Revert "Revert "mm/compaction: fix set skip in fast_find_migrateblock""
[platform/kernel/linux-starfive.git] / mm / compaction.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * linux/mm/compaction.c
4  *
5  * Memory compaction for the reduction of external fragmentation. Note that
6  * this heavily depends upon page migration to do all the real heavy
7  * lifting
8  *
9  * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
10  */
11 #include <linux/cpu.h>
12 #include <linux/swap.h>
13 #include <linux/migrate.h>
14 #include <linux/compaction.h>
15 #include <linux/mm_inline.h>
16 #include <linux/sched/signal.h>
17 #include <linux/backing-dev.h>
18 #include <linux/sysctl.h>
19 #include <linux/sysfs.h>
20 #include <linux/page-isolation.h>
21 #include <linux/kasan.h>
22 #include <linux/kthread.h>
23 #include <linux/freezer.h>
24 #include <linux/page_owner.h>
25 #include <linux/psi.h>
26 #include "internal.h"
27
28 #ifdef CONFIG_COMPACTION
29 /*
30  * Fragmentation score check interval for proactive compaction purposes.
31  */
32 #define HPAGE_FRAG_CHECK_INTERVAL_MSEC  (500)
33
34 static inline void count_compact_event(enum vm_event_item item)
35 {
36         count_vm_event(item);
37 }
38
39 static inline void count_compact_events(enum vm_event_item item, long delta)
40 {
41         count_vm_events(item, delta);
42 }
43 #else
44 #define count_compact_event(item) do { } while (0)
45 #define count_compact_events(item, delta) do { } while (0)
46 #endif
47
48 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
49
50 #define CREATE_TRACE_POINTS
51 #include <trace/events/compaction.h>
52
53 #define block_start_pfn(pfn, order)     round_down(pfn, 1UL << (order))
54 #define block_end_pfn(pfn, order)       ALIGN((pfn) + 1, 1UL << (order))
55
56 /*
57  * Page order with-respect-to which proactive compaction
58  * calculates external fragmentation, which is used as
59  * the "fragmentation score" of a node/zone.
60  */
61 #if defined CONFIG_TRANSPARENT_HUGEPAGE
62 #define COMPACTION_HPAGE_ORDER  HPAGE_PMD_ORDER
63 #elif defined CONFIG_HUGETLBFS
64 #define COMPACTION_HPAGE_ORDER  HUGETLB_PAGE_ORDER
65 #else
66 #define COMPACTION_HPAGE_ORDER  (PMD_SHIFT - PAGE_SHIFT)
67 #endif
68
69 static unsigned long release_freepages(struct list_head *freelist)
70 {
71         struct page *page, *next;
72         unsigned long high_pfn = 0;
73
74         list_for_each_entry_safe(page, next, freelist, lru) {
75                 unsigned long pfn = page_to_pfn(page);
76                 list_del(&page->lru);
77                 __free_page(page);
78                 if (pfn > high_pfn)
79                         high_pfn = pfn;
80         }
81
82         return high_pfn;
83 }
84
85 static void split_map_pages(struct list_head *list)
86 {
87         unsigned int i, order, nr_pages;
88         struct page *page, *next;
89         LIST_HEAD(tmp_list);
90
91         list_for_each_entry_safe(page, next, list, lru) {
92                 list_del(&page->lru);
93
94                 order = page_private(page);
95                 nr_pages = 1 << order;
96
97                 post_alloc_hook(page, order, __GFP_MOVABLE);
98                 if (order)
99                         split_page(page, order);
100
101                 for (i = 0; i < nr_pages; i++) {
102                         list_add(&page->lru, &tmp_list);
103                         page++;
104                 }
105         }
106
107         list_splice(&tmp_list, list);
108 }
109
110 #ifdef CONFIG_COMPACTION
111 bool PageMovable(struct page *page)
112 {
113         const struct movable_operations *mops;
114
115         VM_BUG_ON_PAGE(!PageLocked(page), page);
116         if (!__PageMovable(page))
117                 return false;
118
119         mops = page_movable_ops(page);
120         if (mops)
121                 return true;
122
123         return false;
124 }
125
126 void __SetPageMovable(struct page *page, const struct movable_operations *mops)
127 {
128         VM_BUG_ON_PAGE(!PageLocked(page), page);
129         VM_BUG_ON_PAGE((unsigned long)mops & PAGE_MAPPING_MOVABLE, page);
130         page->mapping = (void *)((unsigned long)mops | PAGE_MAPPING_MOVABLE);
131 }
132 EXPORT_SYMBOL(__SetPageMovable);
133
134 void __ClearPageMovable(struct page *page)
135 {
136         VM_BUG_ON_PAGE(!PageMovable(page), page);
137         /*
138          * This page still has the type of a movable page, but it's
139          * actually not movable any more.
