1 // SPDX-License-Identifier: GPL-2.0-only
5 * Copyright (C) 1994-1999 Linus Torvalds
9 * This file handles the generic file mmap semantics used by
10 * most "normal" filesystems (but you don't /have/ to use this:
11 * the NFS filesystem used to do this differently, for example)
13 #include <linux/export.h>
14 #include <linux/compiler.h>
15 #include <linux/dax.h>
17 #include <linux/sched/signal.h>
18 #include <linux/uaccess.h>
19 #include <linux/capability.h>
20 #include <linux/kernel_stat.h>
21 #include <linux/gfp.h>
23 #include <linux/swap.h>
24 #include <linux/mman.h>
25 #include <linux/pagemap.h>
26 #include <linux/file.h>
27 #include <linux/uio.h>
28 #include <linux/error-injection.h>
29 #include <linux/hash.h>
30 #include <linux/writeback.h>
31 #include <linux/backing-dev.h>
32 #include <linux/pagevec.h>
33 #include <linux/blkdev.h>
34 #include <linux/security.h>
35 #include <linux/cpuset.h>
36 #include <linux/hugetlb.h>
37 #include <linux/memcontrol.h>
38 #include <linux/cleancache.h>
39 #include <linux/shmem_fs.h>
40 #include <linux/rmap.h>
41 #include <linux/delayacct.h>
42 #include <linux/psi.h>
43 #include <linux/ramfs.h>
44 #include <linux/page_idle.h>
47 #define CREATE_TRACE_POINTS
48 #include <trace/events/filemap.h>
51 * FIXME: remove all knowledge of the buffer layer from the core VM
53 #include <linux/buffer_head.h> /* for try_to_free_buffers */
58 * Shared mappings implemented 30.11.1994. It's not fully working yet,
61 * Shared mappings now work. 15.8.1995 Bruno.
63 * finished 'unifying' the page and buffer cache and SMP-threaded the
64 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
66 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
72 * ->i_mmap_rwsem (truncate_pagecache)
73 * ->private_lock (__free_pte->__set_page_dirty_buffers)
74 * ->swap_lock (exclusive_swap_page, others)
78 * ->i_mmap_rwsem (truncate->unmap_mapping_range)
82 * ->page_table_lock or pte_lock (various, mainly in memory.c)
83 * ->i_pages lock (arch-dependent flush_dcache_mmap_lock)
86 * ->lock_page (access_process_vm)
88 * ->i_mutex (generic_perform_write)
89 * ->mmap_lock (fault_in_pages_readable->do_page_fault)
92 * sb_lock (fs/fs-writeback.c)
93 * ->i_pages lock (__sync_single_inode)
96 * ->anon_vma.lock (vma_adjust)
99 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
101 * ->page_table_lock or pte_lock
102 * ->swap_lock (try_to_unmap_one)
103 * ->private_lock (try_to_unmap_one)
104 * ->i_pages lock (try_to_unmap_one)
105 * ->pgdat->lru_lock (follow_page->mark_page_accessed)
106 * ->pgdat->lru_lock (check_pte_range->isolate_lru_page)
107 * ->private_lock (page_remove_rmap->set_page_dirty)
108 * ->i_pages lock (page_remove_rmap->set_page_dirty)
109 * bdi.wb->list_lock (page_remove_rmap->set_page_dirty)
110 * ->inode->i_lock (page_remove_rmap->set_page_dirty)
111 * ->memcg->move_lock (page_remove_rmap->lock_page_memcg)
112 * bdi.wb->list_lock (zap_pte_range->set_page_dirty)
113 * ->inode->i_lock (zap_pte_range->set_page_dirty)
114 * ->private_lock (zap_pte_range->__set_page_dirty_buffers)
117 * ->tasklist_lock (memory_failure, collect_procs_ao)
120 static void page_cache_delete(struct address_space *mapping,
121 struct page *page, void *shadow)
123 XA_STATE(xas, &mapping->i_pages, page->index);
126 mapping_set_update(&xas, mapping);
128 /* hugetlb pages are represented by a single entry in the xarray */
129 if (!PageHuge(page)) {
130 xas_set_order(&xas, page->index, compound_order(page));
131 nr = compound_nr(page);
134 VM_BUG_ON_PAGE(!PageLocked(page), page);
135 VM_BUG_ON_PAGE(PageTail(page), page);
136 VM_BUG_ON_PAGE(nr != 1 && shadow, page);
138 xas_store(&xas, shadow);
139 xas_init_marks(&xas);
141 page->mapping = NULL;
142 /* Leave page->index set: truncation lookup relies upon it */
145 mapping->nrexceptional += nr;
147 * Make sure the nrexceptional update is committed before
148 * the nrpages update so that final truncate racing
149 * with reclaim does not see both counters 0 at the
150 * same time and miss a shadow entry.
154 mapping->nrpages -= nr;
157 static void unaccount_page_cache_page(struct address_space *mapping,
163 * if we're uptodate, flush out into the cleancache, otherwise
164 * invalidate any existing cleancache entries. We can't leave
165 * stale data around in the cleancache once our page is gone
167 if (PageUptodate(page) && PageMappedToDisk(page))
168 cleancache_put_page(page);
170 cleancache_invalidate_page(mapping, page);
172 VM_BUG_ON_PAGE(PageTail(page), page);
173 VM_BUG_ON_PAGE(page_mapped(page), page);
174 if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(page_mapped(page))) {
177 pr_alert("BUG: Bad page cache in process %s pfn:%05lx\n",
178 current->comm, page_to_pfn(page));
179 dump_page(page, "still mapped when deleted");
181 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
183 mapcount = page_mapcount(page);
184 if (mapping_exiting(mapping) &&
185 page_count(page) >= mapcount + 2) {
187 * All vmas have already been torn down, so it's
188 * a good bet that actually the page is unmapped,
189 * and we'd prefer not to leak it: if we're wrong,
190 * some other bad page check should catch it later.
192 page_mapcount_reset(page);
193 page_ref_sub(page, mapcount);
197 /* hugetlb pages do not participate in page cache accounting. */
201 nr = thp_nr_pages(page);
203 __mod_lruvec_page_state(page, NR_FILE_PAGES, -nr);
204 if (PageSwapBacked(page)) {
205 __mod_lruvec_page_state(page, NR_SHMEM, -nr);
206 if (PageTransHuge(page))
207 __dec_node_page_state(page, NR_SHMEM_THPS);
208 } else if (PageTransHuge(page)) {
209 __dec_node_page_state(page, NR_FILE_THPS);
210 filemap_nr_thps_dec(mapping);
214 * At this point page must be either written or cleaned by
215 * truncate. Dirty page here signals a bug and loss of
218 * This fixes dirty accounting after removing the page entirely
219 * but leaves PageDirty set: it has no effect for truncated
220 * page and anyway will be cleared before returning page into
223 if (WARN_ON_ONCE(PageDirty(page)))
224 account_page_cleaned(page, mapping, inode_to_wb(mapping->host));
228 * Delete a page from the page cache and free it. Caller has to make
229 * sure the page is locked and that nobody else uses it - or that usage
230 * is safe. The caller must hold the i_pages lock.
232 void __delete_from_page_cache(struct page *page, void *shadow)
234 struct address_space *mapping = page->mapping;
236 trace_mm_filemap_delete_from_page_cache(page);
238 unaccount_page_cache_page(mapping, page);
239 page_cache_delete(mapping, page, shadow);
242 static void page_cache_free_page(struct address_space *mapping,
245 void (*freepage)(struct page *);
247 freepage = mapping->a_ops->freepage;
251 if (PageTransHuge(page) && !PageHuge(page)) {
252 page_ref_sub(page, HPAGE_PMD_NR);
253 VM_BUG_ON_PAGE(page_count(page) <= 0, page);
260 * delete_from_page_cache - delete page from page cache
261 * @page: the page which the kernel is trying to remove from page cache
263 * This must be called only on pages that have been verified to be in the page
264 * cache and locked. It will never put the page into the free list, the caller
265 * has a reference on the page.
267 void delete_from_page_cache(struct page *page)
269 struct address_space *mapping = page_mapping(page);
272 BUG_ON(!PageLocked(page));
273 xa_lock_irqsave(&mapping->i_pages, flags);
274 __delete_from_page_cache(page, NULL);
275 xa_unlock_irqrestore(&mapping->i_pages, flags);
277 page_cache_free_page(mapping, page);
279 EXPORT_SYMBOL(delete_from_page_cache);
282 * page_cache_delete_batch - delete several pages from page cache
283 * @mapping: the mapping to which pages belong
284 * @pvec: pagevec with pages to delete
286 * The function walks over mapping->i_pages and removes pages passed in @pvec
287 * from the mapping. The function expects @pvec to be sorted by page index
288 * and is optimised for it to be dense.
289 * It tolerates holes in @pvec (mapping entries at those indices are not
290 * modified). The function expects only THP head pages to be present in the
293 * The function expects the i_pages lock to be held.
295 static void page_cache_delete_batch(struct address_space *mapping,
296 struct pagevec *pvec)
298 XA_STATE(xas, &mapping->i_pages, pvec->pages[0]->index);
303 mapping_set_update(&xas, mapping);
304 xas_for_each(&xas, page, ULONG_MAX) {
305 if (i >= pagevec_count(pvec))
308 /* A swap/dax/shadow entry got inserted? Skip it. */
309 if (xa_is_value(page))
312 * A page got inserted in our range? Skip it. We have our
313 * pages locked so they are protected from being removed.
314 * If we see a page whose index is higher than ours, it
315 * means our page has been removed, which shouldn't be
316 * possible because we're holding the PageLock.
318 if (page != pvec->pages[i]) {
319 VM_BUG_ON_PAGE(page->index > pvec->pages[i]->index,
324 WARN_ON_ONCE(!PageLocked(page));
326 if (page->index == xas.xa_index)
327 page->mapping = NULL;
328 /* Leave page->index set: truncation lookup relies on it */
331 * Move to the next page in the vector if this is a regular
332 * page or the index is of the last sub-page of this compound
335 if (page->index + compound_nr(page) - 1 == xas.xa_index)
337 xas_store(&xas, NULL);
340 mapping->nrpages -= total_pages;
343 void delete_from_page_cache_batch(struct address_space *mapping,
344 struct pagevec *pvec)
349 if (!pagevec_count(pvec))
352 xa_lock_irqsave(&mapping->i_pages, flags);
353 for (i = 0; i < pagevec_count(pvec); i++) {
354 trace_mm_filemap_delete_from_page_cache(pvec->pages[i]);
356 unaccount_page_cache_page(mapping, pvec->pages[i]);
358 page_cache_delete_batch(mapping, pvec);
359 xa_unlock_irqrestore(&mapping->i_pages, flags);
361 for (i = 0; i < pagevec_count(pvec); i++)
362 page_cache_free_page(mapping, pvec->pages[i]);
365 int filemap_check_errors(struct address_space *mapping)
368 /* Check for outstanding write errors */
369 if (test_bit(AS_ENOSPC, &mapping->flags) &&
370 test_and_clear_bit(AS_ENOSPC, &mapping->flags))
372 if (test_bit(AS_EIO, &mapping->flags) &&
373 test_and_clear_bit(AS_EIO, &mapping->flags))
377 EXPORT_SYMBOL(filemap_check_errors);
379 static int filemap_check_and_keep_errors(struct address_space *mapping)
381 /* Check for outstanding write errors */
382 if (test_bit(AS_EIO, &mapping->flags))
384 if (test_bit(AS_ENOSPC, &mapping->flags))
390 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
391 * @mapping: address space structure to write
392 * @start: offset in bytes where the range starts
393 * @end: offset in bytes where the range ends (inclusive)
394 * @sync_mode: enable synchronous operation
396 * Start writeback against all of a mapping's dirty pages that lie
397 * within the byte offsets <start, end> inclusive.
399 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
400 * opposed to a regular memory cleansing writeback. The difference between
401 * these two operations is that if a dirty page/buffer is encountered, it must
402 * be waited upon, and not just skipped over.
404 * Return: %0 on success, negative error code otherwise.
406 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
407 loff_t end, int sync_mode)
410 struct writeback_control wbc = {
411 .sync_mode = sync_mode,
412 .nr_to_write = LONG_MAX,
413 .range_start = start,
417 if (!mapping_cap_writeback_dirty(mapping) ||
418 !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
421 wbc_attach_fdatawrite_inode(&wbc, mapping->host);
422 ret = do_writepages(mapping, &wbc);
423 wbc_detach_inode(&wbc);
427 static inline int __filemap_fdatawrite(struct address_space *mapping,
430 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
433 int filemap_fdatawrite(struct address_space *mapping)
435 return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
437 EXPORT_SYMBOL(filemap_fdatawrite);
439 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
442 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
444 EXPORT_SYMBOL(filemap_fdatawrite_range);
447 * filemap_flush - mostly a non-blocking flush
448 * @mapping: target address_space
450 * This is a mostly non-blocking flush. Not suitable for data-integrity
451 * purposes - I/O may not be started against all dirty pages.
