iio:accel:bmc150-accel: code style cleanup
[platform/kernel/linux-starfive.git] / mm / filemap.c
1 /*
2  *      linux/mm/filemap.c
3  *
4  * Copyright (C) 1994-1999  Linus Torvalds
5  */
6
7 /*
8  * This file handles the generic file mmap semantics used by
9  * most "normal" filesystems (but you don't /have/ to use this:
10  * the NFS filesystem used to do this differently, for example)
11  */
12 #include <linux/export.h>
13 #include <linux/compiler.h>
14 #include <linux/fs.h>
15 #include <linux/uaccess.h>
16 #include <linux/capability.h>
17 #include <linux/kernel_stat.h>
18 #include <linux/gfp.h>
19 #include <linux/mm.h>
20 #include <linux/swap.h>
21 #include <linux/mman.h>
22 #include <linux/pagemap.h>
23 #include <linux/file.h>
24 #include <linux/uio.h>
25 #include <linux/hash.h>
26 #include <linux/writeback.h>
27 #include <linux/backing-dev.h>
28 #include <linux/pagevec.h>
29 #include <linux/blkdev.h>
30 #include <linux/security.h>
31 #include <linux/cpuset.h>
32 #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
33 #include <linux/hugetlb.h>
34 #include <linux/memcontrol.h>
35 #include <linux/cleancache.h>
36 #include <linux/rmap.h>
37 #include "internal.h"
38
39 #define CREATE_TRACE_POINTS
40 #include <trace/events/filemap.h>
41
42 /*
43  * FIXME: remove all knowledge of the buffer layer from the core VM
44  */
45 #include <linux/buffer_head.h> /* for try_to_free_buffers */
46
47 #include <asm/mman.h>
48
49 /*
50  * Shared mappings implemented 30.11.1994. It's not fully working yet,
51  * though.
52  *
53  * Shared mappings now work. 15.8.1995  Bruno.
54  *
55  * finished 'unifying' the page and buffer cache and SMP-threaded the
56  * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
57  *
58  * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
59  */
60
61 /*
62  * Lock ordering:
63  *
64  *  ->i_mmap_rwsem              (truncate_pagecache)
65  *    ->private_lock            (__free_pte->__set_page_dirty_buffers)
66  *      ->swap_lock             (exclusive_swap_page, others)
67  *        ->mapping->tree_lock
68  *
69  *  ->i_mutex
70  *    ->i_mmap_rwsem            (truncate->unmap_mapping_range)
71  *
72  *  ->mmap_sem
73  *    ->i_mmap_rwsem
74  *      ->page_table_lock or pte_lock   (various, mainly in memory.c)
75  *        ->mapping->tree_lock  (arch-dependent flush_dcache_mmap_lock)
76  *
77  *  ->mmap_sem
78  *    ->lock_page               (access_process_vm)
79  *
80  *  ->i_mutex                   (generic_perform_write)
81  *    ->mmap_sem                (fault_in_pages_readable->do_page_fault)
82  *
83  *  bdi->wb.list_lock
84  *    sb_lock                   (fs/fs-writeback.c)
85  *    ->mapping->tree_lock      (__sync_single_inode)
86  *
87  *  ->i_mmap_rwsem
88  *    ->anon_vma.lock           (vma_adjust)
89  *
90  *  ->anon_vma.lock
91  *    ->page_table_lock or pte_lock     (anon_vma_prepare and various)
92  *
93  *  ->page_table_lock or pte_lock
94  *    ->swap_lock               (try_to_unmap_one)
95  *    ->private_lock            (try_to_unmap_one)
96  *    ->tree_lock               (try_to_unmap_one)
97  *    ->zone.lru_lock           (follow_page->mark_page_accessed)
98  *    ->zone.lru_lock           (check_pte_range->isolate_lru_page)
99  *    ->private_lock            (page_remove_rmap->set_page_dirty)
100  *    ->tree_lock               (page_remove_rmap->set_page_dirty)
101  *    bdi.wb->list_lock         (page_remove_rmap->set_page_dirty)
102  *    ->inode->i_lock           (page_remove_rmap->set_page_dirty)
103  *    bdi.wb->list_lock         (zap_pte_range->set_page_dirty)
104  *    ->inode->i_lock           (zap_pte_range->set_page_dirty)
105  *    ->private_lock            (zap_pte_range->__set_page_dirty_buffers)
106  *
107  * ->i_mmap_rwsem
108  *   ->tasklist_lock            (memory_failure, collect_procs_ao)
109  */
110
111 static void page_cache_tree_delete(struct address_space *mapping,
112                                    struct page *page, void *shadow)
113 {
114         struct radix_tree_node *node;
115         unsigned long index;
116         unsigned int offset;
117         unsigned int tag;
118         void **slot;
119
120         VM_BUG_ON(!PageLocked(page));
121
122         __radix_tree_lookup(&mapping->page_tree, page->index, &node, &slot);
123
124         if (shadow) {
125                 mapping->nrshadows++;
126                 /*
127                  * Make sure the nrshadows update is committed before
128                  * the nrpages update so that final truncate racing
129                  * with reclaim does not see both counters 0 at the
130                  * same time and miss a shadow entry.
131                  */
132                 smp_wmb();
133         }
134         mapping->nrpages--;
135
136         if (!node) {
137                 /* Clear direct pointer tags in root node */
138                 mapping->page_tree.gfp_mask &= __GFP_BITS_MASK;
139                 radix_tree_replace_slot(slot, shadow);
140                 return;
141         }
142
143         /* Clear tree tags for the removed page */
144         index = page->index;
145         offset = index & RADIX_TREE_MAP_MASK;
146         for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) {
147                 if (test_bit(offset, node->tags[tag]))
148                         radix_tree_tag_clear(&mapping->page_tree, index, tag);
149         }
150
151         /* Delete page, swap shadow entry */
152         radix_tree_replace_slot(slot, shadow);
153         workingset_node_pages_dec(node);
154         if (shadow)
155                 workingset_node_shadows_inc(node);
156         else
157                 if (__radix_tree_delete_node(&mapping->page_tree, node))
158                         return;
159
160         /*
161          * Track node that only contains shadow entries.
162          *
163          * Avoid acquiring the list_lru lock if already tracked.  The
164          * list_empty() test is safe as node->private_list is
165          * protected by mapping->tree_lock.
166          */
167         if (!workingset_node_pages(node) &&
168             list_empty(&node->private_list)) {
169                 node->private_data = mapping;
170                 list_lru_add(&workingset_shadow_nodes, &node->private_list);
171         }
172 }
173
174 /*
175  * Delete a page from the page cache and free it. Caller has to make
176  * sure the page is locked and that nobody else uses it - or that usage
177  * is safe.  The caller must hold the mapping's tree_lock.
178  */
179 void __delete_from_page_cache(struct page *page, void *shadow)
180 {
181         struct address_space *mapping = page->mapping;
182
183         trace_mm_filemap_delete_from_page_cache(page);
184         /*
185          * if we're uptodate, flush out into the cleancache, otherwise
186          * invalidate any existing cleancache entries.  We can't leave
187          * stale data around in the cleancache once our page is gone
188          */
189         if (PageUptodate(page) && PageMappedToDisk(page))
190                 cleancache_put_page(page);
191         else
192                 cleancache_invalidate_page(mapping, page);
193
194         page_cache_tree_delete(mapping, page, shadow);
195
196         page->mapping = NULL;
197         /* Leave page->index set: truncation lookup relies upon it */
198
199         __dec_zone_page_state(page, NR_FILE_PAGES);
200         if (PageSwapBacked(page))
201                 __dec_zone_page_state(page, NR_SHMEM);
202         BUG_ON(page_mapped(page));
203
204         /*
205          * At this point page must be either written or cleaned by truncate.
206          * Dirty page here signals a bug and loss of unwritten data.
207          *
208          * This fixes dirty accounting after removing the page entirely but
209          * leaves PageDirty set: it has no effect for truncated page and
210          * anyway will be cleared before returning page into buddy allocator.
211          */
212         if (WARN_ON_ONCE(PageDirty(page)))
213                 account_page_cleaned(page, mapping);
214 }
215
216 /**
217  * delete_from_page_cache - delete page from page cache
218  * @page: the page which the kernel is trying to remove from page cache
219  *
220  * This must be called only on pages that have been verified to be in the page
221  * cache and locked.  It will never put the page into the free list, the caller
222  * has a reference on the page.
223  */
224 void delete_from_page_cache(struct page *page)
225 {
226         struct address_space *mapping = page->mapping;
227         void (*freepage)(struct page *);
228
229         BUG_ON(!PageLocked(page));
230
231         freepage = mapping->a_ops->freepage;
232         spin_lock_irq(&mapping->tree_lock);
233         __delete_from_page_cache(page, NULL);
234         spin_unlock_irq(&mapping->tree_lock);
235
236         if (freepage)
237                 freepage(page);
238         page_cache_release(page);
239 }
240 EXPORT_SYMBOL(delete_from_page_cache);
241
242 static int filemap_check_errors(struct address_space *mapping)
243 {
244         int ret = 0;
245         /* Check for outstanding write errors */
246         if (test_bit(AS_ENOSPC, &mapping->flags) &&
247             test_and_clear_bit(AS_ENOSPC, &mapping->flags))
248                 ret = -ENOSPC;
249         if (test_bit(AS_EIO, &mapping->flags) &&
250             test_and_clear_bit(AS_EIO, &mapping->flags))
251                 ret = -EIO;
252         return ret;
253 }
254
255 /**
256  * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
257  * @mapping:    address space structure to write
258  * @start:      offset in bytes where the range starts
259  * @end:        offset in bytes where the range ends (inclusive)
260  * @sync_mode:  enable synchronous operation
261  *
262  * Start writeback against all of a mapping's dirty pages that lie
263  * within the byte offsets <start, end> inclusive.
264  *
265  * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
266  * opposed to a regular memory cleansing writeback.  The difference between
267  * these two operations is that if a dirty page/buffer is encountered, it must
268  * be waited upon, and not just skipped over.
269  */
270 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
271                                 loff_t end, int sync_mode)
272 {
273         int ret;
274         struct writeback_control wbc = {
275                 .sync_mode = sync_mode,
276                 .nr_to_write = LONG_MAX,
277                 .range_start = start,
278                 .range_end = end,
279         };
280
281         if (!mapping_cap_writeback_dirty(mapping))
282                 return 0;
283
284         ret = do_writepages(mapping, &wbc);
285         return ret;
286 }
287
288 static inline int __filemap_fdatawrite(struct address_space *mapping,
289         int sync_mode)
290 {
291         return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
292 }
293
294 int filemap_fdatawrite(struct address_space *mapping)
295 {
296         return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
297 }
298 EXPORT_SYMBOL(filemap_fdatawrite);
299
300 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
301                                 loff_t end)
302 {
303         return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
304 }
305 EXPORT_SYMBOL(filemap_fdatawrite_range);
306
307 /**
308  * filemap_flush - mostly a non-blocking flush
309  * @mapping:    target address_space
310  *
311  * This is a mostly non-blocking flush.  Not suitable for data-integrity
312  * purposes - I/O may not be started against all dirty pages.
