fix ITER_PIPE interaction with direct_IO
[platform/kernel/linux-exynos.git] / mm / filemap.c
1 /*
2  *      linux/mm/filemap.c
3  *
4  * Copyright (C) 1994-1999  Linus Torvalds
5  */
6
7 /*
8  * This file handles the generic file mmap semantics used by
9  * most "normal" filesystems (but you don't /have/ to use this:
10  * the NFS filesystem used to do this differently, for example)
11  */
12 #include <linux/export.h>
13 #include <linux/compiler.h>
14 #include <linux/dax.h>
15 #include <linux/fs.h>
16 #include <linux/uaccess.h>
17 #include <linux/capability.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/gfp.h>
20 #include <linux/mm.h>
21 #include <linux/swap.h>
22 #include <linux/mman.h>
23 #include <linux/pagemap.h>
24 #include <linux/file.h>
25 #include <linux/uio.h>
26 #include <linux/hash.h>
27 #include <linux/writeback.h>
28 #include <linux/backing-dev.h>
29 #include <linux/pagevec.h>
30 #include <linux/blkdev.h>
31 #include <linux/security.h>
32 #include <linux/cpuset.h>
33 #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
34 #include <linux/hugetlb.h>
35 #include <linux/memcontrol.h>
36 #include <linux/cleancache.h>
37 #include <linux/rmap.h>
38 #include "internal.h"
39
40 #define CREATE_TRACE_POINTS
41 #include <trace/events/filemap.h>
42
43 /*
44  * FIXME: remove all knowledge of the buffer layer from the core VM
45  */
46 #include <linux/buffer_head.h> /* for try_to_free_buffers */
47
48 #include <asm/mman.h>
49
50 /*
51  * Shared mappings implemented 30.11.1994. It's not fully working yet,
52  * though.
53  *
54  * Shared mappings now work. 15.8.1995  Bruno.
55  *
56  * finished 'unifying' the page and buffer cache and SMP-threaded the
57  * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
58  *
59  * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
60  */
61
62 /*
63  * Lock ordering:
64  *
65  *  ->i_mmap_rwsem              (truncate_pagecache)
66  *    ->private_lock            (__free_pte->__set_page_dirty_buffers)
67  *      ->swap_lock             (exclusive_swap_page, others)
68  *        ->mapping->tree_lock
69  *
70  *  ->i_mutex
71  *    ->i_mmap_rwsem            (truncate->unmap_mapping_range)
72  *
73  *  ->mmap_sem
74  *    ->i_mmap_rwsem
75  *      ->page_table_lock or pte_lock   (various, mainly in memory.c)
76  *        ->mapping->tree_lock  (arch-dependent flush_dcache_mmap_lock)
77  *
78  *  ->mmap_sem
79  *    ->lock_page               (access_process_vm)
80  *
81  *  ->i_mutex                   (generic_perform_write)
82  *    ->mmap_sem                (fault_in_pages_readable->do_page_fault)
83  *
84  *  bdi->wb.list_lock
85  *    sb_lock                   (fs/fs-writeback.c)
86  *    ->mapping->tree_lock      (__sync_single_inode)
87  *
88  *  ->i_mmap_rwsem
89  *    ->anon_vma.lock           (vma_adjust)
90  *
91  *  ->anon_vma.lock
92  *    ->page_table_lock or pte_lock     (anon_vma_prepare and various)
93  *
94  *  ->page_table_lock or pte_lock
95  *    ->swap_lock               (try_to_unmap_one)
96  *    ->private_lock            (try_to_unmap_one)
97  *    ->tree_lock               (try_to_unmap_one)
98  *    ->zone_lru_lock(zone)     (follow_page->mark_page_accessed)
99  *    ->zone_lru_lock(zone)     (check_pte_range->isolate_lru_page)
100  *    ->private_lock            (page_remove_rmap->set_page_dirty)
101  *    ->tree_lock               (page_remove_rmap->set_page_dirty)
102  *    bdi.wb->list_lock         (page_remove_rmap->set_page_dirty)
103  *    ->inode->i_lock           (page_remove_rmap->set_page_dirty)
104  *    ->memcg->move_lock        (page_remove_rmap->lock_page_memcg)
105  *    bdi.wb->list_lock         (zap_pte_range->set_page_dirty)
106  *    ->inode->i_lock           (zap_pte_range->set_page_dirty)
107  *    ->private_lock            (zap_pte_range->__set_page_dirty_buffers)
108  *
109  * ->i_mmap_rwsem
110  *   ->tasklist_lock            (memory_failure, collect_procs_ao)
111  */
112
113 static void page_cache_tree_delete(struct address_space *mapping,
114                                    struct page *page, void *shadow)
115 {
116         struct radix_tree_node *node;
117         int i, nr = PageHuge(page) ? 1 : hpage_nr_pages(page);
118
119         VM_BUG_ON_PAGE(!PageLocked(page), page);
120         VM_BUG_ON_PAGE(PageTail(page), page);
121         VM_BUG_ON_PAGE(nr != 1 && shadow, page);
122
123         if (shadow) {
124                 mapping->nrexceptional += nr;
125                 /*
126                  * Make sure the nrexceptional update is committed before
127                  * the nrpages update so that final truncate racing
128                  * with reclaim does not see both counters 0 at the
129                  * same time and miss a shadow entry.
130                  */
131                 smp_wmb();
132         }
133         mapping->nrpages -= nr;
134
135         for (i = 0; i < nr; i++) {
136                 node = radix_tree_replace_clear_tags(&mapping->page_tree,
137                                 page->index + i, shadow);
138                 if (!node) {
139                         VM_BUG_ON_PAGE(nr != 1, page);
140                         return;
141                 }
142
143                 workingset_node_pages_dec(node);
144                 if (shadow)
145                         workingset_node_shadows_inc(node);
146                 else
147                         if (__radix_tree_delete_node(&mapping->page_tree, node))
148                                 continue;
149
150                 /*
151                  * Track node that only contains shadow entries. DAX mappings
152                  * contain no shadow entries and may contain other exceptional
153                  * entries so skip those.
154                  *
155                  * Avoid acquiring the list_lru lock if already tracked.
156                  * The list_empty() test is safe as node->private_list is
157                  * protected by mapping->tree_lock.
158                  */
159                 if (!dax_mapping(mapping) && !workingset_node_pages(node) &&
160                                 list_empty(&node->private_list)) {
161                         node->private_data = mapping;
162                         list_lru_add(&workingset_shadow_nodes,
163                                         &node->private_list);
164                 }
165         }
166 }
167
168 /*
169  * Delete a page from the page cache and free it. Caller has to make
170  * sure the page is locked and that nobody else uses it - or that usage
171  * is safe.  The caller must hold the mapping's tree_lock.
172  */
173 void __delete_from_page_cache(struct page *page, void *shadow)
174 {
175         struct address_space *mapping = page->mapping;
176         int nr = hpage_nr_pages(page);
177
178         trace_mm_filemap_delete_from_page_cache(page);
179         /*
180          * if we're uptodate, flush out into the cleancache, otherwise
181          * invalidate any existing cleancache entries.  We can't leave
182          * stale data around in the cleancache once our page is gone
183          */
184         if (PageUptodate(page) && PageMappedToDisk(page))
185                 cleancache_put_page(page);
186         else
187                 cleancache_invalidate_page(mapping, page);
188
189         VM_BUG_ON_PAGE(PageTail(page), page);
190         VM_BUG_ON_PAGE(page_mapped(page), page);
191         if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(page_mapped(page))) {
192                 int mapcount;
193
194                 pr_alert("BUG: Bad page cache in process %s  pfn:%05lx\n",
195                          current->comm, page_to_pfn(page));
196                 dump_page(page, "still mapped when deleted");
197                 dump_stack();
198                 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
199
200                 mapcount = page_mapcount(page);
201                 if (mapping_exiting(mapping) &&
202                     page_count(page) >= mapcount + 2) {
203                         /*
204                          * All vmas have already been torn down, so it's
205                          * a good bet that actually the page is unmapped,
206                          * and we'd prefer not to leak it: if we're wrong,
207                          * some other bad page check should catch it later.
208                          */
209                         page_mapcount_reset(page);
210                         page_ref_sub(page, mapcount);
211                 }
212         }
213
214         page_cache_tree_delete(mapping, page, shadow);
215
216         page->mapping = NULL;
217         /* Leave page->index set: truncation lookup relies upon it */
218
219         /* hugetlb pages do not participate in page cache accounting. */
220         if (!PageHuge(page))
221                 __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, -nr);
222         if (PageSwapBacked(page)) {
223                 __mod_node_page_state(page_pgdat(page), NR_SHMEM, -nr);
224                 if (PageTransHuge(page))
225                         __dec_node_page_state(page, NR_SHMEM_THPS);
226         } else {
227                 VM_BUG_ON_PAGE(PageTransHuge(page) && !PageHuge(page), page);
228         }
229
230         /*
231          * At this point page must be either written or cleaned by truncate.
232          * Dirty page here signals a bug and loss of unwritten data.
233          *
234          * This fixes dirty accounting after removing the page entirely but
235          * leaves PageDirty set: it has no effect for truncated page and
236          * anyway will be cleared before returning page into buddy allocator.
237          */
238         if (WARN_ON_ONCE(PageDirty(page)))
239                 account_page_cleaned(page, mapping, inode_to_wb(mapping->host));
240 }
241
242 /**
243  * delete_from_page_cache - delete page from page cache
244  * @page: the page which the kernel is trying to remove from page cache
245  *
246  * This must be called only on pages that have been verified to be in the page
247  * cache and locked.  It will never put the page into the free list, the caller
248  * has a reference on the page.
249  */
250 void delete_from_page_cache(struct page *page)
251 {
252         struct address_space *mapping = page_mapping(page);
253         unsigned long flags;
254         void (*freepage)(struct page *);
255
256         BUG_ON(!PageLocked(page));
257
258         freepage = mapping->a_ops->freepage;
259
260         spin_lock_irqsave(&mapping->tree_lock, flags);
261         __delete_from_page_cache(page, NULL);
262         spin_unlock_irqrestore(&mapping->tree_lock, flags);
263
264         if (freepage)
265                 freepage(page);
266
267         if (PageTransHuge(page) && !PageHuge(page)) {
268                 page_ref_sub(page, HPAGE_PMD_NR);
269                 VM_BUG_ON_PAGE(page_count(page) <= 0, page);
270         } else {
271                 put_page(page);
272         }
273 }
274 EXPORT_SYMBOL(delete_from_page_cache);
275
276 int filemap_check_errors(struct address_space *mapping)
277 {
278         int ret = 0;
279         /* Check for outstanding write errors */
280         if (test_bit(AS_ENOSPC, &mapping->flags) &&
281             test_and_clear_bit(AS_ENOSPC, &mapping->flags))
282                 ret = -ENOSPC;
283         if (test_bit(AS_EIO, &mapping->flags) &&
284             test_and_clear_bit(AS_EIO, &mapping->flags))
285                 ret = -EIO;
286         return ret;
287 }
288 EXPORT_SYMBOL(filemap_check_errors);
289
290 /**
291  * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
292  * @mapping:    address space structure to write
293  * @start:      offset in bytes where the range starts
294  * @end:        offset in bytes where the range ends (inclusive)
295  * @sync_mode:  enable synchronous operation
296  *
297  * Start writeback against all of a mapping's dirty pages that lie
298  * within the byte offsets <start, end> inclusive.
299  *
300  * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
301  * opposed to a regular memory cleansing writeback.  The difference between
302  * these two operations is that if a dirty page/buffer is encountered, it must
303  * be waited upon, and not just skipped over.
304  */
305 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
306                                 loff_t end, int sync_mode)
307 {
308         int ret;
309         struct writeback_control wbc = {
310                 .sync_mode = sync_mode,
311                 .nr_to_write = LONG_MAX,
312                 .range_start = start,
313                 .range_end = end,
314         };
315
316         if (!mapping_cap_writeback_dirty(mapping))
317                 return 0;
318
319         wbc_attach_fdatawrite_inode(&wbc, mapping->host);
320         ret = do_writepages(mapping, &wbc);
321         wbc_detach_inode(&wbc);
322         return ret;
323 }
324
325 static inline int __filemap_fdatawrite(struct address_space *mapping,
326         int sync_mode)
327 {
328         return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
329 }
330
331 int filemap_fdatawrite(struct address_space *mapping)
332 {
333         return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
334 }
335 EXPORT_SYMBOL(filemap_fdatawrite);
336
337 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
338                                 loff_t end)
339 {
340         return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
341 }
342 EXPORT_SYMBOL(filemap_fdatawrite_range);
343
344 /**
345  * filemap_flush - mostly a non-blocking flush
346  * @mapping:    target address_space
347  *
348  * This is a mostly non-blocking flush.  Not suitable for data-integrity
349  * purposes - I/O may not be started against all dirty pages.
