4 * Copyright (C) 1994-1999 Linus Torvalds
8 * This file handles the generic file mmap semantics used by
9 * most "normal" filesystems (but you don't /have/ to use this:
10 * the NFS filesystem used to do this differently, for example)
12 #include <linux/export.h>
13 #include <linux/compiler.h>
14 #include <linux/dax.h>
16 #include <linux/sched/signal.h>
17 #include <linux/uaccess.h>
18 #include <linux/capability.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/gfp.h>
22 #include <linux/swap.h>
23 #include <linux/mman.h>
24 #include <linux/pagemap.h>
25 #include <linux/file.h>
26 #include <linux/uio.h>
27 #include <linux/hash.h>
28 #include <linux/writeback.h>
29 #include <linux/backing-dev.h>
30 #include <linux/pagevec.h>
31 #include <linux/blkdev.h>
32 #include <linux/security.h>
33 #include <linux/cpuset.h>
34 #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
35 #include <linux/hugetlb.h>
36 #include <linux/memcontrol.h>
37 #include <linux/cleancache.h>
38 #include <linux/rmap.h>
41 #define CREATE_TRACE_POINTS
42 #include <trace/events/filemap.h>
45 * FIXME: remove all knowledge of the buffer layer from the core VM
47 #include <linux/buffer_head.h> /* for try_to_free_buffers */
52 * Shared mappings implemented 30.11.1994. It's not fully working yet,
55 * Shared mappings now work. 15.8.1995 Bruno.
57 * finished 'unifying' the page and buffer cache and SMP-threaded the
58 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
60 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
66 * ->i_mmap_rwsem (truncate_pagecache)
67 * ->private_lock (__free_pte->__set_page_dirty_buffers)
68 * ->swap_lock (exclusive_swap_page, others)
69 * ->mapping->tree_lock
72 * ->i_mmap_rwsem (truncate->unmap_mapping_range)
76 * ->page_table_lock or pte_lock (various, mainly in memory.c)
77 * ->mapping->tree_lock (arch-dependent flush_dcache_mmap_lock)
80 * ->lock_page (access_process_vm)
82 * ->i_mutex (generic_perform_write)
83 * ->mmap_sem (fault_in_pages_readable->do_page_fault)
86 * sb_lock (fs/fs-writeback.c)
87 * ->mapping->tree_lock (__sync_single_inode)
90 * ->anon_vma.lock (vma_adjust)
93 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
95 * ->page_table_lock or pte_lock
96 * ->swap_lock (try_to_unmap_one)
97 * ->private_lock (try_to_unmap_one)
98 * ->tree_lock (try_to_unmap_one)
99 * ->zone_lru_lock(zone) (follow_page->mark_page_accessed)
100 * ->zone_lru_lock(zone) (check_pte_range->isolate_lru_page)
101 * ->private_lock (page_remove_rmap->set_page_dirty)
102 * ->tree_lock (page_remove_rmap->set_page_dirty)
103 * bdi.wb->list_lock (page_remove_rmap->set_page_dirty)
104 * ->inode->i_lock (page_remove_rmap->set_page_dirty)
105 * ->memcg->move_lock (page_remove_rmap->lock_page_memcg)
106 * bdi.wb->list_lock (zap_pte_range->set_page_dirty)
107 * ->inode->i_lock (zap_pte_range->set_page_dirty)
108 * ->private_lock (zap_pte_range->__set_page_dirty_buffers)
111 * ->tasklist_lock (memory_failure, collect_procs_ao)
114 static int page_cache_tree_insert(struct address_space *mapping,
115 struct page *page, void **shadowp)
117 struct radix_tree_node *node;
121 error = __radix_tree_create(&mapping->page_tree, page->index, 0,
128 p = radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
129 if (!radix_tree_exceptional_entry(p))
132 mapping->nrexceptional--;
133 if (!dax_mapping(mapping)) {
137 /* DAX can replace empty locked entry with a hole */
139 dax_radix_locked_entry(0, RADIX_DAX_EMPTY));
140 /* Wakeup waiters for exceptional entry lock */
141 dax_wake_mapping_entry_waiter(mapping, page->index, p,
145 __radix_tree_replace(&mapping->page_tree, node, slot, page,
146 workingset_update_node, mapping);
151 static void page_cache_tree_delete(struct address_space *mapping,
152 struct page *page, void *shadow)
156 /* hugetlb pages are represented by one entry in the radix tree */
157 nr = PageHuge(page) ? 1 : hpage_nr_pages(page);
159 VM_BUG_ON_PAGE(!PageLocked(page), page);
160 VM_BUG_ON_PAGE(PageTail(page), page);
161 VM_BUG_ON_PAGE(nr != 1 && shadow, page);
163 for (i = 0; i < nr; i++) {
164 struct radix_tree_node *node;
167 __radix_tree_lookup(&mapping->page_tree, page->index + i,
170 VM_BUG_ON_PAGE(!node && nr != 1, page);
172 radix_tree_clear_tags(&mapping->page_tree, node, slot);
173 __radix_tree_replace(&mapping->page_tree, node, slot, shadow,
174 workingset_update_node, mapping);
178 mapping->nrexceptional += nr;
180 * Make sure the nrexceptional update is committed before
181 * the nrpages update so that final truncate racing
182 * with reclaim does not see both counters 0 at the
183 * same time and miss a shadow entry.
187 mapping->nrpages -= nr;
191 * Delete a page from the page cache and free it. Caller has to make
192 * sure the page is locked and that nobody else uses it - or that usage
193 * is safe. The caller must hold the mapping's tree_lock.
195 void __delete_from_page_cache(struct page *page, void *shadow)
197 struct address_space *mapping = page->mapping;
198 int nr = hpage_nr_pages(page);
200 trace_mm_filemap_delete_from_page_cache(page);
202 * if we're uptodate, flush out into the cleancache, otherwise
203 * invalidate any existing cleancache entries. We can't leave
204 * stale data around in the cleancache once our page is gone
206 if (PageUptodate(page) && PageMappedToDisk(page))
207 cleancache_put_page(page);
209 cleancache_invalidate_page(mapping, page);
211 VM_BUG_ON_PAGE(PageTail(page), page);
212 VM_BUG_ON_PAGE(page_mapped(page), page);
213 if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(page_mapped(page))) {
216 pr_alert("BUG: Bad page cache in process %s pfn:%05lx\n",
217 current->comm, page_to_pfn(page));
218 dump_page(page, "still mapped when deleted");
220 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
222 mapcount = page_mapcount(page);
223 if (mapping_exiting(mapping) &&
224 page_count(page) >= mapcount + 2) {
226 * All vmas have already been torn down, so it's
227 * a good bet that actually the page is unmapped,
228 * and we'd prefer not to leak it: if we're wrong,
229 * some other bad page check should catch it later.
231 page_mapcount_reset(page);
232 page_ref_sub(page, mapcount);
236 page_cache_tree_delete(mapping, page, shadow);
238 page->mapping = NULL;
239 /* Leave page->index set: truncation lookup relies upon it */
241 /* hugetlb pages do not participate in page cache accounting. */
245 __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, -nr);
246 if (PageSwapBacked(page)) {
247 __mod_node_page_state(page_pgdat(page), NR_SHMEM, -nr);
248 if (PageTransHuge(page))
249 __dec_node_page_state(page, NR_SHMEM_THPS);
251 VM_BUG_ON_PAGE(PageTransHuge(page), page);
255 * At this point page must be either written or cleaned by truncate.
256 * Dirty page here signals a bug and loss of unwritten data.
258 * This fixes dirty accounting after removing the page entirely but
259 * leaves PageDirty set: it has no effect for truncated page and
260 * anyway will be cleared before returning page into buddy allocator.
262 if (WARN_ON_ONCE(PageDirty(page)))
263 account_page_cleaned(page, mapping, inode_to_wb(mapping->host));
267 * delete_from_page_cache - delete page from page cache
268 * @page: the page which the kernel is trying to remove from page cache
270 * This must be called only on pages that have been verified to be in the page
271 * cache and locked. It will never put the page into the free list, the caller
272 * has a reference on the page.
274 void delete_from_page_cache(struct page *page)
276 struct address_space *mapping = page_mapping(page);
278 void (*freepage)(struct page *);
280 BUG_ON(!PageLocked(page));
282 freepage = mapping->a_ops->freepage;
284 spin_lock_irqsave(&mapping->tree_lock, flags);
285 __delete_from_page_cache(page, NULL);
286 spin_unlock_irqrestore(&mapping->tree_lock, flags);
291 if (PageTransHuge(page) && !PageHuge(page)) {
292 page_ref_sub(page, HPAGE_PMD_NR);
293 VM_BUG_ON_PAGE(page_count(page) <= 0, page);
298 EXPORT_SYMBOL(delete_from_page_cache);
300 int filemap_check_errors(struct address_space *mapping)
303 /* Check for outstanding write errors */
304 if (test_bit(AS_ENOSPC, &mapping->flags) &&
305 test_and_clear_bit(AS_ENOSPC, &mapping->flags))
307 if (test_bit(AS_EIO, &mapping->flags) &&
308 test_and_clear_bit(AS_EIO, &mapping->flags))
312 EXPORT_SYMBOL(filemap_check_errors);
314 static int filemap_check_and_keep_errors(struct address_space *mapping)
316 /* Check for outstanding write errors */
317 if (test_bit(AS_EIO, &mapping->flags))
319 if (test_bit(AS_ENOSPC, &mapping->flags))
325 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
326 * @mapping: address space structure to write
327 * @start: offset in bytes where the range starts
328 * @end: offset in bytes where the range ends (inclusive)
329 * @sync_mode: enable synchronous operation
331 * Start writeback against all of a mapping's dirty pages that lie
332 * within the byte offsets <start, end> inclusive.
334 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
335 * opposed to a regular memory cleansing writeback. The difference between
336 * these two operations is that if a dirty page/buffer is encountered, it must
337 * be waited upon, and not just skipped over.