313  */
314 int filemap_flush(struct address_space *mapping)
315 {
316         return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
317 }
318 EXPORT_SYMBOL(filemap_flush);
319
320 /**
321  * filemap_fdatawait_range - wait for writeback to complete
322  * @mapping:            address space structure to wait for
323  * @start_byte:         offset in bytes where the range starts
324  * @end_byte:           offset in bytes where the range ends (inclusive)
325  *
326  * Walk the list of under-writeback pages of the given address space
327  * in the given range and wait for all of them.
328  */
329 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
330                             loff_t end_byte)
331 {
332         pgoff_t index = start_byte >> PAGE_CACHE_SHIFT;
333         pgoff_t end = end_byte >> PAGE_CACHE_SHIFT;
334         struct pagevec pvec;
335         int nr_pages;
336         int ret2, ret = 0;
337
338         if (end_byte < start_byte)
339                 goto out;
340
341         pagevec_init(&pvec, 0);
342         while ((index <= end) &&
343                         (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
344                         PAGECACHE_TAG_WRITEBACK,
345                         min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
346                 unsigned i;
347
348                 for (i = 0; i < nr_pages; i++) {
349                         struct page *page = pvec.pages[i];
350
351                         /* until radix tree lookup accepts end_index */
352                         if (page->index > end)
353                                 continue;
354
355                         wait_on_page_writeback(page);
356                         if (TestClearPageError(page))
357                                 ret = -EIO;
358                 }
359                 pagevec_release(&pvec);
360                 cond_resched();
361         }
362 out:
363         ret2 = filemap_check_errors(mapping);
364         if (!ret)
365                 ret = ret2;
366
367         return ret;
368 }
369 EXPORT_SYMBOL(filemap_fdatawait_range);
370
371 /**
372  * filemap_fdatawait - wait for all under-writeback pages to complete
373  * @mapping: address space structure to wait for
374  *
375  * Walk the list of under-writeback pages of the given address space
376  * and wait for all of them.
377  */
378 int filemap_fdatawait(struct address_space *mapping)
379 {
380         loff_t i_size = i_size_read(mapping->host);
381
382         if (i_size == 0)
383                 return 0;
384
385         return filemap_fdatawait_range(mapping, 0, i_size - 1);
386 }
387 EXPORT_SYMBOL(filemap_fdatawait);
388
389 int filemap_write_and_wait(struct address_space *mapping)
390 {
391         int err = 0;
392
393         if (mapping->nrpages) {
394                 err = filemap_fdatawrite(mapping);
395                 /*
396                  * Even if the above returned error, the pages may be
397                  * written partially (e.g. -ENOSPC), so we wait for it.
398                  * But the -EIO is special case, it may indicate the worst
399                  * thing (e.g. bug) happened, so we avoid waiting for it.
400                  */
401                 if (err != -EIO) {
402                         int err2 = filemap_fdatawait(mapping);
403                         if (!err)
404                                 err = err2;
405                 }
406         } else {
407                 err = filemap_check_errors(mapping);
408         }
409         return err;
410 }
411 EXPORT_SYMBOL(filemap_write_and_wait);
412
413 /**
414  * filemap_write_and_wait_range - write out & wait on a file range
415  * @mapping:    the address_space for the pages
416  * @lstart:     offset in bytes where the range starts
417  * @lend:       offset in bytes where the range ends (inclusive)
418  *
419  * Write out and wait upon file offsets lstart->lend, inclusive.
420  *
421  * Note that `lend' is inclusive (describes the last byte to be written) so
422  * that this function can be used to write to the very end-of-file (end = -1).
423  */
424 int filemap_write_and_wait_range(struct address_space *mapping,
425                                  loff_t lstart, loff_t lend)
426 {
427         int err = 0;
428
429         if (mapping->nrpages) {
430                 err = __filemap_fdatawrite_range(mapping, lstart, lend,
431                                                  WB_SYNC_ALL);
432                 /* See comment of filemap_write_and_wait() */
433                 if (err != -EIO) {
434                         int err2 = filemap_fdatawait_range(mapping,
435                                                 lstart, lend);
436                         if (!err)
437                                 err = err2;
438                 }
439         } else {
440                 err = filemap_check_errors(mapping);
441         }
442         return err;
443 }
444 EXPORT_SYMBOL(filemap_write_and_wait_range);
445
446 /**
447  * replace_page_cache_page - replace a pagecache page with a new one
448  * @old:        page to be replaced
449  * @new:        page to replace with
450  * @gfp_mask:   allocation mode
451  *
452  * This function replaces a page in the pagecache with a new one.  On
453  * success it acquires the pagecache reference for the new page and
454  * drops it for the old page.  Both the old and new pages must be
455  * locked.  This function does not add the new page to the LRU, the
456  * caller must do that.
457  *
458  * The remove + add is atomic.  The only way this function can fail is
459  * memory allocation failure.
460  */
461 int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
462 {
463         int error;
464
465         VM_BUG_ON_PAGE(!PageLocked(old), old);
466         VM_BUG_ON_PAGE(!PageLocked(new), new);
467         VM_BUG_ON_PAGE(new->mapping, new);
468
469         error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
470         if (!error) {
471                 struct address_space *mapping = old->mapping;
472                 void (*freepage)(struct page *);
473
474                 pgoff_t offset = old->index;
475                 freepage = mapping->a_ops->freepage;
476
477                 page_cache_get(new);
478                 new->mapping = mapping;
479                 new->index = offset;
480
481                 spin_lock_irq(&mapping->tree_lock);
482                 __delete_from_page_cache(old, NULL);
483                 error = radix_tree_insert(&mapping->page_tree, offset, new);
484                 BUG_ON(error);
485                 mapping->nrpages++;
486                 __inc_zone_page_state(new, NR_FILE_PAGES);
487                 if (PageSwapBacked(new))
488                         __inc_zone_page_state(new, NR_SHMEM);
489                 spin_unlock_irq(&mapping->tree_lock);
490                 mem_cgroup_migrate(old, new, true);
491                 radix_tree_preload_end();
492                 if (freepage)
493                         freepage(old);
494                 page_cache_release(old);
495         }
496
497         return error;
498 }
499 EXPORT_SYMBOL_GPL(replace_page_cache_page);
500
501 static int page_cache_tree_insert(struct address_space *mapping,
502                                   struct page *page, void **shadowp)
503 {
504         struct radix_tree_node *node;
505         void **slot;
506         int error;
507
508         error = __radix_tree_create(&mapping->page_tree, page->index,
509                                     &node, &slot);
510         if (error)
511                 return error;
512         if (*slot) {
513                 void *p;
514
515                 p = radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
516                 if (!radix_tree_exceptional_entry(p))
517                         return -EEXIST;
518                 if (shadowp)
519                         *shadowp = p;
520                 mapping->nrshadows--;
521                 if (node)
522                         workingset_node_shadows_dec(node);
523         }
524         radix_tree_replace_slot(slot, page);
525         mapping->nrpages++;
526         if (node) {
527                 workingset_node_pages_inc(node);
528                 /*
529                  * Don't track node that contains actual pages.
530                  *
531                  * Avoid acquiring the list_lru lock if already
532                  * untracked.  The list_empty() test is safe as
533                  * node->private_list is protected by
534                  * mapping->tree_lock.
535                  */
536                 if (!list_empty(&node->private_list))
537                         list_lru_del(&workingset_shadow_nodes,
538                                      &node->private_list);
539         }
540         return 0;
541 }
542
543 static int __add_to_page_cache_locked(struct page *page,
544                                       struct address_space *mapping,
545                                       pgoff_t offset, gfp_t gfp_mask,
546                                       void **shadowp)
547 {
548         int huge = PageHuge(page);
549         struct mem_cgroup *memcg;
550         int error;
551
552         VM_BUG_ON_PAGE(!PageLocked(page), page);
553         VM_BUG_ON_PAGE(PageSwapBacked(page), page);
554
555         if (!huge) {
556                 error = mem_cgroup_try_charge(page, current->mm,
557                                               gfp_mask, &memcg);
558                 if (error)
559                         return error;
560         }
561
562         error = radix_tree_maybe_preload(gfp_mask & ~__GFP_HIGHMEM);
563         if (error) {
564                 if (!huge)
565                         mem_cgroup_cancel_charge(page, memcg);
566                 return error;
567         }
568
569         page_cache_get(page);
570         page->mapping = mapping;
571         page->index = offset;
572
573         spin_lock_irq(&mapping->tree_lock);
574         error = page_cache_tree_insert(mapping, page, shadowp);
575         radix_tree_preload_end();
576         if (unlikely(error))
577                 goto err_insert;
578         __inc_zone_page_state(page, NR_FILE_PAGES);
579         spin_unlock_irq(&mapping->tree_lock);
580         if (!huge)
581                 mem_cgroup_commit_charge(page, memcg, false);
582         trace_mm_filemap_add_to_page_cache(page);
583         return 0;
584 err_insert:
585         page->mapping = NULL;
586         /* Leave page->index set: truncation relies upon it */
587         spin_unlock_irq(&mapping->tree_lock);
588         if (!huge)
589                 mem_cgroup_cancel_charge(page, memcg);
590         page_cache_release(page);
591         return error;
592 }
593
594 /**
595  * add_to_page_cache_locked - add a locked page to the pagecache
596  * @page:       page to add
597  * @mapping:    the page's address_space
598  * @offset:     page index
599  * @gfp_mask:   page allocation mode
600  *
601  * This function is used to add a page to the pagecache. It must be locked.
602  * This function does not add the page to the LRU.  The caller must do that.
603  */
604 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
605                 pgoff_t offset, gfp_t gfp_mask)
606 {
607         return __add_to_page_cache_locked(page, mapping, offset,
608                                           gfp_mask, NULL);
609 }
610 EXPORT_SYMBOL(add_to_page_cache_locked);
611
612 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
613                                 pgoff_t offset, gfp_t gfp_mask)
614 {
615         void *shadow = NULL;
616         int ret;
617
618         __set_page_locked(page);
619         ret = __add_to_page_cache_locked(page, mapping, offset,
620                                          gfp_mask, &shadow);
621         if (unlikely(ret))
622                 __clear_page_locked(page);
623         else {
624                 /*
625                  * The page might have been evicted from cache only
626                  * recently, in which case it should be activated like
627                  * any other repeatedly accessed page.
628                  */
629                 if (shadow && workingset_refault(shadow)) {
630                         SetPageActive(page);
631                         workingset_activation(page);
632                 } else
633                         ClearPageActive(page);
634                 lru_cache_add(page);
635         }
636         return ret;
637 }
638 EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
639
640 #ifdef CONFIG_NUMA
641 struct page *__page_cache_alloc(gfp_t gfp)
642 {
643         int n;
644         struct page *page;
645
646         if (cpuset_do_page_mem_spread()) {
647                 unsigned int cpuset_mems_cookie;
648                 do {
649                         cpuset_mems_cookie = read_mems_allowed_begin();
650                         n = cpuset_mem_spread_node();
651                         page = alloc_pages_exact_node(n, gfp, 0);
652                 } while (!page && read_mems_allowed_retry(cpuset_mems_cookie));
653
654                 return page;
655         }
656         return alloc_pages(gfp, 0);
657 }
658 EXPORT_SYMBOL(__page_cache_alloc);
659 #endif
660
661 /*
662  * In order to wait for pages to become available there must be
663  * waitqueues associated with pages. By using a hash table of
664  * waitqueues where the bucket discipline is to maintain all
665  * waiters on the same queue and wake all when any of the pages
666  * become available, and for the woken contexts to check to be
667  * sure the appropriate page became available, this saves space
668  * at a cost of "thundering herd" phenomena during rare hash
669  * collisions.