350  */
351 int filemap_flush(struct address_space *mapping)
352 {
353         return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
354 }
355 EXPORT_SYMBOL(filemap_flush);
356
357 static int __filemap_fdatawait_range(struct address_space *mapping,
358                                      loff_t start_byte, loff_t end_byte)
359 {
360         pgoff_t index = start_byte >> PAGE_SHIFT;
361         pgoff_t end = end_byte >> PAGE_SHIFT;
362         struct pagevec pvec;
363         int nr_pages;
364         int ret = 0;
365
366         if (end_byte < start_byte)
367                 goto out;
368
369         pagevec_init(&pvec, 0);
370         while ((index <= end) &&
371                         (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
372                         PAGECACHE_TAG_WRITEBACK,
373                         min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
374                 unsigned i;
375
376                 for (i = 0; i < nr_pages; i++) {
377                         struct page *page = pvec.pages[i];
378
379                         /* until radix tree lookup accepts end_index */
380                         if (page->index > end)
381                                 continue;
382
383                         wait_on_page_writeback(page);
384                         if (TestClearPageError(page))
385                                 ret = -EIO;
386                 }
387                 pagevec_release(&pvec);
388                 cond_resched();
389         }
390 out:
391         return ret;
392 }
393
394 /**
395  * filemap_fdatawait_range - wait for writeback to complete
396  * @mapping:            address space structure to wait for
397  * @start_byte:         offset in bytes where the range starts
398  * @end_byte:           offset in bytes where the range ends (inclusive)
399  *
400  * Walk the list of under-writeback pages of the given address space
401  * in the given range and wait for all of them.  Check error status of
402  * the address space and return it.
403  *
404  * Since the error status of the address space is cleared by this function,
405  * callers are responsible for checking the return value and handling and/or
406  * reporting the error.
407  */
408 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
409                             loff_t end_byte)
410 {
411         int ret, ret2;
412
413         ret = __filemap_fdatawait_range(mapping, start_byte, end_byte);
414         ret2 = filemap_check_errors(mapping);
415         if (!ret)
416                 ret = ret2;
417
418         return ret;
419 }
420 EXPORT_SYMBOL(filemap_fdatawait_range);
421
422 /**
423  * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
424  * @mapping: address space structure to wait for
425  *
426  * Walk the list of under-writeback pages of the given address space
427  * and wait for all of them.  Unlike filemap_fdatawait(), this function
428  * does not clear error status of the address space.
429  *
430  * Use this function if callers don't handle errors themselves.  Expected
431  * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
432  * fsfreeze(8)
433  */
434 void filemap_fdatawait_keep_errors(struct address_space *mapping)
435 {
436         loff_t i_size = i_size_read(mapping->host);
437
438         if (i_size == 0)
439                 return;
440
441         __filemap_fdatawait_range(mapping, 0, i_size - 1);
442 }
443
444 /**
445  * filemap_fdatawait - wait for all under-writeback pages to complete
446  * @mapping: address space structure to wait for
447  *
448  * Walk the list of under-writeback pages of the given address space
449  * and wait for all of them.  Check error status of the address space
450  * and return it.
451  *
452  * Since the error status of the address space is cleared by this function,
453  * callers are responsible for checking the return value and handling and/or
454  * reporting the error.
455  */
456 int filemap_fdatawait(struct address_space *mapping)
457 {
458         loff_t i_size = i_size_read(mapping->host);
459
460         if (i_size == 0)
461                 return 0;
462
463         return filemap_fdatawait_range(mapping, 0, i_size - 1);
464 }
465 EXPORT_SYMBOL(filemap_fdatawait);
466
467 int filemap_write_and_wait(struct address_space *mapping)
468 {
469         int err = 0;
470
471         if ((!dax_mapping(mapping) && mapping->nrpages) ||
472             (dax_mapping(mapping) && mapping->nrexceptional)) {
473                 err = filemap_fdatawrite(mapping);
474                 /*
475                  * Even if the above returned error, the pages may be
476                  * written partially (e.g. -ENOSPC), so we wait for it.
477                  * But the -EIO is special case, it may indicate the worst
478                  * thing (e.g. bug) happened, so we avoid waiting for it.
479                  */
480                 if (err != -EIO) {
481                         int err2 = filemap_fdatawait(mapping);
482                         if (!err)
483                                 err = err2;
484                 }
485         } else {
486                 err = filemap_check_errors(mapping);
487         }
488         return err;
489 }
490 EXPORT_SYMBOL(filemap_write_and_wait);
491
492 /**
493  * filemap_write_and_wait_range - write out & wait on a file range
494  * @mapping:    the address_space for the pages
495  * @lstart:     offset in bytes where the range starts
496  * @lend:       offset in bytes where the range ends (inclusive)
497  *
498  * Write out and wait upon file offsets lstart->lend, inclusive.
499  *
500  * Note that `lend' is inclusive (describes the last byte to be written) so
501  * that this function can be used to write to the very end-of-file (end = -1).
502  */
503 int filemap_write_and_wait_range(struct address_space *mapping,
504                                  loff_t lstart, loff_t lend)
505 {
506         int err = 0;
507
508         if ((!dax_mapping(mapping) && mapping->nrpages) ||
509             (dax_mapping(mapping) && mapping->nrexceptional)) {
510                 err = __filemap_fdatawrite_range(mapping, lstart, lend,
511                                                  WB_SYNC_ALL);
512                 /* See comment of filemap_write_and_wait() */
513                 if (err != -EIO) {
514                         int err2 = filemap_fdatawait_range(mapping,
515                                                 lstart, lend);
516                         if (!err)
517                                 err = err2;
518                 }
519         } else {
520                 err = filemap_check_errors(mapping);
521         }
522         return err;
523 }
524 EXPORT_SYMBOL(filemap_write_and_wait_range);
525
526 /**
527  * replace_page_cache_page - replace a pagecache page with a new one
528  * @old:        page to be replaced
529  * @new:        page to replace with
530  * @gfp_mask:   allocation mode
531  *
532  * This function replaces a page in the pagecache with a new one.  On
533  * success it acquires the pagecache reference for the new page and
534  * drops it for the old page.  Both the old and new pages must be
535  * locked.  This function does not add the new page to the LRU, the
536  * caller must do that.
537  *
538  * The remove + add is atomic.  The only way this function can fail is
539  * memory allocation failure.
540  */
541 int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
542 {
543         int error;
544
545         VM_BUG_ON_PAGE(!PageLocked(old), old);
546         VM_BUG_ON_PAGE(!PageLocked(new), new);
547         VM_BUG_ON_PAGE(new->mapping, new);
548
549         error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
550         if (!error) {
551                 struct address_space *mapping = old->mapping;
552                 void (*freepage)(struct page *);
553                 unsigned long flags;
554
555                 pgoff_t offset = old->index;
556                 freepage = mapping->a_ops->freepage;
557
558                 get_page(new);
559                 new->mapping = mapping;
560                 new->index = offset;
561
562                 spin_lock_irqsave(&mapping->tree_lock, flags);
563                 __delete_from_page_cache(old, NULL);
564                 error = radix_tree_insert(&mapping->page_tree, offset, new);
565                 BUG_ON(error);
566                 mapping->nrpages++;
567
568                 /*
569                  * hugetlb pages do not participate in page cache accounting.
570                  */
571                 if (!PageHuge(new))
572                         __inc_node_page_state(new, NR_FILE_PAGES);
573                 if (PageSwapBacked(new))
574                         __inc_node_page_state(new, NR_SHMEM);
575                 spin_unlock_irqrestore(&mapping->tree_lock, flags);
576                 mem_cgroup_migrate(old, new);
577                 radix_tree_preload_end();
578                 if (freepage)
579                         freepage(old);
580                 put_page(old);
581         }
582
583         return error;
584 }
585 EXPORT_SYMBOL_GPL(replace_page_cache_page);
586
587 static int page_cache_tree_insert(struct address_space *mapping,
588                                   struct page *page, void **shadowp)
589 {
590         struct radix_tree_node *node;
591         void **slot;
592         int error;
593
594         error = __radix_tree_create(&mapping->page_tree, page->index, 0,
595                                     &node, &slot);
596         if (error)
597                 return error;
598         if (*slot) {
599                 void *p;
600
601                 p = radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
602                 if (!radix_tree_exceptional_entry(p))
603                         return -EEXIST;
604
605                 mapping->nrexceptional--;
606                 if (!dax_mapping(mapping)) {
607                         if (shadowp)
608                                 *shadowp = p;
609                         if (node)
610                                 workingset_node_shadows_dec(node);
611                 } else {
612                         /* DAX can replace empty locked entry with a hole */
613                         WARN_ON_ONCE(p !=
614                                 (void *)(RADIX_TREE_EXCEPTIONAL_ENTRY |
615                                          RADIX_DAX_ENTRY_LOCK));
616                         /* DAX accounts exceptional entries as normal pages */
617                         if (node)
618                                 workingset_node_pages_dec(node);
619                         /* Wakeup waiters for exceptional entry lock */
620                         dax_wake_mapping_entry_waiter(mapping, page->index,
621                                                       false);
622                 }
623         }
624         radix_tree_replace_slot(slot, page);
625         mapping->nrpages++;
626         if (node) {
627                 workingset_node_pages_inc(node);
628                 /*
629                  * Don't track node that contains actual pages.
630                  *
631                  * Avoid acquiring the list_lru lock if already
632                  * untracked.  The list_empty() test is safe as
633                  * node->private_list is protected by
634                  * mapping->tree_lock.
635                  */
636                 if (!list_empty(&node->private_list))
637                         list_lru_del(&workingset_shadow_nodes,
638                                      &node->private_list);
639         }
640         return 0;
641 }
642
643 static int __add_to_page_cache_locked(struct page *page,
644                                       struct address_space *mapping,
645                                       pgoff_t offset, gfp_t gfp_mask,
646                                       void **shadowp)
647 {
648         int huge = PageHuge(page);
649         struct mem_cgroup *memcg;
650         int error;
651
652         VM_BUG_ON_PAGE(!PageLocked(page), page);
653         VM_BUG_ON_PAGE(PageSwapBacked(page), page);
654
655         if (!huge) {
656                 error = mem_cgroup_try_charge(page, current->mm,
657                                               gfp_mask, &memcg, false);
658                 if (error)
659                         return error;
660         }
661
662         error = radix_tree_maybe_preload(gfp_mask & ~__GFP_HIGHMEM);
663         if (error) {
664                 if (!huge)
665                         mem_cgroup_cancel_charge(page, memcg, false);
666                 return error;
667         }
668
669         get_page(page);
670         page->mapping = mapping;
671         page->index = offset;
672
673         spin_lock_irq(&mapping->tree_lock);
674         error = page_cache_tree_insert(mapping, page, shadowp);
675         radix_tree_preload_end();
676         if (unlikely(error))
677                 goto err_insert;
678
679         /* hugetlb pages do not participate in page cache accounting. */
680         if (!huge)
681                 __inc_node_page_state(page, NR_FILE_PAGES);
682         spin_unlock_irq(&mapping->tree_lock);
683         if (!huge)
684                 mem_cgroup_commit_charge(page, memcg, false, false);
685         trace_mm_filemap_add_to_page_cache(page);
686         return 0;
687 err_insert:
688         page->mapping = NULL;
689         /* Leave page->index set: truncation relies upon it */
690         spin_unlock_irq(&mapping->tree_lock);
691         if (!huge)
692                 mem_cgroup_cancel_charge(page, memcg, false);
693         put_page(page);
694         return error;
695 }
696
697 /**
698  * add_to_page_cache_locked - add a locked page to the pagecache
699  * @page:       page to add
700  * @mapping:    the page's address_space
701  * @offset:     page index
702  * @gfp_mask:   page allocation mode
703  *
704  * This function is used to add a page to the pagecache. It must be locked.
705  * This function does not add the page to the LRU.  The caller must do that.