453 * Return: %0 on success, negative error code otherwise.
455 int filemap_flush(struct address_space *mapping)
457 return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
459 EXPORT_SYMBOL(filemap_flush);
462 * filemap_range_has_page - check if a page exists in range.
463 * @mapping: address space within which to check
464 * @start_byte: offset in bytes where the range starts
465 * @end_byte: offset in bytes where the range ends (inclusive)
467 * Find at least one page in the range supplied, usually used to check if
468 * direct writing in this range will trigger a writeback.
470 * Return: %true if at least one page exists in the specified range,
473 bool filemap_range_has_page(struct address_space *mapping,
474 loff_t start_byte, loff_t end_byte)
477 XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT);
478 pgoff_t max = end_byte >> PAGE_SHIFT;
480 if (end_byte < start_byte)
485 page = xas_find(&xas, max);
486 if (xas_retry(&xas, page))
488 /* Shadow entries don't count */
489 if (xa_is_value(page))
492 * We don't need to try to pin this page; we're about to
493 * release the RCU lock anyway. It is enough to know that
494 * there was a page here recently.
502 EXPORT_SYMBOL(filemap_range_has_page);
504 static void __filemap_fdatawait_range(struct address_space *mapping,
505 loff_t start_byte, loff_t end_byte)
507 pgoff_t index = start_byte >> PAGE_SHIFT;
508 pgoff_t end = end_byte >> PAGE_SHIFT;
512 if (end_byte < start_byte)
516 while (index <= end) {
519 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index,
520 end, PAGECACHE_TAG_WRITEBACK);
524 for (i = 0; i < nr_pages; i++) {
525 struct page *page = pvec.pages[i];
527 wait_on_page_writeback(page);
528 ClearPageError(page);
530 pagevec_release(&pvec);
536 * filemap_fdatawait_range - wait for writeback to complete
537 * @mapping: address space structure to wait for
538 * @start_byte: offset in bytes where the range starts
539 * @end_byte: offset in bytes where the range ends (inclusive)
541 * Walk the list of under-writeback pages of the given address space
542 * in the given range and wait for all of them. Check error status of
543 * the address space and return it.
545 * Since the error status of the address space is cleared by this function,
546 * callers are responsible for checking the return value and handling and/or
547 * reporting the error.
549 * Return: error status of the address space.
551 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
554 __filemap_fdatawait_range(mapping, start_byte, end_byte);
555 return filemap_check_errors(mapping);
557 EXPORT_SYMBOL(filemap_fdatawait_range);
560 * filemap_fdatawait_range_keep_errors - wait for writeback to complete
561 * @mapping: address space structure to wait for
562 * @start_byte: offset in bytes where the range starts
563 * @end_byte: offset in bytes where the range ends (inclusive)
565 * Walk the list of under-writeback pages of the given address space in the
566 * given range and wait for all of them. Unlike filemap_fdatawait_range(),
567 * this function does not clear error status of the address space.
569 * Use this function if callers don't handle errors themselves. Expected
570 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
573 int filemap_fdatawait_range_keep_errors(struct address_space *mapping,
574 loff_t start_byte, loff_t end_byte)
576 __filemap_fdatawait_range(mapping, start_byte, end_byte);
577 return filemap_check_and_keep_errors(mapping);
579 EXPORT_SYMBOL(filemap_fdatawait_range_keep_errors);
582 * file_fdatawait_range - wait for writeback to complete
583 * @file: file pointing to address space structure to wait for
584 * @start_byte: offset in bytes where the range starts
585 * @end_byte: offset in bytes where the range ends (inclusive)
587 * Walk the list of under-writeback pages of the address space that file
588 * refers to, in the given range and wait for all of them. Check error
589 * status of the address space vs. the file->f_wb_err cursor and return it.
591 * Since the error status of the file is advanced by this function,
592 * callers are responsible for checking the return value and handling and/or
593 * reporting the error.
595 * Return: error status of the address space vs. the file->f_wb_err cursor.
597 int file_fdatawait_range(struct file *file, loff_t start_byte, loff_t end_byte)
599 struct address_space *mapping = file->f_mapping;
601 __filemap_fdatawait_range(mapping, start_byte, end_byte);
602 return file_check_and_advance_wb_err(file);
604 EXPORT_SYMBOL(file_fdatawait_range);
607 * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
608 * @mapping: address space structure to wait for
610 * Walk the list of under-writeback pages of the given address space
611 * and wait for all of them. Unlike filemap_fdatawait(), this function
612 * does not clear error status of the address space.
614 * Use this function if callers don't handle errors themselves. Expected
615 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
618 * Return: error status of the address space.
620 int filemap_fdatawait_keep_errors(struct address_space *mapping)
622 __filemap_fdatawait_range(mapping, 0, LLONG_MAX);
623 return filemap_check_and_keep_errors(mapping);
625 EXPORT_SYMBOL(filemap_fdatawait_keep_errors);
627 /* Returns true if writeback might be needed or already in progress. */
628 static bool mapping_needs_writeback(struct address_space *mapping)
630 if (dax_mapping(mapping))
631 return mapping->nrexceptional;
633 return mapping->nrpages;
637 * filemap_write_and_wait_range - write out & wait on a file range
638 * @mapping: the address_space for the pages
639 * @lstart: offset in bytes where the range starts
640 * @lend: offset in bytes where the range ends (inclusive)
642 * Write out and wait upon file offsets lstart->lend, inclusive.
644 * Note that @lend is inclusive (describes the last byte to be written) so
645 * that this function can be used to write to the very end-of-file (end = -1).
647 * Return: error status of the address space.
649 int filemap_write_and_wait_range(struct address_space *mapping,
650 loff_t lstart, loff_t lend)
654 if (mapping_needs_writeback(mapping)) {
655 err = __filemap_fdatawrite_range(mapping, lstart, lend,
658 * Even if the above returned error, the pages may be
659 * written partially (e.g. -ENOSPC), so we wait for it.
660 * But the -EIO is special case, it may indicate the worst
661 * thing (e.g. bug) happened, so we avoid waiting for it.
664 int err2 = filemap_fdatawait_range(mapping,
669 /* Clear any previously stored errors */
670 filemap_check_errors(mapping);
673 err = filemap_check_errors(mapping);
677 EXPORT_SYMBOL(filemap_write_and_wait_range);
679 void __filemap_set_wb_err(struct address_space *mapping, int err)
681 errseq_t eseq = errseq_set(&mapping->wb_err, err);
683 trace_filemap_set_wb_err(mapping, eseq);
685 EXPORT_SYMBOL(__filemap_set_wb_err);
688 * file_check_and_advance_wb_err - report wb error (if any) that was previously
689 * and advance wb_err to current one
690 * @file: struct file on which the error is being reported
692 * When userland calls fsync (or something like nfsd does the equivalent), we
693 * want to report any writeback errors that occurred since the last fsync (or
694 * since the file was opened if there haven't been any).
696 * Grab the wb_err from the mapping. If it matches what we have in the file,
697 * then just quickly return 0. The file is all caught up.
699 * If it doesn't match, then take the mapping value, set the "seen" flag in
700 * it and try to swap it into place. If it works, or another task beat us
701 * to it with the new value, then update the f_wb_err and return the error
702 * portion. The error at this point must be reported via proper channels
703 * (a'la fsync, or NFS COMMIT operation, etc.).
705 * While we handle mapping->wb_err with atomic operations, the f_wb_err
706 * value is protected by the f_lock since we must ensure that it reflects
707 * the latest value swapped in for this file descriptor.
709 * Return: %0 on success, negative error code otherwise.
711 int file_check_and_advance_wb_err(struct file *file)
714 errseq_t old = READ_ONCE(file->f_wb_err);
715 struct address_space *mapping = file->f_mapping;
717 /* Locklessly handle the common case where nothing has changed */
718 if (errseq_check(&mapping->wb_err, old)) {
719 /* Something changed, must use slow path */
720 spin_lock(&file->f_lock);
721 old = file->f_wb_err;
722 err = errseq_check_and_advance(&mapping->wb_err,
724 trace_file_check_and_advance_wb_err(file, old);
725 spin_unlock(&file->f_lock);
729 * We're mostly using this function as a drop in replacement for
730 * filemap_check_errors. Clear AS_EIO/AS_ENOSPC to emulate the effect
731 * that the legacy code would have had on these flags.
733 clear_bit(AS_EIO, &mapping->flags);
734 clear_bit(AS_ENOSPC, &mapping->flags);
737 EXPORT_SYMBOL(file_check_and_advance_wb_err);
740 * file_write_and_wait_range - write out & wait on a file range
741 * @file: file pointing to address_space with pages
742 * @lstart: offset in bytes where the range starts
743 * @lend: offset in bytes where the range ends (inclusive)
745 * Write out and wait upon file offsets lstart->lend, inclusive.
747 * Note that @lend is inclusive (describes the last byte to be written) so
748 * that this function can be used to write to the very end-of-file (end = -1).
750 * After writing out and waiting on the data, we check and advance the
751 * f_wb_err cursor to the latest value, and return any errors detected there.
753 * Return: %0 on success, negative error code otherwise.
755 int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend)
758 struct address_space *mapping = file->f_mapping;
760 if (mapping_needs_writeback(mapping)) {
761 err = __filemap_fdatawrite_range(mapping, lstart, lend,
763 /* See comment of filemap_write_and_wait() */
765 __filemap_fdatawait_range(mapping, lstart, lend);
767 err2 = file_check_and_advance_wb_err(file);
772 EXPORT_SYMBOL(file_write_and_wait_range);
775 * replace_page_cache_page - replace a pagecache page with a new one
776 * @old: page to be replaced
777 * @new: page to replace with
778 * @gfp_mask: allocation mode
780 * This function replaces a page in the pagecache with a new one. On
781 * success it acquires the pagecache reference for the new page and
782 * drops it for the old page. Both the old and new pages must be
783 * locked. This function does not add the new page to the LRU, the
784 * caller must do that.
786 * The remove + add is atomic. This function cannot fail.
790 int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
792 struct address_space *mapping = old->mapping;
793 void (*freepage)(struct page *) = mapping->a_ops->freepage;
794 pgoff_t offset = old->index;
795 XA_STATE(xas, &mapping->i_pages, offset);
798 VM_BUG_ON_PAGE(!PageLocked(old), old);
799 VM_BUG_ON_PAGE(!PageLocked(new), new);
800 VM_BUG_ON_PAGE(new->mapping, new);
803 new->mapping = mapping;
806 mem_cgroup_migrate(old, new);
808 xas_lock_irqsave(&xas, flags);
809 xas_store(&xas, new);
812 /* hugetlb pages do not participate in page cache accounting. */
814 __dec_lruvec_page_state(old, NR_FILE_PAGES);
816 __inc_lruvec_page_state(new, NR_FILE_PAGES);
817 if (PageSwapBacked(old))
818 __dec_lruvec_page_state(old, NR_SHMEM);
819 if (PageSwapBacked(new))
820 __inc_lruvec_page_state(new, NR_SHMEM);
821 xas_unlock_irqrestore(&xas, flags);
828 EXPORT_SYMBOL_GPL(replace_page_cache_page);
830 static int __add_to_page_cache_locked(struct page *page,
831 struct address_space *mapping,
832 pgoff_t offset, gfp_t gfp_mask,
835 XA_STATE(xas, &mapping->i_pages, offset);
836 int huge = PageHuge(page);
840 VM_BUG_ON_PAGE(!PageLocked(page), page);
841 VM_BUG_ON_PAGE(PageSwapBacked(page), page);
842 mapping_set_update(&xas, mapping);
845 page->mapping = mapping;
846 page->index = offset;
849 error = mem_cgroup_charge(page, current->mm, gfp_mask);
856 old = xas_load(&xas);
857 if (old && !xa_is_value(old))
858 xas_set_err(&xas, -EEXIST);
859 xas_store(&xas, page);
863 if (xa_is_value(old)) {
864 mapping->nrexceptional--;
870 /* hugetlb pages do not participate in page cache accounting */
872 __inc_lruvec_page_state(page, NR_FILE_PAGES);
874 xas_unlock_irq(&xas);
875 } while (xas_nomem(&xas, gfp_mask & GFP_RECLAIM_MASK));
877 if (xas_error(&xas)) {
878 error = xas_error(&xas);
882 trace_mm_filemap_add_to_page_cache(page);
885 page->mapping = NULL;
886 /* Leave page->index set: truncation relies upon it */
890 ALLOW_ERROR_INJECTION(__add_to_page_cache_locked, ERRNO);
893 * add_to_page_cache_locked - add a locked page to the pagecache
895 * @mapping: the page's address_space
896 * @offset: page index
897 * @gfp_mask: page allocation mode
899 * This function is used to add a page to the pagecache. It must be locked.
