4 * Copyright (C) 1994-1999 Linus Torvalds
8 * This file handles the generic file mmap semantics used by
9 * most "normal" filesystems (but you don't /have/ to use this:
10 * the NFS filesystem used to do this differently, for example)
12 #include <linux/export.h>
13 #include <linux/compiler.h>
14 #include <linux/dax.h>
16 #include <linux/sched/signal.h>
17 #include <linux/uaccess.h>
18 #include <linux/capability.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/gfp.h>
22 #include <linux/swap.h>
23 #include <linux/mman.h>
24 #include <linux/pagemap.h>
25 #include <linux/file.h>
26 #include <linux/uio.h>
27 #include <linux/hash.h>
28 #include <linux/writeback.h>
29 #include <linux/backing-dev.h>
30 #include <linux/pagevec.h>
31 #include <linux/blkdev.h>
32 #include <linux/security.h>
33 #include <linux/cpuset.h>
34 #include <linux/hugetlb.h>
35 #include <linux/memcontrol.h>
36 #include <linux/cleancache.h>
37 #include <linux/shmem_fs.h>
38 #include <linux/rmap.h>
41 #define CREATE_TRACE_POINTS
42 #include <trace/events/filemap.h>
45 * FIXME: remove all knowledge of the buffer layer from the core VM
47 #include <linux/buffer_head.h> /* for try_to_free_buffers */
52 * Shared mappings implemented 30.11.1994. It's not fully working yet,
55 * Shared mappings now work. 15.8.1995 Bruno.
57 * finished 'unifying' the page and buffer cache and SMP-threaded the
58 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
60 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
66 * ->i_mmap_rwsem (truncate_pagecache)
67 * ->private_lock (__free_pte->__set_page_dirty_buffers)
68 * ->swap_lock (exclusive_swap_page, others)
72 * ->i_mmap_rwsem (truncate->unmap_mapping_range)
76 * ->page_table_lock or pte_lock (various, mainly in memory.c)
77 * ->i_pages lock (arch-dependent flush_dcache_mmap_lock)
80 * ->lock_page (access_process_vm)
82 * ->i_mutex (generic_perform_write)
83 * ->mmap_sem (fault_in_pages_readable->do_page_fault)
86 * sb_lock (fs/fs-writeback.c)
87 * ->i_pages lock (__sync_single_inode)
90 * ->anon_vma.lock (vma_adjust)
93 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
95 * ->page_table_lock or pte_lock
96 * ->swap_lock (try_to_unmap_one)
97 * ->private_lock (try_to_unmap_one)
98 * ->i_pages lock (try_to_unmap_one)
99 * ->zone_lru_lock(zone) (follow_page->mark_page_accessed)
100 * ->zone_lru_lock(zone) (check_pte_range->isolate_lru_page)
101 * ->private_lock (page_remove_rmap->set_page_dirty)
102 * ->i_pages lock (page_remove_rmap->set_page_dirty)
103 * bdi.wb->list_lock (page_remove_rmap->set_page_dirty)
104 * ->inode->i_lock (page_remove_rmap->set_page_dirty)
105 * ->memcg->move_lock (page_remove_rmap->lock_page_memcg)
106 * bdi.wb->list_lock (zap_pte_range->set_page_dirty)
107 * ->inode->i_lock (zap_pte_range->set_page_dirty)
108 * ->private_lock (zap_pte_range->__set_page_dirty_buffers)
111 * ->tasklist_lock (memory_failure, collect_procs_ao)
114 static int page_cache_tree_insert(struct address_space *mapping,
115 struct page *page, void **shadowp)
117 struct radix_tree_node *node;
121 error = __radix_tree_create(&mapping->i_pages, page->index, 0,
128 p = radix_tree_deref_slot_protected(slot,
129 &mapping->i_pages.xa_lock);
130 if (!radix_tree_exceptional_entry(p))
133 mapping->nrexceptional--;
137 __radix_tree_replace(&mapping->i_pages, node, slot, page,
138 workingset_lookup_update(mapping));
143 static void page_cache_tree_delete(struct address_space *mapping,
144 struct page *page, void *shadow)
148 /* hugetlb pages are represented by one entry in the radix tree */
149 nr = PageHuge(page) ? 1 : hpage_nr_pages(page);
151 VM_BUG_ON_PAGE(!PageLocked(page), page);
152 VM_BUG_ON_PAGE(PageTail(page), page);
153 VM_BUG_ON_PAGE(nr != 1 && shadow, page);
155 for (i = 0; i < nr; i++) {
156 struct radix_tree_node *node;
159 __radix_tree_lookup(&mapping->i_pages, page->index + i,
162 VM_BUG_ON_PAGE(!node && nr != 1, page);
164 radix_tree_clear_tags(&mapping->i_pages, node, slot);
165 __radix_tree_replace(&mapping->i_pages, node, slot, shadow,
166 workingset_lookup_update(mapping));
169 page->mapping = NULL;
170 /* Leave page->index set: truncation lookup relies upon it */
173 mapping->nrexceptional += nr;
175 * Make sure the nrexceptional update is committed before
176 * the nrpages update so that final truncate racing
177 * with reclaim does not see both counters 0 at the
178 * same time and miss a shadow entry.
182 mapping->nrpages -= nr;
185 static void unaccount_page_cache_page(struct address_space *mapping,
191 * if we're uptodate, flush out into the cleancache, otherwise
192 * invalidate any existing cleancache entries. We can't leave
193 * stale data around in the cleancache once our page is gone
195 if (PageUptodate(page) && PageMappedToDisk(page))
196 cleancache_put_page(page);
198 cleancache_invalidate_page(mapping, page);
200 VM_BUG_ON_PAGE(PageTail(page), page);
201 VM_BUG_ON_PAGE(page_mapped(page), page);
202 if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(page_mapped(page))) {
205 pr_alert("BUG: Bad page cache in process %s pfn:%05lx\n",
206 current->comm, page_to_pfn(page));
207 dump_page(page, "still mapped when deleted");
209 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
211 mapcount = page_mapcount(page);
212 if (mapping_exiting(mapping) &&
213 page_count(page) >= mapcount + 2) {
215 * All vmas have already been torn down, so it's
216 * a good bet that actually the page is unmapped,
217 * and we'd prefer not to leak it: if we're wrong,
218 * some other bad page check should catch it later.
220 page_mapcount_reset(page);
221 page_ref_sub(page, mapcount);
225 /* hugetlb pages do not participate in page cache accounting. */
229 nr = hpage_nr_pages(page);
231 __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, -nr);
232 if (PageSwapBacked(page)) {
233 __mod_node_page_state(page_pgdat(page), NR_SHMEM, -nr);
234 if (PageTransHuge(page))
235 __dec_node_page_state(page, NR_SHMEM_THPS);
237 VM_BUG_ON_PAGE(PageTransHuge(page), page);
241 * At this point page must be either written or cleaned by
242 * truncate. Dirty page here signals a bug and loss of
245 * This fixes dirty accounting after removing the page entirely
246 * but leaves PageDirty set: it has no effect for truncated
247 * page and anyway will be cleared before returning page into
250 if (WARN_ON_ONCE(PageDirty(page)))
251 account_page_cleaned(page, mapping, inode_to_wb(mapping->host));
255 * Delete a page from the page cache and free it. Caller has to make
256 * sure the page is locked and that nobody else uses it - or that usage
257 * is safe. The caller must hold the i_pages lock.
259 void __delete_from_page_cache(struct page *page, void *shadow)
261 struct address_space *mapping = page->mapping;
263 trace_mm_filemap_delete_from_page_cache(page);
265 unaccount_page_cache_page(mapping, page);
266 page_cache_tree_delete(mapping, page, shadow);
269 static void page_cache_free_page(struct address_space *mapping,
272 void (*freepage)(struct page *);
274 freepage = mapping->a_ops->freepage;
278 if (PageTransHuge(page) && !PageHuge(page)) {
279 page_ref_sub(page, HPAGE_PMD_NR);
280 VM_BUG_ON_PAGE(page_count(page) <= 0, page);
287 * delete_from_page_cache - delete page from page cache
288 * @page: the page which the kernel is trying to remove from page cache
290 * This must be called only on pages that have been verified to be in the page
291 * cache and locked. It will never put the page into the free list, the caller
292 * has a reference on the page.
294 void delete_from_page_cache(struct page *page)
296 struct address_space *mapping = page_mapping(page);
299 BUG_ON(!PageLocked(page));
300 xa_lock_irqsave(&mapping->i_pages, flags);
301 __delete_from_page_cache(page, NULL);
302 xa_unlock_irqrestore(&mapping->i_pages, flags);
304 page_cache_free_page(mapping, page);
306 EXPORT_SYMBOL(delete_from_page_cache);
309 * page_cache_tree_delete_batch - delete several pages from page cache
310 * @mapping: the mapping to which pages belong
311 * @pvec: pagevec with pages to delete
313 * The function walks over mapping->i_pages and removes pages passed in @pvec
314 * from the mapping. The function expects @pvec to be sorted by page index.
315 * It tolerates holes in @pvec (mapping entries at those indices are not
316 * modified). The function expects only THP head pages to be present in the
317 * @pvec and takes care to delete all corresponding tail pages from the
320 * The function expects the i_pages lock to be held.
323 page_cache_tree_delete_batch(struct address_space *mapping,
324 struct pagevec *pvec)
326 struct radix_tree_iter iter;
329 int i = 0, tail_pages = 0;
333 start = pvec->pages[0]->index;
334 radix_tree_for_each_slot(slot, &mapping->i_pages, &iter, start) {
335 if (i >= pagevec_count(pvec) && !tail_pages)
337 page = radix_tree_deref_slot_protected(slot,
338 &mapping->i_pages.xa_lock);
339 if (radix_tree_exceptional_entry(page))
343 * Some page got inserted in our range? Skip it. We
344 * have our pages locked so they are protected from
347 if (page != pvec->pages[i])
349 WARN_ON_ONCE(!PageLocked(page));
350 if (PageTransHuge(page) && !PageHuge(page))
351 tail_pages = HPAGE_PMD_NR - 1;
352 page->mapping = NULL;
354 * Leave page->index set: truncation lookup relies
361 radix_tree_clear_tags(&mapping->i_pages, iter.node, slot);
362 __radix_tree_replace(&mapping->i_pages, iter.node, slot, NULL,
363 workingset_lookup_update(mapping));
366 mapping->nrpages -= total_pages;
369 void delete_from_page_cache_batch(struct address_space *mapping,
370 struct pagevec *pvec)
375 if (!pagevec_count(pvec))
378 xa_lock_irqsave(&mapping->i_pages, flags);
379 for (i = 0; i < pagevec_count(pvec); i++) {
380 trace_mm_filemap_delete_from_page_cache(pvec->pages[i]);
382 unaccount_page_cache_page(mapping, pvec->pages[i]);
384 page_cache_tree_delete_batch(mapping, pvec);
385 xa_unlock_irqrestore(&mapping->i_pages, flags);
387 for (i = 0; i < pagevec_count(pvec); i++)
388 page_cache_free_page(mapping, pvec->pages[i]);
391 int filemap_check_errors(struct address_space *mapping)
394 /* Check for outstanding write errors */
395 if (test_bit(AS_ENOSPC, &mapping->flags) &&
396 test_and_clear_bit(AS_ENOSPC, &mapping->flags))
398 if (test_bit(AS_EIO, &mapping->flags) &&
399 test_and_clear_bit(AS_EIO, &mapping->flags))
403 EXPORT_SYMBOL(filemap_check_errors);
405 static int filemap_check_and_keep_errors(struct address_space *mapping)
407 /* Check for outstanding write errors */
408 if (test_bit(AS_EIO, &mapping->flags))
410 if (test_bit(AS_ENOSPC, &mapping->flags))
416 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
417 * @mapping: address space structure to write
418 * @start: offset in bytes where the range starts
419 * @end: offset in bytes where the range ends (inclusive)
420 * @sync_mode: enable synchronous operation
422 * Start writeback against all of a mapping's dirty pages that lie
423 * within the byte offsets <start, end> inclusive.
