1 // SPDX-License-Identifier: GPL-2.0-only
5 * Copyright (C) 1994-1999 Linus Torvalds
9 * This file handles the generic file mmap semantics used by
10 * most "normal" filesystems (but you don't /have/ to use this:
11 * the NFS filesystem used to do this differently, for example)
13 #include <linux/export.h>
14 #include <linux/compiler.h>
15 #include <linux/dax.h>
17 #include <linux/sched/signal.h>
18 #include <linux/uaccess.h>
19 #include <linux/capability.h>
20 #include <linux/kernel_stat.h>
21 #include <linux/gfp.h>
23 #include <linux/swap.h>
24 #include <linux/swapops.h>
25 #include <linux/mman.h>
26 #include <linux/pagemap.h>
27 #include <linux/file.h>
28 #include <linux/uio.h>
29 #include <linux/error-injection.h>
30 #include <linux/hash.h>
31 #include <linux/writeback.h>
32 #include <linux/backing-dev.h>
33 #include <linux/pagevec.h>
34 #include <linux/security.h>
35 #include <linux/cpuset.h>
36 #include <linux/hugetlb.h>
37 #include <linux/memcontrol.h>
38 #include <linux/shmem_fs.h>
39 #include <linux/rmap.h>
40 #include <linux/delayacct.h>
41 #include <linux/psi.h>
42 #include <linux/ramfs.h>
43 #include <linux/page_idle.h>
44 #include <linux/migrate.h>
45 #include <asm/pgalloc.h>
46 #include <asm/tlbflush.h>
49 #define CREATE_TRACE_POINTS
50 #include <trace/events/filemap.h>
53 * FIXME: remove all knowledge of the buffer layer from the core VM
55 #include <linux/buffer_head.h> /* for try_to_free_buffers */
60 * Shared mappings implemented 30.11.1994. It's not fully working yet,
63 * Shared mappings now work. 15.8.1995 Bruno.
65 * finished 'unifying' the page and buffer cache and SMP-threaded the
66 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
68 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
74 * ->i_mmap_rwsem (truncate_pagecache)
75 * ->private_lock (__free_pte->block_dirty_folio)
76 * ->swap_lock (exclusive_swap_page, others)
80 * ->invalidate_lock (acquired by fs in truncate path)
81 * ->i_mmap_rwsem (truncate->unmap_mapping_range)
85 * ->page_table_lock or pte_lock (various, mainly in memory.c)
86 * ->i_pages lock (arch-dependent flush_dcache_mmap_lock)
89 * ->invalidate_lock (filemap_fault)
90 * ->lock_page (filemap_fault, access_process_vm)
92 * ->i_rwsem (generic_perform_write)
93 * ->mmap_lock (fault_in_readable->do_page_fault)
96 * sb_lock (fs/fs-writeback.c)
97 * ->i_pages lock (__sync_single_inode)
100 * ->anon_vma.lock (vma_adjust)
103 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
105 * ->page_table_lock or pte_lock
106 * ->swap_lock (try_to_unmap_one)
107 * ->private_lock (try_to_unmap_one)
108 * ->i_pages lock (try_to_unmap_one)
109 * ->lruvec->lru_lock (follow_page->mark_page_accessed)
110 * ->lruvec->lru_lock (check_pte_range->isolate_lru_page)
111 * ->private_lock (page_remove_rmap->set_page_dirty)
112 * ->i_pages lock (page_remove_rmap->set_page_dirty)
113 * bdi.wb->list_lock (page_remove_rmap->set_page_dirty)
114 * ->inode->i_lock (page_remove_rmap->set_page_dirty)
115 * ->memcg->move_lock (page_remove_rmap->lock_page_memcg)
116 * bdi.wb->list_lock (zap_pte_range->set_page_dirty)
117 * ->inode->i_lock (zap_pte_range->set_page_dirty)
118 * ->private_lock (zap_pte_range->block_dirty_folio)
121 * ->tasklist_lock (memory_failure, collect_procs_ao)
124 static void page_cache_delete(struct address_space *mapping,
125 struct folio *folio, void *shadow)
127 XA_STATE(xas, &mapping->i_pages, folio->index);
130 mapping_set_update(&xas, mapping);
132 /* hugetlb pages are represented by a single entry in the xarray */
133 if (!folio_test_hugetlb(folio)) {
134 xas_set_order(&xas, folio->index, folio_order(folio));
135 nr = folio_nr_pages(folio);
138 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
140 xas_store(&xas, shadow);
141 xas_init_marks(&xas);
143 folio->mapping = NULL;
144 /* Leave page->index set: truncation lookup relies upon it */
145 mapping->nrpages -= nr;
148 static void filemap_unaccount_folio(struct address_space *mapping,
153 VM_BUG_ON_FOLIO(folio_mapped(folio), folio);
154 if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(folio_mapped(folio))) {
155 pr_alert("BUG: Bad page cache in process %s pfn:%05lx\n",
156 current->comm, folio_pfn(folio));
157 dump_page(&folio->page, "still mapped when deleted");
159 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
161 if (mapping_exiting(mapping) && !folio_test_large(folio)) {
162 int mapcount = page_mapcount(&folio->page);
164 if (folio_ref_count(folio) >= mapcount + 2) {
166 * All vmas have already been torn down, so it's
167 * a good bet that actually the page is unmapped
168 * and we'd rather not leak it: if we're wrong,
169 * another bad page check should catch it later.
171 page_mapcount_reset(&folio->page);
172 folio_ref_sub(folio, mapcount);
177 /* hugetlb folios do not participate in page cache accounting. */
178 if (folio_test_hugetlb(folio))
181 nr = folio_nr_pages(folio);
183 __lruvec_stat_mod_folio(folio, NR_FILE_PAGES, -nr);
184 if (folio_test_swapbacked(folio)) {
185 __lruvec_stat_mod_folio(folio, NR_SHMEM, -nr);
186 if (folio_test_pmd_mappable(folio))
187 __lruvec_stat_mod_folio(folio, NR_SHMEM_THPS, -nr);
188 } else if (folio_test_pmd_mappable(folio)) {
189 __lruvec_stat_mod_folio(folio, NR_FILE_THPS, -nr);
190 filemap_nr_thps_dec(mapping);
194 * At this point folio must be either written or cleaned by
195 * truncate. Dirty folio here signals a bug and loss of
196 * unwritten data - on ordinary filesystems.
198 * But it's harmless on in-memory filesystems like tmpfs; and can
199 * occur when a driver which did get_user_pages() sets page dirty
200 * before putting it, while the inode is being finally evicted.
202 * Below fixes dirty accounting after removing the folio entirely
203 * but leaves the dirty flag set: it has no effect for truncated
204 * folio and anyway will be cleared before returning folio to
207 if (WARN_ON_ONCE(folio_test_dirty(folio) &&
208 mapping_can_writeback(mapping)))
209 folio_account_cleaned(folio, inode_to_wb(mapping->host));
213 * Delete a page from the page cache and free it. Caller has to make
214 * sure the page is locked and that nobody else uses it - or that usage
215 * is safe. The caller must hold the i_pages lock.
217 void __filemap_remove_folio(struct folio *folio, void *shadow)
219 struct address_space *mapping = folio->mapping;
221 trace_mm_filemap_delete_from_page_cache(folio);
222 filemap_unaccount_folio(mapping, folio);
223 page_cache_delete(mapping, folio, shadow);
226 void filemap_free_folio(struct address_space *mapping, struct folio *folio)
228 void (*free_folio)(struct folio *);
231 free_folio = mapping->a_ops->free_folio;
235 if (folio_test_large(folio) && !folio_test_hugetlb(folio))
236 refs = folio_nr_pages(folio);
237 folio_put_refs(folio, refs);
241 * filemap_remove_folio - Remove folio from page cache.
244 * This must be called only on folios that are locked and have been
245 * verified to be in the page cache. It will never put the folio into
246 * the free list because the caller has a reference on the page.
248 void filemap_remove_folio(struct folio *folio)
250 struct address_space *mapping = folio->mapping;
252 BUG_ON(!folio_test_locked(folio));
253 spin_lock(&mapping->host->i_lock);
254 xa_lock_irq(&mapping->i_pages);
255 __filemap_remove_folio(folio, NULL);
256 xa_unlock_irq(&mapping->i_pages);
257 if (mapping_shrinkable(mapping))
258 inode_add_lru(mapping->host);
259 spin_unlock(&mapping->host->i_lock);
261 filemap_free_folio(mapping, folio);
265 * page_cache_delete_batch - delete several folios from page cache
266 * @mapping: the mapping to which folios belong
267 * @fbatch: batch of folios to delete
269 * The function walks over mapping->i_pages and removes folios passed in
270 * @fbatch from the mapping. The function expects @fbatch to be sorted
271 * by page index and is optimised for it to be dense.
272 * It tolerates holes in @fbatch (mapping entries at those indices are not
275 * The function expects the i_pages lock to be held.
277 static void page_cache_delete_batch(struct address_space *mapping,
278 struct folio_batch *fbatch)
280 XA_STATE(xas, &mapping->i_pages, fbatch->folios[0]->index);
281 long total_pages = 0;
285 mapping_set_update(&xas, mapping);
286 xas_for_each(&xas, folio, ULONG_MAX) {
287 if (i >= folio_batch_count(fbatch))
290 /* A swap/dax/shadow entry got inserted? Skip it. */
291 if (xa_is_value(folio))
294 * A page got inserted in our range? Skip it. We have our
295 * pages locked so they are protected from being removed.
296 * If we see a page whose index is higher than ours, it
297 * means our page has been removed, which shouldn't be
298 * possible because we're holding the PageLock.
300 if (folio != fbatch->folios[i]) {
301 VM_BUG_ON_FOLIO(folio->index >
302 fbatch->folios[i]->index, folio);
306 WARN_ON_ONCE(!folio_test_locked(folio));
308 folio->mapping = NULL;
309 /* Leave folio->index set: truncation lookup relies on it */
312 xas_store(&xas, NULL);
313 total_pages += folio_nr_pages(folio);
315 mapping->nrpages -= total_pages;
318 void delete_from_page_cache_batch(struct address_space *mapping,
319 struct folio_batch *fbatch)
323 if (!folio_batch_count(fbatch))
326 spin_lock(&mapping->host->i_lock);
327 xa_lock_irq(&mapping->i_pages);
328 for (i = 0; i < folio_batch_count(fbatch); i++) {
329 struct folio *folio = fbatch->folios[i];
331 trace_mm_filemap_delete_from_page_cache(folio);
332 filemap_unaccount_folio(mapping, folio);
334 page_cache_delete_batch(mapping, fbatch);
335 xa_unlock_irq(&mapping->i_pages);
336 if (mapping_shrinkable(mapping))
337 inode_add_lru(mapping->host);
338 spin_unlock(&mapping->host->i_lock);
340 for (i = 0; i < folio_batch_count(fbatch); i++)
341 filemap_free_folio(mapping, fbatch->folios[i]);
344 int filemap_check_errors(struct address_space *mapping)
347 /* Check for outstanding write errors */
348 if (test_bit(AS_ENOSPC, &mapping->flags) &&
349 test_and_clear_bit(AS_ENOSPC, &mapping->flags))
351 if (test_bit(AS_EIO, &mapping->flags) &&
352 test_and_clear_bit(AS_EIO, &mapping->flags))
356 EXPORT_SYMBOL(filemap_check_errors);
358 static int filemap_check_and_keep_errors(struct address_space *mapping)
360 /* Check for outstanding write errors */
361 if (test_bit(AS_EIO, &mapping->flags))
363 if (test_bit(AS_ENOSPC, &mapping->flags))
369 * filemap_fdatawrite_wbc - start writeback on mapping dirty pages in range
370 * @mapping: address space structure to write
371 * @wbc: the writeback_control controlling the writeout
373 * Call writepages on the mapping using the provided wbc to control the
376 * Return: %0 on success, negative error code otherwise.
378 int filemap_fdatawrite_wbc(struct address_space *mapping,
379 struct writeback_control *wbc)
383 if (!mapping_can_writeback(mapping) ||
384 !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
387 wbc_attach_fdatawrite_inode(wbc, mapping->host);
388 ret = do_writepages(mapping, wbc);
389 wbc_detach_inode(wbc);
392 EXPORT_SYMBOL(filemap_fdatawrite_wbc);
395 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
396 * @mapping: address space structure to write
397 * @start: offset in bytes where the range starts
398 * @end: offset in bytes where the range ends (inclusive)
399 * @sync_mode: enable synchronous operation
401 * Start writeback against all of a mapping's dirty pages that lie
402 * within the byte offsets <start, end> inclusive.
404 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
405 * opposed to a regular memory cleansing writeback. The difference between
406 * these two operations is that if a dirty page/buffer is encountered, it must
407 * be waited upon, and not just skipped over.
409 * Return: %0 on success, negative error code otherwise.
411 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
412 loff_t end, int sync_mode)
414 struct writeback_control wbc = {
415 .sync_mode = sync_mode,
416 .nr_to_write = LONG_MAX,
417 .range_start = start,
421 return filemap_fdatawrite_wbc(mapping, &wbc);
424 static inline int __filemap_fdatawrite(struct address_space *mapping,
427 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
430 int filemap_fdatawrite(struct address_space *mapping)
432 return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
434 EXPORT_SYMBOL(filemap_fdatawrite);
436 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
439 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
441 EXPORT_SYMBOL(filemap_fdatawrite_range);
444 * filemap_flush - mostly a non-blocking flush
445 * @mapping: target address_space
447 * This is a mostly non-blocking flush. Not suitable for data-integrity
448 * purposes - I/O may not be started against all dirty pages.
450 * Return: %0 on success, negative error code otherwise.
452 int filemap_flush(struct address_space *mapping)
454 return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
456 EXPORT_SYMBOL(filemap_flush);
459 * filemap_range_has_page - check if a page exists in range.
460 * @mapping: address space within which to check
461 * @start_byte: offset in bytes where the range starts
462 * @end_byte: offset in bytes where the range ends (inclusive)
464 * Find at least one page in the range supplied, usually used to check if
465 * direct writing in this range will trigger a writeback.
467 * Return: %true if at least one page exists in the specified range,
470 bool filemap_range_has_page(struct address_space *mapping,
471 loff_t start_byte, loff_t end_byte)
474 XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT);
475 pgoff_t max = end_byte >> PAGE_SHIFT;
477 if (end_byte < start_byte)
482 page = xas_find(&xas, max);
483 if (xas_retry(&xas, page))
485 /* Shadow entries don't count */
486 if (xa_is_value(page))
489 * We don't need to try to pin this page; we're about to
490 * release the RCU lock anyway. It is enough to know that
491 * there was a page here recently.