339 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
340 loff_t end, int sync_mode)
343 struct writeback_control wbc = {
344 .sync_mode = sync_mode,
345 .nr_to_write = LONG_MAX,
346 .range_start = start,
350 if (!mapping_cap_writeback_dirty(mapping))
353 wbc_attach_fdatawrite_inode(&wbc, mapping->host);
354 ret = do_writepages(mapping, &wbc);
355 wbc_detach_inode(&wbc);
359 static inline int __filemap_fdatawrite(struct address_space *mapping,
362 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
365 int filemap_fdatawrite(struct address_space *mapping)
367 return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
369 EXPORT_SYMBOL(filemap_fdatawrite);
371 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
374 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
376 EXPORT_SYMBOL(filemap_fdatawrite_range);
379 * filemap_flush - mostly a non-blocking flush
380 * @mapping: target address_space
382 * This is a mostly non-blocking flush. Not suitable for data-integrity
383 * purposes - I/O may not be started against all dirty pages.
385 int filemap_flush(struct address_space *mapping)
387 return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
389 EXPORT_SYMBOL(filemap_flush);
392 * filemap_range_has_page - check if a page exists in range.
393 * @mapping: address space within which to check
394 * @start_byte: offset in bytes where the range starts
395 * @end_byte: offset in bytes where the range ends (inclusive)
397 * Find at least one page in the range supplied, usually used to check if
398 * direct writing in this range will trigger a writeback.
400 bool filemap_range_has_page(struct address_space *mapping,
401 loff_t start_byte, loff_t end_byte)
403 pgoff_t index = start_byte >> PAGE_SHIFT;
404 pgoff_t end = end_byte >> PAGE_SHIFT;
408 if (end_byte < start_byte)
411 if (mapping->nrpages == 0)
414 pagevec_init(&pvec, 0);
415 if (!pagevec_lookup(&pvec, mapping, index, 1))
417 ret = (pvec.pages[0]->index <= end);
418 pagevec_release(&pvec);
421 EXPORT_SYMBOL(filemap_range_has_page);
423 static void __filemap_fdatawait_range(struct address_space *mapping,
424 loff_t start_byte, loff_t end_byte)
426 pgoff_t index = start_byte >> PAGE_SHIFT;
427 pgoff_t end = end_byte >> PAGE_SHIFT;
431 if (end_byte < start_byte)
434 pagevec_init(&pvec, 0);
435 while ((index <= end) &&
436 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
437 PAGECACHE_TAG_WRITEBACK,
438 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
441 for (i = 0; i < nr_pages; i++) {
442 struct page *page = pvec.pages[i];
444 /* until radix tree lookup accepts end_index */
445 if (page->index > end)
448 wait_on_page_writeback(page);
449 ClearPageError(page);
451 pagevec_release(&pvec);
457 * filemap_fdatawait_range - wait for writeback to complete
458 * @mapping: address space structure to wait for
459 * @start_byte: offset in bytes where the range starts
460 * @end_byte: offset in bytes where the range ends (inclusive)
462 * Walk the list of under-writeback pages of the given address space
463 * in the given range and wait for all of them. Check error status of
464 * the address space and return it.
466 * Since the error status of the address space is cleared by this function,
467 * callers are responsible for checking the return value and handling and/or
468 * reporting the error.
470 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
473 __filemap_fdatawait_range(mapping, start_byte, end_byte);
474 return filemap_check_errors(mapping);
476 EXPORT_SYMBOL(filemap_fdatawait_range);
479 * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
480 * @mapping: address space structure to wait for
482 * Walk the list of under-writeback pages of the given address space
483 * and wait for all of them. Unlike filemap_fdatawait(), this function
484 * does not clear error status of the address space.
486 * Use this function if callers don't handle errors themselves. Expected
487 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
490 int filemap_fdatawait_keep_errors(struct address_space *mapping)
492 loff_t i_size = i_size_read(mapping->host);
497 __filemap_fdatawait_range(mapping, 0, i_size - 1);
498 return filemap_check_and_keep_errors(mapping);
500 EXPORT_SYMBOL(filemap_fdatawait_keep_errors);
503 * filemap_fdatawait - wait for all under-writeback pages to complete
504 * @mapping: address space structure to wait for
506 * Walk the list of under-writeback pages of the given address space
507 * and wait for all of them. Check error status of the address space
510 * Since the error status of the address space is cleared by this function,
511 * callers are responsible for checking the return value and handling and/or
512 * reporting the error.
514 int filemap_fdatawait(struct address_space *mapping)
516 loff_t i_size = i_size_read(mapping->host);
521 return filemap_fdatawait_range(mapping, 0, i_size - 1);
523 EXPORT_SYMBOL(filemap_fdatawait);
525 int filemap_write_and_wait(struct address_space *mapping)
529 if ((!dax_mapping(mapping) && mapping->nrpages) ||
530 (dax_mapping(mapping) && mapping->nrexceptional)) {
531 err = filemap_fdatawrite(mapping);
533 * Even if the above returned error, the pages may be
534 * written partially (e.g. -ENOSPC), so we wait for it.
535 * But the -EIO is special case, it may indicate the worst
536 * thing (e.g. bug) happened, so we avoid waiting for it.
539 int err2 = filemap_fdatawait(mapping);
543 /* Clear any previously stored errors */
544 filemap_check_errors(mapping);
547 err = filemap_check_errors(mapping);
551 EXPORT_SYMBOL(filemap_write_and_wait);
554 * filemap_write_and_wait_range - write out & wait on a file range
555 * @mapping: the address_space for the pages
556 * @lstart: offset in bytes where the range starts
557 * @lend: offset in bytes where the range ends (inclusive)
559 * Write out and wait upon file offsets lstart->lend, inclusive.
561 * Note that @lend is inclusive (describes the last byte to be written) so
562 * that this function can be used to write to the very end-of-file (end = -1).
564 int filemap_write_and_wait_range(struct address_space *mapping,
565 loff_t lstart, loff_t lend)
569 if ((!dax_mapping(mapping) && mapping->nrpages) ||
570 (dax_mapping(mapping) && mapping->nrexceptional)) {
571 err = __filemap_fdatawrite_range(mapping, lstart, lend,
573 /* See comment of filemap_write_and_wait() */
575 int err2 = filemap_fdatawait_range(mapping,
580 /* Clear any previously stored errors */
581 filemap_check_errors(mapping);
584 err = filemap_check_errors(mapping);
588 EXPORT_SYMBOL(filemap_write_and_wait_range);
590 void __filemap_set_wb_err(struct address_space *mapping, int err)
592 errseq_t eseq = __errseq_set(&mapping->wb_err, err);
594 trace_filemap_set_wb_err(mapping, eseq);
596 EXPORT_SYMBOL(__filemap_set_wb_err);
599 * file_check_and_advance_wb_err - report wb error (if any) that was previously
600 * and advance wb_err to current one
601 * @file: struct file on which the error is being reported
603 * When userland calls fsync (or something like nfsd does the equivalent), we
604 * want to report any writeback errors that occurred since the last fsync (or
605 * since the file was opened if there haven't been any).
607 * Grab the wb_err from the mapping. If it matches what we have in the file,
608 * then just quickly return 0. The file is all caught up.
610 * If it doesn't match, then take the mapping value, set the "seen" flag in
611 * it and try to swap it into place. If it works, or another task beat us
612 * to it with the new value, then update the f_wb_err and return the error
613 * portion. The error at this point must be reported via proper channels
614 * (a'la fsync, or NFS COMMIT operation, etc.).
616 * While we handle mapping->wb_err with atomic operations, the f_wb_err
617 * value is protected by the f_lock since we must ensure that it reflects
618 * the latest value swapped in for this file descriptor.
620 int file_check_and_advance_wb_err(struct file *file)
623 errseq_t old = READ_ONCE(file->f_wb_err);
624 struct address_space *mapping = file->f_mapping;
626 /* Locklessly handle the common case where nothing has changed */
627 if (errseq_check(&mapping->wb_err, old)) {
628 /* Something changed, must use slow path */
629 spin_lock(&file->f_lock);
630 old = file->f_wb_err;
631 err = errseq_check_and_advance(&mapping->wb_err,
633 trace_file_check_and_advance_wb_err(file, old);
634 spin_unlock(&file->f_lock);
638 EXPORT_SYMBOL(file_check_and_advance_wb_err);
641 * file_write_and_wait_range - write out & wait on a file range
642 * @file: file pointing to address_space with pages
643 * @lstart: offset in bytes where the range starts
644 * @lend: offset in bytes where the range ends (inclusive)
646 * Write out and wait upon file offsets lstart->lend, inclusive.
648 * Note that @lend is inclusive (describes the last byte to be written) so
649 * that this function can be used to write to the very end-of-file (end = -1).
651 * After writing out and waiting on the data, we check and advance the
652 * f_wb_err cursor to the latest value, and return any errors detected there.
654 int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend)
657 struct address_space *mapping = file->f_mapping;
659 if ((!dax_mapping(mapping) && mapping->nrpages) ||
660 (dax_mapping(mapping) && mapping->nrexceptional)) {
661 err = __filemap_fdatawrite_range(mapping, lstart, lend,
663 /* See comment of filemap_write_and_wait() */
665 __filemap_fdatawait_range(mapping, lstart, lend);
667 err2 = file_check_and_advance_wb_err(file);
672 EXPORT_SYMBOL(file_write_and_wait_range);
675 * replace_page_cache_page - replace a pagecache page with a new one
676 * @old: page to be replaced
677 * @new: page to replace with
678 * @gfp_mask: allocation mode
680 * This function replaces a page in the pagecache with a new one. On
681 * success it acquires the pagecache reference for the new page and
682 * drops it for the old page. Both the old and new pages must be
683 * locked. This function does not add the new page to the LRU, the
684 * caller must do that.
686 * The remove + add is atomic. The only way this function can fail is
687 * memory allocation failure.
689 int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
693 VM_BUG_ON_PAGE(!PageLocked(old), old);
694 VM_BUG_ON_PAGE(!PageLocked(new), new);
695 VM_BUG_ON_PAGE(new->mapping, new);
697 error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
699 struct address_space *mapping = old->mapping;
700 void (*freepage)(struct page *);
703 pgoff_t offset = old->index;
704 freepage = mapping->a_ops->freepage;
707 new->mapping = mapping;
710 spin_lock_irqsave(&mapping->tree_lock, flags);
711 __delete_from_page_cache(old, NULL);
712 error = page_cache_tree_insert(mapping, new, NULL);
716 * hugetlb pages do not participate in page cache accounting.