425 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
426 * opposed to a regular memory cleansing writeback. The difference between
427 * these two operations is that if a dirty page/buffer is encountered, it must
428 * be waited upon, and not just skipped over.
430 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
431 loff_t end, int sync_mode)
434 struct writeback_control wbc = {
435 .sync_mode = sync_mode,
436 .nr_to_write = LONG_MAX,
437 .range_start = start,
441 if (!mapping_cap_writeback_dirty(mapping))
444 wbc_attach_fdatawrite_inode(&wbc, mapping->host);
445 ret = do_writepages(mapping, &wbc);
446 wbc_detach_inode(&wbc);
450 static inline int __filemap_fdatawrite(struct address_space *mapping,
453 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
456 int filemap_fdatawrite(struct address_space *mapping)
458 return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
460 EXPORT_SYMBOL(filemap_fdatawrite);
462 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
465 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
467 EXPORT_SYMBOL(filemap_fdatawrite_range);
470 * filemap_flush - mostly a non-blocking flush
471 * @mapping: target address_space
473 * This is a mostly non-blocking flush. Not suitable for data-integrity
474 * purposes - I/O may not be started against all dirty pages.
476 int filemap_flush(struct address_space *mapping)
478 return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
480 EXPORT_SYMBOL(filemap_flush);
483 * filemap_range_has_page - check if a page exists in range.
484 * @mapping: address space within which to check
485 * @start_byte: offset in bytes where the range starts
486 * @end_byte: offset in bytes where the range ends (inclusive)
488 * Find at least one page in the range supplied, usually used to check if
489 * direct writing in this range will trigger a writeback.
491 bool filemap_range_has_page(struct address_space *mapping,
492 loff_t start_byte, loff_t end_byte)
494 pgoff_t index = start_byte >> PAGE_SHIFT;
495 pgoff_t end = end_byte >> PAGE_SHIFT;
498 if (end_byte < start_byte)
501 if (mapping->nrpages == 0)
504 if (!find_get_pages_range(mapping, &index, end, 1, &page))
509 EXPORT_SYMBOL(filemap_range_has_page);
511 static void __filemap_fdatawait_range(struct address_space *mapping,
512 loff_t start_byte, loff_t end_byte)
514 pgoff_t index = start_byte >> PAGE_SHIFT;
515 pgoff_t end = end_byte >> PAGE_SHIFT;
519 if (end_byte < start_byte)
523 while (index <= end) {
526 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index,
527 end, PAGECACHE_TAG_WRITEBACK);
531 for (i = 0; i < nr_pages; i++) {
532 struct page *page = pvec.pages[i];
534 wait_on_page_writeback(page);
535 ClearPageError(page);
537 pagevec_release(&pvec);
543 * filemap_fdatawait_range - wait for writeback to complete
544 * @mapping: address space structure to wait for
545 * @start_byte: offset in bytes where the range starts
546 * @end_byte: offset in bytes where the range ends (inclusive)
548 * Walk the list of under-writeback pages of the given address space
549 * in the given range and wait for all of them. Check error status of
550 * the address space and return it.
552 * Since the error status of the address space is cleared by this function,
553 * callers are responsible for checking the return value and handling and/or
554 * reporting the error.
556 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
559 __filemap_fdatawait_range(mapping, start_byte, end_byte);
560 return filemap_check_errors(mapping);
562 EXPORT_SYMBOL(filemap_fdatawait_range);
565 * file_fdatawait_range - wait for writeback to complete
566 * @file: file pointing to address space structure to wait for
567 * @start_byte: offset in bytes where the range starts
568 * @end_byte: offset in bytes where the range ends (inclusive)
570 * Walk the list of under-writeback pages of the address space that file
571 * refers to, in the given range and wait for all of them. Check error
572 * status of the address space vs. the file->f_wb_err cursor and return it.
574 * Since the error status of the file is advanced by this function,
575 * callers are responsible for checking the return value and handling and/or
576 * reporting the error.
578 int file_fdatawait_range(struct file *file, loff_t start_byte, loff_t end_byte)
580 struct address_space *mapping = file->f_mapping;
582 __filemap_fdatawait_range(mapping, start_byte, end_byte);
583 return file_check_and_advance_wb_err(file);
585 EXPORT_SYMBOL(file_fdatawait_range);
588 * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
589 * @mapping: address space structure to wait for
591 * Walk the list of under-writeback pages of the given address space
592 * and wait for all of them. Unlike filemap_fdatawait(), this function
593 * does not clear error status of the address space.
595 * Use this function if callers don't handle errors themselves. Expected
596 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
599 int filemap_fdatawait_keep_errors(struct address_space *mapping)
601 __filemap_fdatawait_range(mapping, 0, LLONG_MAX);
602 return filemap_check_and_keep_errors(mapping);
604 EXPORT_SYMBOL(filemap_fdatawait_keep_errors);
606 static bool mapping_needs_writeback(struct address_space *mapping)
608 return (!dax_mapping(mapping) && mapping->nrpages) ||
609 (dax_mapping(mapping) && mapping->nrexceptional);
612 int filemap_write_and_wait(struct address_space *mapping)
616 if (mapping_needs_writeback(mapping)) {
617 err = filemap_fdatawrite(mapping);
619 * Even if the above returned error, the pages may be
620 * written partially (e.g. -ENOSPC), so we wait for it.
621 * But the -EIO is special case, it may indicate the worst
622 * thing (e.g. bug) happened, so we avoid waiting for it.
625 int err2 = filemap_fdatawait(mapping);
629 /* Clear any previously stored errors */
630 filemap_check_errors(mapping);
633 err = filemap_check_errors(mapping);
637 EXPORT_SYMBOL(filemap_write_and_wait);
640 * filemap_write_and_wait_range - write out & wait on a file range
641 * @mapping: the address_space for the pages
642 * @lstart: offset in bytes where the range starts
643 * @lend: offset in bytes where the range ends (inclusive)
645 * Write out and wait upon file offsets lstart->lend, inclusive.
647 * Note that @lend is inclusive (describes the last byte to be written) so
648 * that this function can be used to write to the very end-of-file (end = -1).
650 int filemap_write_and_wait_range(struct address_space *mapping,
651 loff_t lstart, loff_t lend)
655 if (mapping_needs_writeback(mapping)) {
656 err = __filemap_fdatawrite_range(mapping, lstart, lend,
658 /* See comment of filemap_write_and_wait() */
660 int err2 = filemap_fdatawait_range(mapping,
665 /* Clear any previously stored errors */
666 filemap_check_errors(mapping);
669 err = filemap_check_errors(mapping);
673 EXPORT_SYMBOL(filemap_write_and_wait_range);
675 void __filemap_set_wb_err(struct address_space *mapping, int err)
677 errseq_t eseq = errseq_set(&mapping->wb_err, err);
679 trace_filemap_set_wb_err(mapping, eseq);
681 EXPORT_SYMBOL(__filemap_set_wb_err);
684 * file_check_and_advance_wb_err - report wb error (if any) that was previously
685 * and advance wb_err to current one
686 * @file: struct file on which the error is being reported
688 * When userland calls fsync (or something like nfsd does the equivalent), we
689 * want to report any writeback errors that occurred since the last fsync (or
690 * since the file was opened if there haven't been any).
692 * Grab the wb_err from the mapping. If it matches what we have in the file,
693 * then just quickly return 0. The file is all caught up.
695 * If it doesn't match, then take the mapping value, set the "seen" flag in
696 * it and try to swap it into place. If it works, or another task beat us
697 * to it with the new value, then update the f_wb_err and return the error
698 * portion. The error at this point must be reported via proper channels
699 * (a'la fsync, or NFS COMMIT operation, etc.).
701 * While we handle mapping->wb_err with atomic operations, the f_wb_err
702 * value is protected by the f_lock since we must ensure that it reflects
703 * the latest value swapped in for this file descriptor.
705 int file_check_and_advance_wb_err(struct file *file)
708 errseq_t old = READ_ONCE(file->f_wb_err);
709 struct address_space *mapping = file->f_mapping;
711 /* Locklessly handle the common case where nothing has changed */
712 if (errseq_check(&mapping->wb_err, old)) {
713 /* Something changed, must use slow path */
714 spin_lock(&file->f_lock);
715 old = file->f_wb_err;
716 err = errseq_check_and_advance(&mapping->wb_err,
718 trace_file_check_and_advance_wb_err(file, old);
719 spin_unlock(&file->f_lock);
723 * We're mostly using this function as a drop in replacement for
724 * filemap_check_errors. Clear AS_EIO/AS_ENOSPC to emulate the effect
725 * that the legacy code would have had on these flags.
727 clear_bit(AS_EIO, &mapping->flags);
728 clear_bit(AS_ENOSPC, &mapping->flags);
731 EXPORT_SYMBOL(file_check_and_advance_wb_err);
734 * file_write_and_wait_range - write out & wait on a file range
735 * @file: file pointing to address_space with pages
736 * @lstart: offset in bytes where the range starts
737 * @lend: offset in bytes where the range ends (inclusive)
739 * Write out and wait upon file offsets lstart->lend, inclusive.
741 * Note that @lend is inclusive (describes the last byte to be written) so
742 * that this function can be used to write to the very end-of-file (end = -1).
744 * After writing out and waiting on the data, we check and advance the
745 * f_wb_err cursor to the latest value, and return any errors detected there.