900 * This function does not add the page to the LRU. The caller must do that.
902 * Return: %0 on success, negative error code otherwise.
904 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
905 pgoff_t offset, gfp_t gfp_mask)
907 return __add_to_page_cache_locked(page, mapping, offset,
910 EXPORT_SYMBOL(add_to_page_cache_locked);
912 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
913 pgoff_t offset, gfp_t gfp_mask)
918 __SetPageLocked(page);
919 ret = __add_to_page_cache_locked(page, mapping, offset,
922 __ClearPageLocked(page);
925 * The page might have been evicted from cache only
926 * recently, in which case it should be activated like
927 * any other repeatedly accessed page.
928 * The exception is pages getting rewritten; evicting other
929 * data from the working set, only to cache data that will
930 * get overwritten with something else, is a waste of memory.
932 WARN_ON_ONCE(PageActive(page));
933 if (!(gfp_mask & __GFP_WRITE) && shadow)
934 workingset_refault(page, shadow);
939 EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
942 struct page *__page_cache_alloc(gfp_t gfp)
947 if (cpuset_do_page_mem_spread()) {
948 unsigned int cpuset_mems_cookie;
950 cpuset_mems_cookie = read_mems_allowed_begin();
951 n = cpuset_mem_spread_node();
952 page = __alloc_pages_node(n, gfp, 0);
953 } while (!page && read_mems_allowed_retry(cpuset_mems_cookie));
957 return alloc_pages(gfp, 0);
959 EXPORT_SYMBOL(__page_cache_alloc);
963 * In order to wait for pages to become available there must be
964 * waitqueues associated with pages. By using a hash table of
965 * waitqueues where the bucket discipline is to maintain all
966 * waiters on the same queue and wake all when any of the pages
967 * become available, and for the woken contexts to check to be
968 * sure the appropriate page became available, this saves space
969 * at a cost of "thundering herd" phenomena during rare hash
972 #define PAGE_WAIT_TABLE_BITS 8
973 #define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS)
974 static wait_queue_head_t page_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned;
976 static wait_queue_head_t *page_waitqueue(struct page *page)
978 return &page_wait_table[hash_ptr(page, PAGE_WAIT_TABLE_BITS)];
981 void __init pagecache_init(void)
985 for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++)
986 init_waitqueue_head(&page_wait_table[i]);
988 page_writeback_init();
992 * The page wait code treats the "wait->flags" somewhat unusually, because
993 * we have multiple different kinds of waits, not just the usual "exclusive"
998 * (a) no special bits set:
1000 * We're just waiting for the bit to be released, and when a waker
1001 * calls the wakeup function, we set WQ_FLAG_WOKEN and wake it up,
1002 * and remove it from the wait queue.
1004 * Simple and straightforward.
1006 * (b) WQ_FLAG_EXCLUSIVE:
1008 * The waiter is waiting to get the lock, and only one waiter should
1009 * be woken up to avoid any thundering herd behavior. We'll set the
1010 * WQ_FLAG_WOKEN bit, wake it up, and remove it from the wait queue.
1012 * This is the traditional exclusive wait.
1014 * (c) WQ_FLAG_EXCLUSIVE | WQ_FLAG_CUSTOM:
1016 * The waiter is waiting to get the bit, and additionally wants the
1017 * lock to be transferred to it for fair lock behavior. If the lock
1018 * cannot be taken, we stop walking the wait queue without waking
1021 * This is the "fair lock handoff" case, and in addition to setting
1022 * WQ_FLAG_WOKEN, we set WQ_FLAG_DONE to let the waiter easily see
1023 * that it now has the lock.
1025 static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg)
1028 struct wait_page_key *key = arg;
1029 struct wait_page_queue *wait_page
1030 = container_of(wait, struct wait_page_queue, wait);
1032 if (!wake_page_match(wait_page, key))
1036 * If it's a lock handoff wait, we get the bit for it, and
1037 * stop walking (and do not wake it up) if we can't.
1039 flags = wait->flags;
1040 if (flags & WQ_FLAG_EXCLUSIVE) {
1041 if (test_bit(key->bit_nr, &key->page->flags))
1043 if (flags & WQ_FLAG_CUSTOM) {
1044 if (test_and_set_bit(key->bit_nr, &key->page->flags))
1046 flags |= WQ_FLAG_DONE;
1051 * We are holding the wait-queue lock, but the waiter that
1052 * is waiting for this will be checking the flags without
1055 * So update the flags atomically, and wake up the waiter
1056 * afterwards to avoid any races. This store-release pairs
1057 * with the load-acquire in wait_on_page_bit_common().
1059 smp_store_release(&wait->flags, flags | WQ_FLAG_WOKEN);
1060 wake_up_state(wait->private, mode);
1063 * Ok, we have successfully done what we're waiting for,
1064 * and we can unconditionally remove the wait entry.
1066 * Note that this pairs with the "finish_wait()" in the
1067 * waiter, and has to be the absolute last thing we do.
1068 * After this list_del_init(&wait->entry) the wait entry
1069 * might be de-allocated and the process might even have
1072 list_del_init_careful(&wait->entry);
1073 return (flags & WQ_FLAG_EXCLUSIVE) != 0;
1076 static void wake_up_page_bit(struct page *page, int bit_nr)
1078 wait_queue_head_t *q = page_waitqueue(page);
1079 struct wait_page_key key;
1080 unsigned long flags;
1081 wait_queue_entry_t bookmark;
1084 key.bit_nr = bit_nr;
1088 bookmark.private = NULL;
1089 bookmark.func = NULL;
1090 INIT_LIST_HEAD(&bookmark.entry);
1092 spin_lock_irqsave(&q->lock, flags);
1093 __wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
1095 while (bookmark.flags & WQ_FLAG_BOOKMARK) {
1097 * Take a breather from holding the lock,
1098 * allow pages that finish wake up asynchronously
1099 * to acquire the lock and remove themselves
1102 spin_unlock_irqrestore(&q->lock, flags);
1104 spin_lock_irqsave(&q->lock, flags);
1105 __wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
1109 * It is possible for other pages to have collided on the waitqueue
1110 * hash, so in that case check for a page match. That prevents a long-
1113 * It is still possible to miss a case here, when we woke page waiters
1114 * and removed them from the waitqueue, but there are still other
1117 if (!waitqueue_active(q) || !key.page_match) {
1118 ClearPageWaiters(page);
1120 * It's possible to miss clearing Waiters here, when we woke
1121 * our page waiters, but the hashed waitqueue has waiters for
1122 * other pages on it.
1124 * That's okay, it's a rare case. The next waker will clear it.
1127 spin_unlock_irqrestore(&q->lock, flags);
1130 static void wake_up_page(struct page *page, int bit)
1132 if (!PageWaiters(page))
1134 wake_up_page_bit(page, bit);
1138 * A choice of three behaviors for wait_on_page_bit_common():
1141 EXCLUSIVE, /* Hold ref to page and take the bit when woken, like
1142 * __lock_page() waiting on then setting PG_locked.
1144 SHARED, /* Hold ref to page and check the bit when woken, like
1145 * wait_on_page_writeback() waiting on PG_writeback.
1147 DROP, /* Drop ref to page before wait, no check when woken,
1148 * like put_and_wait_on_page_locked() on PG_locked.
1153 * Attempt to check (or get) the page bit, and mark us done
1156 static inline bool trylock_page_bit_common(struct page *page, int bit_nr,
1157 struct wait_queue_entry *wait)
1159 if (wait->flags & WQ_FLAG_EXCLUSIVE) {
1160 if (test_and_set_bit(bit_nr, &page->flags))
1162 } else if (test_bit(bit_nr, &page->flags))
1165 wait->flags |= WQ_FLAG_WOKEN | WQ_FLAG_DONE;
1169 /* How many times do we accept lock stealing from under a waiter? */
1170 int sysctl_page_lock_unfairness = 5;
1172 static inline int wait_on_page_bit_common(wait_queue_head_t *q,
1173 struct page *page, int bit_nr, int state, enum behavior behavior)
1175 int unfairness = sysctl_page_lock_unfairness;
1176 struct wait_page_queue wait_page;
1177 wait_queue_entry_t *wait = &wait_page.wait;
1178 bool thrashing = false;
1179 bool delayacct = false;
1180 unsigned long pflags;
1182 if (bit_nr == PG_locked &&
1183 !PageUptodate(page) && PageWorkingset(page)) {
1184 if (!PageSwapBacked(page)) {
1185 delayacct_thrashing_start();
1188 psi_memstall_enter(&pflags);
1193 wait->func = wake_page_function;
1194 wait_page.page = page;
1195 wait_page.bit_nr = bit_nr;
1199 if (behavior == EXCLUSIVE) {
1200 wait->flags = WQ_FLAG_EXCLUSIVE;
1201 if (--unfairness < 0)
1202 wait->flags |= WQ_FLAG_CUSTOM;
1206 * Do one last check whether we can get the
1207 * page bit synchronously.
1209 * Do the SetPageWaiters() marking before that
1210 * to let any waker we _just_ missed know they
1211 * need to wake us up (otherwise they'll never
1212 * even go to the slow case that looks at the
1213 * page queue), and add ourselves to the wait
1214 * queue if we need to sleep.
1216 * This part needs to be done under the queue
1217 * lock to avoid races.
1219 spin_lock_irq(&q->lock);
1220 SetPageWaiters(page);
1221 if (!trylock_page_bit_common(page, bit_nr, wait))
1222 __add_wait_queue_entry_tail(q, wait);
1223 spin_unlock_irq(&q->lock);
1226 * From now on, all the logic will be based on
1227 * the WQ_FLAG_WOKEN and WQ_FLAG_DONE flag, to
1228 * see whether the page bit testing has already
1229 * been done by the wake function.
1231 * We can drop our reference to the page.
1233 if (behavior == DROP)
1237 * Note that until the "finish_wait()", or until
1238 * we see the WQ_FLAG_WOKEN flag, we need to
1239 * be very careful with the 'wait->flags', because
1240 * we may race with a waker that sets them.
1245 set_current_state(state);
1247 /* Loop until we've been woken or interrupted */
1248 flags = smp_load_acquire(&wait->flags);
1249 if (!(flags & WQ_FLAG_WOKEN)) {
1250 if (signal_pending_state(state, current))
1257 /* If we were non-exclusive, we're done */
1258 if (behavior != EXCLUSIVE)
1261 /* If the waker got the lock for us, we're done */
1262 if (flags & WQ_FLAG_DONE)
1266 * Otherwise, if we're getting the lock, we need to
1267 * try to get it ourselves.
1269 * And if that fails, we'll have to retry this all.
1271 if (unlikely(test_and_set_bit(bit_nr, &page->flags)))
1274 wait->flags |= WQ_FLAG_DONE;
1279 * If a signal happened, this 'finish_wait()' may remove the last
1280 * waiter from the wait-queues, but the PageWaiters bit will remain
1281 * set. That's ok. The next wakeup will take care of it, and trying
1282 * to do it here would be difficult and prone to races.
1284 finish_wait(q, wait);
1288 delayacct_thrashing_end();
1289 psi_memstall_leave(&pflags);
1293 * NOTE! The wait->flags weren't stable until we've done the
1294 * 'finish_wait()', and we could have exited the loop above due
1295 * to a signal, and had a wakeup event happen after the signal
1296 * test but before the 'finish_wait()'.
1298 * So only after the finish_wait() can we reliably determine
1299 * if we got woken up or not, so we can now figure out the final
1300 * return value based on that state without races.
1302 * Also note that WQ_FLAG_WOKEN is sufficient for a non-exclusive
1303 * waiter, but an exclusive one requires WQ_FLAG_DONE.
1305 if (behavior == EXCLUSIVE)
1306 return wait->flags & WQ_FLAG_DONE ? 0 : -EINTR;
1308 return wait->flags & WQ_FLAG_WOKEN ? 0 : -EINTR;
1311 void wait_on_page_bit(struct page *page, int bit_nr)
1313 wait_queue_head_t *q = page_waitqueue(page);
1314 wait_on_page_bit_common(q, page, bit_nr, TASK_UNINTERRUPTIBLE, SHARED);
1316 EXPORT_SYMBOL(wait_on_page_bit);
1318 int wait_on_page_bit_killable(struct page *page, int bit_nr)
1320 wait_queue_head_t *q = page_waitqueue(page);
1321 return wait_on_page_bit_common(q, page, bit_nr, TASK_KILLABLE, SHARED);
1323 EXPORT_SYMBOL(wait_on_page_bit_killable);
1325 static int __wait_on_page_locked_async(struct page *page,
1326 struct wait_page_queue *wait, bool set)
1328 struct wait_queue_head *q = page_waitqueue(page);
1332 wait->bit_nr = PG_locked;
1334 spin_lock_irq(&q->lock);
1335 __add_wait_queue_entry_tail(q, &wait->wait);
1336 SetPageWaiters(page);
1338 ret = !trylock_page(page);
1340 ret = PageLocked(page);
1342 * If we were succesful now, we know we're still on the
1343 * waitqueue as we're still under the lock. This means it's
1344 * safe to remove and return success, we know the callback
1345 * isn't going to trigger.
