1 // SPDX-License-Identifier: GPL-2.0
3 * DAMON Primitives for Virtual Address Spaces
5 * Author: SeongJae Park <sjpark@amazon.de>
8 #define pr_fmt(fmt) "damon-va: " fmt
10 #include <asm-generic/mman-common.h>
11 #include <linux/highmem.h>
12 #include <linux/hugetlb.h>
13 #include <linux/mmu_notifier.h>
14 #include <linux/page_idle.h>
15 #include <linux/pagewalk.h>
16 #include <linux/sched/mm.h>
18 #include "ops-common.h"
20 #ifdef CONFIG_DAMON_VADDR_KUNIT_TEST
21 #undef DAMON_MIN_REGION
22 #define DAMON_MIN_REGION 1
26 * 't->pid' should be the pointer to the relevant 'struct pid' having reference
27 * count. Caller must put the returned task, unless it is NULL.
29 static inline struct task_struct *damon_get_task_struct(struct damon_target *t)
31 return get_pid_task(t->pid, PIDTYPE_PID);
35 * Get the mm_struct of the given target
37 * Caller _must_ put the mm_struct after use, unless it is NULL.
39 * Returns the mm_struct of the target on success, NULL on failure
41 static struct mm_struct *damon_get_mm(struct damon_target *t)
43 struct task_struct *task;
46 task = damon_get_task_struct(t);
50 mm = get_task_mm(task);
51 put_task_struct(task);
56 * Functions for the initial monitoring target regions construction
60 * Size-evenly split a region into 'nr_pieces' small regions
62 * Returns 0 on success, or negative error code otherwise.
64 static int damon_va_evenly_split_region(struct damon_target *t,
65 struct damon_region *r, unsigned int nr_pieces)
67 unsigned long sz_orig, sz_piece, orig_end;
68 struct damon_region *n = NULL, *next;
75 sz_orig = damon_sz_region(r);
76 sz_piece = ALIGN_DOWN(sz_orig / nr_pieces, DAMON_MIN_REGION);
81 r->ar.end = r->ar.start + sz_piece;
82 next = damon_next_region(r);
83 for (start = r->ar.end; start + sz_piece <= orig_end;
85 n = damon_new_region(start, start + sz_piece);
88 damon_insert_region(n, r, next, t);
91 /* complement last region for possible rounding error */
98 static unsigned long sz_range(struct damon_addr_range *r)
100 return r->end - r->start;
104 * Find three regions separated by two biggest unmapped regions
106 * vma the head vma of the target address space
107 * regions an array of three address ranges that results will be saved
109 * This function receives an address space and finds three regions in it which
110 * separated by the two biggest unmapped regions in the space. Please refer to
111 * below comments of '__damon_va_init_regions()' function to know why this is
114 * Returns 0 if success, or negative error code otherwise.
116 static int __damon_va_three_regions(struct mm_struct *mm,
117 struct damon_addr_range regions[3])
119 struct damon_addr_range first_gap = {0}, second_gap = {0};
120 VMA_ITERATOR(vmi, mm, 0);
121 struct vm_area_struct *vma, *prev = NULL;
125 * Find the two biggest gaps so that first_gap > second_gap > others.
126 * If this is too slow, it can be optimised to examine the maple
129 for_each_vma(vmi, vma) {
133 start = vma->vm_start;
136 gap = vma->vm_start - prev->vm_end;
138 if (gap > sz_range(&first_gap)) {
139 second_gap = first_gap;
140 first_gap.start = prev->vm_end;
141 first_gap.end = vma->vm_start;
142 } else if (gap > sz_range(&second_gap)) {
143 second_gap.start = prev->vm_end;
144 second_gap.end = vma->vm_start;
150 if (!sz_range(&second_gap) || !sz_range(&first_gap))
153 /* Sort the two biggest gaps by address */
154 if (first_gap.start > second_gap.start)
155 swap(first_gap, second_gap);
157 /* Store the result */
158 regions[0].start = ALIGN(start, DAMON_MIN_REGION);
159 regions[0].end = ALIGN(first_gap.start, DAMON_MIN_REGION);
160 regions[1].start = ALIGN(first_gap.end, DAMON_MIN_REGION);
161 regions[1].end = ALIGN(second_gap.start, DAMON_MIN_REGION);
162 regions[2].start = ALIGN(second_gap.end, DAMON_MIN_REGION);
163 regions[2].end = ALIGN(prev->vm_end, DAMON_MIN_REGION);
169 * Get the three regions in the given target (task)
171 * Returns 0 on success, negative error code otherwise.
