Merge tag 'hwlock-v6.6' of git://git.kernel.org/pub/scm/linux/kernel/git/remoteproc...
[platform/kernel/linux-rpi.git] / mm / compaction.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * linux/mm/compaction.c
4  *
5  * Memory compaction for the reduction of external fragmentation. Note that
6  * this heavily depends upon page migration to do all the real heavy
7  * lifting
8  *
9  * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
10  */
11 #include <linux/cpu.h>
12 #include <linux/swap.h>
13 #include <linux/migrate.h>
14 #include <linux/compaction.h>
15 #include <linux/mm_inline.h>
16 #include <linux/sched/signal.h>
17 #include <linux/backing-dev.h>
18 #include <linux/sysctl.h>
19 #include <linux/sysfs.h>
20 #include <linux/page-isolation.h>
21 #include <linux/kasan.h>
22 #include <linux/kthread.h>
23 #include <linux/freezer.h>
24 #include <linux/page_owner.h>
25 #include <linux/psi.h>
26 #include "internal.h"
27
28 #ifdef CONFIG_COMPACTION
29 /*
30  * Fragmentation score check interval for proactive compaction purposes.
31  */
32 #define HPAGE_FRAG_CHECK_INTERVAL_MSEC  (500)
33
34 static inline void count_compact_event(enum vm_event_item item)
35 {
36         count_vm_event(item);
37 }
38
39 static inline void count_compact_events(enum vm_event_item item, long delta)
40 {
41         count_vm_events(item, delta);
42 }
43 #else
44 #define count_compact_event(item) do { } while (0)
45 #define count_compact_events(item, delta) do { } while (0)
46 #endif
47
48 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
49
50 #define CREATE_TRACE_POINTS
51 #include <trace/events/compaction.h>
52
53 #define block_start_pfn(pfn, order)     round_down(pfn, 1UL << (order))
54 #define block_end_pfn(pfn, order)       ALIGN((pfn) + 1, 1UL << (order))
55
56 /*
57  * Page order with-respect-to which proactive compaction
58  * calculates external fragmentation, which is used as
59  * the "fragmentation score" of a node/zone.
60  */
61 #if defined CONFIG_TRANSPARENT_HUGEPAGE
62 #define COMPACTION_HPAGE_ORDER  HPAGE_PMD_ORDER
63 #elif defined CONFIG_HUGETLBFS
64 #define COMPACTION_HPAGE_ORDER  HUGETLB_PAGE_ORDER
65 #else
66 #define COMPACTION_HPAGE_ORDER  (PMD_SHIFT - PAGE_SHIFT)
67 #endif
68
69 static unsigned long release_freepages(struct list_head *freelist)
70 {
71         struct page *page, *next;
72         unsigned long high_pfn = 0;
73
74         list_for_each_entry_safe(page, next, freelist, lru) {
75                 unsigned long pfn = page_to_pfn(page);
76                 list_del(&page->lru);
77                 __free_page(page);
78                 if (pfn > high_pfn)
79                         high_pfn = pfn;
80         }
81
82         return high_pfn;
83 }
84
85 static void split_map_pages(struct list_head *list)
86 {
87         unsigned int i, order, nr_pages;
88         struct page *page, *next;
89         LIST_HEAD(tmp_list);
90
91         list_for_each_entry_safe(page, next, list, lru) {
92                 list_del(&page->lru);
93
94                 order = page_private(page);
95                 nr_pages = 1 << order;
96
97                 post_alloc_hook(page, order, __GFP_MOVABLE);
98                 if (order)
99                         split_page(page, order);
100
101                 for (i = 0; i < nr_pages; i++) {
102                         list_add(&page->lru, &tmp_list);
103                         page++;
104                 }
105         }
106
107         list_splice(&tmp_list, list);
108 }
109
110 #ifdef CONFIG_COMPACTION
111 bool PageMovable(struct page *page)
112 {
113         const struct movable_operations *mops;
114
115         VM_BUG_ON_PAGE(!PageLocked(page), page);
116         if (!__PageMovable(page))
117                 return false;
118
119         mops = page_movable_ops(page);
120         if (mops)
121                 return true;
122
123         return false;
124 }
125
126 void __SetPageMovable(struct page *page, const struct movable_operations *mops)
127 {
128         VM_BUG_ON_PAGE(!PageLocked(page), page);
129         VM_BUG_ON_PAGE((unsigned long)mops & PAGE_MAPPING_MOVABLE, page);
130         page->mapping = (void *)((unsigned long)mops | PAGE_MAPPING_MOVABLE);
131 }
132 EXPORT_SYMBOL(__SetPageMovable);
133
134 void __ClearPageMovable(struct page *page)
135 {
136         VM_BUG_ON_PAGE(!PageMovable(page), page);
137         /*
138          * This page still has the type of a movable page, but it's
139          * actually not movable any more.
140          */
141         page->mapping = (void *)PAGE_MAPPING_MOVABLE;
142 }
143 EXPORT_SYMBOL(__ClearPageMovable);
144
145 /* Do not skip compaction more than 64 times */
146 #define COMPACT_MAX_DEFER_SHIFT 6
147
148 /*
149  * Compaction is deferred when compaction fails to result in a page
150  * allocation success. 1 << compact_defer_shift, compactions are skipped up
151  * to a limit of 1 << COMPACT_MAX_DEFER_SHIFT
152  */
153 static void defer_compaction(struct zone *zone, int order)
154 {
155         zone->compact_considered = 0;
156         zone->compact_defer_shift++;
157
158         if (order < zone->compact_order_failed)
159                 zone->compact_order_failed = order;
160
161         if (zone->compact_defer_shift > COMPACT_MAX_DEFER_SHIFT)
162                 zone->compact_defer_shift = COMPACT_MAX_DEFER_SHIFT;
163
164         trace_mm_compaction_defer_compaction(zone, order);
165 }
166
167 /* Returns true if compaction should be skipped this time */
168 static bool compaction_deferred(struct zone *zone, int order)
169 {
170         unsigned long defer_limit = 1UL << zone->compact_defer_shift;
171
172         if (order < zone->compact_order_failed)
173                 return false;
174
175         /* Avoid possible overflow */
176         if (++zone->compact_considered >= defer_limit) {
177                 zone->compact_considered = defer_limit;
178                 return false;
179         }
180
181         trace_mm_compaction_deferred(zone, order);
182
183         return true;
184 }
185
186 /*
187  * Update defer tracking counters after successful compaction of given order,
188  * which means an allocation either succeeded (alloc_success == true) or is
189  * expected to succeed.
190  */
191 void compaction_defer_reset(struct zone *zone, int order,
192                 bool alloc_success)
193 {
194         if (alloc_success) {
195                 zone->compact_considered = 0;
196                 zone->compact_defer_shift = 0;
197         }
198         if (order >= zone->compact_order_failed)
199                 zone->compact_order_failed = order + 1;
200
201         trace_mm_compaction_defer_reset(zone, order);
202 }
203
204 /* Returns true if restarting compaction after many failures */
205 static bool compaction_restarting(struct zone *zone, int order)
206 {
207         if (order < zone->compact_order_failed)
208                 return false;
209
210         return zone->compact_defer_shift == COMPACT_MAX_DEFER_SHIFT &&
211                 zone->compact_considered >= 1UL << zone->compact_defer_shift;
212 }
213
214 /* Returns true if the pageblock should be scanned for pages to isolate. */
215 static inline bool isolation_suitable(struct compact_control *cc,
216                                         struct page *page)
217 {
218         if (cc->ignore_skip_hint)
219                 return true;
220
221         return !get_pageblock_skip(page);
222 }
223
224 static void reset_cached_positions(struct zone *zone)
225 {
226         zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn;
227         zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn;
228         zone->compact_cached_free_pfn =
229                                 pageblock_start_pfn(zone_end_pfn(zone) - 1);
230 }
231
232 #ifdef CONFIG_SPARSEMEM
233 /*
234  * If the PFN falls into an offline section, return the start PFN of the
235  * next online section. If the PFN falls into an online section or if
236  * there is no next online section, return 0.
237  */
238 static unsigned long skip_offline_sections(unsigned long start_pfn)
239 {
240         unsigned long start_nr = pfn_to_section_nr(start_pfn);
241
242         if (online_section_nr(start_nr))
243                 return 0;
244
245         while (++start_nr <= __highest_present_section_nr) {
246                 if (online_section_nr(start_nr))
247                         return section_nr_to_pfn(start_nr);
248         }
249
250         return 0;
251 }
252
253 /*
254  * If the PFN falls into an offline section, return the end PFN of the
255  * next online section in reverse. If the PFN falls into an online section
256  * or if there is no next online section in reverse, return 0.
257  */
258 static unsigned long skip_offline_sections_reverse(unsigned long start_pfn)
259 {
260         unsigned long start_nr = pfn_to_section_nr(start_pfn);
261
262         if (!start_nr || online_section_nr(start_nr))
263                 return 0;
264
265         while (start_nr-- > 0) {
266                 if (online_section_nr(start_nr))
267                         return section_nr_to_pfn(start_nr) + PAGES_PER_SECTION;
268         }
269
270         return 0;
271 }
272 #else
273 static unsigned long skip_offline_sections(unsigned long start_pfn)
274 {
275         return 0;
276 }
277
278 static unsigned long skip_offline_sections_reverse(unsigned long start_pfn)
279 {
280         return 0;
281 }
282 #endif
283
284 /*
285  * Compound pages of >= pageblock_order should consistently be skipped until
286  * released. It is always pointless to compact pages of such order (if they are
287  * migratable), and the pageblocks they occupy cannot contain any free pages.
288  */
289 static bool pageblock_skip_persistent(struct page *page)
290 {
291         if (!PageCompound(page))
292                 return false;
293
294         page = compound_head(page);
295
296         if (compound_order(page) >= pageblock_order)
297                 return true;
298
299         return false;
300 }
301
302 static bool
303 __reset_isolation_pfn(struct zone *zone, unsigned long pfn, bool check_source,
304                                                         bool check_target)
305 {
306         struct page *page = pfn_to_online_page(pfn);
307         struct page *block_page;
308         struct page *end_page;
309         unsigned long block_pfn;
310
311         if (!page)
312                 return false;
313         if (zone != page_zone(page))
314                 return false;
315         if (pageblock_skip_persistent(page))
316                 return false;
317
318         /*
319          * If skip is already cleared do no further checking once the
320          * restart points have been set.
321          */
322         if (check_source && check_target && !get_pageblock_skip(page))
323                 return true;
324
325         /*
326          * If clearing skip for the target scanner, do not select a
327          * non-movable pageblock as the starting point.
328          */
329         if (!check_source && check_target &&
330             get_pageblock_migratetype(page) != MIGRATE_MOVABLE)
331                 return false;
332
333         /* Ensure the start of the pageblock or zone is online and valid */
334         block_pfn = pageblock_start_pfn(pfn);
335         block_pfn = max(block_pfn, zone->zone_start_pfn);
336         block_page = pfn_to_online_page(block_pfn);
337         if (block_page) {
338                 page = block_page;
339                 pfn = block_pfn;
340         }
341
342         /* Ensure the end of the pageblock or zone is online and valid */
343         block_pfn = pageblock_end_pfn(pfn) - 1;
344         block_pfn = min(block_pfn, zone_end_pfn(zone) - 1);
345         end_page = pfn_to_online_page(block_pfn);
346         if (!end_page)
347                 return false;
348
349         /*
350          * Only clear the hint if a sample indicates there is either a
351          * free page or an LRU page in the block. One or other condition
352          * is necessary for the block to be a migration source/target.
353          */
354         do {
355                 if (check_source && PageLRU(page)) {
356                         clear_pageblock_skip(page);
357                         return true;
358                 }
359
360                 if (check_target && PageBuddy(page)) {
361                         clear_pageblock_skip(page);
362                         return true;
363                 }
364
365                 page += (1 << PAGE_ALLOC_COSTLY_ORDER);
366         } while (page <= end_page);
367
368         return false;
369 }
370
371 /*
372  * This function is called to clear all cached information on pageblocks that
373  * should be skipped for page isolation when the migrate and free page scanner
374  * meet.
375  */
376 static void __reset_isolation_suitable(struct zone *zone)
377 {
378         unsigned long migrate_pfn = zone->zone_start_pfn;
379         unsigned long free_pfn = zone_end_pfn(zone) - 1;
380         unsigned long reset_migrate = free_pfn;
381         unsigned long reset_free = migrate_pfn;
382         bool source_set = false;
383         bool free_set = false;
384
385         if (!zone->compact_blockskip_flush)
386                 return;
387
388         zone->compact_blockskip_flush = false;
389
390         /*
391          * Walk the zone and update pageblock skip information. Source looks
392          * for PageLRU while target looks for PageBuddy. When the scanner
393          * is found, both PageBuddy and PageLRU are checked as the pageblock
394          * is suitable as both source and target.
395          */
396         for (; migrate_pfn < free_pfn; migrate_pfn += pageblock_nr_pages,
397                                         free_pfn -= pageblock_nr_pages) {
398                 cond_resched();
399
400                 /* Update the migrate PFN */
401                 if (__reset_isolation_pfn(zone, migrate_pfn, true, source_set) &&
402                     migrate_pfn < reset_migrate) {
403                         source_set = true;
404                         reset_migrate = migrate_pfn;
405                         zone->compact_init_migrate_pfn = reset_migrate;
406                         zone->compact_cached_migrate_pfn[0] = reset_migrate;
407                         zone->compact_cached_migrate_pfn[1] = reset_migrate;
408                 }
409
410                 /* Update the free PFN */
411                 if (__reset_isolation_pfn(zone, free_pfn, free_set, true) &&
412                     free_pfn > reset_free) {
413                         free_set = true;
414                         reset_free = free_pfn;
415                         zone->compact_init_free_pfn = reset_free;
416                         zone->compact_cached_free_pfn = reset_free;
417                 }
418         }
419
420         /* Leave no distance if no suitable block was reset */
421         if (reset_migrate >= reset_free) {
422                 zone->compact_cached_migrate_pfn[0] = migrate_pfn;
423                 zone->compact_cached_migrate_pfn[1] = migrate_pfn;
424                 zone->compact_cached_free_pfn = free_pfn;
425         }
426 }
427
428 void reset_isolation_suitable(pg_data_t *pgdat)
429 {
430         int zoneid;
431
432         for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
433                 struct zone *zone = &pgdat->node_zones[zoneid];
434                 if (!populated_zone(zone))
435                         continue;
436
437                 /* Only flush if a full compaction finished recently */
438                 if (zone->compact_blockskip_flush)
439                         __reset_isolation_suitable(zone);
440         }
441 }
442
443 /*
444  * Sets the pageblock skip bit if it was clear. Note that this is a hint as
445  * locks are not required for read/writers. Returns true if it was already set.
