69568388c699493ac694a960ca7c24b90b13e080
[platform/kernel/linux-rpi.git] / mm / filemap.c
1 /*
2  *      linux/mm/filemap.c
3  *
4  * Copyright (C) 1994-1999  Linus Torvalds
5  */
6
7 /*
8  * This file handles the generic file mmap semantics used by
9  * most "normal" filesystems (but you don't /have/ to use this:
10  * the NFS filesystem used to do this differently, for example)
11  */
12 #include <linux/export.h>
13 #include <linux/compiler.h>
14 #include <linux/dax.h>
15 #include <linux/fs.h>
16 #include <linux/uaccess.h>
17 #include <linux/capability.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/gfp.h>
20 #include <linux/mm.h>
21 #include <linux/swap.h>
22 #include <linux/mman.h>
23 #include <linux/pagemap.h>
24 #include <linux/file.h>
25 #include <linux/uio.h>
26 #include <linux/hash.h>
27 #include <linux/writeback.h>
28 #include <linux/backing-dev.h>
29 #include <linux/pagevec.h>
30 #include <linux/blkdev.h>
31 #include <linux/security.h>
32 #include <linux/cpuset.h>
33 #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
34 #include <linux/hugetlb.h>
35 #include <linux/memcontrol.h>
36 #include <linux/cleancache.h>
37 #include <linux/rmap.h>
38 #include "internal.h"
39
40 #define CREATE_TRACE_POINTS
41 #include <trace/events/filemap.h>
42
43 /*
44  * FIXME: remove all knowledge of the buffer layer from the core VM
45  */
46 #include <linux/buffer_head.h> /* for try_to_free_buffers */
47
48 #include <asm/mman.h>
49
50 /*
51  * Shared mappings implemented 30.11.1994. It's not fully working yet,
52  * though.
53  *
54  * Shared mappings now work. 15.8.1995  Bruno.
55  *
56  * finished 'unifying' the page and buffer cache and SMP-threaded the
57  * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
58  *
59  * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
60  */
61
62 /*
63  * Lock ordering:
64  *
65  *  ->i_mmap_rwsem              (truncate_pagecache)
66  *    ->private_lock            (__free_pte->__set_page_dirty_buffers)
67  *      ->swap_lock             (exclusive_swap_page, others)
68  *        ->mapping->tree_lock
69  *
70  *  ->i_mutex
71  *    ->i_mmap_rwsem            (truncate->unmap_mapping_range)
72  *
73  *  ->mmap_sem
74  *    ->i_mmap_rwsem
75  *      ->page_table_lock or pte_lock   (various, mainly in memory.c)
76  *        ->mapping->tree_lock  (arch-dependent flush_dcache_mmap_lock)
77  *
78  *  ->mmap_sem
79  *    ->lock_page               (access_process_vm)
80  *
81  *  ->i_mutex                   (generic_perform_write)
82  *    ->mmap_sem                (fault_in_pages_readable->do_page_fault)
83  *
84  *  bdi->wb.list_lock
85  *    sb_lock                   (fs/fs-writeback.c)
86  *    ->mapping->tree_lock      (__sync_single_inode)
87  *
88  *  ->i_mmap_rwsem
89  *    ->anon_vma.lock           (vma_adjust)
90  *
91  *  ->anon_vma.lock
92  *    ->page_table_lock or pte_lock     (anon_vma_prepare and various)
93  *
94  *  ->page_table_lock or pte_lock
95  *    ->swap_lock               (try_to_unmap_one)
96  *    ->private_lock            (try_to_unmap_one)
97  *    ->tree_lock               (try_to_unmap_one)
98  *    ->zone_lru_lock(zone)     (follow_page->mark_page_accessed)
99  *    ->zone_lru_lock(zone)     (check_pte_range->isolate_lru_page)
100  *    ->private_lock            (page_remove_rmap->set_page_dirty)
101  *    ->tree_lock               (page_remove_rmap->set_page_dirty)
102  *    bdi.wb->list_lock         (page_remove_rmap->set_page_dirty)
103  *    ->inode->i_lock           (page_remove_rmap->set_page_dirty)
104  *    ->memcg->move_lock        (page_remove_rmap->lock_page_memcg)
105  *    bdi.wb->list_lock         (zap_pte_range->set_page_dirty)
106  *    ->inode->i_lock           (zap_pte_range->set_page_dirty)
107  *    ->private_lock            (zap_pte_range->__set_page_dirty_buffers)
108  *
109  * ->i_mmap_rwsem
110  *   ->tasklist_lock            (memory_failure, collect_procs_ao)
111  */
112
113 static int page_cache_tree_insert(struct address_space *mapping,
114                                   struct page *page, void **shadowp)
115 {
116         struct radix_tree_node *node;
117         void **slot;
118         int error;
119
120         error = __radix_tree_create(&mapping->page_tree, page->index, 0,
121                                     &node, &slot);
122         if (error)
123                 return error;
124         if (*slot) {
125                 void *p;
126
127                 p = radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
128                 if (!radix_tree_exceptional_entry(p))
129                         return -EEXIST;
130
131                 mapping->nrexceptional--;
132                 if (!dax_mapping(mapping)) {
133                         if (shadowp)
134                                 *shadowp = p;
135                 } else {
136                         /* DAX can replace empty locked entry with a hole */
137                         WARN_ON_ONCE(p !=
138                                 dax_radix_locked_entry(0, RADIX_DAX_EMPTY));
139                         /* Wakeup waiters for exceptional entry lock */
140                         dax_wake_mapping_entry_waiter(mapping, page->index, p,
141                                                       false);
142                 }
143         }
144         __radix_tree_replace(&mapping->page_tree, node, slot, page,
145                              workingset_update_node, mapping);
146         mapping->nrpages++;
147         return 0;
148 }
149
150 static void page_cache_tree_delete(struct address_space *mapping,
151                                    struct page *page, void *shadow)
152 {
153         int i, nr;
154
155         /* hugetlb pages are represented by one entry in the radix tree */
156         nr = PageHuge(page) ? 1 : hpage_nr_pages(page);
157
158         VM_BUG_ON_PAGE(!PageLocked(page), page);
159         VM_BUG_ON_PAGE(PageTail(page), page);
160         VM_BUG_ON_PAGE(nr != 1 && shadow, page);
161
162         for (i = 0; i < nr; i++) {
163                 struct radix_tree_node *node;
164                 void **slot;
165
166                 __radix_tree_lookup(&mapping->page_tree, page->index + i,
167                                     &node, &slot);
168
169                 VM_BUG_ON_PAGE(!node && nr != 1, page);
170
171                 radix_tree_clear_tags(&mapping->page_tree, node, slot);
172                 __radix_tree_replace(&mapping->page_tree, node, slot, shadow,
173                                      workingset_update_node, mapping);
174         }
175
176         if (shadow) {
177                 mapping->nrexceptional += nr;
178                 /*
179                  * Make sure the nrexceptional update is committed before
180                  * the nrpages update so that final truncate racing
181                  * with reclaim does not see both counters 0 at the
182                  * same time and miss a shadow entry.
183                  */
184                 smp_wmb();
185         }
186         mapping->nrpages -= nr;
187 }
188
189 /*
190  * Delete a page from the page cache and free it. Caller has to make
191  * sure the page is locked and that nobody else uses it - or that usage
192  * is safe.  The caller must hold the mapping's tree_lock.
193  */
194 void __delete_from_page_cache(struct page *page, void *shadow)
195 {
196         struct address_space *mapping = page->mapping;
197         int nr = hpage_nr_pages(page);
198
199         trace_mm_filemap_delete_from_page_cache(page);
200         /*
201          * if we're uptodate, flush out into the cleancache, otherwise
202          * invalidate any existing cleancache entries.  We can't leave
203          * stale data around in the cleancache once our page is gone
204          */
205         if (PageUptodate(page) && PageMappedToDisk(page))
206                 cleancache_put_page(page);
207         else
208                 cleancache_invalidate_page(mapping, page);
209
210         VM_BUG_ON_PAGE(PageTail(page), page);
211         VM_BUG_ON_PAGE(page_mapped(page), page);
212         if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(page_mapped(page))) {
213                 int mapcount;
214
215                 pr_alert("BUG: Bad page cache in process %s  pfn:%05lx\n",
216                          current->comm, page_to_pfn(page));
217                 dump_page(page, "still mapped when deleted");
218                 dump_stack();
219                 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
220
221                 mapcount = page_mapcount(page);
222                 if (mapping_exiting(mapping) &&
223                     page_count(page) >= mapcount + 2) {
224                         /*
225                          * All vmas have already been torn down, so it's
226                          * a good bet that actually the page is unmapped,
227                          * and we'd prefer not to leak it: if we're wrong,
228                          * some other bad page check should catch it later.
229                          */
230                         page_mapcount_reset(page);
231                         page_ref_sub(page, mapcount);
232                 }
233         }
234
235         page_cache_tree_delete(mapping, page, shadow);
236
237         page->mapping = NULL;
238         /* Leave page->index set: truncation lookup relies upon it */
239
240         /* hugetlb pages do not participate in page cache accounting. */
241         if (!PageHuge(page))
242                 __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, -nr);
243         if (PageSwapBacked(page)) {
244                 __mod_node_page_state(page_pgdat(page), NR_SHMEM, -nr);
245                 if (PageTransHuge(page))
246                         __dec_node_page_state(page, NR_SHMEM_THPS);
247         } else {
248                 VM_BUG_ON_PAGE(PageTransHuge(page) && !PageHuge(page), page);
249         }
250
251         /*
252          * At this point page must be either written or cleaned by truncate.
253          * Dirty page here signals a bug and loss of unwritten data.
254          *
255          * This fixes dirty accounting after removing the page entirely but
256          * leaves PageDirty set: it has no effect for truncated page and
257          * anyway will be cleared before returning page into buddy allocator.
258          */
259         if (WARN_ON_ONCE(PageDirty(page)))
260                 account_page_cleaned(page, mapping, inode_to_wb(mapping->host));
261 }
262
263 /**
264  * delete_from_page_cache - delete page from page cache
265  * @page: the page which the kernel is trying to remove from page cache
266  *
267  * This must be called only on pages that have been verified to be in the page
268  * cache and locked.  It will never put the page into the free list, the caller
269  * has a reference on the page.
270  */
271 void delete_from_page_cache(struct page *page)
272 {
273         struct address_space *mapping = page_mapping(page);
274         unsigned long flags;
275         void (*freepage)(struct page *);
276
277         BUG_ON(!PageLocked(page));
278
279         freepage = mapping->a_ops->freepage;
280
281         spin_lock_irqsave(&mapping->tree_lock, flags);
282         __delete_from_page_cache(page, NULL);
283         spin_unlock_irqrestore(&mapping->tree_lock, flags);
284
285         if (freepage)
286                 freepage(page);
287
288         if (PageTransHuge(page) && !PageHuge(page)) {
289                 page_ref_sub(page, HPAGE_PMD_NR);
290                 VM_BUG_ON_PAGE(page_count(page) <= 0, page);
291         } else {
292                 put_page(page);
293         }
294 }
295 EXPORT_SYMBOL(delete_from_page_cache);
296
297 int filemap_check_errors(struct address_space *mapping)
298 {
299         int ret = 0;
300         /* Check for outstanding write errors */
301         if (test_bit(AS_ENOSPC, &mapping->flags) &&
302             test_and_clear_bit(AS_ENOSPC, &mapping->flags))
303                 ret = -ENOSPC;
304         if (test_bit(AS_EIO, &mapping->flags) &&
305             test_and_clear_bit(AS_EIO, &mapping->flags))
306                 ret = -EIO;
307         return ret;
308 }
309 EXPORT_SYMBOL(filemap_check_errors);
310
311 /**
312  * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
313  * @mapping:    address space structure to write
314  * @start:      offset in bytes where the range starts
315  * @end:        offset in bytes where the range ends (inclusive)
316  * @sync_mode:  enable synchronous operation
317  *
318  * Start writeback against all of a mapping's dirty pages that lie
319  * within the byte offsets <start, end> inclusive.
320  *
321  * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
322  * opposed to a regular memory cleansing writeback.  The difference between
323  * these two operations is that if a dirty page/buffer is encountered, it must
324  * be waited upon, and not just skipped over.