719 __inc_node_page_state(new, NR_FILE_PAGES);
720 if (PageSwapBacked(new))
721 __inc_node_page_state(new, NR_SHMEM);
722 spin_unlock_irqrestore(&mapping->tree_lock, flags);
723 mem_cgroup_migrate(old, new);
724 radix_tree_preload_end();
732 EXPORT_SYMBOL_GPL(replace_page_cache_page);
734 static int __add_to_page_cache_locked(struct page *page,
735 struct address_space *mapping,
736 pgoff_t offset, gfp_t gfp_mask,
739 int huge = PageHuge(page);
740 struct mem_cgroup *memcg;
743 VM_BUG_ON_PAGE(!PageLocked(page), page);
744 VM_BUG_ON_PAGE(PageSwapBacked(page), page);
747 error = mem_cgroup_try_charge(page, current->mm,
748 gfp_mask, &memcg, false);
753 error = radix_tree_maybe_preload(gfp_mask & ~__GFP_HIGHMEM);
756 mem_cgroup_cancel_charge(page, memcg, false);
761 page->mapping = mapping;
762 page->index = offset;
764 spin_lock_irq(&mapping->tree_lock);
765 error = page_cache_tree_insert(mapping, page, shadowp);
766 radix_tree_preload_end();
770 /* hugetlb pages do not participate in page cache accounting. */
772 __inc_node_page_state(page, NR_FILE_PAGES);
773 spin_unlock_irq(&mapping->tree_lock);
775 mem_cgroup_commit_charge(page, memcg, false, false);
776 trace_mm_filemap_add_to_page_cache(page);
779 page->mapping = NULL;
780 /* Leave page->index set: truncation relies upon it */
781 spin_unlock_irq(&mapping->tree_lock);
783 mem_cgroup_cancel_charge(page, memcg, false);
789 * add_to_page_cache_locked - add a locked page to the pagecache
791 * @mapping: the page's address_space
792 * @offset: page index
793 * @gfp_mask: page allocation mode
795 * This function is used to add a page to the pagecache. It must be locked.
796 * This function does not add the page to the LRU. The caller must do that.
798 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
799 pgoff_t offset, gfp_t gfp_mask)
801 return __add_to_page_cache_locked(page, mapping, offset,
804 EXPORT_SYMBOL(add_to_page_cache_locked);
806 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
807 pgoff_t offset, gfp_t gfp_mask)
812 __SetPageLocked(page);
813 ret = __add_to_page_cache_locked(page, mapping, offset,
816 __ClearPageLocked(page);
819 * The page might have been evicted from cache only
820 * recently, in which case it should be activated like
821 * any other repeatedly accessed page.
822 * The exception is pages getting rewritten; evicting other
823 * data from the working set, only to cache data that will
824 * get overwritten with something else, is a waste of memory.
826 if (!(gfp_mask & __GFP_WRITE) &&
827 shadow && workingset_refault(shadow)) {
829 workingset_activation(page);
831 ClearPageActive(page);
836 EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
839 struct page *__page_cache_alloc(gfp_t gfp)
844 if (cpuset_do_page_mem_spread()) {
845 unsigned int cpuset_mems_cookie;
847 cpuset_mems_cookie = read_mems_allowed_begin();
848 n = cpuset_mem_spread_node();
849 page = __alloc_pages_node(n, gfp, 0);
850 } while (!page && read_mems_allowed_retry(cpuset_mems_cookie));
854 return alloc_pages(gfp, 0);
856 EXPORT_SYMBOL(__page_cache_alloc);
860 * In order to wait for pages to become available there must be
861 * waitqueues associated with pages. By using a hash table of
862 * waitqueues where the bucket discipline is to maintain all
863 * waiters on the same queue and wake all when any of the pages
864 * become available, and for the woken contexts to check to be
865 * sure the appropriate page became available, this saves space
866 * at a cost of "thundering herd" phenomena during rare hash
869 #define PAGE_WAIT_TABLE_BITS 8
870 #define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS)
871 static wait_queue_head_t page_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned;
873 static wait_queue_head_t *page_waitqueue(struct page *page)
875 return &page_wait_table[hash_ptr(page, PAGE_WAIT_TABLE_BITS)];
878 void __init pagecache_init(void)
882 for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++)
883 init_waitqueue_head(&page_wait_table[i]);
885 page_writeback_init();
888 struct wait_page_key {
894 struct wait_page_queue {
897 wait_queue_entry_t wait;
900 static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg)
902 struct wait_page_key *key = arg;
903 struct wait_page_queue *wait_page
904 = container_of(wait, struct wait_page_queue, wait);
906 if (wait_page->page != key->page)
910 if (wait_page->bit_nr != key->bit_nr)
912 if (test_bit(key->bit_nr, &key->page->flags))
915 return autoremove_wake_function(wait, mode, sync, key);
918 static void wake_up_page_bit(struct page *page, int bit_nr)
920 wait_queue_head_t *q = page_waitqueue(page);
921 struct wait_page_key key;
928 spin_lock_irqsave(&q->lock, flags);
929 __wake_up_locked_key(q, TASK_NORMAL, &key);
931 * It is possible for other pages to have collided on the waitqueue
932 * hash, so in that case check for a page match. That prevents a long-
935 * It is still possible to miss a case here, when we woke page waiters
936 * and removed them from the waitqueue, but there are still other
939 if (!waitqueue_active(q) || !key.page_match) {
940 ClearPageWaiters(page);
942 * It's possible to miss clearing Waiters here, when we woke
943 * our page waiters, but the hashed waitqueue has waiters for
946 * That's okay, it's a rare case. The next waker will clear it.
949 spin_unlock_irqrestore(&q->lock, flags);
952 static void wake_up_page(struct page *page, int bit)
954 if (!PageWaiters(page))
956 wake_up_page_bit(page, bit);
959 static inline int wait_on_page_bit_common(wait_queue_head_t *q,
960 struct page *page, int bit_nr, int state, bool lock)
962 struct wait_page_queue wait_page;
963 wait_queue_entry_t *wait = &wait_page.wait;
967 wait->func = wake_page_function;
968 wait_page.page = page;
969 wait_page.bit_nr = bit_nr;
972 spin_lock_irq(&q->lock);
974 if (likely(list_empty(&wait->entry))) {
976 __add_wait_queue_entry_tail_exclusive(q, wait);
978 __add_wait_queue(q, wait);
979 SetPageWaiters(page);
982 set_current_state(state);
984 spin_unlock_irq(&q->lock);
986 if (likely(test_bit(bit_nr, &page->flags))) {
988 if (unlikely(signal_pending_state(state, current))) {
995 if (!test_and_set_bit_lock(bit_nr, &page->flags))
998 if (!test_bit(bit_nr, &page->flags))
1003 finish_wait(q, wait);
1006 * A signal could leave PageWaiters set. Clearing it here if
1007 * !waitqueue_active would be possible (by open-coding finish_wait),
1008 * but still fail to catch it in the case of wait hash collision. We
1009 * already can fail to clear wait hash collision cases, so don't
1010 * bother with signals either.
1016 void wait_on_page_bit(struct page *page, int bit_nr)
1018 wait_queue_head_t *q = page_waitqueue(page);
1019 wait_on_page_bit_common(q, page, bit_nr, TASK_UNINTERRUPTIBLE, false);
1021 EXPORT_SYMBOL(wait_on_page_bit);
1023 int wait_on_page_bit_killable(struct page *page, int bit_nr)
1025 wait_queue_head_t *q = page_waitqueue(page);
1026 return wait_on_page_bit_common(q, page, bit_nr, TASK_KILLABLE, false);
1030 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
1031 * @page: Page defining the wait queue of interest
1032 * @waiter: Waiter to add to the queue
1034 * Add an arbitrary @waiter to the wait queue for the nominated @page.
1036 void add_page_wait_queue(struct page *page, wait_queue_entry_t *waiter)
1038 wait_queue_head_t *q = page_waitqueue(page);
1039 unsigned long flags;
1041 spin_lock_irqsave(&q->lock, flags);
1042 __add_wait_queue(q, waiter);
1043 SetPageWaiters(page);
1044 spin_unlock_irqrestore(&q->lock, flags);
1046 EXPORT_SYMBOL_GPL(add_page_wait_queue);
1048 #ifndef clear_bit_unlock_is_negative_byte
1051 * PG_waiters is the high bit in the same byte as PG_lock.
1053 * On x86 (and on many other architectures), we can clear PG_lock and
1054 * test the sign bit at the same time. But if the architecture does
1055 * not support that special operation, we just do this all by hand
1058 * The read of PG_waiters has to be after (or concurrently with) PG_locked
1059 * being cleared, but a memory barrier should be unneccssary since it is
1060 * in the same byte as PG_locked.
1062 static inline bool clear_bit_unlock_is_negative_byte(long nr, volatile void *mem)
1064 clear_bit_unlock(nr, mem);
1065 /* smp_mb__after_atomic(); */
1066 return test_bit(PG_waiters, mem);
1072 * unlock_page - unlock a locked page
1075 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
1076 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
1077 * mechanism between PageLocked pages and PageWriteback pages is shared.
1078 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
1080 * Note that this depends on PG_waiters being the sign bit in the byte
1081 * that contains PG_locked - thus the BUILD_BUG_ON(). That allows us to
1082 * clear the PG_locked bit and test PG_waiters at the same time fairly
1083 * portably (architectures that do LL/SC can test any bit, while x86 can
1084 * test the sign bit).
1086 void unlock_page(struct page *page)
1088 BUILD_BUG_ON(PG_waiters != 7);
1089 page = compound_head(page);
1090 VM_BUG_ON_PAGE(!PageLocked(page), page);
1091 if (clear_bit_unlock_is_negative_byte(PG_locked, &page->flags))
1092 wake_up_page_bit(page, PG_locked);
1094 EXPORT_SYMBOL(unlock_page);
1097 * end_page_writeback - end writeback against a page
1100 void end_page_writeback(struct page *page)
1103 * TestClearPageReclaim could be used here but it is an atomic
1104 * operation and overkill in this particular case. Failing to
1105 * shuffle a page marked for immediate reclaim is too mild to
1106 * justify taking an atomic operation penalty at the end of
1107 * ever page writeback.