446  */
447 static bool test_and_set_skip(struct compact_control *cc, struct page *page)
448 {
449         bool skip;
450
451         /* Do not update if skip hint is being ignored */
452         if (cc->ignore_skip_hint)
453                 return false;
454
455         skip = get_pageblock_skip(page);
456         if (!skip && !cc->no_set_skip_hint)
457                 set_pageblock_skip(page);
458
459         return skip;
460 }
461
462 static void update_cached_migrate(struct compact_control *cc, unsigned long pfn)
463 {
464         struct zone *zone = cc->zone;
465
466         /* Set for isolation rather than compaction */
467         if (cc->no_set_skip_hint)
468                 return;
469
470         pfn = pageblock_end_pfn(pfn);
471
472         /* Update where async and sync compaction should restart */
473         if (pfn > zone->compact_cached_migrate_pfn[0])
474                 zone->compact_cached_migrate_pfn[0] = pfn;
475         if (cc->mode != MIGRATE_ASYNC &&
476             pfn > zone->compact_cached_migrate_pfn[1])
477                 zone->compact_cached_migrate_pfn[1] = pfn;
478 }
479
480 /*
481  * If no pages were isolated then mark this pageblock to be skipped in the
482  * future. The information is later cleared by __reset_isolation_suitable().
483  */
484 static void update_pageblock_skip(struct compact_control *cc,
485                         struct page *page, unsigned long pfn)
486 {
487         struct zone *zone = cc->zone;
488
489         if (cc->no_set_skip_hint)
490                 return;
491
492         set_pageblock_skip(page);
493
494         if (pfn < zone->compact_cached_free_pfn)
495                 zone->compact_cached_free_pfn = pfn;
496 }
497 #else
498 static inline bool isolation_suitable(struct compact_control *cc,
499                                         struct page *page)
500 {
501         return true;
502 }
503
504 static inline bool pageblock_skip_persistent(struct page *page)
505 {
506         return false;
507 }
508
509 static inline void update_pageblock_skip(struct compact_control *cc,
510                         struct page *page, unsigned long pfn)
511 {
512 }
513
514 static void update_cached_migrate(struct compact_control *cc, unsigned long pfn)
515 {
516 }
517
518 static bool test_and_set_skip(struct compact_control *cc, struct page *page)
519 {
520         return false;
521 }
522 #endif /* CONFIG_COMPACTION */
523
524 /*
525  * Compaction requires the taking of some coarse locks that are potentially
526  * very heavily contended. For async compaction, trylock and record if the
527  * lock is contended. The lock will still be acquired but compaction will
528  * abort when the current block is finished regardless of success rate.
529  * Sync compaction acquires the lock.
530  *
531  * Always returns true which makes it easier to track lock state in callers.
532  */
533 static bool compact_lock_irqsave(spinlock_t *lock, unsigned long *flags,
534                                                 struct compact_control *cc)
535         __acquires(lock)
536 {
537         /* Track if the lock is contended in async mode */
538         if (cc->mode == MIGRATE_ASYNC && !cc->contended) {
539                 if (spin_trylock_irqsave(lock, *flags))
540                         return true;
541
542                 cc->contended = true;
543         }
544
545         spin_lock_irqsave(lock, *flags);
546         return true;
547 }
548
549 /*
550  * Compaction requires the taking of some coarse locks that are potentially
551  * very heavily contended. The lock should be periodically unlocked to avoid
552  * having disabled IRQs for a long time, even when there is nobody waiting on
553  * the lock. It might also be that allowing the IRQs will result in
554  * need_resched() becoming true. If scheduling is needed, compaction schedules.
555  * Either compaction type will also abort if a fatal signal is pending.
556  * In either case if the lock was locked, it is dropped and not regained.
557  *
558  * Returns true if compaction should abort due to fatal signal pending.
559  * Returns false when compaction can continue.
560  */
561 static bool compact_unlock_should_abort(spinlock_t *lock,
562                 unsigned long flags, bool *locked, struct compact_control *cc)
563 {
564         if (*locked) {
565                 spin_unlock_irqrestore(lock, flags);
566                 *locked = false;
567         }
568
569         if (fatal_signal_pending(current)) {
570                 cc->contended = true;
571                 return true;
572         }
573
574         cond_resched();
575
576         return false;
577 }
578
579 /*
580  * Isolate free pages onto a private freelist. If @strict is true, will abort
581  * returning 0 on any invalid PFNs or non-free pages inside of the pageblock
582  * (even though it may still end up isolating some pages).
583  */
584 static unsigned long isolate_freepages_block(struct compact_control *cc,
585                                 unsigned long *start_pfn,
586                                 unsigned long end_pfn,
587                                 struct list_head *freelist,
588                                 unsigned int stride,
589                                 bool strict)
590 {
591         int nr_scanned = 0, total_isolated = 0;
592         struct page *page;
593         unsigned long flags = 0;
594         bool locked = false;
595         unsigned long blockpfn = *start_pfn;
596         unsigned int order;
597
598         /* Strict mode is for isolation, speed is secondary */
599         if (strict)
600                 stride = 1;
601
602         page = pfn_to_page(blockpfn);
603
604         /* Isolate free pages. */
605         for (; blockpfn < end_pfn; blockpfn += stride, page += stride) {
606                 int isolated;
607
608                 /*
609                  * Periodically drop the lock (if held) regardless of its
610                  * contention, to give chance to IRQs. Abort if fatal signal
611                  * pending.
612                  */
613                 if (!(blockpfn % COMPACT_CLUSTER_MAX)
614                     && compact_unlock_should_abort(&cc->zone->lock, flags,
615                                                                 &locked, cc))
616                         break;
617
618                 nr_scanned++;
619
620                 /*
621                  * For compound pages such as THP and hugetlbfs, we can save
622                  * potentially a lot of iterations if we skip them at once.
623                  * The check is racy, but we can consider only valid values
624                  * and the only danger is skipping too much.
625                  */
626                 if (PageCompound(page)) {
627                         const unsigned int order = compound_order(page);
628
629                         if (likely(order <= MAX_ORDER)) {
630                                 blockpfn += (1UL << order) - 1;
631                                 page += (1UL << order) - 1;
632                                 nr_scanned += (1UL << order) - 1;
633                         }
634                         goto isolate_fail;
635                 }
636
637                 if (!PageBuddy(page))
638                         goto isolate_fail;
639
640                 /* If we already hold the lock, we can skip some rechecking. */
641                 if (!locked) {
642                         locked = compact_lock_irqsave(&cc->zone->lock,
643                                                                 &flags, cc);
644
645                         /* Recheck this is a buddy page under lock */
646                         if (!PageBuddy(page))
647                                 goto isolate_fail;
648                 }
649
650                 /* Found a free page, will break it into order-0 pages */
651                 order = buddy_order(page);
652                 isolated = __isolate_free_page(page, order);
653                 if (!isolated)
654                         break;
655                 set_page_private(page, order);
656
657                 nr_scanned += isolated - 1;
658                 total_isolated += isolated;
659                 cc->nr_freepages += isolated;
660                 list_add_tail(&page->lru, freelist);
661
662                 if (!strict && cc->nr_migratepages <= cc->nr_freepages) {
663                         blockpfn += isolated;
664                         break;
665                 }
666                 /* Advance to the end of split page */
667                 blockpfn += isolated - 1;
668                 page += isolated - 1;
669                 continue;
670
671 isolate_fail:
672                 if (strict)
673                         break;
674
675         }
676
677         if (locked)
678                 spin_unlock_irqrestore(&cc->zone->lock, flags);
679
680         /*
681          * There is a tiny chance that we have read bogus compound_order(),
682          * so be careful to not go outside of the pageblock.
683          */
684         if (unlikely(blockpfn > end_pfn))
685                 blockpfn = end_pfn;
686
687         trace_mm_compaction_isolate_freepages(*start_pfn, blockpfn,
688                                         nr_scanned, total_isolated);
689
690         /* Record how far we have got within the block */
691         *start_pfn = blockpfn;
692
693         /*
694          * If strict isolation is requested by CMA then check that all the
695          * pages requested were isolated. If there were any failures, 0 is
696          * returned and CMA will fail.
697          */
698         if (strict && blockpfn < end_pfn)
699                 total_isolated = 0;
700
701         cc->total_free_scanned += nr_scanned;
702         if (total_isolated)
703                 count_compact_events(COMPACTISOLATED, total_isolated);
704         return total_isolated;
705 }
706
707 /**
708  * isolate_freepages_range() - isolate free pages.
709  * @cc:        Compaction control structure.
710  * @start_pfn: The first PFN to start isolating.
711  * @end_pfn:   The one-past-last PFN.
712  *
713  * Non-free pages, invalid PFNs, or zone boundaries within the
714  * [start_pfn, end_pfn) range are considered errors, cause function to
715  * undo its actions and return zero.
716  *
717  * Otherwise, function returns one-past-the-last PFN of isolated page
718  * (which may be greater then end_pfn if end fell in a middle of
719  * a free page).
720  */
721 unsigned long
722 isolate_freepages_range(struct compact_control *cc,
723                         unsigned long start_pfn, unsigned long end_pfn)
724 {
725         unsigned long isolated, pfn, block_start_pfn, block_end_pfn;
726         LIST_HEAD(freelist);
727
728         pfn = start_pfn;
729         block_start_pfn = pageblock_start_pfn(pfn);
730         if (block_start_pfn < cc->zone->zone_start_pfn)
731                 block_start_pfn = cc->zone->zone_start_pfn;
732         block_end_pfn = pageblock_end_pfn(pfn);
733
734         for (; pfn < end_pfn; pfn += isolated,
735                                 block_start_pfn = block_end_pfn,
736                                 block_end_pfn += pageblock_nr_pages) {
737                 /* Protect pfn from changing by isolate_freepages_block */
738                 unsigned long isolate_start_pfn = pfn;
739
740                 /*
741                  * pfn could pass the block_end_pfn if isolated freepage
742                  * is more than pageblock order. In this case, we adjust
743                  * scanning range to right one.
744                  */
745                 if (pfn >= block_end_pfn) {
746                         block_start_pfn = pageblock_start_pfn(pfn);
747                         block_end_pfn = pageblock_end_pfn(pfn);
748                 }
749
750                 block_end_pfn = min(block_end_pfn, end_pfn);
751
752                 if (!pageblock_pfn_to_page(block_start_pfn,
753                                         block_end_pfn, cc->zone))
754                         break;
755
756                 isolated = isolate_freepages_block(cc, &isolate_start_pfn,
757                                         block_end_pfn, &freelist, 0, true);
758
759                 /*
760                  * In strict mode, isolate_freepages_block() returns 0 if
761                  * there are any holes in the block (ie. invalid PFNs or
762                  * non-free pages).
763                  */
764                 if (!isolated)
765                         break;
766
767                 /*
768                  * If we managed to isolate pages, it is always (1 << n) *
769                  * pageblock_nr_pages for some non-negative n.  (Max order
770                  * page may span two pageblocks).
771                  */
772         }
773
774         /* __isolate_free_page() does not map the pages */
775         split_map_pages(&freelist);
776
777         if (pfn < end_pfn) {
778                 /* Loop terminated early, cleanup. */
779                 release_freepages(&freelist);
780                 return 0;
781         }
782
783         /* We don't use freelists for anything. */
784         return pfn;
785 }
786
787 /* Similar to reclaim, but different enough that they don't share logic */
788 static bool too_many_isolated(struct compact_control *cc)
789 {
790         pg_data_t *pgdat = cc->zone->zone_pgdat;
791         bool too_many;
792
793         unsigned long active, inactive, isolated;
794
795         inactive = node_page_state(pgdat, NR_INACTIVE_FILE) +
796                         node_page_state(pgdat, NR_INACTIVE_ANON);
797         active = node_page_state(pgdat, NR_ACTIVE_FILE) +
798                         node_page_state(pgdat, NR_ACTIVE_ANON);
799         isolated = node_page_state(pgdat, NR_ISOLATED_FILE) +
800                         node_page_state(pgdat, NR_ISOLATED_ANON);
801
802         /*
803          * Allow GFP_NOFS to isolate past the limit set for regular
804          * compaction runs. This prevents an ABBA deadlock when other
805          * compactors have already isolated to the limit, but are
806          * blocked on filesystem locks held by the GFP_NOFS thread.
807          */
808         if (cc->gfp_mask & __GFP_FS) {
809                 inactive >>= 3;
810                 active >>= 3;
811         }
812
813         too_many = isolated > (inactive + active) / 2;
814         if (!too_many)
815                 wake_throttle_isolated(pgdat);
816
817         return too_many;
818 }
819
820 /**
821  * isolate_migratepages_block() - isolate all migrate-able pages within
822  *                                a single pageblock
823  * @cc:         Compaction control structure.
824  * @low_pfn:    The first PFN to isolate
825  * @end_pfn:    The one-past-the-last PFN to isolate, within same pageblock
826  * @mode:       Isolation mode to be used.
827  *
828  * Isolate all pages that can be migrated from the range specified by
829  * [low_pfn, end_pfn). The range is expected to be within same pageblock.
830  * Returns errno, like -EAGAIN or -EINTR in case e.g signal pending or congestion,
831  * -ENOMEM in case we could not allocate a page, or 0.
832  * cc->migrate_pfn will contain the next pfn to scan.
833  *
834  * The pages are isolated on cc->migratepages list (not required to be empty),
835  * and cc->nr_migratepages is updated accordingly.
836  */
837 static int
838 isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn,
839                         unsigned long end_pfn, isolate_mode_t mode)
840 {
841         pg_data_t *pgdat = cc->zone->zone_pgdat;
842         unsigned long nr_scanned = 0, nr_isolated = 0;
843         struct lruvec *lruvec;
844         unsigned long flags = 0;
845         struct lruvec *locked = NULL;
846         struct folio *folio = NULL;
847         struct page *page = NULL, *valid_page = NULL;
848         struct address_space *mapping;
849         unsigned long start_pfn = low_pfn;
850         bool skip_on_failure = false;
851         unsigned long next_skip_pfn = 0;
852         bool skip_updated = false;
853         int ret = 0;
854
855         cc->migrate_pfn = low_pfn;
856
857         /*
858          * Ensure that there are not too many pages isolated from the LRU
859          * list by either parallel reclaimers or compaction. If there are,
860          * delay for some time until fewer pages are isolated
861          */
862         while (unlikely(too_many_isolated(cc))) {
863                 /* stop isolation if there are still pages not migrated */
864                 if (cc->nr_migratepages)
865                         return -EAGAIN;
866
867                 /* async migration should just abort */
868                 if (cc->mode == MIGRATE_ASYNC)
869                         return -EAGAIN;
870
871                 reclaim_throttle(pgdat, VMSCAN_THROTTLE_ISOLATED);
872
873                 if (fatal_signal_pending(current))
874                         return -EINTR;
875         }
876
877         cond_resched();
878
879         if (cc->direct_compaction && (cc->mode == MIGRATE_ASYNC)) {
880                 skip_on_failure = true;
881                 next_skip_pfn = block_end_pfn(low_pfn, cc->order);
882         }
883
884         /* Time to isolate some pages for migration */
885         for (; low_pfn < end_pfn; low_pfn++) {
886
887                 if (skip_on_failure && low_pfn >= next_skip_pfn) {
888                         /*
889                          * We have isolated all migration candidates in the
890                          * previous order-aligned block, and did not skip it due
891                          * to failure. We should migrate the pages now and
892                          * hopefully succeed compaction.