747 int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend)
750 struct address_space *mapping = file->f_mapping;
752 if (mapping_needs_writeback(mapping)) {
753 err = __filemap_fdatawrite_range(mapping, lstart, lend,
755 /* See comment of filemap_write_and_wait() */
757 __filemap_fdatawait_range(mapping, lstart, lend);
759 err2 = file_check_and_advance_wb_err(file);
764 EXPORT_SYMBOL(file_write_and_wait_range);
767 * replace_page_cache_page - replace a pagecache page with a new one
768 * @old: page to be replaced
769 * @new: page to replace with
770 * @gfp_mask: allocation mode
772 * This function replaces a page in the pagecache with a new one. On
773 * success it acquires the pagecache reference for the new page and
774 * drops it for the old page. Both the old and new pages must be
775 * locked. This function does not add the new page to the LRU, the
776 * caller must do that.
778 * The remove + add is atomic. The only way this function can fail is
779 * memory allocation failure.
781 int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
785 VM_BUG_ON_PAGE(!PageLocked(old), old);
786 VM_BUG_ON_PAGE(!PageLocked(new), new);
787 VM_BUG_ON_PAGE(new->mapping, new);
789 error = radix_tree_preload(gfp_mask & GFP_RECLAIM_MASK);
791 struct address_space *mapping = old->mapping;
792 void (*freepage)(struct page *);
795 pgoff_t offset = old->index;
796 freepage = mapping->a_ops->freepage;
799 new->mapping = mapping;
802 xa_lock_irqsave(&mapping->i_pages, flags);
803 __delete_from_page_cache(old, NULL);
804 error = page_cache_tree_insert(mapping, new, NULL);
808 * hugetlb pages do not participate in page cache accounting.
811 __inc_node_page_state(new, NR_FILE_PAGES);
812 if (PageSwapBacked(new))
813 __inc_node_page_state(new, NR_SHMEM);
814 xa_unlock_irqrestore(&mapping->i_pages, flags);
815 mem_cgroup_migrate(old, new);
816 radix_tree_preload_end();
824 EXPORT_SYMBOL_GPL(replace_page_cache_page);
826 static int __add_to_page_cache_locked(struct page *page,
827 struct address_space *mapping,
828 pgoff_t offset, gfp_t gfp_mask,
831 int huge = PageHuge(page);
832 struct mem_cgroup *memcg;
835 VM_BUG_ON_PAGE(!PageLocked(page), page);
836 VM_BUG_ON_PAGE(PageSwapBacked(page), page);
839 error = mem_cgroup_try_charge(page, current->mm,
840 gfp_mask, &memcg, false);
845 error = radix_tree_maybe_preload(gfp_mask & GFP_RECLAIM_MASK);
848 mem_cgroup_cancel_charge(page, memcg, false);
853 page->mapping = mapping;
854 page->index = offset;
856 xa_lock_irq(&mapping->i_pages);
857 error = page_cache_tree_insert(mapping, page, shadowp);
858 radix_tree_preload_end();
862 /* hugetlb pages do not participate in page cache accounting. */
864 __inc_node_page_state(page, NR_FILE_PAGES);
865 xa_unlock_irq(&mapping->i_pages);
867 mem_cgroup_commit_charge(page, memcg, false, false);
868 trace_mm_filemap_add_to_page_cache(page);
871 page->mapping = NULL;
872 /* Leave page->index set: truncation relies upon it */
873 xa_unlock_irq(&mapping->i_pages);
875 mem_cgroup_cancel_charge(page, memcg, false);
881 * add_to_page_cache_locked - add a locked page to the pagecache
883 * @mapping: the page's address_space
884 * @offset: page index
885 * @gfp_mask: page allocation mode
887 * This function is used to add a page to the pagecache. It must be locked.
888 * This function does not add the page to the LRU. The caller must do that.
890 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
891 pgoff_t offset, gfp_t gfp_mask)
893 return __add_to_page_cache_locked(page, mapping, offset,
896 EXPORT_SYMBOL(add_to_page_cache_locked);
898 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
899 pgoff_t offset, gfp_t gfp_mask)
904 __SetPageLocked(page);
905 ret = __add_to_page_cache_locked(page, mapping, offset,
908 __ClearPageLocked(page);
911 * The page might have been evicted from cache only
912 * recently, in which case it should be activated like
913 * any other repeatedly accessed page.
914 * The exception is pages getting rewritten; evicting other
915 * data from the working set, only to cache data that will
916 * get overwritten with something else, is a waste of memory.
918 if (!(gfp_mask & __GFP_WRITE) &&
919 shadow && workingset_refault(shadow)) {
921 workingset_activation(page);
923 ClearPageActive(page);
928 EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
931 struct page *__page_cache_alloc(gfp_t gfp)
936 if (cpuset_do_page_mem_spread()) {
937 unsigned int cpuset_mems_cookie;
939 cpuset_mems_cookie = read_mems_allowed_begin();
940 n = cpuset_mem_spread_node();
941 page = __alloc_pages_node(n, gfp, 0);
942 } while (!page && read_mems_allowed_retry(cpuset_mems_cookie));
946 return alloc_pages(gfp, 0);
948 EXPORT_SYMBOL(__page_cache_alloc);
952 * In order to wait for pages to become available there must be
953 * waitqueues associated with pages. By using a hash table of
954 * waitqueues where the bucket discipline is to maintain all
955 * waiters on the same queue and wake all when any of the pages
956 * become available, and for the woken contexts to check to be
957 * sure the appropriate page became available, this saves space
958 * at a cost of "thundering herd" phenomena during rare hash
961 #define PAGE_WAIT_TABLE_BITS 8
962 #define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS)
963 static wait_queue_head_t page_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned;
965 static wait_queue_head_t *page_waitqueue(struct page *page)
967 return &page_wait_table[hash_ptr(page, PAGE_WAIT_TABLE_BITS)];
970 void __init pagecache_init(void)
974 for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++)
975 init_waitqueue_head(&page_wait_table[i]);
977 page_writeback_init();
980 /* This has the same layout as wait_bit_key - see fs/cachefiles/rdwr.c */
981 struct wait_page_key {
987 struct wait_page_queue {
990 wait_queue_entry_t wait;
993 static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg)
995 struct wait_page_key *key = arg;
996 struct wait_page_queue *wait_page
997 = container_of(wait, struct wait_page_queue, wait);
999 if (wait_page->page != key->page)
1001 key->page_match = 1;
1003 if (wait_page->bit_nr != key->bit_nr)
1006 /* Stop walking if it's locked */
1007 if (test_bit(key->bit_nr, &key->page->flags))
1010 return autoremove_wake_function(wait, mode, sync, key);
1013 static void wake_up_page_bit(struct page *page, int bit_nr)
1015 wait_queue_head_t *q = page_waitqueue(page);
1016 struct wait_page_key key;
1017 unsigned long flags;
1018 wait_queue_entry_t bookmark;
1021 key.bit_nr = bit_nr;
1025 bookmark.private = NULL;
1026 bookmark.func = NULL;
1027 INIT_LIST_HEAD(&bookmark.entry);
1029 spin_lock_irqsave(&q->lock, flags);
1030 __wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
1032 while (bookmark.flags & WQ_FLAG_BOOKMARK) {
1034 * Take a breather from holding the lock,
1035 * allow pages that finish wake up asynchronously
1036 * to acquire the lock and remove themselves
1039 spin_unlock_irqrestore(&q->lock, flags);
1041 spin_lock_irqsave(&q->lock, flags);
1042 __wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
1046 * It is possible for other pages to have collided on the waitqueue
1047 * hash, so in that case check for a page match. That prevents a long-
1050 * It is still possible to miss a case here, when we woke page waiters
1051 * and removed them from the waitqueue, but there are still other
1054 if (!waitqueue_active(q) || !key.page_match) {
1055 ClearPageWaiters(page);
1057 * It's possible to miss clearing Waiters here, when we woke
1058 * our page waiters, but the hashed waitqueue has waiters for
1059 * other pages on it.
1061 * That's okay, it's a rare case. The next waker will clear it.
1064 spin_unlock_irqrestore(&q->lock, flags);
1067 static void wake_up_page(struct page *page, int bit)
1069 if (!PageWaiters(page))
1071 wake_up_page_bit(page, bit);
1074 static inline int wait_on_page_bit_common(wait_queue_head_t *q,
1075 struct page *page, int bit_nr, int state, bool lock)
1077 struct wait_page_queue wait_page;
1078 wait_queue_entry_t *wait = &wait_page.wait;
1082 wait->flags = lock ? WQ_FLAG_EXCLUSIVE : 0;
1083 wait->func = wake_page_function;
1084 wait_page.page = page;
1085 wait_page.bit_nr = bit_nr;
1088 spin_lock_irq(&q->lock);
1090 if (likely(list_empty(&wait->entry))) {
1091 __add_wait_queue_entry_tail(q, wait);
1092 SetPageWaiters(page);
1095 set_current_state(state);
1097 spin_unlock_irq(&q->lock);
1099 if (likely(test_bit(bit_nr, &page->flags))) {
1104 if (!test_and_set_bit_lock(bit_nr, &page->flags))
1107 if (!test_bit(bit_nr, &page->flags))
1111 if (unlikely(signal_pending_state(state, current))) {
1117 finish_wait(q, wait);
1120 * A signal could leave PageWaiters set. Clearing it here if
1121 * !waitqueue_active would be possible (by open-coding finish_wait),
1122 * but still fail to catch it in the case of wait hash collision. We
1123 * already can fail to clear wait hash collision cases, so don't
1124 * bother with signals either.
1130 void wait_on_page_bit(struct page *page, int bit_nr)
1132 wait_queue_head_t *q = page_waitqueue(page);
1133 wait_on_page_bit_common(q, page, bit_nr, TASK_UNINTERRUPTIBLE, false);
1135 EXPORT_SYMBOL(wait_on_page_bit);
1137 int wait_on_page_bit_killable(struct page *page, int bit_nr)
1139 wait_queue_head_t *q = page_waitqueue(page);
1140 return wait_on_page_bit_common(q, page, bit_nr, TASK_KILLABLE, false);
1142 EXPORT_SYMBOL(wait_on_page_bit_killable);
1145 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
1146 * @page: Page defining the wait queue of interest
1147 * @waiter: Waiter to add to the queue
1149 * Add an arbitrary @waiter to the wait queue for the nominated @page.
1151 void add_page_wait_queue(struct page *page, wait_queue_entry_t *waiter)
1153 wait_queue_head_t *q = page_waitqueue(page);
1154 unsigned long flags;
1156 spin_lock_irqsave(&q->lock, flags);
1157 __add_wait_queue_entry_tail(q, waiter);
1158 SetPageWaiters(page);
1159 spin_unlock_irqrestore(&q->lock, flags);
1161 EXPORT_SYMBOL_GPL(add_page_wait_queue);
1163 #ifndef clear_bit_unlock_is_negative_byte
1166 * PG_waiters is the high bit in the same byte as PG_lock.
1168 * On x86 (and on many other architectures), we can clear PG_lock and
1169 * test the sign bit at the same time. But if the architecture does
1170 * not support that special operation, we just do this all by hand
1173 * The read of PG_waiters has to be after (or concurrently with) PG_locked
1174 * being cleared, but a memory barrier should be unneccssary since it is
1175 * in the same byte as PG_locked.