1109 if (PageReclaim(page)) {
1110 ClearPageReclaim(page);
1111 rotate_reclaimable_page(page);
1114 if (!test_clear_page_writeback(page))
1117 smp_mb__after_atomic();
1118 wake_up_page(page, PG_writeback);
1120 EXPORT_SYMBOL(end_page_writeback);
1123 * After completing I/O on a page, call this routine to update the page
1124 * flags appropriately
1126 void page_endio(struct page *page, bool is_write, int err)
1130 SetPageUptodate(page);
1132 ClearPageUptodate(page);
1138 struct address_space *mapping;
1141 mapping = page_mapping(page);
1143 mapping_set_error(mapping, err);
1145 end_page_writeback(page);
1148 EXPORT_SYMBOL_GPL(page_endio);
1151 * __lock_page - get a lock on the page, assuming we need to sleep to get it
1152 * @__page: the page to lock
1154 void __lock_page(struct page *__page)
1156 struct page *page = compound_head(__page);
1157 wait_queue_head_t *q = page_waitqueue(page);
1158 wait_on_page_bit_common(q, page, PG_locked, TASK_UNINTERRUPTIBLE, true);
1160 EXPORT_SYMBOL(__lock_page);
1162 int __lock_page_killable(struct page *__page)
1164 struct page *page = compound_head(__page);
1165 wait_queue_head_t *q = page_waitqueue(page);
1166 return wait_on_page_bit_common(q, page, PG_locked, TASK_KILLABLE, true);
1168 EXPORT_SYMBOL_GPL(__lock_page_killable);
1172 * 1 - page is locked; mmap_sem is still held.
1173 * 0 - page is not locked.
1174 * mmap_sem has been released (up_read()), unless flags had both
1175 * FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
1176 * which case mmap_sem is still held.
1178 * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1
1179 * with the page locked and the mmap_sem unperturbed.
1181 int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
1184 if (flags & FAULT_FLAG_ALLOW_RETRY) {
1186 * CAUTION! In this case, mmap_sem is not released
1187 * even though return 0.
1189 if (flags & FAULT_FLAG_RETRY_NOWAIT)
1192 up_read(&mm->mmap_sem);
1193 if (flags & FAULT_FLAG_KILLABLE)
1194 wait_on_page_locked_killable(page);
1196 wait_on_page_locked(page);
1199 if (flags & FAULT_FLAG_KILLABLE) {
1202 ret = __lock_page_killable(page);
1204 up_read(&mm->mmap_sem);
1214 * page_cache_next_hole - find the next hole (not-present entry)
1217 * @max_scan: maximum range to search
1219 * Search the set [index, min(index+max_scan-1, MAX_INDEX)] for the
1220 * lowest indexed hole.
1222 * Returns: the index of the hole if found, otherwise returns an index
1223 * outside of the set specified (in which case 'return - index >=
1224 * max_scan' will be true). In rare cases of index wrap-around, 0 will
1227 * page_cache_next_hole may be called under rcu_read_lock. However,
1228 * like radix_tree_gang_lookup, this will not atomically search a
1229 * snapshot of the tree at a single point in time. For example, if a
1230 * hole is created at index 5, then subsequently a hole is created at
1231 * index 10, page_cache_next_hole covering both indexes may return 10
1232 * if called under rcu_read_lock.
1234 pgoff_t page_cache_next_hole(struct address_space *mapping,
1235 pgoff_t index, unsigned long max_scan)
1239 for (i = 0; i < max_scan; i++) {
1242 page = radix_tree_lookup(&mapping->page_tree, index);
1243 if (!page || radix_tree_exceptional_entry(page))
1252 EXPORT_SYMBOL(page_cache_next_hole);
1255 * page_cache_prev_hole - find the prev hole (not-present entry)
1258 * @max_scan: maximum range to search
1260 * Search backwards in the range [max(index-max_scan+1, 0), index] for
1263 * Returns: the index of the hole if found, otherwise returns an index
1264 * outside of the set specified (in which case 'index - return >=
1265 * max_scan' will be true). In rare cases of wrap-around, ULONG_MAX
1268 * page_cache_prev_hole may be called under rcu_read_lock. However,
1269 * like radix_tree_gang_lookup, this will not atomically search a
1270 * snapshot of the tree at a single point in time. For example, if a
1271 * hole is created at index 10, then subsequently a hole is created at
1272 * index 5, page_cache_prev_hole covering both indexes may return 5 if
1273 * called under rcu_read_lock.
1275 pgoff_t page_cache_prev_hole(struct address_space *mapping,
1276 pgoff_t index, unsigned long max_scan)
1280 for (i = 0; i < max_scan; i++) {
1283 page = radix_tree_lookup(&mapping->page_tree, index);
1284 if (!page || radix_tree_exceptional_entry(page))
1287 if (index == ULONG_MAX)
1293 EXPORT_SYMBOL(page_cache_prev_hole);
1296 * find_get_entry - find and get a page cache entry
1297 * @mapping: the address_space to search
1298 * @offset: the page cache index
1300 * Looks up the page cache slot at @mapping & @offset. If there is a
1301 * page cache page, it is returned with an increased refcount.
1303 * If the slot holds a shadow entry of a previously evicted page, or a
1304 * swap entry from shmem/tmpfs, it is returned.
1306 * Otherwise, %NULL is returned.
1308 struct page *find_get_entry(struct address_space *mapping, pgoff_t offset)
1311 struct page *head, *page;
1316 pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
1318 page = radix_tree_deref_slot(pagep);
1319 if (unlikely(!page))
1321 if (radix_tree_exception(page)) {
1322 if (radix_tree_deref_retry(page))
1325 * A shadow entry of a recently evicted page,
1326 * or a swap entry from shmem/tmpfs. Return
1327 * it without attempting to raise page count.
1332 head = compound_head(page);
1333 if (!page_cache_get_speculative(head))
1336 /* The page was split under us? */
1337 if (compound_head(page) != head) {
1343 * Has the page moved?
1344 * This is part of the lockless pagecache protocol. See
1345 * include/linux/pagemap.h for details.
1347 if (unlikely(page != *pagep)) {
1357 EXPORT_SYMBOL(find_get_entry);
1360 * find_lock_entry - locate, pin and lock a page cache entry
1361 * @mapping: the address_space to search
1362 * @offset: the page cache index
1364 * Looks up the page cache slot at @mapping & @offset. If there is a
1365 * page cache page, it is returned locked and with an increased
1368 * If the slot holds a shadow entry of a previously evicted page, or a
1369 * swap entry from shmem/tmpfs, it is returned.
1371 * Otherwise, %NULL is returned.
1373 * find_lock_entry() may sleep.
1375 struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset)
1380 page = find_get_entry(mapping, offset);
1381 if (page && !radix_tree_exception(page)) {
1383 /* Has the page been truncated? */
1384 if (unlikely(page_mapping(page) != mapping)) {
1389 VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page);
1393 EXPORT_SYMBOL(find_lock_entry);
1396 * pagecache_get_page - find and get a page reference
1397 * @mapping: the address_space to search
1398 * @offset: the page index
1399 * @fgp_flags: PCG flags
1400 * @gfp_mask: gfp mask to use for the page cache data page allocation
1402 * Looks up the page cache slot at @mapping & @offset.
1404 * PCG flags modify how the page is returned.
1406 * @fgp_flags can be:
1408 * - FGP_ACCESSED: the page will be marked accessed
1409 * - FGP_LOCK: Page is return locked
1410 * - FGP_CREAT: If page is not present then a new page is allocated using
1411 * @gfp_mask and added to the page cache and the VM's LRU
1412 * list. The page is returned locked and with an increased
1413 * refcount. Otherwise, NULL is returned.
1415 * If FGP_LOCK or FGP_CREAT are specified then the function may sleep even
1416 * if the GFP flags specified for FGP_CREAT are atomic.
1418 * If there is a page cache page, it is returned with an increased refcount.
1420 struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset,
1421 int fgp_flags, gfp_t gfp_mask)
1426 page = find_get_entry(mapping, offset);
1427 if (radix_tree_exceptional_entry(page))
1432 if (fgp_flags & FGP_LOCK) {
1433 if (fgp_flags & FGP_NOWAIT) {
1434 if (!trylock_page(page)) {
1442 /* Has the page been truncated? */
1443 if (unlikely(page->mapping != mapping)) {
1448 VM_BUG_ON_PAGE(page->index != offset, page);
1451 if (page && (fgp_flags & FGP_ACCESSED))
1452 mark_page_accessed(page);
1455 if (!page && (fgp_flags & FGP_CREAT)) {
1457 if ((fgp_flags & FGP_WRITE) && mapping_cap_account_dirty(mapping))
1458 gfp_mask |= __GFP_WRITE;
1459 if (fgp_flags & FGP_NOFS)
1460 gfp_mask &= ~__GFP_FS;
1462 page = __page_cache_alloc(gfp_mask);
1466 if (WARN_ON_ONCE(!(fgp_flags & FGP_LOCK)))
1467 fgp_flags |= FGP_LOCK;
1469 /* Init accessed so avoid atomic mark_page_accessed later */
1470 if (fgp_flags & FGP_ACCESSED)
1471 __SetPageReferenced(page);
1473 err = add_to_page_cache_lru(page, mapping, offset,
1474 gfp_mask & GFP_RECLAIM_MASK);
1475 if (unlikely(err)) {
1485 EXPORT_SYMBOL(pagecache_get_page);
1488 * find_get_entries - gang pagecache lookup
1489 * @mapping: The address_space to search
1490 * @start: The starting page cache index
1491 * @nr_entries: The maximum number of entries
1492 * @entries: Where the resulting entries are placed
1493 * @indices: The cache indices corresponding to the entries in @entries
1495 * find_get_entries() will search for and return a group of up to
1496 * @nr_entries entries in the mapping. The entries are placed at
1497 * @entries. find_get_entries() takes a reference against any actual
1500 * The search returns a group of mapping-contiguous page cache entries
1501 * with ascending indexes. There may be holes in the indices due to
1502 * not-present pages.
1504 * Any shadow entries of evicted pages, or swap entries from
1505 * shmem/tmpfs, are included in the returned array.