706  */
707 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
708                 pgoff_t offset, gfp_t gfp_mask)
709 {
710         return __add_to_page_cache_locked(page, mapping, offset,
711                                           gfp_mask, NULL);
712 }
713 EXPORT_SYMBOL(add_to_page_cache_locked);
714
715 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
716                                 pgoff_t offset, gfp_t gfp_mask)
717 {
718         void *shadow = NULL;
719         int ret;
720
721         __SetPageLocked(page);
722         ret = __add_to_page_cache_locked(page, mapping, offset,
723                                          gfp_mask, &shadow);
724         if (unlikely(ret))
725                 __ClearPageLocked(page);
726         else {
727                 /*
728                  * The page might have been evicted from cache only
729                  * recently, in which case it should be activated like
730                  * any other repeatedly accessed page.
731                  * The exception is pages getting rewritten; evicting other
732                  * data from the working set, only to cache data that will
733                  * get overwritten with something else, is a waste of memory.
734                  */
735                 if (!(gfp_mask & __GFP_WRITE) &&
736                     shadow && workingset_refault(shadow)) {
737                         SetPageActive(page);
738                         workingset_activation(page);
739                 } else
740                         ClearPageActive(page);
741                 lru_cache_add(page);
742         }
743         return ret;
744 }
745 EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
746
747 #ifdef CONFIG_NUMA
748 struct page *__page_cache_alloc(gfp_t gfp)
749 {
750         int n;
751         struct page *page;
752
753         if (cpuset_do_page_mem_spread()) {
754                 unsigned int cpuset_mems_cookie;
755                 do {
756                         cpuset_mems_cookie = read_mems_allowed_begin();
757                         n = cpuset_mem_spread_node();
758                         page = __alloc_pages_node(n, gfp, 0);
759                 } while (!page && read_mems_allowed_retry(cpuset_mems_cookie));
760
761                 return page;
762         }
763         return alloc_pages(gfp, 0);
764 }
765 EXPORT_SYMBOL(__page_cache_alloc);
766 #endif
767
768 /*
769  * In order to wait for pages to become available there must be
770  * waitqueues associated with pages. By using a hash table of
771  * waitqueues where the bucket discipline is to maintain all
772  * waiters on the same queue and wake all when any of the pages
773  * become available, and for the woken contexts to check to be
774  * sure the appropriate page became available, this saves space
775  * at a cost of "thundering herd" phenomena during rare hash
776  * collisions.
777  */
778 wait_queue_head_t *page_waitqueue(struct page *page)
779 {
780         const struct zone *zone = page_zone(page);
781
782         return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
783 }
784 EXPORT_SYMBOL(page_waitqueue);
785
786 void wait_on_page_bit(struct page *page, int bit_nr)
787 {
788         DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
789
790         if (test_bit(bit_nr, &page->flags))
791                 __wait_on_bit(page_waitqueue(page), &wait, bit_wait_io,
792                                                         TASK_UNINTERRUPTIBLE);
793 }
794 EXPORT_SYMBOL(wait_on_page_bit);
795
796 int wait_on_page_bit_killable(struct page *page, int bit_nr)
797 {
798         DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
799
800         if (!test_bit(bit_nr, &page->flags))
801                 return 0;
802
803         return __wait_on_bit(page_waitqueue(page), &wait,
804                              bit_wait_io, TASK_KILLABLE);
805 }
806
807 int wait_on_page_bit_killable_timeout(struct page *page,
808                                        int bit_nr, unsigned long timeout)
809 {
810         DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
811
812         wait.key.timeout = jiffies + timeout;
813         if (!test_bit(bit_nr, &page->flags))
814                 return 0;
815         return __wait_on_bit(page_waitqueue(page), &wait,
816                              bit_wait_io_timeout, TASK_KILLABLE);
817 }
818 EXPORT_SYMBOL_GPL(wait_on_page_bit_killable_timeout);
819
820 /**
821  * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
822  * @page: Page defining the wait queue of interest
823  * @waiter: Waiter to add to the queue
824  *
825  * Add an arbitrary @waiter to the wait queue for the nominated @page.
826  */
827 void add_page_wait_queue(struct page *page, wait_queue_t *waiter)
828 {
829         wait_queue_head_t *q = page_waitqueue(page);
830         unsigned long flags;
831
832         spin_lock_irqsave(&q->lock, flags);
833         __add_wait_queue(q, waiter);
834         spin_unlock_irqrestore(&q->lock, flags);
835 }
836 EXPORT_SYMBOL_GPL(add_page_wait_queue);
837
838 /**
839  * unlock_page - unlock a locked page
840  * @page: the page
841  *
842  * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
843  * Also wakes sleepers in wait_on_page_writeback() because the wakeup
844  * mechanism between PageLocked pages and PageWriteback pages is shared.
845  * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
846  *
847  * The mb is necessary to enforce ordering between the clear_bit and the read
848  * of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()).
849  */
850 void unlock_page(struct page *page)
851 {
852         page = compound_head(page);
853         VM_BUG_ON_PAGE(!PageLocked(page), page);
854         clear_bit_unlock(PG_locked, &page->flags);
855         smp_mb__after_atomic();
856         wake_up_page(page, PG_locked);
857 }
858 EXPORT_SYMBOL(unlock_page);
859
860 /**
861  * end_page_writeback - end writeback against a page
862  * @page: the page
863  */
864 void end_page_writeback(struct page *page)
865 {
866         /*
867          * TestClearPageReclaim could be used here but it is an atomic
868          * operation and overkill in this particular case. Failing to
869          * shuffle a page marked for immediate reclaim is too mild to
870          * justify taking an atomic operation penalty at the end of
871          * ever page writeback.
872          */
873         if (PageReclaim(page)) {
874                 ClearPageReclaim(page);
875                 rotate_reclaimable_page(page);
876         }
877
878         if (!test_clear_page_writeback(page))
879                 BUG();
880
881         smp_mb__after_atomic();
882         wake_up_page(page, PG_writeback);
883 }
884 EXPORT_SYMBOL(end_page_writeback);
885
886 /*
887  * After completing I/O on a page, call this routine to update the page
888  * flags appropriately
889  */
890 void page_endio(struct page *page, bool is_write, int err)
891 {
892         if (!is_write) {
893                 if (!err) {
894                         SetPageUptodate(page);
895                 } else {
896                         ClearPageUptodate(page);
897                         SetPageError(page);
898                 }
899                 unlock_page(page);
900         } else {
901                 if (err) {
902                         SetPageError(page);
903                         if (page->mapping)
904                                 mapping_set_error(page->mapping, err);
905                 }
906                 end_page_writeback(page);
907         }
908 }
909 EXPORT_SYMBOL_GPL(page_endio);
910
911 /**
912  * __lock_page - get a lock on the page, assuming we need to sleep to get it
913  * @page: the page to lock
914  */
915 void __lock_page(struct page *page)
916 {
917         struct page *page_head = compound_head(page);
918         DEFINE_WAIT_BIT(wait, &page_head->flags, PG_locked);
919
920         __wait_on_bit_lock(page_waitqueue(page_head), &wait, bit_wait_io,
921                                                         TASK_UNINTERRUPTIBLE);
922 }
923 EXPORT_SYMBOL(__lock_page);
924
925 int __lock_page_killable(struct page *page)
926 {
927         struct page *page_head = compound_head(page);
928         DEFINE_WAIT_BIT(wait, &page_head->flags, PG_locked);
929
930         return __wait_on_bit_lock(page_waitqueue(page_head), &wait,
931                                         bit_wait_io, TASK_KILLABLE);
932 }
933 EXPORT_SYMBOL_GPL(__lock_page_killable);
934
935 /*
936  * Return values:
937  * 1 - page is locked; mmap_sem is still held.
938  * 0 - page is not locked.
939  *     mmap_sem has been released (up_read()), unless flags had both
940  *     FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
941  *     which case mmap_sem is still held.
942  *
943  * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1
944  * with the page locked and the mmap_sem unperturbed.
945  */
946 int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
947                          unsigned int flags)
948 {
949         if (flags & FAULT_FLAG_ALLOW_RETRY) {
950                 /*
951                  * CAUTION! In this case, mmap_sem is not released
952                  * even though return 0.
953                  */
954                 if (flags & FAULT_FLAG_RETRY_NOWAIT)
955                         return 0;
956
957                 up_read(&mm->mmap_sem);
958                 if (flags & FAULT_FLAG_KILLABLE)
959                         wait_on_page_locked_killable(page);
960                 else
961                         wait_on_page_locked(page);
962                 return 0;
963         } else {
964                 if (flags & FAULT_FLAG_KILLABLE) {
965                         int ret;
966
967                         ret = __lock_page_killable(page);
968                         if (ret) {
969                                 up_read(&mm->mmap_sem);
970                                 return 0;
971                         }
972                 } else
973                         __lock_page(page);
974                 return 1;
975         }
976 }
977
978 /**
979  * page_cache_next_hole - find the next hole (not-present entry)
980  * @mapping: mapping
981  * @index: index
982  * @max_scan: maximum range to search
983  *
984  * Search the set [index, min(index+max_scan-1, MAX_INDEX)] for the
985  * lowest indexed hole.
986  *
987  * Returns: the index of the hole if found, otherwise returns an index
988  * outside of the set specified (in which case 'return - index >=
989  * max_scan' will be true). In rare cases of index wrap-around, 0 will
990  * be returned.
991  *
992  * page_cache_next_hole may be called under rcu_read_lock. However,
993  * like radix_tree_gang_lookup, this will not atomically search a
994  * snapshot of the tree at a single point in time. For example, if a
995  * hole is created at index 5, then subsequently a hole is created at
996  * index 10, page_cache_next_hole covering both indexes may return 10
997  * if called under rcu_read_lock.
998  */
999 pgoff_t page_cache_next_hole(struct address_space *mapping,
1000                              pgoff_t index, unsigned long max_scan)
1001 {
1002         unsigned long i;
1003
1004         for (i = 0; i < max_scan; i++) {
1005                 struct page *page;
1006
1007                 page = radix_tree_lookup(&mapping->page_tree, index);
1008                 if (!page || radix_tree_exceptional_entry(page))
1009                         break;
1010                 index++;
1011                 if (index == 0)
1012                         break;
1013         }
1014
1015         return index;
1016 }
1017 EXPORT_SYMBOL(page_cache_next_hole);
1018
1019 /**
1020  * page_cache_prev_hole - find the prev hole (not-present entry)
1021  * @mapping: mapping
1022  * @index: index
1023  * @max_scan: maximum range to search
1024  *
1025  * Search backwards in the range [max(index-max_scan+1, 0), index] for
1026  * the first hole.
1027  *
1028  * Returns: the index of the hole if found, otherwise returns an index
1029  * outside of the set specified (in which case 'index - return >=
1030  * max_scan' will be true). In rare cases of wrap-around, ULONG_MAX
1031  * will be returned.
1032  *
1033  * page_cache_prev_hole may be called under rcu_read_lock. However,
1034  * like radix_tree_gang_lookup, this will not atomically search a
1035  * snapshot of the tree at a single point in time. For example, if a
1036  * hole is created at index 10, then subsequently a hole is created at
1037  * index 5, page_cache_prev_hole covering both indexes may return 5 if
1038  * called under rcu_read_lock.
1039  */
1040 pgoff_t page_cache_prev_hole(struct address_space *mapping,
1041                              pgoff_t index, unsigned long max_scan)
1042 {
1043         unsigned long i;
1044
1045         for (i = 0; i < max_scan; i++) {
1046                 struct page *page;
1047
1048                 page = radix_tree_lookup(&mapping->page_tree, index);
1049                 if (!page || radix_tree_exceptional_entry(page))
1050                         break;
1051                 index--;
1052                 if (index == ULONG_MAX)
1053                         break;
1054         }
1055
1056         return index;
1057 }
1058 EXPORT_SYMBOL(page_cache_prev_hole);
1059
1060 /**
1061  * find_get_entry - find and get a page cache entry
1062  * @mapping: the address_space to search
1063  * @offset: the page cache index
1064  *
1065  * Looks up the page cache slot at @mapping & @offset.  If there is a
1066  * page cache page, it is returned with an increased refcount.
1067  *
1068  * If the slot holds a shadow entry of a previously evicted page, or a
1069  * swap entry from shmem/tmpfs, it is returned.
1070  *
1071  * Otherwise, %NULL is returned.
1072  */
1073 struct page *find_get_entry(struct address_space *mapping, pgoff_t offset)
1074 {
1075         void **pagep;
1076         struct page *head, *page;
1077
1078         rcu_read_lock();
1079 repeat:
1080         page = NULL;
1081         pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
1082         if (pagep) {
1083                 page = radix_tree_deref_slot(pagep);
1084                 if (unlikely(!page))
1085                         goto out;
1086                 if (radix_tree_exception(page)) {
1087                         if (radix_tree_deref_retry(page))
1088                                 goto repeat;
1089                         /*
1090                          * A shadow entry of a recently evicted page,
1091                          * or a swap entry from shmem/tmpfs.  Return
1092                          * it without attempting to raise page count.
