed. */
3206 if (pmd_trans_huge(*vmf->pmd)) {
3212 if (pmd_none(*vmf->pmd) && PageTransHuge(page)) {
3213 vm_fault_t ret = do_set_pmd(vmf, page);
3215 /* The page is mapped successfully, reference consumed. */
3221 if (pmd_none(*vmf->pmd))
3222 pmd_install(mm, vmf->pmd, &vmf->prealloc_pte);
3224 /* See comment in handle_pte_fault() */
3225 if (pmd_devmap_trans_unstable(vmf->pmd)) {
3234 static struct page *next_uptodate_page(struct page *page,
3235 struct address_space *mapping,
3236 struct xa_state *xas, pgoff_t end_pgoff)
3238 unsigned long max_idx;
3243 if (xas_retry(xas, page))
3245 if (xa_is_value(page))
3247 if (PageLocked(page))
3249 if (!page_cache_get_speculative(page))
3251 /* Has the page moved or been split? */
3252 if (unlikely(page != xas_reload(xas)))
3254 if (!PageUptodate(page) || PageReadahead(page))
3256 if (PageHWPoison(page))
3258 if (!trylock_page(page))
3260 if (page->mapping != mapping)
3262 if (!PageUptodate(page))
3264 max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
3265 if (xas->xa_index >= max_idx)
3272 } while ((page = xas_next_entry(xas, end_pgoff)) != NULL);
3277 static inline struct page *first_map_page(struct address_space *mapping,
3278 struct xa_state *xas,
3281 return next_uptodate_page(xas_find(xas, end_pgoff),
3282 mapping, xas, end_pgoff);
3285 static inline struct page *next_map_page(struct address_space *mapping,
3286 struct xa_state *xas,
3289 return next_uptodate_page(xas_next_entry(xas, end_pgoff),
3290 mapping, xas, end_pgoff);
3293 vm_fault_t filemap_map_pages(struct vm_fault *vmf,
3294 pgoff_t start_pgoff, pgoff_t end_pgoff)
3296 struct vm_area_struct *vma = vmf->vma;
3297 struct file *file = vma->vm_file;
3298 struct address_space *mapping = file->f_mapping;
3299 pgoff_t last_pgoff = start_pgoff;
3301 XA_STATE(xas, &mapping->i_pages, start_pgoff);
3302 struct page *head, *page;
3303 unsigned int mmap_miss = READ_ONCE(file->f_ra.mmap_miss);
3307 head = first_map_page(mapping, &xas, end_pgoff);
3311 if (filemap_map_pmd(vmf, head)) {
3312 ret = VM_FAULT_NOPAGE;
3316 addr = vma->vm_start + ((start_pgoff - vma->vm_pgoff) << PAGE_SHIFT);
3317 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, addr, &vmf->ptl);
3319 page = find_subpage(head, xas.xa_index);
3320 if (PageHWPoison(page))
3326 addr += (xas.xa_index - last_pgoff) << PAGE_SHIFT;
3327 vmf->pte += xas.xa_index - last_pgoff;
3328 last_pgoff = xas.xa_index;
3330 if (!pte_none(*vmf->pte))
3333 /* We're about to handle the fault */
3334 if (vmf->address == addr)
3335 ret = VM_FAULT_NOPAGE;
3337 do_set_pte(vmf, page, addr);
3338 /* no need to invalidate: a not-present page won't be cached */
3339 update_mmu_cache(vma, addr, vmf->pte);
3345 } while ((head = next_map_page(mapping, &xas, end_pgoff)) != NULL);
3346 pte_unmap_unlock(vmf->pte, vmf->ptl);
3349 WRITE_ONCE(file->f_ra.mmap_miss, mmap_miss);
3352 EXPORT_SYMBOL(filemap_map_pages);
3354 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
3356 struct address_space *mapping = vmf->vma->vm_file->f_mapping;
3357 struct page *page = vmf->page;
3358 vm_fault_t ret = VM_FAULT_LOCKED;
3360 sb_start_pagefault(mapping->host->i_sb);
3361 file_update_time(vmf->vma->vm_file);
3363 if (page->mapping != mapping) {
3365 ret = VM_FAULT_NOPAGE;
3369 * We mark the page dirty already here so that when freeze is in
3370 * progress, we are guaranteed that writeback during freezing will
3371 * see the dirty page and writeprotect it again.
