4 * Copyright (C) 1994-1999 Linus Torvalds
8 * This file handles the generic file mmap semantics used by
9 * most "normal" filesystems (but you don't /have/ to use this:
10 * the NFS filesystem used to do this differently, for example)
12 #include <linux/export.h>
13 #include <linux/compiler.h>
14 #include <linux/dax.h>
16 #include <linux/uaccess.h>
17 #include <linux/capability.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/gfp.h>
21 #include <linux/swap.h>
22 #include <linux/mman.h>
23 #include <linux/pagemap.h>
24 #include <linux/file.h>
25 #include <linux/uio.h>
26 #include <linux/hash.h>
27 #include <linux/writeback.h>
28 #include <linux/backing-dev.h>
29 #include <linux/pagevec.h>
30 #include <linux/blkdev.h>
31 #include <linux/security.h>
32 #include <linux/cpuset.h>
33 #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
34 #include <linux/hugetlb.h>
35 #include <linux/memcontrol.h>
36 #include <linux/cleancache.h>
37 #include <linux/rmap.h>
40 #define CREATE_TRACE_POINTS
41 #include <trace/events/filemap.h>
44 * FIXME: remove all knowledge of the buffer layer from the core VM
46 #include <linux/buffer_head.h> /* for try_to_free_buffers */
51 * Shared mappings implemented 30.11.1994. It's not fully working yet,
54 * Shared mappings now work. 15.8.1995 Bruno.
56 * finished 'unifying' the page and buffer cache and SMP-threaded the
57 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
59 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
65 * ->i_mmap_rwsem (truncate_pagecache)
66 * ->private_lock (__free_pte->__set_page_dirty_buffers)
67 * ->swap_lock (exclusive_swap_page, others)
68 * ->mapping->tree_lock
71 * ->i_mmap_rwsem (truncate->unmap_mapping_range)
75 * ->page_table_lock or pte_lock (various, mainly in memory.c)
76 * ->mapping->tree_lock (arch-dependent flush_dcache_mmap_lock)
79 * ->lock_page (access_process_vm)
81 * ->i_mutex (generic_perform_write)
82 * ->mmap_sem (fault_in_pages_readable->do_page_fault)
85 * sb_lock (fs/fs-writeback.c)
86 * ->mapping->tree_lock (__sync_single_inode)
89 * ->anon_vma.lock (vma_adjust)
92 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
94 * ->page_table_lock or pte_lock
95 * ->swap_lock (try_to_unmap_one)
96 * ->private_lock (try_to_unmap_one)
97 * ->tree_lock (try_to_unmap_one)
98 * ->zone.lru_lock (follow_page->mark_page_accessed)
99 * ->zone.lru_lock (check_pte_range->isolate_lru_page)
100 * ->private_lock (page_remove_rmap->set_page_dirty)
101 * ->tree_lock (page_remove_rmap->set_page_dirty)
102 * bdi.wb->list_lock (page_remove_rmap->set_page_dirty)
103 * ->inode->i_lock (page_remove_rmap->set_page_dirty)
104 * ->memcg->move_lock (page_remove_rmap->lock_page_memcg)
105 * bdi.wb->list_lock (zap_pte_range->set_page_dirty)
106 * ->inode->i_lock (zap_pte_range->set_page_dirty)
107 * ->private_lock (zap_pte_range->__set_page_dirty_buffers)
110 * ->tasklist_lock (memory_failure, collect_procs_ao)
113 static void page_cache_tree_delete(struct address_space *mapping,
114 struct page *page, void *shadow)
116 struct radix_tree_node *node;
118 VM_BUG_ON(!PageLocked(page));
120 node = radix_tree_replace_clear_tags(&mapping->page_tree, page->index,
124 mapping->nrexceptional++;
126 * Make sure the nrexceptional update is committed before
127 * the nrpages update so that final truncate racing
128 * with reclaim does not see both counters 0 at the
129 * same time and miss a shadow entry.
138 workingset_node_pages_dec(node);
140 workingset_node_shadows_inc(node);
142 if (__radix_tree_delete_node(&mapping->page_tree, node))
146 * Track node that only contains shadow entries. DAX mappings contain
147 * no shadow entries and may contain other exceptional entries so skip
150 * Avoid acquiring the list_lru lock if already tracked. The
151 * list_empty() test is safe as node->private_list is
152 * protected by mapping->tree_lock.
154 if (!dax_mapping(mapping) && !workingset_node_pages(node) &&
155 list_empty(&node->private_list)) {
156 node->private_data = mapping;
157 list_lru_add(&workingset_shadow_nodes, &node->private_list);
162 * Delete a page from the page cache and free it. Caller has to make
163 * sure the page is locked and that nobody else uses it - or that usage
164 * is safe. The caller must hold the mapping's tree_lock.
166 void __delete_from_page_cache(struct page *page, void *shadow)
168 struct address_space *mapping = page->mapping;
170 trace_mm_filemap_delete_from_page_cache(page);
172 * if we're uptodate, flush out into the cleancache, otherwise
173 * invalidate any existing cleancache entries. We can't leave
174 * stale data around in the cleancache once our page is gone
176 if (PageUptodate(page) && PageMappedToDisk(page))
177 cleancache_put_page(page);
179 cleancache_invalidate_page(mapping, page);
181 VM_BUG_ON_PAGE(page_mapped(page), page);
182 if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(page_mapped(page))) {
185 pr_alert("BUG: Bad page cache in process %s pfn:%05lx\n",
186 current->comm, page_to_pfn(page));
187 dump_page(page, "still mapped when deleted");
189 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
191 mapcount = page_mapcount(page);
192 if (mapping_exiting(mapping) &&
193 page_count(page) >= mapcount + 2) {
195 * All vmas have already been torn down, so it's
196 * a good bet that actually the page is unmapped,
197 * and we'd prefer not to leak it: if we're wrong,
198 * some other bad page check should catch it later.
200 page_mapcount_reset(page);
201 page_ref_sub(page, mapcount);
205 page_cache_tree_delete(mapping, page, shadow);
207 page->mapping = NULL;
208 /* Leave page->index set: truncation lookup relies upon it */
210 /* hugetlb pages do not participate in page cache accounting. */
212 __dec_zone_page_state(page, NR_FILE_PAGES);
213 if (PageSwapBacked(page))
214 __dec_zone_page_state(page, NR_SHMEM);
217 * At this point page must be either written or cleaned by truncate.
218 * Dirty page here signals a bug and loss of unwritten data.
220 * This fixes dirty accounting after removing the page entirely but
221 * leaves PageDirty set: it has no effect for truncated page and
222 * anyway will be cleared before returning page into buddy allocator.
224 if (WARN_ON_ONCE(PageDirty(page)))
225 account_page_cleaned(page, mapping, inode_to_wb(mapping->host));
229 * delete_from_page_cache - delete page from page cache
230 * @page: the page which the kernel is trying to remove from page cache
232 * This must be called only on pages that have been verified to be in the page
233 * cache and locked. It will never put the page into the free list, the caller
234 * has a reference on the page.
236 void delete_from_page_cache(struct page *page)
238 struct address_space *mapping = page->mapping;
241 void (*freepage)(struct page *);
243 BUG_ON(!PageLocked(page));
245 freepage = mapping->a_ops->freepage;
247 spin_lock_irqsave(&mapping->tree_lock, flags);
248 __delete_from_page_cache(page, NULL);
249 spin_unlock_irqrestore(&mapping->tree_lock, flags);
255 EXPORT_SYMBOL(delete_from_page_cache);
257 static int filemap_check_errors(struct address_space *mapping)
260 /* Check for outstanding write errors */
261 if (test_bit(AS_ENOSPC, &mapping->flags) &&
262 test_and_clear_bit(AS_ENOSPC, &mapping->flags))
264 if (test_bit(AS_EIO, &mapping->flags) &&
265 test_and_clear_bit(AS_EIO, &mapping->flags))
271 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
272 * @mapping: address space structure to write
273 * @start: offset in bytes where the range starts
274 * @end: offset in bytes where the range ends (inclusive)
275 * @sync_mode: enable synchronous operation
277 * Start writeback against all of a mapping's dirty pages that lie
278 * within the byte offsets <start, end> inclusive.
280 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
281 * opposed to a regular memory cleansing writeback. The difference between
282 * these two operations is that if a dirty page/buffer is encountered, it must
283 * be waited upon, and not just skipped over.
285 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
286 loff_t end, int sync_mode)
289 struct writeback_control wbc = {
290 .sync_mode = sync_mode,
291 .nr_to_write = LONG_MAX,
292 .range_start = start,
296 if (!mapping_cap_writeback_dirty(mapping))
299 wbc_attach_fdatawrite_inode(&wbc, mapping->host);
300 ret = do_writepages(mapping, &wbc);
301 wbc_detach_inode(&wbc);
305 static inline int __filemap_fdatawrite(struct address_space *mapping,
308 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
311 int filemap_fdatawrite(struct address_space *mapping)
313 return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
315 EXPORT_SYMBOL(filemap_fdatawrite);
317 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
320 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
322 EXPORT_SYMBOL(filemap_fdatawrite_range);
325 * filemap_flush - mostly a non-blocking flush
326 * @mapping: target address_space
328 * This is a mostly non-blocking flush. Not suitable for data-integrity
329 * purposes - I/O may not be started against all dirty pages.