1093                          */
1094                         goto out;
1095                 }
1096
1097                 head = compound_head(page);
1098                 if (!page_cache_get_speculative(head))
1099                         goto repeat;
1100
1101                 /* The page was split under us? */
1102                 if (compound_head(page) != head) {
1103                         put_page(head);
1104                         goto repeat;
1105                 }
1106
1107                 /*
1108                  * Has the page moved?
1109                  * This is part of the lockless pagecache protocol. See
1110                  * include/linux/pagemap.h for details.
1111                  */
1112                 if (unlikely(page != *pagep)) {
1113                         put_page(head);
1114                         goto repeat;
1115                 }
1116         }
1117 out:
1118         rcu_read_unlock();
1119
1120         return page;
1121 }
1122 EXPORT_SYMBOL(find_get_entry);
1123
1124 /**
1125  * find_lock_entry - locate, pin and lock a page cache entry
1126  * @mapping: the address_space to search
1127  * @offset: the page cache index
1128  *
1129  * Looks up the page cache slot at @mapping & @offset.  If there is a
1130  * page cache page, it is returned locked and with an increased
1131  * refcount.
1132  *
1133  * If the slot holds a shadow entry of a previously evicted page, or a
1134  * swap entry from shmem/tmpfs, it is returned.
1135  *
1136  * Otherwise, %NULL is returned.
1137  *
1138  * find_lock_entry() may sleep.
1139  */
1140 struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset)
1141 {
1142         struct page *page;
1143
1144 repeat:
1145         page = find_get_entry(mapping, offset);
1146         if (page && !radix_tree_exception(page)) {
1147                 lock_page(page);
1148                 /* Has the page been truncated? */
1149                 if (unlikely(page_mapping(page) != mapping)) {
1150                         unlock_page(page);
1151                         put_page(page);
1152                         goto repeat;
1153                 }
1154                 VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page);
1155         }
1156         return page;
1157 }
1158 EXPORT_SYMBOL(find_lock_entry);
1159
1160 /**
1161  * pagecache_get_page - find and get a page reference
1162  * @mapping: the address_space to search
1163  * @offset: the page index
1164  * @fgp_flags: PCG flags
1165  * @gfp_mask: gfp mask to use for the page cache data page allocation
1166  *
1167  * Looks up the page cache slot at @mapping & @offset.
1168  *
1169  * PCG flags modify how the page is returned.
1170  *
1171  * FGP_ACCESSED: the page will be marked accessed
1172  * FGP_LOCK: Page is return locked
1173  * FGP_CREAT: If page is not present then a new page is allocated using
1174  *              @gfp_mask and added to the page cache and the VM's LRU
1175  *              list. The page is returned locked and with an increased
1176  *              refcount. Otherwise, %NULL is returned.
1177  *
1178  * If FGP_LOCK or FGP_CREAT are specified then the function may sleep even
1179  * if the GFP flags specified for FGP_CREAT are atomic.
1180  *
1181  * If there is a page cache page, it is returned with an increased refcount.
1182  */
1183 struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset,
1184         int fgp_flags, gfp_t gfp_mask)
1185 {
1186         struct page *page;
1187
1188 repeat:
1189         page = find_get_entry(mapping, offset);
1190         if (radix_tree_exceptional_entry(page))
1191                 page = NULL;
1192         if (!page)
1193                 goto no_page;
1194
1195         if (fgp_flags & FGP_LOCK) {
1196                 if (fgp_flags & FGP_NOWAIT) {
1197                         if (!trylock_page(page)) {
1198                                 put_page(page);
1199                                 return NULL;
1200                         }
1201                 } else {
1202                         lock_page(page);
1203                 }
1204
1205                 /* Has the page been truncated? */
1206                 if (unlikely(page->mapping != mapping)) {
1207                         unlock_page(page);
1208                         put_page(page);
1209                         goto repeat;
1210                 }
1211                 VM_BUG_ON_PAGE(page->index != offset, page);
1212         }
1213
1214         if (page && (fgp_flags & FGP_ACCESSED))
1215                 mark_page_accessed(page);
1216
1217 no_page:
1218         if (!page && (fgp_flags & FGP_CREAT)) {
1219                 int err;
1220                 if ((fgp_flags & FGP_WRITE) && mapping_cap_account_dirty(mapping))
1221                         gfp_mask |= __GFP_WRITE;
1222                 if (fgp_flags & FGP_NOFS)
1223                         gfp_mask &= ~__GFP_FS;
1224
1225                 page = __page_cache_alloc(gfp_mask);
1226                 if (!page)
1227                         return NULL;
1228
1229                 if (WARN_ON_ONCE(!(fgp_flags & FGP_LOCK)))
1230                         fgp_flags |= FGP_LOCK;
1231
1232                 /* Init accessed so avoid atomic mark_page_accessed later */
1233                 if (fgp_flags & FGP_ACCESSED)
1234                         __SetPageReferenced(page);
1235
1236                 err = add_to_page_cache_lru(page, mapping, offset,
1237                                 gfp_mask & GFP_RECLAIM_MASK);
1238                 if (unlikely(err)) {
1239                         put_page(page);
1240                         page = NULL;
1241                         if (err == -EEXIST)
1242                                 goto repeat;
1243                 }
1244         }
1245
1246         return page;
1247 }
1248 EXPORT_SYMBOL(pagecache_get_page);
1249
1250 /**
1251  * find_get_entries - gang pagecache lookup
1252  * @mapping:    The address_space to search
1253  * @start:      The starting page cache index
1254  * @nr_entries: The maximum number of entries
1255  * @entries:    Where the resulting entries are placed
1256  * @indices:    The cache indices corresponding to the entries in @entries
1257  *
1258  * find_get_entries() will search for and return a group of up to
1259  * @nr_entries entries in the mapping.  The entries are placed at
1260  * @entries.  find_get_entries() takes a reference against any actual
1261  * pages it returns.
1262  *
1263  * The search returns a group of mapping-contiguous page cache entries
1264  * with ascending indexes.  There may be holes in the indices due to
1265  * not-present pages.
1266  *
1267  * Any shadow entries of evicted pages, or swap entries from
1268  * shmem/tmpfs, are included in the returned array.
1269  *
1270  * find_get_entries() returns the number of pages and shadow entries
1271  * which were found.
1272  */
1273 unsigned find_get_entries(struct address_space *mapping,
1274                           pgoff_t start, unsigned int nr_entries,
1275                           struct page **entries, pgoff_t *indices)
1276 {
1277         void **slot;
1278         unsigned int ret = 0;
1279         struct radix_tree_iter iter;
1280
1281         if (!nr_entries)
1282                 return 0;
1283
1284         rcu_read_lock();
1285         radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1286                 struct page *head, *page;
1287 repeat:
1288                 page = radix_tree_deref_slot(slot);
1289                 if (unlikely(!page))
1290                         continue;
1291                 if (radix_tree_exception(page)) {
1292                         if (radix_tree_deref_retry(page)) {
1293                                 slot = radix_tree_iter_retry(&iter);
1294                                 continue;
1295                         }
1296                         /*
1297                          * A shadow entry of a recently evicted page, a swap
1298                          * entry from shmem/tmpfs or a DAX entry.  Return it
1299                          * without attempting to raise page count.
1300                          */
1301                         goto export;
1302                 }
1303
1304                 head = compound_head(page);
1305                 if (!page_cache_get_speculative(head))
1306                         goto repeat;
1307
1308                 /* The page was split under us? */
1309                 if (compound_head(page) != head) {
1310                         put_page(head);
1311                         goto repeat;
1312                 }
1313
1314                 /* Has the page moved? */
1315                 if (unlikely(page != *slot)) {
1316                         put_page(head);
1317                         goto repeat;
1318                 }
1319 export:
1320                 indices[ret] = iter.index;
1321                 entries[ret] = page;
1322                 if (++ret == nr_entries)
1323                         break;
1324         }
1325         rcu_read_unlock();
1326         return ret;
1327 }
1328
1329 /**
1330  * find_get_pages - gang pagecache lookup
1331  * @mapping:    The address_space to search
1332  * @start:      The starting page index
1333  * @nr_pages:   The maximum number of pages
1334  * @pages:      Where the resulting pages are placed
1335  *
1336  * find_get_pages() will search for and return a group of up to
1337  * @nr_pages pages in the mapping.  The pages are placed at @pages.
1338  * find_get_pages() takes a reference against the returned pages.
1339  *
1340  * The search returns a group of mapping-contiguous pages with ascending
1341  * indexes.  There may be holes in the indices due to not-present pages.
1342  *
1343  * find_get_pages() returns the number of pages which were found.
1344  */
1345 unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
1346                             unsigned int nr_pages, struct page **pages)
1347 {
1348         struct radix_tree_iter iter;
1349         void **slot;
1350         unsigned ret = 0;
1351
1352         if (unlikely(!nr_pages))
1353                 return 0;
1354
1355         rcu_read_lock();
1356         radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1357                 struct page *head, *page;
1358 repeat:
1359                 page = radix_tree_deref_slot(slot);
1360                 if (unlikely(!page))
1361                         continue;
1362
1363                 if (radix_tree_exception(page)) {
1364                         if (radix_tree_deref_retry(page)) {
1365                                 slot = radix_tree_iter_retry(&iter);
1366                                 continue;
1367                         }
1368                         /*
1369                          * A shadow entry of a recently evicted page,
1370                          * or a swap entry from shmem/tmpfs.  Skip
1371                          * over it.
1372                          */
1373                         continue;
1374                 }
1375
1376                 head = compound_head(page);
1377                 if (!page_cache_get_speculative(head))
1378                         goto repeat;
1379
1380                 /* The page was split under us? */
1381                 if (compound_head(page) != head) {
1382                         put_page(head);
1383                         goto repeat;
1384                 }
1385
1386                 /* Has the page moved? */
1387                 if (unlikely(page != *slot)) {
1388                         put_page(head);
1389                         goto repeat;
1390                 }
1391
1392                 pages[ret] = page;
1393                 if (++ret == nr_pages)
1394                         break;
1395         }
1396
1397         rcu_read_unlock();
1398         return ret;
1399 }
1400
1401 /**
1402  * find_get_pages_contig - gang contiguous pagecache lookup
1403  * @mapping:    The address_space to search
1404  * @index:      The starting page index
1405  * @nr_pages:   The maximum number of pages
1406  * @pages:      Where the resulting pages are placed
1407  *
1408  * find_get_pages_contig() works exactly like find_get_pages(), except
1409  * that the returned number of pages are guaranteed to be contiguous.
1410  *
1411  * find_get_pages_contig() returns the number of pages which were found.
1412  */
1413 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
1414                                unsigned int nr_pages, struct page **pages)
1415 {
1416         struct radix_tree_iter iter;
1417         void **slot;
1418         unsigned int ret = 0;
1419
1420         if (unlikely(!nr_pages))
1421                 return 0;
1422
1423         rcu_read_lock();
1424         radix_tree_for_each_contig(slot, &mapping->page_tree, &iter, index) {
1425                 struct page *head, *page;
1426 repeat:
1427                 page = radix_tree_deref_slot(slot);
1428                 /* The hole, there no reason to continue */
1429                 if (unlikely(!page))
1430                         break;
1431
1432                 if (radix_tree_exception(page)) {
1433                         if (radix_tree_deref_retry(page)) {
1434                                 slot = radix_tree_iter_retry(&iter);
1435                                 continue;
1436                         }
1437                         /*
1438                          * A shadow entry of a recently evicted page,
1439                          * or a swap entry from shmem/tmpfs.  Stop
1440                          * looking for contiguous pages.
1441                          */
1442                         break;
1443                 }
1444
1445                 head = compound_head(page);
1446                 if (!page_cache_get_speculative(head))
1447                         goto repeat;
1448
1449                 /* The page was split under us? */
1450                 if (compound_head(page) != head) {
1451                         put_page(head);
1452                         goto repeat;
1453                 }
1454
1455                 /* Has the page moved? */
1456                 if (unlikely(page != *slot)) {
1457                         put_page(head);
1458                         goto repeat;
1459                 }
1460
1461                 /*
1462                  * must check mapping and index after taking the ref.
1463                  * otherwise we can get both false positives and false
1464                  * negatives, which is just confusing to the caller.