1177 static inline bool clear_bit_unlock_is_negative_byte(long nr, volatile void *mem)
1179 clear_bit_unlock(nr, mem);
1180 /* smp_mb__after_atomic(); */
1181 return test_bit(PG_waiters, mem);
1187 * unlock_page - unlock a locked page
1190 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
1191 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
1192 * mechanism between PageLocked pages and PageWriteback pages is shared.
1193 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
1195 * Note that this depends on PG_waiters being the sign bit in the byte
1196 * that contains PG_locked - thus the BUILD_BUG_ON(). That allows us to
1197 * clear the PG_locked bit and test PG_waiters at the same time fairly
1198 * portably (architectures that do LL/SC can test any bit, while x86 can
1199 * test the sign bit).
1201 void unlock_page(struct page *page)
1203 BUILD_BUG_ON(PG_waiters != 7);
1204 page = compound_head(page);
1205 VM_BUG_ON_PAGE(!PageLocked(page), page);
1206 if (clear_bit_unlock_is_negative_byte(PG_locked, &page->flags))
1207 wake_up_page_bit(page, PG_locked);
1209 EXPORT_SYMBOL(unlock_page);
1212 * end_page_writeback - end writeback against a page
1215 void end_page_writeback(struct page *page)
1218 * TestClearPageReclaim could be used here but it is an atomic
1219 * operation and overkill in this particular case. Failing to
1220 * shuffle a page marked for immediate reclaim is too mild to
1221 * justify taking an atomic operation penalty at the end of
1222 * ever page writeback.
1224 if (PageReclaim(page)) {
1225 ClearPageReclaim(page);
1226 rotate_reclaimable_page(page);
1229 if (!test_clear_page_writeback(page))
1232 smp_mb__after_atomic();
1233 wake_up_page(page, PG_writeback);
1235 EXPORT_SYMBOL(end_page_writeback);
1238 * After completing I/O on a page, call this routine to update the page
1239 * flags appropriately
1241 void page_endio(struct page *page, bool is_write, int err)
1245 SetPageUptodate(page);
1247 ClearPageUptodate(page);
1253 struct address_space *mapping;
1256 mapping = page_mapping(page);
1258 mapping_set_error(mapping, err);
1260 end_page_writeback(page);
1263 EXPORT_SYMBOL_GPL(page_endio);
1266 * __lock_page - get a lock on the page, assuming we need to sleep to get it
1267 * @__page: the page to lock
1269 void __lock_page(struct page *__page)
1271 struct page *page = compound_head(__page);
1272 wait_queue_head_t *q = page_waitqueue(page);
1273 wait_on_page_bit_common(q, page, PG_locked, TASK_UNINTERRUPTIBLE, true);
1275 EXPORT_SYMBOL(__lock_page);
1277 int __lock_page_killable(struct page *__page)
1279 struct page *page = compound_head(__page);
1280 wait_queue_head_t *q = page_waitqueue(page);
1281 return wait_on_page_bit_common(q, page, PG_locked, TASK_KILLABLE, true);
1283 EXPORT_SYMBOL_GPL(__lock_page_killable);
1287 * 1 - page is locked; mmap_sem is still held.
1288 * 0 - page is not locked.
1289 * mmap_sem has been released (up_read()), unless flags had both
1290 * FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
1291 * which case mmap_sem is still held.
1293 * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1
1294 * with the page locked and the mmap_sem unperturbed.
1296 int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
1299 if (flags & FAULT_FLAG_ALLOW_RETRY) {
1301 * CAUTION! In this case, mmap_sem is not released
1302 * even though return 0.
1304 if (flags & FAULT_FLAG_RETRY_NOWAIT)
1307 up_read(&mm->mmap_sem);
1308 if (flags & FAULT_FLAG_KILLABLE)
1309 wait_on_page_locked_killable(page);
1311 wait_on_page_locked(page);
1314 if (flags & FAULT_FLAG_KILLABLE) {
1317 ret = __lock_page_killable(page);
1319 up_read(&mm->mmap_sem);
1329 * page_cache_next_hole - find the next hole (not-present entry)
1332 * @max_scan: maximum range to search
1334 * Search the set [index, min(index+max_scan-1, MAX_INDEX)] for the
1335 * lowest indexed hole.
1337 * Returns: the index of the hole if found, otherwise returns an index
1338 * outside of the set specified (in which case 'return - index >=
1339 * max_scan' will be true). In rare cases of index wrap-around, 0 will
1342 * page_cache_next_hole may be called under rcu_read_lock. However,
1343 * like radix_tree_gang_lookup, this will not atomically search a
1344 * snapshot of the tree at a single point in time. For example, if a
1345 * hole is created at index 5, then subsequently a hole is created at
1346 * index 10, page_cache_next_hole covering both indexes may return 10
1347 * if called under rcu_read_lock.
1349 pgoff_t page_cache_next_hole(struct address_space *mapping,
1350 pgoff_t index, unsigned long max_scan)
1354 for (i = 0; i < max_scan; i++) {
1357 page = radix_tree_lookup(&mapping->i_pages, index);
1358 if (!page || radix_tree_exceptional_entry(page))
1367 EXPORT_SYMBOL(page_cache_next_hole);
1370 * page_cache_prev_hole - find the prev hole (not-present entry)
1373 * @max_scan: maximum range to search
1375 * Search backwards in the range [max(index-max_scan+1, 0), index] for
1378 * Returns: the index of the hole if found, otherwise returns an index
1379 * outside of the set specified (in which case 'index - return >=
1380 * max_scan' will be true). In rare cases of wrap-around, ULONG_MAX
1383 * page_cache_prev_hole may be called under rcu_read_lock. However,
1384 * like radix_tree_gang_lookup, this will not atomically search a
1385 * snapshot of the tree at a single point in time. For example, if a
1386 * hole is created at index 10, then subsequently a hole is created at
1387 * index 5, page_cache_prev_hole covering both indexes may return 5 if
1388 * called under rcu_read_lock.
1390 pgoff_t page_cache_prev_hole(struct address_space *mapping,
1391 pgoff_t index, unsigned long max_scan)
1395 for (i = 0; i < max_scan; i++) {
1398 page = radix_tree_lookup(&mapping->i_pages, index);
1399 if (!page || radix_tree_exceptional_entry(page))
1402 if (index == ULONG_MAX)
1408 EXPORT_SYMBOL(page_cache_prev_hole);
1411 * find_get_entry - find and get a page cache entry
1412 * @mapping: the address_space to search
1413 * @offset: the page cache index
1415 * Looks up the page cache slot at @mapping & @offset. If there is a
1416 * page cache page, it is returned with an increased refcount.
1418 * If the slot holds a shadow entry of a previously evicted page, or a
1419 * swap entry from shmem/tmpfs, it is returned.
1421 * Otherwise, %NULL is returned.
1423 struct page *find_get_entry(struct address_space *mapping, pgoff_t offset)
1426 struct page *head, *page;
1431 pagep = radix_tree_lookup_slot(&mapping->i_pages, offset);
1433 page = radix_tree_deref_slot(pagep);
1434 if (unlikely(!page))
1436 if (radix_tree_exception(page)) {
1437 if (radix_tree_deref_retry(page))
1440 * A shadow entry of a recently evicted page,
1441 * or a swap entry from shmem/tmpfs. Return
1442 * it without attempting to raise page count.
1447 head = compound_head(page);
1448 if (!page_cache_get_speculative(head))
1451 /* The page was split under us? */
1452 if (compound_head(page) != head) {
1458 * Has the page moved?
1459 * This is part of the lockless pagecache protocol. See
1460 * include/linux/pagemap.h for details.
1462 if (unlikely(page != *pagep)) {
1472 EXPORT_SYMBOL(find_get_entry);
1475 * find_lock_entry - locate, pin and lock a page cache entry
1476 * @mapping: the address_space to search
1477 * @offset: the page cache index
1479 * Looks up the page cache slot at @mapping & @offset. If there is a
1480 * page cache page, it is returned locked and with an increased
1483 * If the slot holds a shadow entry of a previously evicted page, or a
1484 * swap entry from shmem/tmpfs, it is returned.
1486 * Otherwise, %NULL is returned.
1488 * find_lock_entry() may sleep.
1490 struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset)
1495 page = find_get_entry(mapping, offset);
1496 if (page && !radix_tree_exception(page)) {
1498 /* Has the page been truncated? */
1499 if (unlikely(page_mapping(page) != mapping)) {
1504 VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page);
1508 EXPORT_SYMBOL(find_lock_entry);
1511 * pagecache_get_page - find and get a page reference
1512 * @mapping: the address_space to search
1513 * @offset: the page index
1514 * @fgp_flags: PCG flags
1515 * @gfp_mask: gfp mask to use for the page cache data page allocation
1517 * Looks up the page cache slot at @mapping & @offset.
1519 * PCG flags modify how the page is returned.
1521 * @fgp_flags can be:
1523 * - FGP_ACCESSED: the page will be marked accessed
1524 * - FGP_LOCK: Page is return locked
1525 * - FGP_CREAT: If page is not present then a new page is allocated using
1526 * @gfp_mask and added to the page cache and the VM's LRU
1527 * list. The page is returned locked and with an increased
1528 * refcount. Otherwise, NULL is returned.
1530 * If FGP_LOCK or FGP_CREAT are specified then the function may sleep even
1531 * if the GFP flags specified for FGP_CREAT are atomic.
1533 * If there is a page cache page, it is returned with an increased refcount.
1535 struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset,
1536 int fgp_flags, gfp_t gfp_mask)
1541 page = find_get_entry(mapping, offset);
1542 if (radix_tree_exceptional_entry(page))
1547 if (fgp_flags & FGP_LOCK) {
1548 if (fgp_flags & FGP_NOWAIT) {
1549 if (!trylock_page(page)) {
1557 /* Has the page been truncated? */
1558 if (unlikely(page->mapping != mapping)) {
1563 VM_BUG_ON_PAGE(page->index != offset, page);
1566 if (page && (fgp_flags & FGP_ACCESSED))
1567 mark_page_accessed(page);
1570 if (!page && (fgp_flags & FGP_CREAT)) {
1572 if ((fgp_flags & FGP_WRITE) && mapping_cap_account_dirty(mapping))
1573 gfp_mask |= __GFP_WRITE;
1574 if (fgp_flags & FGP_NOFS)
1575 gfp_mask &= ~__GFP_FS;
1577 page = __page_cache_alloc(gfp_mask);
1581 if (WARN_ON_ONCE(!(fgp_flags & FGP_LOCK)))
1582 fgp_flags |= FGP_LOCK;
1584 /* Init accessed so avoid atomic mark_page_accessed later */
1585 if (fgp_flags & FGP_ACCESSED)
1586 __SetPageReferenced(page);
1588 err = add_to_page_cache_lru(page, mapping, offset, gfp_mask);
1589 if (unlikely(err)) {
1599 EXPORT_SYMBOL(pagecache_get_page);
1602 * find_get_entries - gang pagecache lookup
1603 * @mapping: The address_space to search
1604 * @start: The starting page cache index
1605 * @nr_entries: The maximum number of entries
1606 * @entries: Where the resulting entries are placed
1607 * @indices: The cache indices corresponding to the entries in @entries
1609 * find_get_entries() will search for and return a group of up to
1610 * @nr_entries entries in the mapping. The entries are placed at
1611 * @entries. find_get_entries() takes a reference against any actual
1614 * The search returns a group of mapping-contiguous page cache entries
1615 * with ascending indexes. There may be holes in the indices due to
1616 * not-present pages.