499 EXPORT_SYMBOL(filemap_range_has_page);
501 static void __filemap_fdatawait_range(struct address_space *mapping,
502 loff_t start_byte, loff_t end_byte)
504 pgoff_t index = start_byte >> PAGE_SHIFT;
505 pgoff_t end = end_byte >> PAGE_SHIFT;
509 if (end_byte < start_byte)
513 while (index <= end) {
516 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index,
517 end, PAGECACHE_TAG_WRITEBACK);
521 for (i = 0; i < nr_pages; i++) {
522 struct page *page = pvec.pages[i];
524 wait_on_page_writeback(page);
525 ClearPageError(page);
527 pagevec_release(&pvec);
533 * filemap_fdatawait_range - wait for writeback to complete
534 * @mapping: address space structure to wait for
535 * @start_byte: offset in bytes where the range starts
536 * @end_byte: offset in bytes where the range ends (inclusive)
538 * Walk the list of under-writeback pages of the given address space
539 * in the given range and wait for all of them. Check error status of
540 * the address space and return it.
542 * Since the error status of the address space is cleared by this function,
543 * callers are responsible for checking the return value and handling and/or
544 * reporting the error.
546 * Return: error status of the address space.
548 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
551 __filemap_fdatawait_range(mapping, start_byte, end_byte);
552 return filemap_check_errors(mapping);
554 EXPORT_SYMBOL(filemap_fdatawait_range);
557 * filemap_fdatawait_range_keep_errors - wait for writeback to complete
558 * @mapping: address space structure to wait for
559 * @start_byte: offset in bytes where the range starts
560 * @end_byte: offset in bytes where the range ends (inclusive)
562 * Walk the list of under-writeback pages of the given address space in the
563 * given range and wait for all of them. Unlike filemap_fdatawait_range(),
564 * this function does not clear error status of the address space.
566 * Use this function if callers don't handle errors themselves. Expected
567 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
570 int filemap_fdatawait_range_keep_errors(struct address_space *mapping,
571 loff_t start_byte, loff_t end_byte)
573 __filemap_fdatawait_range(mapping, start_byte, end_byte);
574 return filemap_check_and_keep_errors(mapping);
576 EXPORT_SYMBOL(filemap_fdatawait_range_keep_errors);
579 * file_fdatawait_range - wait for writeback to complete
580 * @file: file pointing to address space structure to wait for
581 * @start_byte: offset in bytes where the range starts
582 * @end_byte: offset in bytes where the range ends (inclusive)
584 * Walk the list of under-writeback pages of the address space that file
585 * refers to, in the given range and wait for all of them. Check error
586 * status of the address space vs. the file->f_wb_err cursor and return it.
588 * Since the error status of the file is advanced by this function,
589 * callers are responsible for checking the return value and handling and/or
590 * reporting the error.
592 * Return: error status of the address space vs. the file->f_wb_err cursor.
594 int file_fdatawait_range(struct file *file, loff_t start_byte, loff_t end_byte)
596 struct address_space *mapping = file->f_mapping;
598 __filemap_fdatawait_range(mapping, start_byte, end_byte);
599 return file_check_and_advance_wb_err(file);
601 EXPORT_SYMBOL(file_fdatawait_range);
604 * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
605 * @mapping: address space structure to wait for
607 * Walk the list of under-writeback pages of the given address space
608 * and wait for all of them. Unlike filemap_fdatawait(), this function
609 * does not clear error status of the address space.
611 * Use this function if callers don't handle errors themselves. Expected
612 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
615 * Return: error status of the address space.
617 int filemap_fdatawait_keep_errors(struct address_space *mapping)
619 __filemap_fdatawait_range(mapping, 0, LLONG_MAX);
620 return filemap_check_and_keep_errors(mapping);
622 EXPORT_SYMBOL(filemap_fdatawait_keep_errors);
624 /* Returns true if writeback might be needed or already in progress. */
625 static bool mapping_needs_writeback(struct address_space *mapping)
627 return mapping->nrpages;
630 bool filemap_range_has_writeback(struct address_space *mapping,
631 loff_t start_byte, loff_t end_byte)
633 XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT);
634 pgoff_t max = end_byte >> PAGE_SHIFT;
637 if (end_byte < start_byte)
641 xas_for_each(&xas, folio, max) {
642 if (xas_retry(&xas, folio))
644 if (xa_is_value(folio))
646 if (folio_test_dirty(folio) || folio_test_locked(folio) ||
647 folio_test_writeback(folio))
651 return folio != NULL;
653 EXPORT_SYMBOL_GPL(filemap_range_has_writeback);
656 * filemap_write_and_wait_range - write out & wait on a file range
657 * @mapping: the address_space for the pages
658 * @lstart: offset in bytes where the range starts
659 * @lend: offset in bytes where the range ends (inclusive)
661 * Write out and wait upon file offsets lstart->lend, inclusive.
663 * Note that @lend is inclusive (describes the last byte to be written) so
664 * that this function can be used to write to the very end-of-file (end = -1).
666 * Return: error status of the address space.
668 int filemap_write_and_wait_range(struct address_space *mapping,
669 loff_t lstart, loff_t lend)
673 if (mapping_needs_writeback(mapping)) {
674 err = __filemap_fdatawrite_range(mapping, lstart, lend,
677 * Even if the above returned error, the pages may be
678 * written partially (e.g. -ENOSPC), so we wait for it.
679 * But the -EIO is special case, it may indicate the worst
680 * thing (e.g. bug) happened, so we avoid waiting for it.
683 __filemap_fdatawait_range(mapping, lstart, lend);
685 err2 = filemap_check_errors(mapping);
690 EXPORT_SYMBOL(filemap_write_and_wait_range);
692 void __filemap_set_wb_err(struct address_space *mapping, int err)
694 errseq_t eseq = errseq_set(&mapping->wb_err, err);
696 trace_filemap_set_wb_err(mapping, eseq);
698 EXPORT_SYMBOL(__filemap_set_wb_err);
701 * file_check_and_advance_wb_err - report wb error (if any) that was previously
702 * and advance wb_err to current one
703 * @file: struct file on which the error is being reported
705 * When userland calls fsync (or something like nfsd does the equivalent), we
706 * want to report any writeback errors that occurred since the last fsync (or
707 * since the file was opened if there haven't been any).
709 * Grab the wb_err from the mapping. If it matches what we have in the file,
710 * then just quickly return 0. The file is all caught up.
712 * If it doesn't match, then take the mapping value, set the "seen" flag in
713 * it and try to swap it into place. If it works, or another task beat us
714 * to it with the new value, then update the f_wb_err and return the error
715 * portion. The error at this point must be reported via proper channels
716 * (a'la fsync, or NFS COMMIT operation, etc.).
718 * While we handle mapping->wb_err with atomic operations, the f_wb_err
719 * value is protected by the f_lock since we must ensure that it reflects
720 * the latest value swapped in for this file descriptor.
722 * Return: %0 on success, negative error code otherwise.
724 int file_check_and_advance_wb_err(struct file *file)
727 errseq_t old = READ_ONCE(file->f_wb_err);
728 struct address_space *mapping = file->f_mapping;
730 /* Locklessly handle the common case where nothing has changed */
731 if (errseq_check(&mapping->wb_err, old)) {
732 /* Something changed, must use slow path */
733 spin_lock(&file->f_lock);
734 old = file->f_wb_err;
735 err = errseq_check_and_advance(&mapping->wb_err,
737 trace_file_check_and_advance_wb_err(file, old);
738 spin_unlock(&file->f_lock);
742 * We're mostly using this function as a drop in replacement for
743 * filemap_check_errors. Clear AS_EIO/AS_ENOSPC to emulate the effect
744 * that the legacy code would have had on these flags.
746 clear_bit(AS_EIO, &mapping->flags);
747 clear_bit(AS_ENOSPC, &mapping->flags);
750 EXPORT_SYMBOL(file_check_and_advance_wb_err);
753 * file_write_and_wait_range - write out & wait on a file range
754 * @file: file pointing to address_space with pages
755 * @lstart: offset in bytes where the range starts
756 * @lend: offset in bytes where the range ends (inclusive)
758 * Write out and wait upon file offsets lstart->lend, inclusive.
760 * Note that @lend is inclusive (describes the last byte to be written) so
761 * that this function can be used to write to the very end-of-file (end = -1).
763 * After writing out and waiting on the data, we check and advance the
764 * f_wb_err cursor to the latest value, and return any errors detected there.
766 * Return: %0 on success, negative error code otherwise.
768 int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend)
771 struct address_space *mapping = file->f_mapping;
773 if (mapping_needs_writeback(mapping)) {
774 err = __filemap_fdatawrite_range(mapping, lstart, lend,
776 /* See comment of filemap_write_and_wait() */
778 __filemap_fdatawait_range(mapping, lstart, lend);
780 err2 = file_check_and_advance_wb_err(file);
785 EXPORT_SYMBOL(file_write_and_wait_range);
788 * replace_page_cache_page - replace a pagecache page with a new one
789 * @old: page to be replaced
790 * @new: page to replace with
792 * This function replaces a page in the pagecache with a new one. On
793 * success it acquires the pagecache reference for the new page and
794 * drops it for the old page. Both the old and new pages must be
795 * locked. This function does not add the new page to the LRU, the
796 * caller must do that.
798 * The remove + add is atomic. This function cannot fail.
800 void replace_page_cache_page(struct page *old, struct page *new)
802 struct folio *fold = page_folio(old);
803 struct folio *fnew = page_folio(new);
804 struct address_space *mapping = old->mapping;
805 void (*free_folio)(struct folio *) = mapping->a_ops->free_folio;
806 pgoff_t offset = old->index;
807 XA_STATE(xas, &mapping->i_pages, offset);
809 VM_BUG_ON_PAGE(!PageLocked(old), old);
810 VM_BUG_ON_PAGE(!PageLocked(new), new);
811 VM_BUG_ON_PAGE(new->mapping, new);
814 new->mapping = mapping;
817 mem_cgroup_migrate(fold, fnew);
820 xas_store(&xas, new);
823 /* hugetlb pages do not participate in page cache accounting. */
825 __dec_lruvec_page_state(old, NR_FILE_PAGES);
827 __inc_lruvec_page_state(new, NR_FILE_PAGES);
828 if (PageSwapBacked(old))
829 __dec_lruvec_page_state(old, NR_SHMEM);
830 if (PageSwapBacked(new))
831 __inc_lruvec_page_state(new, NR_SHMEM);
832 xas_unlock_irq(&xas);
837 EXPORT_SYMBOL_GPL(replace_page_cache_page);
839 noinline int __filemap_add_folio(struct address_space *mapping,
840 struct folio *folio, pgoff_t index, gfp_t gfp, void **shadowp)
842 XA_STATE(xas, &mapping->i_pages, index);
843 int huge = folio_test_hugetlb(folio);
844 bool charged = false;
847 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
848 VM_BUG_ON_FOLIO(folio_test_swapbacked(folio), folio);
849 mapping_set_update(&xas, mapping);
852 int error = mem_cgroup_charge(folio, NULL, gfp);
853 VM_BUG_ON_FOLIO(index & (folio_nr_pages(folio) - 1), folio);
857 xas_set_order(&xas, index, folio_order(folio));
858 nr = folio_nr_pages(folio);
861 gfp &= GFP_RECLAIM_MASK;
862 folio_ref_add(folio, nr);
863 folio->mapping = mapping;
864 folio->index = xas.xa_index;
867 unsigned int order = xa_get_order(xas.xa, xas.xa_index);
868 void *entry, *old = NULL;
870 if (order > folio_order(folio))
871 xas_split_alloc(&xas, xa_load(xas.xa, xas.xa_index),
874 xas_for_each_conflict(&xas, entry) {
876 if (!xa_is_value(entry)) {
877 xas_set_err(&xas, -EEXIST);
885 /* entry may have been split before we acquired lock */
886 order = xa_get_order(xas.xa, xas.xa_index);
887 if (order > folio_order(folio)) {
888 /* How to handle large swap entries? */
889 BUG_ON(shmem_mapping(mapping));
890 xas_split(&xas, old, order);
895 xas_store(&xas, folio);
899 mapping->nrpages += nr;
901 /* hugetlb pages do not participate in page cache accounting */
903 __lruvec_stat_mod_folio(folio, NR_FILE_PAGES, nr);
904 if (folio_test_pmd_mappable(folio))
905 __lruvec_stat_mod_folio(folio,
909 xas_unlock_irq(&xas);
910 } while (xas_nomem(&xas, gfp));
915 trace_mm_filemap_add_to_page_cache(folio);
919 mem_cgroup_uncharge(folio);
920 folio->mapping = NULL;
921 /* Leave page->index set: truncation relies upon it */
922 folio_put_refs(folio, nr);
923 return xas_error(&xas);
925 ALLOW_ERROR_INJECTION(__filemap_add_folio, ERRNO);
927 int filemap_add_folio(struct address_space *mapping, struct folio *folio,
928 pgoff_t index, gfp_t gfp)
933 __folio_set_locked(folio);
934 ret = __filemap_add_folio(mapping, folio, index, gfp, &shadow);
936 __folio_clear_locked(folio);
939 * The folio might have been evicted from cache only
940 * recently, in which case it should be activated like
941 * any other repeatedly accessed folio.
942 * The exception is folios getting rewritten; evicting other
943 * data from the working set, only to cache data that will
944 * get overwritten with something else, is a waste of memory.
946 WARN_ON_ONCE(folio_test_active(folio));
947 if (!(gfp & __GFP_WRITE) && shadow)
948 workingset_refault(folio, shadow);
949 folio_add_lru(folio);
953 EXPORT_SYMBOL_GPL(filemap_add_folio);
956 struct folio *filemap_alloc_folio(gfp_t gfp, unsigned int order)
961 if (cpuset_do_page_mem_spread()) {
962 unsigned int cpuset_mems_cookie;
964 cpuset_mems_cookie = read_mems_allowed_begin();
965 n = cpuset_mem_spread_node();
966 folio = __folio_alloc_node(gfp, order, n);
967 } while (!folio && read_mems_allowed_retry(cpuset_mems_cookie));
971 return folio_alloc(gfp, order);
973 EXPORT_SYMBOL(filemap_alloc_folio);
977 * filemap_invalidate_lock_two - lock invalidate_lock for two mappings
979 * Lock exclusively invalidate_lock of any passed mapping that is not NULL.