173 static int damon_va_three_regions(struct damon_target *t,
174 struct damon_addr_range regions[3])
176 struct mm_struct *mm;
179 mm = damon_get_mm(t);
184 rc = __damon_va_three_regions(mm, regions);
185 mmap_read_unlock(mm);
192 * Initialize the monitoring target regions for the given target (task)
196 * Because only a number of small portions of the entire address space
197 * is actually mapped to the memory and accessed, monitoring the unmapped
198 * regions is wasteful. That said, because we can deal with small noises,
199 * tracking every mapping is not strictly required but could even incur a high
200 * overhead if the mapping frequently changes or the number of mappings is
201 * high. The adaptive regions adjustment mechanism will further help to deal
202 * with the noise by simply identifying the unmapped areas as a region that
203 * has no access. Moreover, applying the real mappings that would have many
204 * unmapped areas inside will make the adaptive mechanism quite complex. That
205 * said, too huge unmapped areas inside the monitoring target should be removed
206 * to not take the time for the adaptive mechanism.
208 * For the reason, we convert the complex mappings to three distinct regions
209 * that cover every mapped area of the address space. Also the two gaps
210 * between the three regions are the two biggest unmapped areas in the given
211 * address space. In detail, this function first identifies the start and the
212 * end of the mappings and the two biggest unmapped areas of the address space.
213 * Then, it constructs the three regions as below:
215 * [mappings[0]->start, big_two_unmapped_areas[0]->start)
216 * [big_two_unmapped_areas[0]->end, big_two_unmapped_areas[1]->start)
217 * [big_two_unmapped_areas[1]->end, mappings[nr_mappings - 1]->end)
219 * As usual memory map of processes is as below, the gap between the heap and
220 * the uppermost mmap()-ed region, and the gap between the lowermost mmap()-ed
221 * region and the stack will be two biggest unmapped regions. Because these
222 * gaps are exceptionally huge areas in usual address space, excluding these
223 * two biggest unmapped regions will be sufficient to make a trade-off.
226 * <BIG UNMAPPED REGION 1>
227 * <uppermost mmap()-ed region>
228 * (other mmap()-ed regions and small unmapped regions)
229 * <lowermost mmap()-ed region>
230 * <BIG UNMAPPED REGION 2>
233 static void __damon_va_init_regions(struct damon_ctx *ctx,
234 struct damon_target *t)
236 struct damon_target *ti;
237 struct damon_region *r;
238 struct damon_addr_range regions[3];
239 unsigned long sz = 0, nr_pieces;
242 if (damon_va_three_regions(t, regions)) {
243 damon_for_each_target(ti, ctx) {
248 pr_debug("Failed to get three regions of %dth target\n", tidx);
252 for (i = 0; i < 3; i++)
253 sz += regions[i].end - regions[i].start;
254 if (ctx->attrs.min_nr_regions)
255 sz /= ctx->attrs.min_nr_regions;
256 if (sz < DAMON_MIN_REGION)
257 sz = DAMON_MIN_REGION;
259 /* Set the initial three regions of the target */
260 for (i = 0; i < 3; i++) {
261 r = damon_new_region(regions[i].start, regions[i].end);
263 pr_err("%d'th init region creation failed\n", i);
266 damon_add_region(r, t);
268 nr_pieces = (regions[i].end - regions[i].start) / sz;
269 damon_va_evenly_split_region(t, r, nr_pieces);
273 /* Initialize '->regions_list' of every target (task) */
274 static void damon_va_init(struct damon_ctx *ctx)
276 struct damon_target *t;
278 damon_for_each_target(t, ctx) {
279 /* the user may set the target regions as they want */
280 if (!damon_nr_regions(t))
281 __damon_va_init_regions(ctx, t);
286 * Update regions for current memory mappings
288 static void damon_va_update(struct damon_ctx *ctx)
290 struct damon_addr_range three_regions[3];
291 struct damon_target *t;
293 damon_for_each_target(t, ctx) {
294 if (damon_va_three_regions(t, three_regions))
296 damon_set_regions(t, three_regions, 3);