893                          */
894                         if (nr_isolated)
895                                 break;
896
897                         /*
898                          * We failed to isolate in the previous order-aligned
899                          * block. Set the new boundary to the end of the
900                          * current block. Note we can't simply increase
901                          * next_skip_pfn by 1 << order, as low_pfn might have
902                          * been incremented by a higher number due to skipping
903                          * a compound or a high-order buddy page in the
904                          * previous loop iteration.
905                          */
906                         next_skip_pfn = block_end_pfn(low_pfn, cc->order);
907                 }
908
909                 /*
910                  * Periodically drop the lock (if held) regardless of its
911                  * contention, to give chance to IRQs. Abort completely if
912                  * a fatal signal is pending.
913                  */
914                 if (!(low_pfn % COMPACT_CLUSTER_MAX)) {
915                         if (locked) {
916                                 unlock_page_lruvec_irqrestore(locked, flags);
917                                 locked = NULL;
918                         }
919
920                         if (fatal_signal_pending(current)) {
921                                 cc->contended = true;
922                                 ret = -EINTR;
923
924                                 goto fatal_pending;
925                         }
926
927                         cond_resched();
928                 }
929
930                 nr_scanned++;
931
932                 page = pfn_to_page(low_pfn);
933
934                 /*
935                  * Check if the pageblock has already been marked skipped.
936                  * Only the first PFN is checked as the caller isolates
937                  * COMPACT_CLUSTER_MAX at a time so the second call must
938                  * not falsely conclude that the block should be skipped.
939                  */
940                 if (!valid_page && (pageblock_aligned(low_pfn) ||
941                                     low_pfn == cc->zone->zone_start_pfn)) {
942                         if (!isolation_suitable(cc, page)) {
943                                 low_pfn = end_pfn;
944                                 folio = NULL;
945                                 goto isolate_abort;
946                         }
947                         valid_page = page;
948                 }
949
950                 if (PageHuge(page) && cc->alloc_contig) {
951                         if (locked) {
952                                 unlock_page_lruvec_irqrestore(locked, flags);
953                                 locked = NULL;
954                         }
955
956                         ret = isolate_or_dissolve_huge_page(page, &cc->migratepages);
957
958                         /*
959                          * Fail isolation in case isolate_or_dissolve_huge_page()
960                          * reports an error. In case of -ENOMEM, abort right away.
961                          */
962                         if (ret < 0) {
963                                  /* Do not report -EBUSY down the chain */
964                                 if (ret == -EBUSY)
965                                         ret = 0;
966                                 low_pfn += compound_nr(page) - 1;
967                                 nr_scanned += compound_nr(page) - 1;
968                                 goto isolate_fail;
969                         }
970
971                         if (PageHuge(page)) {
972                                 /*
973                                  * Hugepage was successfully isolated and placed
974                                  * on the cc->migratepages list.
975                                  */
976                                 folio = page_folio(page);
977                                 low_pfn += folio_nr_pages(folio) - 1;
978                                 goto isolate_success_no_list;
979                         }
980
981                         /*
982                          * Ok, the hugepage was dissolved. Now these pages are
983                          * Buddy and cannot be re-allocated because they are
984                          * isolated. Fall-through as the check below handles
985                          * Buddy pages.
986                          */
987                 }
988
989                 /*
990                  * Skip if free. We read page order here without zone lock
991                  * which is generally unsafe, but the race window is small and
992                  * the worst thing that can happen is that we skip some
993                  * potential isolation targets.
994                  */
995                 if (PageBuddy(page)) {
996                         unsigned long freepage_order = buddy_order_unsafe(page);
997
998                         /*
999                          * Without lock, we cannot be sure that what we got is
1000                          * a valid page order. Consider only values in the
1001                          * valid order range to prevent low_pfn overflow.
1002                          */
1003                         if (freepage_order > 0 && freepage_order <= MAX_ORDER) {
1004                                 low_pfn += (1UL << freepage_order) - 1;
1005                                 nr_scanned += (1UL << freepage_order) - 1;
1006                         }
1007                         continue;
1008                 }
1009
1010                 /*
1011                  * Regardless of being on LRU, compound pages such as THP and
1012                  * hugetlbfs are not to be compacted unless we are attempting
1013                  * an allocation much larger than the huge page size (eg CMA).
1014                  * We can potentially save a lot of iterations if we skip them
1015                  * at once. The check is racy, but we can consider only valid
1016                  * values and the only danger is skipping too much.
1017                  */
1018                 if (PageCompound(page) && !cc->alloc_contig) {
1019                         const unsigned int order = compound_order(page);
1020
1021                         if (likely(order <= MAX_ORDER)) {
1022                                 low_pfn += (1UL << order) - 1;
1023                                 nr_scanned += (1UL << order) - 1;
1024                         }
1025                         goto isolate_fail;
1026                 }
1027
1028                 /*
1029                  * Check may be lockless but that's ok as we recheck later.
1030                  * It's possible to migrate LRU and non-lru movable pages.
1031                  * Skip any other type of page
1032                  */
1033                 if (!PageLRU(page)) {
1034                         /*
1035                          * __PageMovable can return false positive so we need
1036                          * to verify it under page_lock.
1037                          */
1038                         if (unlikely(__PageMovable(page)) &&
1039                                         !PageIsolated(page)) {
1040                                 if (locked) {
1041                                         unlock_page_lruvec_irqrestore(locked, flags);
1042                                         locked = NULL;
1043                                 }
1044
1045                                 if (isolate_movable_page(page, mode)) {
1046                                         folio = page_folio(page);
1047                                         goto isolate_success;
1048                                 }
1049                         }
1050
1051                         goto isolate_fail;
1052                 }
1053
1054                 /*
1055                  * Be careful not to clear PageLRU until after we're
1056                  * sure the page is not being freed elsewhere -- the
1057                  * page release code relies on it.
1058                  */
1059                 folio = folio_get_nontail_page(page);
1060                 if (unlikely(!folio))
1061                         goto isolate_fail;
1062
1063                 /*
1064                  * Migration will fail if an anonymous page is pinned in memory,
1065                  * so avoid taking lru_lock and isolating it unnecessarily in an
1066                  * admittedly racy check.
1067                  */
1068                 mapping = folio_mapping(folio);
1069                 if (!mapping && (folio_ref_count(folio) - 1) > folio_mapcount(folio))
1070                         goto isolate_fail_put;
1071
1072                 /*
1073                  * Only allow to migrate anonymous pages in GFP_NOFS context
1074                  * because those do not depend on fs locks.
1075                  */
1076                 if (!(cc->gfp_mask & __GFP_FS) && mapping)
1077                         goto isolate_fail_put;
1078
1079                 /* Only take pages on LRU: a check now makes later tests safe */
1080                 if (!folio_test_lru(folio))
1081                         goto isolate_fail_put;
1082
1083                 /* Compaction might skip unevictable pages but CMA takes them */
1084                 if (!(mode & ISOLATE_UNEVICTABLE) && folio_test_unevictable(folio))
1085                         goto isolate_fail_put;
1086
1087                 /*
1088                  * To minimise LRU disruption, the caller can indicate with
1089                  * ISOLATE_ASYNC_MIGRATE that it only wants to isolate pages
1090                  * it will be able to migrate without blocking - clean pages
1091                  * for the most part.  PageWriteback would require blocking.
1092                  */
1093                 if ((mode & ISOLATE_ASYNC_MIGRATE) && folio_test_writeback(folio))
1094                         goto isolate_fail_put;
1095
1096                 if ((mode & ISOLATE_ASYNC_MIGRATE) && folio_test_dirty(folio)) {
1097                         bool migrate_dirty;
1098
1099                         /*
1100                          * Only folios without mappings or that have
1101                          * a ->migrate_folio callback are possible to
1102                          * migrate without blocking.  However, we may
1103                          * be racing with truncation, which can free
1104                          * the mapping.  Truncation holds the folio lock
1105                          * until after the folio is removed from the page
1106                          * cache so holding it ourselves is sufficient.
1107                          */
1108                         if (!folio_trylock(folio))
1109                                 goto isolate_fail_put;
1110
1111                         mapping = folio_mapping(folio);
1112                         migrate_dirty = !mapping ||
1113                                         mapping->a_ops->migrate_folio;
1114                         folio_unlock(folio);
1115                         if (!migrate_dirty)
1116                                 goto isolate_fail_put;
1117                 }
1118
1119                 /* Try isolate the folio */
1120                 if (!folio_test_clear_lru(folio))
1121                         goto isolate_fail_put;
1122
1123                 lruvec = folio_lruvec(folio);
1124
1125                 /* If we already hold the lock, we can skip some rechecking */
1126                 if (lruvec != locked) {
1127                         if (locked)
1128                                 unlock_page_lruvec_irqrestore(locked, flags);
1129
1130                         compact_lock_irqsave(&lruvec->lru_lock, &flags, cc);
1131                         locked = lruvec;
1132
1133                         lruvec_memcg_debug(lruvec, folio);
1134
1135                         /*
1136                          * Try get exclusive access under lock. If marked for
1137                          * skip, the scan is aborted unless the current context
1138                          * is a rescan to reach the end of the pageblock.
1139                          */
1140                         if (!skip_updated && valid_page) {
1141                                 skip_updated = true;
1142                                 if (test_and_set_skip(cc, valid_page) &&
1143                                     !cc->finish_pageblock) {
1144                                         low_pfn = end_pfn;
1145                                         goto isolate_abort;
1146                                 }
1147                         }
1148
1149                         /*
1150                          * folio become large since the non-locked check,
1151                          * and it's on LRU.
1152                          */
1153                         if (unlikely(folio_test_large(folio) && !cc->alloc_contig)) {
1154                                 low_pfn += folio_nr_pages(folio) - 1;
1155                                 nr_scanned += folio_nr_pages(folio) - 1;
1156                                 folio_set_lru(folio);
1157                                 goto isolate_fail_put;
1158                         }
1159                 }
1160
1161                 /* The folio is taken off the LRU */
1162                 if (folio_test_large(folio))
1163                         low_pfn += folio_nr_pages(folio) - 1;
1164
1165                 /* Successfully isolated */
1166                 lruvec_del_folio(lruvec, folio);
1167                 node_stat_mod_folio(folio,
1168                                 NR_ISOLATED_ANON + folio_is_file_lru(folio),
1169                                 folio_nr_pages(folio));
1170
1171 isolate_success:
1172                 list_add(&folio->lru, &cc->migratepages);
1173 isolate_success_no_list:
1174                 cc->nr_migratepages += folio_nr_pages(folio);
1175                 nr_isolated += folio_nr_pages(folio);
1176                 nr_scanned += folio_nr_pages(folio) - 1;
1177
1178                 /*
1179                  * Avoid isolating too much unless this block is being
1180                  * fully scanned (e.g. dirty/writeback pages, parallel allocation)
1181                  * or a lock is contended. For contention, isolate quickly to
1182                  * potentially remove one source of contention.
1183                  */
1184                 if (cc->nr_migratepages >= COMPACT_CLUSTER_MAX &&
1185                     !cc->finish_pageblock && !cc->contended) {
1186                         ++low_pfn;
1187                         break;
1188                 }
1189
1190                 continue;
1191
1192 isolate_fail_put:
1193                 /* Avoid potential deadlock in freeing page under lru_lock */
1194                 if (locked) {
1195                         unlock_page_lruvec_irqrestore(locked, flags);
1196                         locked = NULL;
1197                 }
1198                 folio_put(folio);
1199
1200 isolate_fail:
1201                 if (!skip_on_failure && ret != -ENOMEM)
1202                         continue;
1203
1204                 /*
1205                  * We have isolated some pages, but then failed. Release them
1206                  * instead of migrating, as we cannot form the cc->order buddy
1207                  * page anyway.
1208                  */
1209                 if (nr_isolated) {
1210                         if (locked) {
1211                                 unlock_page_lruvec_irqrestore(locked, flags);
1212                                 locked = NULL;
1213                         }
1214                         putback_movable_pages(&cc->migratepages);
1215                         cc->nr_migratepages = 0;
1216                         nr_isolated = 0;
1217                 }
1218
1219                 if (low_pfn < next_skip_pfn) {
1220                         low_pfn = next_skip_pfn - 1;
1221                         /*
1222                          * The check near the loop beginning would have updated
1223                          * next_skip_pfn too, but this is a bit simpler.
1224                          */
1225                         next_skip_pfn += 1UL << cc->order;
1226                 }
1227
1228                 if (ret == -ENOMEM)
1229                         break;
1230         }
1231
1232         /*
1233          * The PageBuddy() check could have potentially brought us outside
1234          * the range to be scanned.
1235          */
1236         if (unlikely(low_pfn > end_pfn))
1237                 low_pfn = end_pfn;
1238
1239         folio = NULL;
1240
1241 isolate_abort:
1242         if (locked)
1243                 unlock_page_lruvec_irqrestore(locked, flags);
1244         if (folio) {
1245                 folio_set_lru(folio);
1246                 folio_put(folio);
1247         }
1248
1249         /*
1250          * Update the cached scanner pfn once the pageblock has been scanned.
1251          * Pages will either be migrated in which case there is no point
1252          * scanning in the near future or migration failed in which case the
1253          * failure reason may persist. The block is marked for skipping if
1254          * there were no pages isolated in the block or if the block is
1255          * rescanned twice in a row.
1256          */
1257         if (low_pfn == end_pfn && (!nr_isolated || cc->finish_pageblock)) {
1258                 if (!cc->no_set_skip_hint && valid_page && !skip_updated)
1259                         set_pageblock_skip(valid_page);
1260                 update_cached_migrate(cc, low_pfn);
1261         }
1262
1263         trace_mm_compaction_isolate_migratepages(start_pfn, low_pfn,
1264                                                 nr_scanned, nr_isolated);
1265
1266 fatal_pending:
1267         cc->total_migrate_scanned += nr_scanned;
1268         if (nr_isolated)
1269                 count_compact_events(COMPACTISOLATED, nr_isolated);
1270
1271         cc->migrate_pfn = low_pfn;
1272
1273         return ret;
1274 }
1275
1276 /**
1277  * isolate_migratepages_range() - isolate migrate-able pages in a PFN range
1278  * @cc:        Compaction control structure.
1279  * @start_pfn: The first PFN to start isolating.
1280  * @end_pfn:   The one-past-last PFN.