981 * @mapping1: the first mapping to lock
982 * @mapping2: the second mapping to lock
984 void filemap_invalidate_lock_two(struct address_space *mapping1,
985 struct address_space *mapping2)
987 if (mapping1 > mapping2)
988 swap(mapping1, mapping2);
990 down_write(&mapping1->invalidate_lock);
991 if (mapping2 && mapping1 != mapping2)
992 down_write_nested(&mapping2->invalidate_lock, 1);
994 EXPORT_SYMBOL(filemap_invalidate_lock_two);
997 * filemap_invalidate_unlock_two - unlock invalidate_lock for two mappings
999 * Unlock exclusive invalidate_lock of any passed mapping that is not NULL.
1001 * @mapping1: the first mapping to unlock
1002 * @mapping2: the second mapping to unlock
1004 void filemap_invalidate_unlock_two(struct address_space *mapping1,
1005 struct address_space *mapping2)
1008 up_write(&mapping1->invalidate_lock);
1009 if (mapping2 && mapping1 != mapping2)
1010 up_write(&mapping2->invalidate_lock);
1012 EXPORT_SYMBOL(filemap_invalidate_unlock_two);
1015 * In order to wait for pages to become available there must be
1016 * waitqueues associated with pages. By using a hash table of
1017 * waitqueues where the bucket discipline is to maintain all
1018 * waiters on the same queue and wake all when any of the pages
1019 * become available, and for the woken contexts to check to be
1020 * sure the appropriate page became available, this saves space
1021 * at a cost of "thundering herd" phenomena during rare hash
1024 #define PAGE_WAIT_TABLE_BITS 8
1025 #define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS)
1026 static wait_queue_head_t folio_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned;
1028 static wait_queue_head_t *folio_waitqueue(struct folio *folio)
1030 return &folio_wait_table[hash_ptr(folio, PAGE_WAIT_TABLE_BITS)];
1033 void __init pagecache_init(void)
1037 for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++)
1038 init_waitqueue_head(&folio_wait_table[i]);
1040 page_writeback_init();
1044 * The page wait code treats the "wait->flags" somewhat unusually, because
1045 * we have multiple different kinds of waits, not just the usual "exclusive"
1050 * (a) no special bits set:
1052 * We're just waiting for the bit to be released, and when a waker
1053 * calls the wakeup function, we set WQ_FLAG_WOKEN and wake it up,
1054 * and remove it from the wait queue.
1056 * Simple and straightforward.
1058 * (b) WQ_FLAG_EXCLUSIVE:
1060 * The waiter is waiting to get the lock, and only one waiter should
1061 * be woken up to avoid any thundering herd behavior. We'll set the
1062 * WQ_FLAG_WOKEN bit, wake it up, and remove it from the wait queue.
1064 * This is the traditional exclusive wait.
1066 * (c) WQ_FLAG_EXCLUSIVE | WQ_FLAG_CUSTOM:
1068 * The waiter is waiting to get the bit, and additionally wants the
1069 * lock to be transferred to it for fair lock behavior. If the lock
1070 * cannot be taken, we stop walking the wait queue without waking
1073 * This is the "fair lock handoff" case, and in addition to setting
1074 * WQ_FLAG_WOKEN, we set WQ_FLAG_DONE to let the waiter easily see
1075 * that it now has the lock.
1077 static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg)
1080 struct wait_page_key *key = arg;
1081 struct wait_page_queue *wait_page
1082 = container_of(wait, struct wait_page_queue, wait);
1084 if (!wake_page_match(wait_page, key))
1088 * If it's a lock handoff wait, we get the bit for it, and
1089 * stop walking (and do not wake it up) if we can't.
1091 flags = wait->flags;
1092 if (flags & WQ_FLAG_EXCLUSIVE) {
1093 if (test_bit(key->bit_nr, &key->folio->flags))
1095 if (flags & WQ_FLAG_CUSTOM) {
1096 if (test_and_set_bit(key->bit_nr, &key->folio->flags))
1098 flags |= WQ_FLAG_DONE;
1103 * We are holding the wait-queue lock, but the waiter that
1104 * is waiting for this will be checking the flags without
1107 * So update the flags atomically, and wake up the waiter
1108 * afterwards to avoid any races. This store-release pairs
1109 * with the load-acquire in folio_wait_bit_common().
1111 smp_store_release(&wait->flags, flags | WQ_FLAG_WOKEN);
1112 wake_up_state(wait->private, mode);
1115 * Ok, we have successfully done what we're waiting for,
1116 * and we can unconditionally remove the wait entry.
1118 * Note that this pairs with the "finish_wait()" in the
1119 * waiter, and has to be the absolute last thing we do.
1120 * After this list_del_init(&wait->entry) the wait entry
1121 * might be de-allocated and the process might even have
1124 list_del_init_careful(&wait->entry);
1125 return (flags & WQ_FLAG_EXCLUSIVE) != 0;
1128 static void folio_wake_bit(struct folio *folio, int bit_nr)
1130 wait_queue_head_t *q = folio_waitqueue(folio);
1131 struct wait_page_key key;
1132 unsigned long flags;
1133 wait_queue_entry_t bookmark;
1136 key.bit_nr = bit_nr;
1140 bookmark.private = NULL;
1141 bookmark.func = NULL;
1142 INIT_LIST_HEAD(&bookmark.entry);
1144 spin_lock_irqsave(&q->lock, flags);
1145 __wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
1147 while (bookmark.flags & WQ_FLAG_BOOKMARK) {
1149 * Take a breather from holding the lock,
1150 * allow pages that finish wake up asynchronously
1151 * to acquire the lock and remove themselves
1154 spin_unlock_irqrestore(&q->lock, flags);
1156 spin_lock_irqsave(&q->lock, flags);
1157 __wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
1161 * It's possible to miss clearing waiters here, when we woke our page
1162 * waiters, but the hashed waitqueue has waiters for other pages on it.
1163 * That's okay, it's a rare case. The next waker will clear it.
1165 * Note that, depending on the page pool (buddy, hugetlb, ZONE_DEVICE,
1166 * other), the flag may be cleared in the course of freeing the page;
1167 * but that is not required for correctness.
1169 if (!waitqueue_active(q) || !key.page_match)
1170 folio_clear_waiters(folio);
1172 spin_unlock_irqrestore(&q->lock, flags);
1175 static void folio_wake(struct folio *folio, int bit)
1177 if (!folio_test_waiters(folio))
1179 folio_wake_bit(folio, bit);
1183 * A choice of three behaviors for folio_wait_bit_common():
1186 EXCLUSIVE, /* Hold ref to page and take the bit when woken, like
1187 * __folio_lock() waiting on then setting PG_locked.
1189 SHARED, /* Hold ref to page and check the bit when woken, like
1190 * folio_wait_writeback() waiting on PG_writeback.
1192 DROP, /* Drop ref to page before wait, no check when woken,
1193 * like folio_put_wait_locked() on PG_locked.
1198 * Attempt to check (or get) the folio flag, and mark us done
1201 static inline bool folio_trylock_flag(struct folio *folio, int bit_nr,
1202 struct wait_queue_entry *wait)
1204 if (wait->flags & WQ_FLAG_EXCLUSIVE) {
1205 if (test_and_set_bit(bit_nr, &folio->flags))
1207 } else if (test_bit(bit_nr, &folio->flags))
1210 wait->flags |= WQ_FLAG_WOKEN | WQ_FLAG_DONE;
1214 /* How many times do we accept lock stealing from under a waiter? */
1215 int sysctl_page_lock_unfairness = 5;
1217 static inline int folio_wait_bit_common(struct folio *folio, int bit_nr,
1218 int state, enum behavior behavior)
1220 wait_queue_head_t *q = folio_waitqueue(folio);
1221 int unfairness = sysctl_page_lock_unfairness;
1222 struct wait_page_queue wait_page;
1223 wait_queue_entry_t *wait = &wait_page.wait;
1224 bool thrashing = false;
1225 unsigned long pflags;
1228 if (bit_nr == PG_locked &&
1229 !folio_test_uptodate(folio) && folio_test_workingset(folio)) {
1230 delayacct_thrashing_start(&in_thrashing);
1231 psi_memstall_enter(&pflags);
1236 wait->func = wake_page_function;
1237 wait_page.folio = folio;
1238 wait_page.bit_nr = bit_nr;
1242 if (behavior == EXCLUSIVE) {
1243 wait->flags = WQ_FLAG_EXCLUSIVE;
1244 if (--unfairness < 0)
1245 wait->flags |= WQ_FLAG_CUSTOM;
1249 * Do one last check whether we can get the
1250 * page bit synchronously.
1252 * Do the folio_set_waiters() marking before that
1253 * to let any waker we _just_ missed know they
1254 * need to wake us up (otherwise they'll never
1255 * even go to the slow case that looks at the
1256 * page queue), and add ourselves to the wait
1257 * queue if we need to sleep.
1259 * This part needs to be done under the queue
1260 * lock to avoid races.
1262 spin_lock_irq(&q->lock);
1263 folio_set_waiters(folio);
1264 if (!folio_trylock_flag(folio, bit_nr, wait))
1265 __add_wait_queue_entry_tail(q, wait);
1266 spin_unlock_irq(&q->lock);
1269 * From now on, all the logic will be based on
1270 * the WQ_FLAG_WOKEN and WQ_FLAG_DONE flag, to
1271 * see whether the page bit testing has already
1272 * been done by the wake function.
1274 * We can drop our reference to the folio.
1276 if (behavior == DROP)
1280 * Note that until the "finish_wait()", or until
1281 * we see the WQ_FLAG_WOKEN flag, we need to
1282 * be very careful with the 'wait->flags', because
1283 * we may race with a waker that sets them.
1288 set_current_state(state);
1290 /* Loop until we've been woken or interrupted */
1291 flags = smp_load_acquire(&wait->flags);
1292 if (!(flags & WQ_FLAG_WOKEN)) {
1293 if (signal_pending_state(state, current))
1300 /* If we were non-exclusive, we're done */
1301 if (behavior != EXCLUSIVE)
1304 /* If the waker got the lock for us, we're done */
1305 if (flags & WQ_FLAG_DONE)
1309 * Otherwise, if we're getting the lock, we need to
1310 * try to get it ourselves.
1312 * And if that fails, we'll have to retry this all.
1314 if (unlikely(test_and_set_bit(bit_nr, folio_flags(folio, 0))))
1317 wait->flags |= WQ_FLAG_DONE;
1322 * If a signal happened, this 'finish_wait()' may remove the last
1323 * waiter from the wait-queues, but the folio waiters bit will remain
1324 * set. That's ok. The next wakeup will take care of it, and trying
1325 * to do it here would be difficult and prone to races.
1327 finish_wait(q, wait);
1330 delayacct_thrashing_end(&in_thrashing);
1331 psi_memstall_leave(&pflags);
1335 * NOTE! The wait->flags weren't stable until we've done the
1336 * 'finish_wait()', and we could have exited the loop above due
1337 * to a signal, and had a wakeup event happen after the signal
1338 * test but before the 'finish_wait()'.
1340 * So only after the finish_wait() can we reliably determine
1341 * if we got woken up or not, so we can now figure out the final
1342 * return value based on that state without races.
1344 * Also note that WQ_FLAG_WOKEN is sufficient for a non-exclusive
1345 * waiter, but an exclusive one requires WQ_FLAG_DONE.
1347 if (behavior == EXCLUSIVE)
1348 return wait->flags & WQ_FLAG_DONE ? 0 : -EINTR;
1350 return wait->flags & WQ_FLAG_WOKEN ? 0 : -EINTR;
1353 #ifdef CONFIG_MIGRATION
1355 * migration_entry_wait_on_locked - Wait for a migration entry to be removed
1356 * @entry: migration swap entry.
1357 * @ptep: mapped pte pointer. Will return with the ptep unmapped. Only required
1358 * for pte entries, pass NULL for pmd entries.
1359 * @ptl: already locked ptl. This function will drop the lock.
1361 * Wait for a migration entry referencing the given page to be removed. This is
1362 * equivalent to put_and_wait_on_page_locked(page, TASK_UNINTERRUPTIBLE) except
1363 * this can be called without taking a reference on the page. Instead this
1364 * should be called while holding the ptl for the migration entry referencing
1367 * Returns after unmapping and unlocking the pte/ptl with pte_unmap_unlock().
1369 * This follows the same logic as folio_wait_bit_common() so see the comments
1372 void migration_entry_wait_on_locked(swp_entry_t entry, pte_t *ptep,
1375 struct wait_page_queue wait_page;
1376 wait_queue_entry_t *wait = &wait_page.wait;
1377 bool thrashing = false;
1378 unsigned long pflags;
1380 wait_queue_head_t *q;
1381 struct folio *folio = page_folio(pfn_swap_entry_to_page(entry));
1383 q = folio_waitqueue(folio);
1384 if (!folio_test_uptodate(folio) && folio_test_workingset(folio)) {
1385 delayacct_thrashing_start(&in_thrashing);
1386 psi_memstall_enter(&pflags);
1391 wait->func = wake_page_function;
1392 wait_page.folio = folio;
1393 wait_page.bit_nr = PG_locked;
1396 spin_lock_irq(&q->lock);
1397 folio_set_waiters(folio);
1398 if (!folio_trylock_flag(folio, PG_locked, wait))
1399 __add_wait_queue_entry_tail(q, wait);
1400 spin_unlock_irq(&q->lock);
1403 * If a migration entry exists for the page the migration path must hold
1404 * a valid reference to the page, and it must take the ptl to remove the
1405 * migration entry. So the page is valid until the ptl is dropped.
1408 pte_unmap_unlock(ptep, ptl);
1415 set_current_state(TASK_UNINTERRUPTIBLE);
1417 /* Loop until we've been woken or interrupted */
1418 flags = smp_load_acquire(&wait->flags);
1419 if (!(flags & WQ_FLAG_WOKEN)) {
1420 if (signal_pending_state(TASK_UNINTERRUPTIBLE, current))
1429 finish_wait(q, wait);
1432 delayacct_thrashing_end(&in_thrashing);
1433 psi_memstall_leave(&pflags);
1438 void folio_wait_bit(struct folio *folio, int bit_nr)
1440 folio_wait_bit_common(folio, bit_nr, TASK_UNINTERRUPTIBLE, SHARED);
1442 EXPORT_SYMBOL(folio_wait_bit);
1444 int folio_wait_bit_killable(struct folio *folio, int bit_nr)
1446 return folio_wait_bit_common(folio, bit_nr, TASK_KILLABLE, SHARED);
1448 EXPORT_SYMBOL(folio_wait_bit_killable);
1451 * folio_put_wait_locked - Drop a reference and wait for it to be unlocked
1452 * @folio: The folio to wait for.
1453 * @state: The sleep state (TASK_KILLABLE, TASK_UNINTERRUPTIBLE, etc).
1455 * The caller should hold a reference on @folio. They expect the page to
1456 * become unlocked relatively soon, but do not wish to hold up migration
1457 * (for example) by holding the reference while waiting for the folio to
1458 * come unlocked. After this function returns, the caller should not
1459 * dereference @folio.