3373 set_page_dirty(page);
3374 wait_for_stable_page(page);
3376 sb_end_pagefault(mapping->host->i_sb);
3380 const struct vm_operations_struct generic_file_vm_ops = {
3381 .fault = filemap_fault,
3382 .map_pages = filemap_map_pages,
3383 .page_mkwrite = filemap_page_mkwrite,
3386 /* This is used for a general mmap of a disk file */
3388 int generic_file_mmap(struct file *file, struct vm_area_struct *vma)
3390 struct address_space *mapping = file->f_mapping;
3392 if (!mapping->a_ops->readpage)
3394 file_accessed(file);
3395 vma->vm_ops = &generic_file_vm_ops;
3400 * This is for filesystems which do not implement ->writepage.
3402 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
3404 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
3406 return generic_file_mmap(file, vma);
3409 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
3411 return VM_FAULT_SIGBUS;
3413 int generic_file_mmap(struct file *file, struct vm_area_struct *vma)
3417 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
3421 #endif /* CONFIG_MMU */
3423 EXPORT_SYMBOL(filemap_page_mkwrite);
3424 EXPORT_SYMBOL(generic_file_mmap);
3425 EXPORT_SYMBOL(generic_file_readonly_mmap);
3427 static struct page *wait_on_page_read(struct page *page)
3429 if (!IS_ERR(page)) {
3430 wait_on_page_locked(page);
3431 if (!PageUptodate(page)) {
3433 page = ERR_PTR(-EIO);
3439 static struct page *do_read_cache_page(struct address_space *mapping,
3441 int (*filler)(void *, struct page *),
3448 page = find_get_page(mapping, index);
3450 page = __page_cache_alloc(gfp);
3452 return ERR_PTR(-ENOMEM);
3453 err = add_to_page_cache_lru(page, mapping, index, gfp);
3454 if (unlikely(err)) {
3458 /* Presumably ENOMEM for xarray node */
3459 return ERR_PTR(err);
3464 err = filler(data, page);
3466 err = mapping->a_ops->readpage(data, page);
3470 return ERR_PTR(err);
3473 page = wait_on_page_read(page);
3478 if (PageUptodate(page))
3482 * Page is not up to date and may be locked due to one of the following
3483 * case a: Page is being filled and the page lock is held
3484 * case b: Read/write error clearing the page uptodate status
3485 * case c: Truncation in progress (page locked)
3486 * case d: Reclaim in progress
3488 * Case a, the page will be up to date when the page is unlocked.
3489 * There is no need to serialise on the page lock here as the page
3490 * is pinned so the lock gives no additional protection. Even if the
3491 * page is truncated, the data is still valid if PageUptodate as
3492 * it's a race vs truncate race.
3493 * Case b, the page will not be up to date
3494 * Case c, the page may be truncated but in itself, the data may still
3495 * be valid after IO completes as it's a read vs truncate race. The
3496 * operation must restart if the page is not uptodate on unlock but
3497 * otherwise serialising on page lock to stabilise the mapping gives
3498 * no additional guarantees to the caller as the page lock is
3499 * released before return.
3500 * Case d, similar to truncation. If reclaim holds the page lock, it
3501 * will be a race with remove_mapping that determines if the mapping
3502 * is valid on unlock but otherwise the data is valid and there is
3503 * no need to serialise with page lock.
3505 * As the page lock gives no additional guarantee, we optimistically
3506 * wait on the page to be unlocked and check if it's up to date and
3507 * use the page if it is. Otherwise, the page lock is required to
3508 * distinguish between the different cases. The motivation is that we
3509 * avoid spurious serialisations and wakeups when multiple processes
3510 * wait on the same page for IO to complete.
