1 // SPDX-License-Identifier: GPL-2.0-only
5 * Copyright 2001 David Brownell
6 * Copyright 2007 Intel Corporation
7 * Author: Matthew Wilcox <willy@linux.intel.com>
9 * This allocator returns small blocks of a given size which are DMA-able by
10 * the given device. It uses the dma_alloc_coherent page allocator to get
11 * new pages, then splits them up into blocks of the required size.
12 * Many older drivers still have their own code to do this.
14 * The current design of this allocator is fairly simple. The pool is
15 * represented by the 'struct dma_pool' which keeps a doubly-linked list of
16 * allocated pages. Each page in the page_list is split into blocks of at
17 * least 'size' bytes. Free blocks are tracked in an unsorted singly-linked
18 * list of free blocks within the page. Used blocks aren't tracked, but we
19 * keep a count of how many are currently allocated from each page.
22 #include <linux/device.h>
23 #include <linux/dma-mapping.h>
24 #include <linux/dmapool.h>
25 #include <linux/kernel.h>
26 #include <linux/list.h>
27 #include <linux/export.h>
28 #include <linux/mutex.h>
29 #include <linux/poison.h>
30 #include <linux/sched.h>
31 #include <linux/slab.h>
32 #include <linux/stat.h>
33 #include <linux/spinlock.h>
34 #include <linux/string.h>
35 #include <linux/types.h>
36 #include <linux/wait.h>
38 #if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_SLUB_DEBUG_ON)
39 #define DMAPOOL_DEBUG 1
42 struct dma_pool { /* the pool */
43 struct list_head page_list;
50 struct list_head pools;
53 struct dma_page { /* cacheable header for 'allocation' bytes */
54 struct list_head page_list;
61 static DEFINE_MUTEX(pools_lock);
62 static DEFINE_MUTEX(pools_reg_lock);
65 show_pools(struct device *dev, struct device_attribute *attr, char *buf)
70 struct dma_page *page;
71 struct dma_pool *pool;
76 temp = scnprintf(next, size, "poolinfo - 0.1\n");
80 mutex_lock(&pools_lock);
81 list_for_each_entry(pool, &dev->dma_pools, pools) {
85 spin_lock_irq(&pool->lock);
86 list_for_each_entry(page, &pool->page_list, page_list) {
88 blocks += page->in_use;
90 spin_unlock_irq(&pool->lock);
92 /* per-pool info, no real statistics yet */
93 temp = scnprintf(next, size, "%-16s %4u %4zu %4zu %2u\n",
95 pages * (pool->allocation / pool->size),
100 mutex_unlock(&pools_lock);
102 return PAGE_SIZE - size;
105 static DEVICE_ATTR(pools, 0444, show_pools, NULL);
108 * dma_pool_create - Creates a pool of consistent memory blocks, for dma.
109 * @name: name of pool, for diagnostics
110 * @dev: device that will be doing the DMA
111 * @size: size of the blocks in this pool.
112 * @align: alignment requirement for blocks; must be a power of two
113 * @boundary: returned blocks won't cross this power of two boundary
114 * Context: not in_interrupt()
116 * Given one of these pools, dma_pool_alloc()
117 * may be used to allocate memory. Such memory will all have "consistent"
118 * DMA mappings, accessible by the device and its driver without using
119 * cache flushing primitives. The actual size of blocks allocated may be
120 * larger than requested because of alignment.
122 * If @boundary is nonzero, objects returned from dma_pool_alloc() won't
123 * cross that size boundary. This is useful for devices which have
124 * addressing restrictions on individual DMA transfers, such as not crossing
125 * boundaries of 4KBytes.
127 * Return: a dma allocation pool with the requested characteristics, or
128 * %NULL if one can't be created.
130 struct dma_pool *dma_pool_create(const char *name, struct device *dev,
131 size_t size, size_t align, size_t boundary)
133 struct dma_pool *retval;
139 else if (align & (align - 1))
147 size = ALIGN(size, align);
148 allocation = max_t(size_t, size, PAGE_SIZE);
151 boundary = allocation;
152 else if ((boundary < size) || (boundary & (boundary - 1)))
155 retval = kmalloc_node(sizeof(*retval), GFP_KERNEL, dev_to_node(dev));
159 strlcpy(retval->name, name, sizeof(retval->name));
163 INIT_LIST_HEAD(&retval->page_list);
164 spin_lock_init(&retval->lock);
166 retval->boundary = boundary;
167 retval->allocation = allocation;
169 INIT_LIST_HEAD(&retval->pools);
172 * pools_lock ensures that the ->dma_pools list does not get corrupted.
173 * pools_reg_lock ensures that there is not a race between
174 * dma_pool_create() and dma_pool_destroy() or within dma_pool_create()
175 * when the first invocation of dma_pool_create() failed on
176 * device_create_file() and the second assumes that it has been done (I
177 * know it is a short window).