331 int filemap_flush(struct address_space *mapping)
333 return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
335 EXPORT_SYMBOL(filemap_flush);
337 static int __filemap_fdatawait_range(struct address_space *mapping,
338 loff_t start_byte, loff_t end_byte)
340 pgoff_t index = start_byte >> PAGE_SHIFT;
341 pgoff_t end = end_byte >> PAGE_SHIFT;
346 if (end_byte < start_byte)
349 pagevec_init(&pvec, 0);
350 while ((index <= end) &&
351 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
352 PAGECACHE_TAG_WRITEBACK,
353 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
356 for (i = 0; i < nr_pages; i++) {
357 struct page *page = pvec.pages[i];
359 /* until radix tree lookup accepts end_index */
360 if (page->index > end)
363 wait_on_page_writeback(page);
364 if (TestClearPageError(page))
367 pagevec_release(&pvec);
375 * filemap_fdatawait_range - wait for writeback to complete
376 * @mapping: address space structure to wait for
377 * @start_byte: offset in bytes where the range starts
378 * @end_byte: offset in bytes where the range ends (inclusive)
380 * Walk the list of under-writeback pages of the given address space
381 * in the given range and wait for all of them. Check error status of
382 * the address space and return it.
384 * Since the error status of the address space is cleared by this function,
385 * callers are responsible for checking the return value and handling and/or
386 * reporting the error.
388 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
393 ret = __filemap_fdatawait_range(mapping, start_byte, end_byte);
394 ret2 = filemap_check_errors(mapping);
400 EXPORT_SYMBOL(filemap_fdatawait_range);
403 * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
404 * @mapping: address space structure to wait for
406 * Walk the list of under-writeback pages of the given address space
407 * and wait for all of them. Unlike filemap_fdatawait(), this function
408 * does not clear error status of the address space.
410 * Use this function if callers don't handle errors themselves. Expected
411 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
414 void filemap_fdatawait_keep_errors(struct address_space *mapping)
416 loff_t i_size = i_size_read(mapping->host);
421 __filemap_fdatawait_range(mapping, 0, i_size - 1);
425 * filemap_fdatawait - wait for all under-writeback pages to complete
426 * @mapping: address space structure to wait for
428 * Walk the list of under-writeback pages of the given address space
429 * and wait for all of them. Check error status of the address space
432 * Since the error status of the address space is cleared by this function,
433 * callers are responsible for checking the return value and handling and/or
434 * reporting the error.
436 int filemap_fdatawait(struct address_space *mapping)
438 loff_t i_size = i_size_read(mapping->host);
443 return filemap_fdatawait_range(mapping, 0, i_size - 1);
445 EXPORT_SYMBOL(filemap_fdatawait);
447 int filemap_write_and_wait(struct address_space *mapping)
451 if ((!dax_mapping(mapping) && mapping->nrpages) ||
452 (dax_mapping(mapping) && mapping->nrexceptional)) {
453 err = filemap_fdatawrite(mapping);
455 * Even if the above returned error, the pages may be
456 * written partially (e.g. -ENOSPC), so we wait for it.
457 * But the -EIO is special case, it may indicate the worst
458 * thing (e.g. bug) happened, so we avoid waiting for it.
461 int err2 = filemap_fdatawait(mapping);
466 err = filemap_check_errors(mapping);
470 EXPORT_SYMBOL(filemap_write_and_wait);
473 * filemap_write_and_wait_range - write out & wait on a file range
474 * @mapping: the address_space for the pages
475 * @lstart: offset in bytes where the range starts
476 * @lend: offset in bytes where the range ends (inclusive)
478 * Write out and wait upon file offsets lstart->lend, inclusive.
480 * Note that `lend' is inclusive (describes the last byte to be written) so
481 * that this function can be used to write to the very end-of-file (end = -1).
483 int filemap_write_and_wait_range(struct address_space *mapping,
484 loff_t lstart, loff_t lend)
488 if ((!dax_mapping(mapping) && mapping->nrpages) ||
489 (dax_mapping(mapping) && mapping->nrexceptional)) {
490 err = __filemap_fdatawrite_range(mapping, lstart, lend,
492 /* See comment of filemap_write_and_wait() */
494 int err2 = filemap_fdatawait_range(mapping,
500 err = filemap_check_errors(mapping);
504 EXPORT_SYMBOL(filemap_write_and_wait_range);
507 * replace_page_cache_page - replace a pagecache page with a new one
508 * @old: page to be replaced
509 * @new: page to replace with
510 * @gfp_mask: allocation mode
512 * This function replaces a page in the pagecache with a new one. On
513 * success it acquires the pagecache reference for the new page and
514 * drops it for the old page. Both the old and new pages must be
515 * locked. This function does not add the new page to the LRU, the
516 * caller must do that.
518 * The remove + add is atomic. The only way this function can fail is
519 * memory allocation failure.
521 int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
525 VM_BUG_ON_PAGE(!PageLocked(old), old);
526 VM_BUG_ON_PAGE(!PageLocked(new), new);
527 VM_BUG_ON_PAGE(new->mapping, new);
529 error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
531 struct address_space *mapping = old->mapping;
532 void (*freepage)(struct page *);
535 pgoff_t offset = old->index;
536 freepage = mapping->a_ops->freepage;
539 new->mapping = mapping;
542 spin_lock_irqsave(&mapping->tree_lock, flags);
543 __delete_from_page_cache(old, NULL);
544 error = radix_tree_insert(&mapping->page_tree, offset, new);
549 * hugetlb pages do not participate in page cache accounting.
552 __inc_zone_page_state(new, NR_FILE_PAGES);
553 if (PageSwapBacked(new))
554 __inc_zone_page_state(new, NR_SHMEM);
555 spin_unlock_irqrestore(&mapping->tree_lock, flags);
556 mem_cgroup_migrate(old, new);
557 radix_tree_preload_end();
565 EXPORT_SYMBOL_GPL(replace_page_cache_page);
567 static int page_cache_tree_insert(struct address_space *mapping,
568 struct page *page, void **shadowp)
570 struct radix_tree_node *node;
574 error = __radix_tree_create(&mapping->page_tree, page->index, 0,
581 p = radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
582 if (!radix_tree_exceptional_entry(p))
585 mapping->nrexceptional--;
586 if (!dax_mapping(mapping)) {
590 workingset_node_shadows_dec(node);
592 /* DAX can replace empty locked entry with a hole */
594 (void *)(RADIX_TREE_EXCEPTIONAL_ENTRY |
595 RADIX_DAX_ENTRY_LOCK));
596 /* DAX accounts exceptional entries as normal pages */
598 workingset_node_pages_dec(node);
599 /* Wakeup waiters for exceptional entry lock */
600 dax_wake_mapping_entry_waiter(mapping, page->index,
604 radix_tree_replace_slot(slot, page);
607 workingset_node_pages_inc(node);
609 * Don't track node that contains actual pages.
611 * Avoid acquiring the list_lru lock if already
612 * untracked. The list_empty() test is safe as
613 * node->private_list is protected by
614 * mapping->tree_lock.
616 if (!list_empty(&node->private_list))
617 list_lru_del(&workingset_shadow_nodes,
618 &node->private_list);
623 static int __add_to_page_cache_locked(struct page *page,
624 struct address_space *mapping,
625 pgoff_t offset, gfp_t gfp_mask,
628 int huge = PageHuge(page);
629 struct mem_cgroup *memcg;
632 VM_BUG_ON_PAGE(!PageLocked(page), page);
633 VM_BUG_ON_PAGE(PageSwapBacked(page), page);
636 error = mem_cgroup_try_charge(page, current->mm,
637 gfp_mask, &memcg, false);
642 error = radix_tree_maybe_preload(gfp_mask & ~__GFP_HIGHMEM);
645 mem_cgroup_cancel_charge(page, memcg, false);
650 page->mapping = mapping;
651 page->index = offset;
653 spin_lock_irq(&mapping->tree_lock);
654 error = page_cache_tree_insert(mapping, page, shadowp);
655 radix_tree_preload_end();
659 /* hugetlb pages do not participate in page cache accounting. */
661 __inc_zone_page_state(page, NR_FILE_PAGES);
662 spin_unlock_irq(&mapping->tree_lock);
664 mem_cgroup_commit_charge(page, memcg, false, false);
665 trace_mm_filemap_add_to_page_cache(page);
668 page->mapping = NULL;
669 /* Leave page->index set: truncation relies upon it */
670 spin_unlock_irq(&mapping->tree_lock);
672 mem_cgroup_cancel_charge(page, memcg, false);
678 * add_to_page_cache_locked - add a locked page to the pagecache
680 * @mapping: the page's address_space
681 * @offset: page index
682 * @gfp_mask: page allocation mode
684 * This function is used to add a page to the pagecache. It must be locked.