670  */
671 wait_queue_head_t *page_waitqueue(struct page *page)
672 {
673         const struct zone *zone = page_zone(page);
674
675         return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
676 }
677 EXPORT_SYMBOL(page_waitqueue);
678
679 void wait_on_page_bit(struct page *page, int bit_nr)
680 {
681         DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
682
683         if (test_bit(bit_nr, &page->flags))
684                 __wait_on_bit(page_waitqueue(page), &wait, bit_wait_io,
685                                                         TASK_UNINTERRUPTIBLE);
686 }
687 EXPORT_SYMBOL(wait_on_page_bit);
688
689 int wait_on_page_bit_killable(struct page *page, int bit_nr)
690 {
691         DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
692
693         if (!test_bit(bit_nr, &page->flags))
694                 return 0;
695
696         return __wait_on_bit(page_waitqueue(page), &wait,
697                              bit_wait_io, TASK_KILLABLE);
698 }
699
700 int wait_on_page_bit_killable_timeout(struct page *page,
701                                        int bit_nr, unsigned long timeout)
702 {
703         DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
704
705         wait.key.timeout = jiffies + timeout;
706         if (!test_bit(bit_nr, &page->flags))
707                 return 0;
708         return __wait_on_bit(page_waitqueue(page), &wait,
709                              bit_wait_io_timeout, TASK_KILLABLE);
710 }
711 EXPORT_SYMBOL_GPL(wait_on_page_bit_killable_timeout);
712
713 /**
714  * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
715  * @page: Page defining the wait queue of interest
716  * @waiter: Waiter to add to the queue
717  *
718  * Add an arbitrary @waiter to the wait queue for the nominated @page.
719  */
720 void add_page_wait_queue(struct page *page, wait_queue_t *waiter)
721 {
722         wait_queue_head_t *q = page_waitqueue(page);
723         unsigned long flags;
724
725         spin_lock_irqsave(&q->lock, flags);
726         __add_wait_queue(q, waiter);
727         spin_unlock_irqrestore(&q->lock, flags);
728 }
729 EXPORT_SYMBOL_GPL(add_page_wait_queue);
730
731 /**
732  * unlock_page - unlock a locked page
733  * @page: the page
734  *
735  * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
736  * Also wakes sleepers in wait_on_page_writeback() because the wakeup
737  * mechanism between PageLocked pages and PageWriteback pages is shared.
738  * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
739  *
740  * The mb is necessary to enforce ordering between the clear_bit and the read
741  * of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()).
742  */
743 void unlock_page(struct page *page)
744 {
745         VM_BUG_ON_PAGE(!PageLocked(page), page);
746         clear_bit_unlock(PG_locked, &page->flags);
747         smp_mb__after_atomic();
748         wake_up_page(page, PG_locked);
749 }
750 EXPORT_SYMBOL(unlock_page);
751
752 /**
753  * end_page_writeback - end writeback against a page
754  * @page: the page
755  */
756 void end_page_writeback(struct page *page)
757 {
758         /*
759          * TestClearPageReclaim could be used here but it is an atomic
760          * operation and overkill in this particular case. Failing to
761          * shuffle a page marked for immediate reclaim is too mild to
762          * justify taking an atomic operation penalty at the end of
763          * ever page writeback.
764          */
765         if (PageReclaim(page)) {
766                 ClearPageReclaim(page);
767                 rotate_reclaimable_page(page);
768         }
769
770         if (!test_clear_page_writeback(page))
771                 BUG();
772
773         smp_mb__after_atomic();
774         wake_up_page(page, PG_writeback);
775 }
776 EXPORT_SYMBOL(end_page_writeback);
777
778 /*
779  * After completing I/O on a page, call this routine to update the page
780  * flags appropriately
781  */
782 void page_endio(struct page *page, int rw, int err)
783 {
784         if (rw == READ) {
785                 if (!err) {
786                         SetPageUptodate(page);
787                 } else {
788                         ClearPageUptodate(page);
789                         SetPageError(page);
790                 }
791                 unlock_page(page);
792         } else { /* rw == WRITE */
793                 if (err) {
794                         SetPageError(page);
795                         if (page->mapping)
796                                 mapping_set_error(page->mapping, err);
797                 }
798                 end_page_writeback(page);
799         }
800 }
801 EXPORT_SYMBOL_GPL(page_endio);
802
803 /**
804  * __lock_page - get a lock on the page, assuming we need to sleep to get it
805  * @page: the page to lock
806  */
807 void __lock_page(struct page *page)
808 {
809         DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
810
811         __wait_on_bit_lock(page_waitqueue(page), &wait, bit_wait_io,
812                                                         TASK_UNINTERRUPTIBLE);
813 }
814 EXPORT_SYMBOL(__lock_page);
815
816 int __lock_page_killable(struct page *page)
817 {
818         DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
819
820         return __wait_on_bit_lock(page_waitqueue(page), &wait,
821                                         bit_wait_io, TASK_KILLABLE);
822 }
823 EXPORT_SYMBOL_GPL(__lock_page_killable);
824
825 /*
826  * Return values:
827  * 1 - page is locked; mmap_sem is still held.
828  * 0 - page is not locked.
829  *     mmap_sem has been released (up_read()), unless flags had both
830  *     FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
831  *     which case mmap_sem is still held.
832  *
833  * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1
834  * with the page locked and the mmap_sem unperturbed.
835  */
836 int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
837                          unsigned int flags)
838 {
839         if (flags & FAULT_FLAG_ALLOW_RETRY) {
840                 /*
841                  * CAUTION! In this case, mmap_sem is not released
842                  * even though return 0.
843                  */
844                 if (flags & FAULT_FLAG_RETRY_NOWAIT)
845                         return 0;
846
847                 up_read(&mm->mmap_sem);
848                 if (flags & FAULT_FLAG_KILLABLE)
849                         wait_on_page_locked_killable(page);
850                 else
851                         wait_on_page_locked(page);
852                 return 0;
853         } else {
854                 if (flags & FAULT_FLAG_KILLABLE) {
855                         int ret;
856
857                         ret = __lock_page_killable(page);
858                         if (ret) {
859                                 up_read(&mm->mmap_sem);
860                                 return 0;
861                         }
862                 } else
863                         __lock_page(page);
864                 return 1;
865         }
866 }
867
868 /**
869  * page_cache_next_hole - find the next hole (not-present entry)
870  * @mapping: mapping
871  * @index: index
872  * @max_scan: maximum range to search
873  *
874  * Search the set [index, min(index+max_scan-1, MAX_INDEX)] for the
875  * lowest indexed hole.
876  *
877  * Returns: the index of the hole if found, otherwise returns an index
878  * outside of the set specified (in which case 'return - index >=
879  * max_scan' will be true). In rare cases of index wrap-around, 0 will
880  * be returned.
881  *
882  * page_cache_next_hole may be called under rcu_read_lock. However,
883  * like radix_tree_gang_lookup, this will not atomically search a
884  * snapshot of the tree at a single point in time. For example, if a
885  * hole is created at index 5, then subsequently a hole is created at
886  * index 10, page_cache_next_hole covering both indexes may return 10
887  * if called under rcu_read_lock.
888  */
889 pgoff_t page_cache_next_hole(struct address_space *mapping,
890                              pgoff_t index, unsigned long max_scan)
891 {
892         unsigned long i;
893
894         for (i = 0; i < max_scan; i++) {
895                 struct page *page;
896
897                 page = radix_tree_lookup(&mapping->page_tree, index);
898                 if (!page || radix_tree_exceptional_entry(page))
899                         break;
900                 index++;
901                 if (index == 0)
902                         break;
903         }
904
905         return index;
906 }
907 EXPORT_SYMBOL(page_cache_next_hole);
908
909 /**
910  * page_cache_prev_hole - find the prev hole (not-present entry)
911  * @mapping: mapping
912  * @index: index
913  * @max_scan: maximum range to search
914  *
915  * Search backwards in the range [max(index-max_scan+1, 0), index] for
916  * the first hole.
917  *
918  * Returns: the index of the hole if found, otherwise returns an index
919  * outside of the set specified (in which case 'index - return >=
920  * max_scan' will be true). In rare cases of wrap-around, ULONG_MAX
921  * will be returned.
922  *
923  * page_cache_prev_hole may be called under rcu_read_lock. However,
924  * like radix_tree_gang_lookup, this will not atomically search a
925  * snapshot of the tree at a single point in time. For example, if a
926  * hole is created at index 10, then subsequently a hole is created at
927  * index 5, page_cache_prev_hole covering both indexes may return 5 if
928  * called under rcu_read_lock.
929  */
930 pgoff_t page_cache_prev_hole(struct address_space *mapping,
931                              pgoff_t index, unsigned long max_scan)
932 {
933         unsigned long i;
934
935         for (i = 0; i < max_scan; i++) {
936                 struct page *page;
937
938                 page = radix_tree_lookup(&mapping->page_tree, index);
939                 if (!page || radix_tree_exceptional_entry(page))
940                         break;
941                 index--;
942                 if (index == ULONG_MAX)
943                         break;
944         }
945
946         return index;
947 }
948 EXPORT_SYMBOL(page_cache_prev_hole);
949
950 /**
951  * find_get_entry - find and get a page cache entry
952  * @mapping: the address_space to search
953  * @offset: the page cache index
954  *
955  * Looks up the page cache slot at @mapping & @offset.  If there is a
956  * page cache page, it is returned with an increased refcount.
957  *
958  * If the slot holds a shadow entry of a previously evicted page, or a
959  * swap entry from shmem/tmpfs, it is returned.
960  *
961  * Otherwise, %NULL is returned.
962  */
963 struct page *find_get_entry(struct address_space *mapping, pgoff_t offset)
964 {
965         void **pagep;
966         struct page *page;
967
968         rcu_read_lock();
969 repeat:
970         page = NULL;
971         pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
972         if (pagep) {
973                 page = radix_tree_deref_slot(pagep);
974                 if (unlikely(!page))
975                         goto out;
976                 if (radix_tree_exception(page)) {
977                         if (radix_tree_deref_retry(page))
978                                 goto repeat;
979                         /*
980                          * A shadow entry of a recently evicted page,
981                          * or a swap entry from shmem/tmpfs.  Return
982                          * it without attempting to raise page count.
983                          */
984                         goto out;
985                 }
986                 if (!page_cache_get_speculative(page))
987                         goto repeat;
988
989                 /*
990                  * Has the page moved?
991                  * This is part of the lockless pagecache protocol. See
992                  * include/linux/pagemap.h for details.
993                  */
994                 if (unlikely(page != *pagep)) {
995                         page_cache_release(page);
996                         goto repeat;
997                 }
998         }
999 out:
1000         rcu_read_unlock();
1001
1002         return page;
1003 }
1004 EXPORT_SYMBOL(find_get_entry);
1005
1006 /**
1007  * find_lock_entry - locate, pin and lock a page cache entry
1008  * @mapping: the address_space to search
1009  * @offset: the page cache index
1010  *
1011  * Looks up the page cache slot at @mapping & @offset.  If there is a
1012  * page cache page, it is returned locked and with an increased
1013  * refcount.
1014  *
1015  * If the slot holds a shadow entry of a previously evicted page, or a
1016  * swap entry from shmem/tmpfs, it is returned.
1017  *
1018  * Otherwise, %NULL is returned.