179 mutex_lock(&pools_reg_lock);
180 mutex_lock(&pools_lock);
181 if (list_empty(&dev->dma_pools))
183 list_add(&retval->pools, &dev->dma_pools);
184 mutex_unlock(&pools_lock);
188 err = device_create_file(dev, &dev_attr_pools);
190 mutex_lock(&pools_lock);
191 list_del(&retval->pools);
192 mutex_unlock(&pools_lock);
193 mutex_unlock(&pools_reg_lock);
198 mutex_unlock(&pools_reg_lock);
201 EXPORT_SYMBOL(dma_pool_create);
203 static void pool_initialise_page(struct dma_pool *pool, struct dma_page *page)
205 unsigned int offset = 0;
206 unsigned int next_boundary = pool->boundary;
209 unsigned int next = offset + pool->size;
210 if (unlikely((next + pool->size) >= next_boundary)) {
211 next = next_boundary;
212 next_boundary += pool->boundary;
214 *(int *)(page->vaddr + offset) = next;
216 } while (offset < pool->allocation);
219 static struct dma_page *pool_alloc_page(struct dma_pool *pool, gfp_t mem_flags)
221 struct dma_page *page;
223 page = kmalloc(sizeof(*page), mem_flags);
226 page->vaddr = dma_alloc_coherent(pool->dev, pool->allocation,
227 &page->dma, mem_flags);
230 memset(page->vaddr, POOL_POISON_FREED, pool->allocation);
232 pool_initialise_page(pool, page);
242 static inline bool is_page_busy(struct dma_page *page)
244 return page->in_use != 0;
247 static void pool_free_page(struct dma_pool *pool, struct dma_page *page)
249 dma_addr_t dma = page->dma;
252 memset(page->vaddr, POOL_POISON_FREED, pool->allocation);
254 dma_free_coherent(pool->dev, pool->allocation, page->vaddr, dma);
255 list_del(&page->page_list);
260 * dma_pool_destroy - destroys a pool of dma memory blocks.
261 * @pool: dma pool that will be destroyed
262 * Context: !in_interrupt()
264 * Caller guarantees that no more memory from the pool is in use,
265 * and that nothing will try to use the pool after this call.
267 void dma_pool_destroy(struct dma_pool *pool)
274 mutex_lock(&pools_reg_lock);
275 mutex_lock(&pools_lock);
276 list_del(&pool->pools);
277 if (pool->dev && list_empty(&pool->dev->dma_pools))
279 mutex_unlock(&pools_lock);
281 device_remove_file(pool->dev, &dev_attr_pools);
282 mutex_unlock(&pools_reg_lock);
284 while (!list_empty(&pool->page_list)) {
285 struct dma_page *page;
286 page = list_entry(pool->page_list.next,
287 struct dma_page, page_list);
288 if (is_page_busy(page)) {
291 "dma_pool_destroy %s, %p busy\n",
292 pool->name, page->vaddr);
294 pr_err("dma_pool_destroy %s, %p busy\n",
295 pool->name, page->vaddr);
296 /* leak the still-in-use consistent memory */
297 list_del(&page->page_list);
300 pool_free_page(pool, page);
305 EXPORT_SYMBOL(dma_pool_destroy);
308 * dma_pool_alloc - get a block of consistent memory
309 * @pool: dma pool that will produce the block
310 * @mem_flags: GFP_* bitmask
311 * @handle: pointer to dma address of block
313 * Return: the kernel virtual address of a currently unused block,
314 * and reports its dma address through the handle.
315 * If such a memory block can't be allocated, %NULL is returned.