685 * This function does not add the page to the LRU. The caller must do that.
687 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
688 pgoff_t offset, gfp_t gfp_mask)
690 return __add_to_page_cache_locked(page, mapping, offset,
693 EXPORT_SYMBOL(add_to_page_cache_locked);
695 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
696 pgoff_t offset, gfp_t gfp_mask)
701 __SetPageLocked(page);
702 ret = __add_to_page_cache_locked(page, mapping, offset,
705 __ClearPageLocked(page);
708 * The page might have been evicted from cache only
709 * recently, in which case it should be activated like
710 * any other repeatedly accessed page.
711 * The exception is pages getting rewritten; evicting other
712 * data from the working set, only to cache data that will
713 * get overwritten with something else, is a waste of memory.
715 if (!(gfp_mask & __GFP_WRITE) &&
716 shadow && workingset_refault(shadow)) {
718 workingset_activation(page);
720 ClearPageActive(page);
725 EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
728 struct page *__page_cache_alloc(gfp_t gfp)
733 if (cpuset_do_page_mem_spread()) {
734 unsigned int cpuset_mems_cookie;
736 cpuset_mems_cookie = read_mems_allowed_begin();
737 n = cpuset_mem_spread_node();
738 page = __alloc_pages_node(n, gfp, 0);
739 } while (!page && read_mems_allowed_retry(cpuset_mems_cookie));
743 return alloc_pages(gfp, 0);
745 EXPORT_SYMBOL(__page_cache_alloc);
749 * In order to wait for pages to become available there must be
750 * waitqueues associated with pages. By using a hash table of
751 * waitqueues where the bucket discipline is to maintain all
752 * waiters on the same queue and wake all when any of the pages
753 * become available, and for the woken contexts to check to be
754 * sure the appropriate page became available, this saves space
755 * at a cost of "thundering herd" phenomena during rare hash
758 wait_queue_head_t *page_waitqueue(struct page *page)
760 const struct zone *zone = page_zone(page);
762 return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
764 EXPORT_SYMBOL(page_waitqueue);
766 void wait_on_page_bit(struct page *page, int bit_nr)
768 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
770 if (test_bit(bit_nr, &page->flags))
771 __wait_on_bit(page_waitqueue(page), &wait, bit_wait_io,
772 TASK_UNINTERRUPTIBLE);
774 EXPORT_SYMBOL(wait_on_page_bit);
776 int wait_on_page_bit_killable(struct page *page, int bit_nr)
778 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
780 if (!test_bit(bit_nr, &page->flags))
783 return __wait_on_bit(page_waitqueue(page), &wait,
784 bit_wait_io, TASK_KILLABLE);
787 int wait_on_page_bit_killable_timeout(struct page *page,
788 int bit_nr, unsigned long timeout)
790 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
792 wait.key.timeout = jiffies + timeout;
793 if (!test_bit(bit_nr, &page->flags))
795 return __wait_on_bit(page_waitqueue(page), &wait,
796 bit_wait_io_timeout, TASK_KILLABLE);
798 EXPORT_SYMBOL_GPL(wait_on_page_bit_killable_timeout);
801 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
802 * @page: Page defining the wait queue of interest
803 * @waiter: Waiter to add to the queue
805 * Add an arbitrary @waiter to the wait queue for the nominated @page.
807 void add_page_wait_queue(struct page *page, wait_queue_t *waiter)
809 wait_queue_head_t *q = page_waitqueue(page);
812 spin_lock_irqsave(&q->lock, flags);
813 __add_wait_queue(q, waiter);
814 spin_unlock_irqrestore(&q->lock, flags);
816 EXPORT_SYMBOL_GPL(add_page_wait_queue);
819 * unlock_page - unlock a locked page
822 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
823 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
824 * mechanism between PageLocked pages and PageWriteback pages is shared.
825 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
827 * The mb is necessary to enforce ordering between the clear_bit and the read
828 * of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()).
830 void unlock_page(struct page *page)
832 page = compound_head(page);
833 VM_BUG_ON_PAGE(!PageLocked(page), page);
834 clear_bit_unlock(PG_locked, &page->flags);
835 smp_mb__after_atomic();
836 wake_up_page(page, PG_locked);
838 EXPORT_SYMBOL(unlock_page);
841 * end_page_writeback - end writeback against a page
844 void end_page_writeback(struct page *page)
847 * TestClearPageReclaim could be used here but it is an atomic
848 * operation and overkill in this particular case. Failing to
849 * shuffle a page marked for immediate reclaim is too mild to
850 * justify taking an atomic operation penalty at the end of
851 * ever page writeback.
853 if (PageReclaim(page)) {
854 ClearPageReclaim(page);
855 rotate_reclaimable_page(page);
858 if (!test_clear_page_writeback(page))
861 smp_mb__after_atomic();
862 wake_up_page(page, PG_writeback);
864 EXPORT_SYMBOL(end_page_writeback);
867 * After completing I/O on a page, call this routine to update the page
868 * flags appropriately
870 void page_endio(struct page *page, int rw, int err)
874 SetPageUptodate(page);
876 ClearPageUptodate(page);
880 } else { /* rw == WRITE */
884 mapping_set_error(page->mapping, err);
886 end_page_writeback(page);
889 EXPORT_SYMBOL_GPL(page_endio);
892 * __lock_page - get a lock on the page, assuming we need to sleep to get it
893 * @page: the page to lock
895 void __lock_page(struct page *page)
897 struct page *page_head = compound_head(page);
898 DEFINE_WAIT_BIT(wait, &page_head->flags, PG_locked);
900 __wait_on_bit_lock(page_waitqueue(page_head), &wait, bit_wait_io,
901 TASK_UNINTERRUPTIBLE);
903 EXPORT_SYMBOL(__lock_page);
905 int __lock_page_killable(struct page *page)
907 struct page *page_head = compound_head(page);
908 DEFINE_WAIT_BIT(wait, &page_head->flags, PG_locked);
910 return __wait_on_bit_lock(page_waitqueue(page_head), &wait,
911 bit_wait_io, TASK_KILLABLE);
913 EXPORT_SYMBOL_GPL(__lock_page_killable);
917 * 1 - page is locked; mmap_sem is still held.
918 * 0 - page is not locked.
919 * mmap_sem has been released (up_read()), unless flags had both
920 * FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
921 * which case mmap_sem is still held.
923 * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1
924 * with the page locked and the mmap_sem unperturbed.
926 int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
929 if (flags & FAULT_FLAG_ALLOW_RETRY) {
931 * CAUTION! In this case, mmap_sem is not released
932 * even though return 0.
934 if (flags & FAULT_FLAG_RETRY_NOWAIT)
937 up_read(&mm->mmap_sem);
938 if (flags & FAULT_FLAG_KILLABLE)
939 wait_on_page_locked_killable(page);
941 wait_on_page_locked(page);
944 if (flags & FAULT_FLAG_KILLABLE) {
947 ret = __lock_page_killable(page);
949 up_read(&mm->mmap_sem);
959 * page_cache_next_hole - find the next hole (not-present entry)
962 * @max_scan: maximum range to search
964 * Search the set [index, min(index+max_scan-1, MAX_INDEX)] for the
965 * lowest indexed hole.
967 * Returns: the index of the hole if found, otherwise returns an index
968 * outside of the set specified (in which case 'return - index >=
969 * max_scan' will be true). In rare cases of index wrap-around, 0 will
972 * page_cache_next_hole may be called under rcu_read_lock. However,
973 * like radix_tree_gang_lookup, this will not atomically search a
974 * snapshot of the tree at a single point in time. For example, if a
975 * hole is created at index 5, then subsequently a hole is created at
976 * index 10, page_cache_next_hole covering both indexes may return 10
977 * if called under rcu_read_lock.
979 pgoff_t page_cache_next_hole(struct address_space *mapping,
980 pgoff_t index, unsigned long max_scan)
984 for (i = 0; i < max_scan; i++) {
987 page = radix_tree_lookup(&mapping->page_tree, index);
988 if (!page || radix_tree_exceptional_entry(page))
997 EXPORT_SYMBOL(page_cache_next_hole);
1000 * page_cache_prev_hole - find the prev hole (not-present entry)
1003 * @max_scan: maximum range to search
1005 * Search backwards in the range [max(index-max_scan+1, 0), index] for
1008 * Returns: the index of the hole if found, otherwise returns an index
1009 * outside of the set specified (in which case 'index - return >=
1010 * max_scan' will be true). In rare cases of wrap-around, ULONG_MAX
1013 * page_cache_prev_hole may be called under rcu_read_lock. However,
1014 * like radix_tree_gang_lookup, this will not atomically search a
1015 * snapshot of the tree at a single point in time. For example, if a
1016 * hole is created at index 10, then subsequently a hole is created at
1017 * index 5, page_cache_prev_hole covering both indexes may return 5 if
1018 * called under rcu_read_lock.