300 static int damon_mkold_pmd_entry(pmd_t *pmd, unsigned long addr,
301 unsigned long next, struct mm_walk *walk)
306 if (pmd_trans_huge(*pmd)) {
307 ptl = pmd_lock(walk->mm, pmd);
308 if (!pmd_present(*pmd)) {
313 if (pmd_trans_huge(*pmd)) {
314 damon_pmdp_mkold(pmd, walk->mm, addr);
321 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
323 pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
324 if (!pte_present(*pte))
326 damon_ptep_mkold(pte, walk->mm, addr);
328 pte_unmap_unlock(pte, ptl);
332 #ifdef CONFIG_HUGETLB_PAGE
333 static void damon_hugetlb_mkold(pte_t *pte, struct mm_struct *mm,
334 struct vm_area_struct *vma, unsigned long addr)
336 bool referenced = false;
337 pte_t entry = huge_ptep_get(pte);
338 struct page *page = pte_page(entry);
342 if (pte_young(entry)) {
344 entry = pte_mkold(entry);
345 set_huge_pte_at(mm, addr, pte, entry);
348 #ifdef CONFIG_MMU_NOTIFIER
349 if (mmu_notifier_clear_young(mm, addr,
350 addr + huge_page_size(hstate_vma(vma))))
352 #endif /* CONFIG_MMU_NOTIFIER */
355 set_page_young(page);
361 static int damon_mkold_hugetlb_entry(pte_t *pte, unsigned long hmask,
362 unsigned long addr, unsigned long end,
363 struct mm_walk *walk)
365 struct hstate *h = hstate_vma(walk->vma);
369 ptl = huge_pte_lock(h, walk->mm, pte);
370 entry = huge_ptep_get(pte);
371 if (!pte_present(entry))
374 damon_hugetlb_mkold(pte, walk->mm, walk->vma, addr);
381 #define damon_mkold_hugetlb_entry NULL
382 #endif /* CONFIG_HUGETLB_PAGE */
384 static const struct mm_walk_ops damon_mkold_ops = {
385 .pmd_entry = damon_mkold_pmd_entry,
386 .hugetlb_entry = damon_mkold_hugetlb_entry,
389 static void damon_va_mkold(struct mm_struct *mm, unsigned long addr)
392 walk_page_range(mm, addr, addr + 1, &damon_mkold_ops, NULL);
393 mmap_read_unlock(mm);
397 * Functions for the access checking of the regions
400 static void __damon_va_prepare_access_check(struct mm_struct *mm,
401 struct damon_region *r)
403 r->sampling_addr = damon_rand(r->ar.start, r->ar.end);
405 damon_va_mkold(mm, r->sampling_addr);
408 static void damon_va_prepare_access_checks(struct damon_ctx *ctx)
410 struct damon_target *t;
411 struct mm_struct *mm;
412 struct damon_region *r;
414 damon_for_each_target(t, ctx) {
415 mm = damon_get_mm(t);
418 damon_for_each_region(r, t)
419 __damon_va_prepare_access_check(mm, r);
424 struct damon_young_walk_private {
425 unsigned long *page_sz;
429 static int damon_young_pmd_entry(pmd_t *pmd, unsigned long addr,
430 unsigned long next, struct mm_walk *walk)
435 struct damon_young_walk_private *priv = walk->private;
437 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
438 if (pmd_trans_huge(*pmd)) {
439 ptl = pmd_lock(walk->mm, pmd);
440 if (!pmd_present(*pmd)) {
445 if (!pmd_trans_huge(*pmd)) {
449 page = damon_get_page(pmd_pfn(*pmd));
452 if (pmd_young(*pmd) || !page_is_idle(page) ||
453 mmu_notifier_test_young(walk->mm,
455 *priv->page_sz = HPAGE_PMD_SIZE;
465 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
467 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
469 pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
470 if (!pte_present(*pte))
472 page = damon_get_page(pte_pfn(*pte));
475 if (pte_young(*pte) || !page_is_idle(page) ||
476 mmu_notifier_test_young(walk->mm, addr)) {
477 *priv->page_sz = PAGE_SIZE;
482 pte_unmap_unlock(pte, ptl);
486 #ifdef CONFIG_HUGETLB_PAGE
487 static int damon_young_hugetlb_entry(pte_t *pte, unsigned long hmask,
488 unsigned long addr, unsigned long end,
489 struct mm_walk *walk)
491 struct damon_young_walk_private *priv = walk->private;
492 struct hstate *h = hstate_vma(walk->vma);
497 ptl = huge_pte_lock(h, walk->mm, pte);
498 entry = huge_ptep_get(pte);
499 if (!pte_present(entry))
502 page = pte_page(entry);
505 if (pte_young(entry) || !page_is_idle(page) ||
506 mmu_notifier_test_young(walk->mm, addr)) {
507 *priv->page_sz = huge_page_size(h);