325  */
326 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
327                                 loff_t end, int sync_mode)
328 {
329         int ret;
330         struct writeback_control wbc = {
331                 .sync_mode = sync_mode,
332                 .nr_to_write = LONG_MAX,
333                 .range_start = start,
334                 .range_end = end,
335         };
336
337         if (!mapping_cap_writeback_dirty(mapping))
338                 return 0;
339
340         wbc_attach_fdatawrite_inode(&wbc, mapping->host);
341         ret = do_writepages(mapping, &wbc);
342         wbc_detach_inode(&wbc);
343         return ret;
344 }
345
346 static inline int __filemap_fdatawrite(struct address_space *mapping,
347         int sync_mode)
348 {
349         return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
350 }
351
352 int filemap_fdatawrite(struct address_space *mapping)
353 {
354         return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
355 }
356 EXPORT_SYMBOL(filemap_fdatawrite);
357
358 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
359                                 loff_t end)
360 {
361         return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
362 }
363 EXPORT_SYMBOL(filemap_fdatawrite_range);
364
365 /**
366  * filemap_flush - mostly a non-blocking flush
367  * @mapping:    target address_space
368  *
369  * This is a mostly non-blocking flush.  Not suitable for data-integrity
370  * purposes - I/O may not be started against all dirty pages.
371  */
372 int filemap_flush(struct address_space *mapping)
373 {
374         return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
375 }
376 EXPORT_SYMBOL(filemap_flush);
377
378 static int __filemap_fdatawait_range(struct address_space *mapping,
379                                      loff_t start_byte, loff_t end_byte)
380 {
381         pgoff_t index = start_byte >> PAGE_SHIFT;
382         pgoff_t end = end_byte >> PAGE_SHIFT;
383         struct pagevec pvec;
384         int nr_pages;
385         int ret = 0;
386
387         if (end_byte < start_byte)
388                 goto out;
389
390         pagevec_init(&pvec, 0);
391         while ((index <= end) &&
392                         (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
393                         PAGECACHE_TAG_WRITEBACK,
394                         min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
395                 unsigned i;
396
397                 for (i = 0; i < nr_pages; i++) {
398                         struct page *page = pvec.pages[i];
399
400                         /* until radix tree lookup accepts end_index */
401                         if (page->index > end)
402                                 continue;
403
404                         wait_on_page_writeback(page);
405                         if (TestClearPageError(page))
406                                 ret = -EIO;
407                 }
408                 pagevec_release(&pvec);
409                 cond_resched();
410         }
411 out:
412         return ret;
413 }
414
415 /**
416  * filemap_fdatawait_range - wait for writeback to complete
417  * @mapping:            address space structure to wait for
418  * @start_byte:         offset in bytes where the range starts
419  * @end_byte:           offset in bytes where the range ends (inclusive)
420  *
421  * Walk the list of under-writeback pages of the given address space
422  * in the given range and wait for all of them.  Check error status of
423  * the address space and return it.
424  *
425  * Since the error status of the address space is cleared by this function,
426  * callers are responsible for checking the return value and handling and/or
427  * reporting the error.
428  */
429 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
430                             loff_t end_byte)
431 {
432         int ret, ret2;
433
434         ret = __filemap_fdatawait_range(mapping, start_byte, end_byte);
435         ret2 = filemap_check_errors(mapping);
436         if (!ret)
437                 ret = ret2;
438
439         return ret;
440 }
441 EXPORT_SYMBOL(filemap_fdatawait_range);
442
443 /**
444  * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
445  * @mapping: address space structure to wait for
446  *
447  * Walk the list of under-writeback pages of the given address space
448  * and wait for all of them.  Unlike filemap_fdatawait(), this function
449  * does not clear error status of the address space.
450  *
451  * Use this function if callers don't handle errors themselves.  Expected
452  * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
453  * fsfreeze(8)
454  */
455 void filemap_fdatawait_keep_errors(struct address_space *mapping)
456 {
457         loff_t i_size = i_size_read(mapping->host);
458
459         if (i_size == 0)
460                 return;
461
462         __filemap_fdatawait_range(mapping, 0, i_size - 1);
463 }
464
465 /**
466  * filemap_fdatawait - wait for all under-writeback pages to complete
467  * @mapping: address space structure to wait for
468  *
469  * Walk the list of under-writeback pages of the given address space
470  * and wait for all of them.  Check error status of the address space
471  * and return it.
472  *
473  * Since the error status of the address space is cleared by this function,
474  * callers are responsible for checking the return value and handling and/or
475  * reporting the error.
476  */
477 int filemap_fdatawait(struct address_space *mapping)
478 {
479         loff_t i_size = i_size_read(mapping->host);
480
481         if (i_size == 0)
482                 return 0;
483
484         return filemap_fdatawait_range(mapping, 0, i_size - 1);
485 }
486 EXPORT_SYMBOL(filemap_fdatawait);
487
488 int filemap_write_and_wait(struct address_space *mapping)
489 {
490         int err = 0;
491
492         if ((!dax_mapping(mapping) && mapping->nrpages) ||
493             (dax_mapping(mapping) && mapping->nrexceptional)) {
494                 err = filemap_fdatawrite(mapping);
495                 /*
496                  * Even if the above returned error, the pages may be
497                  * written partially (e.g. -ENOSPC), so we wait for it.
498                  * But the -EIO is special case, it may indicate the worst
499                  * thing (e.g. bug) happened, so we avoid waiting for it.
500                  */
501                 if (err != -EIO) {
502                         int err2 = filemap_fdatawait(mapping);
503                         if (!err)
504                                 err = err2;
505                 }
506         } else {
507                 err = filemap_check_errors(mapping);
508         }
509         return err;
510 }
511 EXPORT_SYMBOL(filemap_write_and_wait);
512
513 /**
514  * filemap_write_and_wait_range - write out & wait on a file range
515  * @mapping:    the address_space for the pages
516  * @lstart:     offset in bytes where the range starts
517  * @lend:       offset in bytes where the range ends (inclusive)
518  *
519  * Write out and wait upon file offsets lstart->lend, inclusive.
520  *
521  * Note that `lend' is inclusive (describes the last byte to be written) so
522  * that this function can be used to write to the very end-of-file (end = -1).
523  */
524 int filemap_write_and_wait_range(struct address_space *mapping,
525                                  loff_t lstart, loff_t lend)
526 {
527         int err = 0;
528
529         if ((!dax_mapping(mapping) && mapping->nrpages) ||
530             (dax_mapping(mapping) && mapping->nrexceptional)) {
531                 err = __filemap_fdatawrite_range(mapping, lstart, lend,
532                                                  WB_SYNC_ALL);
533                 /* See comment of filemap_write_and_wait() */
534                 if (err != -EIO) {
535                         int err2 = filemap_fdatawait_range(mapping,
536                                                 lstart, lend);
537                         if (!err)
538                                 err = err2;
539                 }
540         } else {
541                 err = filemap_check_errors(mapping);
542         }
543         return err;
544 }
545 EXPORT_SYMBOL(filemap_write_and_wait_range);
546
547 /**
548  * replace_page_cache_page - replace a pagecache page with a new one
549  * @old:        page to be replaced
550  * @new:        page to replace with
551  * @gfp_mask:   allocation mode
552  *
553  * This function replaces a page in the pagecache with a new one.  On
554  * success it acquires the pagecache reference for the new page and
555  * drops it for the old page.  Both the old and new pages must be
556  * locked.  This function does not add the new page to the LRU, the
557  * caller must do that.
558  *
559  * The remove + add is atomic.  The only way this function can fail is
560  * memory allocation failure.
561  */
562 int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
563 {
564         int error;
565
566         VM_BUG_ON_PAGE(!PageLocked(old), old);
567         VM_BUG_ON_PAGE(!PageLocked(new), new);
568         VM_BUG_ON_PAGE(new->mapping, new);
569
570         error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
571         if (!error) {
572                 struct address_space *mapping = old->mapping;
573                 void (*freepage)(struct page *);
574                 unsigned long flags;
575
576                 pgoff_t offset = old->index;
577                 freepage = mapping->a_ops->freepage;
578
579                 get_page(new);
580                 new->mapping = mapping;
581                 new->index = offset;
582
583                 spin_lock_irqsave(&mapping->tree_lock, flags);
584                 __delete_from_page_cache(old, NULL);
585                 error = page_cache_tree_insert(mapping, new, NULL);
586                 BUG_ON(error);
587
588                 /*
589                  * hugetlb pages do not participate in page cache accounting.
590                  */
591                 if (!PageHuge(new))
592                         __inc_node_page_state(new, NR_FILE_PAGES);
593                 if (PageSwapBacked(new))
594                         __inc_node_page_state(new, NR_SHMEM);
595                 spin_unlock_irqrestore(&mapping->tree_lock, flags);
596                 mem_cgroup_migrate(old, new);
597                 radix_tree_preload_end();
598                 if (freepage)
599                         freepage(old);
600                 put_page(old);
601         }
602
603         return error;
604 }
605 EXPORT_SYMBOL_GPL(replace_page_cache_page);
606
607 static int __add_to_page_cache_locked(struct page *page,
608                                       struct address_space *mapping,
609                                       pgoff_t offset, gfp_t gfp_mask,
610                                       void **shadowp)
611 {
612         int huge = PageHuge(page);
613         struct mem_cgroup *memcg;
614         int error;
615
616         VM_BUG_ON_PAGE(!PageLocked(page), page);
617         VM_BUG_ON_PAGE(PageSwapBacked(page), page);
618
619         if (!huge) {
620                 error = mem_cgroup_try_charge(page, current->mm,
621                                               gfp_mask, &memcg, false);
622                 if (error)
623                         return error;
624         }
625
626         error = radix_tree_maybe_preload(gfp_mask & ~__GFP_HIGHMEM);
627         if (error) {
628                 if (!huge)
629                         mem_cgroup_cancel_charge(page, memcg, false);
630                 return error;
631         }
632
633         get_page(page);
634         page->mapping = mapping;
635         page->index = offset;
636
637         spin_lock_irq(&mapping->tree_lock);
638         error = page_cache_tree_insert(mapping, page, shadowp);
639         radix_tree_preload_end();
640         if (unlikely(error))
641                 goto err_insert;
642
643         /* hugetlb pages do not participate in page cache accounting. */
644         if (!huge)
645                 __inc_node_page_state(page, NR_FILE_PAGES);
646         spin_unlock_irq(&mapping->tree_lock);
647         if (!huge)
648                 mem_cgroup_commit_charge(page, memcg, false, false);
649         trace_mm_filemap_add_to_page_cache(page);
650         return 0;
651 err_insert:
652         page->mapping = NULL;
653         /* Leave page->index set: truncation relies upon it */
654         spin_unlock_irq(&mapping->tree_lock);
655         if (!huge)
656                 mem_cgroup_cancel_charge(page, memcg, false);
657         put_page(page);
658         return error;
659 }
660
661 /**
662  * add_to_page_cache_locked - add a locked page to the pagecache
663  * @page:       page to add
664  * @mapping:    the page's address_space
665  * @offset:     page index
666  * @gfp_mask:   page allocation mode
667  *
668  * This function is used to add a page to the pagecache. It must be locked.
669  * This function does not add the page to the LRU.  The caller must do that.
670  */
671 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
672                 pgoff_t offset, gfp_t gfp_mask)
673 {
674         return __add_to_page_cache_locked(page, mapping, offset,
675                                           gfp_mask, NULL);
676 }
677 EXPORT_SYMBOL(add_to_page_cache_locked);
678
679 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
680                                 pgoff_t offset, gfp_t gfp_mask)
681 {
682         void *shadow = NULL;
683         int ret;
684
685         __SetPageLocked(page);
686         ret = __add_to_page_cache_locked(page, mapping, offset,
687                                          gfp_mask, &shadow);
688         if (unlikely(ret))
689                 __ClearPageLocked(page);
690         else {
691                 /*
692                  * The page might have been evicted from cache only
693                  * recently, in which case it should be activated like
694                  * any other repeatedly accessed page.
695                  * The exception is pages getting rewritten; evicting other
696                  * data from the working set, only to cache data that will
697                  * get overwritten with something else, is a waste of memory.