1020 pgoff_t page_cache_prev_hole(struct address_space *mapping,
1021 pgoff_t index, unsigned long max_scan)
1025 for (i = 0; i < max_scan; i++) {
1028 page = radix_tree_lookup(&mapping->page_tree, index);
1029 if (!page || radix_tree_exceptional_entry(page))
1032 if (index == ULONG_MAX)
1038 EXPORT_SYMBOL(page_cache_prev_hole);
1041 * find_get_entry - find and get a page cache entry
1042 * @mapping: the address_space to search
1043 * @offset: the page cache index
1045 * Looks up the page cache slot at @mapping & @offset. If there is a
1046 * page cache page, it is returned with an increased refcount.
1048 * If the slot holds a shadow entry of a previously evicted page, or a
1049 * swap entry from shmem/tmpfs, it is returned.
1051 * Otherwise, %NULL is returned.
1053 struct page *find_get_entry(struct address_space *mapping, pgoff_t offset)
1061 pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
1063 page = radix_tree_deref_slot(pagep);
1064 if (unlikely(!page))
1066 if (radix_tree_exception(page)) {
1067 if (radix_tree_deref_retry(page))
1070 * A shadow entry of a recently evicted page,
1071 * or a swap entry from shmem/tmpfs. Return
1072 * it without attempting to raise page count.
1076 if (!page_cache_get_speculative(page))
1080 * Has the page moved?
1081 * This is part of the lockless pagecache protocol. See
1082 * include/linux/pagemap.h for details.
1084 if (unlikely(page != *pagep)) {
1094 EXPORT_SYMBOL(find_get_entry);
1097 * find_lock_entry - locate, pin and lock a page cache entry
1098 * @mapping: the address_space to search
1099 * @offset: the page cache index
1101 * Looks up the page cache slot at @mapping & @offset. If there is a
1102 * page cache page, it is returned locked and with an increased
1105 * If the slot holds a shadow entry of a previously evicted page, or a
1106 * swap entry from shmem/tmpfs, it is returned.
1108 * Otherwise, %NULL is returned.
1110 * find_lock_entry() may sleep.
1112 struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset)
1117 page = find_get_entry(mapping, offset);
1118 if (page && !radix_tree_exception(page)) {
1120 /* Has the page been truncated? */
1121 if (unlikely(page->mapping != mapping)) {
1126 VM_BUG_ON_PAGE(page->index != offset, page);
1130 EXPORT_SYMBOL(find_lock_entry);
1133 * pagecache_get_page - find and get a page reference
1134 * @mapping: the address_space to search
1135 * @offset: the page index
1136 * @fgp_flags: PCG flags
1137 * @gfp_mask: gfp mask to use for the page cache data page allocation
1139 * Looks up the page cache slot at @mapping & @offset.
1141 * PCG flags modify how the page is returned.
1143 * FGP_ACCESSED: the page will be marked accessed
1144 * FGP_LOCK: Page is return locked
1145 * FGP_CREAT: If page is not present then a new page is allocated using
1146 * @gfp_mask and added to the page cache and the VM's LRU
1147 * list. The page is returned locked and with an increased
1148 * refcount. Otherwise, %NULL is returned.
1150 * If FGP_LOCK or FGP_CREAT are specified then the function may sleep even
1151 * if the GFP flags specified for FGP_CREAT are atomic.
1153 * If there is a page cache page, it is returned with an increased refcount.
1155 struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset,
1156 int fgp_flags, gfp_t gfp_mask)
1161 page = find_get_entry(mapping, offset);
1162 if (radix_tree_exceptional_entry(page))
1167 if (fgp_flags & FGP_LOCK) {
1168 if (fgp_flags & FGP_NOWAIT) {
1169 if (!trylock_page(page)) {
1177 /* Has the page been truncated? */
1178 if (unlikely(page->mapping != mapping)) {
1183 VM_BUG_ON_PAGE(page->index != offset, page);
1186 if (page && (fgp_flags & FGP_ACCESSED))
1187 mark_page_accessed(page);
1190 if (!page && (fgp_flags & FGP_CREAT)) {
1192 if ((fgp_flags & FGP_WRITE) && mapping_cap_account_dirty(mapping))
1193 gfp_mask |= __GFP_WRITE;
1194 if (fgp_flags & FGP_NOFS)
1195 gfp_mask &= ~__GFP_FS;
1197 page = __page_cache_alloc(gfp_mask);
1201 if (WARN_ON_ONCE(!(fgp_flags & FGP_LOCK)))
1202 fgp_flags |= FGP_LOCK;
1204 /* Init accessed so avoid atomic mark_page_accessed later */
1205 if (fgp_flags & FGP_ACCESSED)
1206 __SetPageReferenced(page);
1208 err = add_to_page_cache_lru(page, mapping, offset,
1209 gfp_mask & GFP_RECLAIM_MASK);
1210 if (unlikely(err)) {
1220 EXPORT_SYMBOL(pagecache_get_page);
1223 * find_get_entries - gang pagecache lookup
1224 * @mapping: The address_space to search
1225 * @start: The starting page cache index
1226 * @nr_entries: The maximum number of entries
1227 * @entries: Where the resulting entries are placed
1228 * @indices: The cache indices corresponding to the entries in @entries
1230 * find_get_entries() will search for and return a group of up to
1231 * @nr_entries entries in the mapping. The entries are placed at
1232 * @entries. find_get_entries() takes a reference against any actual
1235 * The search returns a group of mapping-contiguous page cache entries
1236 * with ascending indexes. There may be holes in the indices due to
1237 * not-present pages.
1239 * Any shadow entries of evicted pages, or swap entries from
1240 * shmem/tmpfs, are included in the returned array.
1242 * find_get_entries() returns the number of pages and shadow entries
1245 unsigned find_get_entries(struct address_space *mapping,
1246 pgoff_t start, unsigned int nr_entries,
1247 struct page **entries, pgoff_t *indices)
1250 unsigned int ret = 0;
1251 struct radix_tree_iter iter;
1257 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1260 page = radix_tree_deref_slot(slot);
1261 if (unlikely(!page))
1263 if (radix_tree_exception(page)) {
1264 if (radix_tree_deref_retry(page)) {
1265 slot = radix_tree_iter_retry(&iter);
1269 * A shadow entry of a recently evicted page, a swap
1270 * entry from shmem/tmpfs or a DAX entry. Return it
1271 * without attempting to raise page count.
1275 if (!page_cache_get_speculative(page))
1278 /* Has the page moved? */
1279 if (unlikely(page != *slot)) {
1284 indices[ret] = iter.index;
1285 entries[ret] = page;
1286 if (++ret == nr_entries)
1294 * find_get_pages - gang pagecache lookup
1295 * @mapping: The address_space to search
1296 * @start: The starting page index
1297 * @nr_pages: The maximum number of pages
1298 * @pages: Where the resulting pages are placed
1300 * find_get_pages() will search for and return a group of up to
1301 * @nr_pages pages in the mapping. The pages are placed at @pages.
1302 * find_get_pages() takes a reference against the returned pages.
1304 * The search returns a group of mapping-contiguous pages with ascending
1305 * indexes. There may be holes in the indices due to not-present pages.
1307 * find_get_pages() returns the number of pages which were found.
1309 unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
1310 unsigned int nr_pages, struct page **pages)
1312 struct radix_tree_iter iter;
1316 if (unlikely(!nr_pages))
1320 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1323 page = radix_tree_deref_slot(slot);
1324 if (unlikely(!page))
1327 if (radix_tree_exception(page)) {
1328 if (radix_tree_deref_retry(page)) {
1329 slot = radix_tree_iter_retry(&iter);
1333 * A shadow entry of a recently evicted page,
1334 * or a swap entry from shmem/tmpfs. Skip
1340 if (!page_cache_get_speculative(page))
1343 /* Has the page moved? */
1344 if (unlikely(page != *slot)) {
1350 if (++ret == nr_pages)
1359 * find_get_pages_contig - gang contiguous pagecache lookup
1360 * @mapping: The address_space to search
1361 * @index: The starting page index
1362 * @nr_pages: The maximum number of pages
1363 * @pages: Where the resulting pages are placed
1365 * find_get_pages_contig() works exactly like find_get_pages(), except
1366 * that the returned number of pages are guaranteed to be contiguous.
1368 * find_get_pages_contig() returns the number of pages which were found.
1370 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
1371 unsigned int nr_pages, struct page **pages)
1373 struct radix_tree_iter iter;
1375 unsigned int ret = 0;
1377 if (unlikely(!nr_pages))
1381 radix_tree_for_each_contig(slot, &mapping->page_tree, &iter, index) {
1384 page = radix_tree_deref_slot(slot);
1385 /* The hole, there no reason to continue */
1386 if (unlikely(!page))
1389 if (radix_tree_exception(page)) {
1390 if (radix_tree_deref_retry(page)) {
1391 slot = radix_tree_iter_retry(&iter);
1395 * A shadow entry of a recently evicted page,
1396 * or a swap entry from shmem/tmpfs. Stop
1397 * looking for contiguous pages.