317 void *dma_pool_alloc(struct dma_pool *pool, gfp_t mem_flags,
321 struct dma_page *page;
325 might_sleep_if(gfpflags_allow_blocking(mem_flags));
327 spin_lock_irqsave(&pool->lock, flags);
328 list_for_each_entry(page, &pool->page_list, page_list) {
329 if (page->offset < pool->allocation)
333 /* pool_alloc_page() might sleep, so temporarily drop &pool->lock */
334 spin_unlock_irqrestore(&pool->lock, flags);
336 page = pool_alloc_page(pool, mem_flags & (~__GFP_ZERO));
340 spin_lock_irqsave(&pool->lock, flags);
342 list_add(&page->page_list, &pool->page_list);
345 offset = page->offset;
346 page->offset = *(int *)(page->vaddr + offset);
347 retval = offset + page->vaddr;
348 *handle = offset + page->dma;
353 /* page->offset is stored in first 4 bytes */
354 for (i = sizeof(page->offset); i < pool->size; i++) {
355 if (data[i] == POOL_POISON_FREED)
359 "dma_pool_alloc %s, %p (corrupted)\n",
362 pr_err("dma_pool_alloc %s, %p (corrupted)\n",
366 * Dump the first 4 bytes even if they are not
369 print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1,
370 data, pool->size, 1);
374 if (!(mem_flags & __GFP_ZERO))
375 memset(retval, POOL_POISON_ALLOCATED, pool->size);
377 spin_unlock_irqrestore(&pool->lock, flags);
379 if (want_init_on_alloc(mem_flags))
380 memset(retval, 0, pool->size);
384 EXPORT_SYMBOL(dma_pool_alloc);
386 static struct dma_page *pool_find_page(struct dma_pool *pool, dma_addr_t dma)
388 struct dma_page *page;
390 list_for_each_entry(page, &pool->page_list, page_list) {
393 if ((dma - page->dma) < pool->allocation)
400 * dma_pool_free - put block back into dma pool
401 * @pool: the dma pool holding the block
402 * @vaddr: virtual address of block
403 * @dma: dma address of block
405 * Caller promises neither device nor driver will again touch this block
406 * unless it is first re-allocated.
408 void dma_pool_free(struct dma_pool *pool, void *vaddr, dma_addr_t dma)
410 struct dma_page *page;
414 spin_lock_irqsave(&pool->lock, flags);
415 page = pool_find_page(pool, dma);
417 spin_unlock_irqrestore(&pool->lock, flags);
420 "dma_pool_free %s, %p/%lx (bad dma)\n",
421 pool->name, vaddr, (unsigned long)dma);
423 pr_err("dma_pool_free %s, %p/%lx (bad dma)\n",
424 pool->name, vaddr, (unsigned long)dma);
428 offset = vaddr - page->vaddr;
429 if (want_init_on_free())
430 memset(vaddr, 0, pool->size);
432 if ((dma - page->dma) != offset) {
433 spin_unlock_irqrestore(&pool->lock, flags);
436 "dma_pool_free %s, %p (bad vaddr)/%pad\n",
437 pool->name, vaddr, &dma);
439 pr_err("dma_pool_free %s, %p (bad vaddr)/%pad\n",
440 pool->name, vaddr, &dma);
444 unsigned int chain = page->offset;
445 while (chain < pool->allocation) {
446 if (chain != offset) {
447 chain = *(int *)(page->vaddr + chain);
450 spin_unlock_irqrestore(&pool->lock, flags);
452 dev_err(pool->dev, "dma_pool_free %s, dma %pad already free\n",
455 pr_err("dma_pool_free %s, dma %pad already free\n",
460 memset(vaddr, POOL_POISON_FREED, pool->size);
464 *(int *)vaddr = page->offset;
465 page->offset = offset;
467 * Resist a temptation to do
468 * if (!is_page_busy(page)) pool_free_page(pool, page);
469 * Better have a few empty pages hang around.
471 spin_unlock_irqrestore(&pool->lock, flags);
473 EXPORT_SYMBOL(dma_pool_free);
478 static void dmam_pool_release(struct device *dev, void *res)
480 struct dma_pool *pool = *(struct dma_pool **)res;
482 dma_pool_destroy(pool);
485 static int dmam_pool_match(struct device *dev, void *res, void *match_data)
487 return *(struct dma_pool **)res == match_data;
491 * dmam_pool_create - Managed dma_pool_create()
492 * @name: name of pool, for diagnostics
493 * @dev: device that will be doing the DMA
494 * @size: size of the blocks in this pool.
495 * @align: alignment requirement for blocks; must be a power of two
496 * @allocation: returned blocks won't cross this boundary (or zero)
498 * Managed dma_pool_create(). DMA pool created with this function is
499 * automatically destroyed on driver detach.
501 * Return: a managed dma allocation pool with the requested
502 * characteristics, or %NULL if one can't be created.
504 struct dma_pool *dmam_pool_create(const char *name, struct device *dev,
505 size_t size, size_t align, size_t allocation)
507 struct dma_pool **ptr, *pool;
509 ptr = devres_alloc(dmam_pool_release, sizeof(*ptr), GFP_KERNEL);
513 pool = *ptr = dma_pool_create(name, dev, size, align, allocation);
515 devres_add(dev, ptr);
521 EXPORT_SYMBOL(dmam_pool_create);
524 * dmam_pool_destroy - Managed dma_pool_destroy()
525 * @pool: dma pool that will be destroyed
527 * Managed dma_pool_destroy().
529 void dmam_pool_destroy(struct dma_pool *pool)
531 struct device *dev = pool->dev;
533 WARN_ON(devres_release(dev, dmam_pool_release, dmam_pool_match, pool));
535 EXPORT_SYMBOL(dmam_pool_destroy);