1618 * Any shadow entries of evicted pages, or swap entries from
1619 * shmem/tmpfs, are included in the returned array.
1621 * find_get_entries() returns the number of pages and shadow entries
1624 unsigned find_get_entries(struct address_space *mapping,
1625 pgoff_t start, unsigned int nr_entries,
1626 struct page **entries, pgoff_t *indices)
1629 unsigned int ret = 0;
1630 struct radix_tree_iter iter;
1636 radix_tree_for_each_slot(slot, &mapping->i_pages, &iter, start) {
1637 struct page *head, *page;
1639 page = radix_tree_deref_slot(slot);
1640 if (unlikely(!page))
1642 if (radix_tree_exception(page)) {
1643 if (radix_tree_deref_retry(page)) {
1644 slot = radix_tree_iter_retry(&iter);
1648 * A shadow entry of a recently evicted page, a swap
1649 * entry from shmem/tmpfs or a DAX entry. Return it
1650 * without attempting to raise page count.
1655 head = compound_head(page);
1656 if (!page_cache_get_speculative(head))
1659 /* The page was split under us? */
1660 if (compound_head(page) != head) {
1665 /* Has the page moved? */
1666 if (unlikely(page != *slot)) {
1671 indices[ret] = iter.index;
1672 entries[ret] = page;
1673 if (++ret == nr_entries)
1681 * find_get_pages_range - gang pagecache lookup
1682 * @mapping: The address_space to search
1683 * @start: The starting page index
1684 * @end: The final page index (inclusive)
1685 * @nr_pages: The maximum number of pages
1686 * @pages: Where the resulting pages are placed
1688 * find_get_pages_range() will search for and return a group of up to @nr_pages
1689 * pages in the mapping starting at index @start and up to index @end
1690 * (inclusive). The pages are placed at @pages. find_get_pages_range() takes
1691 * a reference against the returned pages.
1693 * The search returns a group of mapping-contiguous pages with ascending
1694 * indexes. There may be holes in the indices due to not-present pages.
1695 * We also update @start to index the next page for the traversal.
1697 * find_get_pages_range() returns the number of pages which were found. If this
1698 * number is smaller than @nr_pages, the end of specified range has been
1701 unsigned find_get_pages_range(struct address_space *mapping, pgoff_t *start,
1702 pgoff_t end, unsigned int nr_pages,
1703 struct page **pages)
1705 struct radix_tree_iter iter;
1709 if (unlikely(!nr_pages))
1713 radix_tree_for_each_slot(slot, &mapping->i_pages, &iter, *start) {
1714 struct page *head, *page;
1716 if (iter.index > end)
1719 page = radix_tree_deref_slot(slot);
1720 if (unlikely(!page))
1723 if (radix_tree_exception(page)) {
1724 if (radix_tree_deref_retry(page)) {
1725 slot = radix_tree_iter_retry(&iter);
1729 * A shadow entry of a recently evicted page,
1730 * or a swap entry from shmem/tmpfs. Skip
1736 head = compound_head(page);
1737 if (!page_cache_get_speculative(head))
1740 /* The page was split under us? */
1741 if (compound_head(page) != head) {
1746 /* Has the page moved? */
1747 if (unlikely(page != *slot)) {
1753 if (++ret == nr_pages) {
1754 *start = pages[ret - 1]->index + 1;
1760 * We come here when there is no page beyond @end. We take care to not
1761 * overflow the index @start as it confuses some of the callers. This
1762 * breaks the iteration when there is page at index -1 but that is
1763 * already broken anyway.
1765 if (end == (pgoff_t)-1)
1766 *start = (pgoff_t)-1;
1776 * find_get_pages_contig - gang contiguous pagecache lookup
1777 * @mapping: The address_space to search
1778 * @index: The starting page index
1779 * @nr_pages: The maximum number of pages
1780 * @pages: Where the resulting pages are placed
1782 * find_get_pages_contig() works exactly like find_get_pages(), except
1783 * that the returned number of pages are guaranteed to be contiguous.
1785 * find_get_pages_contig() returns the number of pages which were found.
1787 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
1788 unsigned int nr_pages, struct page **pages)
1790 struct radix_tree_iter iter;
1792 unsigned int ret = 0;
1794 if (unlikely(!nr_pages))
1798 radix_tree_for_each_contig(slot, &mapping->i_pages, &iter, index) {
1799 struct page *head, *page;
1801 page = radix_tree_deref_slot(slot);
1802 /* The hole, there no reason to continue */
1803 if (unlikely(!page))
1806 if (radix_tree_exception(page)) {
1807 if (radix_tree_deref_retry(page)) {
1808 slot = radix_tree_iter_retry(&iter);
1812 * A shadow entry of a recently evicted page,
1813 * or a swap entry from shmem/tmpfs. Stop
1814 * looking for contiguous pages.
1819 head = compound_head(page);
1820 if (!page_cache_get_speculative(head))
1823 /* The page was split under us? */
1824 if (compound_head(page) != head) {
1829 /* Has the page moved? */
1830 if (unlikely(page != *slot)) {
1836 * must check mapping and index after taking the ref.
1837 * otherwise we can get both false positives and false
1838 * negatives, which is just confusing to the caller.
1840 if (page->mapping == NULL || page_to_pgoff(page) != iter.index) {
1846 if (++ret == nr_pages)
1852 EXPORT_SYMBOL(find_get_pages_contig);
1855 * find_get_pages_range_tag - find and return pages in given range matching @tag
1856 * @mapping: the address_space to search
1857 * @index: the starting page index
1858 * @end: The final page index (inclusive)
1859 * @tag: the tag index
1860 * @nr_pages: the maximum number of pages
1861 * @pages: where the resulting pages are placed
1863 * Like find_get_pages, except we only return pages which are tagged with
1864 * @tag. We update @index to index the next page for the traversal.
1866 unsigned find_get_pages_range_tag(struct address_space *mapping, pgoff_t *index,
1867 pgoff_t end, int tag, unsigned int nr_pages,
1868 struct page **pages)
1870 struct radix_tree_iter iter;
1874 if (unlikely(!nr_pages))
1878 radix_tree_for_each_tagged(slot, &mapping->i_pages, &iter, *index, tag) {
1879 struct page *head, *page;
1881 if (iter.index > end)
1884 page = radix_tree_deref_slot(slot);
1885 if (unlikely(!page))
1888 if (radix_tree_exception(page)) {
1889 if (radix_tree_deref_retry(page)) {
1890 slot = radix_tree_iter_retry(&iter);
1894 * A shadow entry of a recently evicted page.
1896 * Those entries should never be tagged, but
1897 * this tree walk is lockless and the tags are
1898 * looked up in bulk, one radix tree node at a
1899 * time, so there is a sizable window for page
1900 * reclaim to evict a page we saw tagged.
1907 head = compound_head(page);
1908 if (!page_cache_get_speculative(head))
1911 /* The page was split under us? */
1912 if (compound_head(page) != head) {
1917 /* Has the page moved? */
1918 if (unlikely(page != *slot)) {
1924 if (++ret == nr_pages) {
1925 *index = pages[ret - 1]->index + 1;
1931 * We come here when we got at @end. We take care to not overflow the
1932 * index @index as it confuses some of the callers. This breaks the
1933 * iteration when there is page at index -1 but that is already broken
1936 if (end == (pgoff_t)-1)
1937 *index = (pgoff_t)-1;
1945 EXPORT_SYMBOL(find_get_pages_range_tag);
1948 * find_get_entries_tag - find and return entries that match @tag
1949 * @mapping: the address_space to search
1950 * @start: the starting page cache index
1951 * @tag: the tag index
1952 * @nr_entries: the maximum number of entries
1953 * @entries: where the resulting entries are placed
1954 * @indices: the cache indices corresponding to the entries in @entries
1956 * Like find_get_entries, except we only return entries which are tagged with
1959 unsigned find_get_entries_tag(struct address_space *mapping, pgoff_t start,
1960 int tag, unsigned int nr_entries,
1961 struct page **entries, pgoff_t *indices)
1964 unsigned int ret = 0;
1965 struct radix_tree_iter iter;
1971 radix_tree_for_each_tagged(slot, &mapping->i_pages, &iter, start, tag) {
1972 struct page *head, *page;
1974 page = radix_tree_deref_slot(slot);
1975 if (unlikely(!page))
1977 if (radix_tree_exception(page)) {
1978 if (radix_tree_deref_retry(page)) {
1979 slot = radix_tree_iter_retry(&iter);
1984 * A shadow entry of a recently evicted page, a swap
1985 * entry from shmem/tmpfs or a DAX entry. Return it
1986 * without attempting to raise page count.
1991 head = compound_head(page);
1992 if (!page_cache_get_speculative(head))
1995 /* The page was split under us? */
1996 if (compound_head(page) != head) {
2001 /* Has the page moved? */
2002 if (unlikely(page != *slot)) {
2007 indices[ret] = iter.index;
2008 entries[ret] = page;
2009 if (++ret == nr_entries)
2015 EXPORT_SYMBOL(find_get_entries_tag);
2018 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
2019 * a _large_ part of the i/o request. Imagine the worst scenario:
2021 * ---R__________________________________________B__________
2022 * ^ reading here ^ bad block(assume 4k)
2024 * read(R) => miss => readahead(R...B) => media error => frustrating retries
2025 * => failing the whole request => read(R) => read(R+1) =>
2026 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
2027 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
2028 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
2030 * It is going insane. Fix it by quickly scaling down the readahead size.
2032 static void shrink_readahead_size_eio(struct file *filp,
2033 struct file_ra_state *ra)
2039 * generic_file_buffered_read - generic file read routine
2040 * @iocb: the iocb to read
2041 * @iter: data destination
2042 * @written: already copied
2044 * This is a generic file read routine, and uses the
2045 * mapping->a_ops->readpage() function for the actual low-level stuff.
2047 * This is really ugly. But the goto's actually try to clarify some
2048 * of the logic when it comes to error handling etc.