1281  *
1282  * Returns -EAGAIN when contented, -EINTR in case of a signal pending, -ENOMEM
1283  * in case we could not allocate a page, or 0.
1284  */
1285 int
1286 isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn,
1287                                                         unsigned long end_pfn)
1288 {
1289         unsigned long pfn, block_start_pfn, block_end_pfn;
1290         int ret = 0;
1291
1292         /* Scan block by block. First and last block may be incomplete */
1293         pfn = start_pfn;
1294         block_start_pfn = pageblock_start_pfn(pfn);
1295         if (block_start_pfn < cc->zone->zone_start_pfn)
1296                 block_start_pfn = cc->zone->zone_start_pfn;
1297         block_end_pfn = pageblock_end_pfn(pfn);
1298
1299         for (; pfn < end_pfn; pfn = block_end_pfn,
1300                                 block_start_pfn = block_end_pfn,
1301                                 block_end_pfn += pageblock_nr_pages) {
1302
1303                 block_end_pfn = min(block_end_pfn, end_pfn);
1304
1305                 if (!pageblock_pfn_to_page(block_start_pfn,
1306                                         block_end_pfn, cc->zone))
1307                         continue;
1308
1309                 ret = isolate_migratepages_block(cc, pfn, block_end_pfn,
1310                                                  ISOLATE_UNEVICTABLE);
1311
1312                 if (ret)
1313                         break;
1314
1315                 if (cc->nr_migratepages >= COMPACT_CLUSTER_MAX)
1316                         break;
1317         }
1318
1319         return ret;
1320 }
1321
1322 #endif /* CONFIG_COMPACTION || CONFIG_CMA */
1323 #ifdef CONFIG_COMPACTION
1324
1325 static bool suitable_migration_source(struct compact_control *cc,
1326                                                         struct page *page)
1327 {
1328         int block_mt;
1329
1330         if (pageblock_skip_persistent(page))
1331                 return false;
1332
1333         if ((cc->mode != MIGRATE_ASYNC) || !cc->direct_compaction)
1334                 return true;
1335
1336         block_mt = get_pageblock_migratetype(page);
1337
1338         if (cc->migratetype == MIGRATE_MOVABLE)
1339                 return is_migrate_movable(block_mt);
1340         else
1341                 return block_mt == cc->migratetype;
1342 }
1343
1344 /* Returns true if the page is within a block suitable for migration to */
1345 static bool suitable_migration_target(struct compact_control *cc,
1346                                                         struct page *page)
1347 {
1348         /* If the page is a large free page, then disallow migration */
1349         if (PageBuddy(page)) {
1350                 /*
1351                  * We are checking page_order without zone->lock taken. But
1352                  * the only small danger is that we skip a potentially suitable
1353                  * pageblock, so it's not worth to check order for valid range.
1354                  */
1355                 if (buddy_order_unsafe(page) >= pageblock_order)
1356                         return false;
1357         }
1358
1359         if (cc->ignore_block_suitable)
1360                 return true;
1361
1362         /* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
1363         if (is_migrate_movable(get_pageblock_migratetype(page)))
1364                 return true;
1365
1366         /* Otherwise skip the block */
1367         return false;
1368 }
1369
1370 static inline unsigned int
1371 freelist_scan_limit(struct compact_control *cc)
1372 {
1373         unsigned short shift = BITS_PER_LONG - 1;
1374
1375         return (COMPACT_CLUSTER_MAX >> min(shift, cc->fast_search_fail)) + 1;
1376 }
1377
1378 /*
1379  * Test whether the free scanner has reached the same or lower pageblock than
1380  * the migration scanner, and compaction should thus terminate.
1381  */
1382 static inline bool compact_scanners_met(struct compact_control *cc)
1383 {
1384         return (cc->free_pfn >> pageblock_order)
1385                 <= (cc->migrate_pfn >> pageblock_order);
1386 }
1387
1388 /*
1389  * Used when scanning for a suitable migration target which scans freelists
1390  * in reverse. Reorders the list such as the unscanned pages are scanned
1391  * first on the next iteration of the free scanner
1392  */
1393 static void
1394 move_freelist_head(struct list_head *freelist, struct page *freepage)
1395 {
1396         LIST_HEAD(sublist);
1397
1398         if (!list_is_last(freelist, &freepage->lru)) {
1399                 list_cut_before(&sublist, freelist, &freepage->lru);
1400                 list_splice_tail(&sublist, freelist);
1401         }
1402 }
1403
1404 /*
1405  * Similar to move_freelist_head except used by the migration scanner
1406  * when scanning forward. It's possible for these list operations to
1407  * move against each other if they search the free list exactly in
1408  * lockstep.
1409  */
1410 static void
1411 move_freelist_tail(struct list_head *freelist, struct page *freepage)
1412 {
1413         LIST_HEAD(sublist);
1414
1415         if (!list_is_first(freelist, &freepage->lru)) {
1416                 list_cut_position(&sublist, freelist, &freepage->lru);
1417                 list_splice_tail(&sublist, freelist);
1418         }
1419 }
1420
1421 static void
1422 fast_isolate_around(struct compact_control *cc, unsigned long pfn)
1423 {
1424         unsigned long start_pfn, end_pfn;
1425         struct page *page;
1426
1427         /* Do not search around if there are enough pages already */
1428         if (cc->nr_freepages >= cc->nr_migratepages)
1429                 return;
1430
1431         /* Minimise scanning during async compaction */
1432         if (cc->direct_compaction && cc->mode == MIGRATE_ASYNC)
1433                 return;
1434
1435         /* Pageblock boundaries */
1436         start_pfn = max(pageblock_start_pfn(pfn), cc->zone->zone_start_pfn);
1437         end_pfn = min(pageblock_end_pfn(pfn), zone_end_pfn(cc->zone));
1438
1439         page = pageblock_pfn_to_page(start_pfn, end_pfn, cc->zone);
1440         if (!page)
1441                 return;
1442
1443         isolate_freepages_block(cc, &start_pfn, end_pfn, &cc->freepages, 1, false);
1444
1445         /* Skip this pageblock in the future as it's full or nearly full */
1446         if (start_pfn == end_pfn && !cc->no_set_skip_hint)
1447                 set_pageblock_skip(page);
1448 }
1449
1450 /* Search orders in round-robin fashion */
1451 static int next_search_order(struct compact_control *cc, int order)
1452 {
1453         order--;
1454         if (order < 0)
1455                 order = cc->order - 1;
1456
1457         /* Search wrapped around? */
1458         if (order == cc->search_order) {
1459                 cc->search_order--;
1460                 if (cc->search_order < 0)
1461                         cc->search_order = cc->order - 1;
1462                 return -1;
1463         }
1464
1465         return order;
1466 }
1467
1468 static void fast_isolate_freepages(struct compact_control *cc)
1469 {
1470         unsigned int limit = max(1U, freelist_scan_limit(cc) >> 1);
1471         unsigned int nr_scanned = 0, total_isolated = 0;
1472         unsigned long low_pfn, min_pfn, highest = 0;
1473         unsigned long nr_isolated = 0;
1474         unsigned long distance;
1475         struct page *page = NULL;
1476         bool scan_start = false;
1477         int order;
1478
1479         /* Full compaction passes in a negative order */
1480         if (cc->order <= 0)
1481                 return;
1482
1483         /*
1484          * If starting the scan, use a deeper search and use the highest
1485          * PFN found if a suitable one is not found.
1486          */
1487         if (cc->free_pfn >= cc->zone->compact_init_free_pfn) {
1488                 limit = pageblock_nr_pages >> 1;
1489                 scan_start = true;
1490         }
1491
1492         /*
1493          * Preferred point is in the top quarter of the scan space but take
1494          * a pfn from the top half if the search is problematic.
1495          */
1496         distance = (cc->free_pfn - cc->migrate_pfn);
1497         low_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 2));
1498         min_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 1));
1499
1500         if (WARN_ON_ONCE(min_pfn > low_pfn))
1501                 low_pfn = min_pfn;
1502
1503         /*
1504          * Search starts from the last successful isolation order or the next
1505          * order to search after a previous failure
1506          */
1507         cc->search_order = min_t(unsigned int, cc->order - 1, cc->search_order);
1508
1509         for (order = cc->search_order;
1510              !page && order >= 0;
1511              order = next_search_order(cc, order)) {
1512                 struct free_area *area = &cc->zone->free_area[order];
1513                 struct list_head *freelist;
1514                 struct page *freepage;
1515                 unsigned long flags;
1516                 unsigned int order_scanned = 0;
1517                 unsigned long high_pfn = 0;
1518
1519                 if (!area->nr_free)
1520                         continue;
1521
1522                 spin_lock_irqsave(&cc->zone->lock, flags);
1523                 freelist = &area->free_list[MIGRATE_MOVABLE];
1524                 list_for_each_entry_reverse(freepage, freelist, buddy_list) {
1525                         unsigned long pfn;
1526
1527                         order_scanned++;
1528                         nr_scanned++;
1529                         pfn = page_to_pfn(freepage);
1530
1531                         if (pfn >= highest)
1532                                 highest = max(pageblock_start_pfn(pfn),
1533                                               cc->zone->zone_start_pfn);
1534
1535                         if (pfn >= low_pfn) {
1536                                 cc->fast_search_fail = 0;
1537                                 cc->search_order = order;
1538                                 page = freepage;
1539                                 break;
1540                         }
1541
1542                         if (pfn >= min_pfn && pfn > high_pfn) {
1543                                 high_pfn = pfn;
1544
1545                                 /* Shorten the scan if a candidate is found */
1546                                 limit >>= 1;
1547                         }
1548
1549                         if (order_scanned >= limit)
1550                                 break;
1551                 }
1552
1553                 /* Use a maximum candidate pfn if a preferred one was not found */
1554                 if (!page && high_pfn) {
1555                         page = pfn_to_page(high_pfn);
1556
1557                         /* Update freepage for the list reorder below */
1558                         freepage = page;
1559                 }
1560
1561                 /* Reorder to so a future search skips recent pages */
1562                 move_freelist_head(freelist, freepage);
1563
1564                 /* Isolate the page if available */
1565                 if (page) {
1566                         if (__isolate_free_page(page, order)) {
1567                                 set_page_private(page, order);
1568                                 nr_isolated = 1 << order;
1569                                 nr_scanned += nr_isolated - 1;
1570                                 total_isolated += nr_isolated;
1571                                 cc->nr_freepages += nr_isolated;
1572                                 list_add_tail(&page->lru, &cc->freepages);
1573                                 count_compact_events(COMPACTISOLATED, nr_isolated);
1574                         } else {
1575                                 /* If isolation fails, abort the search */
1576                                 order = cc->search_order + 1;
1577                                 page = NULL;
1578                         }
1579                 }
1580
1581                 spin_unlock_irqrestore(&cc->zone->lock, flags);
1582
1583                 /* Skip fast search if enough freepages isolated */
1584                 if (cc->nr_freepages >= cc->nr_migratepages)
1585                         break;
1586
1587                 /*
1588                  * Smaller scan on next order so the total scan is related
1589                  * to freelist_scan_limit.
1590                  */
1591                 if (order_scanned >= limit)
1592                         limit = max(1U, limit >> 1);
1593         }
1594
1595         trace_mm_compaction_fast_isolate_freepages(min_pfn, cc->free_pfn,
1596                                                    nr_scanned, total_isolated);
1597
1598         if (!page) {
1599                 cc->fast_search_fail++;
1600                 if (scan_start) {
1601                         /*
1602                          * Use the highest PFN found above min. If one was
1603                          * not found, be pessimistic for direct compaction
1604                          * and use the min mark.
1605                          */
1606                         if (highest >= min_pfn) {
1607                                 page = pfn_to_page(highest);
1608                                 cc->free_pfn = highest;
1609                         } else {
1610                                 if (cc->direct_compaction && pfn_valid(min_pfn)) {
1611                                         page = pageblock_pfn_to_page(min_pfn,
1612                                                 min(pageblock_end_pfn(min_pfn),
1613                                                     zone_end_pfn(cc->zone)),
1614                                                 cc->zone);
1615                                         cc->free_pfn = min_pfn;
1616                                 }
1617                         }
1618                 }
1619         }
1620
1621         if (highest && highest >= cc->zone->compact_cached_free_pfn) {
1622                 highest -= pageblock_nr_pages;
1623                 cc->zone->compact_cached_free_pfn = highest;
1624         }
1625
1626         cc->total_free_scanned += nr_scanned;
1627         if (!page)
1628                 return;
1629
1630         low_pfn = page_to_pfn(page);
1631         fast_isolate_around(cc, low_pfn);
1632 }
1633
1634 /*
1635  * Based on information in the current compact_control, find blocks
1636  * suitable for isolating free pages from and then isolate them.
1637  */
1638 static void isolate_freepages(struct compact_control *cc)
1639 {
1640         struct zone *zone = cc->zone;
1641         struct page *page;
1642         unsigned long block_start_pfn;  /* start of current pageblock */
1643         unsigned long isolate_start_pfn; /* exact pfn we start at */
1644         unsigned long block_end_pfn;    /* end of current pageblock */
1645         unsigned long low_pfn;       /* lowest pfn scanner is able to scan */
1646         struct list_head *freelist = &cc->freepages;
1647         unsigned int stride;
1648
1649         /* Try a small search of the free lists for a candidate */
1650         fast_isolate_freepages(cc);
1651         if (cc->nr_freepages)
1652                 goto splitmap;
1653
1654         /*
1655          * Initialise the free scanner. The starting point is where we last
1656          * successfully isolated from, zone-cached value, or the end of the
1657          * zone when isolating for the first time. For looping we also need
1658          * this pfn aligned down to the pageblock boundary, because we do
1659          * block_start_pfn -= pageblock_nr_pages in the for loop.
1660          * For ending point, take care when isolating in last pageblock of a
1661          * zone which ends in the middle of a pageblock.
1662          * The low boundary is the end of the pageblock the migration scanner
1663          * is using.
1664          */
1665         isolate_start_pfn = cc->free_pfn;
1666         block_start_pfn = pageblock_start_pfn(isolate_start_pfn);
1667         block_end_pfn = min(block_start_pfn + pageblock_nr_pages,
1668                                                 zone_end_pfn(zone));
1669         low_pfn = pageblock_end_pfn(cc->migrate_pfn);
1670         stride = cc->mode == MIGRATE_ASYNC ? COMPACT_CLUSTER_MAX : 1;
1671
1672         /*
1673          * Isolate free pages until enough are available to migrate the
1674          * pages on cc->migratepages. We stop searching if the migrate
1675          * and free page scanners meet or enough free pages are isolated.
1676          */
1677         for (; block_start_pfn >= low_pfn;
1678                                 block_end_pfn = block_start_pfn,
1679                                 block_start_pfn -= pageblock_nr_pages,
1680                                 isolate_start_pfn = block_start_pfn) {
1681                 unsigned long nr_isolated;
1682
1683                 /*
1684                  * This can iterate a massively long zone without finding any
1685                  * suitable migration targets, so periodically check resched.