1465                  */
1466                 if (page->mapping == NULL || page_to_pgoff(page) != iter.index) {
1467                         put_page(page);
1468                         break;
1469                 }
1470
1471                 pages[ret] = page;
1472                 if (++ret == nr_pages)
1473                         break;
1474         }
1475         rcu_read_unlock();
1476         return ret;
1477 }
1478 EXPORT_SYMBOL(find_get_pages_contig);
1479
1480 /**
1481  * find_get_pages_tag - find and return pages that match @tag
1482  * @mapping:    the address_space to search
1483  * @index:      the starting page index
1484  * @tag:        the tag index
1485  * @nr_pages:   the maximum number of pages
1486  * @pages:      where the resulting pages are placed
1487  *
1488  * Like find_get_pages, except we only return pages which are tagged with
1489  * @tag.   We update @index to index the next page for the traversal.
1490  */
1491 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
1492                         int tag, unsigned int nr_pages, struct page **pages)
1493 {
1494         struct radix_tree_iter iter;
1495         void **slot;
1496         unsigned ret = 0;
1497
1498         if (unlikely(!nr_pages))
1499                 return 0;
1500
1501         rcu_read_lock();
1502         radix_tree_for_each_tagged(slot, &mapping->page_tree,
1503                                    &iter, *index, tag) {
1504                 struct page *head, *page;
1505 repeat:
1506                 page = radix_tree_deref_slot(slot);
1507                 if (unlikely(!page))
1508                         continue;
1509
1510                 if (radix_tree_exception(page)) {
1511                         if (radix_tree_deref_retry(page)) {
1512                                 slot = radix_tree_iter_retry(&iter);
1513                                 continue;
1514                         }
1515                         /*
1516                          * A shadow entry of a recently evicted page.
1517                          *
1518                          * Those entries should never be tagged, but
1519                          * this tree walk is lockless and the tags are
1520                          * looked up in bulk, one radix tree node at a
1521                          * time, so there is a sizable window for page
1522                          * reclaim to evict a page we saw tagged.
1523                          *
1524                          * Skip over it.
1525                          */
1526                         continue;
1527                 }
1528
1529                 head = compound_head(page);
1530                 if (!page_cache_get_speculative(head))
1531                         goto repeat;
1532
1533                 /* The page was split under us? */
1534                 if (compound_head(page) != head) {
1535                         put_page(head);
1536                         goto repeat;
1537                 }
1538
1539                 /* Has the page moved? */
1540                 if (unlikely(page != *slot)) {
1541                         put_page(head);
1542                         goto repeat;
1543                 }
1544
1545                 pages[ret] = page;
1546                 if (++ret == nr_pages)
1547                         break;
1548         }
1549
1550         rcu_read_unlock();
1551
1552         if (ret)
1553                 *index = pages[ret - 1]->index + 1;
1554
1555         return ret;
1556 }
1557 EXPORT_SYMBOL(find_get_pages_tag);
1558
1559 /**
1560  * find_get_entries_tag - find and return entries that match @tag
1561  * @mapping:    the address_space to search
1562  * @start:      the starting page cache index
1563  * @tag:        the tag index
1564  * @nr_entries: the maximum number of entries
1565  * @entries:    where the resulting entries are placed
1566  * @indices:    the cache indices corresponding to the entries in @entries
1567  *
1568  * Like find_get_entries, except we only return entries which are tagged with
1569  * @tag.
1570  */
1571 unsigned find_get_entries_tag(struct address_space *mapping, pgoff_t start,
1572                         int tag, unsigned int nr_entries,
1573                         struct page **entries, pgoff_t *indices)
1574 {
1575         void **slot;
1576         unsigned int ret = 0;
1577         struct radix_tree_iter iter;
1578
1579         if (!nr_entries)
1580                 return 0;
1581
1582         rcu_read_lock();
1583         radix_tree_for_each_tagged(slot, &mapping->page_tree,
1584                                    &iter, start, tag) {
1585                 struct page *head, *page;
1586 repeat:
1587                 page = radix_tree_deref_slot(slot);
1588                 if (unlikely(!page))
1589                         continue;
1590                 if (radix_tree_exception(page)) {
1591                         if (radix_tree_deref_retry(page)) {
1592                                 slot = radix_tree_iter_retry(&iter);
1593                                 continue;
1594                         }
1595
1596                         /*
1597                          * A shadow entry of a recently evicted page, a swap
1598                          * entry from shmem/tmpfs or a DAX entry.  Return it
1599                          * without attempting to raise page count.
1600                          */
1601                         goto export;
1602                 }
1603
1604                 head = compound_head(page);
1605                 if (!page_cache_get_speculative(head))
1606                         goto repeat;
1607
1608                 /* The page was split under us? */
1609                 if (compound_head(page) != head) {
1610                         put_page(head);
1611                         goto repeat;
1612                 }
1613
1614                 /* Has the page moved? */
1615                 if (unlikely(page != *slot)) {
1616                         put_page(head);
1617                         goto repeat;
1618                 }
1619 export:
1620                 indices[ret] = iter.index;
1621                 entries[ret] = page;
1622                 if (++ret == nr_entries)
1623                         break;
1624         }
1625         rcu_read_unlock();
1626         return ret;
1627 }
1628 EXPORT_SYMBOL(find_get_entries_tag);
1629
1630 /*
1631  * CD/DVDs are error prone. When a medium error occurs, the driver may fail
1632  * a _large_ part of the i/o request. Imagine the worst scenario:
1633  *
1634  *      ---R__________________________________________B__________
1635  *         ^ reading here                             ^ bad block(assume 4k)
1636  *
1637  * read(R) => miss => readahead(R...B) => media error => frustrating retries
1638  * => failing the whole request => read(R) => read(R+1) =>
1639  * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
1640  * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
1641  * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
1642  *
1643  * It is going insane. Fix it by quickly scaling down the readahead size.
1644  */
1645 static void shrink_readahead_size_eio(struct file *filp,
1646                                         struct file_ra_state *ra)
1647 {
1648         ra->ra_pages /= 4;
1649 }
1650
1651 /**
1652  * do_generic_file_read - generic file read routine
1653  * @filp:       the file to read
1654  * @ppos:       current file position
1655  * @iter:       data destination
1656  * @written:    already copied
1657  *
1658  * This is a generic file read routine, and uses the
1659  * mapping->a_ops->readpage() function for the actual low-level stuff.
1660  *
1661  * This is really ugly. But the goto's actually try to clarify some
1662  * of the logic when it comes to error handling etc.
1663  */
1664 static ssize_t do_generic_file_read(struct file *filp, loff_t *ppos,
1665                 struct iov_iter *iter, ssize_t written)
1666 {
1667         struct address_space *mapping = filp->f_mapping;
1668         struct inode *inode = mapping->host;
1669         struct file_ra_state *ra = &filp->f_ra;
1670         pgoff_t index;
1671         pgoff_t last_index;
1672         pgoff_t prev_index;
1673         unsigned long offset;      /* offset into pagecache page */
1674         unsigned int prev_offset;
1675         int error = 0;
1676
1677         index = *ppos >> PAGE_SHIFT;
1678         prev_index = ra->prev_pos >> PAGE_SHIFT;
1679         prev_offset = ra->prev_pos & (PAGE_SIZE-1);
1680         last_index = (*ppos + iter->count + PAGE_SIZE-1) >> PAGE_SHIFT;
1681         offset = *ppos & ~PAGE_MASK;
1682
1683         for (;;) {
1684                 struct page *page;
1685                 pgoff_t end_index;
1686                 loff_t isize;
1687                 unsigned long nr, ret;
1688
1689                 cond_resched();
1690 find_page:
1691                 page = find_get_page(mapping, index);
1692                 if (!page) {
1693                         page_cache_sync_readahead(mapping,
1694                                         ra, filp,
1695                                         index, last_index - index);
1696                         page = find_get_page(mapping, index);
1697                         if (unlikely(page == NULL))
1698                                 goto no_cached_page;
1699                 }
1700                 if (PageReadahead(page)) {
1701                         page_cache_async_readahead(mapping,
1702                                         ra, filp, page,
1703                                         index, last_index - index);
1704                 }
1705                 if (!PageUptodate(page)) {
1706                         /*
1707                          * See comment in do_read_cache_page on why
1708                          * wait_on_page_locked is used to avoid unnecessarily
1709                          * serialisations and why it's safe.
1710                          */
1711                         wait_on_page_locked_killable(page);
1712                         if (PageUptodate(page))
1713                                 goto page_ok;
1714
1715                         if (inode->i_blkbits == PAGE_SHIFT ||
1716                                         !mapping->a_ops->is_partially_uptodate)
1717                                 goto page_not_up_to_date;
1718                         if (!trylock_page(page))
1719                                 goto page_not_up_to_date;
1720                         /* Did it get truncated before we got the lock? */
1721                         if (!page->mapping)
1722                                 goto page_not_up_to_date_locked;
1723                         if (!mapping->a_ops->is_partially_uptodate(page,
1724                                                         offset, iter->count))
1725                                 goto page_not_up_to_date_locked;
1726                         unlock_page(page);
1727                 }
1728 page_ok:
1729                 /*
1730                  * i_size must be checked after we know the page is Uptodate.
1731                  *
1732                  * Checking i_size after the check allows us to calculate
1733                  * the correct value for "nr", which means the zero-filled
1734                  * part of the page is not copied back to userspace (unless
1735                  * another truncate extends the file - this is desired though).
1736                  */
1737
1738                 isize = i_size_read(inode);
1739                 end_index = (isize - 1) >> PAGE_SHIFT;
1740                 if (unlikely(!isize || index > end_index)) {
1741                         put_page(page);
1742                         goto out;
1743                 }
1744
1745                 /* nr is the maximum number of bytes to copy from this page */
1746                 nr = PAGE_SIZE;
1747                 if (index == end_index) {
1748                         nr = ((isize - 1) & ~PAGE_MASK) + 1;
1749                         if (nr <= offset) {
1750                                 put_page(page);
1751                                 goto out;
1752                         }
1753                 }
1754                 nr = nr - offset;
1755
1756                 /* If users can be writing to this page using arbitrary
1757                  * virtual addresses, take care about potential aliasing
1758                  * before reading the page on the kernel side.
1759                  */
1760                 if (mapping_writably_mapped(mapping))
1761                         flush_dcache_page(page);
1762
1763                 /*
1764                  * When a sequential read accesses a page several times,
1765                  * only mark it as accessed the first time.
1766                  */
1767                 if (prev_index != index || offset != prev_offset)
1768                         mark_page_accessed(page);
1769                 prev_index = index;
1770
1771                 /*
1772                  * Ok, we have the page, and it's up-to-date, so
1773                  * now we can copy it to user space...
1774                  */
1775
1776                 ret = copy_page_to_iter(page, offset, nr, iter);
1777                 offset += ret;
1778                 index += offset >> PAGE_SHIFT;
1779                 offset &= ~PAGE_MASK;
1780                 prev_offset = offset;
1781
1782                 put_page(page);
1783                 written += ret;
1784                 if (!iov_iter_count(iter))
1785                         goto out;
1786                 if (ret < nr) {
1787                         error = -EFAULT;
1788                         goto out;
1789                 }
1790                 continue;
1791
1792 page_not_up_to_date:
1793                 /* Get exclusive access to the page ... */
1794                 error = lock_page_killable(page);
1795                 if (unlikely(error))
1796                         goto readpage_error;
1797
1798 page_not_up_to_date_locked:
1799                 /* Did it get truncated before we got the lock? */
1800                 if (!page->mapping) {
1801                         unlock_page(page);
1802                         put_page(page);
1803                         continue;
1804                 }
1805
1806                 /* Did somebody else fill it already? */
1807                 if (PageUptodate(page)) {
1808                         unlock_page(page);
1809                         goto page_ok;
1810                 }
1811
1812 readpage:
1813                 /*
1814                  * A previous I/O error may have been due to temporary
1815                  * failures, eg. multipath errors.
1816                  * PG_error will be set again if readpage fails.