698                  */
699                 if (!(gfp_mask & __GFP_WRITE) &&
700                     shadow && workingset_refault(shadow)) {
701                         SetPageActive(page);
702                         workingset_activation(page);
703                 } else
704                         ClearPageActive(page);
705                 lru_cache_add(page);
706         }
707         return ret;
708 }
709 EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
710
711 #ifdef CONFIG_NUMA
712 struct page *__page_cache_alloc(gfp_t gfp)
713 {
714         int n;
715         struct page *page;
716
717         if (cpuset_do_page_mem_spread()) {
718                 unsigned int cpuset_mems_cookie;
719                 do {
720                         cpuset_mems_cookie = read_mems_allowed_begin();
721                         n = cpuset_mem_spread_node();
722                         page = __alloc_pages_node(n, gfp, 0);
723                 } while (!page && read_mems_allowed_retry(cpuset_mems_cookie));
724
725                 return page;
726         }
727         return alloc_pages(gfp, 0);
728 }
729 EXPORT_SYMBOL(__page_cache_alloc);
730 #endif
731
732 /*
733  * In order to wait for pages to become available there must be
734  * waitqueues associated with pages. By using a hash table of
735  * waitqueues where the bucket discipline is to maintain all
736  * waiters on the same queue and wake all when any of the pages
737  * become available, and for the woken contexts to check to be
738  * sure the appropriate page became available, this saves space
739  * at a cost of "thundering herd" phenomena during rare hash
740  * collisions.
741  */
742 wait_queue_head_t *page_waitqueue(struct page *page)
743 {
744         return bit_waitqueue(page, 0);
745 }
746 EXPORT_SYMBOL(page_waitqueue);
747
748 void wait_on_page_bit(struct page *page, int bit_nr)
749 {
750         DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
751
752         if (test_bit(bit_nr, &page->flags))
753                 __wait_on_bit(page_waitqueue(page), &wait, bit_wait_io,
754                                                         TASK_UNINTERRUPTIBLE);
755 }
756 EXPORT_SYMBOL(wait_on_page_bit);
757
758 int wait_on_page_bit_killable(struct page *page, int bit_nr)
759 {
760         DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
761
762         if (!test_bit(bit_nr, &page->flags))
763                 return 0;
764
765         return __wait_on_bit(page_waitqueue(page), &wait,
766                              bit_wait_io, TASK_KILLABLE);
767 }
768
769 int wait_on_page_bit_killable_timeout(struct page *page,
770                                        int bit_nr, unsigned long timeout)
771 {
772         DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
773
774         wait.key.timeout = jiffies + timeout;
775         if (!test_bit(bit_nr, &page->flags))
776                 return 0;
777         return __wait_on_bit(page_waitqueue(page), &wait,
778                              bit_wait_io_timeout, TASK_KILLABLE);
779 }
780 EXPORT_SYMBOL_GPL(wait_on_page_bit_killable_timeout);
781
782 /**
783  * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
784  * @page: Page defining the wait queue of interest
785  * @waiter: Waiter to add to the queue
786  *
787  * Add an arbitrary @waiter to the wait queue for the nominated @page.
788  */
789 void add_page_wait_queue(struct page *page, wait_queue_t *waiter)
790 {
791         wait_queue_head_t *q = page_waitqueue(page);
792         unsigned long flags;
793
794         spin_lock_irqsave(&q->lock, flags);
795         __add_wait_queue(q, waiter);
796         spin_unlock_irqrestore(&q->lock, flags);
797 }
798 EXPORT_SYMBOL_GPL(add_page_wait_queue);
799
800 /**
801  * unlock_page - unlock a locked page
802  * @page: the page
803  *
804  * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
805  * Also wakes sleepers in wait_on_page_writeback() because the wakeup
806  * mechanism between PageLocked pages and PageWriteback pages is shared.
807  * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
808  *
809  * The mb is necessary to enforce ordering between the clear_bit and the read
810  * of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()).
811  */
812 void unlock_page(struct page *page)
813 {
814         page = compound_head(page);
815         VM_BUG_ON_PAGE(!PageLocked(page), page);
816         clear_bit_unlock(PG_locked, &page->flags);
817         smp_mb__after_atomic();
818         wake_up_page(page, PG_locked);
819 }
820 EXPORT_SYMBOL(unlock_page);
821
822 /**
823  * end_page_writeback - end writeback against a page
824  * @page: the page
825  */
826 void end_page_writeback(struct page *page)
827 {
828         /*
829          * TestClearPageReclaim could be used here but it is an atomic
830          * operation and overkill in this particular case. Failing to
831          * shuffle a page marked for immediate reclaim is too mild to
832          * justify taking an atomic operation penalty at the end of
833          * ever page writeback.
834          */
835         if (PageReclaim(page)) {
836                 ClearPageReclaim(page);
837                 rotate_reclaimable_page(page);
838         }
839
840         if (!test_clear_page_writeback(page))
841                 BUG();
842
843         smp_mb__after_atomic();
844         wake_up_page(page, PG_writeback);
845 }
846 EXPORT_SYMBOL(end_page_writeback);
847
848 /*
849  * After completing I/O on a page, call this routine to update the page
850  * flags appropriately
851  */
852 void page_endio(struct page *page, bool is_write, int err)
853 {
854         if (!is_write) {
855                 if (!err) {
856                         SetPageUptodate(page);
857                 } else {
858                         ClearPageUptodate(page);
859                         SetPageError(page);
860                 }
861                 unlock_page(page);
862         } else {
863                 if (err) {
864                         SetPageError(page);
865                         if (page->mapping)
866                                 mapping_set_error(page->mapping, err);
867                 }
868                 end_page_writeback(page);
869         }
870 }
871 EXPORT_SYMBOL_GPL(page_endio);
872
873 /**
874  * __lock_page - get a lock on the page, assuming we need to sleep to get it
875  * @page: the page to lock
876  */
877 void __lock_page(struct page *page)
878 {
879         struct page *page_head = compound_head(page);
880         DEFINE_WAIT_BIT(wait, &page_head->flags, PG_locked);
881
882         __wait_on_bit_lock(page_waitqueue(page_head), &wait, bit_wait_io,
883                                                         TASK_UNINTERRUPTIBLE);
884 }
885 EXPORT_SYMBOL(__lock_page);
886
887 int __lock_page_killable(struct page *page)
888 {
889         struct page *page_head = compound_head(page);
890         DEFINE_WAIT_BIT(wait, &page_head->flags, PG_locked);
891
892         return __wait_on_bit_lock(page_waitqueue(page_head), &wait,
893                                         bit_wait_io, TASK_KILLABLE);
894 }
895 EXPORT_SYMBOL_GPL(__lock_page_killable);
896
897 /*
898  * Return values:
899  * 1 - page is locked; mmap_sem is still held.
900  * 0 - page is not locked.
901  *     mmap_sem has been released (up_read()), unless flags had both
902  *     FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
903  *     which case mmap_sem is still held.
904  *
905  * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1
906  * with the page locked and the mmap_sem unperturbed.
907  */
908 int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
909                          unsigned int flags)
910 {
911         if (flags & FAULT_FLAG_ALLOW_RETRY) {
912                 /*
913                  * CAUTION! In this case, mmap_sem is not released
914                  * even though return 0.
915                  */
916                 if (flags & FAULT_FLAG_RETRY_NOWAIT)
917                         return 0;
918
919                 up_read(&mm->mmap_sem);
920                 if (flags & FAULT_FLAG_KILLABLE)
921                         wait_on_page_locked_killable(page);
922                 else
923                         wait_on_page_locked(page);
924                 return 0;
925         } else {
926                 if (flags & FAULT_FLAG_KILLABLE) {
927                         int ret;
928
929                         ret = __lock_page_killable(page);
930                         if (ret) {
931                                 up_read(&mm->mmap_sem);
932                                 return 0;
933                         }
934                 } else
935                         __lock_page(page);
936                 return 1;
937         }
938 }
939
940 /**
941  * page_cache_next_hole - find the next hole (not-present entry)
942  * @mapping: mapping
943  * @index: index
944  * @max_scan: maximum range to search
945  *
946  * Search the set [index, min(index+max_scan-1, MAX_INDEX)] for the
947  * lowest indexed hole.
948  *
949  * Returns: the index of the hole if found, otherwise returns an index
950  * outside of the set specified (in which case 'return - index >=
951  * max_scan' will be true). In rare cases of index wrap-around, 0 will
952  * be returned.
953  *
954  * page_cache_next_hole may be called under rcu_read_lock. However,
955  * like radix_tree_gang_lookup, this will not atomically search a
956  * snapshot of the tree at a single point in time. For example, if a
957  * hole is created at index 5, then subsequently a hole is created at
958  * index 10, page_cache_next_hole covering both indexes may return 10
959  * if called under rcu_read_lock.
960  */
961 pgoff_t page_cache_next_hole(struct address_space *mapping,
962                              pgoff_t index, unsigned long max_scan)
963 {
964         unsigned long i;
965
966         for (i = 0; i < max_scan; i++) {
967                 struct page *page;
968
969                 page = radix_tree_lookup(&mapping->page_tree, index);
970                 if (!page || radix_tree_exceptional_entry(page))
971                         break;
972                 index++;
973                 if (index == 0)
974                         break;
975         }
976
977         return index;
978 }
979 EXPORT_SYMBOL(page_cache_next_hole);
980
981 /**
982  * page_cache_prev_hole - find the prev hole (not-present entry)
983  * @mapping: mapping
984  * @index: index
985  * @max_scan: maximum range to search
986  *
987  * Search backwards in the range [max(index-max_scan+1, 0), index] for
988  * the first hole.
989  *
990  * Returns: the index of the hole if found, otherwise returns an index
991  * outside of the set specified (in which case 'index - return >=
992  * max_scan' will be true). In rare cases of wrap-around, ULONG_MAX
993  * will be returned.
994  *
995  * page_cache_prev_hole may be called under rcu_read_lock. However,
996  * like radix_tree_gang_lookup, this will not atomically search a
997  * snapshot of the tree at a single point in time. For example, if a
998  * hole is created at index 10, then subsequently a hole is created at
999  * index 5, page_cache_prev_hole covering both indexes may return 5 if
1000  * called under rcu_read_lock.
1001  */
1002 pgoff_t page_cache_prev_hole(struct address_space *mapping,
1003                              pgoff_t index, unsigned long max_scan)
1004 {
1005         unsigned long i;
1006
1007         for (i = 0; i < max_scan; i++) {
1008                 struct page *page;
1009
1010                 page = radix_tree_lookup(&mapping->page_tree, index);
1011                 if (!page || radix_tree_exceptional_entry(page))
1012                         break;
1013                 index--;
1014                 if (index == ULONG_MAX)
1015                         break;
1016         }
1017
1018         return index;
1019 }
1020 EXPORT_SYMBOL(page_cache_prev_hole);
1021
1022 /**
1023  * find_get_entry - find and get a page cache entry
1024  * @mapping: the address_space to search
1025  * @offset: the page cache index
1026  *
1027  * Looks up the page cache slot at @mapping & @offset.  If there is a
1028  * page cache page, it is returned with an increased refcount.
1029  *
1030  * If the slot holds a shadow entry of a previously evicted page, or a
1031  * swap entry from shmem/tmpfs, it is returned.
1032  *
1033  * Otherwise, %NULL is returned.
1034  */
1035 struct page *find_get_entry(struct address_space *mapping, pgoff_t offset)
1036 {
1037         void **pagep;
1038         struct page *head, *page;
1039
1040         rcu_read_lock();
1041 repeat:
1042         page = NULL;
1043         pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
1044         if (pagep) {
1045                 page = radix_tree_deref_slot(pagep);
1046                 if (unlikely(!page))
1047                         goto out;
1048                 if (radix_tree_exception(page)) {
1049                         if (radix_tree_deref_retry(page))
1050                                 goto repeat;
1051                         /*
1052                          * A shadow entry of a recently evicted page,
1053                          * or a swap entry from shmem/tmpfs.  Return
1054                          * it without attempting to raise page count.
1055                          */
1056                         goto out;
1057                 }
1058
1059                 head = compound_head(page);
1060                 if (!page_cache_get_speculative(head))
1061                         goto repeat;
1062
1063                 /* The page was split under us? */
1064                 if (compound_head(page) != head) {
1065                         put_page(head);
1066                         goto repeat;
1067                 }
1068
1069                 /*
1070                  * Has the page moved?
1071                  * This is part of the lockless pagecache protocol. See
1072                  * include/linux/pagemap.h for details.
1073                  */
1074                 if (unlikely(page != *pagep)) {
1075                         put_page(head);
1076                         goto repeat;
1077                 }
1078         }
1079 out:
1080         rcu_read_unlock();
1081
1082         return page;
1083 }
1084 EXPORT_SYMBOL(find_get_entry);
1085
1086 /**
1087  * find_lock_entry - locate, pin and lock a page cache entry
1088  * @mapping: the address_space to search
1089  * @offset: the page cache index
1090  *
1091  * Looks up the page cache slot at @mapping & @offset.  If there is a
1092  * page cache page, it is returned locked and with an increased
1093  * refcount.