1507 * find_get_entries() returns the number of pages and shadow entries
1510 unsigned find_get_entries(struct address_space *mapping,
1511 pgoff_t start, unsigned int nr_entries,
1512 struct page **entries, pgoff_t *indices)
1515 unsigned int ret = 0;
1516 struct radix_tree_iter iter;
1522 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1523 struct page *head, *page;
1525 page = radix_tree_deref_slot(slot);
1526 if (unlikely(!page))
1528 if (radix_tree_exception(page)) {
1529 if (radix_tree_deref_retry(page)) {
1530 slot = radix_tree_iter_retry(&iter);
1534 * A shadow entry of a recently evicted page, a swap
1535 * entry from shmem/tmpfs or a DAX entry. Return it
1536 * without attempting to raise page count.
1541 head = compound_head(page);
1542 if (!page_cache_get_speculative(head))
1545 /* The page was split under us? */
1546 if (compound_head(page) != head) {
1551 /* Has the page moved? */
1552 if (unlikely(page != *slot)) {
1557 indices[ret] = iter.index;
1558 entries[ret] = page;
1559 if (++ret == nr_entries)
1567 * find_get_pages - gang pagecache lookup
1568 * @mapping: The address_space to search
1569 * @start: The starting page index
1570 * @nr_pages: The maximum number of pages
1571 * @pages: Where the resulting pages are placed
1573 * find_get_pages() will search for and return a group of up to
1574 * @nr_pages pages in the mapping. The pages are placed at @pages.
1575 * find_get_pages() takes a reference against the returned pages.
1577 * The search returns a group of mapping-contiguous pages with ascending
1578 * indexes. There may be holes in the indices due to not-present pages.
1580 * find_get_pages() returns the number of pages which were found.
1582 unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
1583 unsigned int nr_pages, struct page **pages)
1585 struct radix_tree_iter iter;
1589 if (unlikely(!nr_pages))
1593 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1594 struct page *head, *page;
1596 page = radix_tree_deref_slot(slot);
1597 if (unlikely(!page))
1600 if (radix_tree_exception(page)) {
1601 if (radix_tree_deref_retry(page)) {
1602 slot = radix_tree_iter_retry(&iter);
1606 * A shadow entry of a recently evicted page,
1607 * or a swap entry from shmem/tmpfs. Skip
1613 head = compound_head(page);
1614 if (!page_cache_get_speculative(head))
1617 /* The page was split under us? */
1618 if (compound_head(page) != head) {
1623 /* Has the page moved? */
1624 if (unlikely(page != *slot)) {
1630 if (++ret == nr_pages)
1639 * find_get_pages_contig - gang contiguous pagecache lookup
1640 * @mapping: The address_space to search
1641 * @index: The starting page index
1642 * @nr_pages: The maximum number of pages
1643 * @pages: Where the resulting pages are placed
1645 * find_get_pages_contig() works exactly like find_get_pages(), except
1646 * that the returned number of pages are guaranteed to be contiguous.
1648 * find_get_pages_contig() returns the number of pages which were found.
1650 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
1651 unsigned int nr_pages, struct page **pages)
1653 struct radix_tree_iter iter;
1655 unsigned int ret = 0;
1657 if (unlikely(!nr_pages))
1661 radix_tree_for_each_contig(slot, &mapping->page_tree, &iter, index) {
1662 struct page *head, *page;
1664 page = radix_tree_deref_slot(slot);
1665 /* The hole, there no reason to continue */
1666 if (unlikely(!page))
1669 if (radix_tree_exception(page)) {
1670 if (radix_tree_deref_retry(page)) {
1671 slot = radix_tree_iter_retry(&iter);
1675 * A shadow entry of a recently evicted page,
1676 * or a swap entry from shmem/tmpfs. Stop
1677 * looking for contiguous pages.
1682 head = compound_head(page);
1683 if (!page_cache_get_speculative(head))
1686 /* The page was split under us? */
1687 if (compound_head(page) != head) {
1692 /* Has the page moved? */
1693 if (unlikely(page != *slot)) {
1699 * must check mapping and index after taking the ref.
1700 * otherwise we can get both false positives and false
1701 * negatives, which is just confusing to the caller.
1703 if (page->mapping == NULL || page_to_pgoff(page) != iter.index) {
1709 if (++ret == nr_pages)
1715 EXPORT_SYMBOL(find_get_pages_contig);
1718 * find_get_pages_tag - find and return pages that match @tag
1719 * @mapping: the address_space to search
1720 * @index: the starting page index
1721 * @tag: the tag index
1722 * @nr_pages: the maximum number of pages
1723 * @pages: where the resulting pages are placed
1725 * Like find_get_pages, except we only return pages which are tagged with
1726 * @tag. We update @index to index the next page for the traversal.
1728 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
1729 int tag, unsigned int nr_pages, struct page **pages)
1731 struct radix_tree_iter iter;
1735 if (unlikely(!nr_pages))
1739 radix_tree_for_each_tagged(slot, &mapping->page_tree,
1740 &iter, *index, tag) {
1741 struct page *head, *page;
1743 page = radix_tree_deref_slot(slot);
1744 if (unlikely(!page))
1747 if (radix_tree_exception(page)) {
1748 if (radix_tree_deref_retry(page)) {
1749 slot = radix_tree_iter_retry(&iter);
1753 * A shadow entry of a recently evicted page.
1755 * Those entries should never be tagged, but
1756 * this tree walk is lockless and the tags are
1757 * looked up in bulk, one radix tree node at a
1758 * time, so there is a sizable window for page
1759 * reclaim to evict a page we saw tagged.
1766 head = compound_head(page);
1767 if (!page_cache_get_speculative(head))
1770 /* The page was split under us? */
1771 if (compound_head(page) != head) {
1776 /* Has the page moved? */
1777 if (unlikely(page != *slot)) {
1783 if (++ret == nr_pages)
1790 *index = pages[ret - 1]->index + 1;
1794 EXPORT_SYMBOL(find_get_pages_tag);
1797 * find_get_entries_tag - find and return entries that match @tag
1798 * @mapping: the address_space to search
1799 * @start: the starting page cache index
1800 * @tag: the tag index
1801 * @nr_entries: the maximum number of entries
1802 * @entries: where the resulting entries are placed
1803 * @indices: the cache indices corresponding to the entries in @entries
1805 * Like find_get_entries, except we only return entries which are tagged with
1808 unsigned find_get_entries_tag(struct address_space *mapping, pgoff_t start,
1809 int tag, unsigned int nr_entries,
1810 struct page **entries, pgoff_t *indices)
1813 unsigned int ret = 0;
1814 struct radix_tree_iter iter;
1820 radix_tree_for_each_tagged(slot, &mapping->page_tree,
1821 &iter, start, tag) {
1822 struct page *head, *page;
1824 page = radix_tree_deref_slot(slot);
1825 if (unlikely(!page))
1827 if (radix_tree_exception(page)) {
1828 if (radix_tree_deref_retry(page)) {
1829 slot = radix_tree_iter_retry(&iter);
1834 * A shadow entry of a recently evicted page, a swap
1835 * entry from shmem/tmpfs or a DAX entry. Return it
1836 * without attempting to raise page count.
1841 head = compound_head(page);
1842 if (!page_cache_get_speculative(head))
1845 /* The page was split under us? */
1846 if (compound_head(page) != head) {
1851 /* Has the page moved? */
1852 if (unlikely(page != *slot)) {
1857 indices[ret] = iter.index;
1858 entries[ret] = page;
1859 if (++ret == nr_entries)
1865 EXPORT_SYMBOL(find_get_entries_tag);
1868 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
1869 * a _large_ part of the i/o request. Imagine the worst scenario:
1871 * ---R__________________________________________B__________
1872 * ^ reading here ^ bad block(assume 4k)
1874 * read(R) => miss => readahead(R...B) => media error => frustrating retries
1875 * => failing the whole request => read(R) => read(R+1) =>
1876 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
1877 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
1878 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
1880 * It is going insane. Fix it by quickly scaling down the readahead size.
1882 static void shrink_readahead_size_eio(struct file *filp,
1883 struct file_ra_state *ra)
1889 * do_generic_file_read - generic file read routine
1890 * @filp: the file to read
1891 * @ppos: current file position
1892 * @iter: data destination
1893 * @written: already copied
1895 * This is a generic file read routine, and uses the
1896 * mapping->a_ops->readpage() function for the actual low-level stuff.
1898 * This is really ugly. But the goto's actually try to clarify some
1899 * of the logic when it comes to error handling etc.
1901 static ssize_t do_generic_file_read(struct file *filp, loff_t *ppos,
1902 struct iov_iter *iter, ssize_t written)
1904 struct address_space *mapping = filp->f_mapping;
1905 struct inode *inode = mapping->host;
1906 struct file_ra_state *ra = &filp->f_ra;
1910 unsigned long offset; /* offset into pagecache page */
1911 unsigned int prev_offset;
1914 if (unlikely(*ppos >= inode->i_sb->s_maxbytes))
1916 iov_iter_truncate(iter, inode->i_sb->s_maxbytes);
1918 index = *ppos >> PAGE_SHIFT;
1919 prev_index = ra->prev_pos >> PAGE_SHIFT;
1920 prev_offset = ra->prev_pos & (PAGE_SIZE-1);
1921 last_index = (*ppos + iter->count + PAGE_SIZE-1) >> PAGE_SHIFT;
1922 offset = *ppos & ~PAGE_MASK;
1928 unsigned long nr, ret;
1932 if (fatal_signal_pending(current)) {
1937 page = find_get_page(mapping, index);
1939 page_cache_sync_readahead(mapping,
1941 index, last_index - index);
1942 page = find_get_page(mapping, index);
1943 if (unlikely(page == NULL))
1944 goto no_cached_page;
1946 if (PageReadahead(page)) {
1947 page_cache_async_readahead(mapping,
1949 index, last_index - index);
1951 if (!PageUptodate(page)) {
1953 * See comment in do_read_cache_page on why
1954 * wait_on_page_locked is used to avoid unnecessarily
1955 * serialisations and why it's safe.