1348 __remove_wait_queue(q, &wait->wait);
1351 spin_unlock_irq(&q->lock);
1355 static int wait_on_page_locked_async(struct page *page,
1356 struct wait_page_queue *wait)
1358 if (!PageLocked(page))
1360 return __wait_on_page_locked_async(compound_head(page), wait, false);
1364 * put_and_wait_on_page_locked - Drop a reference and wait for it to be unlocked
1365 * @page: The page to wait for.
1367 * The caller should hold a reference on @page. They expect the page to
1368 * become unlocked relatively soon, but do not wish to hold up migration
1369 * (for example) by holding the reference while waiting for the page to
1370 * come unlocked. After this function returns, the caller should not
1371 * dereference @page.
1373 void put_and_wait_on_page_locked(struct page *page)
1375 wait_queue_head_t *q;
1377 page = compound_head(page);
1378 q = page_waitqueue(page);
1379 wait_on_page_bit_common(q, page, PG_locked, TASK_UNINTERRUPTIBLE, DROP);
1383 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
1384 * @page: Page defining the wait queue of interest
1385 * @waiter: Waiter to add to the queue
1387 * Add an arbitrary @waiter to the wait queue for the nominated @page.
1389 void add_page_wait_queue(struct page *page, wait_queue_entry_t *waiter)
1391 wait_queue_head_t *q = page_waitqueue(page);
1392 unsigned long flags;
1394 spin_lock_irqsave(&q->lock, flags);
1395 __add_wait_queue_entry_tail(q, waiter);
1396 SetPageWaiters(page);
1397 spin_unlock_irqrestore(&q->lock, flags);
1399 EXPORT_SYMBOL_GPL(add_page_wait_queue);
1401 #ifndef clear_bit_unlock_is_negative_byte
1404 * PG_waiters is the high bit in the same byte as PG_lock.
1406 * On x86 (and on many other architectures), we can clear PG_lock and
1407 * test the sign bit at the same time. But if the architecture does
1408 * not support that special operation, we just do this all by hand
1411 * The read of PG_waiters has to be after (or concurrently with) PG_locked
1412 * being cleared, but a memory barrier should be unnecessary since it is
1413 * in the same byte as PG_locked.
1415 static inline bool clear_bit_unlock_is_negative_byte(long nr, volatile void *mem)
1417 clear_bit_unlock(nr, mem);
1418 /* smp_mb__after_atomic(); */
1419 return test_bit(PG_waiters, mem);
1425 * unlock_page - unlock a locked page
1428 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
1429 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
1430 * mechanism between PageLocked pages and PageWriteback pages is shared.
1431 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
1433 * Note that this depends on PG_waiters being the sign bit in the byte
1434 * that contains PG_locked - thus the BUILD_BUG_ON(). That allows us to
1435 * clear the PG_locked bit and test PG_waiters at the same time fairly
1436 * portably (architectures that do LL/SC can test any bit, while x86 can
1437 * test the sign bit).
1439 void unlock_page(struct page *page)
1441 BUILD_BUG_ON(PG_waiters != 7);
1442 page = compound_head(page);
1443 VM_BUG_ON_PAGE(!PageLocked(page), page);
1444 if (clear_bit_unlock_is_negative_byte(PG_locked, &page->flags))
1445 wake_up_page_bit(page, PG_locked);
1447 EXPORT_SYMBOL(unlock_page);
1450 * end_page_writeback - end writeback against a page
1453 void end_page_writeback(struct page *page)
1456 * TestClearPageReclaim could be used here but it is an atomic
1457 * operation and overkill in this particular case. Failing to
1458 * shuffle a page marked for immediate reclaim is too mild to
1459 * justify taking an atomic operation penalty at the end of
1460 * ever page writeback.
1462 if (PageReclaim(page)) {
1463 ClearPageReclaim(page);
1464 rotate_reclaimable_page(page);
1467 if (!test_clear_page_writeback(page))
1470 smp_mb__after_atomic();
1471 wake_up_page(page, PG_writeback);
1473 EXPORT_SYMBOL(end_page_writeback);
1476 * After completing I/O on a page, call this routine to update the page
1477 * flags appropriately
1479 void page_endio(struct page *page, bool is_write, int err)
1483 SetPageUptodate(page);
1485 ClearPageUptodate(page);
1491 struct address_space *mapping;
1494 mapping = page_mapping(page);
1496 mapping_set_error(mapping, err);
1498 end_page_writeback(page);
1501 EXPORT_SYMBOL_GPL(page_endio);
1504 * __lock_page - get a lock on the page, assuming we need to sleep to get it
1505 * @__page: the page to lock
1507 void __lock_page(struct page *__page)
1509 struct page *page = compound_head(__page);
1510 wait_queue_head_t *q = page_waitqueue(page);
1511 wait_on_page_bit_common(q, page, PG_locked, TASK_UNINTERRUPTIBLE,
1514 EXPORT_SYMBOL(__lock_page);
1516 int __lock_page_killable(struct page *__page)
1518 struct page *page = compound_head(__page);
1519 wait_queue_head_t *q = page_waitqueue(page);
1520 return wait_on_page_bit_common(q, page, PG_locked, TASK_KILLABLE,
1523 EXPORT_SYMBOL_GPL(__lock_page_killable);
1525 int __lock_page_async(struct page *page, struct wait_page_queue *wait)
1527 return __wait_on_page_locked_async(page, wait, true);
1532 * 1 - page is locked; mmap_lock is still held.
1533 * 0 - page is not locked.
1534 * mmap_lock has been released (mmap_read_unlock(), unless flags had both
1535 * FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
1536 * which case mmap_lock is still held.
1538 * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1
1539 * with the page locked and the mmap_lock unperturbed.
1541 int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
1544 if (fault_flag_allow_retry_first(flags)) {
1546 * CAUTION! In this case, mmap_lock is not released
1547 * even though return 0.
1549 if (flags & FAULT_FLAG_RETRY_NOWAIT)
1552 mmap_read_unlock(mm);
1553 if (flags & FAULT_FLAG_KILLABLE)
1554 wait_on_page_locked_killable(page);
1556 wait_on_page_locked(page);
1559 if (flags & FAULT_FLAG_KILLABLE) {
1562 ret = __lock_page_killable(page);
1564 mmap_read_unlock(mm);
1574 * page_cache_next_miss() - Find the next gap in the page cache.
1575 * @mapping: Mapping.
1577 * @max_scan: Maximum range to search.
1579 * Search the range [index, min(index + max_scan - 1, ULONG_MAX)] for the
1580 * gap with the lowest index.
1582 * This function may be called under the rcu_read_lock. However, this will
1583 * not atomically search a snapshot of the cache at a single point in time.
1584 * For example, if a gap is created at index 5, then subsequently a gap is
1585 * created at index 10, page_cache_next_miss covering both indices may
1586 * return 10 if called under the rcu_read_lock.
1588 * Return: The index of the gap if found, otherwise an index outside the
1589 * range specified (in which case 'return - index >= max_scan' will be true).
1590 * In the rare case of index wrap-around, 0 will be returned.
1592 pgoff_t page_cache_next_miss(struct address_space *mapping,
1593 pgoff_t index, unsigned long max_scan)
1595 XA_STATE(xas, &mapping->i_pages, index);
1597 while (max_scan--) {
1598 void *entry = xas_next(&xas);
1599 if (!entry || xa_is_value(entry))
1601 if (xas.xa_index == 0)
1605 return xas.xa_index;
1607 EXPORT_SYMBOL(page_cache_next_miss);
1610 * page_cache_prev_miss() - Find the previous gap in the page cache.
1611 * @mapping: Mapping.
1613 * @max_scan: Maximum range to search.
1615 * Search the range [max(index - max_scan + 1, 0), index] for the
1616 * gap with the highest index.
1618 * This function may be called under the rcu_read_lock. However, this will
1619 * not atomically search a snapshot of the cache at a single point in time.
1620 * For example, if a gap is created at index 10, then subsequently a gap is
1621 * created at index 5, page_cache_prev_miss() covering both indices may
1622 * return 5 if called under the rcu_read_lock.
1624 * Return: The index of the gap if found, otherwise an index outside the
1625 * range specified (in which case 'index - return >= max_scan' will be true).
1626 * In the rare case of wrap-around, ULONG_MAX will be returned.
1628 pgoff_t page_cache_prev_miss(struct address_space *mapping,
1629 pgoff_t index, unsigned long max_scan)
1631 XA_STATE(xas, &mapping->i_pages, index);
1633 while (max_scan--) {
1634 void *entry = xas_prev(&xas);
1635 if (!entry || xa_is_value(entry))
1637 if (xas.xa_index == ULONG_MAX)
1641 return xas.xa_index;
1643 EXPORT_SYMBOL(page_cache_prev_miss);
1646 * find_get_entry - find and get a page cache entry
1647 * @mapping: the address_space to search
1648 * @offset: the page cache index
1650 * Looks up the page cache slot at @mapping & @offset. If there is a
1651 * page cache page, it is returned with an increased refcount.
1653 * If the slot holds a shadow entry of a previously evicted page, or a
1654 * swap entry from shmem/tmpfs, it is returned.
1656 * Return: the found page or shadow entry, %NULL if nothing is found.
1658 struct page *find_get_entry(struct address_space *mapping, pgoff_t offset)
1660 XA_STATE(xas, &mapping->i_pages, offset);
1666 page = xas_load(&xas);
1667 if (xas_retry(&xas, page))
1670 * A shadow entry of a recently evicted page, or a swap entry from
1671 * shmem/tmpfs. Return it without attempting to raise page count.
1673 if (!page || xa_is_value(page))
1676 if (!page_cache_get_speculative(page))
1680 * Has the page moved or been split?
1681 * This is part of the lockless pagecache protocol. See
1682 * include/linux/pagemap.h for details.
1684 if (unlikely(page != xas_reload(&xas))) {
1688 page = find_subpage(page, offset);
1696 * find_lock_entry - locate, pin and lock a page cache entry
1697 * @mapping: the address_space to search
1698 * @offset: the page cache index
1700 * Looks up the page cache slot at @mapping & @offset. If there is a
1701 * page cache page, it is returned locked and with an increased
1704 * If the slot holds a shadow entry of a previously evicted page, or a
1705 * swap entry from shmem/tmpfs, it is returned.
1707 * find_lock_entry() may sleep.
1709 * Return: the found page or shadow entry, %NULL if nothing is found.
1711 struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset)
1716 page = find_get_entry(mapping, offset);
1717 if (page && !xa_is_value(page)) {
1719 /* Has the page been truncated? */
1720 if (unlikely(page_mapping(page) != mapping)) {
1725 VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page);
1729 EXPORT_SYMBOL(find_lock_entry);
1732 * pagecache_get_page - Find and get a reference to a page.
1733 * @mapping: The address_space to search.
1734 * @index: The page index.
1735 * @fgp_flags: %FGP flags modify how the page is returned.
1736 * @gfp_mask: Memory allocation flags to use if %FGP_CREAT is specified.
1738 * Looks up the page cache entry at @mapping & @index.
1740 * @fgp_flags can be zero or more of these flags:
1742 * * %FGP_ACCESSED - The page will be marked accessed.
1743 * * %FGP_LOCK - The page is returned locked.
1744 * * %FGP_CREAT - If no page is present then a new page is allocated using
1745 * @gfp_mask and added to the page cache and the VM's LRU list.
1746 * The page is returned locked and with an increased refcount.
1747 * * %FGP_FOR_MMAP - The caller wants to do its own locking dance if the
1748 * page is already in cache. If the page was allocated, unlock it before
1749 * returning so the caller can do the same dance.
1750 * * %FGP_WRITE - The page will be written
1751 * * %FGP_NOFS - __GFP_FS will get cleared in gfp mask
1752 * * %FGP_NOWAIT - Don't get blocked by page lock
1754 * If %FGP_LOCK or %FGP_CREAT are specified then the function may sleep even
1755 * if the %GFP flags specified for %FGP_CREAT are atomic.
1757 * If there is a page cache page, it is returned with an increased refcount.
1759 * Return: The found page or %NULL otherwise.