1094  *
1095  * If the slot holds a shadow entry of a previously evicted page, or a
1096  * swap entry from shmem/tmpfs, it is returned.
1097  *
1098  * Otherwise, %NULL is returned.
1099  *
1100  * find_lock_entry() may sleep.
1101  */
1102 struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset)
1103 {
1104         struct page *page;
1105
1106 repeat:
1107         page = find_get_entry(mapping, offset);
1108         if (page && !radix_tree_exception(page)) {
1109                 lock_page(page);
1110                 /* Has the page been truncated? */
1111                 if (unlikely(page_mapping(page) != mapping)) {
1112                         unlock_page(page);
1113                         put_page(page);
1114                         goto repeat;
1115                 }
1116                 VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page);
1117         }
1118         return page;
1119 }
1120 EXPORT_SYMBOL(find_lock_entry);
1121
1122 /**
1123  * pagecache_get_page - find and get a page reference
1124  * @mapping: the address_space to search
1125  * @offset: the page index
1126  * @fgp_flags: PCG flags
1127  * @gfp_mask: gfp mask to use for the page cache data page allocation
1128  *
1129  * Looks up the page cache slot at @mapping & @offset.
1130  *
1131  * PCG flags modify how the page is returned.
1132  *
1133  * FGP_ACCESSED: the page will be marked accessed
1134  * FGP_LOCK: Page is return locked
1135  * FGP_CREAT: If page is not present then a new page is allocated using
1136  *              @gfp_mask and added to the page cache and the VM's LRU
1137  *              list. The page is returned locked and with an increased
1138  *              refcount. Otherwise, %NULL is returned.
1139  *
1140  * If FGP_LOCK or FGP_CREAT are specified then the function may sleep even
1141  * if the GFP flags specified for FGP_CREAT are atomic.
1142  *
1143  * If there is a page cache page, it is returned with an increased refcount.
1144  */
1145 struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset,
1146         int fgp_flags, gfp_t gfp_mask)
1147 {
1148         struct page *page;
1149
1150 repeat:
1151         page = find_get_entry(mapping, offset);
1152         if (radix_tree_exceptional_entry(page))
1153                 page = NULL;
1154         if (!page)
1155                 goto no_page;
1156
1157         if (fgp_flags & FGP_LOCK) {
1158                 if (fgp_flags & FGP_NOWAIT) {
1159                         if (!trylock_page(page)) {
1160                                 put_page(page);
1161                                 return NULL;
1162                         }
1163                 } else {
1164                         lock_page(page);
1165                 }
1166
1167                 /* Has the page been truncated? */
1168                 if (unlikely(page->mapping != mapping)) {
1169                         unlock_page(page);
1170                         put_page(page);
1171                         goto repeat;
1172                 }
1173                 VM_BUG_ON_PAGE(page->index != offset, page);
1174         }
1175
1176         if (page && (fgp_flags & FGP_ACCESSED))
1177                 mark_page_accessed(page);
1178
1179 no_page:
1180         if (!page && (fgp_flags & FGP_CREAT)) {
1181                 int err;
1182                 if ((fgp_flags & FGP_WRITE) && mapping_cap_account_dirty(mapping))
1183                         gfp_mask |= __GFP_WRITE;
1184                 if (fgp_flags & FGP_NOFS)
1185                         gfp_mask &= ~__GFP_FS;
1186
1187                 page = __page_cache_alloc(gfp_mask);
1188                 if (!page)
1189                         return NULL;
1190
1191                 if (WARN_ON_ONCE(!(fgp_flags & FGP_LOCK)))
1192                         fgp_flags |= FGP_LOCK;
1193
1194                 /* Init accessed so avoid atomic mark_page_accessed later */
1195                 if (fgp_flags & FGP_ACCESSED)
1196                         __SetPageReferenced(page);
1197
1198                 err = add_to_page_cache_lru(page, mapping, offset,
1199                                 gfp_mask & GFP_RECLAIM_MASK);
1200                 if (unlikely(err)) {
1201                         put_page(page);
1202                         page = NULL;
1203                         if (err == -EEXIST)
1204                                 goto repeat;
1205                 }
1206         }
1207
1208         return page;
1209 }
1210 EXPORT_SYMBOL(pagecache_get_page);
1211
1212 /**
1213  * find_get_entries - gang pagecache lookup
1214  * @mapping:    The address_space to search
1215  * @start:      The starting page cache index
1216  * @nr_entries: The maximum number of entries
1217  * @entries:    Where the resulting entries are placed
1218  * @indices:    The cache indices corresponding to the entries in @entries
1219  *
1220  * find_get_entries() will search for and return a group of up to
1221  * @nr_entries entries in the mapping.  The entries are placed at
1222  * @entries.  find_get_entries() takes a reference against any actual
1223  * pages it returns.
1224  *
1225  * The search returns a group of mapping-contiguous page cache entries
1226  * with ascending indexes.  There may be holes in the indices due to
1227  * not-present pages.
1228  *
1229  * Any shadow entries of evicted pages, or swap entries from
1230  * shmem/tmpfs, are included in the returned array.
1231  *
1232  * find_get_entries() returns the number of pages and shadow entries
1233  * which were found.
1234  */
1235 unsigned find_get_entries(struct address_space *mapping,
1236                           pgoff_t start, unsigned int nr_entries,
1237                           struct page **entries, pgoff_t *indices)
1238 {
1239         void **slot;
1240         unsigned int ret = 0;
1241         struct radix_tree_iter iter;
1242
1243         if (!nr_entries)
1244                 return 0;
1245
1246         rcu_read_lock();
1247         radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1248                 struct page *head, *page;
1249 repeat:
1250                 page = radix_tree_deref_slot(slot);
1251                 if (unlikely(!page))
1252                         continue;
1253                 if (radix_tree_exception(page)) {
1254                         if (radix_tree_deref_retry(page)) {
1255                                 slot = radix_tree_iter_retry(&iter);
1256                                 continue;
1257                         }
1258                         /*
1259                          * A shadow entry of a recently evicted page, a swap
1260                          * entry from shmem/tmpfs or a DAX entry.  Return it
1261                          * without attempting to raise page count.
1262                          */
1263                         goto export;
1264                 }
1265
1266                 head = compound_head(page);
1267                 if (!page_cache_get_speculative(head))
1268                         goto repeat;
1269
1270                 /* The page was split under us? */
1271                 if (compound_head(page) != head) {
1272                         put_page(head);
1273                         goto repeat;
1274                 }
1275
1276                 /* Has the page moved? */
1277                 if (unlikely(page != *slot)) {
1278                         put_page(head);
1279                         goto repeat;
1280                 }
1281 export:
1282                 indices[ret] = iter.index;
1283                 entries[ret] = page;
1284                 if (++ret == nr_entries)
1285                         break;
1286         }
1287         rcu_read_unlock();
1288         return ret;
1289 }
1290
1291 /**
1292  * find_get_pages - gang pagecache lookup
1293  * @mapping:    The address_space to search
1294  * @start:      The starting page index
1295  * @nr_pages:   The maximum number of pages
1296  * @pages:      Where the resulting pages are placed
1297  *
1298  * find_get_pages() will search for and return a group of up to
1299  * @nr_pages pages in the mapping.  The pages are placed at @pages.
1300  * find_get_pages() takes a reference against the returned pages.
1301  *
1302  * The search returns a group of mapping-contiguous pages with ascending
1303  * indexes.  There may be holes in the indices due to not-present pages.
1304  *
1305  * find_get_pages() returns the number of pages which were found.
1306  */
1307 unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
1308                             unsigned int nr_pages, struct page **pages)
1309 {
1310         struct radix_tree_iter iter;
1311         void **slot;
1312         unsigned ret = 0;
1313
1314         if (unlikely(!nr_pages))
1315                 return 0;
1316
1317         rcu_read_lock();
1318         radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1319                 struct page *head, *page;
1320 repeat:
1321                 page = radix_tree_deref_slot(slot);
1322                 if (unlikely(!page))
1323                         continue;
1324
1325                 if (radix_tree_exception(page)) {
1326                         if (radix_tree_deref_retry(page)) {
1327                                 slot = radix_tree_iter_retry(&iter);
1328                                 continue;
1329                         }
1330                         /*
1331                          * A shadow entry of a recently evicted page,
1332                          * or a swap entry from shmem/tmpfs.  Skip
1333                          * over it.
1334                          */
1335                         continue;
1336                 }
1337
1338                 head = compound_head(page);
1339                 if (!page_cache_get_speculative(head))
1340                         goto repeat;
1341
1342                 /* The page was split under us? */
1343                 if (compound_head(page) != head) {
1344                         put_page(head);
1345                         goto repeat;
1346                 }
1347
1348                 /* Has the page moved? */
1349                 if (unlikely(page != *slot)) {
1350                         put_page(head);
1351                         goto repeat;
1352                 }
1353
1354                 pages[ret] = page;
1355                 if (++ret == nr_pages)
1356                         break;
1357         }
1358
1359         rcu_read_unlock();
1360         return ret;
1361 }
1362
1363 /**
1364  * find_get_pages_contig - gang contiguous pagecache lookup
1365  * @mapping:    The address_space to search
1366  * @index:      The starting page index
1367  * @nr_pages:   The maximum number of pages
1368  * @pages:      Where the resulting pages are placed
1369  *
1370  * find_get_pages_contig() works exactly like find_get_pages(), except
1371  * that the returned number of pages are guaranteed to be contiguous.
1372  *
1373  * find_get_pages_contig() returns the number of pages which were found.
1374  */
1375 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
1376                                unsigned int nr_pages, struct page **pages)
1377 {
1378         struct radix_tree_iter iter;
1379         void **slot;
1380         unsigned int ret = 0;
1381
1382         if (unlikely(!nr_pages))
1383                 return 0;
1384
1385         rcu_read_lock();
1386         radix_tree_for_each_contig(slot, &mapping->page_tree, &iter, index) {
1387                 struct page *head, *page;
1388 repeat:
1389                 page = radix_tree_deref_slot(slot);
1390                 /* The hole, there no reason to continue */
1391                 if (unlikely(!page))
1392                         break;
1393
1394                 if (radix_tree_exception(page)) {
1395                         if (radix_tree_deref_retry(page)) {
1396                                 slot = radix_tree_iter_retry(&iter);
1397                                 continue;
1398                         }
1399                         /*
1400                          * A shadow entry of a recently evicted page,
1401                          * or a swap entry from shmem/tmpfs.  Stop
1402                          * looking for contiguous pages.
1403                          */
1404                         break;
1405                 }
1406
1407                 head = compound_head(page);
1408                 if (!page_cache_get_speculative(head))
1409                         goto repeat;
1410
1411                 /* The page was split under us? */
1412                 if (compound_head(page) != head) {
1413                         put_page(head);
1414                         goto repeat;
1415                 }
1416
1417                 /* Has the page moved? */
1418                 if (unlikely(page != *slot)) {
1419                         put_page(head);
1420                         goto repeat;
1421                 }
1422
1423                 /*
1424                  * must check mapping and index after taking the ref.
1425                  * otherwise we can get both false positives and false
1426                  * negatives, which is just confusing to the caller.
1427                  */
1428                 if (page->mapping == NULL || page_to_pgoff(page) != iter.index) {
1429                         put_page(page);
1430                         break;
1431                 }
1432
1433                 pages[ret] = page;
1434                 if (++ret == nr_pages)
1435                         break;
1436         }
1437         rcu_read_unlock();
1438         return ret;
1439 }
1440 EXPORT_SYMBOL(find_get_pages_contig);
1441
1442 /**
1443  * find_get_pages_tag - find and return pages that match @tag
1444  * @mapping:    the address_space to search
1445  * @index:      the starting page index
1446  * @tag:        the tag index
1447  * @nr_pages:   the maximum number of pages
1448  * @pages:      where the resulting pages are placed
1449  *
1450  * Like find_get_pages, except we only return pages which are tagged with
1451  * @tag.   We update @index to index the next page for the traversal.