1957 error = wait_on_page_locked_killable(page);
1958 if (unlikely(error))
1959 goto readpage_error;
1960 if (PageUptodate(page))
1963 if (inode->i_blkbits == PAGE_SHIFT ||
1964 !mapping->a_ops->is_partially_uptodate)
1965 goto page_not_up_to_date;
1966 /* pipes can't handle partially uptodate pages */
1967 if (unlikely(iter->type & ITER_PIPE))
1968 goto page_not_up_to_date;
1969 if (!trylock_page(page))
1970 goto page_not_up_to_date;
1971 /* Did it get truncated before we got the lock? */
1973 goto page_not_up_to_date_locked;
1974 if (!mapping->a_ops->is_partially_uptodate(page,
1975 offset, iter->count))
1976 goto page_not_up_to_date_locked;
1981 * i_size must be checked after we know the page is Uptodate.
1983 * Checking i_size after the check allows us to calculate
1984 * the correct value for "nr", which means the zero-filled
1985 * part of the page is not copied back to userspace (unless
1986 * another truncate extends the file - this is desired though).
1989 isize = i_size_read(inode);
1990 end_index = (isize - 1) >> PAGE_SHIFT;
1991 if (unlikely(!isize || index > end_index)) {
1996 /* nr is the maximum number of bytes to copy from this page */
1998 if (index == end_index) {
1999 nr = ((isize - 1) & ~PAGE_MASK) + 1;
2007 /* If users can be writing to this page using arbitrary
2008 * virtual addresses, take care about potential aliasing
2009 * before reading the page on the kernel side.
2011 if (mapping_writably_mapped(mapping))
2012 flush_dcache_page(page);
2015 * When a sequential read accesses a page several times,
2016 * only mark it as accessed the first time.
2018 if (prev_index != index || offset != prev_offset)
2019 mark_page_accessed(page);
2023 * Ok, we have the page, and it's up-to-date, so
2024 * now we can copy it to user space...
2027 ret = copy_page_to_iter(page, offset, nr, iter);
2029 index += offset >> PAGE_SHIFT;
2030 offset &= ~PAGE_MASK;
2031 prev_offset = offset;
2035 if (!iov_iter_count(iter))
2043 page_not_up_to_date:
2044 /* Get exclusive access to the page ... */
2045 error = lock_page_killable(page);
2046 if (unlikely(error))
2047 goto readpage_error;
2049 page_not_up_to_date_locked:
2050 /* Did it get truncated before we got the lock? */
2051 if (!page->mapping) {
2057 /* Did somebody else fill it already? */
2058 if (PageUptodate(page)) {
2065 * A previous I/O error may have been due to temporary
2066 * failures, eg. multipath errors.
2067 * PG_error will be set again if readpage fails.
2069 ClearPageError(page);
2070 /* Start the actual read. The read will unlock the page. */
2071 error = mapping->a_ops->readpage(filp, page);
2073 if (unlikely(error)) {
2074 if (error == AOP_TRUNCATED_PAGE) {
2079 goto readpage_error;
2082 if (!PageUptodate(page)) {
2083 error = lock_page_killable(page);
2084 if (unlikely(error))
2085 goto readpage_error;
2086 if (!PageUptodate(page)) {
2087 if (page->mapping == NULL) {
2089 * invalidate_mapping_pages got it
2096 shrink_readahead_size_eio(filp, ra);
2098 goto readpage_error;
2106 /* UHHUH! A synchronous read error occurred. Report it */
2112 * Ok, it wasn't cached, so we need to create a new
2115 page = page_cache_alloc_cold(mapping);
2120 error = add_to_page_cache_lru(page, mapping, index,
2121 mapping_gfp_constraint(mapping, GFP_KERNEL));
2124 if (error == -EEXIST) {
2134 ra->prev_pos = prev_index;
2135 ra->prev_pos <<= PAGE_SHIFT;
2136 ra->prev_pos |= prev_offset;
2138 *ppos = ((loff_t)index << PAGE_SHIFT) + offset;
2139 file_accessed(filp);
2140 return written ? written : error;
2144 * generic_file_read_iter - generic filesystem read routine
2145 * @iocb: kernel I/O control block
2146 * @iter: destination for the data read
2148 * This is the "read_iter()" routine for all filesystems
2149 * that can use the page cache directly.
2152 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
2154 struct file *file = iocb->ki_filp;
2156 size_t count = iov_iter_count(iter);
2159 goto out; /* skip atime */
2161 if (iocb->ki_flags & IOCB_DIRECT) {
2162 struct address_space *mapping = file->f_mapping;
2163 struct inode *inode = mapping->host;
2166 size = i_size_read(inode);
2167 if (iocb->ki_flags & IOCB_NOWAIT) {
2168 if (filemap_range_has_page(mapping, iocb->ki_pos,
2169 iocb->ki_pos + count - 1))
2172 retval = filemap_write_and_wait_range(mapping,
2174 iocb->ki_pos + count - 1);
2179 file_accessed(file);
2181 retval = mapping->a_ops->direct_IO(iocb, iter);
2183 iocb->ki_pos += retval;
2186 iov_iter_revert(iter, count - iov_iter_count(iter));
2189 * Btrfs can have a short DIO read if we encounter
2190 * compressed extents, so if there was an error, or if
2191 * we've already read everything we wanted to, or if
2192 * there was a short read because we hit EOF, go ahead
2193 * and return. Otherwise fallthrough to buffered io for
2194 * the rest of the read. Buffered reads will not work for
2195 * DAX files, so don't bother trying.
2197 if (retval < 0 || !count || iocb->ki_pos >= size ||
2202 retval = do_generic_file_read(file, &iocb->ki_pos, iter, retval);
2206 EXPORT_SYMBOL(generic_file_read_iter);
2210 * page_cache_read - adds requested page to the page cache if not already there
2211 * @file: file to read
2212 * @offset: page index
2213 * @gfp_mask: memory allocation flags
2215 * This adds the requested page to the page cache if it isn't already there,
2216 * and schedules an I/O to read in its contents from disk.
2218 static int page_cache_read(struct file *file, pgoff_t offset, gfp_t gfp_mask)
2220 struct address_space *mapping = file->f_mapping;
2225 page = __page_cache_alloc(gfp_mask|__GFP_COLD);
2229 ret = add_to_page_cache_lru(page, mapping, offset, gfp_mask & GFP_KERNEL);
2231 ret = mapping->a_ops->readpage(file, page);
2232 else if (ret == -EEXIST)
2233 ret = 0; /* losing race to add is OK */
2237 } while (ret == AOP_TRUNCATED_PAGE);
2242 #define MMAP_LOTSAMISS (100)
2245 * Synchronous readahead happens when we don't even find
2246 * a page in the page cache at all.
2248 static void do_sync_mmap_readahead(struct vm_area_struct *vma,
2249 struct file_ra_state *ra,
2253 struct address_space *mapping = file->f_mapping;
2255 /* If we don't want any read-ahead, don't bother */
2256 if (vma->vm_flags & VM_RAND_READ)
2261 if (vma->vm_flags & VM_SEQ_READ) {
2262 page_cache_sync_readahead(mapping, ra, file, offset,
2267 /* Avoid banging the cache line if not needed */
2268 if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
2272 * Do we miss much more than hit in this file? If so,
2273 * stop bothering with read-ahead. It will only hurt.
2275 if (ra->mmap_miss > MMAP_LOTSAMISS)
2281 ra->start = max_t(long, 0, offset - ra->ra_pages / 2);
2282 ra->size = ra->ra_pages;
2283 ra->async_size = ra->ra_pages / 4;
2284 ra_submit(ra, mapping, file);
2288 * Asynchronous readahead happens when we find the page and PG_readahead,
2289 * so we want to possibly extend the readahead further..
2291 static void do_async_mmap_readahead(struct vm_area_struct *vma,
2292 struct file_ra_state *ra,
2297 struct address_space *mapping = file->f_mapping;
2299 /* If we don't want any read-ahead, don't bother */
2300 if (vma->vm_flags & VM_RAND_READ)
2302 if (ra->mmap_miss > 0)
2304 if (PageReadahead(page))
2305 page_cache_async_readahead(mapping, ra, file,
2306 page, offset, ra->ra_pages);
2310 * filemap_fault - read in file data for page fault handling
2311 * @vmf: struct vm_fault containing details of the fault
2313 * filemap_fault() is invoked via the vma operations vector for a
2314 * mapped memory region to read in file data during a page fault.
2316 * The goto's are kind of ugly, but this streamlines the normal case of having
2317 * it in the page cache, and handles the special cases reasonably without
2318 * having a lot of duplicated code.
2320 * vma->vm_mm->mmap_sem must be held on entry.
2322 * If our return value has VM_FAULT_RETRY set, it's because
2323 * lock_page_or_retry() returned 0.
2324 * The mmap_sem has usually been released in this case.
2325 * See __lock_page_or_retry() for the exception.
2327 * If our return value does not have VM_FAULT_RETRY set, the mmap_sem
2328 * has not been released.
2330 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
2332 int filemap_fault(struct vm_fault *vmf)
2335 struct file *file = vmf->vma->vm_file;
2336 struct address_space *mapping = file->f_mapping;
2337 struct file_ra_state *ra = &file->f_ra;
2338 struct inode *inode = mapping->host;
2339 pgoff_t offset = vmf->pgoff;
2344 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2345 if (unlikely(offset >= max_off))
2346 return VM_FAULT_SIGBUS;
2349 * Do we have something in the page cache already?
2351 page = find_get_page(mapping, offset);
2352 if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
2354 * We found the page, so try async readahead before
2355 * waiting for the lock.
2357 do_async_mmap_readahead(vmf->vma, ra, file, page, offset);
2359 /* No page in the page cache at all */
2360 do_sync_mmap_readahead(vmf->vma, ra, file, offset);
2361 count_vm_event(PGMAJFAULT);
2362 count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT);
2363 ret = VM_FAULT_MAJOR;
2365 page = find_get_page(mapping, offset);
2367 goto no_cached_page;
2370 if (!lock_page_or_retry(page, vmf->vma->vm_mm, vmf->flags)) {
2372 return ret | VM_FAULT_RETRY;
2375 /* Did it get truncated? */
2376 if (unlikely(page->mapping != mapping)) {
2381 VM_BUG_ON_PAGE(page->index != offset, page);
2384 * We have a locked page in the page cache, now we need to check
2385 * that it's up-to-date. If not, it is going to be due to an error.