1686                  */
1687                 if (!(block_start_pfn % (COMPACT_CLUSTER_MAX * pageblock_nr_pages)))
1688                         cond_resched();
1689
1690                 page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
1691                                                                         zone);
1692                 if (!page) {
1693                         unsigned long next_pfn;
1694
1695                         next_pfn = skip_offline_sections_reverse(block_start_pfn);
1696                         if (next_pfn)
1697                                 block_start_pfn = max(next_pfn, low_pfn);
1698
1699                         continue;
1700                 }
1701
1702                 /* Check the block is suitable for migration */
1703                 if (!suitable_migration_target(cc, page))
1704                         continue;
1705
1706                 /* If isolation recently failed, do not retry */
1707                 if (!isolation_suitable(cc, page))
1708                         continue;
1709
1710                 /* Found a block suitable for isolating free pages from. */
1711                 nr_isolated = isolate_freepages_block(cc, &isolate_start_pfn,
1712                                         block_end_pfn, freelist, stride, false);
1713
1714                 /* Update the skip hint if the full pageblock was scanned */
1715                 if (isolate_start_pfn == block_end_pfn)
1716                         update_pageblock_skip(cc, page, block_start_pfn -
1717                                               pageblock_nr_pages);
1718
1719                 /* Are enough freepages isolated? */
1720                 if (cc->nr_freepages >= cc->nr_migratepages) {
1721                         if (isolate_start_pfn >= block_end_pfn) {
1722                                 /*
1723                                  * Restart at previous pageblock if more
1724                                  * freepages can be isolated next time.
1725                                  */
1726                                 isolate_start_pfn =
1727                                         block_start_pfn - pageblock_nr_pages;
1728                         }
1729                         break;
1730                 } else if (isolate_start_pfn < block_end_pfn) {
1731                         /*
1732                          * If isolation failed early, do not continue
1733                          * needlessly.
1734                          */
1735                         break;
1736                 }
1737
1738                 /* Adjust stride depending on isolation */
1739                 if (nr_isolated) {
1740                         stride = 1;
1741                         continue;
1742                 }
1743                 stride = min_t(unsigned int, COMPACT_CLUSTER_MAX, stride << 1);
1744         }
1745
1746         /*
1747          * Record where the free scanner will restart next time. Either we
1748          * broke from the loop and set isolate_start_pfn based on the last
1749          * call to isolate_freepages_block(), or we met the migration scanner
1750          * and the loop terminated due to isolate_start_pfn < low_pfn
1751          */
1752         cc->free_pfn = isolate_start_pfn;
1753
1754 splitmap:
1755         /* __isolate_free_page() does not map the pages */
1756         split_map_pages(freelist);
1757 }
1758
1759 /*
1760  * This is a migrate-callback that "allocates" freepages by taking pages
1761  * from the isolated freelists in the block we are migrating to.
1762  */
1763 static struct folio *compaction_alloc(struct folio *src, unsigned long data)
1764 {
1765         struct compact_control *cc = (struct compact_control *)data;
1766         struct folio *dst;
1767
1768         if (list_empty(&cc->freepages)) {
1769                 isolate_freepages(cc);
1770
1771                 if (list_empty(&cc->freepages))
1772                         return NULL;
1773         }
1774
1775         dst = list_entry(cc->freepages.next, struct folio, lru);
1776         list_del(&dst->lru);
1777         cc->nr_freepages--;
1778
1779         return dst;
1780 }
1781
1782 /*
1783  * This is a migrate-callback that "frees" freepages back to the isolated
1784  * freelist.  All pages on the freelist are from the same zone, so there is no
1785  * special handling needed for NUMA.
1786  */
1787 static void compaction_free(struct folio *dst, unsigned long data)
1788 {
1789         struct compact_control *cc = (struct compact_control *)data;
1790
1791         list_add(&dst->lru, &cc->freepages);
1792         cc->nr_freepages++;
1793 }
1794
1795 /* possible outcome of isolate_migratepages */
1796 typedef enum {
1797         ISOLATE_ABORT,          /* Abort compaction now */
1798         ISOLATE_NONE,           /* No pages isolated, continue scanning */
1799         ISOLATE_SUCCESS,        /* Pages isolated, migrate */
1800 } isolate_migrate_t;
1801
1802 /*
1803  * Allow userspace to control policy on scanning the unevictable LRU for
1804  * compactable pages.
1805  */
1806 static int sysctl_compact_unevictable_allowed __read_mostly = CONFIG_COMPACT_UNEVICTABLE_DEFAULT;
1807 /*
1808  * Tunable for proactive compaction. It determines how
1809  * aggressively the kernel should compact memory in the
1810  * background. It takes values in the range [0, 100].
1811  */
1812 static unsigned int __read_mostly sysctl_compaction_proactiveness = 20;
1813 static int sysctl_extfrag_threshold = 500;
1814 static int __read_mostly sysctl_compact_memory;
1815
1816 static inline void
1817 update_fast_start_pfn(struct compact_control *cc, unsigned long pfn)
1818 {
1819         if (cc->fast_start_pfn == ULONG_MAX)
1820                 return;
1821
1822         if (!cc->fast_start_pfn)
1823                 cc->fast_start_pfn = pfn;
1824
1825         cc->fast_start_pfn = min(cc->fast_start_pfn, pfn);
1826 }
1827
1828 static inline unsigned long
1829 reinit_migrate_pfn(struct compact_control *cc)
1830 {
1831         if (!cc->fast_start_pfn || cc->fast_start_pfn == ULONG_MAX)
1832                 return cc->migrate_pfn;
1833
1834         cc->migrate_pfn = cc->fast_start_pfn;
1835         cc->fast_start_pfn = ULONG_MAX;
1836
1837         return cc->migrate_pfn;
1838 }
1839
1840 /*
1841  * Briefly search the free lists for a migration source that already has
1842  * some free pages to reduce the number of pages that need migration
1843  * before a pageblock is free.
1844  */
1845 static unsigned long fast_find_migrateblock(struct compact_control *cc)
1846 {
1847         unsigned int limit = freelist_scan_limit(cc);
1848         unsigned int nr_scanned = 0;
1849         unsigned long distance;
1850         unsigned long pfn = cc->migrate_pfn;
1851         unsigned long high_pfn;
1852         int order;
1853         bool found_block = false;
1854
1855         /* Skip hints are relied on to avoid repeats on the fast search */
1856         if (cc->ignore_skip_hint)
1857                 return pfn;
1858
1859         /*
1860          * If the pageblock should be finished then do not select a different
1861          * pageblock.
1862          */
1863         if (cc->finish_pageblock)
1864                 return pfn;
1865
1866         /*
1867          * If the migrate_pfn is not at the start of a zone or the start
1868          * of a pageblock then assume this is a continuation of a previous
1869          * scan restarted due to COMPACT_CLUSTER_MAX.
1870          */
1871         if (pfn != cc->zone->zone_start_pfn && pfn != pageblock_start_pfn(pfn))
1872                 return pfn;
1873
1874         /*
1875          * For smaller orders, just linearly scan as the number of pages
1876          * to migrate should be relatively small and does not necessarily
1877          * justify freeing up a large block for a small allocation.
1878          */
1879         if (cc->order <= PAGE_ALLOC_COSTLY_ORDER)
1880                 return pfn;
1881
1882         /*
1883          * Only allow kcompactd and direct requests for movable pages to
1884          * quickly clear out a MOVABLE pageblock for allocation. This
1885          * reduces the risk that a large movable pageblock is freed for
1886          * an unmovable/reclaimable small allocation.
1887          */
1888         if (cc->direct_compaction && cc->migratetype != MIGRATE_MOVABLE)
1889                 return pfn;
1890
1891         /*
1892          * When starting the migration scanner, pick any pageblock within the
1893          * first half of the search space. Otherwise try and pick a pageblock
1894          * within the first eighth to reduce the chances that a migration
1895          * target later becomes a source.
1896          */
1897         distance = (cc->free_pfn - cc->migrate_pfn) >> 1;
1898         if (cc->migrate_pfn != cc->zone->zone_start_pfn)
1899                 distance >>= 2;
1900         high_pfn = pageblock_start_pfn(cc->migrate_pfn + distance);
1901
1902         for (order = cc->order - 1;
1903              order >= PAGE_ALLOC_COSTLY_ORDER && !found_block && nr_scanned < limit;
1904              order--) {
1905                 struct free_area *area = &cc->zone->free_area[order];
1906                 struct list_head *freelist;
1907                 unsigned long flags;
1908                 struct page *freepage;
1909
1910                 if (!area->nr_free)
1911                         continue;
1912
1913                 spin_lock_irqsave(&cc->zone->lock, flags);
1914                 freelist = &area->free_list[MIGRATE_MOVABLE];
1915                 list_for_each_entry(freepage, freelist, buddy_list) {
1916                         unsigned long free_pfn;
1917
1918                         if (nr_scanned++ >= limit) {
1919                                 move_freelist_tail(freelist, freepage);
1920                                 break;
1921                         }
1922
1923                         free_pfn = page_to_pfn(freepage);
1924                         if (free_pfn < high_pfn) {
1925                                 /*
1926                                  * Avoid if skipped recently. Ideally it would
1927                                  * move to the tail but even safe iteration of
1928                                  * the list assumes an entry is deleted, not
1929                                  * reordered.
1930                                  */
1931                                 if (get_pageblock_skip(freepage))
1932                                         continue;
1933
1934                                 /* Reorder to so a future search skips recent pages */
1935                                 move_freelist_tail(freelist, freepage);
1936
1937                                 update_fast_start_pfn(cc, free_pfn);
1938                                 pfn = pageblock_start_pfn(free_pfn);
1939                                 if (pfn < cc->zone->zone_start_pfn)
1940                                         pfn = cc->zone->zone_start_pfn;
1941                                 cc->fast_search_fail = 0;
1942                                 found_block = true;
1943                                 break;
1944                         }
1945                 }
1946                 spin_unlock_irqrestore(&cc->zone->lock, flags);
1947         }
1948
1949         cc->total_migrate_scanned += nr_scanned;
1950
1951         /*
1952          * If fast scanning failed then use a cached entry for a page block
1953          * that had free pages as the basis for starting a linear scan.
1954          */
1955         if (!found_block) {
1956                 cc->fast_search_fail++;
1957                 pfn = reinit_migrate_pfn(cc);
1958         }
1959         return pfn;
1960 }
1961
1962 /*
1963  * Isolate all pages that can be migrated from the first suitable block,
1964  * starting at the block pointed to by the migrate scanner pfn within
1965  * compact_control.
1966  */
1967 static isolate_migrate_t isolate_migratepages(struct compact_control *cc)
1968 {
1969         unsigned long block_start_pfn;
1970         unsigned long block_end_pfn;
1971         unsigned long low_pfn;
1972         struct page *page;
1973         const isolate_mode_t isolate_mode =
1974                 (sysctl_compact_unevictable_allowed ? ISOLATE_UNEVICTABLE : 0) |
1975                 (cc->mode != MIGRATE_SYNC ? ISOLATE_ASYNC_MIGRATE : 0);
1976         bool fast_find_block;
1977
1978         /*
1979          * Start at where we last stopped, or beginning of the zone as
1980          * initialized by compact_zone(). The first failure will use
1981          * the lowest PFN as the starting point for linear scanning.
1982          */
1983         low_pfn = fast_find_migrateblock(cc);
1984         block_start_pfn = pageblock_start_pfn(low_pfn);
1985         if (block_start_pfn < cc->zone->zone_start_pfn)
1986                 block_start_pfn = cc->zone->zone_start_pfn;
1987
1988         /*
1989          * fast_find_migrateblock() has already ensured the pageblock is not
1990          * set with a skipped flag, so to avoid the isolation_suitable check
1991          * below again, check whether the fast search was successful.
1992          */
1993         fast_find_block = low_pfn != cc->migrate_pfn && !cc->fast_search_fail;
1994
1995         /* Only scan within a pageblock boundary */
1996         block_end_pfn = pageblock_end_pfn(low_pfn);
1997
1998         /*
1999          * Iterate over whole pageblocks until we find the first suitable.
2000          * Do not cross the free scanner.
2001          */
2002         for (; block_end_pfn <= cc->free_pfn;
2003                         fast_find_block = false,
2004                         cc->migrate_pfn = low_pfn = block_end_pfn,
2005                         block_start_pfn = block_end_pfn,
2006                         block_end_pfn += pageblock_nr_pages) {
2007
2008                 /*
2009                  * This can potentially iterate a massively long zone with
2010                  * many pageblocks unsuitable, so periodically check if we
2011                  * need to schedule.
2012                  */
2013                 if (!(low_pfn % (COMPACT_CLUSTER_MAX * pageblock_nr_pages)))
2014                         cond_resched();
2015
2016                 page = pageblock_pfn_to_page(block_start_pfn,
2017                                                 block_end_pfn, cc->zone);
2018                 if (!page) {
2019                         unsigned long next_pfn;
2020
2021                         next_pfn = skip_offline_sections(block_start_pfn);
2022                         if (next_pfn)
2023                                 block_end_pfn = min(next_pfn, cc->free_pfn);
2024                         continue;
2025                 }
2026
2027                 /*
2028                  * If isolation recently failed, do not retry. Only check the
2029                  * pageblock once. COMPACT_CLUSTER_MAX causes a pageblock
2030                  * to be visited multiple times. Assume skip was checked
2031                  * before making it "skip" so other compaction instances do
2032                  * not scan the same block.
2033                  */
2034                 if ((pageblock_aligned(low_pfn) ||
2035                      low_pfn == cc->zone->zone_start_pfn) &&
2036                     !fast_find_block && !isolation_suitable(cc, page))
2037                         continue;
2038
2039                 /*
2040                  * For async direct compaction, only scan the pageblocks of the
2041                  * same migratetype without huge pages. Async direct compaction
2042                  * is optimistic to see if the minimum amount of work satisfies
2043                  * the allocation. The cached PFN is updated as it's possible
2044                  * that all remaining blocks between source and target are
2045                  * unsuitable and the compaction scanners fail to meet.
2046                  */
2047                 if (!suitable_migration_source(cc, page)) {
2048                         update_cached_migrate(cc, block_end_pfn);
2049                         continue;
2050                 }
2051
2052                 /* Perform the isolation */
2053                 if (isolate_migratepages_block(cc, low_pfn, block_end_pfn,
2054                                                 isolate_mode))
2055                         return ISOLATE_ABORT;
2056
2057                 /*
2058                  * Either we isolated something and proceed with migration. Or
2059                  * we failed and compact_zone should decide if we should
2060                  * continue or not.