1461 * Return: 0 if the folio was unlocked or -EINTR if interrupted by a signal.
1463 static int folio_put_wait_locked(struct folio *folio, int state)
1465 return folio_wait_bit_common(folio, PG_locked, state, DROP);
1469 * folio_add_wait_queue - Add an arbitrary waiter to a folio's wait queue
1470 * @folio: Folio defining the wait queue of interest
1471 * @waiter: Waiter to add to the queue
1473 * Add an arbitrary @waiter to the wait queue for the nominated @folio.
1475 void folio_add_wait_queue(struct folio *folio, wait_queue_entry_t *waiter)
1477 wait_queue_head_t *q = folio_waitqueue(folio);
1478 unsigned long flags;
1480 spin_lock_irqsave(&q->lock, flags);
1481 __add_wait_queue_entry_tail(q, waiter);
1482 folio_set_waiters(folio);
1483 spin_unlock_irqrestore(&q->lock, flags);
1485 EXPORT_SYMBOL_GPL(folio_add_wait_queue);
1487 #ifndef clear_bit_unlock_is_negative_byte
1490 * PG_waiters is the high bit in the same byte as PG_lock.
1492 * On x86 (and on many other architectures), we can clear PG_lock and
1493 * test the sign bit at the same time. But if the architecture does
1494 * not support that special operation, we just do this all by hand
1497 * The read of PG_waiters has to be after (or concurrently with) PG_locked
1498 * being cleared, but a memory barrier should be unnecessary since it is
1499 * in the same byte as PG_locked.
1501 static inline bool clear_bit_unlock_is_negative_byte(long nr, volatile void *mem)
1503 clear_bit_unlock(nr, mem);
1504 /* smp_mb__after_atomic(); */
1505 return test_bit(PG_waiters, mem);
1511 * folio_unlock - Unlock a locked folio.
1512 * @folio: The folio.
1514 * Unlocks the folio and wakes up any thread sleeping on the page lock.
1516 * Context: May be called from interrupt or process context. May not be
1517 * called from NMI context.
1519 void folio_unlock(struct folio *folio)
1521 /* Bit 7 allows x86 to check the byte's sign bit */
1522 BUILD_BUG_ON(PG_waiters != 7);
1523 BUILD_BUG_ON(PG_locked > 7);
1524 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
1525 if (clear_bit_unlock_is_negative_byte(PG_locked, folio_flags(folio, 0)))
1526 folio_wake_bit(folio, PG_locked);
1528 EXPORT_SYMBOL(folio_unlock);
1531 * folio_end_private_2 - Clear PG_private_2 and wake any waiters.
1532 * @folio: The folio.
1534 * Clear the PG_private_2 bit on a folio and wake up any sleepers waiting for
1535 * it. The folio reference held for PG_private_2 being set is released.
1537 * This is, for example, used when a netfs folio is being written to a local
1538 * disk cache, thereby allowing writes to the cache for the same folio to be
1541 void folio_end_private_2(struct folio *folio)
1543 VM_BUG_ON_FOLIO(!folio_test_private_2(folio), folio);
1544 clear_bit_unlock(PG_private_2, folio_flags(folio, 0));
1545 folio_wake_bit(folio, PG_private_2);
1548 EXPORT_SYMBOL(folio_end_private_2);
1551 * folio_wait_private_2 - Wait for PG_private_2 to be cleared on a folio.
1552 * @folio: The folio to wait on.
1554 * Wait for PG_private_2 (aka PG_fscache) to be cleared on a folio.
1556 void folio_wait_private_2(struct folio *folio)
1558 while (folio_test_private_2(folio))
1559 folio_wait_bit(folio, PG_private_2);
1561 EXPORT_SYMBOL(folio_wait_private_2);
1564 * folio_wait_private_2_killable - Wait for PG_private_2 to be cleared on a folio.
1565 * @folio: The folio to wait on.
1567 * Wait for PG_private_2 (aka PG_fscache) to be cleared on a folio or until a
1568 * fatal signal is received by the calling task.
1571 * - 0 if successful.
1572 * - -EINTR if a fatal signal was encountered.
1574 int folio_wait_private_2_killable(struct folio *folio)
1578 while (folio_test_private_2(folio)) {
1579 ret = folio_wait_bit_killable(folio, PG_private_2);
1586 EXPORT_SYMBOL(folio_wait_private_2_killable);
1589 * folio_end_writeback - End writeback against a folio.
1590 * @folio: The folio.
1592 void folio_end_writeback(struct folio *folio)
1595 * folio_test_clear_reclaim() could be used here but it is an
1596 * atomic operation and overkill in this particular case. Failing
1597 * to shuffle a folio marked for immediate reclaim is too mild
1598 * a gain to justify taking an atomic operation penalty at the
1599 * end of every folio writeback.
1601 if (folio_test_reclaim(folio)) {
1602 folio_clear_reclaim(folio);
1603 folio_rotate_reclaimable(folio);
1607 * Writeback does not hold a folio reference of its own, relying
1608 * on truncation to wait for the clearing of PG_writeback.
1609 * But here we must make sure that the folio is not freed and
1610 * reused before the folio_wake().
1613 if (!__folio_end_writeback(folio))
1616 smp_mb__after_atomic();
1617 folio_wake(folio, PG_writeback);
1618 acct_reclaim_writeback(folio);
1621 EXPORT_SYMBOL(folio_end_writeback);
1624 * After completing I/O on a page, call this routine to update the page
1625 * flags appropriately
1627 void page_endio(struct page *page, bool is_write, int err)
1629 struct folio *folio = page_folio(page);
1633 folio_mark_uptodate(folio);
1635 folio_clear_uptodate(folio);
1636 folio_set_error(folio);
1638 folio_unlock(folio);
1641 struct address_space *mapping;
1643 folio_set_error(folio);
1644 mapping = folio_mapping(folio);
1646 mapping_set_error(mapping, err);
1648 folio_end_writeback(folio);
1651 EXPORT_SYMBOL_GPL(page_endio);
1654 * __folio_lock - Get a lock on the folio, assuming we need to sleep to get it.
1655 * @folio: The folio to lock
1657 void __folio_lock(struct folio *folio)
1659 folio_wait_bit_common(folio, PG_locked, TASK_UNINTERRUPTIBLE,
1662 EXPORT_SYMBOL(__folio_lock);
1664 int __folio_lock_killable(struct folio *folio)
1666 return folio_wait_bit_common(folio, PG_locked, TASK_KILLABLE,
1669 EXPORT_SYMBOL_GPL(__folio_lock_killable);
1671 static int __folio_lock_async(struct folio *folio, struct wait_page_queue *wait)
1673 struct wait_queue_head *q = folio_waitqueue(folio);
1676 wait->folio = folio;
1677 wait->bit_nr = PG_locked;
1679 spin_lock_irq(&q->lock);
1680 __add_wait_queue_entry_tail(q, &wait->wait);
1681 folio_set_waiters(folio);
1682 ret = !folio_trylock(folio);
1684 * If we were successful now, we know we're still on the
1685 * waitqueue as we're still under the lock. This means it's
1686 * safe to remove and return success, we know the callback
1687 * isn't going to trigger.
1690 __remove_wait_queue(q, &wait->wait);
1693 spin_unlock_irq(&q->lock);
1699 * true - folio is locked; mmap_lock is still held.
1700 * false - folio is not locked.
1701 * mmap_lock has been released (mmap_read_unlock(), unless flags had both
1702 * FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
1703 * which case mmap_lock is still held.
1705 * If neither ALLOW_RETRY nor KILLABLE are set, will always return true
1706 * with the folio locked and the mmap_lock unperturbed.
1708 bool __folio_lock_or_retry(struct folio *folio, struct mm_struct *mm,
1711 if (fault_flag_allow_retry_first(flags)) {
1713 * CAUTION! In this case, mmap_lock is not released
1714 * even though return 0.
1716 if (flags & FAULT_FLAG_RETRY_NOWAIT)
1719 mmap_read_unlock(mm);
1720 if (flags & FAULT_FLAG_KILLABLE)
1721 folio_wait_locked_killable(folio);
1723 folio_wait_locked(folio);
1726 if (flags & FAULT_FLAG_KILLABLE) {
1729 ret = __folio_lock_killable(folio);
1731 mmap_read_unlock(mm);
1735 __folio_lock(folio);
1742 * page_cache_next_miss() - Find the next gap in the page cache.
1743 * @mapping: Mapping.
1745 * @max_scan: Maximum range to search.
1747 * Search the range [index, min(index + max_scan - 1, ULONG_MAX)] for the
1748 * gap with the lowest index.
1750 * This function may be called under the rcu_read_lock. However, this will
1751 * not atomically search a snapshot of the cache at a single point in time.
1752 * For example, if a gap is created at index 5, then subsequently a gap is
1753 * created at index 10, page_cache_next_miss covering both indices may
1754 * return 10 if called under the rcu_read_lock.
1756 * Return: The index of the gap if found, otherwise an index outside the
1757 * range specified (in which case 'return - index >= max_scan' will be true).
1758 * In the rare case of index wrap-around, 0 will be returned.
1760 pgoff_t page_cache_next_miss(struct address_space *mapping,
1761 pgoff_t index, unsigned long max_scan)
1763 XA_STATE(xas, &mapping->i_pages, index);
1765 while (max_scan--) {
1766 void *entry = xas_next(&xas);
1767 if (!entry || xa_is_value(entry))
1769 if (xas.xa_index == 0)
1773 return xas.xa_index;
1775 EXPORT_SYMBOL(page_cache_next_miss);
1778 * page_cache_prev_miss() - Find the previous gap in the page cache.
1779 * @mapping: Mapping.
1781 * @max_scan: Maximum range to search.
1783 * Search the range [max(index - max_scan + 1, 0), index] for the
1784 * gap with the highest index.
1786 * This function may be called under the rcu_read_lock. However, this will
1787 * not atomically search a snapshot of the cache at a single point in time.
1788 * For example, if a gap is created at index 10, then subsequently a gap is
1789 * created at index 5, page_cache_prev_miss() covering both indices may
1790 * return 5 if called under the rcu_read_lock.
1792 * Return: The index of the gap if found, otherwise an index outside the
1793 * range specified (in which case 'index - return >= max_scan' will be true).
1794 * In the rare case of wrap-around, ULONG_MAX will be returned.
1796 pgoff_t page_cache_prev_miss(struct address_space *mapping,
1797 pgoff_t index, unsigned long max_scan)
1799 XA_STATE(xas, &mapping->i_pages, index);
1801 while (max_scan--) {
1802 void *entry = xas_prev(&xas);
1803 if (!entry || xa_is_value(entry))
1805 if (xas.xa_index == ULONG_MAX)
1809 return xas.xa_index;
1811 EXPORT_SYMBOL(page_cache_prev_miss);
1814 * Lockless page cache protocol:
1815 * On the lookup side:
1816 * 1. Load the folio from i_pages
1817 * 2. Increment the refcount if it's not zero
1818 * 3. If the folio is not found by xas_reload(), put the refcount and retry
1820 * On the removal side:
1821 * A. Freeze the page (by zeroing the refcount if nobody else has a reference)
1822 * B. Remove the page from i_pages
1823 * C. Return the page to the page allocator
1825 * This means that any page may have its reference count temporarily
1826 * increased by a speculative page cache (or fast GUP) lookup as it can
1827 * be allocated by another user before the RCU grace period expires.
1828 * Because the refcount temporarily acquired here may end up being the
1829 * last refcount on the page, any page allocation must be freeable by
1834 * mapping_get_entry - Get a page cache entry.
1835 * @mapping: the address_space to search
1836 * @index: The page cache index.
1838 * Looks up the page cache entry at @mapping & @index. If it is a folio,
1839 * it is returned with an increased refcount. If it is a shadow entry
1840 * of a previously evicted folio, or a swap entry from shmem/tmpfs,
1841 * it is returned without further action.
1843 * Return: The folio, swap or shadow entry, %NULL if nothing is found.
1845 static void *mapping_get_entry(struct address_space *mapping, pgoff_t index)
1847 XA_STATE(xas, &mapping->i_pages, index);
1848 struct folio *folio;
1853 folio = xas_load(&xas);
1854 if (xas_retry(&xas, folio))
1857 * A shadow entry of a recently evicted page, or a swap entry from
1858 * shmem/tmpfs. Return it without attempting to raise page count.
1860 if (!folio || xa_is_value(folio))
1863 if (!folio_try_get_rcu(folio))
1866 if (unlikely(folio != xas_reload(&xas))) {
1877 * __filemap_get_folio - Find and get a reference to a folio.
1878 * @mapping: The address_space to search.
1879 * @index: The page index.
1880 * @fgp_flags: %FGP flags modify how the folio is returned.
1881 * @gfp: Memory allocation flags to use if %FGP_CREAT is specified.
1883 * Looks up the page cache entry at @mapping & @index.
1885 * @fgp_flags can be zero or more of these flags:
1887 * * %FGP_ACCESSED - The folio will be marked accessed.
1888 * * %FGP_LOCK - The folio is returned locked.
1889 * * %FGP_ENTRY - If there is a shadow / swap / DAX entry, return it
1890 * instead of allocating a new folio to replace it.
1891 * * %FGP_CREAT - If no page is present then a new page is allocated using
1892 * @gfp and added to the page cache and the VM's LRU list.
1893 * The page is returned locked and with an increased refcount.
1894 * * %FGP_FOR_MMAP - The caller wants to do its own locking dance if the
1895 * page is already in cache. If the page was allocated, unlock it before
1896 * returning so the caller can do the same dance.
1897 * * %FGP_WRITE - The page will be written to by the caller.
1898 * * %FGP_NOFS - __GFP_FS will get cleared in gfp.
1899 * * %FGP_NOWAIT - Don't get blocked by page lock.
1900 * * %FGP_STABLE - Wait for the folio to be stable (finished writeback)
1902 * If %FGP_LOCK or %FGP_CREAT are specified then the function may sleep even
1903 * if the %GFP flags specified for %FGP_CREAT are atomic.
1905 * If there is a page cache page, it is returned with an increased refcount.
1907 * Return: The found folio or %NULL otherwise.