1019  *
1020  * find_lock_entry() may sleep.
1021  */
1022 struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset)
1023 {
1024         struct page *page;
1025
1026 repeat:
1027         page = find_get_entry(mapping, offset);
1028         if (page && !radix_tree_exception(page)) {
1029                 lock_page(page);
1030                 /* Has the page been truncated? */
1031                 if (unlikely(page->mapping != mapping)) {
1032                         unlock_page(page);
1033                         page_cache_release(page);
1034                         goto repeat;
1035                 }
1036                 VM_BUG_ON_PAGE(page->index != offset, page);
1037         }
1038         return page;
1039 }
1040 EXPORT_SYMBOL(find_lock_entry);
1041
1042 /**
1043  * pagecache_get_page - find and get a page reference
1044  * @mapping: the address_space to search
1045  * @offset: the page index
1046  * @fgp_flags: PCG flags
1047  * @gfp_mask: gfp mask to use for the page cache data page allocation
1048  *
1049  * Looks up the page cache slot at @mapping & @offset.
1050  *
1051  * PCG flags modify how the page is returned.
1052  *
1053  * FGP_ACCESSED: the page will be marked accessed
1054  * FGP_LOCK: Page is return locked
1055  * FGP_CREAT: If page is not present then a new page is allocated using
1056  *              @gfp_mask and added to the page cache and the VM's LRU
1057  *              list. The page is returned locked and with an increased
1058  *              refcount. Otherwise, %NULL is returned.
1059  *
1060  * If FGP_LOCK or FGP_CREAT are specified then the function may sleep even
1061  * if the GFP flags specified for FGP_CREAT are atomic.
1062  *
1063  * If there is a page cache page, it is returned with an increased refcount.
1064  */
1065 struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset,
1066         int fgp_flags, gfp_t gfp_mask)
1067 {
1068         struct page *page;
1069
1070 repeat:
1071         page = find_get_entry(mapping, offset);
1072         if (radix_tree_exceptional_entry(page))
1073                 page = NULL;
1074         if (!page)
1075                 goto no_page;
1076
1077         if (fgp_flags & FGP_LOCK) {
1078                 if (fgp_flags & FGP_NOWAIT) {
1079                         if (!trylock_page(page)) {
1080                                 page_cache_release(page);
1081                                 return NULL;
1082                         }
1083                 } else {
1084                         lock_page(page);
1085                 }
1086
1087                 /* Has the page been truncated? */
1088                 if (unlikely(page->mapping != mapping)) {
1089                         unlock_page(page);
1090                         page_cache_release(page);
1091                         goto repeat;
1092                 }
1093                 VM_BUG_ON_PAGE(page->index != offset, page);
1094         }
1095
1096         if (page && (fgp_flags & FGP_ACCESSED))
1097                 mark_page_accessed(page);
1098
1099 no_page:
1100         if (!page && (fgp_flags & FGP_CREAT)) {
1101                 int err;
1102                 if ((fgp_flags & FGP_WRITE) && mapping_cap_account_dirty(mapping))
1103                         gfp_mask |= __GFP_WRITE;
1104                 if (fgp_flags & FGP_NOFS)
1105                         gfp_mask &= ~__GFP_FS;
1106
1107                 page = __page_cache_alloc(gfp_mask);
1108                 if (!page)
1109                         return NULL;
1110
1111                 if (WARN_ON_ONCE(!(fgp_flags & FGP_LOCK)))
1112                         fgp_flags |= FGP_LOCK;
1113
1114                 /* Init accessed so avoid atomic mark_page_accessed later */
1115                 if (fgp_flags & FGP_ACCESSED)
1116                         __SetPageReferenced(page);
1117
1118                 err = add_to_page_cache_lru(page, mapping, offset,
1119                                 gfp_mask & GFP_RECLAIM_MASK);
1120                 if (unlikely(err)) {
1121                         page_cache_release(page);
1122                         page = NULL;
1123                         if (err == -EEXIST)
1124                                 goto repeat;
1125                 }
1126         }
1127
1128         return page;
1129 }
1130 EXPORT_SYMBOL(pagecache_get_page);
1131
1132 /**
1133  * find_get_entries - gang pagecache lookup
1134  * @mapping:    The address_space to search
1135  * @start:      The starting page cache index
1136  * @nr_entries: The maximum number of entries
1137  * @entries:    Where the resulting entries are placed
1138  * @indices:    The cache indices corresponding to the entries in @entries
1139  *
1140  * find_get_entries() will search for and return a group of up to
1141  * @nr_entries entries in the mapping.  The entries are placed at
1142  * @entries.  find_get_entries() takes a reference against any actual
1143  * pages it returns.
1144  *
1145  * The search returns a group of mapping-contiguous page cache entries
1146  * with ascending indexes.  There may be holes in the indices due to
1147  * not-present pages.
1148  *
1149  * Any shadow entries of evicted pages, or swap entries from
1150  * shmem/tmpfs, are included in the returned array.
1151  *
1152  * find_get_entries() returns the number of pages and shadow entries
1153  * which were found.
1154  */
1155 unsigned find_get_entries(struct address_space *mapping,
1156                           pgoff_t start, unsigned int nr_entries,
1157                           struct page **entries, pgoff_t *indices)
1158 {
1159         void **slot;
1160         unsigned int ret = 0;
1161         struct radix_tree_iter iter;
1162
1163         if (!nr_entries)
1164                 return 0;
1165
1166         rcu_read_lock();
1167 restart:
1168         radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1169                 struct page *page;
1170 repeat:
1171                 page = radix_tree_deref_slot(slot);
1172                 if (unlikely(!page))
1173                         continue;
1174                 if (radix_tree_exception(page)) {
1175                         if (radix_tree_deref_retry(page))
1176                                 goto restart;
1177                         /*
1178                          * A shadow entry of a recently evicted page,
1179                          * or a swap entry from shmem/tmpfs.  Return
1180                          * it without attempting to raise page count.
1181                          */
1182                         goto export;
1183                 }
1184                 if (!page_cache_get_speculative(page))
1185                         goto repeat;
1186
1187                 /* Has the page moved? */
1188                 if (unlikely(page != *slot)) {
1189                         page_cache_release(page);
1190                         goto repeat;
1191                 }
1192 export:
1193                 indices[ret] = iter.index;
1194                 entries[ret] = page;
1195                 if (++ret == nr_entries)
1196                         break;
1197         }
1198         rcu_read_unlock();
1199         return ret;
1200 }
1201
1202 /**
1203  * find_get_pages - gang pagecache lookup
1204  * @mapping:    The address_space to search
1205  * @start:      The starting page index
1206  * @nr_pages:   The maximum number of pages
1207  * @pages:      Where the resulting pages are placed
1208  *
1209  * find_get_pages() will search for and return a group of up to
1210  * @nr_pages pages in the mapping.  The pages are placed at @pages.
1211  * find_get_pages() takes a reference against the returned pages.
1212  *
1213  * The search returns a group of mapping-contiguous pages with ascending
1214  * indexes.  There may be holes in the indices due to not-present pages.
1215  *
1216  * find_get_pages() returns the number of pages which were found.
1217  */
1218 unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
1219                             unsigned int nr_pages, struct page **pages)
1220 {
1221         struct radix_tree_iter iter;
1222         void **slot;
1223         unsigned ret = 0;
1224
1225         if (unlikely(!nr_pages))
1226                 return 0;
1227
1228         rcu_read_lock();
1229 restart:
1230         radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1231                 struct page *page;
1232 repeat:
1233                 page = radix_tree_deref_slot(slot);
1234                 if (unlikely(!page))
1235                         continue;
1236
1237                 if (radix_tree_exception(page)) {
1238                         if (radix_tree_deref_retry(page)) {
1239                                 /*
1240                                  * Transient condition which can only trigger
1241                                  * when entry at index 0 moves out of or back
1242                                  * to root: none yet gotten, safe to restart.
1243                                  */
1244                                 WARN_ON(iter.index);
1245                                 goto restart;
1246                         }
1247                         /*
1248                          * A shadow entry of a recently evicted page,
1249                          * or a swap entry from shmem/tmpfs.  Skip
1250                          * over it.
1251                          */
1252                         continue;
1253                 }
1254
1255                 if (!page_cache_get_speculative(page))
1256                         goto repeat;
1257
1258                 /* Has the page moved? */
1259                 if (unlikely(page != *slot)) {
1260                         page_cache_release(page);
1261                         goto repeat;
1262                 }
1263
1264                 pages[ret] = page;
1265                 if (++ret == nr_pages)
1266                         break;
1267         }
1268
1269         rcu_read_unlock();
1270         return ret;
1271 }
1272
1273 /**
1274  * find_get_pages_contig - gang contiguous pagecache lookup
1275  * @mapping:    The address_space to search
1276  * @index:      The starting page index
1277  * @nr_pages:   The maximum number of pages
1278  * @pages:      Where the resulting pages are placed
1279  *
1280  * find_get_pages_contig() works exactly like find_get_pages(), except
1281  * that the returned number of pages are guaranteed to be contiguous.
1282  *
1283  * find_get_pages_contig() returns the number of pages which were found.
1284  */
1285 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
1286                                unsigned int nr_pages, struct page **pages)
1287 {
1288         struct radix_tree_iter iter;
1289         void **slot;
1290         unsigned int ret = 0;
1291
1292         if (unlikely(!nr_pages))
1293                 return 0;
1294
1295         rcu_read_lock();
1296 restart:
1297         radix_tree_for_each_contig(slot, &mapping->page_tree, &iter, index) {
1298                 struct page *page;
1299 repeat:
1300                 page = radix_tree_deref_slot(slot);
1301                 /* The hole, there no reason to continue */
1302                 if (unlikely(!page))
1303                         break;
1304
1305                 if (radix_tree_exception(page)) {
1306                         if (radix_tree_deref_retry(page)) {
1307                                 /*
1308                                  * Transient condition which can only trigger
1309                                  * when entry at index 0 moves out of or back
1310                                  * to root: none yet gotten, safe to restart.
1311                                  */
1312                                 goto restart;
1313                         }
1314                         /*
1315                          * A shadow entry of a recently evicted page,
1316                          * or a swap entry from shmem/tmpfs.  Stop
1317                          * looking for contiguous pages.
1318                          */
1319                         break;
1320                 }
1321
1322                 if (!page_cache_get_speculative(page))
1323                         goto repeat;
1324
1325                 /* Has the page moved? */
1326                 if (unlikely(page != *slot)) {
1327                         page_cache_release(page);
1328                         goto repeat;
1329                 }
1330
1331                 /*
1332                  * must check mapping and index after taking the ref.
1333                  * otherwise we can get both false positives and false
1334                  * negatives, which is just confusing to the caller.
1335                  */
1336                 if (page->mapping == NULL || page->index != iter.index) {
1337                         page_cache_release(page);
1338                         break;
1339                 }
1340
1341                 pages[ret] = page;
1342                 if (++ret == nr_pages)
1343                         break;
1344         }
1345         rcu_read_unlock();
1346         return ret;
1347 }
1348 EXPORT_SYMBOL(find_get_pages_contig);
1349
1350 /**
1351  * find_get_pages_tag - find and return pages that match @tag
1352  * @mapping:    the address_space to search
1353  * @index:      the starting page index
1354  * @tag:        the tag index
1355  * @nr_pages:   the maximum number of pages
1356  * @pages:      where the resulting pages are placed
1357  *
1358  * Like find_get_pages, except we only return pages which are tagged with
1359  * @tag.   We update @index to index the next page for the traversal.