1761 struct page *pagecache_get_page(struct address_space *mapping, pgoff_t index,
1762 int fgp_flags, gfp_t gfp_mask)
1767 page = find_get_entry(mapping, index);
1768 if (xa_is_value(page))
1773 if (fgp_flags & FGP_LOCK) {
1774 if (fgp_flags & FGP_NOWAIT) {
1775 if (!trylock_page(page)) {
1783 /* Has the page been truncated? */
1784 if (unlikely(compound_head(page)->mapping != mapping)) {
1789 VM_BUG_ON_PAGE(page->index != index, page);
1792 if (fgp_flags & FGP_ACCESSED)
1793 mark_page_accessed(page);
1794 else if (fgp_flags & FGP_WRITE) {
1795 /* Clear idle flag for buffer write */
1796 if (page_is_idle(page))
1797 clear_page_idle(page);
1801 if (!page && (fgp_flags & FGP_CREAT)) {
1803 if ((fgp_flags & FGP_WRITE) && mapping_cap_account_dirty(mapping))
1804 gfp_mask |= __GFP_WRITE;
1805 if (fgp_flags & FGP_NOFS)
1806 gfp_mask &= ~__GFP_FS;
1808 page = __page_cache_alloc(gfp_mask);
1812 if (WARN_ON_ONCE(!(fgp_flags & (FGP_LOCK | FGP_FOR_MMAP))))
1813 fgp_flags |= FGP_LOCK;
1815 /* Init accessed so avoid atomic mark_page_accessed later */
1816 if (fgp_flags & FGP_ACCESSED)
1817 __SetPageReferenced(page);
1819 err = add_to_page_cache_lru(page, mapping, index, gfp_mask);
1820 if (unlikely(err)) {
1828 * add_to_page_cache_lru locks the page, and for mmap we expect
1831 if (page && (fgp_flags & FGP_FOR_MMAP))
1837 EXPORT_SYMBOL(pagecache_get_page);
1840 * find_get_entries - gang pagecache lookup
1841 * @mapping: The address_space to search
1842 * @start: The starting page cache index
1843 * @nr_entries: The maximum number of entries
1844 * @entries: Where the resulting entries are placed
1845 * @indices: The cache indices corresponding to the entries in @entries
1847 * find_get_entries() will search for and return a group of up to
1848 * @nr_entries entries in the mapping. The entries are placed at
1849 * @entries. find_get_entries() takes a reference against any actual
1852 * The search returns a group of mapping-contiguous page cache entries
1853 * with ascending indexes. There may be holes in the indices due to
1854 * not-present pages.
1856 * Any shadow entries of evicted pages, or swap entries from
1857 * shmem/tmpfs, are included in the returned array.
1859 * If it finds a Transparent Huge Page, head or tail, find_get_entries()
1860 * stops at that page: the caller is likely to have a better way to handle
1861 * the compound page as a whole, and then skip its extent, than repeatedly
1862 * calling find_get_entries() to return all its tails.
1864 * Return: the number of pages and shadow entries which were found.
1866 unsigned find_get_entries(struct address_space *mapping,
1867 pgoff_t start, unsigned int nr_entries,
1868 struct page **entries, pgoff_t *indices)
1870 XA_STATE(xas, &mapping->i_pages, start);
1872 unsigned int ret = 0;
1878 xas_for_each(&xas, page, ULONG_MAX) {
1879 if (xas_retry(&xas, page))
1882 * A shadow entry of a recently evicted page, a swap
1883 * entry from shmem/tmpfs or a DAX entry. Return it
1884 * without attempting to raise page count.
1886 if (xa_is_value(page))
1889 if (!page_cache_get_speculative(page))
1892 /* Has the page moved or been split? */
1893 if (unlikely(page != xas_reload(&xas)))
1897 * Terminate early on finding a THP, to allow the caller to
1898 * handle it all at once; but continue if this is hugetlbfs.
1900 if (PageTransHuge(page) && !PageHuge(page)) {
1901 page = find_subpage(page, xas.xa_index);
1902 nr_entries = ret + 1;
1905 indices[ret] = xas.xa_index;
1906 entries[ret] = page;
1907 if (++ret == nr_entries)
1920 * find_get_pages_range - gang pagecache lookup
1921 * @mapping: The address_space to search
1922 * @start: The starting page index
1923 * @end: The final page index (inclusive)
1924 * @nr_pages: The maximum number of pages
1925 * @pages: Where the resulting pages are placed
1927 * find_get_pages_range() will search for and return a group of up to @nr_pages
1928 * pages in the mapping starting at index @start and up to index @end
1929 * (inclusive). The pages are placed at @pages. find_get_pages_range() takes
1930 * a reference against the returned pages.
1932 * The search returns a group of mapping-contiguous pages with ascending
1933 * indexes. There may be holes in the indices due to not-present pages.
1934 * We also update @start to index the next page for the traversal.
1936 * Return: the number of pages which were found. If this number is
1937 * smaller than @nr_pages, the end of specified range has been
1940 unsigned find_get_pages_range(struct address_space *mapping, pgoff_t *start,
1941 pgoff_t end, unsigned int nr_pages,
1942 struct page **pages)
1944 XA_STATE(xas, &mapping->i_pages, *start);
1948 if (unlikely(!nr_pages))
1952 xas_for_each(&xas, page, end) {
1953 if (xas_retry(&xas, page))
1955 /* Skip over shadow, swap and DAX entries */
1956 if (xa_is_value(page))
1959 if (!page_cache_get_speculative(page))
1962 /* Has the page moved or been split? */
1963 if (unlikely(page != xas_reload(&xas)))
1966 pages[ret] = find_subpage(page, xas.xa_index);
1967 if (++ret == nr_pages) {
1968 *start = xas.xa_index + 1;
1979 * We come here when there is no page beyond @end. We take care to not
1980 * overflow the index @start as it confuses some of the callers. This
1981 * breaks the iteration when there is a page at index -1 but that is
1982 * already broken anyway.
1984 if (end == (pgoff_t)-1)
1985 *start = (pgoff_t)-1;
1995 * find_get_pages_contig - gang contiguous pagecache lookup
1996 * @mapping: The address_space to search
1997 * @index: The starting page index
1998 * @nr_pages: The maximum number of pages
1999 * @pages: Where the resulting pages are placed
2001 * find_get_pages_contig() works exactly like find_get_pages(), except
2002 * that the returned number of pages are guaranteed to be contiguous.
2004 * Return: the number of pages which were found.
2006 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
2007 unsigned int nr_pages, struct page **pages)
2009 XA_STATE(xas, &mapping->i_pages, index);
2011 unsigned int ret = 0;
2013 if (unlikely(!nr_pages))
2017 for (page = xas_load(&xas); page; page = xas_next(&xas)) {
2018 if (xas_retry(&xas, page))
2021 * If the entry has been swapped out, we can stop looking.
2022 * No current caller is looking for DAX entries.
2024 if (xa_is_value(page))
2027 if (!page_cache_get_speculative(page))
2030 /* Has the page moved or been split? */
2031 if (unlikely(page != xas_reload(&xas)))
2034 pages[ret] = find_subpage(page, xas.xa_index);
2035 if (++ret == nr_pages)
2046 EXPORT_SYMBOL(find_get_pages_contig);
2049 * find_get_pages_range_tag - find and return pages in given range matching @tag
2050 * @mapping: the address_space to search
2051 * @index: the starting page index
2052 * @end: The final page index (inclusive)
2053 * @tag: the tag index
2054 * @nr_pages: the maximum number of pages
2055 * @pages: where the resulting pages are placed
2057 * Like find_get_pages, except we only return pages which are tagged with
2058 * @tag. We update @index to index the next page for the traversal.
2060 * Return: the number of pages which were found.
2062 unsigned find_get_pages_range_tag(struct address_space *mapping, pgoff_t *index,
2063 pgoff_t end, xa_mark_t tag, unsigned int nr_pages,
2064 struct page **pages)
2066 XA_STATE(xas, &mapping->i_pages, *index);
2070 if (unlikely(!nr_pages))
2074 xas_for_each_marked(&xas, page, end, tag) {
2075 if (xas_retry(&xas, page))
2078 * Shadow entries should never be tagged, but this iteration
2079 * is lockless so there is a window for page reclaim to evict
2080 * a page we saw tagged. Skip over it.
2082 if (xa_is_value(page))
2085 if (!page_cache_get_speculative(page))
2088 /* Has the page moved or been split? */
2089 if (unlikely(page != xas_reload(&xas)))
2092 pages[ret] = find_subpage(page, xas.xa_index);
2093 if (++ret == nr_pages) {
2094 *index = xas.xa_index + 1;
2105 * We come here when we got to @end. We take care to not overflow the
2106 * index @index as it confuses some of the callers. This breaks the
2107 * iteration when there is a page at index -1 but that is already
2110 if (end == (pgoff_t)-1)
2111 *index = (pgoff_t)-1;
2119 EXPORT_SYMBOL(find_get_pages_range_tag);
2122 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
2123 * a _large_ part of the i/o request. Imagine the worst scenario:
2125 * ---R__________________________________________B__________
2126 * ^ reading here ^ bad block(assume 4k)
2128 * read(R) => miss => readahead(R...B) => media error => frustrating retries
2129 * => failing the whole request => read(R) => read(R+1) =>
2130 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
2131 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
2132 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
2134 * It is going insane. Fix it by quickly scaling down the readahead size.
2136 static void shrink_readahead_size_eio(struct file_ra_state *ra)
2142 * generic_file_buffered_read - generic file read routine
2143 * @iocb: the iocb to read
2144 * @iter: data destination
2145 * @written: already copied
2147 * This is a generic file read routine, and uses the
2148 * mapping->a_ops->readpage() function for the actual low-level stuff.
2150 * This is really ugly. But the goto's actually try to clarify some
2151 * of the logic when it comes to error handling etc.
2154 * * total number of bytes copied, including those the were already @written
2155 * * negative error code if nothing was copied
2157 ssize_t generic_file_buffered_read(struct kiocb *iocb,
2158 struct iov_iter *iter, ssize_t written)
2160 struct file *filp = iocb->ki_filp;
2161 struct address_space *mapping = filp->f_mapping;
2162 struct inode *inode = mapping->host;
2163 struct file_ra_state *ra = &filp->f_ra;
2164 loff_t *ppos = &iocb->ki_pos;
2168 unsigned long offset; /* offset into pagecache page */
2169 unsigned int prev_offset;
2172 if (unlikely(*ppos >= inode->i_sb->s_maxbytes))
2174 iov_iter_truncate(iter, inode->i_sb->s_maxbytes);
2176 index = *ppos >> PAGE_SHIFT;
2177 prev_index = ra->prev_pos >> PAGE_SHIFT;
2178 prev_offset = ra->prev_pos & (PAGE_SIZE-1);
2179 last_index = (*ppos + iter->count + PAGE_SIZE-1) >> PAGE_SHIFT;
2180 offset = *ppos & ~PAGE_MASK;
2186 unsigned long nr, ret;
2190 if (fatal_signal_pending(current)) {
2195 page = find_get_page(mapping, index);
2197 if (iocb->ki_flags & IOCB_NOIO)
2199 page_cache_sync_readahead(mapping,
2201 index, last_index - index);
2202 page = find_get_page(mapping, index);
2203 if (unlikely(page == NULL))
2204 goto no_cached_page;
2206 if (PageReadahead(page)) {
2207 if (iocb->ki_flags & IOCB_NOIO) {
2211 page_cache_async_readahead(mapping,
2213 index, last_index - index);
2215 if (!PageUptodate(page)) {
2217 * See comment in do_read_cache_page on why
2218 * wait_on_page_locked is used to avoid unnecessarily
2219 * serialisations and why it's safe.
2221 if (iocb->ki_flags & IOCB_WAITQ) {
2226 error = wait_on_page_locked_async(page,
2229 if (iocb->ki_flags & IOCB_NOWAIT) {
2233 error = wait_on_page_locked_killable(page);
2235 if (unlikely(error))
2236 goto readpage_error;
2237 if (PageUptodate(page))
2240 if (inode->i_blkbits == PAGE_SHIFT ||
2241 !mapping->a_ops->is_partially_uptodate)
2242 goto page_not_up_to_date;
2243 /* pipes can't handle partially uptodate pages */
2244 if (unlikely(iov_iter_is_pipe(iter)))
2245 goto page_not_up_to_date;
2246 if (!trylock_page(page))
2247 goto page_not_up_to_date;
2248 /* Did it get truncated before we got the lock? */
2250 goto page_not_up_to_date_locked;
2251 if (!mapping->a_ops->is_partially_uptodate(page,
2252 offset, iter->count))
2253 goto page_not_up_to_date_locked;
2258 * i_size must be checked after we know the page is Uptodate.
2260 * Checking i_size after the check allows us to calculate
2261 * the correct value for "nr", which means the zero-filled
2262 * part of the page is not copied back to userspace (unless
2263 * another truncate extends the file - this is desired though).