1452  */
1453 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
1454                         int tag, unsigned int nr_pages, struct page **pages)
1455 {
1456         struct radix_tree_iter iter;
1457         void **slot;
1458         unsigned ret = 0;
1459
1460         if (unlikely(!nr_pages))
1461                 return 0;
1462
1463         rcu_read_lock();
1464         radix_tree_for_each_tagged(slot, &mapping->page_tree,
1465                                    &iter, *index, tag) {
1466                 struct page *head, *page;
1467 repeat:
1468                 page = radix_tree_deref_slot(slot);
1469                 if (unlikely(!page))
1470                         continue;
1471
1472                 if (radix_tree_exception(page)) {
1473                         if (radix_tree_deref_retry(page)) {
1474                                 slot = radix_tree_iter_retry(&iter);
1475                                 continue;
1476                         }
1477                         /*
1478                          * A shadow entry of a recently evicted page.
1479                          *
1480                          * Those entries should never be tagged, but
1481                          * this tree walk is lockless and the tags are
1482                          * looked up in bulk, one radix tree node at a
1483                          * time, so there is a sizable window for page
1484                          * reclaim to evict a page we saw tagged.
1485                          *
1486                          * Skip over it.
1487                          */
1488                         continue;
1489                 }
1490
1491                 head = compound_head(page);
1492                 if (!page_cache_get_speculative(head))
1493                         goto repeat;
1494
1495                 /* The page was split under us? */
1496                 if (compound_head(page) != head) {
1497                         put_page(head);
1498                         goto repeat;
1499                 }
1500
1501                 /* Has the page moved? */
1502                 if (unlikely(page != *slot)) {
1503                         put_page(head);
1504                         goto repeat;
1505                 }
1506
1507                 pages[ret] = page;
1508                 if (++ret == nr_pages)
1509                         break;
1510         }
1511
1512         rcu_read_unlock();
1513
1514         if (ret)
1515                 *index = pages[ret - 1]->index + 1;
1516
1517         return ret;
1518 }
1519 EXPORT_SYMBOL(find_get_pages_tag);
1520
1521 /**
1522  * find_get_entries_tag - find and return entries that match @tag
1523  * @mapping:    the address_space to search
1524  * @start:      the starting page cache index
1525  * @tag:        the tag index
1526  * @nr_entries: the maximum number of entries
1527  * @entries:    where the resulting entries are placed
1528  * @indices:    the cache indices corresponding to the entries in @entries
1529  *
1530  * Like find_get_entries, except we only return entries which are tagged with
1531  * @tag.
1532  */
1533 unsigned find_get_entries_tag(struct address_space *mapping, pgoff_t start,
1534                         int tag, unsigned int nr_entries,
1535                         struct page **entries, pgoff_t *indices)
1536 {
1537         void **slot;
1538         unsigned int ret = 0;
1539         struct radix_tree_iter iter;
1540
1541         if (!nr_entries)
1542                 return 0;
1543
1544         rcu_read_lock();
1545         radix_tree_for_each_tagged(slot, &mapping->page_tree,
1546                                    &iter, start, tag) {
1547                 struct page *head, *page;
1548 repeat:
1549                 page = radix_tree_deref_slot(slot);
1550                 if (unlikely(!page))
1551                         continue;
1552                 if (radix_tree_exception(page)) {
1553                         if (radix_tree_deref_retry(page)) {
1554                                 slot = radix_tree_iter_retry(&iter);
1555                                 continue;
1556                         }
1557
1558                         /*
1559                          * A shadow entry of a recently evicted page, a swap
1560                          * entry from shmem/tmpfs or a DAX entry.  Return it
1561                          * without attempting to raise page count.
1562                          */
1563                         goto export;
1564                 }
1565
1566                 head = compound_head(page);
1567                 if (!page_cache_get_speculative(head))
1568                         goto repeat;
1569
1570                 /* The page was split under us? */
1571                 if (compound_head(page) != head) {
1572                         put_page(head);
1573                         goto repeat;
1574                 }
1575
1576                 /* Has the page moved? */
1577                 if (unlikely(page != *slot)) {
1578                         put_page(head);
1579                         goto repeat;
1580                 }
1581 export:
1582                 indices[ret] = iter.index;
1583                 entries[ret] = page;
1584                 if (++ret == nr_entries)
1585                         break;
1586         }
1587         rcu_read_unlock();
1588         return ret;
1589 }
1590 EXPORT_SYMBOL(find_get_entries_tag);
1591
1592 /*
1593  * CD/DVDs are error prone. When a medium error occurs, the driver may fail
1594  * a _large_ part of the i/o request. Imagine the worst scenario:
1595  *
1596  *      ---R__________________________________________B__________
1597  *         ^ reading here                             ^ bad block(assume 4k)
1598  *
1599  * read(R) => miss => readahead(R...B) => media error => frustrating retries
1600  * => failing the whole request => read(R) => read(R+1) =>
1601  * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
1602  * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
1603  * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
1604  *
1605  * It is going insane. Fix it by quickly scaling down the readahead size.
1606  */
1607 static void shrink_readahead_size_eio(struct file *filp,
1608                                         struct file_ra_state *ra)
1609 {
1610         ra->ra_pages /= 4;
1611 }
1612
1613 /**
1614  * do_generic_file_read - generic file read routine
1615  * @filp:       the file to read
1616  * @ppos:       current file position
1617  * @iter:       data destination
1618  * @written:    already copied
1619  *
1620  * This is a generic file read routine, and uses the
1621  * mapping->a_ops->readpage() function for the actual low-level stuff.
1622  *
1623  * This is really ugly. But the goto's actually try to clarify some
1624  * of the logic when it comes to error handling etc.
1625  */
1626 static ssize_t do_generic_file_read(struct file *filp, loff_t *ppos,
1627                 struct iov_iter *iter, ssize_t written)
1628 {
1629         struct address_space *mapping = filp->f_mapping;
1630         struct inode *inode = mapping->host;
1631         struct file_ra_state *ra = &filp->f_ra;
1632         pgoff_t index;
1633         pgoff_t last_index;
1634         pgoff_t prev_index;
1635         unsigned long offset;      /* offset into pagecache page */
1636         unsigned int prev_offset;
1637         int error = 0;
1638
1639         if (unlikely(*ppos >= inode->i_sb->s_maxbytes))
1640                 return -EINVAL;
1641         iov_iter_truncate(iter, inode->i_sb->s_maxbytes);
1642
1643         index = *ppos >> PAGE_SHIFT;
1644         prev_index = ra->prev_pos >> PAGE_SHIFT;
1645         prev_offset = ra->prev_pos & (PAGE_SIZE-1);
1646         last_index = (*ppos + iter->count + PAGE_SIZE-1) >> PAGE_SHIFT;
1647         offset = *ppos & ~PAGE_MASK;
1648
1649         for (;;) {
1650                 struct page *page;
1651                 pgoff_t end_index;
1652                 loff_t isize;
1653                 unsigned long nr, ret;
1654
1655                 cond_resched();
1656 find_page:
1657                 page = find_get_page(mapping, index);
1658                 if (!page) {
1659                         page_cache_sync_readahead(mapping,
1660                                         ra, filp,
1661                                         index, last_index - index);
1662                         page = find_get_page(mapping, index);
1663                         if (unlikely(page == NULL))
1664                                 goto no_cached_page;
1665                 }
1666                 if (PageReadahead(page)) {
1667                         page_cache_async_readahead(mapping,
1668                                         ra, filp, page,
1669                                         index, last_index - index);
1670                 }
1671                 if (!PageUptodate(page)) {
1672                         /*
1673                          * See comment in do_read_cache_page on why
1674                          * wait_on_page_locked is used to avoid unnecessarily
1675                          * serialisations and why it's safe.
1676                          */
1677                         error = wait_on_page_locked_killable(page);
1678                         if (unlikely(error))
1679                                 goto readpage_error;
1680                         if (PageUptodate(page))
1681                                 goto page_ok;
1682
1683                         if (inode->i_blkbits == PAGE_SHIFT ||
1684                                         !mapping->a_ops->is_partially_uptodate)
1685                                 goto page_not_up_to_date;
1686                         /* pipes can't handle partially uptodate pages */
1687                         if (unlikely(iter->type & ITER_PIPE))
1688                                 goto page_not_up_to_date;
1689                         if (!trylock_page(page))
1690                                 goto page_not_up_to_date;
1691                         /* Did it get truncated before we got the lock? */
1692                         if (!page->mapping)
1693                                 goto page_not_up_to_date_locked;
1694                         if (!mapping->a_ops->is_partially_uptodate(page,
1695                                                         offset, iter->count))
1696                                 goto page_not_up_to_date_locked;
1697                         unlock_page(page);
1698                 }
1699 page_ok:
1700                 /*
1701                  * i_size must be checked after we know the page is Uptodate.
1702                  *
1703                  * Checking i_size after the check allows us to calculate
1704                  * the correct value for "nr", which means the zero-filled
1705                  * part of the page is not copied back to userspace (unless
1706                  * another truncate extends the file - this is desired though).
1707                  */
1708
1709                 isize = i_size_read(inode);
1710                 end_index = (isize - 1) >> PAGE_SHIFT;
1711                 if (unlikely(!isize || index > end_index)) {
1712                         put_page(page);
1713                         goto out;
1714                 }
1715
1716                 /* nr is the maximum number of bytes to copy from this page */
1717                 nr = PAGE_SIZE;
1718                 if (index == end_index) {
1719                         nr = ((isize - 1) & ~PAGE_MASK) + 1;
1720                         if (nr <= offset) {
1721                                 put_page(page);
1722                                 goto out;
1723                         }
1724                 }
1725                 nr = nr - offset;
1726
1727                 /* If users can be writing to this page using arbitrary
1728                  * virtual addresses, take care about potential aliasing
1729                  * before reading the page on the kernel side.
1730                  */
1731                 if (mapping_writably_mapped(mapping))
1732                         flush_dcache_page(page);
1733
1734                 /*
1735                  * When a sequential read accesses a page several times,
1736                  * only mark it as accessed the first time.
1737                  */
1738                 if (prev_index != index || offset != prev_offset)
1739                         mark_page_accessed(page);
1740                 prev_index = index;
1741
1742                 /*
1743                  * Ok, we have the page, and it's up-to-date, so
1744                  * now we can copy it to user space...
1745                  */
1746
1747                 ret = copy_page_to_iter(page, offset, nr, iter);
1748                 offset += ret;
1749                 index += offset >> PAGE_SHIFT;
1750                 offset &= ~PAGE_MASK;
1751                 prev_offset = offset;
1752
1753                 put_page(page);
1754                 written += ret;
1755                 if (!iov_iter_count(iter))
1756                         goto out;
1757                 if (ret < nr) {
1758                         error = -EFAULT;
1759                         goto out;
1760                 }
1761                 continue;
1762
1763 page_not_up_to_date:
1764                 /* Get exclusive access to the page ... */
1765                 error = lock_page_killable(page);
1766                 if (unlikely(error))
1767                         goto readpage_error;
1768
1769 page_not_up_to_date_locked:
1770                 /* Did it get truncated before we got the lock? */
1771                 if (!page->mapping) {
1772                         unlock_page(page);
1773                         put_page(page);
1774                         continue;
1775                 }
1776
1777                 /* Did somebody else fill it already? */
1778                 if (PageUptodate(page)) {
1779                         unlock_page(page);
1780                         goto page_ok;
1781                 }
1782
1783 readpage:
1784                 /*
1785                  * A previous I/O error may have been due to temporary
1786                  * failures, eg. multipath errors.
1787                  * PG_error will be set again if readpage fails.
1788                  */
1789                 ClearPageError(page);
1790                 /* Start the actual read. The read will unlock the page. */
1791                 error = mapping->a_ops->readpage(filp, page);
1792
1793                 if (unlikely(error)) {
1794                         if (error == AOP_TRUNCATED_PAGE) {
1795                                 put_page(page);
1796                                 error = 0;
1797                                 goto find_page;
1798                         }
1799                         goto readpage_error;
1800                 }
1801
1802                 if (!PageUptodate(page)) {
1803                         error = lock_page_killable(page);
1804                         if (unlikely(error))
1805                                 goto readpage_error;
1806                         if (!PageUptodate(page)) {
1807                                 if (page->mapping == NULL) {
1808                                         /*
1809                                          * invalidate_mapping_pages got it
1810                                          */
1811                                         unlock_page(page);
1812                                         put_page(page);
1813                                         goto find_page;
1814                                 }
1815                                 unlock_page(page);
1816                                 shrink_readahead_size_eio(filp, ra);
1817                                 error = -EIO;
1818                                 goto readpage_error;
1819                         }
1820                         unlock_page(page);
1821                 }
1822
1823                 goto page_ok;
1824
1825 readpage_error:
1826                 /* UHHUH! A synchronous read error occurred. Report it */
1827                 put_page(page);
1828                 goto out;
1829
1830 no_cached_page:
1831                 /*
1832                  * Ok, it wasn't cached, so we need to create a new
1833                  * page..