2050 static ssize_t generic_file_buffered_read(struct kiocb *iocb,
2051 struct iov_iter *iter, ssize_t written)
2053 struct file *filp = iocb->ki_filp;
2054 struct address_space *mapping = filp->f_mapping;
2055 struct inode *inode = mapping->host;
2056 struct file_ra_state *ra = &filp->f_ra;
2057 loff_t *ppos = &iocb->ki_pos;
2061 unsigned long offset; /* offset into pagecache page */
2062 unsigned int prev_offset;
2065 if (unlikely(*ppos >= inode->i_sb->s_maxbytes))
2067 iov_iter_truncate(iter, inode->i_sb->s_maxbytes);
2069 index = *ppos >> PAGE_SHIFT;
2070 prev_index = ra->prev_pos >> PAGE_SHIFT;
2071 prev_offset = ra->prev_pos & (PAGE_SIZE-1);
2072 last_index = (*ppos + iter->count + PAGE_SIZE-1) >> PAGE_SHIFT;
2073 offset = *ppos & ~PAGE_MASK;
2079 unsigned long nr, ret;
2083 if (fatal_signal_pending(current)) {
2088 page = find_get_page(mapping, index);
2090 if (iocb->ki_flags & IOCB_NOWAIT)
2092 page_cache_sync_readahead(mapping,
2094 index, last_index - index);
2095 page = find_get_page(mapping, index);
2096 if (unlikely(page == NULL))
2097 goto no_cached_page;
2099 if (PageReadahead(page)) {
2100 page_cache_async_readahead(mapping,
2102 index, last_index - index);
2104 if (!PageUptodate(page)) {
2105 if (iocb->ki_flags & IOCB_NOWAIT) {
2111 * See comment in do_read_cache_page on why
2112 * wait_on_page_locked is used to avoid unnecessarily
2113 * serialisations and why it's safe.
2115 error = wait_on_page_locked_killable(page);
2116 if (unlikely(error))
2117 goto readpage_error;
2118 if (PageUptodate(page))
2121 if (inode->i_blkbits == PAGE_SHIFT ||
2122 !mapping->a_ops->is_partially_uptodate)
2123 goto page_not_up_to_date;
2124 /* pipes can't handle partially uptodate pages */
2125 if (unlikely(iter->type & ITER_PIPE))
2126 goto page_not_up_to_date;
2127 if (!trylock_page(page))
2128 goto page_not_up_to_date;
2129 /* Did it get truncated before we got the lock? */
2131 goto page_not_up_to_date_locked;
2132 if (!mapping->a_ops->is_partially_uptodate(page,
2133 offset, iter->count))
2134 goto page_not_up_to_date_locked;
2139 * i_size must be checked after we know the page is Uptodate.
2141 * Checking i_size after the check allows us to calculate
2142 * the correct value for "nr", which means the zero-filled
2143 * part of the page is not copied back to userspace (unless
2144 * another truncate extends the file - this is desired though).
2147 isize = i_size_read(inode);
2148 end_index = (isize - 1) >> PAGE_SHIFT;
2149 if (unlikely(!isize || index > end_index)) {
2154 /* nr is the maximum number of bytes to copy from this page */
2156 if (index == end_index) {
2157 nr = ((isize - 1) & ~PAGE_MASK) + 1;
2165 /* If users can be writing to this page using arbitrary
2166 * virtual addresses, take care about potential aliasing
2167 * before reading the page on the kernel side.
2169 if (mapping_writably_mapped(mapping))
2170 flush_dcache_page(page);
2173 * When a sequential read accesses a page several times,
2174 * only mark it as accessed the first time.
2176 if (prev_index != index || offset != prev_offset)
2177 mark_page_accessed(page);
2181 * Ok, we have the page, and it's up-to-date, so
2182 * now we can copy it to user space...
2185 ret = copy_page_to_iter(page, offset, nr, iter);
2187 index += offset >> PAGE_SHIFT;
2188 offset &= ~PAGE_MASK;
2189 prev_offset = offset;
2193 if (!iov_iter_count(iter))
2201 page_not_up_to_date:
2202 /* Get exclusive access to the page ... */
2203 error = lock_page_killable(page);
2204 if (unlikely(error))
2205 goto readpage_error;
2207 page_not_up_to_date_locked:
2208 /* Did it get truncated before we got the lock? */
2209 if (!page->mapping) {
2215 /* Did somebody else fill it already? */
2216 if (PageUptodate(page)) {
2223 * A previous I/O error may have been due to temporary
2224 * failures, eg. multipath errors.
2225 * PG_error will be set again if readpage fails.
2227 ClearPageError(page);
2228 /* Start the actual read. The read will unlock the page. */
2229 error = mapping->a_ops->readpage(filp, page);
2231 if (unlikely(error)) {
2232 if (error == AOP_TRUNCATED_PAGE) {
2237 goto readpage_error;
2240 if (!PageUptodate(page)) {
2241 error = lock_page_killable(page);
2242 if (unlikely(error))
2243 goto readpage_error;
2244 if (!PageUptodate(page)) {
2245 if (page->mapping == NULL) {
2247 * invalidate_mapping_pages got it
2254 shrink_readahead_size_eio(filp, ra);
2256 goto readpage_error;
2264 /* UHHUH! A synchronous read error occurred. Report it */
2270 * Ok, it wasn't cached, so we need to create a new
2273 page = page_cache_alloc(mapping);
2278 error = add_to_page_cache_lru(page, mapping, index,
2279 mapping_gfp_constraint(mapping, GFP_KERNEL));
2282 if (error == -EEXIST) {
2294 ra->prev_pos = prev_index;
2295 ra->prev_pos <<= PAGE_SHIFT;
2296 ra->prev_pos |= prev_offset;
2298 *ppos = ((loff_t)index << PAGE_SHIFT) + offset;
2299 file_accessed(filp);
2300 return written ? written : error;
2304 * generic_file_read_iter - generic filesystem read routine
2305 * @iocb: kernel I/O control block
2306 * @iter: destination for the data read
2308 * This is the "read_iter()" routine for all filesystems
2309 * that can use the page cache directly.
2312 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
2314 size_t count = iov_iter_count(iter);
2318 goto out; /* skip atime */
2320 if (iocb->ki_flags & IOCB_DIRECT) {
2321 struct file *file = iocb->ki_filp;
2322 struct address_space *mapping = file->f_mapping;
2323 struct inode *inode = mapping->host;
2326 size = i_size_read(inode);
2327 if (iocb->ki_flags & IOCB_NOWAIT) {
2328 if (filemap_range_has_page(mapping, iocb->ki_pos,
2329 iocb->ki_pos + count - 1))
2332 retval = filemap_write_and_wait_range(mapping,
2334 iocb->ki_pos + count - 1);
2339 file_accessed(file);
2341 retval = mapping->a_ops->direct_IO(iocb, iter);
2343 iocb->ki_pos += retval;
2346 iov_iter_revert(iter, count - iov_iter_count(iter));
2349 * Btrfs can have a short DIO read if we encounter
2350 * compressed extents, so if there was an error, or if
2351 * we've already read everything we wanted to, or if
2352 * there was a short read because we hit EOF, go ahead
2353 * and return. Otherwise fallthrough to buffered io for
2354 * the rest of the read. Buffered reads will not work for
2355 * DAX files, so don't bother trying.
2357 if (retval < 0 || !count || iocb->ki_pos >= size ||
2362 retval = generic_file_buffered_read(iocb, iter, retval);
2366 EXPORT_SYMBOL(generic_file_read_iter);
2370 * page_cache_read - adds requested page to the page cache if not already there
2371 * @file: file to read
2372 * @offset: page index
2373 * @gfp_mask: memory allocation flags
2375 * This adds the requested page to the page cache if it isn't already there,
2376 * and schedules an I/O to read in its contents from disk.
2378 static int page_cache_read(struct file *file, pgoff_t offset, gfp_t gfp_mask)
2380 struct address_space *mapping = file->f_mapping;
2385 page = __page_cache_alloc(gfp_mask);
2389 ret = add_to_page_cache_lru(page, mapping, offset, gfp_mask);
2391 ret = mapping->a_ops->readpage(file, page);
2392 else if (ret == -EEXIST)
2393 ret = 0; /* losing race to add is OK */
2397 } while (ret == AOP_TRUNCATED_PAGE);
2402 #define MMAP_LOTSAMISS (100)
2405 * Synchronous readahead happens when we don't even find
2406 * a page in the page cache at all.
2408 static void do_sync_mmap_readahead(struct vm_area_struct *vma,
2409 struct file_ra_state *ra,
2413 struct address_space *mapping = file->f_mapping;
2415 /* If we don't want any read-ahead, don't bother */
2416 if (vma->vm_flags & VM_RAND_READ)
2421 if (vma->vm_flags & VM_SEQ_READ) {
2422 page_cache_sync_readahead(mapping, ra, file, offset,
2427 /* Avoid banging the cache line if not needed */
2428 if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
2432 * Do we miss much more than hit in this file? If so,
2433 * stop bothering with read-ahead. It will only hurt.
2435 if (ra->mmap_miss > MMAP_LOTSAMISS)
2441 ra->start = max_t(long, 0, offset - ra->ra_pages / 2);
2442 ra->size = ra->ra_pages;
2443 ra->async_size = ra->ra_pages / 4;
2444 ra_submit(ra, mapping, file);
2448 * Asynchronous readahead happens when we find the page and PG_readahead,
2449 * so we want to possibly extend the readahead further..
2451 static void do_async_mmap_readahead(struct vm_area_struct *vma,
2452 struct file_ra_state *ra,
2457 struct address_space *mapping = file->f_mapping;
2459 /* If we don't want any read-ahead, don't bother */
2460 if (vma->vm_flags & VM_RAND_READ)
2462 if (ra->mmap_miss > 0)
2464 if (PageReadahead(page))
2465 page_cache_async_readahead(mapping, ra, file,
2466 page, offset, ra->ra_pages);
2470 * filemap_fault - read in file data for page fault handling
2471 * @vmf: struct vm_fault containing details of the fault
2473 * filemap_fault() is invoked via the vma operations vector for a
2474 * mapped memory region to read in file data during a page fault.
2476 * The goto's are kind of ugly, but this streamlines the normal case of having
2477 * it in the page cache, and handles the special cases reasonably without
2478 * having a lot of duplicated code.
2480 * vma->vm_mm->mmap_sem must be held on entry.
2482 * If our return value has VM_FAULT_RETRY set, it's because
2483 * lock_page_or_retry() returned 0.
2484 * The mmap_sem has usually been released in this case.
2485 * See __lock_page_or_retry() for the exception.
2487 * If our return value does not have VM_FAULT_RETRY set, the mmap_sem
2488 * has not been released.
2490 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
2492 vm_fault_t filemap_fault(struct vm_fault *vmf)
2495 struct file *file = vmf->vma->vm_file;
2496 struct address_space *mapping = file->f_mapping;
2497 struct file_ra_state *ra = &file->f_ra;
2498 struct inode *inode = mapping->host;
2499 pgoff_t offset = vmf->pgoff;
2504 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2505 if (unlikely(offset >= max_off))
2506 return VM_FAULT_SIGBUS;
2509 * Do we have something in the page cache already?