1360  */
1361 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
1362                         int tag, unsigned int nr_pages, struct page **pages)
1363 {
1364         struct radix_tree_iter iter;
1365         void **slot;
1366         unsigned ret = 0;
1367
1368         if (unlikely(!nr_pages))
1369                 return 0;
1370
1371         rcu_read_lock();
1372 restart:
1373         radix_tree_for_each_tagged(slot, &mapping->page_tree,
1374                                    &iter, *index, tag) {
1375                 struct page *page;
1376 repeat:
1377                 page = radix_tree_deref_slot(slot);
1378                 if (unlikely(!page))
1379                         continue;
1380
1381                 if (radix_tree_exception(page)) {
1382                         if (radix_tree_deref_retry(page)) {
1383                                 /*
1384                                  * Transient condition which can only trigger
1385                                  * when entry at index 0 moves out of or back
1386                                  * to root: none yet gotten, safe to restart.
1387                                  */
1388                                 goto restart;
1389                         }
1390                         /*
1391                          * A shadow entry of a recently evicted page.
1392                          *
1393                          * Those entries should never be tagged, but
1394                          * this tree walk is lockless and the tags are
1395                          * looked up in bulk, one radix tree node at a
1396                          * time, so there is a sizable window for page
1397                          * reclaim to evict a page we saw tagged.
1398                          *
1399                          * Skip over it.
1400                          */
1401                         continue;
1402                 }
1403
1404                 if (!page_cache_get_speculative(page))
1405                         goto repeat;
1406
1407                 /* Has the page moved? */
1408                 if (unlikely(page != *slot)) {
1409                         page_cache_release(page);
1410                         goto repeat;
1411                 }
1412
1413                 pages[ret] = page;
1414                 if (++ret == nr_pages)
1415                         break;
1416         }
1417
1418         rcu_read_unlock();
1419
1420         if (ret)
1421                 *index = pages[ret - 1]->index + 1;
1422
1423         return ret;
1424 }
1425 EXPORT_SYMBOL(find_get_pages_tag);
1426
1427 /*
1428  * CD/DVDs are error prone. When a medium error occurs, the driver may fail
1429  * a _large_ part of the i/o request. Imagine the worst scenario:
1430  *
1431  *      ---R__________________________________________B__________
1432  *         ^ reading here                             ^ bad block(assume 4k)
1433  *
1434  * read(R) => miss => readahead(R...B) => media error => frustrating retries
1435  * => failing the whole request => read(R) => read(R+1) =>
1436  * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
1437  * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
1438  * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
1439  *
1440  * It is going insane. Fix it by quickly scaling down the readahead size.
1441  */
1442 static void shrink_readahead_size_eio(struct file *filp,
1443                                         struct file_ra_state *ra)
1444 {
1445         ra->ra_pages /= 4;
1446 }
1447
1448 /**
1449  * do_generic_file_read - generic file read routine
1450  * @filp:       the file to read
1451  * @ppos:       current file position
1452  * @iter:       data destination
1453  * @written:    already copied
1454  *
1455  * This is a generic file read routine, and uses the
1456  * mapping->a_ops->readpage() function for the actual low-level stuff.
1457  *
1458  * This is really ugly. But the goto's actually try to clarify some
1459  * of the logic when it comes to error handling etc.
1460  */
1461 static ssize_t do_generic_file_read(struct file *filp, loff_t *ppos,
1462                 struct iov_iter *iter, ssize_t written)
1463 {
1464         struct address_space *mapping = filp->f_mapping;
1465         struct inode *inode = mapping->host;
1466         struct file_ra_state *ra = &filp->f_ra;
1467         pgoff_t index;
1468         pgoff_t last_index;
1469         pgoff_t prev_index;
1470         unsigned long offset;      /* offset into pagecache page */
1471         unsigned int prev_offset;
1472         int error = 0;
1473
1474         index = *ppos >> PAGE_CACHE_SHIFT;
1475         prev_index = ra->prev_pos >> PAGE_CACHE_SHIFT;
1476         prev_offset = ra->prev_pos & (PAGE_CACHE_SIZE-1);
1477         last_index = (*ppos + iter->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
1478         offset = *ppos & ~PAGE_CACHE_MASK;
1479
1480         for (;;) {
1481                 struct page *page;
1482                 pgoff_t end_index;
1483                 loff_t isize;
1484                 unsigned long nr, ret;
1485
1486                 cond_resched();
1487 find_page:
1488                 page = find_get_page(mapping, index);
1489                 if (!page) {
1490                         page_cache_sync_readahead(mapping,
1491                                         ra, filp,
1492                                         index, last_index - index);
1493                         page = find_get_page(mapping, index);
1494                         if (unlikely(page == NULL))
1495                                 goto no_cached_page;
1496                 }
1497                 if (PageReadahead(page)) {
1498                         page_cache_async_readahead(mapping,
1499                                         ra, filp, page,
1500                                         index, last_index - index);
1501                 }
1502                 if (!PageUptodate(page)) {
1503                         if (inode->i_blkbits == PAGE_CACHE_SHIFT ||
1504                                         !mapping->a_ops->is_partially_uptodate)
1505                                 goto page_not_up_to_date;
1506                         if (!trylock_page(page))
1507                                 goto page_not_up_to_date;
1508                         /* Did it get truncated before we got the lock? */
1509                         if (!page->mapping)
1510                                 goto page_not_up_to_date_locked;
1511                         if (!mapping->a_ops->is_partially_uptodate(page,
1512                                                         offset, iter->count))
1513                                 goto page_not_up_to_date_locked;
1514                         unlock_page(page);
1515                 }
1516 page_ok:
1517                 /*
1518                  * i_size must be checked after we know the page is Uptodate.
1519                  *
1520                  * Checking i_size after the check allows us to calculate
1521                  * the correct value for "nr", which means the zero-filled
1522                  * part of the page is not copied back to userspace (unless
1523                  * another truncate extends the file - this is desired though).
1524                  */
1525
1526                 isize = i_size_read(inode);
1527                 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1528                 if (unlikely(!isize || index > end_index)) {
1529                         page_cache_release(page);
1530                         goto out;
1531                 }
1532
1533                 /* nr is the maximum number of bytes to copy from this page */
1534                 nr = PAGE_CACHE_SIZE;
1535                 if (index == end_index) {
1536                         nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1537                         if (nr <= offset) {
1538                                 page_cache_release(page);
1539                                 goto out;
1540                         }
1541                 }
1542                 nr = nr - offset;
1543
1544                 /* If users can be writing to this page using arbitrary
1545                  * virtual addresses, take care about potential aliasing
1546                  * before reading the page on the kernel side.
1547                  */
1548                 if (mapping_writably_mapped(mapping))
1549                         flush_dcache_page(page);
1550
1551                 /*
1552                  * When a sequential read accesses a page several times,
1553                  * only mark it as accessed the first time.
1554                  */
1555                 if (prev_index != index || offset != prev_offset)
1556                         mark_page_accessed(page);
1557                 prev_index = index;
1558
1559                 /*
1560                  * Ok, we have the page, and it's up-to-date, so
1561                  * now we can copy it to user space...
1562                  */
1563
1564                 ret = copy_page_to_iter(page, offset, nr, iter);
1565                 offset += ret;
1566                 index += offset >> PAGE_CACHE_SHIFT;
1567                 offset &= ~PAGE_CACHE_MASK;
1568                 prev_offset = offset;
1569
1570                 page_cache_release(page);
1571                 written += ret;
1572                 if (!iov_iter_count(iter))
1573                         goto out;
1574                 if (ret < nr) {
1575                         error = -EFAULT;
1576                         goto out;
1577                 }
1578                 continue;
1579
1580 page_not_up_to_date:
1581                 /* Get exclusive access to the page ... */
1582                 error = lock_page_killable(page);
1583                 if (unlikely(error))
1584                         goto readpage_error;
1585
1586 page_not_up_to_date_locked:
1587                 /* Did it get truncated before we got the lock? */
1588                 if (!page->mapping) {
1589                         unlock_page(page);
1590                         page_cache_release(page);
1591                         continue;
1592                 }
1593
1594                 /* Did somebody else fill it already? */
1595                 if (PageUptodate(page)) {
1596                         unlock_page(page);
1597                         goto page_ok;
1598                 }
1599
1600 readpage:
1601                 /*
1602                  * A previous I/O error may have been due to temporary
1603                  * failures, eg. multipath errors.
1604                  * PG_error will be set again if readpage fails.
1605                  */
1606                 ClearPageError(page);
1607                 /* Start the actual read. The read will unlock the page. */
1608                 error = mapping->a_ops->readpage(filp, page);
1609
1610                 if (unlikely(error)) {
1611                         if (error == AOP_TRUNCATED_PAGE) {
1612                                 page_cache_release(page);
1613                                 error = 0;
1614                                 goto find_page;
1615                         }
1616                         goto readpage_error;
1617                 }
1618
1619                 if (!PageUptodate(page)) {
1620                         error = lock_page_killable(page);
1621                         if (unlikely(error))
1622                                 goto readpage_error;
1623                         if (!PageUptodate(page)) {
1624                                 if (page->mapping == NULL) {
1625                                         /*
1626                                          * invalidate_mapping_pages got it
1627                                          */
1628                                         unlock_page(page);
1629                                         page_cache_release(page);
1630                                         goto find_page;
1631                                 }
1632                                 unlock_page(page);
1633                                 shrink_readahead_size_eio(filp, ra);
1634                                 error = -EIO;
1635                                 goto readpage_error;
1636                         }
1637                         unlock_page(page);
1638                 }
1639
1640                 goto page_ok;
1641
1642 readpage_error:
1643                 /* UHHUH! A synchronous read error occurred. Report it */
1644                 page_cache_release(page);
1645                 goto out;
1646
1647 no_cached_page:
1648                 /*
1649                  * Ok, it wasn't cached, so we need to create a new
1650                  * page..
1651                  */
1652                 page = page_cache_alloc_cold(mapping);
1653                 if (!page) {
1654                         error = -ENOMEM;
1655                         goto out;
1656                 }
1657                 error = add_to_page_cache_lru(page, mapping,
1658                                                 index, GFP_KERNEL);
1659                 if (error) {
1660                         page_cache_release(page);
1661                         if (error == -EEXIST) {
1662                                 error = 0;
1663                                 goto find_page;
1664                         }
1665                         goto out;
1666                 }
1667                 goto readpage;
1668         }
1669
1670 out:
1671         ra->prev_pos = prev_index;
1672         ra->prev_pos <<= PAGE_CACHE_SHIFT;
1673         ra->prev_pos |= prev_offset;
1674
1675         *ppos = ((loff_t)index << PAGE_CACHE_SHIFT) + offset;
1676         file_accessed(filp);
1677         return written ? written : error;
1678 }
1679
1680 /**
1681  * generic_file_read_iter - generic filesystem read routine
1682  * @iocb:       kernel I/O control block
1683  * @iter:       destination for the data read
1684  *
1685  * This is the "read_iter()" routine for all filesystems
1686  * that can use the page cache directly.