1402 if (!page_cache_get_speculative(page))
1405 /* Has the page moved? */
1406 if (unlikely(page != *slot)) {
1412 * must check mapping and index after taking the ref.
1413 * otherwise we can get both false positives and false
1414 * negatives, which is just confusing to the caller.
1416 if (page->mapping == NULL || page->index != iter.index) {
1422 if (++ret == nr_pages)
1428 EXPORT_SYMBOL(find_get_pages_contig);
1431 * find_get_pages_tag - find and return pages that match @tag
1432 * @mapping: the address_space to search
1433 * @index: the starting page index
1434 * @tag: the tag index
1435 * @nr_pages: the maximum number of pages
1436 * @pages: where the resulting pages are placed
1438 * Like find_get_pages, except we only return pages which are tagged with
1439 * @tag. We update @index to index the next page for the traversal.
1441 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
1442 int tag, unsigned int nr_pages, struct page **pages)
1444 struct radix_tree_iter iter;
1448 if (unlikely(!nr_pages))
1452 radix_tree_for_each_tagged(slot, &mapping->page_tree,
1453 &iter, *index, tag) {
1456 page = radix_tree_deref_slot(slot);
1457 if (unlikely(!page))
1460 if (radix_tree_exception(page)) {
1461 if (radix_tree_deref_retry(page)) {
1462 slot = radix_tree_iter_retry(&iter);
1466 * A shadow entry of a recently evicted page.
1468 * Those entries should never be tagged, but
1469 * this tree walk is lockless and the tags are
1470 * looked up in bulk, one radix tree node at a
1471 * time, so there is a sizable window for page
1472 * reclaim to evict a page we saw tagged.
1479 if (!page_cache_get_speculative(page))
1482 /* Has the page moved? */
1483 if (unlikely(page != *slot)) {
1489 if (++ret == nr_pages)
1496 *index = pages[ret - 1]->index + 1;
1500 EXPORT_SYMBOL(find_get_pages_tag);
1503 * find_get_entries_tag - find and return entries that match @tag
1504 * @mapping: the address_space to search
1505 * @start: the starting page cache index
1506 * @tag: the tag index
1507 * @nr_entries: the maximum number of entries
1508 * @entries: where the resulting entries are placed
1509 * @indices: the cache indices corresponding to the entries in @entries
1511 * Like find_get_entries, except we only return entries which are tagged with
1514 unsigned find_get_entries_tag(struct address_space *mapping, pgoff_t start,
1515 int tag, unsigned int nr_entries,
1516 struct page **entries, pgoff_t *indices)
1519 unsigned int ret = 0;
1520 struct radix_tree_iter iter;
1526 radix_tree_for_each_tagged(slot, &mapping->page_tree,
1527 &iter, start, tag) {
1530 page = radix_tree_deref_slot(slot);
1531 if (unlikely(!page))
1533 if (radix_tree_exception(page)) {
1534 if (radix_tree_deref_retry(page)) {
1535 slot = radix_tree_iter_retry(&iter);
1540 * A shadow entry of a recently evicted page, a swap
1541 * entry from shmem/tmpfs or a DAX entry. Return it
1542 * without attempting to raise page count.
1546 if (!page_cache_get_speculative(page))
1549 /* Has the page moved? */
1550 if (unlikely(page != *slot)) {
1555 indices[ret] = iter.index;
1556 entries[ret] = page;
1557 if (++ret == nr_entries)
1563 EXPORT_SYMBOL(find_get_entries_tag);
1566 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
1567 * a _large_ part of the i/o request. Imagine the worst scenario:
1569 * ---R__________________________________________B__________
1570 * ^ reading here ^ bad block(assume 4k)
1572 * read(R) => miss => readahead(R...B) => media error => frustrating retries
1573 * => failing the whole request => read(R) => read(R+1) =>
1574 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
1575 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
1576 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
1578 * It is going insane. Fix it by quickly scaling down the readahead size.
1580 static void shrink_readahead_size_eio(struct file *filp,
1581 struct file_ra_state *ra)
1587 * do_generic_file_read - generic file read routine
1588 * @filp: the file to read
1589 * @ppos: current file position
1590 * @iter: data destination
1591 * @written: already copied
1593 * This is a generic file read routine, and uses the
1594 * mapping->a_ops->readpage() function for the actual low-level stuff.
1596 * This is really ugly. But the goto's actually try to clarify some
1597 * of the logic when it comes to error handling etc.
1599 static ssize_t do_generic_file_read(struct file *filp, loff_t *ppos,
1600 struct iov_iter *iter, ssize_t written)
1602 struct address_space *mapping = filp->f_mapping;
1603 struct inode *inode = mapping->host;
1604 struct file_ra_state *ra = &filp->f_ra;
1608 unsigned long offset; /* offset into pagecache page */
1609 unsigned int prev_offset;
1612 index = *ppos >> PAGE_SHIFT;
1613 prev_index = ra->prev_pos >> PAGE_SHIFT;
1614 prev_offset = ra->prev_pos & (PAGE_SIZE-1);
1615 last_index = (*ppos + iter->count + PAGE_SIZE-1) >> PAGE_SHIFT;
1616 offset = *ppos & ~PAGE_MASK;
1622 unsigned long nr, ret;
1626 page = find_get_page(mapping, index);
1628 page_cache_sync_readahead(mapping,
1630 index, last_index - index);
1631 page = find_get_page(mapping, index);
1632 if (unlikely(page == NULL))
1633 goto no_cached_page;
1635 if (PageReadahead(page)) {
1636 page_cache_async_readahead(mapping,
1638 index, last_index - index);
1640 if (!PageUptodate(page)) {
1642 * See comment in do_read_cache_page on why
1643 * wait_on_page_locked is used to avoid unnecessarily
1644 * serialisations and why it's safe.
1646 wait_on_page_locked_killable(page);
1647 if (PageUptodate(page))
1650 if (inode->i_blkbits == PAGE_SHIFT ||
1651 !mapping->a_ops->is_partially_uptodate)
1652 goto page_not_up_to_date;
1653 if (!trylock_page(page))
1654 goto page_not_up_to_date;
1655 /* Did it get truncated before we got the lock? */
1657 goto page_not_up_to_date_locked;
1658 if (!mapping->a_ops->is_partially_uptodate(page,
1659 offset, iter->count))
1660 goto page_not_up_to_date_locked;
1665 * i_size must be checked after we know the page is Uptodate.
1667 * Checking i_size after the check allows us to calculate
1668 * the correct value for "nr", which means the zero-filled
1669 * part of the page is not copied back to userspace (unless
1670 * another truncate extends the file - this is desired though).
1673 isize = i_size_read(inode);
1674 end_index = (isize - 1) >> PAGE_SHIFT;
1675 if (unlikely(!isize || index > end_index)) {
1680 /* nr is the maximum number of bytes to copy from this page */
1682 if (index == end_index) {
1683 nr = ((isize - 1) & ~PAGE_MASK) + 1;
1691 /* If users can be writing to this page using arbitrary
1692 * virtual addresses, take care about potential aliasing
1693 * before reading the page on the kernel side.
1695 if (mapping_writably_mapped(mapping))
1696 flush_dcache_page(page);
1699 * When a sequential read accesses a page several times,
1700 * only mark it as accessed the first time.
1702 if (prev_index != index || offset != prev_offset)
1703 mark_page_accessed(page);
1707 * Ok, we have the page, and it's up-to-date, so
1708 * now we can copy it to user space...
1711 ret = copy_page_to_iter(page, offset, nr, iter);
1713 index += offset >> PAGE_SHIFT;
1714 offset &= ~PAGE_MASK;
1715 prev_offset = offset;
1719 if (!iov_iter_count(iter))
1727 page_not_up_to_date:
1728 /* Get exclusive access to the page ... */
1729 error = lock_page_killable(page);
1730 if (unlikely(error))
1731 goto readpage_error;
1733 page_not_up_to_date_locked:
1734 /* Did it get truncated before we got the lock? */
1735 if (!page->mapping) {
1741 /* Did somebody else fill it already? */
1742 if (PageUptodate(page)) {
1749 * A previous I/O error may have been due to temporary
1750 * failures, eg. multipath errors.
1751 * PG_error will be set again if readpage fails.