3512 wait_on_page_locked(page);
3513 if (PageUptodate(page))
3516 /* Distinguish between all the cases under the safety of the lock */
3519 /* Case c or d, restart the operation */
3520 if (!page->mapping) {
3526 /* Someone else locked and filled the page in a very small window */
3527 if (PageUptodate(page)) {
3533 * A previous I/O error may have been due to temporary
3535 * Clear page error before actual read, PG_error will be
3536 * set again if read page fails.
3538 ClearPageError(page);
3542 mark_page_accessed(page);
3547 * read_cache_page - read into page cache, fill it if needed
3548 * @mapping: the page's address_space
3549 * @index: the page index
3550 * @filler: function to perform the read
3551 * @data: first arg to filler(data, page) function, often left as NULL
3553 * Read into the page cache. If a page already exists, and PageUptodate() is
3554 * not set, try to fill the page and wait for it to become unlocked.
3556 * If the page does not get brought uptodate, return -EIO.
3558 * The function expects mapping->invalidate_lock to be already held.
3560 * Return: up to date page on success, ERR_PTR() on failure.
3562 struct page *read_cache_page(struct address_space *mapping,
3564 int (*filler)(void *, struct page *),
3567 return do_read_cache_page(mapping, index, filler, data,
3568 mapping_gfp_mask(mapping));
3570 EXPORT_SYMBOL(read_cache_page);
3573 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
3574 * @mapping: the page's address_space
3575 * @index: the page index
3576 * @gfp: the page allocator flags to use if allocating
3578 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
3579 * any new page allocations done using the specified allocation flags.
3581 * If the page does not get brought uptodate, return -EIO.
3583 * The function expects mapping->invalidate_lock to be already held.
3585 * Return: up to date page on success, ERR_PTR() on failure.
3587 struct page *read_cache_page_gfp(struct address_space *mapping,
3591 return do_read_cache_page(mapping, index, NULL, NULL, gfp);
3593 EXPORT_SYMBOL(read_cache_page_gfp);
3595 int pagecache_write_begin(struct file *file, struct address_space *mapping,
3596 loff_t pos, unsigned len, unsigned flags,
3597 struct page **pagep, void **fsdata)
3599 const struct address_space_operations *aops = mapping->a_ops;
3601 return aops->write_begin(file, mapping, pos, len, flags,
3604 EXPORT_SYMBOL(pagecache_write_begin);
3606 int pagecache_write_end(struct file *file, struct address_space *mapping,
3607 loff_t pos, unsigned len, unsigned copied,
3608 struct page *page, void *fsdata)
3610 const struct address_space_operations *aops = mapping->a_ops;
3612 return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
3614 EXPORT_SYMBOL(pagecache_write_end);
3617 * Warn about a page cache invalidation failure during a direct I/O write.
3619 void dio_warn_stale_pagecache(struct file *filp)
3621 static DEFINE_RATELIMIT_STATE(_rs, 86400 * HZ, DEFAULT_RATELIMIT_BURST);
3625 errseq_set(&filp->f_mapping->wb_err, -EIO);
3626 if (__ratelimit(&_rs)) {
3627 path = file_path(filp, pathname, sizeof(pathname));
3630 pr_crit("Page cache invalidation failure on direct I/O. Possible data corruption due to collision with buffered I/O!\n");
3631 pr_crit("File: %s PID: %d Comm: %.20s\n", path, current->pid,
3637 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from)
3639 struct file *file = iocb->ki_filp;
3640 struct address_space *mapping = file->f_mapping;
3641 struct inode *inode = mapping->host;
3642 loff_t pos = iocb->ki_pos;
3647 write_len = iov_iter_count(from);
3648 end = (pos + write_len - 1) >> PAGE_SHIFT;
3650 if (iocb->ki_flags & IOCB_NOWAIT) {
3651 /* If there are pages to writeback, return */
3652 if (filemap_range_has_page(file->f_mapping, pos,
3653 pos + write_len - 1))
3656 written = filemap_write_and_wait_range(mapping, pos,
3657 pos + write_len - 1);
3663 * After a write we want buffered reads to be sure to go to disk to get
3664 * the new data. We invalidate clean cached page from the region we're
3665 * about to write. We do this *before* the write so that we can return
3666 * without clobbering -EIOCBQUEUED from ->direct_IO().