1834                  */
1835                 page = page_cache_alloc_cold(mapping);
1836                 if (!page) {
1837                         error = -ENOMEM;
1838                         goto out;
1839                 }
1840                 error = add_to_page_cache_lru(page, mapping, index,
1841                                 mapping_gfp_constraint(mapping, GFP_KERNEL));
1842                 if (error) {
1843                         put_page(page);
1844                         if (error == -EEXIST) {
1845                                 error = 0;
1846                                 goto find_page;
1847                         }
1848                         goto out;
1849                 }
1850                 goto readpage;
1851         }
1852
1853 out:
1854         ra->prev_pos = prev_index;
1855         ra->prev_pos <<= PAGE_SHIFT;
1856         ra->prev_pos |= prev_offset;
1857
1858         *ppos = ((loff_t)index << PAGE_SHIFT) + offset;
1859         file_accessed(filp);
1860         return written ? written : error;
1861 }
1862
1863 /**
1864  * generic_file_read_iter - generic filesystem read routine
1865  * @iocb:       kernel I/O control block
1866  * @iter:       destination for the data read
1867  *
1868  * This is the "read_iter()" routine for all filesystems
1869  * that can use the page cache directly.
1870  */
1871 ssize_t
1872 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
1873 {
1874         struct file *file = iocb->ki_filp;
1875         ssize_t retval = 0;
1876         size_t count = iov_iter_count(iter);
1877
1878         if (!count)
1879                 goto out; /* skip atime */
1880
1881         if (iocb->ki_flags & IOCB_DIRECT) {
1882                 struct address_space *mapping = file->f_mapping;
1883                 struct inode *inode = mapping->host;
1884                 struct iov_iter data = *iter;
1885                 loff_t size;
1886
1887                 size = i_size_read(inode);
1888                 retval = filemap_write_and_wait_range(mapping, iocb->ki_pos,
1889                                         iocb->ki_pos + count - 1);
1890                 if (retval < 0)
1891                         goto out;
1892
1893                 file_accessed(file);
1894
1895                 retval = mapping->a_ops->direct_IO(iocb, &data);
1896                 if (retval >= 0) {
1897                         iocb->ki_pos += retval;
1898                         iov_iter_advance(iter, retval);
1899                 }
1900
1901                 /*
1902                  * Btrfs can have a short DIO read if we encounter
1903                  * compressed extents, so if there was an error, or if
1904                  * we've already read everything we wanted to, or if
1905                  * there was a short read because we hit EOF, go ahead
1906                  * and return.  Otherwise fallthrough to buffered io for
1907                  * the rest of the read.  Buffered reads will not work for
1908                  * DAX files, so don't bother trying.
1909                  */
1910                 if (retval < 0 || !iov_iter_count(iter) || iocb->ki_pos >= size ||
1911                     IS_DAX(inode))
1912                         goto out;
1913         }
1914
1915         retval = do_generic_file_read(file, &iocb->ki_pos, iter, retval);
1916 out:
1917         return retval;
1918 }
1919 EXPORT_SYMBOL(generic_file_read_iter);
1920
1921 #ifdef CONFIG_MMU
1922 /**
1923  * page_cache_read - adds requested page to the page cache if not already there
1924  * @file:       file to read
1925  * @offset:     page index
1926  * @gfp_mask:   memory allocation flags
1927  *
1928  * This adds the requested page to the page cache if it isn't already there,
1929  * and schedules an I/O to read in its contents from disk.
1930  */
1931 static int page_cache_read(struct file *file, pgoff_t offset, gfp_t gfp_mask)
1932 {
1933         struct address_space *mapping = file->f_mapping;
1934         struct page *page;
1935         int ret;
1936
1937         do {
1938                 page = __page_cache_alloc(gfp_mask|__GFP_COLD);
1939                 if (!page)
1940                         return -ENOMEM;
1941
1942                 ret = add_to_page_cache_lru(page, mapping, offset, gfp_mask & GFP_KERNEL);
1943                 if (ret == 0)
1944                         ret = mapping->a_ops->readpage(file, page);
1945                 else if (ret == -EEXIST)
1946                         ret = 0; /* losing race to add is OK */
1947
1948                 put_page(page);
1949
1950         } while (ret == AOP_TRUNCATED_PAGE);
1951
1952         return ret;
1953 }
1954
1955 #define MMAP_LOTSAMISS  (100)
1956
1957 /*
1958  * Synchronous readahead happens when we don't even find
1959  * a page in the page cache at all.
1960  */
1961 static void do_sync_mmap_readahead(struct vm_area_struct *vma,
1962                                    struct file_ra_state *ra,
1963                                    struct file *file,
1964                                    pgoff_t offset)
1965 {
1966         struct address_space *mapping = file->f_mapping;
1967
1968         /* If we don't want any read-ahead, don't bother */
1969         if (vma->vm_flags & VM_RAND_READ)
1970                 return;
1971         if (!ra->ra_pages)
1972                 return;
1973
1974         if (vma->vm_flags & VM_SEQ_READ) {
1975                 page_cache_sync_readahead(mapping, ra, file, offset,
1976                                           ra->ra_pages);
1977                 return;
1978         }
1979
1980         /* Avoid banging the cache line if not needed */
1981         if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
1982                 ra->mmap_miss++;
1983
1984         /*
1985          * Do we miss much more than hit in this file? If so,
1986          * stop bothering with read-ahead. It will only hurt.
1987          */
1988         if (ra->mmap_miss > MMAP_LOTSAMISS)
1989                 return;
1990
1991         /*
1992          * mmap read-around
1993          */
1994         ra->start = max_t(long, 0, offset - ra->ra_pages / 2);
1995         ra->size = ra->ra_pages;
1996         ra->async_size = ra->ra_pages / 4;
1997         ra_submit(ra, mapping, file);
1998 }
1999
2000 /*
2001  * Asynchronous readahead happens when we find the page and PG_readahead,
2002  * so we want to possibly extend the readahead further..
2003  */
2004 static void do_async_mmap_readahead(struct vm_area_struct *vma,
2005                                     struct file_ra_state *ra,
2006                                     struct file *file,
2007                                     struct page *page,
2008                                     pgoff_t offset)
2009 {
2010         struct address_space *mapping = file->f_mapping;
2011
2012         /* If we don't want any read-ahead, don't bother */
2013         if (vma->vm_flags & VM_RAND_READ)
2014                 return;
2015         if (ra->mmap_miss > 0)
2016                 ra->mmap_miss--;
2017         if (PageReadahead(page))
2018                 page_cache_async_readahead(mapping, ra, file,
2019                                            page, offset, ra->ra_pages);
2020 }
2021
2022 /**
2023  * filemap_fault - read in file data for page fault handling
2024  * @vma:        vma in which the fault was taken
2025  * @vmf:        struct vm_fault containing details of the fault
2026  *
2027  * filemap_fault() is invoked via the vma operations vector for a
2028  * mapped memory region to read in file data during a page fault.
2029  *
2030  * The goto's are kind of ugly, but this streamlines the normal case of having
2031  * it in the page cache, and handles the special cases reasonably without
2032  * having a lot of duplicated code.
2033  *
2034  * vma->vm_mm->mmap_sem must be held on entry.
2035  *
2036  * If our return value has VM_FAULT_RETRY set, it's because
2037  * lock_page_or_retry() returned 0.
2038  * The mmap_sem has usually been released in this case.
2039  * See __lock_page_or_retry() for the exception.
2040  *
2041  * If our return value does not have VM_FAULT_RETRY set, the mmap_sem
2042  * has not been released.
2043  *
2044  * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
2045  */
2046 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2047 {
2048         int error;
2049         struct file *file = vma->vm_file;
2050         struct address_space *mapping = file->f_mapping;
2051         struct file_ra_state *ra = &file->f_ra;
2052         struct inode *inode = mapping->host;
2053         pgoff_t offset = vmf->pgoff;
2054         struct page *page;
2055         loff_t size;
2056         int ret = 0;
2057
2058         size = round_up(i_size_read(inode), PAGE_SIZE);
2059         if (offset >= size >> PAGE_SHIFT)
2060                 return VM_FAULT_SIGBUS;
2061
2062         /*
2063          * Do we have something in the page cache already?
2064          */
2065         page = find_get_page(mapping, offset);
2066         if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
2067                 /*
2068                  * We found the page, so try async readahead before
2069                  * waiting for the lock.
2070                  */
2071                 do_async_mmap_readahead(vma, ra, file, page, offset);
2072         } else if (!page) {
2073                 /* No page in the page cache at all */
2074                 do_sync_mmap_readahead(vma, ra, file, offset);
2075                 count_vm_event(PGMAJFAULT);
2076                 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
2077                 ret = VM_FAULT_MAJOR;
2078 retry_find:
2079                 page = find_get_page(mapping, offset);
2080                 if (!page)
2081                         goto no_cached_page;
2082         }
2083
2084         if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags)) {
2085                 put_page(page);
2086                 return ret | VM_FAULT_RETRY;
2087         }
2088
2089         /* Did it get truncated? */
2090         if (unlikely(page->mapping != mapping)) {
2091                 unlock_page(page);
2092                 put_page(page);
2093                 goto retry_find;
2094         }
2095         VM_BUG_ON_PAGE(page->index != offset, page);
2096
2097         /*
2098          * We have a locked page in the page cache, now we need to check
2099          * that it's up-to-date. If not, it is going to be due to an error.
2100          */
2101         if (unlikely(!PageUptodate(page)))
2102                 goto page_not_uptodate;
2103
2104         /*
2105          * Found the page and have a reference on it.
2106          * We must recheck i_size under page lock.
2107          */
2108         size = round_up(i_size_read(inode), PAGE_SIZE);
2109         if (unlikely(offset >= size >> PAGE_SHIFT)) {
2110                 unlock_page(page);
2111                 put_page(page);
2112                 return VM_FAULT_SIGBUS;
2113         }
2114
2115         vmf->page = page;
2116         return ret | VM_FAULT_LOCKED;
2117
2118 no_cached_page:
2119         /*
2120          * We're only likely to ever get here if MADV_RANDOM is in
2121          * effect.
2122          */
2123         error = page_cache_read(file, offset, vmf->gfp_mask);
2124
2125         /*
2126          * The page we want has now been added to the page cache.
2127          * In the unlikely event that someone removed it in the
2128          * meantime, we'll just come back here and read it again.
2129          */
2130         if (error >= 0)
2131                 goto retry_find;
2132
2133         /*
2134          * An error return from page_cache_read can result if the
2135          * system is low on memory, or a problem occurs while trying
2136          * to schedule I/O.
2137          */
2138         if (error == -ENOMEM)
2139                 return VM_FAULT_OOM;
2140         return VM_FAULT_SIGBUS;
2141
2142 page_not_uptodate:
2143         /*
2144          * Umm, take care of errors if the page isn't up-to-date.
2145          * Try to re-read it _once_. We do this synchronously,
2146          * because there really aren't any performance issues here
2147          * and we need to check for errors.