1909 struct folio *__filemap_get_folio(struct address_space *mapping, pgoff_t index,
1910 int fgp_flags, gfp_t gfp)
1912 struct folio *folio;
1915 folio = mapping_get_entry(mapping, index);
1916 if (xa_is_value(folio)) {
1917 if (fgp_flags & FGP_ENTRY)
1924 if (fgp_flags & FGP_LOCK) {
1925 if (fgp_flags & FGP_NOWAIT) {
1926 if (!folio_trylock(folio)) {
1934 /* Has the page been truncated? */
1935 if (unlikely(folio->mapping != mapping)) {
1936 folio_unlock(folio);
1940 VM_BUG_ON_FOLIO(!folio_contains(folio, index), folio);
1943 if (fgp_flags & FGP_ACCESSED)
1944 folio_mark_accessed(folio);
1945 else if (fgp_flags & FGP_WRITE) {
1946 /* Clear idle flag for buffer write */
1947 if (folio_test_idle(folio))
1948 folio_clear_idle(folio);
1951 if (fgp_flags & FGP_STABLE)
1952 folio_wait_stable(folio);
1954 if (!folio && (fgp_flags & FGP_CREAT)) {
1956 if ((fgp_flags & FGP_WRITE) && mapping_can_writeback(mapping))
1958 if (fgp_flags & FGP_NOFS)
1960 if (fgp_flags & FGP_NOWAIT) {
1962 gfp |= GFP_NOWAIT | __GFP_NOWARN;
1965 folio = filemap_alloc_folio(gfp, 0);
1969 if (WARN_ON_ONCE(!(fgp_flags & (FGP_LOCK | FGP_FOR_MMAP))))
1970 fgp_flags |= FGP_LOCK;
1972 /* Init accessed so avoid atomic mark_page_accessed later */
1973 if (fgp_flags & FGP_ACCESSED)
1974 __folio_set_referenced(folio);
1976 err = filemap_add_folio(mapping, folio, index, gfp);
1977 if (unlikely(err)) {
1985 * filemap_add_folio locks the page, and for mmap
1986 * we expect an unlocked page.
1988 if (folio && (fgp_flags & FGP_FOR_MMAP))
1989 folio_unlock(folio);
1994 EXPORT_SYMBOL(__filemap_get_folio);
1996 static inline struct folio *find_get_entry(struct xa_state *xas, pgoff_t max,
1999 struct folio *folio;
2002 if (mark == XA_PRESENT)
2003 folio = xas_find(xas, max);
2005 folio = xas_find_marked(xas, max, mark);
2007 if (xas_retry(xas, folio))
2010 * A shadow entry of a recently evicted page, a swap
2011 * entry from shmem/tmpfs or a DAX entry. Return it
2012 * without attempting to raise page count.
2014 if (!folio || xa_is_value(folio))
2017 if (!folio_try_get_rcu(folio))
2020 if (unlikely(folio != xas_reload(xas))) {
2032 * find_get_entries - gang pagecache lookup
2033 * @mapping: The address_space to search
2034 * @start: The starting page cache index
2035 * @end: The final page index (inclusive).
2036 * @fbatch: Where the resulting entries are placed.
2037 * @indices: The cache indices corresponding to the entries in @entries
2039 * find_get_entries() will search for and return a batch of entries in
2040 * the mapping. The entries are placed in @fbatch. find_get_entries()
2041 * takes a reference on any actual folios it returns.
2043 * The entries have ascending indexes. The indices may not be consecutive
2044 * due to not-present entries or large folios.
2046 * Any shadow entries of evicted folios, or swap entries from
2047 * shmem/tmpfs, are included in the returned array.
2049 * Return: The number of entries which were found.
2051 unsigned find_get_entries(struct address_space *mapping, pgoff_t start,
2052 pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices)
2054 XA_STATE(xas, &mapping->i_pages, start);
2055 struct folio *folio;
2058 while ((folio = find_get_entry(&xas, end, XA_PRESENT)) != NULL) {
2059 indices[fbatch->nr] = xas.xa_index;
2060 if (!folio_batch_add(fbatch, folio))
2065 return folio_batch_count(fbatch);
2069 * find_lock_entries - Find a batch of pagecache entries.
2070 * @mapping: The address_space to search.
2071 * @start: The starting page cache index.
2072 * @end: The final page index (inclusive).
2073 * @fbatch: Where the resulting entries are placed.
2074 * @indices: The cache indices of the entries in @fbatch.
2076 * find_lock_entries() will return a batch of entries from @mapping.
2077 * Swap, shadow and DAX entries are included. Folios are returned
2078 * locked and with an incremented refcount. Folios which are locked
2079 * by somebody else or under writeback are skipped. Folios which are
2080 * partially outside the range are not returned.
2082 * The entries have ascending indexes. The indices may not be consecutive
2083 * due to not-present entries, large folios, folios which could not be
2084 * locked or folios under writeback.
2086 * Return: The number of entries which were found.
2088 unsigned find_lock_entries(struct address_space *mapping, pgoff_t start,
2089 pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices)
2091 XA_STATE(xas, &mapping->i_pages, start);
2092 struct folio *folio;
2095 while ((folio = find_get_entry(&xas, end, XA_PRESENT))) {
2096 if (!xa_is_value(folio)) {
2097 if (folio->index < start)
2099 if (folio->index + folio_nr_pages(folio) - 1 > end)
2101 if (!folio_trylock(folio))
2103 if (folio->mapping != mapping ||
2104 folio_test_writeback(folio))
2106 VM_BUG_ON_FOLIO(!folio_contains(folio, xas.xa_index),
2109 indices[fbatch->nr] = xas.xa_index;
2110 if (!folio_batch_add(fbatch, folio))
2114 folio_unlock(folio);
2120 return folio_batch_count(fbatch);
2124 * filemap_get_folios - Get a batch of folios
2125 * @mapping: The address_space to search
2126 * @start: The starting page index
2127 * @end: The final page index (inclusive)
2128 * @fbatch: The batch to fill.
2130 * Search for and return a batch of folios in the mapping starting at
2131 * index @start and up to index @end (inclusive). The folios are returned
2132 * in @fbatch with an elevated reference count.
2134 * The first folio may start before @start; if it does, it will contain
2135 * @start. The final folio may extend beyond @end; if it does, it will
2136 * contain @end. The folios have ascending indices. There may be gaps
2137 * between the folios if there are indices which have no folio in the
2138 * page cache. If folios are added to or removed from the page cache
2139 * while this is running, they may or may not be found by this call.
2141 * Return: The number of folios which were found.
2142 * We also update @start to index the next folio for the traversal.
2144 unsigned filemap_get_folios(struct address_space *mapping, pgoff_t *start,
2145 pgoff_t end, struct folio_batch *fbatch)
2147 XA_STATE(xas, &mapping->i_pages, *start);
2148 struct folio *folio;
2151 while ((folio = find_get_entry(&xas, end, XA_PRESENT)) != NULL) {
2152 /* Skip over shadow, swap and DAX entries */
2153 if (xa_is_value(folio))
2155 if (!folio_batch_add(fbatch, folio)) {
2156 unsigned long nr = folio_nr_pages(folio);
2158 if (folio_test_hugetlb(folio))
2160 *start = folio->index + nr;
2166 * We come here when there is no page beyond @end. We take care to not
2167 * overflow the index @start as it confuses some of the callers. This
2168 * breaks the iteration when there is a page at index -1 but that is
2169 * already broken anyway.
2171 if (end == (pgoff_t)-1)
2172 *start = (pgoff_t)-1;
2178 return folio_batch_count(fbatch);
2180 EXPORT_SYMBOL(filemap_get_folios);
2183 bool folio_more_pages(struct folio *folio, pgoff_t index, pgoff_t max)
2185 if (!folio_test_large(folio) || folio_test_hugetlb(folio))
2189 return index < folio->index + folio_nr_pages(folio) - 1;
2193 * filemap_get_folios_contig - Get a batch of contiguous folios
2194 * @mapping: The address_space to search
2195 * @start: The starting page index
2196 * @end: The final page index (inclusive)
2197 * @fbatch: The batch to fill
2199 * filemap_get_folios_contig() works exactly like filemap_get_folios(),
2200 * except the returned folios are guaranteed to be contiguous. This may
2201 * not return all contiguous folios if the batch gets filled up.
2203 * Return: The number of folios found.
2204 * Also update @start to be positioned for traversal of the next folio.
2207 unsigned filemap_get_folios_contig(struct address_space *mapping,
2208 pgoff_t *start, pgoff_t end, struct folio_batch *fbatch)
2210 XA_STATE(xas, &mapping->i_pages, *start);
2212 struct folio *folio;
2216 for (folio = xas_load(&xas); folio && xas.xa_index <= end;
2217 folio = xas_next(&xas)) {
2218 if (xas_retry(&xas, folio))
2221 * If the entry has been swapped out, we can stop looking.
2222 * No current caller is looking for DAX entries.
2224 if (xa_is_value(folio))
2227 if (!folio_try_get_rcu(folio))
2230 if (unlikely(folio != xas_reload(&xas)))
2233 if (!folio_batch_add(fbatch, folio)) {
2234 nr = folio_nr_pages(folio);
2236 if (folio_test_hugetlb(folio))
2238 *start = folio->index + nr;
2250 nr = folio_batch_count(fbatch);
2253 folio = fbatch->folios[nr - 1];
2254 if (folio_test_hugetlb(folio))
2255 *start = folio->index + 1;
2257 *start = folio->index + folio_nr_pages(folio);
2261 return folio_batch_count(fbatch);
2263 EXPORT_SYMBOL(filemap_get_folios_contig);
2266 * filemap_get_folios_tag - Get a batch of folios matching @tag
2267 * @mapping: The address_space to search
2268 * @start: The starting page index
2269 * @end: The final page index (inclusive)
2270 * @tag: The tag index
2271 * @fbatch: The batch to fill
2273 * Same as filemap_get_folios(), but only returning folios tagged with @tag.
2275 * Return: The number of folios found.
2276 * Also update @start to index the next folio for traversal.
2278 unsigned filemap_get_folios_tag(struct address_space *mapping, pgoff_t *start,
2279 pgoff_t end, xa_mark_t tag, struct folio_batch *fbatch)
2281 XA_STATE(xas, &mapping->i_pages, *start);
2282 struct folio *folio;
2285 while ((folio = find_get_entry(&xas, end, tag)) != NULL) {
2287 * Shadow entries should never be tagged, but this iteration
2288 * is lockless so there is a window for page reclaim to evict
2289 * a page we saw tagged. Skip over it.
2291 if (xa_is_value(folio))
2293 if (!folio_batch_add(fbatch, folio)) {
2294 unsigned long nr = folio_nr_pages(folio);
2296 if (folio_test_hugetlb(folio))
2298 *start = folio->index + nr;
2303 * We come here when there is no page beyond @end. We take care to not
2304 * overflow the index @start as it confuses some of the callers. This
2305 * breaks the iteration when there is a page at index -1 but that is
2306 * already broke anyway.
2308 if (end == (pgoff_t)-1)
2309 *start = (pgoff_t)-1;
2315 return folio_batch_count(fbatch);
2317 EXPORT_SYMBOL(filemap_get_folios_tag);
2320 * find_get_pages_range_tag - Find and return head pages matching @tag.
2321 * @mapping: the address_space to search
2322 * @index: the starting page index
2323 * @end: The final page index (inclusive)
2324 * @tag: the tag index
2325 * @nr_pages: the maximum number of pages
2326 * @pages: where the resulting pages are placed
2328 * Like find_get_pages_range(), except we only return head pages which are
2329 * tagged with @tag. @index is updated to the index immediately after the
2330 * last page we return, ready for the next iteration.
2332 * Return: the number of pages which were found.
2334 unsigned find_get_pages_range_tag(struct address_space *mapping, pgoff_t *index,
2335 pgoff_t end, xa_mark_t tag, unsigned int nr_pages,
2336 struct page **pages)
2338 XA_STATE(xas, &mapping->i_pages, *index);
2339 struct folio *folio;
2342 if (unlikely(!nr_pages))
2346 while ((folio = find_get_entry(&xas, end, tag))) {
2348 * Shadow entries should never be tagged, but this iteration
2349 * is lockless so there is a window for page reclaim to evict
2350 * a page we saw tagged. Skip over it.
2352 if (xa_is_value(folio))
2355 pages[ret] = &folio->page;
2356 if (++ret == nr_pages) {
2357 *index = folio->index + folio_nr_pages(folio);
2363 * We come here when we got to @end. We take care to not overflow the
2364 * index @index as it confuses some of the callers. This breaks the
2365 * iteration when there is a page at index -1 but that is already
2368 if (end == (pgoff_t)-1)
2369 *index = (pgoff_t)-1;
2377 EXPORT_SYMBOL(find_get_pages_range_tag);
2380 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
2381 * a _large_ part of the i/o request. Imagine the worst scenario:
2383 * ---R__________________________________________B__________
2384 * ^ reading here ^ bad block(assume 4k)
2386 * read(R) => miss => readahead(R...B) => media error => frustrating retries
2387 * => failing the whole request => read(R) => read(R+1) =>
2388 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
2389 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
2390 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
2392 * It is going insane. Fix it by quickly scaling down the readahead size.
2394 static void shrink_readahead_size_eio(struct file_ra_state *ra)
2400 * filemap_get_read_batch - Get a batch of folios for read
2402 * Get a batch of folios which represent a contiguous range of bytes in
2403 * the file. No exceptional entries will be returned. If @index is in
2404 * the middle of a folio, the entire folio will be returned. The last
2405 * folio in the batch may have the readahead flag set or the uptodate flag
2406 * clear so that the caller can take the appropriate action.
2408 static void filemap_get_read_batch(struct address_space *mapping,
2409 pgoff_t index, pgoff_t max, struct folio_batch *fbatch)
2411 XA_STATE(xas, &mapping->i_pages, index);
2412 struct folio *folio;
2415 for (folio = xas_load(&xas); folio; folio = xas_next(&xas)) {
2416 if (xas_retry(&xas, folio))
2418 if (xas.xa_index > max || xa_is_value(folio))
2420 if (xa_is_sibling(folio))
2422 if (!folio_try_get_rcu(folio))
2425 if (unlikely(folio != xas_reload(&xas)))
2428 if (!folio_batch_add(fbatch, folio))
2430 if (!folio_test_uptodate(folio))
2432 if (folio_test_readahead(folio))
2434 xas_advance(&xas, folio->index + folio_nr_pages(folio) - 1);
2444 static int filemap_read_folio(struct file *file, filler_t filler,
2445 struct folio *folio)
2447 bool workingset = folio_test_workingset(folio);
2448 unsigned long pflags;
2452 * A previous I/O error may have been due to temporary failures,
2453 * eg. multipath errors. PG_error will be set again if read_folio
2456 folio_clear_error(folio);
2458 /* Start the actual read. The read will unlock the page. */
2459 if (unlikely(workingset))
2460 psi_memstall_enter(&pflags);
2461 error = filler(file, folio);
2462 if (unlikely(workingset))
2463 psi_memstall_leave(&pflags);
2467 error = folio_wait_locked_killable(folio);
2470 if (folio_test_uptodate(folio))
2473 shrink_readahead_size_eio(&file->f_ra);
2477 static bool filemap_range_uptodate(struct address_space *mapping,
2478 loff_t pos, struct iov_iter *iter, struct folio *folio)
2482 if (folio_test_uptodate(folio))
2484 /* pipes can't handle partially uptodate pages */
2485 if (iov_iter_is_pipe(iter))
2487 if (!mapping->a_ops->is_partially_uptodate)
2489 if (mapping->host->i_blkbits >= folio_shift(folio))
2492 count = iter->count;
2493 if (folio_pos(folio) > pos) {
2494 count -= folio_pos(folio) - pos;
2497 pos -= folio_pos(folio);
2500 return mapping->a_ops->is_partially_uptodate(folio, pos, count);
2503 static int filemap_update_page(struct kiocb *iocb,
2504 struct address_space *mapping, struct iov_iter *iter,
2505 struct folio *folio)
2509 if (iocb->ki_flags & IOCB_NOWAIT) {
2510 if (!filemap_invalidate_trylock_shared(mapping))
2513 filemap_invalidate_lock_shared(mapping);
2516 if (!folio_trylock(folio)) {
2518 if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_NOIO))
2519 goto unlock_mapping;
2520 if (!(iocb->ki_flags & IOCB_WAITQ)) {
2521 filemap_invalidate_unlock_shared(mapping);
2523 * This is where we usually end up waiting for a
2524 * previously submitted readahead to finish.