2061                  */
2062                 break;
2063         }
2064
2065         return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE;
2066 }
2067
2068 /*
2069  * order == -1 is expected when compacting via
2070  * /proc/sys/vm/compact_memory
2071  */
2072 static inline bool is_via_compact_memory(int order)
2073 {
2074         return order == -1;
2075 }
2076
2077 /*
2078  * Determine whether kswapd is (or recently was!) running on this node.
2079  *
2080  * pgdat_kswapd_lock() pins pgdat->kswapd, so a concurrent kswapd_stop() can't
2081  * zero it.
2082  */
2083 static bool kswapd_is_running(pg_data_t *pgdat)
2084 {
2085         bool running;
2086
2087         pgdat_kswapd_lock(pgdat);
2088         running = pgdat->kswapd && task_is_running(pgdat->kswapd);
2089         pgdat_kswapd_unlock(pgdat);
2090
2091         return running;
2092 }
2093
2094 /*
2095  * A zone's fragmentation score is the external fragmentation wrt to the
2096  * COMPACTION_HPAGE_ORDER. It returns a value in the range [0, 100].
2097  */
2098 static unsigned int fragmentation_score_zone(struct zone *zone)
2099 {
2100         return extfrag_for_order(zone, COMPACTION_HPAGE_ORDER);
2101 }
2102
2103 /*
2104  * A weighted zone's fragmentation score is the external fragmentation
2105  * wrt to the COMPACTION_HPAGE_ORDER scaled by the zone's size. It
2106  * returns a value in the range [0, 100].
2107  *
2108  * The scaling factor ensures that proactive compaction focuses on larger
2109  * zones like ZONE_NORMAL, rather than smaller, specialized zones like
2110  * ZONE_DMA32. For smaller zones, the score value remains close to zero,
2111  * and thus never exceeds the high threshold for proactive compaction.
2112  */
2113 static unsigned int fragmentation_score_zone_weighted(struct zone *zone)
2114 {
2115         unsigned long score;
2116
2117         score = zone->present_pages * fragmentation_score_zone(zone);
2118         return div64_ul(score, zone->zone_pgdat->node_present_pages + 1);
2119 }
2120
2121 /*
2122  * The per-node proactive (background) compaction process is started by its
2123  * corresponding kcompactd thread when the node's fragmentation score
2124  * exceeds the high threshold. The compaction process remains active till
2125  * the node's score falls below the low threshold, or one of the back-off
2126  * conditions is met.
2127  */
2128 static unsigned int fragmentation_score_node(pg_data_t *pgdat)
2129 {
2130         unsigned int score = 0;
2131         int zoneid;
2132
2133         for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
2134                 struct zone *zone;
2135
2136                 zone = &pgdat->node_zones[zoneid];
2137                 if (!populated_zone(zone))
2138                         continue;
2139                 score += fragmentation_score_zone_weighted(zone);
2140         }
2141
2142         return score;
2143 }
2144
2145 static unsigned int fragmentation_score_wmark(bool low)
2146 {
2147         unsigned int wmark_low;
2148
2149         /*
2150          * Cap the low watermark to avoid excessive compaction
2151          * activity in case a user sets the proactiveness tunable
2152          * close to 100 (maximum).
2153          */
2154         wmark_low = max(100U - sysctl_compaction_proactiveness, 5U);
2155         return low ? wmark_low : min(wmark_low + 10, 100U);
2156 }
2157
2158 static bool should_proactive_compact_node(pg_data_t *pgdat)
2159 {
2160         int wmark_high;
2161
2162         if (!sysctl_compaction_proactiveness || kswapd_is_running(pgdat))
2163                 return false;
2164
2165         wmark_high = fragmentation_score_wmark(false);
2166         return fragmentation_score_node(pgdat) > wmark_high;
2167 }
2168
2169 static enum compact_result __compact_finished(struct compact_control *cc)
2170 {
2171         unsigned int order;
2172         const int migratetype = cc->migratetype;
2173         int ret;
2174
2175         /* Compaction run completes if the migrate and free scanner meet */
2176         if (compact_scanners_met(cc)) {
2177                 /* Let the next compaction start anew. */
2178                 reset_cached_positions(cc->zone);
2179
2180                 /*
2181                  * Mark that the PG_migrate_skip information should be cleared
2182                  * by kswapd when it goes to sleep. kcompactd does not set the
2183                  * flag itself as the decision to be clear should be directly
2184                  * based on an allocation request.
2185                  */
2186                 if (cc->direct_compaction)
2187                         cc->zone->compact_blockskip_flush = true;
2188
2189                 if (cc->whole_zone)
2190                         return COMPACT_COMPLETE;
2191                 else
2192                         return COMPACT_PARTIAL_SKIPPED;
2193         }
2194
2195         if (cc->proactive_compaction) {
2196                 int score, wmark_low;
2197                 pg_data_t *pgdat;
2198
2199                 pgdat = cc->zone->zone_pgdat;
2200                 if (kswapd_is_running(pgdat))
2201                         return COMPACT_PARTIAL_SKIPPED;
2202
2203                 score = fragmentation_score_zone(cc->zone);
2204                 wmark_low = fragmentation_score_wmark(true);
2205
2206                 if (score > wmark_low)
2207                         ret = COMPACT_CONTINUE;
2208                 else
2209                         ret = COMPACT_SUCCESS;
2210
2211                 goto out;
2212         }
2213
2214         if (is_via_compact_memory(cc->order))
2215                 return COMPACT_CONTINUE;
2216
2217         /*
2218          * Always finish scanning a pageblock to reduce the possibility of
2219          * fallbacks in the future. This is particularly important when
2220          * migration source is unmovable/reclaimable but it's not worth
2221          * special casing.
2222          */
2223         if (!pageblock_aligned(cc->migrate_pfn))
2224                 return COMPACT_CONTINUE;
2225
2226         /* Direct compactor: Is a suitable page free? */
2227         ret = COMPACT_NO_SUITABLE_PAGE;
2228         for (order = cc->order; order <= MAX_ORDER; order++) {
2229                 struct free_area *area = &cc->zone->free_area[order];
2230                 bool can_steal;
2231
2232                 /* Job done if page is free of the right migratetype */
2233                 if (!free_area_empty(area, migratetype))
2234                         return COMPACT_SUCCESS;
2235
2236 #ifdef CONFIG_CMA
2237                 /* MIGRATE_MOVABLE can fallback on MIGRATE_CMA */
2238                 if (migratetype == MIGRATE_MOVABLE &&
2239                         !free_area_empty(area, MIGRATE_CMA))
2240                         return COMPACT_SUCCESS;
2241 #endif
2242                 /*
2243                  * Job done if allocation would steal freepages from
2244                  * other migratetype buddy lists.
2245                  */
2246                 if (find_suitable_fallback(area, order, migratetype,
2247                                                 true, &can_steal) != -1)
2248                         /*
2249                          * Movable pages are OK in any pageblock. If we are
2250                          * stealing for a non-movable allocation, make sure
2251                          * we finish compacting the current pageblock first
2252                          * (which is assured by the above migrate_pfn align
2253                          * check) so it is as free as possible and we won't
2254                          * have to steal another one soon.
2255                          */
2256                         return COMPACT_SUCCESS;
2257         }
2258
2259 out:
2260         if (cc->contended || fatal_signal_pending(current))
2261                 ret = COMPACT_CONTENDED;
2262
2263         return ret;
2264 }
2265
2266 static enum compact_result compact_finished(struct compact_control *cc)
2267 {
2268         int ret;
2269
2270         ret = __compact_finished(cc);
2271         trace_mm_compaction_finished(cc->zone, cc->order, ret);
2272         if (ret == COMPACT_NO_SUITABLE_PAGE)
2273                 ret = COMPACT_CONTINUE;
2274
2275         return ret;
2276 }
2277
2278 static bool __compaction_suitable(struct zone *zone, int order,
2279                                   int highest_zoneidx,
2280                                   unsigned long wmark_target)
2281 {
2282         unsigned long watermark;
2283         /*
2284          * Watermarks for order-0 must be met for compaction to be able to
2285          * isolate free pages for migration targets. This means that the
2286          * watermark and alloc_flags have to match, or be more pessimistic than
2287          * the check in __isolate_free_page(). We don't use the direct
2288          * compactor's alloc_flags, as they are not relevant for freepage
2289          * isolation. We however do use the direct compactor's highest_zoneidx
2290          * to skip over zones where lowmem reserves would prevent allocation
2291          * even if compaction succeeds.
2292          * For costly orders, we require low watermark instead of min for
2293          * compaction to proceed to increase its chances.
2294          * ALLOC_CMA is used, as pages in CMA pageblocks are considered
2295          * suitable migration targets
2296          */
2297         watermark = (order > PAGE_ALLOC_COSTLY_ORDER) ?
2298                                 low_wmark_pages(zone) : min_wmark_pages(zone);
2299         watermark += compact_gap(order);
2300         return __zone_watermark_ok(zone, 0, watermark, highest_zoneidx,
2301                                    ALLOC_CMA, wmark_target);
2302 }
2303
2304 /*
2305  * compaction_suitable: Is this suitable to run compaction on this zone now?
2306  */
2307 bool compaction_suitable(struct zone *zone, int order, int highest_zoneidx)
2308 {
2309         enum compact_result compact_result;
2310         bool suitable;
2311
2312         suitable = __compaction_suitable(zone, order, highest_zoneidx,
2313                                          zone_page_state(zone, NR_FREE_PAGES));
2314         /*
2315          * fragmentation index determines if allocation failures are due to
2316          * low memory or external fragmentation
2317          *
2318          * index of -1000 would imply allocations might succeed depending on
2319          * watermarks, but we already failed the high-order watermark check
2320          * index towards 0 implies failure is due to lack of memory
2321          * index towards 1000 implies failure is due to fragmentation
2322          *
2323          * Only compact if a failure would be due to fragmentation. Also
2324          * ignore fragindex for non-costly orders where the alternative to
2325          * a successful reclaim/compaction is OOM. Fragindex and the
2326          * vm.extfrag_threshold sysctl is meant as a heuristic to prevent
2327          * excessive compaction for costly orders, but it should not be at the
2328          * expense of system stability.
2329          */
2330         if (suitable) {
2331                 compact_result = COMPACT_CONTINUE;
2332                 if (order > PAGE_ALLOC_COSTLY_ORDER) {
2333                         int fragindex = fragmentation_index(zone, order);
2334
2335                         if (fragindex >= 0 &&
2336                             fragindex <= sysctl_extfrag_threshold) {
2337                                 suitable = false;
2338                                 compact_result = COMPACT_NOT_SUITABLE_ZONE;
2339                         }
2340                 }
2341         } else {
2342                 compact_result = COMPACT_SKIPPED;
2343         }
2344
2345         trace_mm_compaction_suitable(zone, order, compact_result);
2346
2347         return suitable;
2348 }
2349
2350 bool compaction_zonelist_suitable(struct alloc_context *ac, int order,
2351                 int alloc_flags)
2352 {
2353         struct zone *zone;
2354         struct zoneref *z;
2355
2356         /*
2357          * Make sure at least one zone would pass __compaction_suitable if we continue
2358          * retrying the reclaim.
2359          */
2360         for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2361                                 ac->highest_zoneidx, ac->nodemask) {
2362                 unsigned long available;
2363
2364                 /*
2365                  * Do not consider all the reclaimable memory because we do not
2366                  * want to trash just for a single high order allocation which
2367                  * is even not guaranteed to appear even if __compaction_suitable
2368                  * is happy about the watermark check.
2369                  */
2370                 available = zone_reclaimable_pages(zone) / order;
2371                 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
2372                 if (__compaction_suitable(zone, order, ac->highest_zoneidx,
2373                                           available))
2374                         return true;
2375         }
2376
2377         return false;
2378 }
2379
2380 static enum compact_result
2381 compact_zone(struct compact_control *cc, struct capture_control *capc)
2382 {
2383         enum compact_result ret;
2384         unsigned long start_pfn = cc->zone->zone_start_pfn;
2385         unsigned long end_pfn = zone_end_pfn(cc->zone);
2386         unsigned long last_migrated_pfn;
2387         const bool sync = cc->mode != MIGRATE_ASYNC;
2388         bool update_cached;
2389         unsigned int nr_succeeded = 0;
2390
2391         /*
2392          * These counters track activities during zone compaction.  Initialize
2393          * them before compacting a new zone.
2394          */
2395         cc->total_migrate_scanned = 0;
2396         cc->total_free_scanned = 0;
2397         cc->nr_migratepages = 0;
2398         cc->nr_freepages = 0;
2399         INIT_LIST_HEAD(&cc->freepages);
2400         INIT_LIST_HEAD(&cc->migratepages);
2401
2402         cc->migratetype = gfp_migratetype(cc->gfp_mask);
2403
2404         if (!is_via_compact_memory(cc->order)) {
2405                 unsigned long watermark;
2406
2407                 /* Allocation can already succeed, nothing to do */
2408                 watermark = wmark_pages(cc->zone,
2409                                         cc->alloc_flags & ALLOC_WMARK_MASK);
2410                 if (zone_watermark_ok(cc->zone, cc->order, watermark,
2411                                       cc->highest_zoneidx, cc->alloc_flags))
2412                         return COMPACT_SUCCESS;
2413
2414                 /* Compaction is likely to fail */
2415                 if (!compaction_suitable(cc->zone, cc->order,
2416                                          cc->highest_zoneidx))
2417                         return COMPACT_SKIPPED;
2418         }
2419
2420         /*
2421          * Clear pageblock skip if there were failures recently and compaction
2422          * is about to be retried after being deferred.
2423          */
2424         if (compaction_restarting(cc->zone, cc->order))
2425                 __reset_isolation_suitable(cc->zone);
2426
2427         /*
2428          * Setup to move all movable pages to the end of the zone. Used cached
2429          * information on where the scanners should start (unless we explicitly
2430          * want to compact the whole zone), but check that it is initialised
2431          * by ensuring the values are within zone boundaries.
2432          */
2433         cc->fast_start_pfn = 0;
2434         if (cc->whole_zone) {
2435                 cc->migrate_pfn = start_pfn;
2436                 cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
2437         } else {
2438                 cc->migrate_pfn = cc->zone->compact_cached_migrate_pfn[sync];
2439                 cc->free_pfn = cc->zone->compact_cached_free_pfn;
2440                 if (cc->free_pfn < start_pfn || cc->free_pfn >= end_pfn) {
2441                         cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
2442                         cc->zone->compact_cached_free_pfn = cc->free_pfn;
2443                 }
2444                 if (cc->migrate_pfn < start_pfn || cc->migrate_pfn >= end_pfn) {
2445                         cc->migrate_pfn = start_pfn;
2446                         cc->zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn;
2447                         cc->zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn;
2448                 }
2449
2450                 if (cc->migrate_pfn <= cc->zone->compact_init_migrate_pfn)
2451                         cc->whole_zone = true;
2452         }
2453
2454         last_migrated_pfn = 0;
2455
2456         /*
2457          * Migrate has separate cached PFNs for ASYNC and SYNC* migration on
2458          * the basis that some migrations will fail in ASYNC mode. However,
2459          * if the cached PFNs match and pageblocks are skipped due to having
2460          * no isolation candidates, then the sync state does not matter.