2148          */
2149         ClearPageError(page);
2150         error = mapping->a_ops->readpage(file, page);
2151         if (!error) {
2152                 wait_on_page_locked(page);
2153                 if (!PageUptodate(page))
2154                         error = -EIO;
2155         }
2156         put_page(page);
2157
2158         if (!error || error == AOP_TRUNCATED_PAGE)
2159                 goto retry_find;
2160
2161         /* Things didn't work out. Return zero to tell the mm layer so. */
2162         shrink_readahead_size_eio(file, ra);
2163         return VM_FAULT_SIGBUS;
2164 }
2165 EXPORT_SYMBOL(filemap_fault);
2166
2167 void filemap_map_pages(struct fault_env *fe,
2168                 pgoff_t start_pgoff, pgoff_t end_pgoff)
2169 {
2170         struct radix_tree_iter iter;
2171         void **slot;
2172         struct file *file = fe->vma->vm_file;
2173         struct address_space *mapping = file->f_mapping;
2174         pgoff_t last_pgoff = start_pgoff;
2175         loff_t size;
2176         struct page *head, *page;
2177
2178         rcu_read_lock();
2179         radix_tree_for_each_slot(slot, &mapping->page_tree, &iter,
2180                         start_pgoff) {
2181                 if (iter.index > end_pgoff)
2182                         break;
2183 repeat:
2184                 page = radix_tree_deref_slot(slot);
2185                 if (unlikely(!page))
2186                         goto next;
2187                 if (radix_tree_exception(page)) {
2188                         if (radix_tree_deref_retry(page)) {
2189                                 slot = radix_tree_iter_retry(&iter);
2190                                 continue;
2191                         }
2192                         goto next;
2193                 }
2194
2195                 head = compound_head(page);
2196                 if (!page_cache_get_speculative(head))
2197                         goto repeat;
2198
2199                 /* The page was split under us? */
2200                 if (compound_head(page) != head) {
2201                         put_page(head);
2202                         goto repeat;
2203                 }
2204
2205                 /* Has the page moved? */
2206                 if (unlikely(page != *slot)) {
2207                         put_page(head);
2208                         goto repeat;
2209                 }
2210
2211                 if (!PageUptodate(page) ||
2212                                 PageReadahead(page) ||
2213                                 PageHWPoison(page))
2214                         goto skip;
2215                 if (!trylock_page(page))
2216                         goto skip;
2217
2218                 if (page->mapping != mapping || !PageUptodate(page))
2219                         goto unlock;
2220
2221                 size = round_up(i_size_read(mapping->host), PAGE_SIZE);
2222                 if (page->index >= size >> PAGE_SHIFT)
2223                         goto unlock;
2224
2225                 if (file->f_ra.mmap_miss > 0)
2226                         file->f_ra.mmap_miss--;
2227
2228                 fe->address += (iter.index - last_pgoff) << PAGE_SHIFT;
2229                 if (fe->pte)
2230                         fe->pte += iter.index - last_pgoff;
2231                 last_pgoff = iter.index;
2232                 if (alloc_set_pte(fe, NULL, page))
2233                         goto unlock;
2234                 unlock_page(page);
2235                 goto next;
2236 unlock:
2237                 unlock_page(page);
2238 skip:
2239                 put_page(page);
2240 next:
2241                 /* Huge page is mapped? No need to proceed. */
2242                 if (pmd_trans_huge(*fe->pmd))
2243                         break;
2244                 if (iter.index == end_pgoff)
2245                         break;
2246         }
2247         rcu_read_unlock();
2248 }
2249 EXPORT_SYMBOL(filemap_map_pages);
2250
2251 int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
2252 {
2253         struct page *page = vmf->page;
2254         struct inode *inode = file_inode(vma->vm_file);
2255         int ret = VM_FAULT_LOCKED;
2256
2257         sb_start_pagefault(inode->i_sb);
2258         file_update_time(vma->vm_file);
2259         lock_page(page);
2260         if (page->mapping != inode->i_mapping) {
2261                 unlock_page(page);
2262                 ret = VM_FAULT_NOPAGE;
2263                 goto out;
2264         }
2265         /*
2266          * We mark the page dirty already here so that when freeze is in
2267          * progress, we are guaranteed that writeback during freezing will
2268          * see the dirty page and writeprotect it again.
2269          */
2270         set_page_dirty(page);
2271         wait_for_stable_page(page);
2272 out:
2273         sb_end_pagefault(inode->i_sb);
2274         return ret;
2275 }
2276 EXPORT_SYMBOL(filemap_page_mkwrite);
2277
2278 const struct vm_operations_struct generic_file_vm_ops = {
2279         .fault          = filemap_fault,
2280         .map_pages      = filemap_map_pages,
2281         .page_mkwrite   = filemap_page_mkwrite,
2282 };
2283
2284 /* This is used for a general mmap of a disk file */
2285
2286 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2287 {
2288         struct address_space *mapping = file->f_mapping;
2289
2290         if (!mapping->a_ops->readpage)
2291                 return -ENOEXEC;
2292         file_accessed(file);
2293         vma->vm_ops = &generic_file_vm_ops;
2294         return 0;
2295 }
2296
2297 /*
2298  * This is for filesystems which do not implement ->writepage.
2299  */
2300 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
2301 {
2302         if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
2303                 return -EINVAL;
2304         return generic_file_mmap(file, vma);
2305 }
2306 #else
2307 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2308 {
2309         return -ENOSYS;
2310 }
2311 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
2312 {
2313         return -ENOSYS;
2314 }
2315 #endif /* CONFIG_MMU */
2316
2317 EXPORT_SYMBOL(generic_file_mmap);
2318 EXPORT_SYMBOL(generic_file_readonly_mmap);
2319
2320 static struct page *wait_on_page_read(struct page *page)
2321 {
2322         if (!IS_ERR(page)) {
2323                 wait_on_page_locked(page);
2324                 if (!PageUptodate(page)) {
2325                         put_page(page);
2326                         page = ERR_PTR(-EIO);
2327                 }
2328         }
2329         return page;
2330 }
2331
2332 static struct page *do_read_cache_page(struct address_space *mapping,
2333                                 pgoff_t index,
2334                                 int (*filler)(void *, struct page *),
2335                                 void *data,
2336                                 gfp_t gfp)
2337 {
2338         struct page *page;
2339         int err;
2340 repeat:
2341         page = find_get_page(mapping, index);
2342         if (!page) {
2343                 page = __page_cache_alloc(gfp | __GFP_COLD);
2344                 if (!page)
2345                         return ERR_PTR(-ENOMEM);
2346                 err = add_to_page_cache_lru(page, mapping, index, gfp);
2347                 if (unlikely(err)) {
2348                         put_page(page);
2349                         if (err == -EEXIST)
2350                                 goto repeat;
2351                         /* Presumably ENOMEM for radix tree node */
2352                         return ERR_PTR(err);
2353                 }
2354
2355 filler:
2356                 err = filler(data, page);
2357                 if (err < 0) {
2358                         put_page(page);
2359                         return ERR_PTR(err);
2360                 }
2361
2362                 page = wait_on_page_read(page);
2363                 if (IS_ERR(page))
2364                         return page;
2365                 goto out;
2366         }
2367         if (PageUptodate(page))
2368                 goto out;
2369
2370         /*
2371          * Page is not up to date and may be locked due one of the following
2372          * case a: Page is being filled and the page lock is held
2373          * case b: Read/write error clearing the page uptodate status
2374          * case c: Truncation in progress (page locked)
2375          * case d: Reclaim in progress
2376          *
2377          * Case a, the page will be up to date when the page is unlocked.
2378          *    There is no need to serialise on the page lock here as the page
2379          *    is pinned so the lock gives no additional protection. Even if the
2380          *    the page is truncated, the data is still valid if PageUptodate as
2381          *    it's a race vs truncate race.
2382          * Case b, the page will not be up to date
2383          * Case c, the page may be truncated but in itself, the data may still
2384          *    be valid after IO completes as it's a read vs truncate race. The
2385          *    operation must restart if the page is not uptodate on unlock but
2386          *    otherwise serialising on page lock to stabilise the mapping gives
2387          *    no additional guarantees to the caller as the page lock is
2388          *    released before return.
2389          * Case d, similar to truncation. If reclaim holds the page lock, it
2390          *    will be a race with remove_mapping that determines if the mapping
2391          *    is valid on unlock but otherwise the data is valid and there is
2392          *    no need to serialise with page lock.
2393          *
2394          * As the page lock gives no additional guarantee, we optimistically
2395          * wait on the page to be unlocked and check if it's up to date and
2396          * use the page if it is. Otherwise, the page lock is required to
2397          * distinguish between the different cases. The motivation is that we
2398          * avoid spurious serialisations and wakeups when multiple processes
2399          * wait on the same page for IO to complete.
2400          */
2401         wait_on_page_locked(page);
2402         if (PageUptodate(page))
2403                 goto out;
2404
2405         /* Distinguish between all the cases under the safety of the lock */
2406         lock_page(page);
2407
2408         /* Case c or d, restart the operation */
2409         if (!page->mapping) {
2410                 unlock_page(page);
2411                 put_page(page);
2412                 goto repeat;
2413         }
2414
2415         /* Someone else locked and filled the page in a very small window */
2416         if (PageUptodate(page)) {
2417                 unlock_page(page);
2418                 goto out;
2419         }
2420         goto filler;
2421
2422 out:
2423         mark_page_accessed(page);
2424         return page;
2425 }
2426
2427 /**
2428  * read_cache_page - read into page cache, fill it if needed
2429  * @mapping:    the page's address_space
2430  * @index:      the page index
2431  * @filler:     function to perform the read
2432  * @data:       first arg to filler(data, page) function, often left as NULL
2433  *
2434  * Read into the page cache. If a page already exists, and PageUptodate() is
2435  * not set, try to fill the page and wait for it to become unlocked.
2436  *
2437  * If the page does not get brought uptodate, return -EIO.
2438  */
2439 struct page *read_cache_page(struct address_space *mapping,
2440                                 pgoff_t index,
2441                                 int (*filler)(void *, struct page *),
2442                                 void *data)
2443 {
2444         return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
2445 }
2446 EXPORT_SYMBOL(read_cache_page);
2447
2448 /**
2449  * read_cache_page_gfp - read into page cache, using specified page allocation flags.
2450  * @mapping:    the page's address_space
2451  * @index:      the page index
2452  * @gfp:        the page allocator flags to use if allocating
2453  *
2454  * This is the same as "read_mapping_page(mapping, index, NULL)", but with
2455  * any new page allocations done using the specified allocation flags.
2456  *
2457  * If the page does not get brought uptodate, return -EIO.
2458  */
2459 struct page *read_cache_page_gfp(struct address_space *mapping,
2460                                 pgoff_t index,
2461                                 gfp_t gfp)
2462 {
2463         filler_t *filler = (filler_t *)mapping->a_ops->readpage;
2464
2465         return do_read_cache_page(mapping, index, filler, NULL, gfp);
2466 }
2467 EXPORT_SYMBOL(read_cache_page_gfp);
2468
2469 /*
2470  * Performs necessary checks before doing a write
2471  *
2472  * Can adjust writing position or amount of bytes to write.
2473  * Returns appropriate error code that caller should return or
2474  * zero in case that write should be allowed.
2475  */
2476 inline ssize_t generic_write_checks(struct kiocb *iocb, struct iov_iter *from)
2477 {
2478         struct file *file = iocb->ki_filp;
2479         struct inode *inode = file->f_mapping->host;
2480         unsigned long limit = rlimit(RLIMIT_FSIZE);
2481         loff_t pos;
2482
2483         if (!iov_iter_count(from))
2484                 return 0;
2485
2486         /* FIXME: this is for backwards compatibility with 2.4 */
2487         if (iocb->ki_flags & IOCB_APPEND)
2488                 iocb->ki_pos = i_size_read(inode);
2489
2490         pos = iocb->ki_pos;
2491
2492         if (limit != RLIM_INFINITY) {
2493                 if (iocb->ki_pos >= limit) {
2494                         send_sig(SIGXFSZ, current, 0);
2495                         return -EFBIG;
2496                 }
2497                 iov_iter_truncate(from, limit - (unsigned long)pos);
2498         }
2499
2500         /*
2501          * LFS rule
2502          */
2503         if (unlikely(pos + iov_iter_count(from) > MAX_NON_LFS &&
2504                                 !(file->f_flags & O_LARGEFILE))) {
2505                 if (pos >= MAX_NON_LFS)
2506                         return -EFBIG;
2507                 iov_iter_truncate(from, MAX_NON_LFS - (unsigned long)pos);
2508         }
2509
2510         /*
2511          * Are we about to exceed the fs block limit ?
2512          *
2513          * If we have written data it becomes a short write.  If we have
2514          * exceeded without writing data we send a signal and return EFBIG.
2515          * Linus frestrict idea will clean these up nicely..