2387 if (unlikely(!PageUptodate(page)))
2388 goto page_not_uptodate;
2391 * Found the page and have a reference on it.
2392 * We must recheck i_size under page lock.
2394 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2395 if (unlikely(offset >= max_off)) {
2398 return VM_FAULT_SIGBUS;
2402 return ret | VM_FAULT_LOCKED;
2406 * We're only likely to ever get here if MADV_RANDOM is in
2409 error = page_cache_read(file, offset, vmf->gfp_mask);
2412 * The page we want has now been added to the page cache.
2413 * In the unlikely event that someone removed it in the
2414 * meantime, we'll just come back here and read it again.
2420 * An error return from page_cache_read can result if the
2421 * system is low on memory, or a problem occurs while trying
2424 if (error == -ENOMEM)
2425 return VM_FAULT_OOM;
2426 return VM_FAULT_SIGBUS;
2430 * Umm, take care of errors if the page isn't up-to-date.
2431 * Try to re-read it _once_. We do this synchronously,
2432 * because there really aren't any performance issues here
2433 * and we need to check for errors.
2435 ClearPageError(page);
2436 error = mapping->a_ops->readpage(file, page);
2438 wait_on_page_locked(page);
2439 if (!PageUptodate(page))
2444 if (!error || error == AOP_TRUNCATED_PAGE)
2447 /* Things didn't work out. Return zero to tell the mm layer so. */
2448 shrink_readahead_size_eio(file, ra);
2449 return VM_FAULT_SIGBUS;
2451 EXPORT_SYMBOL(filemap_fault);
2453 void filemap_map_pages(struct vm_fault *vmf,
2454 pgoff_t start_pgoff, pgoff_t end_pgoff)
2456 struct radix_tree_iter iter;
2458 struct file *file = vmf->vma->vm_file;
2459 struct address_space *mapping = file->f_mapping;
2460 pgoff_t last_pgoff = start_pgoff;
2461 unsigned long max_idx;
2462 struct page *head, *page;
2465 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter,
2467 if (iter.index > end_pgoff)
2470 page = radix_tree_deref_slot(slot);
2471 if (unlikely(!page))
2473 if (radix_tree_exception(page)) {
2474 if (radix_tree_deref_retry(page)) {
2475 slot = radix_tree_iter_retry(&iter);
2481 head = compound_head(page);
2482 if (!page_cache_get_speculative(head))
2485 /* The page was split under us? */
2486 if (compound_head(page) != head) {
2491 /* Has the page moved? */
2492 if (unlikely(page != *slot)) {
2497 if (!PageUptodate(page) ||
2498 PageReadahead(page) ||
2501 if (!trylock_page(page))
2504 if (page->mapping != mapping || !PageUptodate(page))
2507 max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
2508 if (page->index >= max_idx)
2511 if (file->f_ra.mmap_miss > 0)
2512 file->f_ra.mmap_miss--;
2514 vmf->address += (iter.index - last_pgoff) << PAGE_SHIFT;
2516 vmf->pte += iter.index - last_pgoff;
2517 last_pgoff = iter.index;
2518 if (alloc_set_pte(vmf, NULL, page))
2527 /* Huge page is mapped? No need to proceed. */
2528 if (pmd_trans_huge(*vmf->pmd))
2530 if (iter.index == end_pgoff)
2535 EXPORT_SYMBOL(filemap_map_pages);
2537 int filemap_page_mkwrite(struct vm_fault *vmf)
2539 struct page *page = vmf->page;
2540 struct inode *inode = file_inode(vmf->vma->vm_file);
2541 int ret = VM_FAULT_LOCKED;
2543 sb_start_pagefault(inode->i_sb);
2544 file_update_time(vmf->vma->vm_file);
2546 if (page->mapping != inode->i_mapping) {
2548 ret = VM_FAULT_NOPAGE;
2552 * We mark the page dirty already here so that when freeze is in
2553 * progress, we are guaranteed that writeback during freezing will
2554 * see the dirty page and writeprotect it again.
2556 set_page_dirty(page);
2557 wait_for_stable_page(page);
2559 sb_end_pagefault(inode->i_sb);
2562 EXPORT_SYMBOL(filemap_page_mkwrite);
2564 const struct vm_operations_struct generic_file_vm_ops = {
2565 .fault = filemap_fault,
2566 .map_pages = filemap_map_pages,
2567 .page_mkwrite = filemap_page_mkwrite,
2570 /* This is used for a general mmap of a disk file */
2572 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2574 struct address_space *mapping = file->f_mapping;
2576 if (!mapping->a_ops->readpage)
2578 file_accessed(file);
2579 vma->vm_ops = &generic_file_vm_ops;
2584 * This is for filesystems which do not implement ->writepage.
2586 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
2588 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
2590 return generic_file_mmap(file, vma);
2593 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2597 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
2601 #endif /* CONFIG_MMU */
2603 EXPORT_SYMBOL(generic_file_mmap);
2604 EXPORT_SYMBOL(generic_file_readonly_mmap);
2606 static struct page *wait_on_page_read(struct page *page)
2608 if (!IS_ERR(page)) {
2609 wait_on_page_locked(page);
2610 if (!PageUptodate(page)) {
2612 page = ERR_PTR(-EIO);
2618 static struct page *do_read_cache_page(struct address_space *mapping,
2620 int (*filler)(void *, struct page *),
2627 page = find_get_page(mapping, index);
2629 page = __page_cache_alloc(gfp | __GFP_COLD);
2631 return ERR_PTR(-ENOMEM);
2632 err = add_to_page_cache_lru(page, mapping, index, gfp);
2633 if (unlikely(err)) {
2637 /* Presumably ENOMEM for radix tree node */
2638 return ERR_PTR(err);
2642 err = filler(data, page);
2645 return ERR_PTR(err);
2648 page = wait_on_page_read(page);
2653 if (PageUptodate(page))
2657 * Page is not up to date and may be locked due one of the following
2658 * case a: Page is being filled and the page lock is held
2659 * case b: Read/write error clearing the page uptodate status
2660 * case c: Truncation in progress (page locked)
2661 * case d: Reclaim in progress
2663 * Case a, the page will be up to date when the page is unlocked.
2664 * There is no need to serialise on the page lock here as the page
2665 * is pinned so the lock gives no additional protection. Even if the
2666 * the page is truncated, the data is still valid if PageUptodate as
2667 * it's a race vs truncate race.
2668 * Case b, the page will not be up to date
2669 * Case c, the page may be truncated but in itself, the data may still
2670 * be valid after IO completes as it's a read vs truncate race. The
2671 * operation must restart if the page is not uptodate on unlock but
2672 * otherwise serialising on page lock to stabilise the mapping gives
2673 * no additional guarantees to the caller as the page lock is
2674 * released before return.
2675 * Case d, similar to truncation. If reclaim holds the page lock, it
2676 * will be a race with remove_mapping that determines if the mapping
2677 * is valid on unlock but otherwise the data is valid and there is
2678 * no need to serialise with page lock.
2680 * As the page lock gives no additional guarantee, we optimistically
2681 * wait on the page to be unlocked and check if it's up to date and
2682 * use the page if it is. Otherwise, the page lock is required to
2683 * distinguish between the different cases. The motivation is that we
2684 * avoid spurious serialisations and wakeups when multiple processes
2685 * wait on the same page for IO to complete.
2687 wait_on_page_locked(page);
2688 if (PageUptodate(page))
2691 /* Distinguish between all the cases under the safety of the lock */
2694 /* Case c or d, restart the operation */
2695 if (!page->mapping) {
2701 /* Someone else locked and filled the page in a very small window */
2702 if (PageUptodate(page)) {
2709 mark_page_accessed(page);
2714 * read_cache_page - read into page cache, fill it if needed
2715 * @mapping: the page's address_space
2716 * @index: the page index
2717 * @filler: function to perform the read
2718 * @data: first arg to filler(data, page) function, often left as NULL
2720 * Read into the page cache. If a page already exists, and PageUptodate() is
2721 * not set, try to fill the page and wait for it to become unlocked.
2723 * If the page does not get brought uptodate, return -EIO.
2725 struct page *read_cache_page(struct address_space *mapping,
2727 int (*filler)(void *, struct page *),
2730 return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
2732 EXPORT_SYMBOL(read_cache_page);
2735 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
2736 * @mapping: the page's address_space
2737 * @index: the page index
2738 * @gfp: the page allocator flags to use if allocating
2740 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
2741 * any new page allocations done using the specified allocation flags.
2743 * If the page does not get brought uptodate, return -EIO.
2745 struct page *read_cache_page_gfp(struct address_space *mapping,
2749 filler_t *filler = (filler_t *)mapping->a_ops->readpage;
2751 return do_read_cache_page(mapping, index, filler, NULL, gfp);
2753 EXPORT_SYMBOL(read_cache_page_gfp);
2756 * Performs necessary checks before doing a write
2758 * Can adjust writing position or amount of bytes to write.
2759 * Returns appropriate error code that caller should return or
2760 * zero in case that write should be allowed.
2762 inline ssize_t generic_write_checks(struct kiocb *iocb, struct iov_iter *from)
2764 struct file *file = iocb->ki_filp;
2765 struct inode *inode = file->f_mapping->host;
2766 unsigned long limit = rlimit(RLIMIT_FSIZE);
2769 if (!iov_iter_count(from))
2772 /* FIXME: this is for backwards compatibility with 2.4 */
2773 if (iocb->ki_flags & IOCB_APPEND)
2774 iocb->ki_pos = i_size_read(inode);
2778 if ((iocb->ki_flags & IOCB_NOWAIT) && !(iocb->ki_flags & IOCB_DIRECT))
2781 if (limit != RLIM_INFINITY) {
2782 if (iocb->ki_pos >= limit) {
2783 send_sig(SIGXFSZ, current, 0);
2786 iov_iter_truncate(from, limit - (unsigned long)pos);
2792 if (unlikely(pos + iov_iter_count(from) > MAX_NON_LFS &&
2793 !(file->f_flags & O_LARGEFILE))) {
2794 if (pos >= MAX_NON_LFS)
2796 iov_iter_truncate(from, MAX_NON_LFS - (unsigned long)pos);
2800 * Are we about to exceed the fs block limit ?