2266 isize = i_size_read(inode);
2267 end_index = (isize - 1) >> PAGE_SHIFT;
2268 if (unlikely(!isize || index > end_index)) {
2273 /* nr is the maximum number of bytes to copy from this page */
2275 if (index == end_index) {
2276 nr = ((isize - 1) & ~PAGE_MASK) + 1;
2284 /* If users can be writing to this page using arbitrary
2285 * virtual addresses, take care about potential aliasing
2286 * before reading the page on the kernel side.
2288 if (mapping_writably_mapped(mapping))
2289 flush_dcache_page(page);
2292 * When a sequential read accesses a page several times,
2293 * only mark it as accessed the first time.
2295 if (prev_index != index || offset != prev_offset)
2296 mark_page_accessed(page);
2300 * Ok, we have the page, and it's up-to-date, so
2301 * now we can copy it to user space...
2304 ret = copy_page_to_iter(page, offset, nr, iter);
2306 index += offset >> PAGE_SHIFT;
2307 offset &= ~PAGE_MASK;
2308 prev_offset = offset;
2312 if (!iov_iter_count(iter))
2320 page_not_up_to_date:
2321 /* Get exclusive access to the page ... */
2322 if (iocb->ki_flags & IOCB_WAITQ)
2323 error = lock_page_async(page, iocb->ki_waitq);
2325 error = lock_page_killable(page);
2326 if (unlikely(error))
2327 goto readpage_error;
2329 page_not_up_to_date_locked:
2330 /* Did it get truncated before we got the lock? */
2331 if (!page->mapping) {
2337 /* Did somebody else fill it already? */
2338 if (PageUptodate(page)) {
2344 if (iocb->ki_flags & (IOCB_NOIO | IOCB_NOWAIT)) {
2350 * A previous I/O error may have been due to temporary
2351 * failures, eg. multipath errors.
2352 * PG_error will be set again if readpage fails.
2354 ClearPageError(page);
2355 /* Start the actual read. The read will unlock the page. */
2356 error = mapping->a_ops->readpage(filp, page);
2358 if (unlikely(error)) {
2359 if (error == AOP_TRUNCATED_PAGE) {
2364 goto readpage_error;
2367 if (!PageUptodate(page)) {
2368 if (iocb->ki_flags & IOCB_WAITQ)
2369 error = lock_page_async(page, iocb->ki_waitq);
2371 error = lock_page_killable(page);
2373 if (unlikely(error))
2374 goto readpage_error;
2375 if (!PageUptodate(page)) {
2376 if (page->mapping == NULL) {
2378 * invalidate_mapping_pages got it
2385 shrink_readahead_size_eio(ra);
2387 goto readpage_error;
2395 /* UHHUH! A synchronous read error occurred. Report it */
2401 * Ok, it wasn't cached, so we need to create a new
2404 page = page_cache_alloc(mapping);
2409 error = add_to_page_cache_lru(page, mapping, index,
2410 mapping_gfp_constraint(mapping, GFP_KERNEL));
2413 if (error == -EEXIST) {
2425 ra->prev_pos = prev_index;
2426 ra->prev_pos <<= PAGE_SHIFT;
2427 ra->prev_pos |= prev_offset;
2429 *ppos = ((loff_t)index << PAGE_SHIFT) + offset;
2430 file_accessed(filp);
2431 return written ? written : error;
2433 EXPORT_SYMBOL_GPL(generic_file_buffered_read);
2436 * generic_file_read_iter - generic filesystem read routine
2437 * @iocb: kernel I/O control block
2438 * @iter: destination for the data read
2440 * This is the "read_iter()" routine for all filesystems
2441 * that can use the page cache directly.
2443 * The IOCB_NOWAIT flag in iocb->ki_flags indicates that -EAGAIN shall
2444 * be returned when no data can be read without waiting for I/O requests
2445 * to complete; it doesn't prevent readahead.
2447 * The IOCB_NOIO flag in iocb->ki_flags indicates that no new I/O
2448 * requests shall be made for the read or for readahead. When no data
2449 * can be read, -EAGAIN shall be returned. When readahead would be
2450 * triggered, a partial, possibly empty read shall be returned.
2453 * * number of bytes copied, even for partial reads
2454 * * negative error code (or 0 if IOCB_NOIO) if nothing was read
2457 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
2459 size_t count = iov_iter_count(iter);
2463 goto out; /* skip atime */
2465 if (iocb->ki_flags & IOCB_DIRECT) {
2466 struct file *file = iocb->ki_filp;
2467 struct address_space *mapping = file->f_mapping;
2468 struct inode *inode = mapping->host;
2471 size = i_size_read(inode);
2472 if (iocb->ki_flags & IOCB_NOWAIT) {
2473 if (filemap_range_has_page(mapping, iocb->ki_pos,
2474 iocb->ki_pos + count - 1))
2477 retval = filemap_write_and_wait_range(mapping,
2479 iocb->ki_pos + count - 1);
2484 file_accessed(file);
2486 retval = mapping->a_ops->direct_IO(iocb, iter);
2488 iocb->ki_pos += retval;
2491 iov_iter_revert(iter, count - iov_iter_count(iter));
2494 * Btrfs can have a short DIO read if we encounter
2495 * compressed extents, so if there was an error, or if
2496 * we've already read everything we wanted to, or if
2497 * there was a short read because we hit EOF, go ahead
2498 * and return. Otherwise fallthrough to buffered io for
2499 * the rest of the read. Buffered reads will not work for
2500 * DAX files, so don't bother trying.
2502 if (retval < 0 || !count || iocb->ki_pos >= size ||
2507 retval = generic_file_buffered_read(iocb, iter, retval);
2511 EXPORT_SYMBOL(generic_file_read_iter);
2514 #define MMAP_LOTSAMISS (100)
2516 * lock_page_maybe_drop_mmap - lock the page, possibly dropping the mmap_lock
2517 * @vmf - the vm_fault for this fault.
2518 * @page - the page to lock.
2519 * @fpin - the pointer to the file we may pin (or is already pinned).
2521 * This works similar to lock_page_or_retry in that it can drop the mmap_lock.
2522 * It differs in that it actually returns the page locked if it returns 1 and 0
2523 * if it couldn't lock the page. If we did have to drop the mmap_lock then fpin
2524 * will point to the pinned file and needs to be fput()'ed at a later point.
2526 static int lock_page_maybe_drop_mmap(struct vm_fault *vmf, struct page *page,
2529 if (trylock_page(page))
2533 * NOTE! This will make us return with VM_FAULT_RETRY, but with
2534 * the mmap_lock still held. That's how FAULT_FLAG_RETRY_NOWAIT
2535 * is supposed to work. We have way too many special cases..
2537 if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
2540 *fpin = maybe_unlock_mmap_for_io(vmf, *fpin);
2541 if (vmf->flags & FAULT_FLAG_KILLABLE) {
2542 if (__lock_page_killable(page)) {
2544 * We didn't have the right flags to drop the mmap_lock,
2545 * but all fault_handlers only check for fatal signals
2546 * if we return VM_FAULT_RETRY, so we need to drop the
2547 * mmap_lock here and return 0 if we don't have a fpin.
2550 mmap_read_unlock(vmf->vma->vm_mm);
2560 * Synchronous readahead happens when we don't even find a page in the page
2561 * cache at all. We don't want to perform IO under the mmap sem, so if we have
2562 * to drop the mmap sem we return the file that was pinned in order for us to do
2563 * that. If we didn't pin a file then we return NULL. The file that is
2564 * returned needs to be fput()'ed when we're done with it.
2566 static struct file *do_sync_mmap_readahead(struct vm_fault *vmf)
2568 struct file *file = vmf->vma->vm_file;
2569 struct file_ra_state *ra = &file->f_ra;
2570 struct address_space *mapping = file->f_mapping;
2571 struct file *fpin = NULL;
2572 pgoff_t offset = vmf->pgoff;
2573 unsigned int mmap_miss;
2575 /* If we don't want any read-ahead, don't bother */
2576 if (vmf->vma->vm_flags & VM_RAND_READ)
2581 if (vmf->vma->vm_flags & VM_SEQ_READ) {
2582 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
2583 page_cache_sync_readahead(mapping, ra, file, offset,
2588 /* Avoid banging the cache line if not needed */
2589 mmap_miss = READ_ONCE(ra->mmap_miss);
2590 if (mmap_miss < MMAP_LOTSAMISS * 10)
2591 WRITE_ONCE(ra->mmap_miss, ++mmap_miss);
2594 * Do we miss much more than hit in this file? If so,
2595 * stop bothering with read-ahead. It will only hurt.
2597 if (mmap_miss > MMAP_LOTSAMISS)
2603 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
2604 ra->start = max_t(long, 0, offset - ra->ra_pages / 2);
2605 ra->size = ra->ra_pages;
2606 ra->async_size = ra->ra_pages / 4;
2607 ra_submit(ra, mapping, file);
2612 * Asynchronous readahead happens when we find the page and PG_readahead,
2613 * so we want to possibly extend the readahead further. We return the file that
2614 * was pinned if we have to drop the mmap_lock in order to do IO.
2616 static struct file *do_async_mmap_readahead(struct vm_fault *vmf,
2619 struct file *file = vmf->vma->vm_file;
2620 struct file_ra_state *ra = &file->f_ra;
2621 struct address_space *mapping = file->f_mapping;
2622 struct file *fpin = NULL;
2623 unsigned int mmap_miss;
2624 pgoff_t offset = vmf->pgoff;
2626 /* If we don't want any read-ahead, don't bother */
2627 if (vmf->vma->vm_flags & VM_RAND_READ || !ra->ra_pages)
2629 mmap_miss = READ_ONCE(ra->mmap_miss);
2631 WRITE_ONCE(ra->mmap_miss, --mmap_miss);
2632 if (PageReadahead(page)) {
2633 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
2634 page_cache_async_readahead(mapping, ra, file,
2635 page, offset, ra->ra_pages);
2641 * filemap_fault - read in file data for page fault handling
2642 * @vmf: struct vm_fault containing details of the fault
2644 * filemap_fault() is invoked via the vma operations vector for a
2645 * mapped memory region to read in file data during a page fault.
2647 * The goto's are kind of ugly, but this streamlines the normal case of having
2648 * it in the page cache, and handles the special cases reasonably without
2649 * having a lot of duplicated code.
2651 * vma->vm_mm->mmap_lock must be held on entry.
2653 * If our return value has VM_FAULT_RETRY set, it's because the mmap_lock
2654 * may be dropped before doing I/O or by lock_page_maybe_drop_mmap().
2656 * If our return value does not have VM_FAULT_RETRY set, the mmap_lock
2657 * has not been released.
2659 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
2661 * Return: bitwise-OR of %VM_FAULT_ codes.
2663 vm_fault_t filemap_fault(struct vm_fault *vmf)
2666 struct file *file = vmf->vma->vm_file;
2667 struct file *fpin = NULL;
2668 struct address_space *mapping = file->f_mapping;
2669 struct file_ra_state *ra = &file->f_ra;
2670 struct inode *inode = mapping->host;
2671 pgoff_t offset = vmf->pgoff;
2676 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2677 if (unlikely(offset >= max_off))
2678 return VM_FAULT_SIGBUS;
2681 * Do we have something in the page cache already?
2683 page = find_get_page(mapping, offset);
2684 if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
2686 * We found the page, so try async readahead before
2687 * waiting for the lock.
2689 fpin = do_async_mmap_readahead(vmf, page);
2691 /* No page in the page cache at all */
2692 count_vm_event(PGMAJFAULT);
2693 count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT);
2694 ret = VM_FAULT_MAJOR;
2695 fpin = do_sync_mmap_readahead(vmf);
2697 page = pagecache_get_page(mapping, offset,
2698 FGP_CREAT|FGP_FOR_MMAP,
2703 return VM_FAULT_OOM;
2707 if (!lock_page_maybe_drop_mmap(vmf, page, &fpin))
2710 /* Did it get truncated? */
2711 if (unlikely(compound_head(page)->mapping != mapping)) {
2716 VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page);
2719 * We have a locked page in the page cache, now we need to check
2720 * that it's up-to-date. If not, it is going to be due to an error.
2722 if (unlikely(!PageUptodate(page)))
2723 goto page_not_uptodate;
2726 * We've made it this far and we had to drop our mmap_lock, now is the
2727 * time to return to the upper layer and have it re-find the vma and
2736 * Found the page and have a reference on it.
2737 * We must recheck i_size under page lock.
2739 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2740 if (unlikely(offset >= max_off)) {
2743 return VM_FAULT_SIGBUS;
2747 return ret | VM_FAULT_LOCKED;
2751 * Umm, take care of errors if the page isn't up-to-date.
2752 * Try to re-read it _once_. We do this synchronously,
2753 * because there really aren't any performance issues here
2754 * and we need to check for errors.
