1 // SPDX-License-Identifier: GPL-2.0-only
5 * Copyright 2001 David Brownell
6 * Copyright 2007 Intel Corporation
7 * Author: Matthew Wilcox <willy@linux.intel.com>
9 * This allocator returns small blocks of a given size which are DMA-able by
10 * the given device. It uses the dma_alloc_coherent page allocator to get
11 * new pages, then splits them up into blocks of the required size.
12 * Many older drivers still have their own code to do this.
14 * The current design of this allocator is fairly simple. The pool is
15 * represented by the 'struct dma_pool' which keeps a doubly-linked list of
16 * allocated pages. Each page in the page_list is split into blocks of at
17 * least 'size' bytes. Free blocks are tracked in an unsorted singly-linked
18 * list of free blocks within the page. Used blocks aren't tracked, but we
19 * keep a count of how many are currently allocated from each page.
22 #include <linux/device.h>
23 #include <linux/dma-mapping.h>
24 #include <linux/dmapool.h>
25 #include <linux/kernel.h>
26 #include <linux/list.h>
27 #include <linux/export.h>
28 #include <linux/mutex.h>
29 #include <linux/poison.h>
30 #include <linux/sched.h>
31 #include <linux/sched/mm.h>
32 #include <linux/slab.h>
33 #include <linux/stat.h>
34 #include <linux/spinlock.h>
35 #include <linux/string.h>
36 #include <linux/types.h>
37 #include <linux/wait.h>
39 #if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_SLUB_DEBUG_ON)
40 #define DMAPOOL_DEBUG 1
43 struct dma_pool { /* the pool */
44 struct list_head page_list;
51 struct list_head pools;
54 struct dma_page { /* cacheable header for 'allocation' bytes */
55 struct list_head page_list;
62 static DEFINE_MUTEX(pools_lock);
63 static DEFINE_MUTEX(pools_reg_lock);
66 show_pools(struct device *dev, struct device_attribute *attr, char *buf)
71 struct dma_page *page;
72 struct dma_pool *pool;
77 temp = scnprintf(next, size, "poolinfo - 0.1\n");
81 mutex_lock(&pools_lock);
82 list_for_each_entry(pool, &dev->dma_pools, pools) {
86 spin_lock_irq(&pool->lock);
87 list_for_each_entry(page, &pool->page_list, page_list) {
89 blocks += page->in_use;
91 spin_unlock_irq(&pool->lock);
93 /* per-pool info, no real statistics yet */
94 temp = scnprintf(next, size, "%-16s %4u %4zu %4zu %2u\n",
96 pages * (pool->allocation / pool->size),
101 mutex_unlock(&pools_lock);
103 return PAGE_SIZE - size;
106 static DEVICE_ATTR(pools, 0444, show_pools, NULL);
109 * dma_pool_create - Creates a pool of consistent memory blocks, for dma.
110 * @name: name of pool, for diagnostics
111 * @dev: device that will be doing the DMA
112 * @size: size of the blocks in this pool.
113 * @align: alignment requirement for blocks; must be a power of two
114 * @boundary: returned blocks won't cross this power of two boundary
115 * Context: not in_interrupt()
117 * Given one of these pools, dma_pool_alloc()
118 * may be used to allocate memory. Such memory will all have "consistent"
119 * DMA mappings, accessible by the device and its driver without using
120 * cache flushing primitives. The actual size of blocks allocated may be
121 * larger than requested because of alignment.
123 * If @boundary is nonzero, objects returned from dma_pool_alloc() won't
124 * cross that size boundary. This is useful for devices which have
125 * addressing restrictions on individual DMA transfers, such as not crossing
126 * boundaries of 4KBytes.
128 * Return: a dma allocation pool with the requested characteristics, or
129 * %NULL if one can't be created.
131 struct dma_pool *dma_pool_create(const char *name, struct device *dev,
132 size_t size, size_t align, size_t boundary)
134 struct dma_pool *retval;
140 else if (align & (align - 1))
148 size = ALIGN(size, align);
149 allocation = max_t(size_t, size, PAGE_SIZE);
152 boundary = allocation;
153 else if ((boundary < size) || (boundary & (boundary - 1)))
156 retval = kmalloc_node(sizeof(*retval), GFP_KERNEL, dev_to_node(dev));
160 strlcpy(retval->name, name, sizeof(retval->name));
164 INIT_LIST_HEAD(&retval->page_list);
165 spin_lock_init(&retval->lock);
167 retval->boundary = boundary;
168 retval->allocation = allocation;
170 INIT_LIST_HEAD(&retval->pools);
173 * pools_lock ensures that the ->dma_pools list does not get corrupted.