2511 page = find_get_page(mapping, offset);
2512 if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
2514 * We found the page, so try async readahead before
2515 * waiting for the lock.
2517 do_async_mmap_readahead(vmf->vma, ra, file, page, offset);
2519 /* No page in the page cache at all */
2520 do_sync_mmap_readahead(vmf->vma, ra, file, offset);
2521 count_vm_event(PGMAJFAULT);
2522 count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT);
2523 ret = VM_FAULT_MAJOR;
2525 page = find_get_page(mapping, offset);
2527 goto no_cached_page;
2530 if (!lock_page_or_retry(page, vmf->vma->vm_mm, vmf->flags)) {
2532 return ret | VM_FAULT_RETRY;
2535 /* Did it get truncated? */
2536 if (unlikely(page->mapping != mapping)) {
2541 VM_BUG_ON_PAGE(page->index != offset, page);
2544 * We have a locked page in the page cache, now we need to check
2545 * that it's up-to-date. If not, it is going to be due to an error.
2547 if (unlikely(!PageUptodate(page)))
2548 goto page_not_uptodate;
2551 * Found the page and have a reference on it.
2552 * We must recheck i_size under page lock.
2554 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2555 if (unlikely(offset >= max_off)) {
2558 return VM_FAULT_SIGBUS;
2562 return ret | VM_FAULT_LOCKED;
2566 * We're only likely to ever get here if MADV_RANDOM is in
2569 error = page_cache_read(file, offset, vmf->gfp_mask);
2572 * The page we want has now been added to the page cache.
2573 * In the unlikely event that someone removed it in the
2574 * meantime, we'll just come back here and read it again.
2580 * An error return from page_cache_read can result if the
2581 * system is low on memory, or a problem occurs while trying
2584 if (error == -ENOMEM)
2585 return VM_FAULT_OOM;
2586 return VM_FAULT_SIGBUS;
2590 * Umm, take care of errors if the page isn't up-to-date.
2591 * Try to re-read it _once_. We do this synchronously,
2592 * because there really aren't any performance issues here
2593 * and we need to check for errors.
2595 ClearPageError(page);
2596 error = mapping->a_ops->readpage(file, page);
2598 wait_on_page_locked(page);
2599 if (!PageUptodate(page))
2604 if (!error || error == AOP_TRUNCATED_PAGE)
2607 /* Things didn't work out. Return zero to tell the mm layer so. */
2608 shrink_readahead_size_eio(file, ra);
2609 return VM_FAULT_SIGBUS;
2611 EXPORT_SYMBOL(filemap_fault);
2613 void filemap_map_pages(struct vm_fault *vmf,
2614 pgoff_t start_pgoff, pgoff_t end_pgoff)
2616 struct radix_tree_iter iter;
2618 struct file *file = vmf->vma->vm_file;
2619 struct address_space *mapping = file->f_mapping;
2620 pgoff_t last_pgoff = start_pgoff;
2621 unsigned long max_idx;
2622 struct page *head, *page;
2625 radix_tree_for_each_slot(slot, &mapping->i_pages, &iter, start_pgoff) {
2626 if (iter.index > end_pgoff)
2629 page = radix_tree_deref_slot(slot);
2630 if (unlikely(!page))
2632 if (radix_tree_exception(page)) {
2633 if (radix_tree_deref_retry(page)) {
2634 slot = radix_tree_iter_retry(&iter);
2640 head = compound_head(page);
2641 if (!page_cache_get_speculative(head))
2644 /* The page was split under us? */
2645 if (compound_head(page) != head) {
2650 /* Has the page moved? */
2651 if (unlikely(page != *slot)) {
2656 if (!PageUptodate(page) ||
2657 PageReadahead(page) ||
2660 if (!trylock_page(page))
2663 if (page->mapping != mapping || !PageUptodate(page))
2666 max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
2667 if (page->index >= max_idx)
2670 if (file->f_ra.mmap_miss > 0)
2671 file->f_ra.mmap_miss--;
2673 vmf->address += (iter.index - last_pgoff) << PAGE_SHIFT;
2675 vmf->pte += iter.index - last_pgoff;
2676 last_pgoff = iter.index;
2677 if (alloc_set_pte(vmf, NULL, page))
2686 /* Huge page is mapped? No need to proceed. */
2687 if (pmd_trans_huge(*vmf->pmd))
2689 if (iter.index == end_pgoff)
2694 EXPORT_SYMBOL(filemap_map_pages);
2696 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
2698 struct page *page = vmf->page;
2699 struct inode *inode = file_inode(vmf->vma->vm_file);
2700 vm_fault_t ret = VM_FAULT_LOCKED;
2702 sb_start_pagefault(inode->i_sb);
2703 file_update_time(vmf->vma->vm_file);
2705 if (page->mapping != inode->i_mapping) {
2707 ret = VM_FAULT_NOPAGE;
2711 * We mark the page dirty already here so that when freeze is in
2712 * progress, we are guaranteed that writeback during freezing will
2713 * see the dirty page and writeprotect it again.
2715 set_page_dirty(page);
2716 wait_for_stable_page(page);
2718 sb_end_pagefault(inode->i_sb);
2722 const struct vm_operations_struct generic_file_vm_ops = {
2723 .fault = filemap_fault,
2724 .map_pages = filemap_map_pages,
2725 .page_mkwrite = filemap_page_mkwrite,
2728 /* This is used for a general mmap of a disk file */
2730 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2732 struct address_space *mapping = file->f_mapping;
2734 if (!mapping->a_ops->readpage)
2736 file_accessed(file);
2737 vma->vm_ops = &generic_file_vm_ops;
2742 * This is for filesystems which do not implement ->writepage.
2744 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
2746 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
2748 return generic_file_mmap(file, vma);
2751 int filemap_page_mkwrite(struct vm_fault *vmf)
2755 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2759 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
2763 #endif /* CONFIG_MMU */
2765 EXPORT_SYMBOL(filemap_page_mkwrite);
2766 EXPORT_SYMBOL(generic_file_mmap);
2767 EXPORT_SYMBOL(generic_file_readonly_mmap);
2769 static struct page *wait_on_page_read(struct page *page)
2771 if (!IS_ERR(page)) {
2772 wait_on_page_locked(page);
2773 if (!PageUptodate(page)) {
2775 page = ERR_PTR(-EIO);
2781 static struct page *do_read_cache_page(struct address_space *mapping,
2783 int (*filler)(void *, struct page *),
2790 page = find_get_page(mapping, index);
2792 page = __page_cache_alloc(gfp);
2794 return ERR_PTR(-ENOMEM);
2795 err = add_to_page_cache_lru(page, mapping, index, gfp);
2796 if (unlikely(err)) {
2800 /* Presumably ENOMEM for radix tree node */
2801 return ERR_PTR(err);
2805 err = filler(data, page);
2808 return ERR_PTR(err);
2811 page = wait_on_page_read(page);
2816 if (PageUptodate(page))
2820 * Page is not up to date and may be locked due one of the following
2821 * case a: Page is being filled and the page lock is held
2822 * case b: Read/write error clearing the page uptodate status
2823 * case c: Truncation in progress (page locked)
2824 * case d: Reclaim in progress
2826 * Case a, the page will be up to date when the page is unlocked.
2827 * There is no need to serialise on the page lock here as the page
2828 * is pinned so the lock gives no additional protection. Even if the
2829 * the page is truncated, the data is still valid if PageUptodate as
2830 * it's a race vs truncate race.
2831 * Case b, the page will not be up to date
2832 * Case c, the page may be truncated but in itself, the data may still
2833 * be valid after IO completes as it's a read vs truncate race. The
2834 * operation must restart if the page is not uptodate on unlock but
2835 * otherwise serialising on page lock to stabilise the mapping gives
2836 * no additional guarantees to the caller as the page lock is
2837 * released before return.
2838 * Case d, similar to truncation. If reclaim holds the page lock, it
2839 * will be a race with remove_mapping that determines if the mapping
2840 * is valid on unlock but otherwise the data is valid and there is
2841 * no need to serialise with page lock.
2843 * As the page lock gives no additional guarantee, we optimistically
2844 * wait on the page to be unlocked and check if it's up to date and
2845 * use the page if it is. Otherwise, the page lock is required to
2846 * distinguish between the different cases. The motivation is that we
2847 * avoid spurious serialisations and wakeups when multiple processes
2848 * wait on the same page for IO to complete.
2850 wait_on_page_locked(page);
2851 if (PageUptodate(page))
2854 /* Distinguish between all the cases under the safety of the lock */
2857 /* Case c or d, restart the operation */
2858 if (!page->mapping) {
2864 /* Someone else locked and filled the page in a very small window */
2865 if (PageUptodate(page)) {
2872 mark_page_accessed(page);
2877 * read_cache_page - read into page cache, fill it if needed
2878 * @mapping: the page's address_space
2879 * @index: the page index
2880 * @filler: function to perform the read
2881 * @data: first arg to filler(data, page) function, often left as NULL
2883 * Read into the page cache. If a page already exists, and PageUptodate() is
2884 * not set, try to fill the page and wait for it to become unlocked.
2886 * If the page does not get brought uptodate, return -EIO.
2888 struct page *read_cache_page(struct address_space *mapping,
2890 int (*filler)(void *, struct page *),
2893 return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
2895 EXPORT_SYMBOL(read_cache_page);
2898 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
2899 * @mapping: the page's address_space
2900 * @index: the page index
2901 * @gfp: the page allocator flags to use if allocating
2903 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
2904 * any new page allocations done using the specified allocation flags.
2906 * If the page does not get brought uptodate, return -EIO.
2908 struct page *read_cache_page_gfp(struct address_space *mapping,
2912 filler_t *filler = (filler_t *)mapping->a_ops->readpage;
2914 return do_read_cache_page(mapping, index, filler, NULL, gfp);
2916 EXPORT_SYMBOL(read_cache_page_gfp);
2919 * Performs necessary checks before doing a write
2921 * Can adjust writing position or amount of bytes to write.
2922 * Returns appropriate error code that caller should return or
2923 * zero in case that write should be allowed.
2925 inline ssize_t generic_write_checks(struct kiocb *iocb, struct iov_iter *from)
2927 struct file *file = iocb->ki_filp;
2928 struct inode *inode = file->f_mapping->host;
2929 unsigned long limit = rlimit(RLIMIT_FSIZE);
2932 if (!iov_iter_count(from))
2935 /* FIXME: this is for backwards compatibility with 2.4 */
2936 if (iocb->ki_flags & IOCB_APPEND)
2937 iocb->ki_pos = i_size_read(inode);
2941 if ((iocb->ki_flags & IOCB_NOWAIT) && !(iocb->ki_flags & IOCB_DIRECT))
2944 if (limit != RLIM_INFINITY) {
2945 if (iocb->ki_pos >= limit) {
2946 send_sig(SIGXFSZ, current, 0);
2949 iov_iter_truncate(from, limit - (unsigned long)pos);
2955 if (unlikely(pos + iov_iter_count(from) > MAX_NON_LFS &&
2956 !(file->f_flags & O_LARGEFILE))) {
2957 if (pos >= MAX_NON_LFS)
2959 iov_iter_truncate(from, MAX_NON_LFS - (unsigned long)pos);
2963 * Are we about to exceed the fs block limit ?