2756 ClearPageError(page);
2757 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
2758 error = mapping->a_ops->readpage(file, page);
2760 wait_on_page_locked(page);
2761 if (!PageUptodate(page))
2768 if (!error || error == AOP_TRUNCATED_PAGE)
2771 shrink_readahead_size_eio(ra);
2772 return VM_FAULT_SIGBUS;
2776 * We dropped the mmap_lock, we need to return to the fault handler to
2777 * re-find the vma and come back and find our hopefully still populated
2784 return ret | VM_FAULT_RETRY;
2786 EXPORT_SYMBOL(filemap_fault);
2788 void filemap_map_pages(struct vm_fault *vmf,
2789 pgoff_t start_pgoff, pgoff_t end_pgoff)
2791 struct file *file = vmf->vma->vm_file;
2792 struct address_space *mapping = file->f_mapping;
2793 pgoff_t last_pgoff = start_pgoff;
2794 unsigned long max_idx;
2795 XA_STATE(xas, &mapping->i_pages, start_pgoff);
2797 unsigned int mmap_miss = READ_ONCE(file->f_ra.mmap_miss);
2800 xas_for_each(&xas, page, end_pgoff) {
2801 if (xas_retry(&xas, page))
2803 if (xa_is_value(page))
2807 * Check for a locked page first, as a speculative
2808 * reference may adversely influence page migration.
2810 if (PageLocked(page))
2812 if (!page_cache_get_speculative(page))
2815 /* Has the page moved or been split? */
2816 if (unlikely(page != xas_reload(&xas)))
2818 page = find_subpage(page, xas.xa_index);
2820 if (!PageUptodate(page) ||
2821 PageReadahead(page) ||
2824 if (!trylock_page(page))
2827 if (page->mapping != mapping || !PageUptodate(page))
2830 max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
2831 if (page->index >= max_idx)
2837 vmf->address += (xas.xa_index - last_pgoff) << PAGE_SHIFT;
2839 vmf->pte += xas.xa_index - last_pgoff;
2840 last_pgoff = xas.xa_index;
2841 if (alloc_set_pte(vmf, page))
2850 /* Huge page is mapped? No need to proceed. */
2851 if (pmd_trans_huge(*vmf->pmd))
2855 WRITE_ONCE(file->f_ra.mmap_miss, mmap_miss);
2857 EXPORT_SYMBOL(filemap_map_pages);
2859 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
2861 struct page *page = vmf->page;
2862 struct inode *inode = file_inode(vmf->vma->vm_file);
2863 vm_fault_t ret = VM_FAULT_LOCKED;
2865 sb_start_pagefault(inode->i_sb);
2866 file_update_time(vmf->vma->vm_file);
2868 if (page->mapping != inode->i_mapping) {
2870 ret = VM_FAULT_NOPAGE;
2874 * We mark the page dirty already here so that when freeze is in
2875 * progress, we are guaranteed that writeback during freezing will
2876 * see the dirty page and writeprotect it again.
2878 set_page_dirty(page);
2879 wait_for_stable_page(page);
2881 sb_end_pagefault(inode->i_sb);
2885 const struct vm_operations_struct generic_file_vm_ops = {
2886 .fault = filemap_fault,
2887 .map_pages = filemap_map_pages,
2888 .page_mkwrite = filemap_page_mkwrite,
2891 /* This is used for a general mmap of a disk file */
2893 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2895 struct address_space *mapping = file->f_mapping;
2897 if (!mapping->a_ops->readpage)
2899 file_accessed(file);
2900 vma->vm_ops = &generic_file_vm_ops;
2905 * This is for filesystems which do not implement ->writepage.
2907 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
2909 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
2911 return generic_file_mmap(file, vma);
2914 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
2916 return VM_FAULT_SIGBUS;
2918 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2922 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
2926 #endif /* CONFIG_MMU */
2928 EXPORT_SYMBOL(filemap_page_mkwrite);
2929 EXPORT_SYMBOL(generic_file_mmap);
2930 EXPORT_SYMBOL(generic_file_readonly_mmap);
2932 static struct page *wait_on_page_read(struct page *page)
2934 if (!IS_ERR(page)) {
2935 wait_on_page_locked(page);
2936 if (!PageUptodate(page)) {
2938 page = ERR_PTR(-EIO);
2944 static struct page *do_read_cache_page(struct address_space *mapping,
2946 int (*filler)(void *, struct page *),
2953 page = find_get_page(mapping, index);
2955 page = __page_cache_alloc(gfp);
2957 return ERR_PTR(-ENOMEM);
2958 err = add_to_page_cache_lru(page, mapping, index, gfp);
2959 if (unlikely(err)) {
2963 /* Presumably ENOMEM for xarray node */
2964 return ERR_PTR(err);
2969 err = filler(data, page);
2971 err = mapping->a_ops->readpage(data, page);
2975 return ERR_PTR(err);
2978 page = wait_on_page_read(page);
2983 if (PageUptodate(page))
2987 * Page is not up to date and may be locked due one of the following
2988 * case a: Page is being filled and the page lock is held
2989 * case b: Read/write error clearing the page uptodate status
2990 * case c: Truncation in progress (page locked)
2991 * case d: Reclaim in progress
2993 * Case a, the page will be up to date when the page is unlocked.
2994 * There is no need to serialise on the page lock here as the page
2995 * is pinned so the lock gives no additional protection. Even if the
2996 * page is truncated, the data is still valid if PageUptodate as
2997 * it's a race vs truncate race.
2998 * Case b, the page will not be up to date
2999 * Case c, the page may be truncated but in itself, the data may still
3000 * be valid after IO completes as it's a read vs truncate race. The
3001 * operation must restart if the page is not uptodate on unlock but
3002 * otherwise serialising on page lock to stabilise the mapping gives
3003 * no additional guarantees to the caller as the page lock is
3004 * released before return.
3005 * Case d, similar to truncation. If reclaim holds the page lock, it
3006 * will be a race with remove_mapping that determines if the mapping
3007 * is valid on unlock but otherwise the data is valid and there is
3008 * no need to serialise with page lock.
3010 * As the page lock gives no additional guarantee, we optimistically
3011 * wait on the page to be unlocked and check if it's up to date and
3012 * use the page if it is. Otherwise, the page lock is required to
3013 * distinguish between the different cases. The motivation is that we
3014 * avoid spurious serialisations and wakeups when multiple processes
3015 * wait on the same page for IO to complete.
3017 wait_on_page_locked(page);
3018 if (PageUptodate(page))
3021 /* Distinguish between all the cases under the safety of the lock */
3024 /* Case c or d, restart the operation */
3025 if (!page->mapping) {
3031 /* Someone else locked and filled the page in a very small window */
3032 if (PageUptodate(page)) {
3038 * A previous I/O error may have been due to temporary
3040 * Clear page error before actual read, PG_error will be
3041 * set again if read page fails.
3043 ClearPageError(page);
3047 mark_page_accessed(page);
3052 * read_cache_page - read into page cache, fill it if needed
3053 * @mapping: the page's address_space
3054 * @index: the page index
3055 * @filler: function to perform the read
3056 * @data: first arg to filler(data, page) function, often left as NULL
3058 * Read into the page cache. If a page already exists, and PageUptodate() is
3059 * not set, try to fill the page and wait for it to become unlocked.
3061 * If the page does not get brought uptodate, return -EIO.
3063 * Return: up to date page on success, ERR_PTR() on failure.
3065 struct page *read_cache_page(struct address_space *mapping,
3067 int (*filler)(void *, struct page *),
3070 return do_read_cache_page(mapping, index, filler, data,
3071 mapping_gfp_mask(mapping));
3073 EXPORT_SYMBOL(read_cache_page);
3076 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
3077 * @mapping: the page's address_space
3078 * @index: the page index
3079 * @gfp: the page allocator flags to use if allocating
3081 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
3082 * any new page allocations done using the specified allocation flags.
3084 * If the page does not get brought uptodate, return -EIO.
3086 * Return: up to date page on success, ERR_PTR() on failure.
3088 struct page *read_cache_page_gfp(struct address_space *mapping,
3092 return do_read_cache_page(mapping, index, NULL, NULL, gfp);
3094 EXPORT_SYMBOL(read_cache_page_gfp);
3097 * Don't operate on ranges the page cache doesn't support, and don't exceed the
3098 * LFS limits. If pos is under the limit it becomes a short access. If it
3099 * exceeds the limit we return -EFBIG.
3101 static int generic_write_check_limits(struct file *file, loff_t pos,
3104 struct inode *inode = file->f_mapping->host;
3105 loff_t max_size = inode->i_sb->s_maxbytes;
3106 loff_t limit = rlimit(RLIMIT_FSIZE);
3108 if (limit != RLIM_INFINITY) {
3110 send_sig(SIGXFSZ, current, 0);
3113 *count = min(*count, limit - pos);
3116 if (!(file->f_flags & O_LARGEFILE))
3117 max_size = MAX_NON_LFS;
3119 if (unlikely(pos >= max_size))
3122 *count = min(*count, max_size - pos);
3128 * Performs necessary checks before doing a write
3130 * Can adjust writing position or amount of bytes to write.
3131 * Returns appropriate error code that caller should return or
3132 * zero in case that write should be allowed.
3134 inline ssize_t generic_write_checks(struct kiocb *iocb, struct iov_iter *from)
3136 struct file *file = iocb->ki_filp;
3137 struct inode *inode = file->f_mapping->host;
3141 if (IS_SWAPFILE(inode))
3144 if (!iov_iter_count(from))
3147 /* FIXME: this is for backwards compatibility with 2.4 */
3148 if (iocb->ki_flags & IOCB_APPEND)
3149 iocb->ki_pos = i_size_read(inode);
3151 if ((iocb->ki_flags & IOCB_NOWAIT) && !(iocb->ki_flags & IOCB_DIRECT))
3154 count = iov_iter_count(from);
3155 ret = generic_write_check_limits(file, iocb->ki_pos, &count);
3159 iov_iter_truncate(from, count);
3160 return iov_iter_count(from);
3162 EXPORT_SYMBOL(generic_write_checks);
3165 * Performs necessary checks before doing a clone.
3167 * Can adjust amount of bytes to clone via @req_count argument.
3168 * Returns appropriate error code that caller should return or
3169 * zero in case the clone should be allowed.
3171 int generic_remap_checks(struct file *file_in, loff_t pos_in,
3172 struct file *file_out, loff_t pos_out,
3173 loff_t *req_count, unsigned int remap_flags)
3175 struct inode *inode_in = file_in->f_mapping->host;
3176 struct inode *inode_out = file_out->f_mapping->host;
3177 uint64_t count = *req_count;
3179 loff_t size_in, size_out;
3180 loff_t bs = inode_out->i_sb->s_blocksize;
3183 /* The start of both ranges must be aligned to an fs block. */
3184 if (!IS_ALIGNED(pos_in, bs) || !IS_ALIGNED(pos_out, bs))
3187 /* Ensure offsets don't wrap. */
3188 if (pos_in + count < pos_in || pos_out + count < pos_out)
3191 size_in = i_size_read(inode_in);
3192 size_out = i_size_read(inode_out);
3194 /* Dedupe requires both ranges to be within EOF. */
3195 if ((remap_flags & REMAP_FILE_DEDUP) &&
3196 (pos_in >= size_in || pos_in + count > size_in ||
3197 pos_out >= size_out || pos_out + count > size_out))
3200 /* Ensure the infile range is within the infile. */
3201 if (pos_in >= size_in)
3203 count = min(count, size_in - (uint64_t)pos_in);
3205 ret = generic_write_check_limits(file_out, pos_out, &count);
3210 * If the user wanted us to link to the infile's EOF, round up to the
3211 * next block boundary for this check.
3213 * Otherwise, make sure the count is also block-aligned, having
3214 * already confirmed the starting offsets' block alignment.
3216 if (pos_in + count == size_in) {
3217 bcount = ALIGN(size_in, bs) - pos_in;
3219 if (!IS_ALIGNED(count, bs))
3220 count = ALIGN_DOWN(count, bs);
3224 /* Don't allow overlapped cloning within the same file. */
3225 if (inode_in == inode_out &&
3226 pos_out + bcount > pos_in &&
3227 pos_out < pos_in + bcount)
3231 * We shortened the request but the caller can't deal with that, so
3232 * bounce the request back to userspace.
3234 if (*req_count != count && !(remap_flags & REMAP_FILE_CAN_SHORTEN))
3243 * Performs common checks before doing a file copy/clone
3244 * from @file_in to @file_out.