1753 ClearPageError(page);
1754 /* Start the actual read. The read will unlock the page. */
1755 error = mapping->a_ops->readpage(filp, page);
1757 if (unlikely(error)) {
1758 if (error == AOP_TRUNCATED_PAGE) {
1763 goto readpage_error;
1766 if (!PageUptodate(page)) {
1767 error = lock_page_killable(page);
1768 if (unlikely(error))
1769 goto readpage_error;
1770 if (!PageUptodate(page)) {
1771 if (page->mapping == NULL) {
1773 * invalidate_mapping_pages got it
1780 shrink_readahead_size_eio(filp, ra);
1782 goto readpage_error;
1790 /* UHHUH! A synchronous read error occurred. Report it */
1796 * Ok, it wasn't cached, so we need to create a new
1799 page = page_cache_alloc_cold(mapping);
1804 error = add_to_page_cache_lru(page, mapping, index,
1805 mapping_gfp_constraint(mapping, GFP_KERNEL));
1808 if (error == -EEXIST) {
1818 ra->prev_pos = prev_index;
1819 ra->prev_pos <<= PAGE_SHIFT;
1820 ra->prev_pos |= prev_offset;
1822 *ppos = ((loff_t)index << PAGE_SHIFT) + offset;
1823 file_accessed(filp);
1824 return written ? written : error;
1828 * generic_file_read_iter - generic filesystem read routine
1829 * @iocb: kernel I/O control block
1830 * @iter: destination for the data read
1832 * This is the "read_iter()" routine for all filesystems
1833 * that can use the page cache directly.
1836 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
1838 struct file *file = iocb->ki_filp;
1840 size_t count = iov_iter_count(iter);
1843 goto out; /* skip atime */
1845 if (iocb->ki_flags & IOCB_DIRECT) {
1846 struct address_space *mapping = file->f_mapping;
1847 struct inode *inode = mapping->host;
1850 size = i_size_read(inode);
1851 retval = filemap_write_and_wait_range(mapping, iocb->ki_pos,
1852 iocb->ki_pos + count - 1);
1854 struct iov_iter data = *iter;
1855 retval = mapping->a_ops->direct_IO(iocb, &data);
1859 iocb->ki_pos += retval;
1860 iov_iter_advance(iter, retval);
1864 * Btrfs can have a short DIO read if we encounter
1865 * compressed extents, so if there was an error, or if
1866 * we've already read everything we wanted to, or if
1867 * there was a short read because we hit EOF, go ahead
1868 * and return. Otherwise fallthrough to buffered io for
1869 * the rest of the read. Buffered reads will not work for
1870 * DAX files, so don't bother trying.
1872 if (retval < 0 || !iov_iter_count(iter) || iocb->ki_pos >= size ||
1874 file_accessed(file);
1879 retval = do_generic_file_read(file, &iocb->ki_pos, iter, retval);
1883 EXPORT_SYMBOL(generic_file_read_iter);
1887 * page_cache_read - adds requested page to the page cache if not already there
1888 * @file: file to read
1889 * @offset: page index
1890 * @gfp_mask: memory allocation flags
1892 * This adds the requested page to the page cache if it isn't already there,
1893 * and schedules an I/O to read in its contents from disk.
1895 static int page_cache_read(struct file *file, pgoff_t offset, gfp_t gfp_mask)
1897 struct address_space *mapping = file->f_mapping;
1902 page = __page_cache_alloc(gfp_mask|__GFP_COLD);
1906 ret = add_to_page_cache_lru(page, mapping, offset, gfp_mask & GFP_KERNEL);
1908 ret = mapping->a_ops->readpage(file, page);
1909 else if (ret == -EEXIST)
1910 ret = 0; /* losing race to add is OK */
1914 } while (ret == AOP_TRUNCATED_PAGE);
1919 #define MMAP_LOTSAMISS (100)
1922 * Synchronous readahead happens when we don't even find
1923 * a page in the page cache at all.
1925 static void do_sync_mmap_readahead(struct vm_area_struct *vma,
1926 struct file_ra_state *ra,
1930 struct address_space *mapping = file->f_mapping;
1932 /* If we don't want any read-ahead, don't bother */
1933 if (vma->vm_flags & VM_RAND_READ)
1938 if (vma->vm_flags & VM_SEQ_READ) {
1939 page_cache_sync_readahead(mapping, ra, file, offset,
1944 /* Avoid banging the cache line if not needed */
1945 if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
1949 * Do we miss much more than hit in this file? If so,
1950 * stop bothering with read-ahead. It will only hurt.
1952 if (ra->mmap_miss > MMAP_LOTSAMISS)
1958 ra->start = max_t(long, 0, offset - ra->ra_pages / 2);
1959 ra->size = ra->ra_pages;
1960 ra->async_size = ra->ra_pages / 4;
1961 ra_submit(ra, mapping, file);
1965 * Asynchronous readahead happens when we find the page and PG_readahead,
1966 * so we want to possibly extend the readahead further..
1968 static void do_async_mmap_readahead(struct vm_area_struct *vma,
1969 struct file_ra_state *ra,
1974 struct address_space *mapping = file->f_mapping;
1976 /* If we don't want any read-ahead, don't bother */
1977 if (vma->vm_flags & VM_RAND_READ)
1979 if (ra->mmap_miss > 0)
1981 if (PageReadahead(page))
1982 page_cache_async_readahead(mapping, ra, file,
1983 page, offset, ra->ra_pages);
1987 * filemap_fault - read in file data for page fault handling
1988 * @vma: vma in which the fault was taken
1989 * @vmf: struct vm_fault containing details of the fault
1991 * filemap_fault() is invoked via the vma operations vector for a
1992 * mapped memory region to read in file data during a page fault.
1994 * The goto's are kind of ugly, but this streamlines the normal case of having
1995 * it in the page cache, and handles the special cases reasonably without
1996 * having a lot of duplicated code.
1998 * vma->vm_mm->mmap_sem must be held on entry.
2000 * If our return value has VM_FAULT_RETRY set, it's because
2001 * lock_page_or_retry() returned 0.
2002 * The mmap_sem has usually been released in this case.
2003 * See __lock_page_or_retry() for the exception.
2005 * If our return value does not have VM_FAULT_RETRY set, the mmap_sem
2006 * has not been released.
2008 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
2010 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2013 struct file *file = vma->vm_file;
2014 struct address_space *mapping = file->f_mapping;
2015 struct file_ra_state *ra = &file->f_ra;
2016 struct inode *inode = mapping->host;
2017 pgoff_t offset = vmf->pgoff;
2022 size = round_up(i_size_read(inode), PAGE_SIZE);
2023 if (offset >= size >> PAGE_SHIFT)
2024 return VM_FAULT_SIGBUS;
2027 * Do we have something in the page cache already?
2029 page = find_get_page(mapping, offset);
2030 if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
2032 * We found the page, so try async readahead before
2033 * waiting for the lock.
2035 do_async_mmap_readahead(vma, ra, file, page, offset);
2037 /* No page in the page cache at all */
2038 do_sync_mmap_readahead(vma, ra, file, offset);
2039 count_vm_event(PGMAJFAULT);
2040 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
2041 ret = VM_FAULT_MAJOR;
2043 page = find_get_page(mapping, offset);
2045 goto no_cached_page;
2048 if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags)) {
2050 return ret | VM_FAULT_RETRY;
2053 /* Did it get truncated? */
2054 if (unlikely(page->mapping != mapping)) {
2059 VM_BUG_ON_PAGE(page->index != offset, page);
2062 * We have a locked page in the page cache, now we need to check
2063 * that it's up-to-date. If not, it is going to be due to an error.
2065 if (unlikely(!PageUptodate(page)))
2066 goto page_not_uptodate;
2069 * Found the page and have a reference on it.
2070 * We must recheck i_size under page lock.
2072 size = round_up(i_size_read(inode), PAGE_SIZE);
2073 if (unlikely(offset >= size >> PAGE_SHIFT)) {
2076 return VM_FAULT_SIGBUS;
2080 return ret | VM_FAULT_LOCKED;
2084 * We're only likely to ever get here if MADV_RANDOM is in
2087 error = page_cache_read(file, offset, vmf->gfp_mask);
2090 * The page we want has now been added to the page cache.
2091 * In the unlikely event that someone removed it in the
2092 * meantime, we'll just come back here and read it again.
2098 * An error return from page_cache_read can result if the
2099 * system is low on memory, or a problem occurs while trying
2102 if (error == -ENOMEM)
2103 return VM_FAULT_OOM;
2104 return VM_FAULT_SIGBUS;
2108 * Umm, take care of errors if the page isn't up-to-date.
2109 * Try to re-read it _once_. We do this synchronously,
2110 * because there really aren't any performance issues here
2111 * and we need to check for errors.