1817                  */
1818                 ClearPageError(page);
1819                 /* Start the actual read. The read will unlock the page. */
1820                 error = mapping->a_ops->readpage(filp, page);
1821
1822                 if (unlikely(error)) {
1823                         if (error == AOP_TRUNCATED_PAGE) {
1824                                 put_page(page);
1825                                 error = 0;
1826                                 goto find_page;
1827                         }
1828                         goto readpage_error;
1829                 }
1830
1831                 if (!PageUptodate(page)) {
1832                         error = lock_page_killable(page);
1833                         if (unlikely(error))
1834                                 goto readpage_error;
1835                         if (!PageUptodate(page)) {
1836                                 if (page->mapping == NULL) {
1837                                         /*
1838                                          * invalidate_mapping_pages got it
1839                                          */
1840                                         unlock_page(page);
1841                                         put_page(page);
1842                                         goto find_page;
1843                                 }
1844                                 unlock_page(page);
1845                                 shrink_readahead_size_eio(filp, ra);
1846                                 error = -EIO;
1847                                 goto readpage_error;
1848                         }
1849                         unlock_page(page);
1850                 }
1851
1852                 goto page_ok;
1853
1854 readpage_error:
1855                 /* UHHUH! A synchronous read error occurred. Report it */
1856                 put_page(page);
1857                 goto out;
1858
1859 no_cached_page:
1860                 /*
1861                  * Ok, it wasn't cached, so we need to create a new
1862                  * page..
1863                  */
1864                 page = page_cache_alloc_cold(mapping);
1865                 if (!page) {
1866                         error = -ENOMEM;
1867                         goto out;
1868                 }
1869                 error = add_to_page_cache_lru(page, mapping, index,
1870                                 mapping_gfp_constraint(mapping, GFP_KERNEL));
1871                 if (error) {
1872                         put_page(page);
1873                         if (error == -EEXIST) {
1874                                 error = 0;
1875                                 goto find_page;
1876                         }
1877                         goto out;
1878                 }
1879                 goto readpage;
1880         }
1881
1882 out:
1883         ra->prev_pos = prev_index;
1884         ra->prev_pos <<= PAGE_SHIFT;
1885         ra->prev_pos |= prev_offset;
1886
1887         *ppos = ((loff_t)index << PAGE_SHIFT) + offset;
1888         file_accessed(filp);
1889         return written ? written : error;
1890 }
1891
1892 /**
1893  * generic_file_read_iter - generic filesystem read routine
1894  * @iocb:       kernel I/O control block
1895  * @iter:       destination for the data read
1896  *
1897  * This is the "read_iter()" routine for all filesystems
1898  * that can use the page cache directly.
1899  */
1900 ssize_t
1901 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
1902 {
1903         struct file *file = iocb->ki_filp;
1904         ssize_t retval = 0;
1905         size_t count = iov_iter_count(iter);
1906
1907         if (!count)
1908                 goto out; /* skip atime */
1909
1910         if (iocb->ki_flags & IOCB_DIRECT) {
1911                 struct address_space *mapping = file->f_mapping;
1912                 struct inode *inode = mapping->host;
1913                 loff_t size;
1914
1915                 size = i_size_read(inode);
1916                 retval = filemap_write_and_wait_range(mapping, iocb->ki_pos,
1917                                         iocb->ki_pos + count - 1);
1918                 if (!retval) {
1919                         struct iov_iter data = *iter;
1920                         retval = mapping->a_ops->direct_IO(iocb, &data);
1921                 }
1922
1923                 if (retval >= 0) {
1924                         iocb->ki_pos += retval;
1925                         iov_iter_advance(iter, retval);
1926                 }
1927
1928                 /*
1929                  * Btrfs can have a short DIO read if we encounter
1930                  * compressed extents, so if there was an error, or if
1931                  * we've already read everything we wanted to, or if
1932                  * there was a short read because we hit EOF, go ahead
1933                  * and return.  Otherwise fallthrough to buffered io for
1934                  * the rest of the read.  Buffered reads will not work for
1935                  * DAX files, so don't bother trying.
1936                  */
1937                 if (retval < 0 || !iov_iter_count(iter) || iocb->ki_pos >= size ||
1938                     IS_DAX(inode)) {
1939                         file_accessed(file);
1940                         goto out;
1941                 }
1942         }
1943
1944         retval = do_generic_file_read(file, &iocb->ki_pos, iter, retval);
1945 out:
1946         return retval;
1947 }
1948 EXPORT_SYMBOL(generic_file_read_iter);
1949
1950 #ifdef CONFIG_MMU
1951 /**
1952  * page_cache_read - adds requested page to the page cache if not already there
1953  * @file:       file to read
1954  * @offset:     page index
1955  * @gfp_mask:   memory allocation flags
1956  *
1957  * This adds the requested page to the page cache if it isn't already there,
1958  * and schedules an I/O to read in its contents from disk.
1959  */
1960 static int page_cache_read(struct file *file, pgoff_t offset, gfp_t gfp_mask)
1961 {
1962         struct address_space *mapping = file->f_mapping;
1963         struct page *page;
1964         int ret;
1965
1966         do {
1967                 page = __page_cache_alloc(gfp_mask|__GFP_COLD);
1968                 if (!page)
1969                         return -ENOMEM;
1970
1971                 ret = add_to_page_cache_lru(page, mapping, offset, gfp_mask & GFP_KERNEL);
1972                 if (ret == 0)
1973                         ret = mapping->a_ops->readpage(file, page);
1974                 else if (ret == -EEXIST)
1975                         ret = 0; /* losing race to add is OK */
1976
1977                 put_page(page);
1978
1979         } while (ret == AOP_TRUNCATED_PAGE);
1980
1981         return ret;
1982 }
1983
1984 #define MMAP_LOTSAMISS  (100)
1985
1986 /*
1987  * Synchronous readahead happens when we don't even find
1988  * a page in the page cache at all.
1989  */
1990 static void do_sync_mmap_readahead(struct vm_area_struct *vma,
1991                                    struct file_ra_state *ra,
1992                                    struct file *file,
1993                                    pgoff_t offset)
1994 {
1995         struct address_space *mapping = file->f_mapping;
1996
1997         /* If we don't want any read-ahead, don't bother */
1998         if (vma->vm_flags & VM_RAND_READ)
1999                 return;
2000         if (!ra->ra_pages)
2001                 return;
2002
2003         if (vma->vm_flags & VM_SEQ_READ) {
2004                 page_cache_sync_readahead(mapping, ra, file, offset,
2005                                           ra->ra_pages);
2006                 return;
2007         }
2008
2009         /* Avoid banging the cache line if not needed */
2010         if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
2011                 ra->mmap_miss++;
2012
2013         /*
2014          * Do we miss much more than hit in this file? If so,
2015          * stop bothering with read-ahead. It will only hurt.
2016          */
2017         if (ra->mmap_miss > MMAP_LOTSAMISS)
2018                 return;
2019
2020         /*
2021          * mmap read-around
2022          */
2023         ra->start = max_t(long, 0, offset - ra->ra_pages / 2);
2024         ra->size = ra->ra_pages;
2025         ra->async_size = ra->ra_pages / 4;
2026         ra_submit(ra, mapping, file);
2027 }
2028
2029 /*
2030  * Asynchronous readahead happens when we find the page and PG_readahead,
2031  * so we want to possibly extend the readahead further..
2032  */
2033 static void do_async_mmap_readahead(struct vm_area_struct *vma,
2034                                     struct file_ra_state *ra,
2035                                     struct file *file,
2036                                     struct page *page,
2037                                     pgoff_t offset)
2038 {
2039         struct address_space *mapping = file->f_mapping;
2040
2041         /* If we don't want any read-ahead, don't bother */
2042         if (vma->vm_flags & VM_RAND_READ)
2043                 return;
2044         if (ra->mmap_miss > 0)
2045                 ra->mmap_miss--;
2046         if (PageReadahead(page))
2047                 page_cache_async_readahead(mapping, ra, file,
2048                                            page, offset, ra->ra_pages);
2049 }
2050
2051 /**
2052  * filemap_fault - read in file data for page fault handling
2053  * @vma:        vma in which the fault was taken
2054  * @vmf:        struct vm_fault containing details of the fault
2055  *
2056  * filemap_fault() is invoked via the vma operations vector for a
2057  * mapped memory region to read in file data during a page fault.
2058  *
2059  * The goto's are kind of ugly, but this streamlines the normal case of having
2060  * it in the page cache, and handles the special cases reasonably without
2061  * having a lot of duplicated code.
2062  *
2063  * vma->vm_mm->mmap_sem must be held on entry.
2064  *
2065  * If our return value has VM_FAULT_RETRY set, it's because
2066  * lock_page_or_retry() returned 0.
2067  * The mmap_sem has usually been released in this case.
2068  * See __lock_page_or_retry() for the exception.
2069  *
2070  * If our return value does not have VM_FAULT_RETRY set, the mmap_sem
2071  * has not been released.
2072  *
2073  * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
2074  */
2075 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2076 {
2077         int error;
2078         struct file *file = vma->vm_file;
2079         struct address_space *mapping = file->f_mapping;
2080         struct file_ra_state *ra = &file->f_ra;
2081         struct inode *inode = mapping->host;
2082         pgoff_t offset = vmf->pgoff;
2083         struct page *page;
2084         loff_t size;
2085         int ret = 0;
2086
2087         size = round_up(i_size_read(inode), PAGE_SIZE);
2088         if (offset >= size >> PAGE_SHIFT)
2089                 return VM_FAULT_SIGBUS;
2090
2091         /*
2092          * Do we have something in the page cache already?
2093          */
2094         page = find_get_page(mapping, offset);
2095         if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
2096                 /*
2097                  * We found the page, so try async readahead before
2098                  * waiting for the lock.
2099                  */
2100                 do_async_mmap_readahead(vma, ra, file, page, offset);
2101         } else if (!page) {
2102                 /* No page in the page cache at all */
2103                 do_sync_mmap_readahead(vma, ra, file, offset);
2104                 count_vm_event(PGMAJFAULT);
2105                 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
2106                 ret = VM_FAULT_MAJOR;
2107 retry_find:
2108                 page = find_get_page(mapping, offset);
2109                 if (!page)
2110                         goto no_cached_page;
2111         }
2112
2113         if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags)) {
2114                 put_page(page);
2115                 return ret | VM_FAULT_RETRY;
2116         }
2117
2118         /* Did it get truncated? */
2119         if (unlikely(page->mapping != mapping)) {
2120                 unlock_page(page);
2121                 put_page(page);
2122                 goto retry_find;
2123         }
2124         VM_BUG_ON_PAGE(page->index != offset, page);
2125
2126         /*
2127          * We have a locked page in the page cache, now we need to check
2128          * that it's up-to-date. If not, it is going to be due to an error.
2129          */
2130         if (unlikely(!PageUptodate(page)))
2131                 goto page_not_uptodate;
2132
2133         /*
2134          * Found the page and have a reference on it.
2135          * We must recheck i_size under page lock.
2136          */
2137         size = round_up(i_size_read(inode), PAGE_SIZE);
2138         if (unlikely(offset >= size >> PAGE_SHIFT)) {
2139                 unlock_page(page);
2140                 put_page(page);
2141                 return VM_FAULT_SIGBUS;
2142         }
2143
2144         vmf->page = page;
2145         return ret | VM_FAULT_LOCKED;
2146
2147 no_cached_page:
2148         /*
2149          * We're only likely to ever get here if MADV_RANDOM is in
2150          * effect.
2151          */
2152         error = page_cache_read(file, offset, vmf->gfp_mask);
2153
2154         /*
2155          * The page we want has now been added to the page cache.
2156          * In the unlikely event that someone removed it in the
2157          * meantime, we'll just come back here and read it again.
2158          */
2159         if (error >= 0)
2160                 goto retry_find;
2161
2162         /*
2163          * An error return from page_cache_read can result if the
2164          * system is low on memory, or a problem occurs while trying
2165          * to schedule I/O.
2166          */
2167         if (error == -ENOMEM)
2168                 return VM_FAULT_OOM;
2169         return VM_FAULT_SIGBUS;
2170
2171 page_not_uptodate:
2172         /*
2173          * Umm, take care of errors if the page isn't up-to-date.
2174          * Try to re-read it _once_. We do this synchronously,
2175          * because there really aren't any performance issues here
2176          * and we need to check for errors.