174 * pools_reg_lock ensures that there is not a race between
175 * dma_pool_create() and dma_pool_destroy() or within dma_pool_create()
176 * when the first invocation of dma_pool_create() failed on
177 * device_create_file() and the second assumes that it has been done (I
178 * know it is a short window).
180 mutex_lock(&pools_reg_lock);
181 mutex_lock(&pools_lock);
182 if (list_empty(&dev->dma_pools))
184 list_add(&retval->pools, &dev->dma_pools);
185 mutex_unlock(&pools_lock);
189 err = device_create_file(dev, &dev_attr_pools);
191 mutex_lock(&pools_lock);
192 list_del(&retval->pools);
193 mutex_unlock(&pools_lock);
194 mutex_unlock(&pools_reg_lock);
199 mutex_unlock(&pools_reg_lock);
202 EXPORT_SYMBOL(dma_pool_create);
204 static void pool_initialise_page(struct dma_pool *pool, struct dma_page *page)
206 unsigned int offset = 0;
207 unsigned int next_boundary = pool->boundary;
210 unsigned int next = offset + pool->size;
211 if (unlikely((next + pool->size) >= next_boundary)) {
212 next = next_boundary;
213 next_boundary += pool->boundary;
215 *(int *)(page->vaddr + offset) = next;
217 } while (offset < pool->allocation);
220 static struct dma_page *pool_alloc_page(struct dma_pool *pool, gfp_t mem_flags)
222 struct dma_page *page;
224 page = kmalloc(sizeof(*page), mem_flags);
227 page->vaddr = dma_alloc_coherent(pool->dev, pool->allocation,
228 &page->dma, mem_flags);
231 memset(page->vaddr, POOL_POISON_FREED, pool->allocation);
233 pool_initialise_page(pool, page);
243 static inline bool is_page_busy(struct dma_page *page)
245 return page->in_use != 0;
248 static void pool_free_page(struct dma_pool *pool, struct dma_page *page)
250 dma_addr_t dma = page->dma;
253 memset(page->vaddr, POOL_POISON_FREED, pool->allocation);
255 dma_free_coherent(pool->dev, pool->allocation, page->vaddr, dma);
256 list_del(&page->page_list);
261 * dma_pool_destroy - destroys a pool of dma memory blocks.
262 * @pool: dma pool that will be destroyed
263 * Context: !in_interrupt()
265 * Caller guarantees that no more memory from the pool is in use,
266 * and that nothing will try to use the pool after this call.
268 void dma_pool_destroy(struct dma_pool *pool)
270 struct dma_page *page, *tmp;
276 mutex_lock(&pools_reg_lock);
277 mutex_lock(&pools_lock);
278 list_del(&pool->pools);
279 if (pool->dev && list_empty(&pool->dev->dma_pools))
281 mutex_unlock(&pools_lock);
283 device_remove_file(pool->dev, &dev_attr_pools);
284 mutex_unlock(&pools_reg_lock);
286 list_for_each_entry_safe(page, tmp, &pool->page_list, page_list) {
287 if (is_page_busy(page)) {
289 dev_err(pool->dev, "%s %s, %p busy\n", __func__,
290 pool->name, page->vaddr);
292 pr_err("%s %s, %p busy\n", __func__,
293 pool->name, page->vaddr);
294 /* leak the still-in-use consistent memory */
295 list_del(&page->page_list);
298 pool_free_page(pool, page);
303 EXPORT_SYMBOL(dma_pool_destroy);
306 * dma_pool_alloc - get a block of consistent memory
307 * @pool: dma pool that will produce the block
308 * @mem_flags: GFP_* bitmask
309 * @handle: pointer to dma address of block
311 * Return: the kernel virtual address of a currently unused block,
312 * and reports its dma address through the handle.
313 * If such a memory block can't be allocated, %NULL is returned.