2526 folio_put_wait_locked(folio, TASK_KILLABLE);
2527 return AOP_TRUNCATED_PAGE;
2529 error = __folio_lock_async(folio, iocb->ki_waitq);
2531 goto unlock_mapping;
2534 error = AOP_TRUNCATED_PAGE;
2535 if (!folio->mapping)
2539 if (filemap_range_uptodate(mapping, iocb->ki_pos, iter, folio))
2543 if (iocb->ki_flags & (IOCB_NOIO | IOCB_NOWAIT | IOCB_WAITQ))
2546 error = filemap_read_folio(iocb->ki_filp, mapping->a_ops->read_folio,
2548 goto unlock_mapping;
2550 folio_unlock(folio);
2552 filemap_invalidate_unlock_shared(mapping);
2553 if (error == AOP_TRUNCATED_PAGE)
2558 static int filemap_create_folio(struct file *file,
2559 struct address_space *mapping, pgoff_t index,
2560 struct folio_batch *fbatch)
2562 struct folio *folio;
2565 folio = filemap_alloc_folio(mapping_gfp_mask(mapping), 0);
2570 * Protect against truncate / hole punch. Grabbing invalidate_lock
2571 * here assures we cannot instantiate and bring uptodate new
2572 * pagecache folios after evicting page cache during truncate
2573 * and before actually freeing blocks. Note that we could
2574 * release invalidate_lock after inserting the folio into
2575 * the page cache as the locked folio would then be enough to
2576 * synchronize with hole punching. But there are code paths
2577 * such as filemap_update_page() filling in partially uptodate
2578 * pages or ->readahead() that need to hold invalidate_lock
2579 * while mapping blocks for IO so let's hold the lock here as
2580 * well to keep locking rules simple.
2582 filemap_invalidate_lock_shared(mapping);
2583 error = filemap_add_folio(mapping, folio, index,
2584 mapping_gfp_constraint(mapping, GFP_KERNEL));
2585 if (error == -EEXIST)
2586 error = AOP_TRUNCATED_PAGE;
2590 error = filemap_read_folio(file, mapping->a_ops->read_folio, folio);
2594 filemap_invalidate_unlock_shared(mapping);
2595 folio_batch_add(fbatch, folio);
2598 filemap_invalidate_unlock_shared(mapping);
2603 static int filemap_readahead(struct kiocb *iocb, struct file *file,
2604 struct address_space *mapping, struct folio *folio,
2607 DEFINE_READAHEAD(ractl, file, &file->f_ra, mapping, folio->index);
2609 if (iocb->ki_flags & IOCB_NOIO)
2611 page_cache_async_ra(&ractl, folio, last_index - folio->index);
2615 static int filemap_get_pages(struct kiocb *iocb, struct iov_iter *iter,
2616 struct folio_batch *fbatch)
2618 struct file *filp = iocb->ki_filp;
2619 struct address_space *mapping = filp->f_mapping;
2620 struct file_ra_state *ra = &filp->f_ra;
2621 pgoff_t index = iocb->ki_pos >> PAGE_SHIFT;
2623 struct folio *folio;
2626 /* "last_index" is the index of the page beyond the end of the read */
2627 last_index = DIV_ROUND_UP(iocb->ki_pos + iter->count, PAGE_SIZE);
2629 if (fatal_signal_pending(current))
2632 filemap_get_read_batch(mapping, index, last_index - 1, fbatch);
2633 if (!folio_batch_count(fbatch)) {
2634 if (iocb->ki_flags & IOCB_NOIO)
2636 page_cache_sync_readahead(mapping, ra, filp, index,
2637 last_index - index);
2638 filemap_get_read_batch(mapping, index, last_index - 1, fbatch);
2640 if (!folio_batch_count(fbatch)) {
2641 if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_WAITQ))
2643 err = filemap_create_folio(filp, mapping,
2644 iocb->ki_pos >> PAGE_SHIFT, fbatch);
2645 if (err == AOP_TRUNCATED_PAGE)
2650 folio = fbatch->folios[folio_batch_count(fbatch) - 1];
2651 if (folio_test_readahead(folio)) {
2652 err = filemap_readahead(iocb, filp, mapping, folio, last_index);
2656 if (!folio_test_uptodate(folio)) {
2657 if ((iocb->ki_flags & IOCB_WAITQ) &&
2658 folio_batch_count(fbatch) > 1)
2659 iocb->ki_flags |= IOCB_NOWAIT;
2660 err = filemap_update_page(iocb, mapping, iter, folio);
2669 if (likely(--fbatch->nr))
2671 if (err == AOP_TRUNCATED_PAGE)
2676 static inline bool pos_same_folio(loff_t pos1, loff_t pos2, struct folio *folio)
2678 unsigned int shift = folio_shift(folio);
2680 return (pos1 >> shift == pos2 >> shift);
2684 * filemap_read - Read data from the page cache.
2685 * @iocb: The iocb to read.
2686 * @iter: Destination for the data.
2687 * @already_read: Number of bytes already read by the caller.
2689 * Copies data from the page cache. If the data is not currently present,
2690 * uses the readahead and read_folio address_space operations to fetch it.
2692 * Return: Total number of bytes copied, including those already read by
2693 * the caller. If an error happens before any bytes are copied, returns
2694 * a negative error number.
2696 ssize_t filemap_read(struct kiocb *iocb, struct iov_iter *iter,
2697 ssize_t already_read)
2699 struct file *filp = iocb->ki_filp;
2700 struct file_ra_state *ra = &filp->f_ra;
2701 struct address_space *mapping = filp->f_mapping;
2702 struct inode *inode = mapping->host;
2703 struct folio_batch fbatch;
2705 bool writably_mapped;
2706 loff_t isize, end_offset;
2708 if (unlikely(iocb->ki_pos >= inode->i_sb->s_maxbytes))
2710 if (unlikely(!iov_iter_count(iter)))
2713 iov_iter_truncate(iter, inode->i_sb->s_maxbytes);
2714 folio_batch_init(&fbatch);
2720 * If we've already successfully copied some data, then we
2721 * can no longer safely return -EIOCBQUEUED. Hence mark
2722 * an async read NOWAIT at that point.
2724 if ((iocb->ki_flags & IOCB_WAITQ) && already_read)
2725 iocb->ki_flags |= IOCB_NOWAIT;
2727 if (unlikely(iocb->ki_pos >= i_size_read(inode)))
2730 error = filemap_get_pages(iocb, iter, &fbatch);
2735 * i_size must be checked after we know the pages are Uptodate.
2737 * Checking i_size after the check allows us to calculate
2738 * the correct value for "nr", which means the zero-filled
2739 * part of the page is not copied back to userspace (unless
2740 * another truncate extends the file - this is desired though).
2742 isize = i_size_read(inode);
2743 if (unlikely(iocb->ki_pos >= isize))
2745 end_offset = min_t(loff_t, isize, iocb->ki_pos + iter->count);
2748 * Once we start copying data, we don't want to be touching any
2749 * cachelines that might be contended:
2751 writably_mapped = mapping_writably_mapped(mapping);
2754 * When a read accesses the same folio several times, only
2755 * mark it as accessed the first time.
2757 if (!pos_same_folio(iocb->ki_pos, ra->prev_pos - 1,
2759 folio_mark_accessed(fbatch.folios[0]);
2761 for (i = 0; i < folio_batch_count(&fbatch); i++) {
2762 struct folio *folio = fbatch.folios[i];
2763 size_t fsize = folio_size(folio);
2764 size_t offset = iocb->ki_pos & (fsize - 1);
2765 size_t bytes = min_t(loff_t, end_offset - iocb->ki_pos,
2769 if (end_offset < folio_pos(folio))
2772 folio_mark_accessed(folio);
2774 * If users can be writing to this folio using arbitrary
2775 * virtual addresses, take care of potential aliasing
2776 * before reading the folio on the kernel side.
2778 if (writably_mapped)
2779 flush_dcache_folio(folio);
2781 copied = copy_folio_to_iter(folio, offset, bytes, iter);
2783 already_read += copied;
2784 iocb->ki_pos += copied;
2785 ra->prev_pos = iocb->ki_pos;
2787 if (copied < bytes) {
2793 for (i = 0; i < folio_batch_count(&fbatch); i++)
2794 folio_put(fbatch.folios[i]);
2795 folio_batch_init(&fbatch);
2796 } while (iov_iter_count(iter) && iocb->ki_pos < isize && !error);
2798 file_accessed(filp);
2800 return already_read ? already_read : error;
2802 EXPORT_SYMBOL_GPL(filemap_read);
2805 * generic_file_read_iter - generic filesystem read routine
2806 * @iocb: kernel I/O control block
2807 * @iter: destination for the data read
2809 * This is the "read_iter()" routine for all filesystems
2810 * that can use the page cache directly.
2812 * The IOCB_NOWAIT flag in iocb->ki_flags indicates that -EAGAIN shall
2813 * be returned when no data can be read without waiting for I/O requests
2814 * to complete; it doesn't prevent readahead.
2816 * The IOCB_NOIO flag in iocb->ki_flags indicates that no new I/O
2817 * requests shall be made for the read or for readahead. When no data
2818 * can be read, -EAGAIN shall be returned. When readahead would be
2819 * triggered, a partial, possibly empty read shall be returned.
2822 * * number of bytes copied, even for partial reads
2823 * * negative error code (or 0 if IOCB_NOIO) if nothing was read
2826 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
2828 size_t count = iov_iter_count(iter);
2832 return 0; /* skip atime */
2834 if (iocb->ki_flags & IOCB_DIRECT) {
2835 struct file *file = iocb->ki_filp;
2836 struct address_space *mapping = file->f_mapping;
2837 struct inode *inode = mapping->host;
2839 if (iocb->ki_flags & IOCB_NOWAIT) {
2840 if (filemap_range_needs_writeback(mapping, iocb->ki_pos,
2841 iocb->ki_pos + count - 1))
2844 retval = filemap_write_and_wait_range(mapping,
2846 iocb->ki_pos + count - 1);
2851 file_accessed(file);
2853 retval = mapping->a_ops->direct_IO(iocb, iter);
2855 iocb->ki_pos += retval;
2858 if (retval != -EIOCBQUEUED)
2859 iov_iter_revert(iter, count - iov_iter_count(iter));
2862 * Btrfs can have a short DIO read if we encounter
2863 * compressed extents, so if there was an error, or if
2864 * we've already read everything we wanted to, or if
2865 * there was a short read because we hit EOF, go ahead
2866 * and return. Otherwise fallthrough to buffered io for
2867 * the rest of the read. Buffered reads will not work for
2868 * DAX files, so don't bother trying.
2870 if (retval < 0 || !count || IS_DAX(inode))
2872 if (iocb->ki_pos >= i_size_read(inode))
2876 return filemap_read(iocb, iter, retval);
2878 EXPORT_SYMBOL(generic_file_read_iter);
2880 static inline loff_t folio_seek_hole_data(struct xa_state *xas,
2881 struct address_space *mapping, struct folio *folio,
2882 loff_t start, loff_t end, bool seek_data)
2884 const struct address_space_operations *ops = mapping->a_ops;
2885 size_t offset, bsz = i_blocksize(mapping->host);
2887 if (xa_is_value(folio) || folio_test_uptodate(folio))
2888 return seek_data ? start : end;
2889 if (!ops->is_partially_uptodate)
2890 return seek_data ? end : start;
2895 if (unlikely(folio->mapping != mapping))
2898 offset = offset_in_folio(folio, start) & ~(bsz - 1);
2901 if (ops->is_partially_uptodate(folio, offset, bsz) ==
2904 start = (start + bsz) & ~(bsz - 1);
2906 } while (offset < folio_size(folio));
2908 folio_unlock(folio);
2913 static inline size_t seek_folio_size(struct xa_state *xas, struct folio *folio)
2915 if (xa_is_value(folio))
2916 return PAGE_SIZE << xa_get_order(xas->xa, xas->xa_index);
2917 return folio_size(folio);
2921 * mapping_seek_hole_data - Seek for SEEK_DATA / SEEK_HOLE in the page cache.
2922 * @mapping: Address space to search.
2923 * @start: First byte to consider.
2924 * @end: Limit of search (exclusive).
2925 * @whence: Either SEEK_HOLE or SEEK_DATA.
2927 * If the page cache knows which blocks contain holes and which blocks
2928 * contain data, your filesystem can use this function to implement
2929 * SEEK_HOLE and SEEK_DATA. This is useful for filesystems which are
2930 * entirely memory-based such as tmpfs, and filesystems which support
2931 * unwritten extents.
2933 * Return: The requested offset on success, or -ENXIO if @whence specifies
2934 * SEEK_DATA and there is no data after @start. There is an implicit hole
2935 * after @end - 1, so SEEK_HOLE returns @end if all the bytes between @start
2936 * and @end contain data.