2113 ClearPageError(page);
2114 error = mapping->a_ops->readpage(file, page);
2116 wait_on_page_locked(page);
2117 if (!PageUptodate(page))
2122 if (!error || error == AOP_TRUNCATED_PAGE)
2125 /* Things didn't work out. Return zero to tell the mm layer so. */
2126 shrink_readahead_size_eio(file, ra);
2127 return VM_FAULT_SIGBUS;
2129 EXPORT_SYMBOL(filemap_fault);
2131 void filemap_map_pages(struct vm_area_struct *vma, struct vm_fault *vmf)
2133 struct radix_tree_iter iter;
2135 struct file *file = vma->vm_file;
2136 struct address_space *mapping = file->f_mapping;
2139 unsigned long address = (unsigned long) vmf->virtual_address;
2144 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, vmf->pgoff) {
2145 if (iter.index > vmf->max_pgoff)
2148 page = radix_tree_deref_slot(slot);
2149 if (unlikely(!page))
2151 if (radix_tree_exception(page)) {
2152 if (radix_tree_deref_retry(page)) {
2153 slot = radix_tree_iter_retry(&iter);
2159 if (!page_cache_get_speculative(page))
2162 /* Has the page moved? */
2163 if (unlikely(page != *slot)) {
2168 if (!PageUptodate(page) ||
2169 PageReadahead(page) ||
2172 if (!trylock_page(page))
2175 if (page->mapping != mapping || !PageUptodate(page))
2178 size = round_up(i_size_read(mapping->host), PAGE_SIZE);
2179 if (page->index >= size >> PAGE_SHIFT)
2182 pte = vmf->pte + page->index - vmf->pgoff;
2183 if (!pte_none(*pte))
2186 if (file->f_ra.mmap_miss > 0)
2187 file->f_ra.mmap_miss--;
2188 addr = address + (page->index - vmf->pgoff) * PAGE_SIZE;
2189 do_set_pte(vma, addr, page, pte, false, false, true);
2197 if (iter.index == vmf->max_pgoff)
2202 EXPORT_SYMBOL(filemap_map_pages);
2204 int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
2206 struct page *page = vmf->page;
2207 struct inode *inode = file_inode(vma->vm_file);
2208 int ret = VM_FAULT_LOCKED;
2210 sb_start_pagefault(inode->i_sb);
2211 file_update_time(vma->vm_file);
2213 if (page->mapping != inode->i_mapping) {
2215 ret = VM_FAULT_NOPAGE;
2219 * We mark the page dirty already here so that when freeze is in
2220 * progress, we are guaranteed that writeback during freezing will
2221 * see the dirty page and writeprotect it again.
2223 set_page_dirty(page);
2224 wait_for_stable_page(page);
2226 sb_end_pagefault(inode->i_sb);
2229 EXPORT_SYMBOL(filemap_page_mkwrite);
2231 const struct vm_operations_struct generic_file_vm_ops = {
2232 .fault = filemap_fault,
2233 .map_pages = filemap_map_pages,
2234 .page_mkwrite = filemap_page_mkwrite,
2237 /* This is used for a general mmap of a disk file */
2239 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2241 struct address_space *mapping = file->f_mapping;
2243 if (!mapping->a_ops->readpage)
2245 file_accessed(file);
2246 vma->vm_ops = &generic_file_vm_ops;
2251 * This is for filesystems which do not implement ->writepage.
2253 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
2255 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
2257 return generic_file_mmap(file, vma);
2260 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2264 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
2268 #endif /* CONFIG_MMU */
2270 EXPORT_SYMBOL(generic_file_mmap);
2271 EXPORT_SYMBOL(generic_file_readonly_mmap);
2273 static struct page *wait_on_page_read(struct page *page)
2275 if (!IS_ERR(page)) {
2276 wait_on_page_locked(page);
2277 if (!PageUptodate(page)) {
2279 page = ERR_PTR(-EIO);
2285 static struct page *do_read_cache_page(struct address_space *mapping,
2287 int (*filler)(void *, struct page *),
2294 page = find_get_page(mapping, index);
2296 page = __page_cache_alloc(gfp | __GFP_COLD);
2298 return ERR_PTR(-ENOMEM);
2299 err = add_to_page_cache_lru(page, mapping, index, gfp);
2300 if (unlikely(err)) {
2304 /* Presumably ENOMEM for radix tree node */
2305 return ERR_PTR(err);
2309 err = filler(data, page);
2312 return ERR_PTR(err);
2315 page = wait_on_page_read(page);
2320 if (PageUptodate(page))
2324 * Page is not up to date and may be locked due one of the following
2325 * case a: Page is being filled and the page lock is held
2326 * case b: Read/write error clearing the page uptodate status
2327 * case c: Truncation in progress (page locked)
2328 * case d: Reclaim in progress
2330 * Case a, the page will be up to date when the page is unlocked.
2331 * There is no need to serialise on the page lock here as the page
2332 * is pinned so the lock gives no additional protection. Even if the
2333 * the page is truncated, the data is still valid if PageUptodate as
2334 * it's a race vs truncate race.
2335 * Case b, the page will not be up to date
2336 * Case c, the page may be truncated but in itself, the data may still
2337 * be valid after IO completes as it's a read vs truncate race. The
2338 * operation must restart if the page is not uptodate on unlock but
2339 * otherwise serialising on page lock to stabilise the mapping gives
2340 * no additional guarantees to the caller as the page lock is
2341 * released before return.
2342 * Case d, similar to truncation. If reclaim holds the page lock, it
2343 * will be a race with remove_mapping that determines if the mapping
2344 * is valid on unlock but otherwise the data is valid and there is
2345 * no need to serialise with page lock.
2347 * As the page lock gives no additional guarantee, we optimistically
2348 * wait on the page to be unlocked and check if it's up to date and
2349 * use the page if it is. Otherwise, the page lock is required to
2350 * distinguish between the different cases. The motivation is that we
2351 * avoid spurious serialisations and wakeups when multiple processes
2352 * wait on the same page for IO to complete.
2354 wait_on_page_locked(page);
2355 if (PageUptodate(page))
2358 /* Distinguish between all the cases under the safety of the lock */
2361 /* Case c or d, restart the operation */
2362 if (!page->mapping) {
2368 /* Someone else locked and filled the page in a very small window */
2369 if (PageUptodate(page)) {
2376 mark_page_accessed(page);
2381 * read_cache_page - read into page cache, fill it if needed
2382 * @mapping: the page's address_space
2383 * @index: the page index
2384 * @filler: function to perform the read
2385 * @data: first arg to filler(data, page) function, often left as NULL
2387 * Read into the page cache. If a page already exists, and PageUptodate() is
2388 * not set, try to fill the page and wait for it to become unlocked.
2390 * If the page does not get brought uptodate, return -EIO.
2392 struct page *read_cache_page(struct address_space *mapping,
2394 int (*filler)(void *, struct page *),
2397 return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
2399 EXPORT_SYMBOL(read_cache_page);
2402 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
2403 * @mapping: the page's address_space
2404 * @index: the page index
2405 * @gfp: the page allocator flags to use if allocating
2407 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
2408 * any new page allocations done using the specified allocation flags.
2410 * If the page does not get brought uptodate, return -EIO.
2412 struct page *read_cache_page_gfp(struct address_space *mapping,
2416 filler_t *filler = (filler_t *)mapping->a_ops->readpage;
2418 return do_read_cache_page(mapping, index, filler, NULL, gfp);
2420 EXPORT_SYMBOL(read_cache_page_gfp);
2423 * Performs necessary checks before doing a write
2425 * Can adjust writing position or amount of bytes to write.
2426 * Returns appropriate error code that caller should return or
2427 * zero in case that write should be allowed.
2429 inline ssize_t generic_write_checks(struct kiocb *iocb, struct iov_iter *from)
2431 struct file *file = iocb->ki_filp;
2432 struct inode *inode = file->f_mapping->host;
2433 unsigned long limit = rlimit(RLIMIT_FSIZE);
2436 if (!iov_iter_count(from))
2439 /* FIXME: this is for backwards compatibility with 2.4 */
2440 if (iocb->ki_flags & IOCB_APPEND)
2441 iocb->ki_pos = i_size_read(inode);
2445 if (limit != RLIM_INFINITY) {
2446 if (iocb->ki_pos >= limit) {
2447 send_sig(SIGXFSZ, current, 0);
2450 iov_iter_truncate(from, limit - (unsigned long)pos);
2456 if (unlikely(pos + iov_iter_count(from) > MAX_NON_LFS &&
2457 !(file->f_flags & O_LARGEFILE))) {
2458 if (pos >= MAX_NON_LFS)
2460 iov_iter_truncate(from, MAX_NON_LFS - (unsigned long)pos);
2464 * Are we about to exceed the fs block limit ?
2466 * If we have written data it becomes a short write. If we have
2467 * exceeded without writing data we send a signal and return EFBIG.
2468 * Linus frestrict idea will clean these up nicely..
2470 if (unlikely(pos >= inode->i_sb->s_maxbytes))
2473 iov_iter_truncate(from, inode->i_sb->s_maxbytes - pos);
2474 return iov_iter_count(from);
2476 EXPORT_SYMBOL(generic_write_checks);
2478 int pagecache_write_begin(struct file *file, struct address_space *mapping,
2479 loff_t pos, unsigned len, unsigned flags,
2480 struct page **pagep, void **fsdata)
2482 const struct address_space_operations *aops = mapping->a_ops;
2484 return aops->write_begin(file, mapping, pos, len, flags,
2487 EXPORT_SYMBOL(pagecache_write_begin);
2489 int pagecache_write_end(struct file *file, struct address_space *mapping,
2490 loff_t pos, unsigned len, unsigned copied,
2491 struct page *page, void *fsdata)
2493 const struct address_space_operations *aops = mapping->a_ops;
2495 return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
2497 EXPORT_SYMBOL(pagecache_write_end);
2500 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from)
2502 struct file *file = iocb->ki_filp;
2503 struct address_space *mapping = file->f_mapping;
2504 struct inode *inode = mapping->host;
2505 loff_t pos = iocb->ki_pos;
2509 struct iov_iter data;
2511 write_len = iov_iter_count(from);
2512 end = (pos + write_len - 1) >> PAGE_SHIFT;
2514 written = filemap_write_and_wait_range(mapping, pos, pos + write_len - 1);
2519 * After a write we want buffered reads to be sure to go to disk to get
2520 * the new data. We invalidate clean cached page from the region we're
2521 * about to write. We do this *before* the write so that we can return
2522 * without clobbering -EIOCBQUEUED from ->direct_IO().