3246 int generic_file_rw_checks(struct file *file_in, struct file *file_out)
3248 struct inode *inode_in = file_inode(file_in);
3249 struct inode *inode_out = file_inode(file_out);
3251 /* Don't copy dirs, pipes, sockets... */
3252 if (S_ISDIR(inode_in->i_mode) || S_ISDIR(inode_out->i_mode))
3254 if (!S_ISREG(inode_in->i_mode) || !S_ISREG(inode_out->i_mode))
3257 if (!(file_in->f_mode & FMODE_READ) ||
3258 !(file_out->f_mode & FMODE_WRITE) ||
3259 (file_out->f_flags & O_APPEND))
3266 * Performs necessary checks before doing a file copy
3268 * Can adjust amount of bytes to copy via @req_count argument.
3269 * Returns appropriate error code that caller should return or
3270 * zero in case the copy should be allowed.
3272 int generic_copy_file_checks(struct file *file_in, loff_t pos_in,
3273 struct file *file_out, loff_t pos_out,
3274 size_t *req_count, unsigned int flags)
3276 struct inode *inode_in = file_inode(file_in);
3277 struct inode *inode_out = file_inode(file_out);
3278 uint64_t count = *req_count;
3282 ret = generic_file_rw_checks(file_in, file_out);
3286 /* Don't touch certain kinds of inodes */
3287 if (IS_IMMUTABLE(inode_out))
3290 if (IS_SWAPFILE(inode_in) || IS_SWAPFILE(inode_out))
3293 /* Ensure offsets don't wrap. */
3294 if (pos_in + count < pos_in || pos_out + count < pos_out)
3297 /* Shorten the copy to EOF */
3298 size_in = i_size_read(inode_in);
3299 if (pos_in >= size_in)
3302 count = min(count, size_in - (uint64_t)pos_in);
3304 ret = generic_write_check_limits(file_out, pos_out, &count);
3308 /* Don't allow overlapped copying within the same file. */
3309 if (inode_in == inode_out &&
3310 pos_out + count > pos_in &&
3311 pos_out < pos_in + count)
3318 int pagecache_write_begin(struct file *file, struct address_space *mapping,
3319 loff_t pos, unsigned len, unsigned flags,
3320 struct page **pagep, void **fsdata)
3322 const struct address_space_operations *aops = mapping->a_ops;
3324 return aops->write_begin(file, mapping, pos, len, flags,
3327 EXPORT_SYMBOL(pagecache_write_begin);
3329 int pagecache_write_end(struct file *file, struct address_space *mapping,
3330 loff_t pos, unsigned len, unsigned copied,
3331 struct page *page, void *fsdata)
3333 const struct address_space_operations *aops = mapping->a_ops;
3335 return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
3337 EXPORT_SYMBOL(pagecache_write_end);
3340 * Warn about a page cache invalidation failure during a direct I/O write.
3342 void dio_warn_stale_pagecache(struct file *filp)
3344 static DEFINE_RATELIMIT_STATE(_rs, 86400 * HZ, DEFAULT_RATELIMIT_BURST);
3346 struct inode *inode = file_inode(filp);
3349 errseq_set(&inode->i_mapping->wb_err, -EIO);
3350 if (__ratelimit(&_rs)) {
3351 path = file_path(filp, pathname, sizeof(pathname));
3354 pr_crit("Page cache invalidation failure on direct I/O. Possible data corruption due to collision with buffered I/O!\n");
3355 pr_crit("File: %s PID: %d Comm: %.20s\n", path, current->pid,
3361 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from)
3363 struct file *file = iocb->ki_filp;
3364 struct address_space *mapping = file->f_mapping;
3365 struct inode *inode = mapping->host;
3366 loff_t pos = iocb->ki_pos;
3371 write_len = iov_iter_count(from);
3372 end = (pos + write_len - 1) >> PAGE_SHIFT;
3374 if (iocb->ki_flags & IOCB_NOWAIT) {
3375 /* If there are pages to writeback, return */
3376 if (filemap_range_has_page(inode->i_mapping, pos,
3377 pos + write_len - 1))
3380 written = filemap_write_and_wait_range(mapping, pos,
3381 pos + write_len - 1);
3387 * After a write we want buffered reads to be sure to go to disk to get
3388 * the new data. We invalidate clean cached page from the region we're
3389 * about to write. We do this *before* the write so that we can return
3390 * without clobbering -EIOCBQUEUED from ->direct_IO().
3392 written = invalidate_inode_pages2_range(mapping,
3393 pos >> PAGE_SHIFT, end);
3395 * If a page can not be invalidated, return 0 to fall back
3396 * to buffered write.
3399 if (written == -EBUSY)
3404 written = mapping->a_ops->direct_IO(iocb, from);
3407 * Finally, try again to invalidate clean pages which might have been
3408 * cached by non-direct readahead, or faulted in by get_user_pages()
3409 * if the source of the write was an mmap'ed region of the file
3410 * we're writing. Either one is a pretty crazy thing to do,
3411 * so we don't support it 100%. If this invalidation
3412 * fails, tough, the write still worked...
3414 * Most of the time we do not need this since dio_complete() will do
3415 * the invalidation for us. However there are some file systems that
3416 * do not end up with dio_complete() being called, so let's not break
3417 * them by removing it completely.
3419 * Noticeable example is a blkdev_direct_IO().
3421 * Skip invalidation for async writes or if mapping has no pages.
3423 if (written > 0 && mapping->nrpages &&
3424 invalidate_inode_pages2_range(mapping, pos >> PAGE_SHIFT, end))
3425 dio_warn_stale_pagecache(file);
3429 write_len -= written;
3430 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
3431 i_size_write(inode, pos);
3432 mark_inode_dirty(inode);
3436 iov_iter_revert(from, write_len - iov_iter_count(from));
3440 EXPORT_SYMBOL(generic_file_direct_write);
3443 * Find or create a page at the given pagecache position. Return the locked
3444 * page. This function is specifically for buffered writes.
3446 struct page *grab_cache_page_write_begin(struct address_space *mapping,
3447 pgoff_t index, unsigned flags)
3450 int fgp_flags = FGP_LOCK|FGP_WRITE|FGP_CREAT;
3452 if (flags & AOP_FLAG_NOFS)
3453 fgp_flags |= FGP_NOFS;
3455 page = pagecache_get_page(mapping, index, fgp_flags,
3456 mapping_gfp_mask(mapping));
3458 wait_for_stable_page(page);
3462 EXPORT_SYMBOL(grab_cache_page_write_begin);
3464 ssize_t generic_perform_write(struct file *file,
3465 struct iov_iter *i, loff_t pos)
3467 struct address_space *mapping = file->f_mapping;
3468 const struct address_space_operations *a_ops = mapping->a_ops;
3470 ssize_t written = 0;
3471 unsigned int flags = 0;
3475 unsigned long offset; /* Offset into pagecache page */
3476 unsigned long bytes; /* Bytes to write to page */
3477 size_t copied; /* Bytes copied from user */
3480 offset = (pos & (PAGE_SIZE - 1));
3481 bytes = min_t(unsigned long, PAGE_SIZE - offset,
3486 * Bring in the user page that we will copy from _first_.
3487 * Otherwise there's a nasty deadlock on copying from the
3488 * same page as we're writing to, without it being marked
3491 * Not only is this an optimisation, but it is also required
3492 * to check that the address is actually valid, when atomic
3493 * usercopies are used, below.
3495 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
3500 if (fatal_signal_pending(current)) {
3505 status = a_ops->write_begin(file, mapping, pos, bytes, flags,
3507 if (unlikely(status < 0))
3510 if (mapping_writably_mapped(mapping))
3511 flush_dcache_page(page);
3513 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
3514 flush_dcache_page(page);
3516 status = a_ops->write_end(file, mapping, pos, bytes, copied,
3518 if (unlikely(status < 0))
3524 iov_iter_advance(i, copied);
3525 if (unlikely(copied == 0)) {
3527 * If we were unable to copy any data at all, we must
3528 * fall back to a single segment length write.
3530 * If we didn't fallback here, we could livelock
3531 * because not all segments in the iov can be copied at
3532 * once without a pagefault.
3534 bytes = min_t(unsigned long, PAGE_SIZE - offset,
3535 iov_iter_single_seg_count(i));
3541 balance_dirty_pages_ratelimited(mapping);
3542 } while (iov_iter_count(i));
3544 return written ? written : status;
3546 EXPORT_SYMBOL(generic_perform_write);
3549 * __generic_file_write_iter - write data to a file
3550 * @iocb: IO state structure (file, offset, etc.)
3551 * @from: iov_iter with data to write
3553 * This function does all the work needed for actually writing data to a
3554 * file. It does all basic checks, removes SUID from the file, updates
3555 * modification times and calls proper subroutines depending on whether we
3556 * do direct IO or a standard buffered write.
3558 * It expects i_mutex to be grabbed unless we work on a block device or similar
3559 * object which does not need locking at all.
3561 * This function does *not* take care of syncing data in case of O_SYNC write.
3562 * A caller has to handle it. This is mainly due to the fact that we want to
3563 * avoid syncing under i_mutex.
3566 * * number of bytes written, even for truncated writes
3567 * * negative error code if no data has been written at all
3569 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
3571 struct file *file = iocb->ki_filp;
3572 struct address_space * mapping = file->f_mapping;
3573 struct inode *inode = mapping->host;
3574 ssize_t written = 0;
3578 /* We can write back this queue in page reclaim */
3579 current->backing_dev_info = inode_to_bdi(inode);
3580 err = file_remove_privs(file);
3584 err = file_update_time(file);
3588 if (iocb->ki_flags & IOCB_DIRECT) {
3589 loff_t pos, endbyte;
3591 written = generic_file_direct_write(iocb, from);
3593 * If the write stopped short of completing, fall back to
3594 * buffered writes. Some filesystems do this for writes to
3595 * holes, for example. For DAX files, a buffered write will
3596 * not succeed (even if it did, DAX does not handle dirty
3597 * page-cache pages correctly).
3599 if (written < 0 || !iov_iter_count(from) || IS_DAX(inode))
3602 status = generic_perform_write(file, from, pos = iocb->ki_pos);
3604 * If generic_perform_write() returned a synchronous error
3605 * then we want to return the number of bytes which were
3606 * direct-written, or the error code if that was zero. Note
3607 * that this differs from normal direct-io semantics, which
3608 * will return -EFOO even if some bytes were written.
3610 if (unlikely(status < 0)) {
3615 * We need to ensure that the page cache pages are written to
3616 * disk and invalidated to preserve the expected O_DIRECT
3619 endbyte = pos + status - 1;
3620 err = filemap_write_and_wait_range(mapping, pos, endbyte);
3622 iocb->ki_pos = endbyte + 1;
3624 invalidate_mapping_pages(mapping,
3626 endbyte >> PAGE_SHIFT);
3629 * We don't know how much we wrote, so just return
3630 * the number of bytes which were direct-written
3634 written = generic_perform_write(file, from, iocb->ki_pos);
3635 if (likely(written > 0))
3636 iocb->ki_pos += written;
3639 current->backing_dev_info = NULL;
3640 return written ? written : err;
3642 EXPORT_SYMBOL(__generic_file_write_iter);
3645 * generic_file_write_iter - write data to a file
3646 * @iocb: IO state structure
3647 * @from: iov_iter with data to write
3649 * This is a wrapper around __generic_file_write_iter() to be used by most
3650 * filesystems. It takes care of syncing the file in case of O_SYNC file
3651 * and acquires i_mutex as needed.
3653 * * negative error code if no data has been written at all of
3654 * vfs_fsync_range() failed for a synchronous write
3655 * * number of bytes written, even for truncated writes
3657 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
3659 struct file *file = iocb->ki_filp;
3660 struct inode *inode = file->f_mapping->host;
3664 ret = generic_write_checks(iocb, from);
3666 ret = __generic_file_write_iter(iocb, from);
3667 inode_unlock(inode);
3670 ret = generic_write_sync(iocb, ret);
3673 EXPORT_SYMBOL(generic_file_write_iter);
3676 * try_to_release_page() - release old fs-specific metadata on a page
3678 * @page: the page which the kernel is trying to free
3679 * @gfp_mask: memory allocation flags (and I/O mode)
3681 * The address_space is to try to release any data against the page
3682 * (presumably at page->private).
3684 * This may also be called if PG_fscache is set on a page, indicating that the
3685 * page is known to the local caching routines.
3687 * The @gfp_mask argument specifies whether I/O may be performed to release
3688 * this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS).
3690 * Return: %1 if the release was successful, otherwise return zero.
3692 int try_to_release_page(struct page *page, gfp_t gfp_mask)
3694 struct address_space * const mapping = page->mapping;
3696 BUG_ON(!PageLocked(page));
3697 if (PageWriteback(page))
3700 if (mapping && mapping->a_ops->releasepage)
3701 return mapping->a_ops->releasepage(page, gfp_mask);
3702 return try_to_free_buffers(page);
3705 EXPORT_SYMBOL(try_to_release_page);