2516          */
2517         if (unlikely(pos >= inode->i_sb->s_maxbytes))
2518                 return -EFBIG;
2519
2520         iov_iter_truncate(from, inode->i_sb->s_maxbytes - pos);
2521         return iov_iter_count(from);
2522 }
2523 EXPORT_SYMBOL(generic_write_checks);
2524
2525 int pagecache_write_begin(struct file *file, struct address_space *mapping,
2526                                 loff_t pos, unsigned len, unsigned flags,
2527                                 struct page **pagep, void **fsdata)
2528 {
2529         const struct address_space_operations *aops = mapping->a_ops;
2530
2531         return aops->write_begin(file, mapping, pos, len, flags,
2532                                                         pagep, fsdata);
2533 }
2534 EXPORT_SYMBOL(pagecache_write_begin);
2535
2536 int pagecache_write_end(struct file *file, struct address_space *mapping,
2537                                 loff_t pos, unsigned len, unsigned copied,
2538                                 struct page *page, void *fsdata)
2539 {
2540         const struct address_space_operations *aops = mapping->a_ops;
2541
2542         return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
2543 }
2544 EXPORT_SYMBOL(pagecache_write_end);
2545
2546 ssize_t
2547 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from)
2548 {
2549         struct file     *file = iocb->ki_filp;
2550         struct address_space *mapping = file->f_mapping;
2551         struct inode    *inode = mapping->host;
2552         loff_t          pos = iocb->ki_pos;
2553         ssize_t         written;
2554         size_t          write_len;
2555         pgoff_t         end;
2556         struct iov_iter data;
2557
2558         write_len = iov_iter_count(from);
2559         end = (pos + write_len - 1) >> PAGE_SHIFT;
2560
2561         written = filemap_write_and_wait_range(mapping, pos, pos + write_len - 1);
2562         if (written)
2563                 goto out;
2564
2565         /*
2566          * After a write we want buffered reads to be sure to go to disk to get
2567          * the new data.  We invalidate clean cached page from the region we're
2568          * about to write.  We do this *before* the write so that we can return
2569          * without clobbering -EIOCBQUEUED from ->direct_IO().
2570          */
2571         if (mapping->nrpages) {
2572                 written = invalidate_inode_pages2_range(mapping,
2573                                         pos >> PAGE_SHIFT, end);
2574                 /*
2575                  * If a page can not be invalidated, return 0 to fall back
2576                  * to buffered write.
2577                  */
2578                 if (written) {
2579                         if (written == -EBUSY)
2580                                 return 0;
2581                         goto out;
2582                 }
2583         }
2584
2585         data = *from;
2586         written = mapping->a_ops->direct_IO(iocb, &data);
2587
2588         /*
2589          * Finally, try again to invalidate clean pages which might have been
2590          * cached by non-direct readahead, or faulted in by get_user_pages()
2591          * if the source of the write was an mmap'ed region of the file
2592          * we're writing.  Either one is a pretty crazy thing to do,
2593          * so we don't support it 100%.  If this invalidation
2594          * fails, tough, the write still worked...
2595          */
2596         if (mapping->nrpages) {
2597                 invalidate_inode_pages2_range(mapping,
2598                                               pos >> PAGE_SHIFT, end);
2599         }
2600
2601         if (written > 0) {
2602                 pos += written;
2603                 iov_iter_advance(from, written);
2604                 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2605                         i_size_write(inode, pos);
2606                         mark_inode_dirty(inode);
2607                 }
2608                 iocb->ki_pos = pos;
2609         }
2610 out:
2611         return written;
2612 }
2613 EXPORT_SYMBOL(generic_file_direct_write);
2614
2615 /*
2616  * Find or create a page at the given pagecache position. Return the locked
2617  * page. This function is specifically for buffered writes.
2618  */
2619 struct page *grab_cache_page_write_begin(struct address_space *mapping,
2620                                         pgoff_t index, unsigned flags)
2621 {
2622         struct page *page;
2623         int fgp_flags = FGP_LOCK|FGP_WRITE|FGP_CREAT;
2624
2625         if (flags & AOP_FLAG_NOFS)
2626                 fgp_flags |= FGP_NOFS;
2627
2628         page = pagecache_get_page(mapping, index, fgp_flags,
2629                         mapping_gfp_mask(mapping));
2630         if (page)
2631                 wait_for_stable_page(page);
2632
2633         return page;
2634 }
2635 EXPORT_SYMBOL(grab_cache_page_write_begin);
2636
2637 ssize_t generic_perform_write(struct file *file,
2638                                 struct iov_iter *i, loff_t pos)
2639 {
2640         struct address_space *mapping = file->f_mapping;
2641         const struct address_space_operations *a_ops = mapping->a_ops;
2642         long status = 0;
2643         ssize_t written = 0;
2644         unsigned int flags = 0;
2645
2646         /*
2647          * Copies from kernel address space cannot fail (NFSD is a big user).
2648          */
2649         if (!iter_is_iovec(i))
2650                 flags |= AOP_FLAG_UNINTERRUPTIBLE;
2651
2652         do {
2653                 struct page *page;
2654                 unsigned long offset;   /* Offset into pagecache page */
2655                 unsigned long bytes;    /* Bytes to write to page */
2656                 size_t copied;          /* Bytes copied from user */
2657                 void *fsdata;
2658
2659                 offset = (pos & (PAGE_SIZE - 1));
2660                 bytes = min_t(unsigned long, PAGE_SIZE - offset,
2661                                                 iov_iter_count(i));
2662
2663 again:
2664                 /*
2665                  * Bring in the user page that we will copy from _first_.
2666                  * Otherwise there's a nasty deadlock on copying from the
2667                  * same page as we're writing to, without it being marked
2668                  * up-to-date.
2669                  *
2670                  * Not only is this an optimisation, but it is also required
2671                  * to check that the address is actually valid, when atomic
2672                  * usercopies are used, below.
2673                  */
2674                 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2675                         status = -EFAULT;
2676                         break;
2677                 }
2678
2679                 if (fatal_signal_pending(current)) {
2680                         status = -EINTR;
2681                         break;
2682                 }
2683
2684                 status = a_ops->write_begin(file, mapping, pos, bytes, flags,
2685                                                 &page, &fsdata);
2686                 if (unlikely(status < 0))
2687                         break;
2688
2689                 if (mapping_writably_mapped(mapping))
2690                         flush_dcache_page(page);
2691
2692                 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
2693                 flush_dcache_page(page);
2694
2695                 status = a_ops->write_end(file, mapping, pos, bytes, copied,
2696                                                 page, fsdata);
2697                 if (unlikely(status < 0))
2698                         break;
2699                 copied = status;
2700
2701                 cond_resched();
2702
2703                 iov_iter_advance(i, copied);
2704                 if (unlikely(copied == 0)) {
2705                         /*
2706                          * If we were unable to copy any data at all, we must
2707                          * fall back to a single segment length write.
2708                          *
2709                          * If we didn't fallback here, we could livelock
2710                          * because not all segments in the iov can be copied at
2711                          * once without a pagefault.
2712                          */
2713                         bytes = min_t(unsigned long, PAGE_SIZE - offset,
2714                                                 iov_iter_single_seg_count(i));
2715                         goto again;
2716                 }
2717                 pos += copied;
2718                 written += copied;
2719
2720                 balance_dirty_pages_ratelimited(mapping);
2721         } while (iov_iter_count(i));
2722
2723         return written ? written : status;
2724 }
2725 EXPORT_SYMBOL(generic_perform_write);
2726
2727 /**
2728  * __generic_file_write_iter - write data to a file
2729  * @iocb:       IO state structure (file, offset, etc.)
2730  * @from:       iov_iter with data to write
2731  *
2732  * This function does all the work needed for actually writing data to a
2733  * file. It does all basic checks, removes SUID from the file, updates
2734  * modification times and calls proper subroutines depending on whether we
2735  * do direct IO or a standard buffered write.
2736  *
2737  * It expects i_mutex to be grabbed unless we work on a block device or similar
2738  * object which does not need locking at all.
2739  *
2740  * This function does *not* take care of syncing data in case of O_SYNC write.
2741  * A caller has to handle it. This is mainly due to the fact that we want to
2742  * avoid syncing under i_mutex.
2743  */
2744 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
2745 {
2746         struct file *file = iocb->ki_filp;
2747         struct address_space * mapping = file->f_mapping;
2748         struct inode    *inode = mapping->host;
2749         ssize_t         written = 0;
2750         ssize_t         err;
2751         ssize_t         status;
2752
2753         /* We can write back this queue in page reclaim */
2754         current->backing_dev_info = inode_to_bdi(inode);
2755         err = file_remove_privs(file);
2756         if (err)
2757                 goto out;
2758
2759         err = file_update_time(file);
2760         if (err)
2761                 goto out;
2762
2763         if (iocb->ki_flags & IOCB_DIRECT) {
2764                 loff_t pos, endbyte;
2765
2766                 written = generic_file_direct_write(iocb, from);
2767                 /*
2768                  * If the write stopped short of completing, fall back to
2769                  * buffered writes.  Some filesystems do this for writes to
2770                  * holes, for example.  For DAX files, a buffered write will
2771                  * not succeed (even if it did, DAX does not handle dirty
2772                  * page-cache pages correctly).
2773                  */
2774                 if (written < 0 || !iov_iter_count(from) || IS_DAX(inode))
2775                         goto out;
2776
2777                 status = generic_perform_write(file, from, pos = iocb->ki_pos);
2778                 /*
2779                  * If generic_perform_write() returned a synchronous error
2780                  * then we want to return the number of bytes which were
2781                  * direct-written, or the error code if that was zero.  Note
2782                  * that this differs from normal direct-io semantics, which
2783                  * will return -EFOO even if some bytes were written.
2784                  */
2785                 if (unlikely(status < 0)) {
2786                         err = status;
2787                         goto out;
2788                 }
2789                 /*
2790                  * We need to ensure that the page cache pages are written to
2791                  * disk and invalidated to preserve the expected O_DIRECT
2792                  * semantics.
2793                  */
2794                 endbyte = pos + status - 1;
2795                 err = filemap_write_and_wait_range(mapping, pos, endbyte);
2796                 if (err == 0) {
2797                         iocb->ki_pos = endbyte + 1;
2798                         written += status;
2799                         invalidate_mapping_pages(mapping,
2800                                                  pos >> PAGE_SHIFT,
2801                                                  endbyte >> PAGE_SHIFT);
2802                 } else {
2803                         /*
2804                          * We don't know how much we wrote, so just return
2805                          * the number of bytes which were direct-written
2806                          */
2807                 }
2808         } else {
2809                 written = generic_perform_write(file, from, iocb->ki_pos);
2810                 if (likely(written > 0))
2811                         iocb->ki_pos += written;
2812         }
2813 out:
2814         current->backing_dev_info = NULL;
2815         return written ? written : err;
2816 }
2817 EXPORT_SYMBOL(__generic_file_write_iter);
2818
2819 /**
2820  * generic_file_write_iter - write data to a file
2821  * @iocb:       IO state structure
2822  * @from:       iov_iter with data to write
2823  *
2824  * This is a wrapper around __generic_file_write_iter() to be used by most
2825  * filesystems. It takes care of syncing the file in case of O_SYNC file
2826  * and acquires i_mutex as needed.
2827  */
2828 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
2829 {
2830         struct file *file = iocb->ki_filp;
2831         struct inode *inode = file->f_mapping->host;
2832         ssize_t ret;
2833
2834         inode_lock(inode);
2835         ret = generic_write_checks(iocb, from);
2836         if (ret > 0)
2837                 ret = __generic_file_write_iter(iocb, from);
2838         inode_unlock(inode);
2839
2840         if (ret > 0)
2841                 ret = generic_write_sync(iocb, ret);
2842         return ret;
2843 }
2844 EXPORT_SYMBOL(generic_file_write_iter);
2845
2846 /**
2847  * try_to_release_page() - release old fs-specific metadata on a page
2848  *
2849  * @page: the page which the kernel is trying to free
2850  * @gfp_mask: memory allocation flags (and I/O mode)
2851  *
2852  * The address_space is to try to release any data against the page
2853  * (presumably at page->private).  If the release was successful, return `1'.
2854  * Otherwise return zero.
2855  *
2856  * This may also be called if PG_fscache is set on a page, indicating that the
2857  * page is known to the local caching routines.
2858  *
2859  * The @gfp_mask argument specifies whether I/O may be performed to release
2860  * this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS).
2861  *
2862  */
2863 int try_to_release_page(struct page *page, gfp_t gfp_mask)
2864 {
2865         struct address_space * const mapping = page->mapping;
2866
2867         BUG_ON(!PageLocked(page));
2868         if (PageWriteback(page))
2869                 return 0;
2870
2871         if (mapping && mapping->a_ops->releasepage)
2872                 return mapping->a_ops->releasepage(page, gfp_mask);
2873         return try_to_free_buffers(page);
2874 }
2875
2876 EXPORT_SYMBOL(try_to_release_page);