1687  */
1688 ssize_t
1689 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
1690 {
1691         struct file *file = iocb->ki_filp;
1692         ssize_t retval = 0;
1693         loff_t *ppos = &iocb->ki_pos;
1694         loff_t pos = *ppos;
1695
1696         if (iocb->ki_flags & IOCB_DIRECT) {
1697                 struct address_space *mapping = file->f_mapping;
1698                 struct inode *inode = mapping->host;
1699                 size_t count = iov_iter_count(iter);
1700                 loff_t size;
1701
1702                 if (!count)
1703                         goto out; /* skip atime */
1704                 size = i_size_read(inode);
1705                 retval = filemap_write_and_wait_range(mapping, pos,
1706                                         pos + count - 1);
1707                 if (!retval) {
1708                         struct iov_iter data = *iter;
1709                         retval = mapping->a_ops->direct_IO(iocb, &data, pos);
1710                 }
1711
1712                 if (retval > 0) {
1713                         *ppos = pos + retval;
1714                         iov_iter_advance(iter, retval);
1715                 }
1716
1717                 /*
1718                  * Btrfs can have a short DIO read if we encounter
1719                  * compressed extents, so if there was an error, or if
1720                  * we've already read everything we wanted to, or if
1721                  * there was a short read because we hit EOF, go ahead
1722                  * and return.  Otherwise fallthrough to buffered io for
1723                  * the rest of the read.  Buffered reads will not work for
1724                  * DAX files, so don't bother trying.
1725                  */
1726                 if (retval < 0 || !iov_iter_count(iter) || *ppos >= size ||
1727                     IS_DAX(inode)) {
1728                         file_accessed(file);
1729                         goto out;
1730                 }
1731         }
1732
1733         retval = do_generic_file_read(file, ppos, iter, retval);
1734 out:
1735         return retval;
1736 }
1737 EXPORT_SYMBOL(generic_file_read_iter);
1738
1739 #ifdef CONFIG_MMU
1740 /**
1741  * page_cache_read - adds requested page to the page cache if not already there
1742  * @file:       file to read
1743  * @offset:     page index
1744  *
1745  * This adds the requested page to the page cache if it isn't already there,
1746  * and schedules an I/O to read in its contents from disk.
1747  */
1748 static int page_cache_read(struct file *file, pgoff_t offset)
1749 {
1750         struct address_space *mapping = file->f_mapping;
1751         struct page *page;
1752         int ret;
1753
1754         do {
1755                 page = page_cache_alloc_cold(mapping);
1756                 if (!page)
1757                         return -ENOMEM;
1758
1759                 ret = add_to_page_cache_lru(page, mapping, offset, GFP_KERNEL);
1760                 if (ret == 0)
1761                         ret = mapping->a_ops->readpage(file, page);
1762                 else if (ret == -EEXIST)
1763                         ret = 0; /* losing race to add is OK */
1764
1765                 page_cache_release(page);
1766
1767         } while (ret == AOP_TRUNCATED_PAGE);
1768
1769         return ret;
1770 }
1771
1772 #define MMAP_LOTSAMISS  (100)
1773
1774 /*
1775  * Synchronous readahead happens when we don't even find
1776  * a page in the page cache at all.
1777  */
1778 static void do_sync_mmap_readahead(struct vm_area_struct *vma,
1779                                    struct file_ra_state *ra,
1780                                    struct file *file,
1781                                    pgoff_t offset)
1782 {
1783         unsigned long ra_pages;
1784         struct address_space *mapping = file->f_mapping;
1785
1786         /* If we don't want any read-ahead, don't bother */
1787         if (vma->vm_flags & VM_RAND_READ)
1788                 return;
1789         if (!ra->ra_pages)
1790                 return;
1791
1792         if (vma->vm_flags & VM_SEQ_READ) {
1793                 page_cache_sync_readahead(mapping, ra, file, offset,
1794                                           ra->ra_pages);
1795                 return;
1796         }
1797
1798         /* Avoid banging the cache line if not needed */
1799         if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
1800                 ra->mmap_miss++;
1801
1802         /*
1803          * Do we miss much more than hit in this file? If so,
1804          * stop bothering with read-ahead. It will only hurt.
1805          */
1806         if (ra->mmap_miss > MMAP_LOTSAMISS)
1807                 return;
1808
1809         /*
1810          * mmap read-around
1811          */
1812         ra_pages = max_sane_readahead(ra->ra_pages);
1813         ra->start = max_t(long, 0, offset - ra_pages / 2);
1814         ra->size = ra_pages;
1815         ra->async_size = ra_pages / 4;
1816         ra_submit(ra, mapping, file);
1817 }
1818
1819 /*
1820  * Asynchronous readahead happens when we find the page and PG_readahead,
1821  * so we want to possibly extend the readahead further..
1822  */
1823 static void do_async_mmap_readahead(struct vm_area_struct *vma,
1824                                     struct file_ra_state *ra,
1825                                     struct file *file,
1826                                     struct page *page,
1827                                     pgoff_t offset)
1828 {
1829         struct address_space *mapping = file->f_mapping;
1830
1831         /* If we don't want any read-ahead, don't bother */
1832         if (vma->vm_flags & VM_RAND_READ)
1833                 return;
1834         if (ra->mmap_miss > 0)
1835                 ra->mmap_miss--;
1836         if (PageReadahead(page))
1837                 page_cache_async_readahead(mapping, ra, file,
1838                                            page, offset, ra->ra_pages);
1839 }
1840
1841 /**
1842  * filemap_fault - read in file data for page fault handling
1843  * @vma:        vma in which the fault was taken
1844  * @vmf:        struct vm_fault containing details of the fault
1845  *
1846  * filemap_fault() is invoked via the vma operations vector for a
1847  * mapped memory region to read in file data during a page fault.
1848  *
1849  * The goto's are kind of ugly, but this streamlines the normal case of having
1850  * it in the page cache, and handles the special cases reasonably without
1851  * having a lot of duplicated code.
1852  *
1853  * vma->vm_mm->mmap_sem must be held on entry.
1854  *
1855  * If our return value has VM_FAULT_RETRY set, it's because
1856  * lock_page_or_retry() returned 0.
1857  * The mmap_sem has usually been released in this case.
1858  * See __lock_page_or_retry() for the exception.
1859  *
1860  * If our return value does not have VM_FAULT_RETRY set, the mmap_sem
1861  * has not been released.
1862  *
1863  * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
1864  */
1865 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1866 {
1867         int error;
1868         struct file *file = vma->vm_file;
1869         struct address_space *mapping = file->f_mapping;
1870         struct file_ra_state *ra = &file->f_ra;
1871         struct inode *inode = mapping->host;
1872         pgoff_t offset = vmf->pgoff;
1873         struct page *page;
1874         loff_t size;
1875         int ret = 0;
1876
1877         size = round_up(i_size_read(inode), PAGE_CACHE_SIZE);
1878         if (offset >= size >> PAGE_CACHE_SHIFT)
1879                 return VM_FAULT_SIGBUS;
1880
1881         /*
1882          * Do we have something in the page cache already?
1883          */
1884         page = find_get_page(mapping, offset);
1885         if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
1886                 /*
1887                  * We found the page, so try async readahead before
1888                  * waiting for the lock.
1889                  */
1890                 do_async_mmap_readahead(vma, ra, file, page, offset);
1891         } else if (!page) {
1892                 /* No page in the page cache at all */
1893                 do_sync_mmap_readahead(vma, ra, file, offset);
1894                 count_vm_event(PGMAJFAULT);
1895                 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
1896                 ret = VM_FAULT_MAJOR;
1897 retry_find:
1898                 page = find_get_page(mapping, offset);
1899                 if (!page)
1900                         goto no_cached_page;
1901         }
1902
1903         if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags)) {
1904                 page_cache_release(page);
1905                 return ret | VM_FAULT_RETRY;
1906         }
1907
1908         /* Did it get truncated? */
1909         if (unlikely(page->mapping != mapping)) {
1910                 unlock_page(page);
1911                 put_page(page);
1912                 goto retry_find;
1913         }
1914         VM_BUG_ON_PAGE(page->index != offset, page);
1915
1916         /*
1917          * We have a locked page in the page cache, now we need to check
1918          * that it's up-to-date. If not, it is going to be due to an error.
1919          */
1920         if (unlikely(!PageUptodate(page)))
1921                 goto page_not_uptodate;
1922
1923         /*
1924          * Found the page and have a reference on it.
1925          * We must recheck i_size under page lock.
1926          */
1927         size = round_up(i_size_read(inode), PAGE_CACHE_SIZE);
1928         if (unlikely(offset >= size >> PAGE_CACHE_SHIFT)) {
1929                 unlock_page(page);
1930                 page_cache_release(page);
1931                 return VM_FAULT_SIGBUS;
1932         }
1933
1934         vmf->page = page;
1935         return ret | VM_FAULT_LOCKED;
1936
1937 no_cached_page:
1938         /*
1939          * We're only likely to ever get here if MADV_RANDOM is in
1940          * effect.
1941          */
1942         error = page_cache_read(file, offset);
1943
1944         /*
1945          * The page we want has now been added to the page cache.
1946          * In the unlikely event that someone removed it in the
1947          * meantime, we'll just come back here and read it again.
1948          */
1949         if (error >= 0)
1950                 goto retry_find;
1951
1952         /*
1953          * An error return from page_cache_read can result if the
1954          * system is low on memory, or a problem occurs while trying
1955          * to schedule I/O.
1956          */
1957         if (error == -ENOMEM)
1958                 return VM_FAULT_OOM;
1959         return VM_FAULT_SIGBUS;
1960
1961 page_not_uptodate:
1962         /*
1963          * Umm, take care of errors if the page isn't up-to-date.
1964          * Try to re-read it _once_. We do this synchronously,
1965          * because there really aren't any performance issues here
1966          * and we need to check for errors.