518 #define damon_young_hugetlb_entry NULL
519 #endif /* CONFIG_HUGETLB_PAGE */
521 static const struct mm_walk_ops damon_young_ops = {
522 .pmd_entry = damon_young_pmd_entry,
523 .hugetlb_entry = damon_young_hugetlb_entry,
526 static bool damon_va_young(struct mm_struct *mm, unsigned long addr,
527 unsigned long *page_sz)
529 struct damon_young_walk_private arg = {
535 walk_page_range(mm, addr, addr + 1, &damon_young_ops, &arg);
536 mmap_read_unlock(mm);
541 * Check whether the region was accessed after the last preparation
543 * mm 'mm_struct' for the given virtual address space
544 * r the region to be checked
546 static void __damon_va_check_access(struct mm_struct *mm,
547 struct damon_region *r, bool same_target)
549 static unsigned long last_addr;
550 static unsigned long last_page_sz = PAGE_SIZE;
551 static bool last_accessed;
553 /* If the region is in the last checked page, reuse the result */
554 if (same_target && (ALIGN_DOWN(last_addr, last_page_sz) ==
555 ALIGN_DOWN(r->sampling_addr, last_page_sz))) {
561 last_accessed = damon_va_young(mm, r->sampling_addr, &last_page_sz);
565 last_addr = r->sampling_addr;
568 static unsigned int damon_va_check_accesses(struct damon_ctx *ctx)
570 struct damon_target *t;
571 struct mm_struct *mm;
572 struct damon_region *r;
573 unsigned int max_nr_accesses = 0;
576 damon_for_each_target(t, ctx) {
577 mm = damon_get_mm(t);
581 damon_for_each_region(r, t) {
582 __damon_va_check_access(mm, r, same_target);
583 max_nr_accesses = max(r->nr_accesses, max_nr_accesses);
589 return max_nr_accesses;
593 * Functions for the target validity check and cleanup
596 static bool damon_va_target_valid(struct damon_target *t)
598 struct task_struct *task;
600 task = damon_get_task_struct(t);
602 put_task_struct(task);
609 #ifndef CONFIG_ADVISE_SYSCALLS
610 static unsigned long damos_madvise(struct damon_target *target,
611 struct damon_region *r, int behavior)
616 static unsigned long damos_madvise(struct damon_target *target,
617 struct damon_region *r, int behavior)
619 struct mm_struct *mm;
620 unsigned long start = PAGE_ALIGN(r->ar.start);
621 unsigned long len = PAGE_ALIGN(damon_sz_region(r));
622 unsigned long applied;
624 mm = damon_get_mm(target);
628 applied = do_madvise(mm, start, len, behavior) ? 0 : len;
633 #endif /* CONFIG_ADVISE_SYSCALLS */
635 static unsigned long damon_va_apply_scheme(struct damon_ctx *ctx,
636 struct damon_target *t, struct damon_region *r,
637 struct damos *scheme)
641 switch (scheme->action) {
643 madv_action = MADV_WILLNEED;
646 madv_action = MADV_COLD;
649 madv_action = MADV_PAGEOUT;
652 madv_action = MADV_HUGEPAGE;
654 case DAMOS_NOHUGEPAGE:
655 madv_action = MADV_NOHUGEPAGE;
661 * DAMOS actions that are not yet supported by 'vaddr'.
666 return damos_madvise(t, r, madv_action);
669 static int damon_va_scheme_score(struct damon_ctx *context,
670 struct damon_target *t, struct damon_region *r,
671 struct damos *scheme)
674 switch (scheme->action) {
676 return damon_cold_score(context, r, scheme);
681 return DAMOS_MAX_SCORE;
684 static int __init damon_va_initcall(void)
686 struct damon_operations ops = {
687 .id = DAMON_OPS_VADDR,
688 .init = damon_va_init,
689 .update = damon_va_update,
690 .prepare_access_checks = damon_va_prepare_access_checks,
691 .check_accesses = damon_va_check_accesses,
692 .reset_aggregated = NULL,
693 .target_valid = damon_va_target_valid,
695 .apply_scheme = damon_va_apply_scheme,
696 .get_scheme_score = damon_va_scheme_score,
698 /* ops for fixed virtual address ranges */
699 struct damon_operations ops_fvaddr = ops;
702 /* Don't set the monitoring target regions for the entire mapping */
703 ops_fvaddr.id = DAMON_OPS_FVADDR;
704 ops_fvaddr.init = NULL;
705 ops_fvaddr.update = NULL;
707 err = damon_register_ops(&ops);
710 return damon_register_ops(&ops_fvaddr);
713 subsys_initcall(damon_va_initcall);
715 #include "vaddr-test.h"