2524 if (mapping->nrpages) {
2525 written = invalidate_inode_pages2_range(mapping,
2526 pos >> PAGE_SHIFT, end);
2528 * If a page can not be invalidated, return 0 to fall back
2529 * to buffered write.
2532 if (written == -EBUSY)
2539 written = mapping->a_ops->direct_IO(iocb, &data);
2542 * Finally, try again to invalidate clean pages which might have been
2543 * cached by non-direct readahead, or faulted in by get_user_pages()
2544 * if the source of the write was an mmap'ed region of the file
2545 * we're writing. Either one is a pretty crazy thing to do,
2546 * so we don't support it 100%. If this invalidation
2547 * fails, tough, the write still worked...
2549 if (mapping->nrpages) {
2550 invalidate_inode_pages2_range(mapping,
2551 pos >> PAGE_SHIFT, end);
2556 iov_iter_advance(from, written);
2557 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2558 i_size_write(inode, pos);
2559 mark_inode_dirty(inode);
2566 EXPORT_SYMBOL(generic_file_direct_write);
2569 * Find or create a page at the given pagecache position. Return the locked
2570 * page. This function is specifically for buffered writes.
2572 struct page *grab_cache_page_write_begin(struct address_space *mapping,
2573 pgoff_t index, unsigned flags)
2576 int fgp_flags = FGP_LOCK|FGP_WRITE|FGP_CREAT;
2578 if (flags & AOP_FLAG_NOFS)
2579 fgp_flags |= FGP_NOFS;
2581 page = pagecache_get_page(mapping, index, fgp_flags,
2582 mapping_gfp_mask(mapping));
2584 wait_for_stable_page(page);
2588 EXPORT_SYMBOL(grab_cache_page_write_begin);
2590 ssize_t generic_perform_write(struct file *file,
2591 struct iov_iter *i, loff_t pos)
2593 struct address_space *mapping = file->f_mapping;
2594 const struct address_space_operations *a_ops = mapping->a_ops;
2596 ssize_t written = 0;
2597 unsigned int flags = 0;
2600 * Copies from kernel address space cannot fail (NFSD is a big user).
2602 if (!iter_is_iovec(i))
2603 flags |= AOP_FLAG_UNINTERRUPTIBLE;
2607 unsigned long offset; /* Offset into pagecache page */
2608 unsigned long bytes; /* Bytes to write to page */
2609 size_t copied; /* Bytes copied from user */
2612 offset = (pos & (PAGE_SIZE - 1));
2613 bytes = min_t(unsigned long, PAGE_SIZE - offset,
2618 * Bring in the user page that we will copy from _first_.
2619 * Otherwise there's a nasty deadlock on copying from the
2620 * same page as we're writing to, without it being marked
2623 * Not only is this an optimisation, but it is also required
2624 * to check that the address is actually valid, when atomic
2625 * usercopies are used, below.
2627 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2632 if (fatal_signal_pending(current)) {
2637 status = a_ops->write_begin(file, mapping, pos, bytes, flags,
2639 if (unlikely(status < 0))
2642 if (mapping_writably_mapped(mapping))
2643 flush_dcache_page(page);
2645 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
2646 flush_dcache_page(page);
2648 status = a_ops->write_end(file, mapping, pos, bytes, copied,
2650 if (unlikely(status < 0))
2656 iov_iter_advance(i, copied);
2657 if (unlikely(copied == 0)) {
2659 * If we were unable to copy any data at all, we must
2660 * fall back to a single segment length write.
2662 * If we didn't fallback here, we could livelock
2663 * because not all segments in the iov can be copied at
2664 * once without a pagefault.
2666 bytes = min_t(unsigned long, PAGE_SIZE - offset,
2667 iov_iter_single_seg_count(i));
2673 balance_dirty_pages_ratelimited(mapping);
2674 } while (iov_iter_count(i));
2676 return written ? written : status;
2678 EXPORT_SYMBOL(generic_perform_write);
2681 * __generic_file_write_iter - write data to a file
2682 * @iocb: IO state structure (file, offset, etc.)
2683 * @from: iov_iter with data to write
2685 * This function does all the work needed for actually writing data to a
2686 * file. It does all basic checks, removes SUID from the file, updates
2687 * modification times and calls proper subroutines depending on whether we
2688 * do direct IO or a standard buffered write.
2690 * It expects i_mutex to be grabbed unless we work on a block device or similar
2691 * object which does not need locking at all.
2693 * This function does *not* take care of syncing data in case of O_SYNC write.
2694 * A caller has to handle it. This is mainly due to the fact that we want to
2695 * avoid syncing under i_mutex.
2697 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
2699 struct file *file = iocb->ki_filp;
2700 struct address_space * mapping = file->f_mapping;
2701 struct inode *inode = mapping->host;
2702 ssize_t written = 0;
2706 /* We can write back this queue in page reclaim */
2707 current->backing_dev_info = inode_to_bdi(inode);
2708 err = file_remove_privs(file);
2712 err = file_update_time(file);
2716 if (iocb->ki_flags & IOCB_DIRECT) {
2717 loff_t pos, endbyte;
2719 written = generic_file_direct_write(iocb, from);
2721 * If the write stopped short of completing, fall back to
2722 * buffered writes. Some filesystems do this for writes to
2723 * holes, for example. For DAX files, a buffered write will
2724 * not succeed (even if it did, DAX does not handle dirty
2725 * page-cache pages correctly).
2727 if (written < 0 || !iov_iter_count(from) || IS_DAX(inode))
2730 status = generic_perform_write(file, from, pos = iocb->ki_pos);
2732 * If generic_perform_write() returned a synchronous error
2733 * then we want to return the number of bytes which were
2734 * direct-written, or the error code if that was zero. Note
2735 * that this differs from normal direct-io semantics, which
2736 * will return -EFOO even if some bytes were written.
2738 if (unlikely(status < 0)) {
2743 * We need to ensure that the page cache pages are written to
2744 * disk and invalidated to preserve the expected O_DIRECT
2747 endbyte = pos + status - 1;
2748 err = filemap_write_and_wait_range(mapping, pos, endbyte);
2750 iocb->ki_pos = endbyte + 1;
2752 invalidate_mapping_pages(mapping,
2754 endbyte >> PAGE_SHIFT);
2757 * We don't know how much we wrote, so just return
2758 * the number of bytes which were direct-written
2762 written = generic_perform_write(file, from, iocb->ki_pos);
2763 if (likely(written > 0))
2764 iocb->ki_pos += written;
2767 current->backing_dev_info = NULL;
2768 return written ? written : err;
2770 EXPORT_SYMBOL(__generic_file_write_iter);
2773 * generic_file_write_iter - write data to a file
2774 * @iocb: IO state structure
2775 * @from: iov_iter with data to write
2777 * This is a wrapper around __generic_file_write_iter() to be used by most
2778 * filesystems. It takes care of syncing the file in case of O_SYNC file
2779 * and acquires i_mutex as needed.
2781 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
2783 struct file *file = iocb->ki_filp;
2784 struct inode *inode = file->f_mapping->host;
2788 ret = generic_write_checks(iocb, from);
2790 ret = __generic_file_write_iter(iocb, from);
2791 inode_unlock(inode);
2794 ret = generic_write_sync(iocb, ret);
2797 EXPORT_SYMBOL(generic_file_write_iter);
2800 * try_to_release_page() - release old fs-specific metadata on a page
2802 * @page: the page which the kernel is trying to free
2803 * @gfp_mask: memory allocation flags (and I/O mode)
2805 * The address_space is to try to release any data against the page
2806 * (presumably at page->private). If the release was successful, return `1'.
2807 * Otherwise return zero.
2809 * This may also be called if PG_fscache is set on a page, indicating that the
2810 * page is known to the local caching routines.
2812 * The @gfp_mask argument specifies whether I/O may be performed to release
2813 * this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS).
2816 int try_to_release_page(struct page *page, gfp_t gfp_mask)
2818 struct address_space * const mapping = page->mapping;
2820 BUG_ON(!PageLocked(page));
2821 if (PageWriteback(page))
2824 if (mapping && mapping->a_ops->releasepage)
2825 return mapping->a_ops->releasepage(page, gfp_mask);
2826 return try_to_free_buffers(page);
2829 EXPORT_SYMBOL(try_to_release_page);