1967          */
1968         ClearPageError(page);
1969         error = mapping->a_ops->readpage(file, page);
1970         if (!error) {
1971                 wait_on_page_locked(page);
1972                 if (!PageUptodate(page))
1973                         error = -EIO;
1974         }
1975         page_cache_release(page);
1976
1977         if (!error || error == AOP_TRUNCATED_PAGE)
1978                 goto retry_find;
1979
1980         /* Things didn't work out. Return zero to tell the mm layer so. */
1981         shrink_readahead_size_eio(file, ra);
1982         return VM_FAULT_SIGBUS;
1983 }
1984 EXPORT_SYMBOL(filemap_fault);
1985
1986 void filemap_map_pages(struct vm_area_struct *vma, struct vm_fault *vmf)
1987 {
1988         struct radix_tree_iter iter;
1989         void **slot;
1990         struct file *file = vma->vm_file;
1991         struct address_space *mapping = file->f_mapping;
1992         loff_t size;
1993         struct page *page;
1994         unsigned long address = (unsigned long) vmf->virtual_address;
1995         unsigned long addr;
1996         pte_t *pte;
1997
1998         rcu_read_lock();
1999         radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, vmf->pgoff) {
2000                 if (iter.index > vmf->max_pgoff)
2001                         break;
2002 repeat:
2003                 page = radix_tree_deref_slot(slot);
2004                 if (unlikely(!page))
2005                         goto next;
2006                 if (radix_tree_exception(page)) {
2007                         if (radix_tree_deref_retry(page))
2008                                 break;
2009                         else
2010                                 goto next;
2011                 }
2012
2013                 if (!page_cache_get_speculative(page))
2014                         goto repeat;
2015
2016                 /* Has the page moved? */
2017                 if (unlikely(page != *slot)) {
2018                         page_cache_release(page);
2019                         goto repeat;
2020                 }
2021
2022                 if (!PageUptodate(page) ||
2023                                 PageReadahead(page) ||
2024                                 PageHWPoison(page))
2025                         goto skip;
2026                 if (!trylock_page(page))
2027                         goto skip;
2028
2029                 if (page->mapping != mapping || !PageUptodate(page))
2030                         goto unlock;
2031
2032                 size = round_up(i_size_read(mapping->host), PAGE_CACHE_SIZE);
2033                 if (page->index >= size >> PAGE_CACHE_SHIFT)
2034                         goto unlock;
2035
2036                 pte = vmf->pte + page->index - vmf->pgoff;
2037                 if (!pte_none(*pte))
2038                         goto unlock;
2039
2040                 if (file->f_ra.mmap_miss > 0)
2041                         file->f_ra.mmap_miss--;
2042                 addr = address + (page->index - vmf->pgoff) * PAGE_SIZE;
2043                 do_set_pte(vma, addr, page, pte, false, false);
2044                 unlock_page(page);
2045                 goto next;
2046 unlock:
2047                 unlock_page(page);
2048 skip:
2049                 page_cache_release(page);
2050 next:
2051                 if (iter.index == vmf->max_pgoff)
2052                         break;
2053         }
2054         rcu_read_unlock();
2055 }
2056 EXPORT_SYMBOL(filemap_map_pages);
2057
2058 int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
2059 {
2060         struct page *page = vmf->page;
2061         struct inode *inode = file_inode(vma->vm_file);
2062         int ret = VM_FAULT_LOCKED;
2063
2064         sb_start_pagefault(inode->i_sb);
2065         file_update_time(vma->vm_file);
2066         lock_page(page);
2067         if (page->mapping != inode->i_mapping) {
2068                 unlock_page(page);
2069                 ret = VM_FAULT_NOPAGE;
2070                 goto out;
2071         }
2072         /*
2073          * We mark the page dirty already here so that when freeze is in
2074          * progress, we are guaranteed that writeback during freezing will
2075          * see the dirty page and writeprotect it again.
2076          */
2077         set_page_dirty(page);
2078         wait_for_stable_page(page);
2079 out:
2080         sb_end_pagefault(inode->i_sb);
2081         return ret;
2082 }
2083 EXPORT_SYMBOL(filemap_page_mkwrite);
2084
2085 const struct vm_operations_struct generic_file_vm_ops = {
2086         .fault          = filemap_fault,
2087         .map_pages      = filemap_map_pages,
2088         .page_mkwrite   = filemap_page_mkwrite,
2089 };
2090
2091 /* This is used for a general mmap of a disk file */
2092
2093 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2094 {
2095         struct address_space *mapping = file->f_mapping;
2096
2097         if (!mapping->a_ops->readpage)
2098                 return -ENOEXEC;
2099         file_accessed(file);
2100         vma->vm_ops = &generic_file_vm_ops;
2101         return 0;
2102 }
2103
2104 /*
2105  * This is for filesystems which do not implement ->writepage.
2106  */
2107 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
2108 {
2109         if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
2110                 return -EINVAL;
2111         return generic_file_mmap(file, vma);
2112 }
2113 #else
2114 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2115 {
2116         return -ENOSYS;
2117 }
2118 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
2119 {
2120         return -ENOSYS;
2121 }
2122 #endif /* CONFIG_MMU */
2123
2124 EXPORT_SYMBOL(generic_file_mmap);
2125 EXPORT_SYMBOL(generic_file_readonly_mmap);
2126
2127 static struct page *wait_on_page_read(struct page *page)
2128 {
2129         if (!IS_ERR(page)) {
2130                 wait_on_page_locked(page);
2131                 if (!PageUptodate(page)) {
2132                         page_cache_release(page);
2133                         page = ERR_PTR(-EIO);
2134                 }
2135         }
2136         return page;
2137 }
2138
2139 static struct page *__read_cache_page(struct address_space *mapping,
2140                                 pgoff_t index,
2141                                 int (*filler)(void *, struct page *),
2142                                 void *data,
2143                                 gfp_t gfp)
2144 {
2145         struct page *page;
2146         int err;
2147 repeat:
2148         page = find_get_page(mapping, index);
2149         if (!page) {
2150                 page = __page_cache_alloc(gfp | __GFP_COLD);
2151                 if (!page)
2152                         return ERR_PTR(-ENOMEM);
2153                 err = add_to_page_cache_lru(page, mapping, index, gfp);
2154                 if (unlikely(err)) {
2155                         page_cache_release(page);
2156                         if (err == -EEXIST)
2157                                 goto repeat;
2158                         /* Presumably ENOMEM for radix tree node */
2159                         return ERR_PTR(err);
2160                 }
2161                 err = filler(data, page);
2162                 if (err < 0) {
2163                         page_cache_release(page);
2164                         page = ERR_PTR(err);
2165                 } else {
2166                         page = wait_on_page_read(page);
2167                 }
2168         }
2169         return page;
2170 }
2171
2172 static struct page *do_read_cache_page(struct address_space *mapping,
2173                                 pgoff_t index,
2174                                 int (*filler)(void *, struct page *),
2175                                 void *data,
2176                                 gfp_t gfp)
2177
2178 {
2179         struct page *page;
2180         int err;
2181
2182 retry:
2183         page = __read_cache_page(mapping, index, filler, data, gfp);
2184         if (IS_ERR(page))
2185                 return page;
2186         if (PageUptodate(page))
2187                 goto out;
2188
2189         lock_page(page);
2190         if (!page->mapping) {
2191                 unlock_page(page);
2192                 page_cache_release(page);
2193                 goto retry;
2194         }
2195         if (PageUptodate(page)) {
2196                 unlock_page(page);
2197                 goto out;
2198         }
2199         err = filler(data, page);
2200         if (err < 0) {
2201                 page_cache_release(page);
2202                 return ERR_PTR(err);
2203         } else {
2204                 page = wait_on_page_read(page);
2205                 if (IS_ERR(page))
2206                         return page;
2207         }
2208 out:
2209         mark_page_accessed(page);
2210         return page;
2211 }
2212
2213 /**
2214  * read_cache_page - read into page cache, fill it if needed
2215  * @mapping:    the page's address_space
2216  * @index:      the page index
2217  * @filler:     function to perform the read
2218  * @data:       first arg to filler(data, page) function, often left as NULL
2219  *
2220  * Read into the page cache. If a page already exists, and PageUptodate() is
2221  * not set, try to fill the page and wait for it to become unlocked.
2222  *
2223  * If the page does not get brought uptodate, return -EIO.
2224  */
2225 struct page *read_cache_page(struct address_space *mapping,
2226                                 pgoff_t index,
2227                                 int (*filler)(void *, struct page *),
2228                                 void *data)
2229 {
2230         return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
2231 }
2232 EXPORT_SYMBOL(read_cache_page);
2233
2234 /**
2235  * read_cache_page_gfp - read into page cache, using specified page allocation flags.
2236  * @mapping:    the page's address_space
2237  * @index:      the page index
2238  * @gfp:        the page allocator flags to use if allocating
2239  *
2240  * This is the same as "read_mapping_page(mapping, index, NULL)", but with
2241  * any new page allocations done using the specified allocation flags.
2242  *
2243  * If the page does not get brought uptodate, return -EIO.
2244  */
2245 struct page *read_cache_page_gfp(struct address_space *mapping,
2246                                 pgoff_t index,
2247                                 gfp_t gfp)
2248 {
2249         filler_t *filler = (filler_t *)mapping->a_ops->readpage;
2250
2251         return do_read_cache_page(mapping, index, filler, NULL, gfp);
2252 }
2253 EXPORT_SYMBOL(read_cache_page_gfp);
2254
2255 /*
2256  * Performs necessary checks before doing a write
2257  *
2258  * Can adjust writing position or amount of bytes to write.
2259  * Returns appropriate error code that caller should return or
2260  * zero in case that write should be allowed.
2261  */
2262 inline ssize_t generic_write_checks(struct kiocb *iocb, struct iov_iter *from)
2263 {
2264         struct file *file = iocb->ki_filp;
2265         struct inode *inode = file->f_mapping->host;
2266         unsigned long limit = rlimit(RLIMIT_FSIZE);
2267         loff_t pos;
2268
2269         if (!iov_iter_count(from))
2270                 return 0;
2271
2272         /* FIXME: this is for backwards compatibility with 2.4 */
2273         if (iocb->ki_flags & IOCB_APPEND)
2274                 iocb->ki_pos = i_size_read(inode);
2275
2276         pos = iocb->ki_pos;
2277
2278         if (limit != RLIM_INFINITY) {
2279                 if (iocb->ki_pos >= limit) {
2280                         send_sig(SIGXFSZ, current, 0);
2281                         return -EFBIG;
2282                 }
2283                 iov_iter_truncate(from, limit - (unsigned long)pos);
2284         }
2285
2286         /*
2287          * LFS rule
2288          */
2289         if (unlikely(pos + iov_iter_count(from) > MAX_NON_LFS &&
2290                                 !(file->f_flags & O_LARGEFILE))) {
2291                 if (pos >= MAX_NON_LFS)
2292                         return -EFBIG;
2293                 iov_iter_truncate(from, MAX_NON_LFS - (unsigned long)pos);
2294         }
2295
2296         /*
2297          * Are we about to exceed the fs block limit ?
2298          *
2299          * If we have written data it becomes a short write.  If we have
2300          * exceeded without writing data we send a signal and return EFBIG.
2301          * Linus frestrict idea will clean these up nicely..
2302          */
2303         if (unlikely(pos >= inode->i_sb->s_maxbytes))
2304                 return -EFBIG;
2305
2306         iov_iter_truncate(from, inode->i_sb->s_maxbytes - pos);
2307         return iov_iter_count(from);
2308 }
2309 EXPORT_SYMBOL(generic_write_checks);
2310
2311 int pagecache_write_begin(struct file *file, struct address_space *mapping,
2312                                 loff_t pos, unsigned len, unsigned flags,
2313                                 struct page **pagep, void **fsdata)
2314 {
2315         const struct address_space_operations *aops = mapping->a_ops;
2316
2317         return aops->write_begin(file, mapping, pos, len, flags,
2318                                                         pagep, fsdata);
2319 }
2320 EXPORT_SYMBOL(pagecache_write_begin);
2321
2322 int pagecache_write_end(struct file *file, struct address_space *mapping,
2323                                 loff_t pos, unsigned len, unsigned copied,
2324                                 struct page *page, void *fsdata)
2325 {
2326         const struct address_space_operations *aops = mapping->a_ops;
2327
2328         return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
2329 }
2330 EXPORT_SYMBOL(pagecache_write_end);
2331
2332 ssize_t
2333 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from, loff_t pos)
2334 {
2335         struct file     *file = iocb->ki_filp;
2336         struct address_space *mapping = file->f_mapping;
2337         struct inode    *inode = mapping->host;
2338         ssize_t         written;
2339         size_t          write_len;
2340         pgoff_t         end;
2341         struct iov_iter data;
2342
2343         write_len = iov_iter_count(from);
2344         end = (pos + write_len - 1) >> PAGE_CACHE_SHIFT;
2345
2346         written = filemap_write_and_wait_range(mapping, pos, pos + write_len - 1);
2347         if (written)
2348                 goto out;
2349
2350         /*
2351          * After a write we want buffered reads to be sure to go to disk to get
2352          * the new data.  We invalidate clean cached page from the region we're
2353          * about to write.  We do this *before* the write so that we can return
2354          * without clobbering -EIOCBQUEUED from ->direct_IO().