3668 written = invalidate_inode_pages2_range(mapping,
3669 pos >> PAGE_SHIFT, end);
3671 * If a page can not be invalidated, return 0 to fall back
3672 * to buffered write.
3675 if (written == -EBUSY)
3680 written = mapping->a_ops->direct_IO(iocb, from);
3683 * Finally, try again to invalidate clean pages which might have been
3684 * cached by non-direct readahead, or faulted in by get_user_pages()
3685 * if the source of the write was an mmap'ed region of the file
3686 * we're writing. Either one is a pretty crazy thing to do,
3687 * so we don't support it 100%. If this invalidation
3688 * fails, tough, the write still worked...
3690 * Most of the time we do not need this since dio_complete() will do
3691 * the invalidation for us. However there are some file systems that
3692 * do not end up with dio_complete() being called, so let's not break
3693 * them by removing it completely.
3695 * Noticeable example is a blkdev_direct_IO().
3697 * Skip invalidation for async writes or if mapping has no pages.
3699 if (written > 0 && mapping->nrpages &&
3700 invalidate_inode_pages2_range(mapping, pos >> PAGE_SHIFT, end))
3701 dio_warn_stale_pagecache(file);
3705 write_len -= written;
3706 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
3707 i_size_write(inode, pos);
3708 mark_inode_dirty(inode);
3712 if (written != -EIOCBQUEUED)
3713 iov_iter_revert(from, write_len - iov_iter_count(from));
3717 EXPORT_SYMBOL(generic_file_direct_write);
3719 ssize_t generic_perform_write(struct file *file,
3720 struct iov_iter *i, loff_t pos)
3722 struct address_space *mapping = file->f_mapping;
3723 const struct address_space_operations *a_ops = mapping->a_ops;
3725 ssize_t written = 0;
3726 unsigned int flags = 0;
3730 unsigned long offset; /* Offset into pagecache page */
3731 unsigned long bytes; /* Bytes to write to page */
3732 size_t copied; /* Bytes copied from user */
3735 offset = (pos & (PAGE_SIZE - 1));
3736 bytes = min_t(unsigned long, PAGE_SIZE - offset,
3741 * Bring in the user page that we will copy from _first_.
3742 * Otherwise there's a nasty deadlock on copying from the
3743 * same page as we're writing to, without it being marked
3746 if (unlikely(fault_in_iov_iter_readable(i, bytes))) {
3751 if (fatal_signal_pending(current)) {
3756 status = a_ops->write_begin(file, mapping, pos, bytes, flags,
3758 if (unlikely(status < 0))
3761 if (mapping_writably_mapped(mapping))
3762 flush_dcache_page(page);
3764 copied = copy_page_from_iter_atomic(page, offset, bytes, i);
3765 flush_dcache_page(page);
3767 status = a_ops->write_end(file, mapping, pos, bytes, copied,
3769 if (unlikely(status != copied)) {
3770 iov_iter_revert(i, copied - max(status, 0L));
3771 if (unlikely(status < 0))
3776 if (unlikely(status == 0)) {
3778 * A short copy made ->write_end() reject the
3779 * thing entirely. Might be memory poisoning
3780 * halfway through, might be a race with munmap,
3781 * might be severe memory pressure.
3790 balance_dirty_pages_ratelimited(mapping);
3791 } while (iov_iter_count(i));
3793 return written ? written : status;
3795 EXPORT_SYMBOL(generic_perform_write);
3798 * __generic_file_write_iter - write data to a file
3799 * @iocb: IO state structure (file, offset, etc.)
3800 * @from: iov_iter with data to write
3802 * This function does all the work needed for actually writing data to a
3803 * file. It does all basic checks, removes SUID from the file, updates
3804 * modification times and calls proper subroutines depending on whether we
3805 * do direct IO or a standard buffered write.
3807 * It expects i_rwsem to be grabbed unless we work on a block device or similar
3808 * object which does not need locking at all.
3810 * This function does *not* take care of syncing data in case of O_SYNC write.
3811 * A caller has to handle it. This is mainly due to the fact that we want to
3812 * avoid syncing under i_rwsem.