315 void *dma_pool_alloc(struct dma_pool *pool, gfp_t mem_flags,
319 struct dma_page *page;
323 might_alloc(mem_flags);
325 spin_lock_irqsave(&pool->lock, flags);
326 list_for_each_entry(page, &pool->page_list, page_list) {
327 if (page->offset < pool->allocation)
331 /* pool_alloc_page() might sleep, so temporarily drop &pool->lock */
332 spin_unlock_irqrestore(&pool->lock, flags);
334 page = pool_alloc_page(pool, mem_flags & (~__GFP_ZERO));
338 spin_lock_irqsave(&pool->lock, flags);
340 list_add(&page->page_list, &pool->page_list);
343 offset = page->offset;
344 page->offset = *(int *)(page->vaddr + offset);
345 retval = offset + page->vaddr;
346 *handle = offset + page->dma;
351 /* page->offset is stored in first 4 bytes */
352 for (i = sizeof(page->offset); i < pool->size; i++) {
353 if (data[i] == POOL_POISON_FREED)
356 dev_err(pool->dev, "%s %s, %p (corrupted)\n",
357 __func__, pool->name, retval);
359 pr_err("%s %s, %p (corrupted)\n",
360 __func__, pool->name, retval);
363 * Dump the first 4 bytes even if they are not
366 print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1,
367 data, pool->size, 1);
371 if (!(mem_flags & __GFP_ZERO))
372 memset(retval, POOL_POISON_ALLOCATED, pool->size);
374 spin_unlock_irqrestore(&pool->lock, flags);
376 if (want_init_on_alloc(mem_flags))
377 memset(retval, 0, pool->size);
381 EXPORT_SYMBOL(dma_pool_alloc);
383 static struct dma_page *pool_find_page(struct dma_pool *pool, dma_addr_t dma)
385 struct dma_page *page;
387 list_for_each_entry(page, &pool->page_list, page_list) {
390 if ((dma - page->dma) < pool->allocation)
397 * dma_pool_free - put block back into dma pool
398 * @pool: the dma pool holding the block
399 * @vaddr: virtual address of block
400 * @dma: dma address of block
402 * Caller promises neither device nor driver will again touch this block
403 * unless it is first re-allocated.
405 void dma_pool_free(struct dma_pool *pool, void *vaddr, dma_addr_t dma)
407 struct dma_page *page;
411 spin_lock_irqsave(&pool->lock, flags);
412 page = pool_find_page(pool, dma);
414 spin_unlock_irqrestore(&pool->lock, flags);
416 dev_err(pool->dev, "%s %s, %p/%pad (bad dma)\n",
417 __func__, pool->name, vaddr, &dma);
419 pr_err("%s %s, %p/%pad (bad dma)\n",
420 __func__, pool->name, vaddr, &dma);
424 offset = vaddr - page->vaddr;
425 if (want_init_on_free())
426 memset(vaddr, 0, pool->size);
428 if ((dma - page->dma) != offset) {
429 spin_unlock_irqrestore(&pool->lock, flags);
431 dev_err(pool->dev, "%s %s, %p (bad vaddr)/%pad\n",
432 __func__, pool->name, vaddr, &dma);
434 pr_err("%s %s, %p (bad vaddr)/%pad\n",
435 __func__, pool->name, vaddr, &dma);
439 unsigned int chain = page->offset;
440 while (chain < pool->allocation) {
441 if (chain != offset) {
442 chain = *(int *)(page->vaddr + chain);
445 spin_unlock_irqrestore(&pool->lock, flags);
447 dev_err(pool->dev, "%s %s, dma %pad already free\n",
448 __func__, pool->name, &dma);
450 pr_err("%s %s, dma %pad already free\n",
451 __func__, pool->name, &dma);
455 memset(vaddr, POOL_POISON_FREED, pool->size);
459 *(int *)vaddr = page->offset;
460 page->offset = offset;
462 * Resist a temptation to do
463 * if (!is_page_busy(page)) pool_free_page(pool, page);
464 * Better have a few empty pages hang around.
466 spin_unlock_irqrestore(&pool->lock, flags);
468 EXPORT_SYMBOL(dma_pool_free);
473 static void dmam_pool_release(struct device *dev, void *res)
475 struct dma_pool *pool = *(struct dma_pool **)res;
477 dma_pool_destroy(pool);
480 static int dmam_pool_match(struct device *dev, void *res, void *match_data)
482 return *(struct dma_pool **)res == match_data;
486 * dmam_pool_create - Managed dma_pool_create()
487 * @name: name of pool, for diagnostics
488 * @dev: device that will be doing the DMA
489 * @size: size of the blocks in this pool.
490 * @align: alignment requirement for blocks; must be a power of two
491 * @allocation: returned blocks won't cross this boundary (or zero)
493 * Managed dma_pool_create(). DMA pool created with this function is
494 * automatically destroyed on driver detach.
496 * Return: a managed dma allocation pool with the requested
497 * characteristics, or %NULL if one can't be created.
499 struct dma_pool *dmam_pool_create(const char *name, struct device *dev,
500 size_t size, size_t align, size_t allocation)
502 struct dma_pool **ptr, *pool;
504 ptr = devres_alloc(dmam_pool_release, sizeof(*ptr), GFP_KERNEL);
508 pool = *ptr = dma_pool_create(name, dev, size, align, allocation);
510 devres_add(dev, ptr);
516 EXPORT_SYMBOL(dmam_pool_create);
519 * dmam_pool_destroy - Managed dma_pool_destroy()
520 * @pool: dma pool that will be destroyed
522 * Managed dma_pool_destroy().
524 void dmam_pool_destroy(struct dma_pool *pool)
526 struct device *dev = pool->dev;
528 WARN_ON(devres_release(dev, dmam_pool_release, dmam_pool_match, pool));
530 EXPORT_SYMBOL(dmam_pool_destroy);