2355          */
2356         if (mapping->nrpages) {
2357                 written = invalidate_inode_pages2_range(mapping,
2358                                         pos >> PAGE_CACHE_SHIFT, end);
2359                 /*
2360                  * If a page can not be invalidated, return 0 to fall back
2361                  * to buffered write.
2362                  */
2363                 if (written) {
2364                         if (written == -EBUSY)
2365                                 return 0;
2366                         goto out;
2367                 }
2368         }
2369
2370         data = *from;
2371         written = mapping->a_ops->direct_IO(iocb, &data, pos);
2372
2373         /*
2374          * Finally, try again to invalidate clean pages which might have been
2375          * cached by non-direct readahead, or faulted in by get_user_pages()
2376          * if the source of the write was an mmap'ed region of the file
2377          * we're writing.  Either one is a pretty crazy thing to do,
2378          * so we don't support it 100%.  If this invalidation
2379          * fails, tough, the write still worked...
2380          */
2381         if (mapping->nrpages) {
2382                 invalidate_inode_pages2_range(mapping,
2383                                               pos >> PAGE_CACHE_SHIFT, end);
2384         }
2385
2386         if (written > 0) {
2387                 pos += written;
2388                 iov_iter_advance(from, written);
2389                 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2390                         i_size_write(inode, pos);
2391                         mark_inode_dirty(inode);
2392                 }
2393                 iocb->ki_pos = pos;
2394         }
2395 out:
2396         return written;
2397 }
2398 EXPORT_SYMBOL(generic_file_direct_write);
2399
2400 /*
2401  * Find or create a page at the given pagecache position. Return the locked
2402  * page. This function is specifically for buffered writes.
2403  */
2404 struct page *grab_cache_page_write_begin(struct address_space *mapping,
2405                                         pgoff_t index, unsigned flags)
2406 {
2407         struct page *page;
2408         int fgp_flags = FGP_LOCK|FGP_ACCESSED|FGP_WRITE|FGP_CREAT;
2409
2410         if (flags & AOP_FLAG_NOFS)
2411                 fgp_flags |= FGP_NOFS;
2412
2413         page = pagecache_get_page(mapping, index, fgp_flags,
2414                         mapping_gfp_mask(mapping));
2415         if (page)
2416                 wait_for_stable_page(page);
2417
2418         return page;
2419 }
2420 EXPORT_SYMBOL(grab_cache_page_write_begin);
2421
2422 ssize_t generic_perform_write(struct file *file,
2423                                 struct iov_iter *i, loff_t pos)
2424 {
2425         struct address_space *mapping = file->f_mapping;
2426         const struct address_space_operations *a_ops = mapping->a_ops;
2427         long status = 0;
2428         ssize_t written = 0;
2429         unsigned int flags = 0;
2430
2431         /*
2432          * Copies from kernel address space cannot fail (NFSD is a big user).
2433          */
2434         if (!iter_is_iovec(i))
2435                 flags |= AOP_FLAG_UNINTERRUPTIBLE;
2436
2437         do {
2438                 struct page *page;
2439                 unsigned long offset;   /* Offset into pagecache page */
2440                 unsigned long bytes;    /* Bytes to write to page */
2441                 size_t copied;          /* Bytes copied from user */
2442                 void *fsdata;
2443
2444                 offset = (pos & (PAGE_CACHE_SIZE - 1));
2445                 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2446                                                 iov_iter_count(i));
2447
2448 again:
2449                 /*
2450                  * Bring in the user page that we will copy from _first_.
2451                  * Otherwise there's a nasty deadlock on copying from the
2452                  * same page as we're writing to, without it being marked
2453                  * up-to-date.
2454                  *
2455                  * Not only is this an optimisation, but it is also required
2456                  * to check that the address is actually valid, when atomic
2457                  * usercopies are used, below.
2458                  */
2459                 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2460                         status = -EFAULT;
2461                         break;
2462                 }
2463
2464                 status = a_ops->write_begin(file, mapping, pos, bytes, flags,
2465                                                 &page, &fsdata);
2466                 if (unlikely(status < 0))
2467                         break;
2468
2469                 if (mapping_writably_mapped(mapping))
2470                         flush_dcache_page(page);
2471
2472                 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
2473                 flush_dcache_page(page);
2474
2475                 status = a_ops->write_end(file, mapping, pos, bytes, copied,
2476                                                 page, fsdata);
2477                 if (unlikely(status < 0))
2478                         break;
2479                 copied = status;
2480
2481                 cond_resched();
2482
2483                 iov_iter_advance(i, copied);
2484                 if (unlikely(copied == 0)) {
2485                         /*
2486                          * If we were unable to copy any data at all, we must
2487                          * fall back to a single segment length write.
2488                          *
2489                          * If we didn't fallback here, we could livelock
2490                          * because not all segments in the iov can be copied at
2491                          * once without a pagefault.
2492                          */
2493                         bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2494                                                 iov_iter_single_seg_count(i));
2495                         goto again;
2496                 }
2497                 pos += copied;
2498                 written += copied;
2499
2500                 balance_dirty_pages_ratelimited(mapping);
2501                 if (fatal_signal_pending(current)) {
2502                         status = -EINTR;
2503                         break;
2504                 }
2505         } while (iov_iter_count(i));
2506
2507         return written ? written : status;
2508 }
2509 EXPORT_SYMBOL(generic_perform_write);
2510
2511 /**
2512  * __generic_file_write_iter - write data to a file
2513  * @iocb:       IO state structure (file, offset, etc.)
2514  * @from:       iov_iter with data to write
2515  *
2516  * This function does all the work needed for actually writing data to a
2517  * file. It does all basic checks, removes SUID from the file, updates
2518  * modification times and calls proper subroutines depending on whether we
2519  * do direct IO or a standard buffered write.
2520  *
2521  * It expects i_mutex to be grabbed unless we work on a block device or similar
2522  * object which does not need locking at all.
2523  *
2524  * This function does *not* take care of syncing data in case of O_SYNC write.
2525  * A caller has to handle it. This is mainly due to the fact that we want to
2526  * avoid syncing under i_mutex.
2527  */
2528 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
2529 {
2530         struct file *file = iocb->ki_filp;
2531         struct address_space * mapping = file->f_mapping;
2532         struct inode    *inode = mapping->host;
2533         ssize_t         written = 0;
2534         ssize_t         err;
2535         ssize_t         status;
2536
2537         /* We can write back this queue in page reclaim */
2538         current->backing_dev_info = inode_to_bdi(inode);
2539         err = file_remove_suid(file);
2540         if (err)
2541                 goto out;
2542
2543         err = file_update_time(file);
2544         if (err)
2545                 goto out;
2546
2547         if (iocb->ki_flags & IOCB_DIRECT) {
2548                 loff_t pos, endbyte;
2549
2550                 written = generic_file_direct_write(iocb, from, iocb->ki_pos);
2551                 /*
2552                  * If the write stopped short of completing, fall back to
2553                  * buffered writes.  Some filesystems do this for writes to
2554                  * holes, for example.  For DAX files, a buffered write will
2555                  * not succeed (even if it did, DAX does not handle dirty
2556                  * page-cache pages correctly).
2557                  */
2558                 if (written < 0 || !iov_iter_count(from) || IS_DAX(inode))
2559                         goto out;
2560
2561                 status = generic_perform_write(file, from, pos = iocb->ki_pos);
2562                 /*
2563                  * If generic_perform_write() returned a synchronous error
2564                  * then we want to return the number of bytes which were
2565                  * direct-written, or the error code if that was zero.  Note
2566                  * that this differs from normal direct-io semantics, which
2567                  * will return -EFOO even if some bytes were written.
2568                  */
2569                 if (unlikely(status < 0)) {
2570                         err = status;
2571                         goto out;
2572                 }
2573                 /*
2574                  * We need to ensure that the page cache pages are written to
2575                  * disk and invalidated to preserve the expected O_DIRECT
2576                  * semantics.
2577                  */
2578                 endbyte = pos + status - 1;
2579                 err = filemap_write_and_wait_range(mapping, pos, endbyte);
2580                 if (err == 0) {
2581                         iocb->ki_pos = endbyte + 1;
2582                         written += status;
2583                         invalidate_mapping_pages(mapping,
2584                                                  pos >> PAGE_CACHE_SHIFT,
2585                                                  endbyte >> PAGE_CACHE_SHIFT);
2586                 } else {
2587                         /*
2588                          * We don't know how much we wrote, so just return
2589                          * the number of bytes which were direct-written
2590                          */
2591                 }
2592         } else {
2593                 written = generic_perform_write(file, from, iocb->ki_pos);
2594                 if (likely(written > 0))
2595                         iocb->ki_pos += written;
2596         }
2597 out:
2598         current->backing_dev_info = NULL;
2599         return written ? written : err;
2600 }
2601 EXPORT_SYMBOL(__generic_file_write_iter);
2602
2603 /**
2604  * generic_file_write_iter - write data to a file
2605  * @iocb:       IO state structure
2606  * @from:       iov_iter with data to write
2607  *
2608  * This is a wrapper around __generic_file_write_iter() to be used by most
2609  * filesystems. It takes care of syncing the file in case of O_SYNC file
2610  * and acquires i_mutex as needed.
2611  */
2612 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
2613 {
2614         struct file *file = iocb->ki_filp;
2615         struct inode *inode = file->f_mapping->host;
2616         ssize_t ret;
2617
2618         mutex_lock(&inode->i_mutex);
2619         ret = generic_write_checks(iocb, from);
2620         if (ret > 0)
2621                 ret = __generic_file_write_iter(iocb, from);
2622         mutex_unlock(&inode->i_mutex);
2623
2624         if (ret > 0) {
2625                 ssize_t err;
2626
2627                 err = generic_write_sync(file, iocb->ki_pos - ret, ret);
2628                 if (err < 0)
2629                         ret = err;
2630         }
2631         return ret;
2632 }
2633 EXPORT_SYMBOL(generic_file_write_iter);
2634
2635 /**
2636  * try_to_release_page() - release old fs-specific metadata on a page
2637  *
2638  * @page: the page which the kernel is trying to free
2639  * @gfp_mask: memory allocation flags (and I/O mode)
2640  *
2641  * The address_space is to try to release any data against the page
2642  * (presumably at page->private).  If the release was successful, return `1'.
2643  * Otherwise return zero.
2644  *
2645  * This may also be called if PG_fscache is set on a page, indicating that the
2646  * page is known to the local caching routines.
2647  *
2648  * The @gfp_mask argument specifies whether I/O may be performed to release
2649  * this page (__GFP_IO), and whether the call may block (__GFP_WAIT & __GFP_FS).
2650  *
2651  */
2652 int try_to_release_page(struct page *page, gfp_t gfp_mask)
2653 {
2654         struct address_space * const mapping = page->mapping;
2655
2656         BUG_ON(!PageLocked(page));
2657         if (PageWriteback(page))
2658                 return 0;
2659
2660         if (mapping && mapping->a_ops->releasepage)
2661                 return mapping->a_ops->releasepage(page, gfp_mask);
2662         return try_to_free_buffers(page);
2663 }
2664
2665 EXPORT_SYMBOL(try_to_release_page);