2461          * Until a pageblock with isolation candidates is found, keep the
2462          * cached PFNs in sync to avoid revisiting the same blocks.
2463          */
2464         update_cached = !sync &&
2465                 cc->zone->compact_cached_migrate_pfn[0] == cc->zone->compact_cached_migrate_pfn[1];
2466
2467         trace_mm_compaction_begin(cc, start_pfn, end_pfn, sync);
2468
2469         /* lru_add_drain_all could be expensive with involving other CPUs */
2470         lru_add_drain();
2471
2472         while ((ret = compact_finished(cc)) == COMPACT_CONTINUE) {
2473                 int err;
2474                 unsigned long iteration_start_pfn = cc->migrate_pfn;
2475
2476                 /*
2477                  * Avoid multiple rescans of the same pageblock which can
2478                  * happen if a page cannot be isolated (dirty/writeback in
2479                  * async mode) or if the migrated pages are being allocated
2480                  * before the pageblock is cleared.  The first rescan will
2481                  * capture the entire pageblock for migration. If it fails,
2482                  * it'll be marked skip and scanning will proceed as normal.
2483                  */
2484                 cc->finish_pageblock = false;
2485                 if (pageblock_start_pfn(last_migrated_pfn) ==
2486                     pageblock_start_pfn(iteration_start_pfn)) {
2487                         cc->finish_pageblock = true;
2488                 }
2489
2490 rescan:
2491                 switch (isolate_migratepages(cc)) {
2492                 case ISOLATE_ABORT:
2493                         ret = COMPACT_CONTENDED;
2494                         putback_movable_pages(&cc->migratepages);
2495                         cc->nr_migratepages = 0;
2496                         goto out;
2497                 case ISOLATE_NONE:
2498                         if (update_cached) {
2499                                 cc->zone->compact_cached_migrate_pfn[1] =
2500                                         cc->zone->compact_cached_migrate_pfn[0];
2501                         }
2502
2503                         /*
2504                          * We haven't isolated and migrated anything, but
2505                          * there might still be unflushed migrations from
2506                          * previous cc->order aligned block.
2507                          */
2508                         goto check_drain;
2509                 case ISOLATE_SUCCESS:
2510                         update_cached = false;
2511                         last_migrated_pfn = max(cc->zone->zone_start_pfn,
2512                                 pageblock_start_pfn(cc->migrate_pfn - 1));
2513                 }
2514
2515                 err = migrate_pages(&cc->migratepages, compaction_alloc,
2516                                 compaction_free, (unsigned long)cc, cc->mode,
2517                                 MR_COMPACTION, &nr_succeeded);
2518
2519                 trace_mm_compaction_migratepages(cc, nr_succeeded);
2520
2521                 /* All pages were either migrated or will be released */
2522                 cc->nr_migratepages = 0;
2523                 if (err) {
2524                         putback_movable_pages(&cc->migratepages);
2525                         /*
2526                          * migrate_pages() may return -ENOMEM when scanners meet
2527                          * and we want compact_finished() to detect it
2528                          */
2529                         if (err == -ENOMEM && !compact_scanners_met(cc)) {
2530                                 ret = COMPACT_CONTENDED;
2531                                 goto out;
2532                         }
2533                         /*
2534                          * If an ASYNC or SYNC_LIGHT fails to migrate a page
2535                          * within the pageblock_order-aligned block and
2536                          * fast_find_migrateblock may be used then scan the
2537                          * remainder of the pageblock. This will mark the
2538                          * pageblock "skip" to avoid rescanning in the near
2539                          * future. This will isolate more pages than necessary
2540                          * for the request but avoid loops due to
2541                          * fast_find_migrateblock revisiting blocks that were
2542                          * recently partially scanned.
2543                          */
2544                         if (!pageblock_aligned(cc->migrate_pfn) &&
2545                             !cc->ignore_skip_hint && !cc->finish_pageblock &&
2546                             (cc->mode < MIGRATE_SYNC)) {
2547                                 cc->finish_pageblock = true;
2548
2549                                 /*
2550                                  * Draining pcplists does not help THP if
2551                                  * any page failed to migrate. Even after
2552                                  * drain, the pageblock will not be free.
2553                                  */
2554                                 if (cc->order == COMPACTION_HPAGE_ORDER)
2555                                         last_migrated_pfn = 0;
2556
2557                                 goto rescan;
2558                         }
2559                 }
2560
2561                 /* Stop if a page has been captured */
2562                 if (capc && capc->page) {
2563                         ret = COMPACT_SUCCESS;
2564                         break;
2565                 }
2566
2567 check_drain:
2568                 /*
2569                  * Has the migration scanner moved away from the previous
2570                  * cc->order aligned block where we migrated from? If yes,
2571                  * flush the pages that were freed, so that they can merge and
2572                  * compact_finished() can detect immediately if allocation
2573                  * would succeed.
2574                  */
2575                 if (cc->order > 0 && last_migrated_pfn) {
2576                         unsigned long current_block_start =
2577                                 block_start_pfn(cc->migrate_pfn, cc->order);
2578
2579                         if (last_migrated_pfn < current_block_start) {
2580                                 lru_add_drain_cpu_zone(cc->zone);
2581                                 /* No more flushing until we migrate again */
2582                                 last_migrated_pfn = 0;
2583                         }
2584                 }
2585         }
2586
2587 out:
2588         /*
2589          * Release free pages and update where the free scanner should restart,
2590          * so we don't leave any returned pages behind in the next attempt.
2591          */
2592         if (cc->nr_freepages > 0) {
2593                 unsigned long free_pfn = release_freepages(&cc->freepages);
2594
2595                 cc->nr_freepages = 0;
2596                 VM_BUG_ON(free_pfn == 0);
2597                 /* The cached pfn is always the first in a pageblock */
2598                 free_pfn = pageblock_start_pfn(free_pfn);
2599                 /*
2600                  * Only go back, not forward. The cached pfn might have been
2601                  * already reset to zone end in compact_finished()
2602                  */
2603                 if (free_pfn > cc->zone->compact_cached_free_pfn)
2604                         cc->zone->compact_cached_free_pfn = free_pfn;
2605         }
2606
2607         count_compact_events(COMPACTMIGRATE_SCANNED, cc->total_migrate_scanned);
2608         count_compact_events(COMPACTFREE_SCANNED, cc->total_free_scanned);
2609
2610         trace_mm_compaction_end(cc, start_pfn, end_pfn, sync, ret);
2611
2612         VM_BUG_ON(!list_empty(&cc->freepages));
2613         VM_BUG_ON(!list_empty(&cc->migratepages));
2614
2615         return ret;
2616 }
2617
2618 static enum compact_result compact_zone_order(struct zone *zone, int order,
2619                 gfp_t gfp_mask, enum compact_priority prio,
2620                 unsigned int alloc_flags, int highest_zoneidx,
2621                 struct page **capture)
2622 {
2623         enum compact_result ret;
2624         struct compact_control cc = {
2625                 .order = order,
2626                 .search_order = order,
2627                 .gfp_mask = gfp_mask,
2628                 .zone = zone,
2629                 .mode = (prio == COMPACT_PRIO_ASYNC) ?
2630                                         MIGRATE_ASYNC : MIGRATE_SYNC_LIGHT,
2631                 .alloc_flags = alloc_flags,
2632                 .highest_zoneidx = highest_zoneidx,
2633                 .direct_compaction = true,
2634                 .whole_zone = (prio == MIN_COMPACT_PRIORITY),
2635                 .ignore_skip_hint = (prio == MIN_COMPACT_PRIORITY),
2636                 .ignore_block_suitable = (prio == MIN_COMPACT_PRIORITY)
2637         };
2638         struct capture_control capc = {
2639                 .cc = &cc,
2640                 .page = NULL,
2641         };
2642
2643         /*
2644          * Make sure the structs are really initialized before we expose the
2645          * capture control, in case we are interrupted and the interrupt handler
2646          * frees a page.
2647          */
2648         barrier();
2649         WRITE_ONCE(current->capture_control, &capc);
2650
2651         ret = compact_zone(&cc, &capc);
2652
2653         /*
2654          * Make sure we hide capture control first before we read the captured
2655          * page pointer, otherwise an interrupt could free and capture a page
2656          * and we would leak it.
2657          */
2658         WRITE_ONCE(current->capture_control, NULL);
2659         *capture = READ_ONCE(capc.page);
2660         /*
2661          * Technically, it is also possible that compaction is skipped but
2662          * the page is still captured out of luck(IRQ came and freed the page).
2663          * Returning COMPACT_SUCCESS in such cases helps in properly accounting
2664          * the COMPACT[STALL|FAIL] when compaction is skipped.
2665          */
2666         if (*capture)
2667                 ret = COMPACT_SUCCESS;
2668
2669         return ret;
2670 }
2671
2672 /**
2673  * try_to_compact_pages - Direct compact to satisfy a high-order allocation
2674  * @gfp_mask: The GFP mask of the current allocation
2675  * @order: The order of the current allocation
2676  * @alloc_flags: The allocation flags of the current allocation
2677  * @ac: The context of current allocation
2678  * @prio: Determines how hard direct compaction should try to succeed
2679  * @capture: Pointer to free page created by compaction will be stored here
2680  *
2681  * This is the main entry point for direct page compaction.
2682  */
2683 enum compact_result try_to_compact_pages(gfp_t gfp_mask, unsigned int order,
2684                 unsigned int alloc_flags, const struct alloc_context *ac,
2685                 enum compact_priority prio, struct page **capture)
2686 {
2687         int may_perform_io = (__force int)(gfp_mask & __GFP_IO);
2688         struct zoneref *z;
2689         struct zone *zone;
2690         enum compact_result rc = COMPACT_SKIPPED;
2691
2692         /*
2693          * Check if the GFP flags allow compaction - GFP_NOIO is really
2694          * tricky context because the migration might require IO
2695          */
2696         if (!may_perform_io)
2697                 return COMPACT_SKIPPED;
2698
2699         trace_mm_compaction_try_to_compact_pages(order, gfp_mask, prio);
2700
2701         /* Compact each zone in the list */
2702         for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2703                                         ac->highest_zoneidx, ac->nodemask) {
2704                 enum compact_result status;
2705
2706                 if (prio > MIN_COMPACT_PRIORITY
2707                                         && compaction_deferred(zone, order)) {
2708                         rc = max_t(enum compact_result, COMPACT_DEFERRED, rc);
2709                         continue;
2710                 }
2711
2712                 status = compact_zone_order(zone, order, gfp_mask, prio,
2713                                 alloc_flags, ac->highest_zoneidx, capture);
2714                 rc = max(status, rc);
2715
2716                 /* The allocation should succeed, stop compacting */
2717                 if (status == COMPACT_SUCCESS) {
2718                         /*
2719                          * We think the allocation will succeed in this zone,
2720                          * but it is not certain, hence the false. The caller
2721                          * will repeat this with true if allocation indeed
2722                          * succeeds in this zone.
2723                          */
2724                         compaction_defer_reset(zone, order, false);
2725
2726                         break;
2727                 }
2728
2729                 if (prio != COMPACT_PRIO_ASYNC && (status == COMPACT_COMPLETE ||
2730                                         status == COMPACT_PARTIAL_SKIPPED))
2731                         /*
2732                          * We think that allocation won't succeed in this zone
2733                          * so we defer compaction there. If it ends up
2734                          * succeeding after all, it will be reset.
2735                          */
2736                         defer_compaction(zone, order);
2737
2738                 /*
2739                  * We might have stopped compacting due to need_resched() in
2740                  * async compaction, or due to a fatal signal detected. In that
2741                  * case do not try further zones
2742                  */
2743                 if ((prio == COMPACT_PRIO_ASYNC && need_resched())
2744                                         || fatal_signal_pending(current))
2745                         break;
2746         }
2747
2748         return rc;
2749 }
2750
2751 /*
2752  * Compact all zones within a node till each zone's fragmentation score
2753  * reaches within proactive compaction thresholds (as determined by the
2754  * proactiveness tunable).
2755  *
2756  * It is possible that the function returns before reaching score targets
2757  * due to various back-off conditions, such as, contention on per-node or
2758  * per-zone locks.