2177          */
2178         ClearPageError(page);
2179         error = mapping->a_ops->readpage(file, page);
2180         if (!error) {
2181                 wait_on_page_locked(page);
2182                 if (!PageUptodate(page))
2183                         error = -EIO;
2184         }
2185         put_page(page);
2186
2187         if (!error || error == AOP_TRUNCATED_PAGE)
2188                 goto retry_find;
2189
2190         /* Things didn't work out. Return zero to tell the mm layer so. */
2191         shrink_readahead_size_eio(file, ra);
2192         return VM_FAULT_SIGBUS;
2193 }
2194 EXPORT_SYMBOL(filemap_fault);
2195
2196 void filemap_map_pages(struct fault_env *fe,
2197                 pgoff_t start_pgoff, pgoff_t end_pgoff)
2198 {
2199         struct radix_tree_iter iter;
2200         void **slot;
2201         struct file *file = fe->vma->vm_file;
2202         struct address_space *mapping = file->f_mapping;
2203         pgoff_t last_pgoff = start_pgoff;
2204         loff_t size;
2205         struct page *head, *page;
2206
2207         rcu_read_lock();
2208         radix_tree_for_each_slot(slot, &mapping->page_tree, &iter,
2209                         start_pgoff) {
2210                 if (iter.index > end_pgoff)
2211                         break;
2212 repeat:
2213                 page = radix_tree_deref_slot(slot);
2214                 if (unlikely(!page))
2215                         goto next;
2216                 if (radix_tree_exception(page)) {
2217                         if (radix_tree_deref_retry(page)) {
2218                                 slot = radix_tree_iter_retry(&iter);
2219                                 continue;
2220                         }
2221                         goto next;
2222                 }
2223
2224                 head = compound_head(page);
2225                 if (!page_cache_get_speculative(head))
2226                         goto repeat;
2227
2228                 /* The page was split under us? */
2229                 if (compound_head(page) != head) {
2230                         put_page(head);
2231                         goto repeat;
2232                 }
2233
2234                 /* Has the page moved? */
2235                 if (unlikely(page != *slot)) {
2236                         put_page(head);
2237                         goto repeat;
2238                 }
2239
2240                 if (!PageUptodate(page) ||
2241                                 PageReadahead(page) ||
2242                                 PageHWPoison(page))
2243                         goto skip;
2244                 if (!trylock_page(page))
2245                         goto skip;
2246
2247                 if (page->mapping != mapping || !PageUptodate(page))
2248                         goto unlock;
2249
2250                 size = round_up(i_size_read(mapping->host), PAGE_SIZE);
2251                 if (page->index >= size >> PAGE_SHIFT)
2252                         goto unlock;
2253
2254                 if (file->f_ra.mmap_miss > 0)
2255                         file->f_ra.mmap_miss--;
2256
2257                 fe->address += (iter.index - last_pgoff) << PAGE_SHIFT;
2258                 if (fe->pte)
2259                         fe->pte += iter.index - last_pgoff;
2260                 last_pgoff = iter.index;
2261                 if (alloc_set_pte(fe, NULL, page))
2262                         goto unlock;
2263                 unlock_page(page);
2264                 goto next;
2265 unlock:
2266                 unlock_page(page);
2267 skip:
2268                 put_page(page);
2269 next:
2270                 /* Huge page is mapped? No need to proceed. */
2271                 if (pmd_trans_huge(*fe->pmd))
2272                         break;
2273                 if (iter.index == end_pgoff)
2274                         break;
2275         }
2276         rcu_read_unlock();
2277 }
2278 EXPORT_SYMBOL(filemap_map_pages);
2279
2280 int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
2281 {
2282         struct page *page = vmf->page;
2283         struct inode *inode = file_inode(vma->vm_file);
2284         int ret = VM_FAULT_LOCKED;
2285
2286         sb_start_pagefault(inode->i_sb);
2287         file_update_time(vma->vm_file);
2288         lock_page(page);
2289         if (page->mapping != inode->i_mapping) {
2290                 unlock_page(page);
2291                 ret = VM_FAULT_NOPAGE;
2292                 goto out;
2293         }
2294         /*
2295          * We mark the page dirty already here so that when freeze is in
2296          * progress, we are guaranteed that writeback during freezing will
2297          * see the dirty page and writeprotect it again.
2298          */
2299         set_page_dirty(page);
2300         wait_for_stable_page(page);
2301 out:
2302         sb_end_pagefault(inode->i_sb);
2303         return ret;
2304 }
2305 EXPORT_SYMBOL(filemap_page_mkwrite);
2306
2307 const struct vm_operations_struct generic_file_vm_ops = {
2308         .fault          = filemap_fault,
2309         .map_pages      = filemap_map_pages,
2310         .page_mkwrite   = filemap_page_mkwrite,
2311 };
2312
2313 /* This is used for a general mmap of a disk file */
2314
2315 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2316 {
2317         struct address_space *mapping = file->f_mapping;
2318
2319         if (!mapping->a_ops->readpage)
2320                 return -ENOEXEC;
2321         file_accessed(file);
2322         vma->vm_ops = &generic_file_vm_ops;
2323         return 0;
2324 }
2325
2326 /*
2327  * This is for filesystems which do not implement ->writepage.
2328  */
2329 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
2330 {
2331         if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
2332                 return -EINVAL;
2333         return generic_file_mmap(file, vma);
2334 }
2335 #else
2336 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2337 {
2338         return -ENOSYS;
2339 }
2340 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
2341 {
2342         return -ENOSYS;
2343 }
2344 #endif /* CONFIG_MMU */
2345
2346 EXPORT_SYMBOL(generic_file_mmap);
2347 EXPORT_SYMBOL(generic_file_readonly_mmap);
2348
2349 static struct page *wait_on_page_read(struct page *page)
2350 {
2351         if (!IS_ERR(page)) {
2352                 wait_on_page_locked(page);
2353                 if (!PageUptodate(page)) {
2354                         put_page(page);
2355                         page = ERR_PTR(-EIO);
2356                 }
2357         }
2358         return page;
2359 }
2360
2361 static struct page *do_read_cache_page(struct address_space *mapping,
2362                                 pgoff_t index,
2363                                 int (*filler)(void *, struct page *),
2364                                 void *data,
2365                                 gfp_t gfp)
2366 {
2367         struct page *page;
2368         int err;
2369 repeat:
2370         page = find_get_page(mapping, index);
2371         if (!page) {
2372                 page = __page_cache_alloc(gfp | __GFP_COLD);
2373                 if (!page)
2374                         return ERR_PTR(-ENOMEM);
2375                 err = add_to_page_cache_lru(page, mapping, index, gfp);
2376                 if (unlikely(err)) {
2377                         put_page(page);
2378                         if (err == -EEXIST)
2379                                 goto repeat;
2380                         /* Presumably ENOMEM for radix tree node */
2381                         return ERR_PTR(err);
2382                 }
2383
2384 filler:
2385                 err = filler(data, page);
2386                 if (err < 0) {
2387                         put_page(page);
2388                         return ERR_PTR(err);
2389                 }
2390
2391                 page = wait_on_page_read(page);
2392                 if (IS_ERR(page))
2393                         return page;
2394                 goto out;
2395         }
2396         if (PageUptodate(page))
2397                 goto out;
2398
2399         /*
2400          * Page is not up to date and may be locked due one of the following
2401          * case a: Page is being filled and the page lock is held
2402          * case b: Read/write error clearing the page uptodate status
2403          * case c: Truncation in progress (page locked)
2404          * case d: Reclaim in progress
2405          *
2406          * Case a, the page will be up to date when the page is unlocked.
2407          *    There is no need to serialise on the page lock here as the page
2408          *    is pinned so the lock gives no additional protection. Even if the
2409          *    the page is truncated, the data is still valid if PageUptodate as
2410          *    it's a race vs truncate race.
2411          * Case b, the page will not be up to date
2412          * Case c, the page may be truncated but in itself, the data may still
2413          *    be valid after IO completes as it's a read vs truncate race. The
2414          *    operation must restart if the page is not uptodate on unlock but
2415          *    otherwise serialising on page lock to stabilise the mapping gives
2416          *    no additional guarantees to the caller as the page lock is
2417          *    released before return.
2418          * Case d, similar to truncation. If reclaim holds the page lock, it
2419          *    will be a race with remove_mapping that determines if the mapping
2420          *    is valid on unlock but otherwise the data is valid and there is
2421          *    no need to serialise with page lock.
2422          *
2423          * As the page lock gives no additional guarantee, we optimistically
2424          * wait on the page to be unlocked and check if it's up to date and
2425          * use the page if it is. Otherwise, the page lock is required to
2426          * distinguish between the different cases. The motivation is that we
2427          * avoid spurious serialisations and wakeups when multiple processes
2428          * wait on the same page for IO to complete.
2429          */
2430         wait_on_page_locked(page);
2431         if (PageUptodate(page))
2432                 goto out;
2433
2434         /* Distinguish between all the cases under the safety of the lock */
2435         lock_page(page);
2436
2437         /* Case c or d, restart the operation */
2438         if (!page->mapping) {
2439                 unlock_page(page);
2440                 put_page(page);
2441                 goto repeat;
2442         }
2443
2444         /* Someone else locked and filled the page in a very small window */
2445         if (PageUptodate(page)) {
2446                 unlock_page(page);
2447                 goto out;
2448         }
2449         goto filler;
2450
2451 out:
2452         mark_page_accessed(page);
2453         return page;
2454 }
2455
2456 /**
2457  * read_cache_page - read into page cache, fill it if needed
2458  * @mapping:    the page's address_space
2459  * @index:      the page index
2460  * @filler:     function to perform the read
2461  * @data:       first arg to filler(data, page) function, often left as NULL
2462  *
2463  * Read into the page cache. If a page already exists, and PageUptodate() is
2464  * not set, try to fill the page and wait for it to become unlocked.
2465  *
2466  * If the page does not get brought uptodate, return -EIO.
2467  */
2468 struct page *read_cache_page(struct address_space *mapping,
2469                                 pgoff_t index,
2470                                 int (*filler)(void *, struct page *),
2471                                 void *data)
2472 {
2473         return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
2474 }
2475 EXPORT_SYMBOL(read_cache_page);
2476
2477 /**
2478  * read_cache_page_gfp - read into page cache, using specified page allocation flags.
2479  * @mapping:    the page's address_space
2480  * @index:      the page index
2481  * @gfp:        the page allocator flags to use if allocating
2482  *
2483  * This is the same as "read_mapping_page(mapping, index, NULL)", but with
2484  * any new page allocations done using the specified allocation flags.
2485  *
2486  * If the page does not get brought uptodate, return -EIO.
2487  */
2488 struct page *read_cache_page_gfp(struct address_space *mapping,
2489                                 pgoff_t index,
2490                                 gfp_t gfp)
2491 {
2492         filler_t *filler = (filler_t *)mapping->a_ops->readpage;
2493
2494         return do_read_cache_page(mapping, index, filler, NULL, gfp);
2495 }
2496 EXPORT_SYMBOL(read_cache_page_gfp);
2497
2498 /*
2499  * Performs necessary checks before doing a write
2500  *
2501  * Can adjust writing position or amount of bytes to write.
2502  * Returns appropriate error code that caller should return or
2503  * zero in case that write should be allowed.
2504  */
2505 inline ssize_t generic_write_checks(struct kiocb *iocb, struct iov_iter *from)
2506 {
2507         struct file *file = iocb->ki_filp;
2508         struct inode *inode = file->f_mapping->host;
2509         unsigned long limit = rlimit(RLIMIT_FSIZE);
2510         loff_t pos;
2511
2512         if (!iov_iter_count(from))
2513                 return 0;
2514
2515         /* FIXME: this is for backwards compatibility with 2.4 */
2516         if (iocb->ki_flags & IOCB_APPEND)
2517                 iocb->ki_pos = i_size_read(inode);
2518
2519         pos = iocb->ki_pos;
2520
2521         if (limit != RLIM_INFINITY) {
2522                 if (iocb->ki_pos >= limit) {
2523                         send_sig(SIGXFSZ, current, 0);
2524                         return -EFBIG;
2525                 }
2526                 iov_iter_truncate(from, limit - (unsigned long)pos);
2527         }
2528
2529         /*
2530          * LFS rule
2531          */
2532         if (unlikely(pos + iov_iter_count(from) > MAX_NON_LFS &&
2533                                 !(file->f_flags & O_LARGEFILE))) {
2534                 if (pos >= MAX_NON_LFS)
2535                         return -EFBIG;
2536                 iov_iter_truncate(from, MAX_NON_LFS - (unsigned long)pos);
2537         }
2538
2539         /*
2540          * Are we about to exceed the fs block limit ?
2541          *
2542          * If we have written data it becomes a short write.  If we have
2543          * exceeded without writing data we send a signal and return EFBIG.
2544          * Linus frestrict idea will clean these up nicely..