3815 * * number of bytes written, even for truncated writes
3816 * * negative error code if no data has been written at all
3818 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
3820 struct file *file = iocb->ki_filp;
3821 struct address_space *mapping = file->f_mapping;
3822 struct inode *inode = mapping->host;
3823 ssize_t written = 0;
3827 /* We can write back this queue in page reclaim */
3828 current->backing_dev_info = inode_to_bdi(inode);
3829 err = file_remove_privs(file);
3833 err = file_update_time(file);
3837 if (iocb->ki_flags & IOCB_DIRECT) {
3838 loff_t pos, endbyte;
3840 written = generic_file_direct_write(iocb, from);
3842 * If the write stopped short of completing, fall back to
3843 * buffered writes. Some filesystems do this for writes to
3844 * holes, for example. For DAX files, a buffered write will
3845 * not succeed (even if it did, DAX does not handle dirty
3846 * page-cache pages correctly).
3848 if (written < 0 || !iov_iter_count(from) || IS_DAX(inode))
3851 status = generic_perform_write(file, from, pos = iocb->ki_pos);
3853 * If generic_perform_write() returned a synchronous error
3854 * then we want to return the number of bytes which were
3855 * direct-written, or the error code if that was zero. Note
3856 * that this differs from normal direct-io semantics, which
3857 * will return -EFOO even if some bytes were written.
3859 if (unlikely(status < 0)) {
3864 * We need to ensure that the page cache pages are written to
3865 * disk and invalidated to preserve the expected O_DIRECT
3868 endbyte = pos + status - 1;
3869 err = filemap_write_and_wait_range(mapping, pos, endbyte);
3871 iocb->ki_pos = endbyte + 1;
3873 invalidate_mapping_pages(mapping,
3875 endbyte >> PAGE_SHIFT);
3878 * We don't know how much we wrote, so just return
3879 * the number of bytes which were direct-written
3883 written = generic_perform_write(file, from, iocb->ki_pos);
3884 if (likely(written > 0))
3885 iocb->ki_pos += written;
3888 current->backing_dev_info = NULL;
3889 return written ? written : err;
3891 EXPORT_SYMBOL(__generic_file_write_iter);
3894 * generic_file_write_iter - write data to a file
3895 * @iocb: IO state structure
3896 * @from: iov_iter with data to write
3898 * This is a wrapper around __generic_file_write_iter() to be used by most
3899 * filesystems. It takes care of syncing the file in case of O_SYNC file
3900 * and acquires i_rwsem as needed.
3902 * * negative error code if no data has been written at all of
3903 * vfs_fsync_range() failed for a synchronous write
3904 * * number of bytes written, even for truncated writes
3906 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
3908 struct file *file = iocb->ki_filp;
3909 struct inode *inode = file->f_mapping->host;
3913 ret = generic_write_checks(iocb, from);
3915 ret = __generic_file_write_iter(iocb, from);
3916 inode_unlock(inode);
3919 ret = generic_write_sync(iocb, ret);
3922 EXPORT_SYMBOL(generic_file_write_iter);
3925 * try_to_release_page() - release old fs-specific metadata on a page
3927 * @page: the page which the kernel is trying to free
3928 * @gfp_mask: memory allocation flags (and I/O mode)
3930 * The address_space is to try to release any data against the page
3931 * (presumably at page->private).
3933 * This may also be called if PG_fscache is set on a page, indicating that the
3934 * page is known to the local caching routines.
3936 * The @gfp_mask argument specifies whether I/O may be performed to release
3937 * this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS).
3939 * Return: %1 if the release was successful, otherwise return zero.
3941 int try_to_release_page(struct page *page, gfp_t gfp_mask)
3943 struct address_space * const mapping = page->mapping;
3945 BUG_ON(!PageLocked(page));
3946 if (PageWriteback(page))
3949 if (mapping && mapping->a_ops->releasepage)
3950 return mapping->a_ops->releasepage(page, gfp_mask);
3951 return try_to_free_buffers(page);
3954 EXPORT_SYMBOL(try_to_release_page);