2802 * If we have written data it becomes a short write. If we have
2803 * exceeded without writing data we send a signal and return EFBIG.
2804 * Linus frestrict idea will clean these up nicely..
2806 if (unlikely(pos >= inode->i_sb->s_maxbytes))
2809 iov_iter_truncate(from, inode->i_sb->s_maxbytes - pos);
2810 return iov_iter_count(from);
2812 EXPORT_SYMBOL(generic_write_checks);
2814 int pagecache_write_begin(struct file *file, struct address_space *mapping,
2815 loff_t pos, unsigned len, unsigned flags,
2816 struct page **pagep, void **fsdata)
2818 const struct address_space_operations *aops = mapping->a_ops;
2820 return aops->write_begin(file, mapping, pos, len, flags,
2823 EXPORT_SYMBOL(pagecache_write_begin);
2825 int pagecache_write_end(struct file *file, struct address_space *mapping,
2826 loff_t pos, unsigned len, unsigned copied,
2827 struct page *page, void *fsdata)
2829 const struct address_space_operations *aops = mapping->a_ops;
2831 return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
2833 EXPORT_SYMBOL(pagecache_write_end);
2836 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from)
2838 struct file *file = iocb->ki_filp;
2839 struct address_space *mapping = file->f_mapping;
2840 struct inode *inode = mapping->host;
2841 loff_t pos = iocb->ki_pos;
2846 write_len = iov_iter_count(from);
2847 end = (pos + write_len - 1) >> PAGE_SHIFT;
2849 if (iocb->ki_flags & IOCB_NOWAIT) {
2850 /* If there are pages to writeback, return */
2851 if (filemap_range_has_page(inode->i_mapping, pos,
2852 pos + iov_iter_count(from)))
2855 written = filemap_write_and_wait_range(mapping, pos,
2856 pos + write_len - 1);
2862 * After a write we want buffered reads to be sure to go to disk to get
2863 * the new data. We invalidate clean cached page from the region we're
2864 * about to write. We do this *before* the write so that we can return
2865 * without clobbering -EIOCBQUEUED from ->direct_IO().
2867 written = invalidate_inode_pages2_range(mapping,
2868 pos >> PAGE_SHIFT, end);
2870 * If a page can not be invalidated, return 0 to fall back
2871 * to buffered write.
2874 if (written == -EBUSY)
2879 written = mapping->a_ops->direct_IO(iocb, from);
2882 * Finally, try again to invalidate clean pages which might have been
2883 * cached by non-direct readahead, or faulted in by get_user_pages()
2884 * if the source of the write was an mmap'ed region of the file
2885 * we're writing. Either one is a pretty crazy thing to do,
2886 * so we don't support it 100%. If this invalidation
2887 * fails, tough, the write still worked...
2889 invalidate_inode_pages2_range(mapping,
2890 pos >> PAGE_SHIFT, end);
2894 write_len -= written;
2895 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2896 i_size_write(inode, pos);
2897 mark_inode_dirty(inode);
2901 iov_iter_revert(from, write_len - iov_iter_count(from));
2905 EXPORT_SYMBOL(generic_file_direct_write);
2908 * Find or create a page at the given pagecache position. Return the locked
2909 * page. This function is specifically for buffered writes.
2911 struct page *grab_cache_page_write_begin(struct address_space *mapping,
2912 pgoff_t index, unsigned flags)
2915 int fgp_flags = FGP_LOCK|FGP_WRITE|FGP_CREAT;
2917 if (flags & AOP_FLAG_NOFS)
2918 fgp_flags |= FGP_NOFS;
2920 page = pagecache_get_page(mapping, index, fgp_flags,
2921 mapping_gfp_mask(mapping));
2923 wait_for_stable_page(page);
2927 EXPORT_SYMBOL(grab_cache_page_write_begin);
2929 ssize_t generic_perform_write(struct file *file,
2930 struct iov_iter *i, loff_t pos)
2932 struct address_space *mapping = file->f_mapping;
2933 const struct address_space_operations *a_ops = mapping->a_ops;
2935 ssize_t written = 0;
2936 unsigned int flags = 0;
2940 unsigned long offset; /* Offset into pagecache page */
2941 unsigned long bytes; /* Bytes to write to page */
2942 size_t copied; /* Bytes copied from user */
2945 offset = (pos & (PAGE_SIZE - 1));
2946 bytes = min_t(unsigned long, PAGE_SIZE - offset,
2951 * Bring in the user page that we will copy from _first_.
2952 * Otherwise there's a nasty deadlock on copying from the
2953 * same page as we're writing to, without it being marked
2956 * Not only is this an optimisation, but it is also required
2957 * to check that the address is actually valid, when atomic
2958 * usercopies are used, below.
2960 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2965 if (fatal_signal_pending(current)) {
2970 status = a_ops->write_begin(file, mapping, pos, bytes, flags,
2972 if (unlikely(status < 0))
2975 if (mapping_writably_mapped(mapping))
2976 flush_dcache_page(page);
2978 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
2979 flush_dcache_page(page);
2981 status = a_ops->write_end(file, mapping, pos, bytes, copied,
2983 if (unlikely(status < 0))
2989 iov_iter_advance(i, copied);
2990 if (unlikely(copied == 0)) {
2992 * If we were unable to copy any data at all, we must
2993 * fall back to a single segment length write.
2995 * If we didn't fallback here, we could livelock
2996 * because not all segments in the iov can be copied at
2997 * once without a pagefault.
2999 bytes = min_t(unsigned long, PAGE_SIZE - offset,
3000 iov_iter_single_seg_count(i));
3006 balance_dirty_pages_ratelimited(mapping);
3007 } while (iov_iter_count(i));
3009 return written ? written : status;
3011 EXPORT_SYMBOL(generic_perform_write);
3014 * __generic_file_write_iter - write data to a file
3015 * @iocb: IO state structure (file, offset, etc.)
3016 * @from: iov_iter with data to write
3018 * This function does all the work needed for actually writing data to a
3019 * file. It does all basic checks, removes SUID from the file, updates
3020 * modification times and calls proper subroutines depending on whether we
3021 * do direct IO or a standard buffered write.
3023 * It expects i_mutex to be grabbed unless we work on a block device or similar
3024 * object which does not need locking at all.
3026 * This function does *not* take care of syncing data in case of O_SYNC write.
3027 * A caller has to handle it. This is mainly due to the fact that we want to
3028 * avoid syncing under i_mutex.
3030 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
3032 struct file *file = iocb->ki_filp;
3033 struct address_space * mapping = file->f_mapping;
3034 struct inode *inode = mapping->host;
3035 ssize_t written = 0;
3039 /* We can write back this queue in page reclaim */
3040 current->backing_dev_info = inode_to_bdi(inode);
3041 err = file_remove_privs(file);
3045 err = file_update_time(file);
3049 if (iocb->ki_flags & IOCB_DIRECT) {
3050 loff_t pos, endbyte;
3052 written = generic_file_direct_write(iocb, from);
3054 * If the write stopped short of completing, fall back to
3055 * buffered writes. Some filesystems do this for writes to
3056 * holes, for example. For DAX files, a buffered write will
3057 * not succeed (even if it did, DAX does not handle dirty
3058 * page-cache pages correctly).
3060 if (written < 0 || !iov_iter_count(from) || IS_DAX(inode))
3063 status = generic_perform_write(file, from, pos = iocb->ki_pos);
3065 * If generic_perform_write() returned a synchronous error
3066 * then we want to return the number of bytes which were
3067 * direct-written, or the error code if that was zero. Note
3068 * that this differs from normal direct-io semantics, which
3069 * will return -EFOO even if some bytes were written.
3071 if (unlikely(status < 0)) {
3076 * We need to ensure that the page cache pages are written to
3077 * disk and invalidated to preserve the expected O_DIRECT
3080 endbyte = pos + status - 1;
3081 err = filemap_write_and_wait_range(mapping, pos, endbyte);
3083 iocb->ki_pos = endbyte + 1;
3085 invalidate_mapping_pages(mapping,
3087 endbyte >> PAGE_SHIFT);
3090 * We don't know how much we wrote, so just return
3091 * the number of bytes which were direct-written
3095 written = generic_perform_write(file, from, iocb->ki_pos);
3096 if (likely(written > 0))
3097 iocb->ki_pos += written;
3100 current->backing_dev_info = NULL;
3101 return written ? written : err;
3103 EXPORT_SYMBOL(__generic_file_write_iter);
3106 * generic_file_write_iter - write data to a file
3107 * @iocb: IO state structure
3108 * @from: iov_iter with data to write
3110 * This is a wrapper around __generic_file_write_iter() to be used by most
3111 * filesystems. It takes care of syncing the file in case of O_SYNC file
3112 * and acquires i_mutex as needed.
3114 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
3116 struct file *file = iocb->ki_filp;
3117 struct inode *inode = file->f_mapping->host;
3121 ret = generic_write_checks(iocb, from);
3123 ret = __generic_file_write_iter(iocb, from);
3124 inode_unlock(inode);
3127 ret = generic_write_sync(iocb, ret);
3130 EXPORT_SYMBOL(generic_file_write_iter);
3133 * try_to_release_page() - release old fs-specific metadata on a page
3135 * @page: the page which the kernel is trying to free
3136 * @gfp_mask: memory allocation flags (and I/O mode)
3138 * The address_space is to try to release any data against the page
3139 * (presumably at page->private). If the release was successful, return '1'.
3140 * Otherwise return zero.
3142 * This may also be called if PG_fscache is set on a page, indicating that the
3143 * page is known to the local caching routines.
3145 * The @gfp_mask argument specifies whether I/O may be performed to release
3146 * this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS).
3149 int try_to_release_page(struct page *page, gfp_t gfp_mask)
3151 struct address_space * const mapping = page->mapping;
3153 BUG_ON(!PageLocked(page));
3154 if (PageWriteback(page))
3157 if (mapping && mapping->a_ops->releasepage)
3158 return mapping->a_ops->releasepage(page, gfp_mask);
3159 return try_to_free_buffers(page);
3162 EXPORT_SYMBOL(try_to_release_page);