2545          */
2546         if (unlikely(pos >= inode->i_sb->s_maxbytes))
2547                 return -EFBIG;
2548
2549         iov_iter_truncate(from, inode->i_sb->s_maxbytes - pos);
2550         return iov_iter_count(from);
2551 }
2552 EXPORT_SYMBOL(generic_write_checks);
2553
2554 int pagecache_write_begin(struct file *file, struct address_space *mapping,
2555                                 loff_t pos, unsigned len, unsigned flags,
2556                                 struct page **pagep, void **fsdata)
2557 {
2558         const struct address_space_operations *aops = mapping->a_ops;
2559
2560         return aops->write_begin(file, mapping, pos, len, flags,
2561                                                         pagep, fsdata);
2562 }
2563 EXPORT_SYMBOL(pagecache_write_begin);
2564
2565 int pagecache_write_end(struct file *file, struct address_space *mapping,
2566                                 loff_t pos, unsigned len, unsigned copied,
2567                                 struct page *page, void *fsdata)
2568 {
2569         const struct address_space_operations *aops = mapping->a_ops;
2570
2571         return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
2572 }
2573 EXPORT_SYMBOL(pagecache_write_end);
2574
2575 ssize_t
2576 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from)
2577 {
2578         struct file     *file = iocb->ki_filp;
2579         struct address_space *mapping = file->f_mapping;
2580         struct inode    *inode = mapping->host;
2581         loff_t          pos = iocb->ki_pos;
2582         ssize_t         written;
2583         size_t          write_len;
2584         pgoff_t         end;
2585         struct iov_iter data;
2586
2587         write_len = iov_iter_count(from);
2588         end = (pos + write_len - 1) >> PAGE_SHIFT;
2589
2590         written = filemap_write_and_wait_range(mapping, pos, pos + write_len - 1);
2591         if (written)
2592                 goto out;
2593
2594         /*
2595          * After a write we want buffered reads to be sure to go to disk to get
2596          * the new data.  We invalidate clean cached page from the region we're
2597          * about to write.  We do this *before* the write so that we can return
2598          * without clobbering -EIOCBQUEUED from ->direct_IO().
2599          */
2600         if (mapping->nrpages) {
2601                 written = invalidate_inode_pages2_range(mapping,
2602                                         pos >> PAGE_SHIFT, end);
2603                 /*
2604                  * If a page can not be invalidated, return 0 to fall back
2605                  * to buffered write.
2606                  */
2607                 if (written) {
2608                         if (written == -EBUSY)
2609                                 return 0;
2610                         goto out;
2611                 }
2612         }
2613
2614         data = *from;
2615         written = mapping->a_ops->direct_IO(iocb, &data);
2616
2617         /*
2618          * Finally, try again to invalidate clean pages which might have been
2619          * cached by non-direct readahead, or faulted in by get_user_pages()
2620          * if the source of the write was an mmap'ed region of the file
2621          * we're writing.  Either one is a pretty crazy thing to do,
2622          * so we don't support it 100%.  If this invalidation
2623          * fails, tough, the write still worked...
2624          */
2625         if (mapping->nrpages) {
2626                 invalidate_inode_pages2_range(mapping,
2627                                               pos >> PAGE_SHIFT, end);
2628         }
2629
2630         if (written > 0) {
2631                 pos += written;
2632                 iov_iter_advance(from, written);
2633                 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2634                         i_size_write(inode, pos);
2635                         mark_inode_dirty(inode);
2636                 }
2637                 iocb->ki_pos = pos;
2638         }
2639 out:
2640         return written;
2641 }
2642 EXPORT_SYMBOL(generic_file_direct_write);
2643
2644 /*
2645  * Find or create a page at the given pagecache position. Return the locked
2646  * page. This function is specifically for buffered writes.
2647  */
2648 struct page *grab_cache_page_write_begin(struct address_space *mapping,
2649                                         pgoff_t index, unsigned flags)
2650 {
2651         struct page *page;
2652         int fgp_flags = FGP_LOCK|FGP_WRITE|FGP_CREAT;
2653
2654         if (flags & AOP_FLAG_NOFS)
2655                 fgp_flags |= FGP_NOFS;
2656
2657         page = pagecache_get_page(mapping, index, fgp_flags,
2658                         mapping_gfp_mask(mapping));
2659         if (page)
2660                 wait_for_stable_page(page);
2661
2662         return page;
2663 }
2664 EXPORT_SYMBOL(grab_cache_page_write_begin);
2665
2666 ssize_t generic_perform_write(struct file *file,
2667                                 struct iov_iter *i, loff_t pos)
2668 {
2669         struct address_space *mapping = file->f_mapping;
2670         const struct address_space_operations *a_ops = mapping->a_ops;
2671         long status = 0;
2672         ssize_t written = 0;
2673         unsigned int flags = 0;
2674
2675         /*
2676          * Copies from kernel address space cannot fail (NFSD is a big user).
2677          */
2678         if (!iter_is_iovec(i))
2679                 flags |= AOP_FLAG_UNINTERRUPTIBLE;
2680
2681         do {
2682                 struct page *page;
2683                 unsigned long offset;   /* Offset into pagecache page */
2684                 unsigned long bytes;    /* Bytes to write to page */
2685                 size_t copied;          /* Bytes copied from user */
2686                 void *fsdata;
2687
2688                 offset = (pos & (PAGE_SIZE - 1));
2689                 bytes = min_t(unsigned long, PAGE_SIZE - offset,
2690                                                 iov_iter_count(i));
2691
2692 again:
2693                 /*
2694                  * Bring in the user page that we will copy from _first_.
2695                  * Otherwise there's a nasty deadlock on copying from the
2696                  * same page as we're writing to, without it being marked
2697                  * up-to-date.
2698                  *
2699                  * Not only is this an optimisation, but it is also required
2700                  * to check that the address is actually valid, when atomic
2701                  * usercopies are used, below.
2702                  */
2703                 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2704                         status = -EFAULT;
2705                         break;
2706                 }
2707
2708                 if (fatal_signal_pending(current)) {
2709                         status = -EINTR;
2710                         break;
2711                 }
2712
2713                 status = a_ops->write_begin(file, mapping, pos, bytes, flags,
2714                                                 &page, &fsdata);
2715                 if (unlikely(status < 0))
2716                         break;
2717
2718                 if (mapping_writably_mapped(mapping))
2719                         flush_dcache_page(page);
2720
2721                 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
2722                 flush_dcache_page(page);
2723
2724                 status = a_ops->write_end(file, mapping, pos, bytes, copied,
2725                                                 page, fsdata);
2726                 if (unlikely(status < 0))
2727                         break;
2728                 copied = status;
2729
2730                 cond_resched();
2731
2732                 iov_iter_advance(i, copied);
2733                 if (unlikely(copied == 0)) {
2734                         /*
2735                          * If we were unable to copy any data at all, we must
2736                          * fall back to a single segment length write.
2737                          *
2738                          * If we didn't fallback here, we could livelock
2739                          * because not all segments in the iov can be copied at
2740                          * once without a pagefault.
2741                          */
2742                         bytes = min_t(unsigned long, PAGE_SIZE - offset,
2743                                                 iov_iter_single_seg_count(i));
2744                         goto again;
2745                 }
2746                 pos += copied;
2747                 written += copied;
2748
2749                 balance_dirty_pages_ratelimited(mapping);
2750         } while (iov_iter_count(i));
2751
2752         return written ? written : status;
2753 }
2754 EXPORT_SYMBOL(generic_perform_write);
2755
2756 /**
2757  * __generic_file_write_iter - write data to a file
2758  * @iocb:       IO state structure (file, offset, etc.)
2759  * @from:       iov_iter with data to write
2760  *
2761  * This function does all the work needed for actually writing data to a
2762  * file. It does all basic checks, removes SUID from the file, updates
2763  * modification times and calls proper subroutines depending on whether we
2764  * do direct IO or a standard buffered write.
2765  *
2766  * It expects i_mutex to be grabbed unless we work on a block device or similar
2767  * object which does not need locking at all.
2768  *
2769  * This function does *not* take care of syncing data in case of O_SYNC write.
2770  * A caller has to handle it. This is mainly due to the fact that we want to
2771  * avoid syncing under i_mutex.
2772  */
2773 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
2774 {
2775         struct file *file = iocb->ki_filp;
2776         struct address_space * mapping = file->f_mapping;
2777         struct inode    *inode = mapping->host;
2778         ssize_t         written = 0;
2779         ssize_t         err;
2780         ssize_t         status;
2781
2782         /* We can write back this queue in page reclaim */
2783         current->backing_dev_info = inode_to_bdi(inode);
2784         err = file_remove_privs(file);
2785         if (err)
2786                 goto out;
2787
2788         err = file_update_time(file);
2789         if (err)
2790                 goto out;
2791
2792         if (iocb->ki_flags & IOCB_DIRECT) {
2793                 loff_t pos, endbyte;
2794
2795                 written = generic_file_direct_write(iocb, from);
2796                 /*
2797                  * If the write stopped short of completing, fall back to
2798                  * buffered writes.  Some filesystems do this for writes to
2799                  * holes, for example.  For DAX files, a buffered write will
2800                  * not succeed (even if it did, DAX does not handle dirty
2801                  * page-cache pages correctly).
2802                  */
2803                 if (written < 0 || !iov_iter_count(from) || IS_DAX(inode))
2804                         goto out;
2805
2806                 status = generic_perform_write(file, from, pos = iocb->ki_pos);
2807                 /*
2808                  * If generic_perform_write() returned a synchronous error
2809                  * then we want to return the number of bytes which were
2810                  * direct-written, or the error code if that was zero.  Note
2811                  * that this differs from normal direct-io semantics, which
2812                  * will return -EFOO even if some bytes were written.
2813                  */
2814                 if (unlikely(status < 0)) {
2815                         err = status;
2816                         goto out;
2817                 }
2818                 /*
2819                  * We need to ensure that the page cache pages are written to
2820                  * disk and invalidated to preserve the expected O_DIRECT
2821                  * semantics.
2822                  */
2823                 endbyte = pos + status - 1;
2824                 err = filemap_write_and_wait_range(mapping, pos, endbyte);
2825                 if (err == 0) {
2826                         iocb->ki_pos = endbyte + 1;
2827                         written += status;
2828                         invalidate_mapping_pages(mapping,
2829                                                  pos >> PAGE_SHIFT,
2830                                                  endbyte >> PAGE_SHIFT);
2831                 } else {
2832                         /*
2833                          * We don't know how much we wrote, so just return
2834                          * the number of bytes which were direct-written
2835                          */
2836                 }
2837         } else {
2838                 written = generic_perform_write(file, from, iocb->ki_pos);
2839                 if (likely(written > 0))
2840                         iocb->ki_pos += written;
2841         }
2842 out:
2843         current->backing_dev_info = NULL;
2844         return written ? written : err;
2845 }
2846 EXPORT_SYMBOL(__generic_file_write_iter);
2847
2848 /**
2849  * generic_file_write_iter - write data to a file
2850  * @iocb:       IO state structure
2851  * @from:       iov_iter with data to write
2852  *
2853  * This is a wrapper around __generic_file_write_iter() to be used by most
2854  * filesystems. It takes care of syncing the file in case of O_SYNC file
2855  * and acquires i_mutex as needed.
2856  */
2857 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
2858 {
2859         struct file *file = iocb->ki_filp;
2860         struct inode *inode = file->f_mapping->host;
2861         ssize_t ret;
2862
2863         inode_lock(inode);
2864         ret = generic_write_checks(iocb, from);
2865         if (ret > 0)
2866                 ret = __generic_file_write_iter(iocb, from);
2867         inode_unlock(inode);
2868
2869         if (ret > 0)
2870                 ret = generic_write_sync(iocb, ret);
2871         return ret;
2872 }
2873 EXPORT_SYMBOL(generic_file_write_iter);
2874
2875 /**
2876  * try_to_release_page() - release old fs-specific metadata on a page
2877  *
2878  * @page: the page which the kernel is trying to free
2879  * @gfp_mask: memory allocation flags (and I/O mode)
2880  *
2881  * The address_space is to try to release any data against the page
2882  * (presumably at page->private).  If the release was successful, return `1'.
2883  * Otherwise return zero.
2884  *
2885  * This may also be called if PG_fscache is set on a page, indicating that the
2886  * page is known to the local caching routines.
2887  *
2888  * The @gfp_mask argument specifies whether I/O may be performed to release
2889  * this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS).
2890  *
2891  */
2892 int try_to_release_page(struct page *page, gfp_t gfp_mask)
2893 {
2894         struct address_space * const mapping = page->mapping;
2895
2896         BUG_ON(!PageLocked(page));
2897         if (PageWriteback(page))
2898                 return 0;
2899
2900         if (mapping && mapping->a_ops->releasepage)
2901                 return mapping->a_ops->releasepage(page, gfp_mask);
2902         return try_to_free_buffers(page);
2903 }
2904
2905 EXPORT_SYMBOL(try_to_release_page);