2759  */
2760 static void proactive_compact_node(pg_data_t *pgdat)
2761 {
2762         int zoneid;
2763         struct zone *zone;
2764         struct compact_control cc = {
2765                 .order = -1,
2766                 .mode = MIGRATE_SYNC_LIGHT,
2767                 .ignore_skip_hint = true,
2768                 .whole_zone = true,
2769                 .gfp_mask = GFP_KERNEL,
2770                 .proactive_compaction = true,
2771         };
2772
2773         for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
2774                 zone = &pgdat->node_zones[zoneid];
2775                 if (!populated_zone(zone))
2776                         continue;
2777
2778                 cc.zone = zone;
2779
2780                 compact_zone(&cc, NULL);
2781
2782                 count_compact_events(KCOMPACTD_MIGRATE_SCANNED,
2783                                      cc.total_migrate_scanned);
2784                 count_compact_events(KCOMPACTD_FREE_SCANNED,
2785                                      cc.total_free_scanned);
2786         }
2787 }
2788
2789 /* Compact all zones within a node */
2790 static void compact_node(int nid)
2791 {
2792         pg_data_t *pgdat = NODE_DATA(nid);
2793         int zoneid;
2794         struct zone *zone;
2795         struct compact_control cc = {
2796                 .order = -1,
2797                 .mode = MIGRATE_SYNC,
2798                 .ignore_skip_hint = true,
2799                 .whole_zone = true,
2800                 .gfp_mask = GFP_KERNEL,
2801         };
2802
2803
2804         for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
2805
2806                 zone = &pgdat->node_zones[zoneid];
2807                 if (!populated_zone(zone))
2808                         continue;
2809
2810                 cc.zone = zone;
2811
2812                 compact_zone(&cc, NULL);
2813         }
2814 }
2815
2816 /* Compact all nodes in the system */
2817 static void compact_nodes(void)
2818 {
2819         int nid;
2820
2821         /* Flush pending updates to the LRU lists */
2822         lru_add_drain_all();
2823
2824         for_each_online_node(nid)
2825                 compact_node(nid);
2826 }
2827
2828 static int compaction_proactiveness_sysctl_handler(struct ctl_table *table, int write,
2829                 void *buffer, size_t *length, loff_t *ppos)
2830 {
2831         int rc, nid;
2832
2833         rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
2834         if (rc)
2835                 return rc;
2836
2837         if (write && sysctl_compaction_proactiveness) {
2838                 for_each_online_node(nid) {
2839                         pg_data_t *pgdat = NODE_DATA(nid);
2840
2841                         if (pgdat->proactive_compact_trigger)
2842                                 continue;
2843
2844                         pgdat->proactive_compact_trigger = true;
2845                         trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, -1,
2846                                                              pgdat->nr_zones - 1);
2847                         wake_up_interruptible(&pgdat->kcompactd_wait);
2848                 }
2849         }
2850
2851         return 0;
2852 }
2853
2854 /*
2855  * This is the entry point for compacting all nodes via
2856  * /proc/sys/vm/compact_memory
2857  */
2858 static int sysctl_compaction_handler(struct ctl_table *table, int write,
2859                         void *buffer, size_t *length, loff_t *ppos)
2860 {
2861         int ret;
2862
2863         ret = proc_dointvec(table, write, buffer, length, ppos);
2864         if (ret)
2865                 return ret;
2866
2867         if (sysctl_compact_memory != 1)
2868                 return -EINVAL;
2869
2870         if (write)
2871                 compact_nodes();
2872
2873         return 0;
2874 }
2875
2876 #if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
2877 static ssize_t compact_store(struct device *dev,
2878                              struct device_attribute *attr,
2879                              const char *buf, size_t count)
2880 {
2881         int nid = dev->id;
2882
2883         if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
2884                 /* Flush pending updates to the LRU lists */
2885                 lru_add_drain_all();
2886
2887                 compact_node(nid);
2888         }
2889
2890         return count;
2891 }
2892 static DEVICE_ATTR_WO(compact);
2893
2894 int compaction_register_node(struct node *node)
2895 {
2896         return device_create_file(&node->dev, &dev_attr_compact);
2897 }
2898
2899 void compaction_unregister_node(struct node *node)
2900 {
2901         device_remove_file(&node->dev, &dev_attr_compact);
2902 }
2903 #endif /* CONFIG_SYSFS && CONFIG_NUMA */
2904
2905 static inline bool kcompactd_work_requested(pg_data_t *pgdat)
2906 {
2907         return pgdat->kcompactd_max_order > 0 || kthread_should_stop() ||
2908                 pgdat->proactive_compact_trigger;
2909 }
2910
2911 static bool kcompactd_node_suitable(pg_data_t *pgdat)
2912 {
2913         int zoneid;
2914         struct zone *zone;
2915         enum zone_type highest_zoneidx = pgdat->kcompactd_highest_zoneidx;
2916
2917         for (zoneid = 0; zoneid <= highest_zoneidx; zoneid++) {
2918                 zone = &pgdat->node_zones[zoneid];
2919
2920                 if (!populated_zone(zone))
2921                         continue;
2922
2923                 /* Allocation can already succeed, check other zones */
2924                 if (zone_watermark_ok(zone, pgdat->kcompactd_max_order,
2925                                       min_wmark_pages(zone),
2926                                       highest_zoneidx, 0))
2927                         continue;
2928
2929                 if (compaction_suitable(zone, pgdat->kcompactd_max_order,
2930                                         highest_zoneidx))
2931                         return true;
2932         }
2933
2934         return false;
2935 }
2936
2937 static void kcompactd_do_work(pg_data_t *pgdat)
2938 {
2939         /*
2940          * With no special task, compact all zones so that a page of requested
2941          * order is allocatable.
2942          */
2943         int zoneid;
2944         struct zone *zone;
2945         struct compact_control cc = {
2946                 .order = pgdat->kcompactd_max_order,
2947                 .search_order = pgdat->kcompactd_max_order,
2948                 .highest_zoneidx = pgdat->kcompactd_highest_zoneidx,
2949                 .mode = MIGRATE_SYNC_LIGHT,
2950                 .ignore_skip_hint = false,
2951                 .gfp_mask = GFP_KERNEL,
2952         };
2953         trace_mm_compaction_kcompactd_wake(pgdat->node_id, cc.order,
2954                                                         cc.highest_zoneidx);
2955         count_compact_event(KCOMPACTD_WAKE);
2956
2957         for (zoneid = 0; zoneid <= cc.highest_zoneidx; zoneid++) {
2958                 int status;
2959
2960                 zone = &pgdat->node_zones[zoneid];
2961                 if (!populated_zone(zone))
2962                         continue;
2963
2964                 if (compaction_deferred(zone, cc.order))
2965                         continue;
2966
2967                 /* Allocation can already succeed, nothing to do */
2968                 if (zone_watermark_ok(zone, cc.order,
2969                                       min_wmark_pages(zone), zoneid, 0))
2970                         continue;
2971
2972                 if (!compaction_suitable(zone, cc.order, zoneid))
2973                         continue;
2974
2975                 if (kthread_should_stop())
2976                         return;
2977
2978                 cc.zone = zone;
2979                 status = compact_zone(&cc, NULL);
2980
2981                 if (status == COMPACT_SUCCESS) {
2982                         compaction_defer_reset(zone, cc.order, false);
2983                 } else if (status == COMPACT_PARTIAL_SKIPPED || status == COMPACT_COMPLETE) {
2984                         /*
2985                          * Buddy pages may become stranded on pcps that could
2986                          * otherwise coalesce on the zone's free area for
2987                          * order >= cc.order.  This is ratelimited by the
2988                          * upcoming deferral.
2989                          */
2990                         drain_all_pages(zone);
2991
2992                         /*
2993                          * We use sync migration mode here, so we defer like
2994                          * sync direct compaction does.
2995                          */
2996                         defer_compaction(zone, cc.order);
2997                 }
2998
2999                 count_compact_events(KCOMPACTD_MIGRATE_SCANNED,
3000                                      cc.total_migrate_scanned);
3001                 count_compact_events(KCOMPACTD_FREE_SCANNED,
3002                                      cc.total_free_scanned);
3003         }
3004
3005         /*
3006          * Regardless of success, we are done until woken up next. But remember
3007          * the requested order/highest_zoneidx in case it was higher/tighter
3008          * than our current ones
3009          */
3010         if (pgdat->kcompactd_max_order <= cc.order)
3011                 pgdat->kcompactd_max_order = 0;
3012         if (pgdat->kcompactd_highest_zoneidx >= cc.highest_zoneidx)
3013                 pgdat->kcompactd_highest_zoneidx = pgdat->nr_zones - 1;
3014 }
3015
3016 void wakeup_kcompactd(pg_data_t *pgdat, int order, int highest_zoneidx)
3017 {
3018         if (!order)
3019                 return;
3020
3021         if (pgdat->kcompactd_max_order < order)
3022                 pgdat->kcompactd_max_order = order;
3023
3024         if (pgdat->kcompactd_highest_zoneidx > highest_zoneidx)
3025                 pgdat->kcompactd_highest_zoneidx = highest_zoneidx;
3026
3027         /*
3028          * Pairs with implicit barrier in wait_event_freezable()
3029          * such that wakeups are not missed.
3030          */
3031         if (!wq_has_sleeper(&pgdat->kcompactd_wait))
3032                 return;
3033
3034         if (!kcompactd_node_suitable(pgdat))
3035                 return;
3036
3037         trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, order,
3038                                                         highest_zoneidx);
3039         wake_up_interruptible(&pgdat->kcompactd_wait);
3040 }
3041
3042 /*
3043  * The background compaction daemon, started as a kernel thread
3044  * from the init process.
3045  */
3046 static int kcompactd(void *p)
3047 {
3048         pg_data_t *pgdat = (pg_data_t *)p;
3049         struct task_struct *tsk = current;
3050         long default_timeout = msecs_to_jiffies(HPAGE_FRAG_CHECK_INTERVAL_MSEC);
3051         long timeout = default_timeout;
3052
3053         const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
3054
3055         if (!cpumask_empty(cpumask))
3056                 set_cpus_allowed_ptr(tsk, cpumask);
3057
3058         set_freezable();
3059
3060         pgdat->kcompactd_max_order = 0;
3061         pgdat->kcompactd_highest_zoneidx = pgdat->nr_zones - 1;
3062
3063         while (!kthread_should_stop()) {
3064                 unsigned long pflags;
3065
3066                 /*
3067                  * Avoid the unnecessary wakeup for proactive compaction
3068                  * when it is disabled.
3069                  */
3070                 if (!sysctl_compaction_proactiveness)
3071                         timeout = MAX_SCHEDULE_TIMEOUT;
3072                 trace_mm_compaction_kcompactd_sleep(pgdat->node_id);
3073                 if (wait_event_freezable_timeout(pgdat->kcompactd_wait,
3074                         kcompactd_work_requested(pgdat), timeout) &&
3075                         !pgdat->proactive_compact_trigger) {
3076
3077                         psi_memstall_enter(&pflags);
3078                         kcompactd_do_work(pgdat);
3079                         psi_memstall_leave(&pflags);
3080                         /*
3081                          * Reset the timeout value. The defer timeout from
3082                          * proactive compaction is lost here but that is fine
3083                          * as the condition of the zone changing substantionally
3084                          * then carrying on with the previous defer interval is
3085                          * not useful.
3086                          */
3087                         timeout = default_timeout;
3088                         continue;
3089                 }
3090
3091                 /*
3092                  * Start the proactive work with default timeout. Based
3093                  * on the fragmentation score, this timeout is updated.
3094                  */
3095                 timeout = default_timeout;
3096                 if (should_proactive_compact_node(pgdat)) {
3097                         unsigned int prev_score, score;
3098
3099                         prev_score = fragmentation_score_node(pgdat);
3100                         proactive_compact_node(pgdat);
3101                         score = fragmentation_score_node(pgdat);
3102                         /*
3103                          * Defer proactive compaction if the fragmentation
3104                          * score did not go down i.e. no progress made.
3105                          */
3106                         if (unlikely(score >= prev_score))
3107                                 timeout =
3108                                    default_timeout << COMPACT_MAX_DEFER_SHIFT;
3109                 }
3110                 if (unlikely(pgdat->proactive_compact_trigger))
3111                         pgdat->proactive_compact_trigger = false;
3112         }
3113
3114         return 0;
3115 }
3116
3117 /*
3118  * This kcompactd start function will be called by init and node-hot-add.
3119  * On node-hot-add, kcompactd will moved to proper cpus if cpus are hot-added.
3120  */
3121 void __meminit kcompactd_run(int nid)
3122 {
3123         pg_data_t *pgdat = NODE_DATA(nid);
3124
3125         if (pgdat->kcompactd)
3126                 return;
3127
3128         pgdat->kcompactd = kthread_run(kcompactd, pgdat, "kcompactd%d", nid);
3129         if (IS_ERR(pgdat->kcompactd)) {
3130                 pr_err("Failed to start kcompactd on node %d\n", nid);
3131                 pgdat->kcompactd = NULL;
3132         }
3133 }
3134
3135 /*
3136  * Called by memory hotplug when all memory in a node is offlined. Caller must
3137  * be holding mem_hotplug_begin/done().
3138  */
3139 void __meminit kcompactd_stop(int nid)
3140 {
3141         struct task_struct *kcompactd = NODE_DATA(nid)->kcompactd;
3142
3143         if (kcompactd) {
3144                 kthread_stop(kcompactd);
3145                 NODE_DATA(nid)->kcompactd = NULL;
3146         }
3147 }
3148
3149 /*
3150  * It's optimal to keep kcompactd on the same CPUs as their memory, but
3151  * not required for correctness. So if the last cpu in a node goes
3152  * away, we get changed to run anywhere: as the first one comes back,
3153  * restore their cpu bindings.
3154  */
3155 static int kcompactd_cpu_online(unsigned int cpu)
3156 {
3157         int nid;
3158
3159         for_each_node_state(nid, N_MEMORY) {
3160                 pg_data_t *pgdat = NODE_DATA(nid);
3161                 const struct cpumask *mask;
3162
3163                 mask = cpumask_of_node(pgdat->node_id);
3164
3165                 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3166                         /* One of our CPUs online: restore mask */
3167                         if (pgdat->kcompactd)
3168                                 set_cpus_allowed_ptr(pgdat->kcompactd, mask);
3169         }
3170         return 0;
3171 }
3172
3173 static int proc_dointvec_minmax_warn_RT_change(struct ctl_table *table,
3174                 int write, void *buffer, size_t *lenp, loff_t *ppos)
3175 {
3176         int ret, old;
3177
3178         if (!IS_ENABLED(CONFIG_PREEMPT_RT) || !write)
3179                 return proc_dointvec_minmax(table, write, buffer, lenp, ppos);
3180
3181         old = *(int *)table->data;
3182         ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
3183         if (ret)
3184                 return ret;
3185         if (old != *(int *)table->data)
3186                 pr_warn_once("sysctl attribute %s changed by %s[%d]\n",
3187                              table->procname, current->comm,
3188                              task_pid_nr(current));
3189         return ret;
3190 }
3191
3192 static struct ctl_table vm_compaction[] = {
3193         {
3194                 .procname       = "compact_memory",
3195                 .data           = &sysctl_compact_memory,
3196                 .maxlen         = sizeof(int),
3197                 .mode           = 0200,
3198                 .proc_handler   = sysctl_compaction_handler,
3199         },
3200         {
3201                 .procname       = "compaction_proactiveness",
3202                 .data           = &sysctl_compaction_proactiveness,
3203                 .maxlen         = sizeof(sysctl_compaction_proactiveness),
3204                 .mode           = 0644,
3205                 .proc_handler   = compaction_proactiveness_sysctl_handler,
3206                 .extra1         = SYSCTL_ZERO,
3207                 .extra2         = SYSCTL_ONE_HUNDRED,
3208         },
3209         {
3210                 .procname       = "extfrag_threshold",
3211                 .data           = &sysctl_extfrag_threshold,
3212                 .maxlen         = sizeof(int),
3213                 .mode           = 0644,
3214                 .proc_handler   = proc_dointvec_minmax,
3215                 .extra1         = SYSCTL_ZERO,
3216                 .extra2         = SYSCTL_ONE_THOUSAND,
3217         },
3218         {
3219                 .procname       = "compact_unevictable_allowed",
3220                 .data           = &sysctl_compact_unevictable_allowed,
3221                 .maxlen         = sizeof(int),
3222                 .mode           = 0644,
3223                 .proc_handler   = proc_dointvec_minmax_warn_RT_change,
3224                 .extra1         = SYSCTL_ZERO,
3225                 .extra2         = SYSCTL_ONE,
3226         },
3227         { }
3228 };
3229
3230 static int __init kcompactd_init(void)
3231 {
3232         int nid;
3233         int ret;
3234
3235         ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
3236                                         "mm/compaction:online",
3237                                         kcompactd_cpu_online, NULL);
3238         if (ret < 0) {
3239                 pr_err("kcompactd: failed to register hotplug callbacks.\n");
3240                 return ret;
3241         }
3242
3243         for_each_node_state(nid, N_MEMORY)
3244                 kcompactd_run(nid);
3245         register_sysctl_init("vm", vm_compaction);
3246         return 0;
3247 }
3248 subsys_initcall(kcompactd_init)
3249
3250 #endif /* CONFIG_COMPACTION */