2965 * If we have written data it becomes a short write. If we have
2966 * exceeded without writing data we send a signal and return EFBIG.
2967 * Linus frestrict idea will clean these up nicely..
2969 if (unlikely(pos >= inode->i_sb->s_maxbytes))
2972 iov_iter_truncate(from, inode->i_sb->s_maxbytes - pos);
2973 return iov_iter_count(from);
2975 EXPORT_SYMBOL(generic_write_checks);
2977 int pagecache_write_begin(struct file *file, struct address_space *mapping,
2978 loff_t pos, unsigned len, unsigned flags,
2979 struct page **pagep, void **fsdata)
2981 const struct address_space_operations *aops = mapping->a_ops;
2983 return aops->write_begin(file, mapping, pos, len, flags,
2986 EXPORT_SYMBOL(pagecache_write_begin);
2988 int pagecache_write_end(struct file *file, struct address_space *mapping,
2989 loff_t pos, unsigned len, unsigned copied,
2990 struct page *page, void *fsdata)
2992 const struct address_space_operations *aops = mapping->a_ops;
2994 return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
2996 EXPORT_SYMBOL(pagecache_write_end);
2999 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from)
3001 struct file *file = iocb->ki_filp;
3002 struct address_space *mapping = file->f_mapping;
3003 struct inode *inode = mapping->host;
3004 loff_t pos = iocb->ki_pos;
3009 write_len = iov_iter_count(from);
3010 end = (pos + write_len - 1) >> PAGE_SHIFT;
3012 if (iocb->ki_flags & IOCB_NOWAIT) {
3013 /* If there are pages to writeback, return */
3014 if (filemap_range_has_page(inode->i_mapping, pos,
3015 pos + iov_iter_count(from)))
3018 written = filemap_write_and_wait_range(mapping, pos,
3019 pos + write_len - 1);
3025 * After a write we want buffered reads to be sure to go to disk to get
3026 * the new data. We invalidate clean cached page from the region we're
3027 * about to write. We do this *before* the write so that we can return
3028 * without clobbering -EIOCBQUEUED from ->direct_IO().
3030 written = invalidate_inode_pages2_range(mapping,
3031 pos >> PAGE_SHIFT, end);
3033 * If a page can not be invalidated, return 0 to fall back
3034 * to buffered write.
3037 if (written == -EBUSY)
3042 written = mapping->a_ops->direct_IO(iocb, from);
3045 * Finally, try again to invalidate clean pages which might have been
3046 * cached by non-direct readahead, or faulted in by get_user_pages()
3047 * if the source of the write was an mmap'ed region of the file
3048 * we're writing. Either one is a pretty crazy thing to do,
3049 * so we don't support it 100%. If this invalidation
3050 * fails, tough, the write still worked...
3052 * Most of the time we do not need this since dio_complete() will do
3053 * the invalidation for us. However there are some file systems that
3054 * do not end up with dio_complete() being called, so let's not break
3055 * them by removing it completely
3057 if (mapping->nrpages)
3058 invalidate_inode_pages2_range(mapping,
3059 pos >> PAGE_SHIFT, end);
3063 write_len -= written;
3064 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
3065 i_size_write(inode, pos);
3066 mark_inode_dirty(inode);
3070 iov_iter_revert(from, write_len - iov_iter_count(from));
3074 EXPORT_SYMBOL(generic_file_direct_write);
3077 * Find or create a page at the given pagecache position. Return the locked
3078 * page. This function is specifically for buffered writes.
3080 struct page *grab_cache_page_write_begin(struct address_space *mapping,
3081 pgoff_t index, unsigned flags)
3084 int fgp_flags = FGP_LOCK|FGP_WRITE|FGP_CREAT;
3086 if (flags & AOP_FLAG_NOFS)
3087 fgp_flags |= FGP_NOFS;
3089 page = pagecache_get_page(mapping, index, fgp_flags,
3090 mapping_gfp_mask(mapping));
3092 wait_for_stable_page(page);
3096 EXPORT_SYMBOL(grab_cache_page_write_begin);
3098 ssize_t generic_perform_write(struct file *file,
3099 struct iov_iter *i, loff_t pos)
3101 struct address_space *mapping = file->f_mapping;
3102 const struct address_space_operations *a_ops = mapping->a_ops;
3104 ssize_t written = 0;
3105 unsigned int flags = 0;
3109 unsigned long offset; /* Offset into pagecache page */
3110 unsigned long bytes; /* Bytes to write to page */
3111 size_t copied; /* Bytes copied from user */
3114 offset = (pos & (PAGE_SIZE - 1));
3115 bytes = min_t(unsigned long, PAGE_SIZE - offset,
3120 * Bring in the user page that we will copy from _first_.
3121 * Otherwise there's a nasty deadlock on copying from the
3122 * same page as we're writing to, without it being marked
3125 * Not only is this an optimisation, but it is also required
3126 * to check that the address is actually valid, when atomic
3127 * usercopies are used, below.
3129 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
3134 if (fatal_signal_pending(current)) {
3139 status = a_ops->write_begin(file, mapping, pos, bytes, flags,
3141 if (unlikely(status < 0))
3144 if (mapping_writably_mapped(mapping))
3145 flush_dcache_page(page);
3147 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
3148 flush_dcache_page(page);
3150 status = a_ops->write_end(file, mapping, pos, bytes, copied,
3152 if (unlikely(status < 0))
3158 iov_iter_advance(i, copied);
3159 if (unlikely(copied == 0)) {
3161 * If we were unable to copy any data at all, we must
3162 * fall back to a single segment length write.
3164 * If we didn't fallback here, we could livelock
3165 * because not all segments in the iov can be copied at
3166 * once without a pagefault.
3168 bytes = min_t(unsigned long, PAGE_SIZE - offset,
3169 iov_iter_single_seg_count(i));
3175 balance_dirty_pages_ratelimited(mapping);
3176 } while (iov_iter_count(i));
3178 return written ? written : status;
3180 EXPORT_SYMBOL(generic_perform_write);
3183 * __generic_file_write_iter - write data to a file
3184 * @iocb: IO state structure (file, offset, etc.)
3185 * @from: iov_iter with data to write
3187 * This function does all the work needed for actually writing data to a
3188 * file. It does all basic checks, removes SUID from the file, updates
3189 * modification times and calls proper subroutines depending on whether we
3190 * do direct IO or a standard buffered write.
3192 * It expects i_mutex to be grabbed unless we work on a block device or similar
3193 * object which does not need locking at all.
3195 * This function does *not* take care of syncing data in case of O_SYNC write.
3196 * A caller has to handle it. This is mainly due to the fact that we want to
3197 * avoid syncing under i_mutex.
3199 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
3201 struct file *file = iocb->ki_filp;
3202 struct address_space * mapping = file->f_mapping;
3203 struct inode *inode = mapping->host;
3204 ssize_t written = 0;
3208 /* We can write back this queue in page reclaim */
3209 current->backing_dev_info = inode_to_bdi(inode);
3210 err = file_remove_privs(file);
3214 err = file_update_time(file);
3218 if (iocb->ki_flags & IOCB_DIRECT) {
3219 loff_t pos, endbyte;
3221 written = generic_file_direct_write(iocb, from);
3223 * If the write stopped short of completing, fall back to
3224 * buffered writes. Some filesystems do this for writes to
3225 * holes, for example. For DAX files, a buffered write will
3226 * not succeed (even if it did, DAX does not handle dirty
3227 * page-cache pages correctly).
3229 if (written < 0 || !iov_iter_count(from) || IS_DAX(inode))
3232 status = generic_perform_write(file, from, pos = iocb->ki_pos);
3234 * If generic_perform_write() returned a synchronous error
3235 * then we want to return the number of bytes which were
3236 * direct-written, or the error code if that was zero. Note
3237 * that this differs from normal direct-io semantics, which
3238 * will return -EFOO even if some bytes were written.
3240 if (unlikely(status < 0)) {
3245 * We need to ensure that the page cache pages are written to
3246 * disk and invalidated to preserve the expected O_DIRECT
3249 endbyte = pos + status - 1;
3250 err = filemap_write_and_wait_range(mapping, pos, endbyte);
3252 iocb->ki_pos = endbyte + 1;
3254 invalidate_mapping_pages(mapping,
3256 endbyte >> PAGE_SHIFT);
3259 * We don't know how much we wrote, so just return
3260 * the number of bytes which were direct-written
3264 written = generic_perform_write(file, from, iocb->ki_pos);
3265 if (likely(written > 0))
3266 iocb->ki_pos += written;
3269 current->backing_dev_info = NULL;
3270 return written ? written : err;
3272 EXPORT_SYMBOL(__generic_file_write_iter);
3275 * generic_file_write_iter - write data to a file
3276 * @iocb: IO state structure
3277 * @from: iov_iter with data to write
3279 * This is a wrapper around __generic_file_write_iter() to be used by most
3280 * filesystems. It takes care of syncing the file in case of O_SYNC file
3281 * and acquires i_mutex as needed.
3283 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
3285 struct file *file = iocb->ki_filp;
3286 struct inode *inode = file->f_mapping->host;
3290 ret = generic_write_checks(iocb, from);
3292 ret = __generic_file_write_iter(iocb, from);
3293 inode_unlock(inode);
3296 ret = generic_write_sync(iocb, ret);
3299 EXPORT_SYMBOL(generic_file_write_iter);
3302 * try_to_release_page() - release old fs-specific metadata on a page
3304 * @page: the page which the kernel is trying to free
3305 * @gfp_mask: memory allocation flags (and I/O mode)
3307 * The address_space is to try to release any data against the page
3308 * (presumably at page->private). If the release was successful, return '1'.
3309 * Otherwise return zero.
3311 * This may also be called if PG_fscache is set on a page, indicating that the
3312 * page is known to the local caching routines.
3314 * The @gfp_mask argument specifies whether I/O may be performed to release
3315 * this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS).
3318 int try_to_release_page(struct page *page, gfp_t gfp_mask)
3320 struct address_space * const mapping = page->mapping;
3322 BUG_ON(!PageLocked(page));
3323 if (PageWriteback(page))
3326 if (mapping && mapping->a_ops->releasepage)
3327 return mapping->a_ops->releasepage(page, gfp_mask);
3328 return try_to_free_buffers(page);
3331 EXPORT_SYMBOL(try_to_release_page);