2938 loff_t mapping_seek_hole_data(struct address_space *mapping, loff_t start,
2939 loff_t end, int whence)
2941 XA_STATE(xas, &mapping->i_pages, start >> PAGE_SHIFT);
2942 pgoff_t max = (end - 1) >> PAGE_SHIFT;
2943 bool seek_data = (whence == SEEK_DATA);
2944 struct folio *folio;
2950 while ((folio = find_get_entry(&xas, max, XA_PRESENT))) {
2951 loff_t pos = (u64)xas.xa_index << PAGE_SHIFT;
2960 seek_size = seek_folio_size(&xas, folio);
2961 pos = round_up((u64)pos + 1, seek_size);
2962 start = folio_seek_hole_data(&xas, mapping, folio, start, pos,
2968 if (seek_size > PAGE_SIZE)
2969 xas_set(&xas, pos >> PAGE_SHIFT);
2970 if (!xa_is_value(folio))
2977 if (folio && !xa_is_value(folio))
2985 #define MMAP_LOTSAMISS (100)
2987 * lock_folio_maybe_drop_mmap - lock the page, possibly dropping the mmap_lock
2988 * @vmf - the vm_fault for this fault.
2989 * @folio - the folio to lock.
2990 * @fpin - the pointer to the file we may pin (or is already pinned).
2992 * This works similar to lock_folio_or_retry in that it can drop the
2993 * mmap_lock. It differs in that it actually returns the folio locked
2994 * if it returns 1 and 0 if it couldn't lock the folio. If we did have
2995 * to drop the mmap_lock then fpin will point to the pinned file and
2996 * needs to be fput()'ed at a later point.
2998 static int lock_folio_maybe_drop_mmap(struct vm_fault *vmf, struct folio *folio,
3001 if (folio_trylock(folio))
3005 * NOTE! This will make us return with VM_FAULT_RETRY, but with
3006 * the mmap_lock still held. That's how FAULT_FLAG_RETRY_NOWAIT
3007 * is supposed to work. We have way too many special cases..
3009 if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
3012 *fpin = maybe_unlock_mmap_for_io(vmf, *fpin);
3013 if (vmf->flags & FAULT_FLAG_KILLABLE) {
3014 if (__folio_lock_killable(folio)) {
3016 * We didn't have the right flags to drop the mmap_lock,
3017 * but all fault_handlers only check for fatal signals
3018 * if we return VM_FAULT_RETRY, so we need to drop the
3019 * mmap_lock here and return 0 if we don't have a fpin.
3022 mmap_read_unlock(vmf->vma->vm_mm);
3026 __folio_lock(folio);
3032 * Synchronous readahead happens when we don't even find a page in the page
3033 * cache at all. We don't want to perform IO under the mmap sem, so if we have
3034 * to drop the mmap sem we return the file that was pinned in order for us to do
3035 * that. If we didn't pin a file then we return NULL. The file that is
3036 * returned needs to be fput()'ed when we're done with it.
3038 static struct file *do_sync_mmap_readahead(struct vm_fault *vmf)
3040 struct file *file = vmf->vma->vm_file;
3041 struct file_ra_state *ra = &file->f_ra;
3042 struct address_space *mapping = file->f_mapping;
3043 DEFINE_READAHEAD(ractl, file, ra, mapping, vmf->pgoff);
3044 struct file *fpin = NULL;
3045 unsigned long vm_flags = vmf->vma->vm_flags;
3046 unsigned int mmap_miss;
3048 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3049 /* Use the readahead code, even if readahead is disabled */
3050 if (vm_flags & VM_HUGEPAGE) {
3051 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3052 ractl._index &= ~((unsigned long)HPAGE_PMD_NR - 1);
3053 ra->size = HPAGE_PMD_NR;
3055 * Fetch two PMD folios, so we get the chance to actually
3056 * readahead, unless we've been told not to.
3058 if (!(vm_flags & VM_RAND_READ))
3060 ra->async_size = HPAGE_PMD_NR;
3061 page_cache_ra_order(&ractl, ra, HPAGE_PMD_ORDER);
3066 /* If we don't want any read-ahead, don't bother */
3067 if (vm_flags & VM_RAND_READ)
3072 if (vm_flags & VM_SEQ_READ) {
3073 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3074 page_cache_sync_ra(&ractl, ra->ra_pages);
3078 /* Avoid banging the cache line if not needed */
3079 mmap_miss = READ_ONCE(ra->mmap_miss);
3080 if (mmap_miss < MMAP_LOTSAMISS * 10)
3081 WRITE_ONCE(ra->mmap_miss, ++mmap_miss);
3084 * Do we miss much more than hit in this file? If so,
3085 * stop bothering with read-ahead. It will only hurt.
3087 if (mmap_miss > MMAP_LOTSAMISS)
3093 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3094 ra->start = max_t(long, 0, vmf->pgoff - ra->ra_pages / 2);
3095 ra->size = ra->ra_pages;
3096 ra->async_size = ra->ra_pages / 4;
3097 ractl._index = ra->start;
3098 page_cache_ra_order(&ractl, ra, 0);
3103 * Asynchronous readahead happens when we find the page and PG_readahead,
3104 * so we want to possibly extend the readahead further. We return the file that
3105 * was pinned if we have to drop the mmap_lock in order to do IO.
3107 static struct file *do_async_mmap_readahead(struct vm_fault *vmf,
3108 struct folio *folio)
3110 struct file *file = vmf->vma->vm_file;
3111 struct file_ra_state *ra = &file->f_ra;
3112 DEFINE_READAHEAD(ractl, file, ra, file->f_mapping, vmf->pgoff);
3113 struct file *fpin = NULL;
3114 unsigned int mmap_miss;
3116 /* If we don't want any read-ahead, don't bother */
3117 if (vmf->vma->vm_flags & VM_RAND_READ || !ra->ra_pages)
3120 mmap_miss = READ_ONCE(ra->mmap_miss);
3122 WRITE_ONCE(ra->mmap_miss, --mmap_miss);
3124 if (folio_test_readahead(folio)) {
3125 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3126 page_cache_async_ra(&ractl, folio, ra->ra_pages);
3132 * filemap_fault - read in file data for page fault handling
3133 * @vmf: struct vm_fault containing details of the fault
3135 * filemap_fault() is invoked via the vma operations vector for a
3136 * mapped memory region to read in file data during a page fault.
3138 * The goto's are kind of ugly, but this streamlines the normal case of having
3139 * it in the page cache, and handles the special cases reasonably without
3140 * having a lot of duplicated code.
3142 * vma->vm_mm->mmap_lock must be held on entry.
3144 * If our return value has VM_FAULT_RETRY set, it's because the mmap_lock
3145 * may be dropped before doing I/O or by lock_folio_maybe_drop_mmap().
3147 * If our return value does not have VM_FAULT_RETRY set, the mmap_lock
3148 * has not been released.
3150 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
3152 * Return: bitwise-OR of %VM_FAULT_ codes.
3154 vm_fault_t filemap_fault(struct vm_fault *vmf)
3157 struct file *file = vmf->vma->vm_file;
3158 struct file *fpin = NULL;
3159 struct address_space *mapping = file->f_mapping;
3160 struct inode *inode = mapping->host;
3161 pgoff_t max_idx, index = vmf->pgoff;
3162 struct folio *folio;
3164 bool mapping_locked = false;
3166 max_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3167 if (unlikely(index >= max_idx))
3168 return VM_FAULT_SIGBUS;
3171 * Do we have something in the page cache already?
3173 folio = filemap_get_folio(mapping, index);
3174 if (likely(folio)) {
3176 * We found the page, so try async readahead before waiting for
3179 if (!(vmf->flags & FAULT_FLAG_TRIED))
3180 fpin = do_async_mmap_readahead(vmf, folio);
3181 if (unlikely(!folio_test_uptodate(folio))) {
3182 filemap_invalidate_lock_shared(mapping);
3183 mapping_locked = true;
3186 /* No page in the page cache at all */
3187 count_vm_event(PGMAJFAULT);
3188 count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT);
3189 ret = VM_FAULT_MAJOR;
3190 fpin = do_sync_mmap_readahead(vmf);
3193 * See comment in filemap_create_folio() why we need
3196 if (!mapping_locked) {
3197 filemap_invalidate_lock_shared(mapping);
3198 mapping_locked = true;
3200 folio = __filemap_get_folio(mapping, index,
3201 FGP_CREAT|FGP_FOR_MMAP,
3206 filemap_invalidate_unlock_shared(mapping);
3207 return VM_FAULT_OOM;
3211 if (!lock_folio_maybe_drop_mmap(vmf, folio, &fpin))
3214 /* Did it get truncated? */
3215 if (unlikely(folio->mapping != mapping)) {
3216 folio_unlock(folio);
3220 VM_BUG_ON_FOLIO(!folio_contains(folio, index), folio);
3223 * We have a locked page in the page cache, now we need to check
3224 * that it's up-to-date. If not, it is going to be due to an error.
3226 if (unlikely(!folio_test_uptodate(folio))) {
3228 * The page was in cache and uptodate and now it is not.
3229 * Strange but possible since we didn't hold the page lock all
3230 * the time. Let's drop everything get the invalidate lock and
3233 if (!mapping_locked) {
3234 folio_unlock(folio);
3238 goto page_not_uptodate;
3242 * We've made it this far and we had to drop our mmap_lock, now is the
3243 * time to return to the upper layer and have it re-find the vma and
3247 folio_unlock(folio);
3251 filemap_invalidate_unlock_shared(mapping);
3254 * Found the page and have a reference on it.
3255 * We must recheck i_size under page lock.
3257 max_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3258 if (unlikely(index >= max_idx)) {
3259 folio_unlock(folio);
3261 return VM_FAULT_SIGBUS;
3264 vmf->page = folio_file_page(folio, index);
3265 return ret | VM_FAULT_LOCKED;
3269 * Umm, take care of errors if the page isn't up-to-date.
3270 * Try to re-read it _once_. We do this synchronously,
3271 * because there really aren't any performance issues here
3272 * and we need to check for errors.
3274 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3275 error = filemap_read_folio(file, mapping->a_ops->read_folio, folio);
3280 if (!error || error == AOP_TRUNCATED_PAGE)
3282 filemap_invalidate_unlock_shared(mapping);
3284 return VM_FAULT_SIGBUS;
3288 * We dropped the mmap_lock, we need to return to the fault handler to
3289 * re-find the vma and come back and find our hopefully still populated
3295 filemap_invalidate_unlock_shared(mapping);
3298 return ret | VM_FAULT_RETRY;
3300 EXPORT_SYMBOL(filemap_fault);
3302 static bool filemap_map_pmd(struct vm_fault *vmf, struct page *page)
3304 struct mm_struct *mm = vmf->vma->vm_mm;
3306 /* Huge page is mapped? No need to proceed. */
3307 if (pmd_trans_huge(*vmf->pmd)) {
3313 if (pmd_none(*vmf->pmd) && PageTransHuge(page)) {
3314 vm_fault_t ret = do_set_pmd(vmf, page);
3316 /* The page is mapped successfully, reference consumed. */
3322 if (pmd_none(*vmf->pmd))
3323 pmd_install(mm, vmf->pmd, &vmf->prealloc_pte);
3325 /* See comment in handle_pte_fault() */
3326 if (pmd_devmap_trans_unstable(vmf->pmd)) {
3335 static struct folio *next_uptodate_page(struct folio *folio,
3336 struct address_space *mapping,
3337 struct xa_state *xas, pgoff_t end_pgoff)
3339 unsigned long max_idx;
3344 if (xas_retry(xas, folio))
3346 if (xa_is_value(folio))
3348 if (folio_test_locked(folio))
3350 if (!folio_try_get_rcu(folio))
3352 /* Has the page moved or been split? */
3353 if (unlikely(folio != xas_reload(xas)))
3355 if (!folio_test_uptodate(folio) || folio_test_readahead(folio))
3357 if (!folio_trylock(folio))
3359 if (folio->mapping != mapping)
3361 if (!folio_test_uptodate(folio))
3363 max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
3364 if (xas->xa_index >= max_idx)
3368 folio_unlock(folio);
3371 } while ((folio = xas_next_entry(xas, end_pgoff)) != NULL);
3376 static inline struct folio *first_map_page(struct address_space *mapping,
3377 struct xa_state *xas,
3380 return next_uptodate_page(xas_find(xas, end_pgoff),
3381 mapping, xas, end_pgoff);
3384 static inline struct folio *next_map_page(struct address_space *mapping,
3385 struct xa_state *xas,
3388 return next_uptodate_page(xas_next_entry(xas, end_pgoff),
3389 mapping, xas, end_pgoff);
3392 vm_fault_t filemap_map_pages(struct vm_fault *vmf,
3393 pgoff_t start_pgoff, pgoff_t end_pgoff)
3395 struct vm_area_struct *vma = vmf->vma;
3396 struct file *file = vma->vm_file;
3397 struct address_space *mapping = file->f_mapping;
3398 pgoff_t last_pgoff = start_pgoff;
3400 XA_STATE(xas, &mapping->i_pages, start_pgoff);
3401 struct folio *folio;
3403 unsigned int mmap_miss = READ_ONCE(file->f_ra.mmap_miss);
3407 folio = first_map_page(mapping, &xas, end_pgoff);
3411 if (filemap_map_pmd(vmf, &folio->page)) {
3412 ret = VM_FAULT_NOPAGE;
3416 addr = vma->vm_start + ((start_pgoff - vma->vm_pgoff) << PAGE_SHIFT);
3417 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, addr, &vmf->ptl);
3420 page = folio_file_page(folio, xas.xa_index);
3421 if (PageHWPoison(page))
3427 addr += (xas.xa_index - last_pgoff) << PAGE_SHIFT;
3428 vmf->pte += xas.xa_index - last_pgoff;
3429 last_pgoff = xas.xa_index;
3432 * NOTE: If there're PTE markers, we'll leave them to be
3433 * handled in the specific fault path, and it'll prohibit the
3434 * fault-around logic.
3436 if (!pte_none(*vmf->pte))
3439 /* We're about to handle the fault */
3440 if (vmf->address == addr)
3441 ret = VM_FAULT_NOPAGE;
3443 do_set_pte(vmf, page, addr);
3444 /* no need to invalidate: a not-present page won't be cached */
3445 update_mmu_cache(vma, addr, vmf->pte);
3446 if (folio_more_pages(folio, xas.xa_index, end_pgoff)) {
3448 folio_ref_inc(folio);
3451 folio_unlock(folio);
3454 if (folio_more_pages(folio, xas.xa_index, end_pgoff)) {
3458 folio_unlock(folio);
3460 } while ((folio = next_map_page(mapping, &xas, end_pgoff)) != NULL);
3461 pte_unmap_unlock(vmf->pte, vmf->ptl);
3464 WRITE_ONCE(file->f_ra.mmap_miss, mmap_miss);
3467 EXPORT_SYMBOL(filemap_map_pages);
3469 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
3471 struct address_space *mapping = vmf->vma->vm_file->f_mapping;
3472 struct folio *folio = page_folio(vmf->page);
3473 vm_fault_t ret = VM_FAULT_LOCKED;
3475 sb_start_pagefault(mapping->host->i_sb);
3476 file_update_time(vmf->vma->vm_file);
3478 if (folio->mapping != mapping) {
3479 folio_unlock(folio);
3480 ret = VM_FAULT_NOPAGE;
3484 * We mark the folio dirty already here so that when freeze is in
3485 * progress, we are guaranteed that writeback during freezing will
3486 * see the dirty folio and writeprotect it again.
3488 folio_mark_dirty(folio);
3489 folio_wait_stable(folio);
3491 sb_end_pagefault(mapping->host->i_sb);
3495 const struct vm_operations_struct generic_file_vm_ops = {
3496 .fault = filemap_fault,
3497 .map_pages = filemap_map_pages,
3498 .page_mkwrite = filemap_page_mkwrite,
3501 /* This is used for a general mmap of a disk file */
3503 int generic_file_mmap(struct file *file, struct vm_area_struct *vma)
3505 struct address_space *mapping = file->f_mapping;
3507 if (!mapping->a_ops->read_folio)
3509 file_accessed(file);
3510 vma->vm_ops = &generic_file_vm_ops;
3515 * This is for filesystems which do not implement ->writepage.
3517 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
3519 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
3521 return generic_file_mmap(file, vma);
3524 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
3526 return VM_FAULT_SIGBUS;
3528 int generic_file_mmap(struct file *file, struct vm_area_struct *vma)
3532 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
3536 #endif /* CONFIG_MMU */
3538 EXPORT_SYMBOL(filemap_page_mkwrite);
3539 EXPORT_SYMBOL(generic_file_mmap);
3540 EXPORT_SYMBOL(generic_file_readonly_mmap);
3542 static struct folio *do_read_cache_folio(struct address_space *mapping,
3543 pgoff_t index, filler_t filler, struct file *file, gfp_t gfp)
3545 struct folio *folio;
3549 filler = mapping->a_ops->read_folio;
3551 folio = filemap_get_folio(mapping, index);
3553 folio = filemap_alloc_folio(gfp, 0);
3555 return ERR_PTR(-ENOMEM);
3556 err = filemap_add_folio(mapping, folio, index, gfp);
3557 if (unlikely(err)) {
3561 /* Presumably ENOMEM for xarray node */
3562 return ERR_PTR(err);
3567 if (folio_test_uptodate(folio))
3570 if (!folio_trylock(folio)) {
3571 folio_put_wait_locked(folio, TASK_UNINTERRUPTIBLE);
3575 /* Folio was truncated from mapping */
3576 if (!folio->mapping) {
3577 folio_unlock(folio);
3582 /* Someone else locked and filled the page in a very small window */
3583 if (folio_test_uptodate(folio)) {
3584 folio_unlock(folio);
3589 err = filemap_read_folio(file, filler, folio);
3592 if (err == AOP_TRUNCATED_PAGE)
3594 return ERR_PTR(err);
3598 folio_mark_accessed(folio);
3603 * read_cache_folio - Read into page cache, fill it if needed.
3604 * @mapping: The address_space to read from.
3605 * @index: The index to read.
3606 * @filler: Function to perform the read, or NULL to use aops->read_folio().
3607 * @file: Passed to filler function, may be NULL if not required.
3609 * Read one page into the page cache. If it succeeds, the folio returned
3610 * will contain @index, but it may not be the first page of the folio.
3612 * If the filler function returns an error, it will be returned to the
3615 * Context: May sleep. Expects mapping->invalidate_lock to be held.
3616 * Return: An uptodate folio on success, ERR_PTR() on failure.
3618 struct folio *read_cache_folio(struct address_space *mapping, pgoff_t index,
3619 filler_t filler, struct file *file)
3621 return do_read_cache_folio(mapping, index, filler, file,
3622 mapping_gfp_mask(mapping));
3624 EXPORT_SYMBOL(read_cache_folio);
3626 static struct page *do_read_cache_page(struct address_space *mapping,
3627 pgoff_t index, filler_t *filler, struct file *file, gfp_t gfp)
3629 struct folio *folio;
3631 folio = do_read_cache_folio(mapping, index, filler, file, gfp);
3633 return &folio->page;
3634 return folio_file_page(folio, index);
3637 struct page *read_cache_page(struct address_space *mapping,
3638 pgoff_t index, filler_t *filler, struct file *file)
3640 return do_read_cache_page(mapping, index, filler, file,
3641 mapping_gfp_mask(mapping));
3643 EXPORT_SYMBOL(read_cache_page);
3646 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
3647 * @mapping: the page's address_space
3648 * @index: the page index
3649 * @gfp: the page allocator flags to use if allocating
3651 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
3652 * any new page allocations done using the specified allocation flags.
3654 * If the page does not get brought uptodate, return -EIO.
3656 * The function expects mapping->invalidate_lock to be already held.
3658 * Return: up to date page on success, ERR_PTR() on failure.
3660 struct page *read_cache_page_gfp(struct address_space *mapping,
3664 return do_read_cache_page(mapping, index, NULL, NULL, gfp);
3666 EXPORT_SYMBOL(read_cache_page_gfp);
3669 * Warn about a page cache invalidation failure during a direct I/O write.
3671 void dio_warn_stale_pagecache(struct file *filp)
3673 static DEFINE_RATELIMIT_STATE(_rs, 86400 * HZ, DEFAULT_RATELIMIT_BURST);
3677 errseq_set(&filp->f_mapping->wb_err, -EIO);
3678 if (__ratelimit(&_rs)) {
3679 path = file_path(filp, pathname, sizeof(pathname));
3682 pr_crit("Page cache invalidation failure on direct I/O. Possible data corruption due to collision with buffered I/O!\n");
3683 pr_crit("File: %s PID: %d Comm: %.20s\n", path, current->pid,
3689 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from)
3691 struct file *file = iocb->ki_filp;
3692 struct address_space *mapping = file->f_mapping;
3693 struct inode *inode = mapping->host;
3694 loff_t pos = iocb->ki_pos;
3699 write_len = iov_iter_count(from);
3700 end = (pos + write_len - 1) >> PAGE_SHIFT;
3702 if (iocb->ki_flags & IOCB_NOWAIT) {
3703 /* If there are pages to writeback, return */
3704 if (filemap_range_has_page(file->f_mapping, pos,
3705 pos + write_len - 1))
3708 written = filemap_write_and_wait_range(mapping, pos,
3709 pos + write_len - 1);
3715 * After a write we want buffered reads to be sure to go to disk to get
3716 * the new data. We invalidate clean cached page from the region we're
3717 * about to write. We do this *before* the write so that we can return
3718 * without clobbering -EIOCBQUEUED from ->direct_IO().
3720 written = invalidate_inode_pages2_range(mapping,
3721 pos >> PAGE_SHIFT, end);
3723 * If a page can not be invalidated, return 0 to fall back
3724 * to buffered write.
3727 if (written == -EBUSY)
3732 written = mapping->a_ops->direct_IO(iocb, from);
3735 * Finally, try again to invalidate clean pages which might have been
3736 * cached by non-direct readahead, or faulted in by get_user_pages()
3737 * if the source of the write was an mmap'ed region of the file
3738 * we're writing. Either one is a pretty crazy thing to do,
3739 * so we don't support it 100%. If this invalidation
3740 * fails, tough, the write still worked...
3742 * Most of the time we do not need this since dio_complete() will do
3743 * the invalidation for us. However there are some file systems that
3744 * do not end up with dio_complete() being called, so let's not break
3745 * them by removing it completely.
3747 * Noticeable example is a blkdev_direct_IO().
3749 * Skip invalidation for async writes or if mapping has no pages.
3751 if (written > 0 && mapping->nrpages &&
3752 invalidate_inode_pages2_range(mapping, pos >> PAGE_SHIFT, end))
3753 dio_warn_stale_pagecache(file);
3757 write_len -= written;
3758 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
3759 i_size_write(inode, pos);
3760 mark_inode_dirty(inode);
3764 if (written != -EIOCBQUEUED)
3765 iov_iter_revert(from, write_len - iov_iter_count(from));
3769 EXPORT_SYMBOL(generic_file_direct_write);
3771 ssize_t generic_perform_write(struct kiocb *iocb, struct iov_iter *i)
3773 struct file *file = iocb->ki_filp;
3774 loff_t pos = iocb->ki_pos;
3775 struct address_space *mapping = file->f_mapping;
3776 const struct address_space_operations *a_ops = mapping->a_ops;
3778 ssize_t written = 0;
3782 unsigned long offset; /* Offset into pagecache page */
3783 unsigned long bytes; /* Bytes to write to page */
3784 size_t copied; /* Bytes copied from user */
3785 void *fsdata = NULL;
3787 offset = (pos & (PAGE_SIZE - 1));
3788 bytes = min_t(unsigned long, PAGE_SIZE - offset,
3793 * Bring in the user page that we will copy from _first_.
3794 * Otherwise there's a nasty deadlock on copying from the
3795 * same page as we're writing to, without it being marked
3798 if (unlikely(fault_in_iov_iter_readable(i, bytes) == bytes)) {
3803 if (fatal_signal_pending(current)) {
3808 status = a_ops->write_begin(file, mapping, pos, bytes,
3810 if (unlikely(status < 0))
3813 if (mapping_writably_mapped(mapping))
3814 flush_dcache_page(page);
3816 copied = copy_page_from_iter_atomic(page, offset, bytes, i);
3817 flush_dcache_page(page);
3819 status = a_ops->write_end(file, mapping, pos, bytes, copied,
3821 if (unlikely(status != copied)) {
3822 iov_iter_revert(i, copied - max(status, 0L));
3823 if (unlikely(status < 0))
3828 if (unlikely(status == 0)) {
3830 * A short copy made ->write_end() reject the
3831 * thing entirely. Might be memory poisoning
3832 * halfway through, might be a race with munmap,
3833 * might be severe memory pressure.
3842 balance_dirty_pages_ratelimited(mapping);
3843 } while (iov_iter_count(i));
3845 return written ? written : status;
3847 EXPORT_SYMBOL(generic_perform_write);
3850 * __generic_file_write_iter - write data to a file
3851 * @iocb: IO state structure (file, offset, etc.)
3852 * @from: iov_iter with data to write
3854 * This function does all the work needed for actually writing data to a
3855 * file. It does all basic checks, removes SUID from the file, updates
3856 * modification times and calls proper subroutines depending on whether we
3857 * do direct IO or a standard buffered write.
3859 * It expects i_rwsem to be grabbed unless we work on a block device or similar
3860 * object which does not need locking at all.
3862 * This function does *not* take care of syncing data in case of O_SYNC write.
3863 * A caller has to handle it. This is mainly due to the fact that we want to
3864 * avoid syncing under i_rwsem.
3867 * * number of bytes written, even for truncated writes
3868 * * negative error code if no data has been written at all
3870 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
3872 struct file *file = iocb->ki_filp;
3873 struct address_space *mapping = file->f_mapping;
3874 struct inode *inode = mapping->host;
3875 ssize_t written = 0;
3879 /* We can write back this queue in page reclaim */
3880 current->backing_dev_info = inode_to_bdi(inode);
3881 err = file_remove_privs(file);
3885 err = file_update_time(file);
3889 if (iocb->ki_flags & IOCB_DIRECT) {
3890 loff_t pos, endbyte;
3892 written = generic_file_direct_write(iocb, from);
3894 * If the write stopped short of completing, fall back to
3895 * buffered writes. Some filesystems do this for writes to
3896 * holes, for example. For DAX files, a buffered write will
3897 * not succeed (even if it did, DAX does not handle dirty
3898 * page-cache pages correctly).
3900 if (written < 0 || !iov_iter_count(from) || IS_DAX(inode))
3904 status = generic_perform_write(iocb, from);
3906 * If generic_perform_write() returned a synchronous error
3907 * then we want to return the number of bytes which were
3908 * direct-written, or the error code if that was zero. Note
3909 * that this differs from normal direct-io semantics, which
3910 * will return -EFOO even if some bytes were written.
3912 if (unlikely(status < 0)) {
3917 * We need to ensure that the page cache pages are written to
3918 * disk and invalidated to preserve the expected O_DIRECT
3921 endbyte = pos + status - 1;
3922 err = filemap_write_and_wait_range(mapping, pos, endbyte);
3924 iocb->ki_pos = endbyte + 1;
3926 invalidate_mapping_pages(mapping,
3928 endbyte >> PAGE_SHIFT);
3931 * We don't know how much we wrote, so just return
3932 * the number of bytes which were direct-written
3936 written = generic_perform_write(iocb, from);
3937 if (likely(written > 0))
3938 iocb->ki_pos += written;
3941 current->backing_dev_info = NULL;
3942 return written ? written : err;
3944 EXPORT_SYMBOL(__generic_file_write_iter);
3947 * generic_file_write_iter - write data to a file
3948 * @iocb: IO state structure
3949 * @from: iov_iter with data to write
3951 * This is a wrapper around __generic_file_write_iter() to be used by most
3952 * filesystems. It takes care of syncing the file in case of O_SYNC file
3953 * and acquires i_rwsem as needed.
3955 * * negative error code if no data has been written at all of
3956 * vfs_fsync_range() failed for a synchronous write
3957 * * number of bytes written, even for truncated writes
3959 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
3961 struct file *file = iocb->ki_filp;
3962 struct inode *inode = file->f_mapping->host;
3966 ret = generic_write_checks(iocb, from);
3968 ret = __generic_file_write_iter(iocb, from);
3969 inode_unlock(inode);
3972 ret = generic_write_sync(iocb, ret);
3975 EXPORT_SYMBOL(generic_file_write_iter);
3978 * filemap_release_folio() - Release fs-specific metadata on a folio.
3979 * @folio: The folio which the kernel is trying to free.
3980 * @gfp: Memory allocation flags (and I/O mode).
3982 * The address_space is trying to release any data attached to a folio
3983 * (presumably at folio->private).
3985 * This will also be called if the private_2 flag is set on a page,
3986 * indicating that the folio has other metadata associated with it.
3988 * The @gfp argument specifies whether I/O may be performed to release
3989 * this page (__GFP_IO), and whether the call may block
3990 * (__GFP_RECLAIM & __GFP_FS).
3992 * Return: %true if the release was successful, otherwise %false.
3994 bool filemap_release_folio(struct folio *folio, gfp_t gfp)
3996 struct address_space * const mapping = folio->mapping;
3998 BUG_ON(!folio_test_locked(folio));
3999 if (folio_test_writeback(folio))
4002 if (mapping && mapping->a_ops->release_folio)
4003 return mapping->a_ops->release_folio(folio, gfp);
4004 return try_to_free_buffers(folio);
4006 EXPORT_SYMBOL(filemap_release_folio);