140          */
141         page->mapping = (void *)PAGE_MAPPING_MOVABLE;
142 }
143 EXPORT_SYMBOL(__ClearPageMovable);
144
145 /* Do not skip compaction more than 64 times */
146 #define COMPACT_MAX_DEFER_SHIFT 6
147
148 /*
149  * Compaction is deferred when compaction fails to result in a page
150  * allocation success. 1 << compact_defer_shift, compactions are skipped up
151  * to a limit of 1 << COMPACT_MAX_DEFER_SHIFT
152  */
153 static void defer_compaction(struct zone *zone, int order)
154 {
155         zone->compact_considered = 0;
156         zone->compact_defer_shift++;
157
158         if (order < zone->compact_order_failed)
159                 zone->compact_order_failed = order;
160
161         if (zone->compact_defer_shift > COMPACT_MAX_DEFER_SHIFT)
162                 zone->compact_defer_shift = COMPACT_MAX_DEFER_SHIFT;
163
164         trace_mm_compaction_defer_compaction(zone, order);
165 }
166
167 /* Returns true if compaction should be skipped this time */
168 static bool compaction_deferred(struct zone *zone, int order)
169 {
170         unsigned long defer_limit = 1UL << zone->compact_defer_shift;
171
172         if (order < zone->compact_order_failed)
173                 return false;
174
175         /* Avoid possible overflow */
176         if (++zone->compact_considered >= defer_limit) {
177                 zone->compact_considered = defer_limit;
178                 return false;
179         }
180
181         trace_mm_compaction_deferred(zone, order);
182
183         return true;
184 }
185
186 /*
187  * Update defer tracking counters after successful compaction of given order,
188  * which means an allocation either succeeded (alloc_success == true) or is
189  * expected to succeed.
190  */
191 void compaction_defer_reset(struct zone *zone, int order,
192                 bool alloc_success)
193 {
194         if (alloc_success) {
195                 zone->compact_considered = 0;
196                 zone->compact_defer_shift = 0;
197         }
198         if (order >= zone->compact_order_failed)
199                 zone->compact_order_failed = order + 1;
200
201         trace_mm_compaction_defer_reset(zone, order);
202 }
203
204 /* Returns true if restarting compaction after many failures */
205 static bool compaction_restarting(struct zone *zone, int order)
206 {
207         if (order < zone->compact_order_failed)
208                 return false;
209
210         return zone->compact_defer_shift == COMPACT_MAX_DEFER_SHIFT &&
211                 zone->compact_considered >= 1UL << zone->compact_defer_shift;
212 }
213
214 /* Returns true if the pageblock should be scanned for pages to isolate. */
215 static inline bool isolation_suitable(struct compact_control *cc,
216                                         struct page *page)
217 {
218         if (cc->ignore_skip_hint)
219                 return true;
220
221         return !get_pageblock_skip(page);
222 }
223
224 static void reset_cached_positions(struct zone *zone)
225 {
226         zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn;
227         zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn;
228         zone->compact_cached_free_pfn =
229                                 pageblock_start_pfn(zone_end_pfn(zone) - 1);
230 }
231
232 /*
233  * Compound pages of >= pageblock_order should consistently be skipped until
234  * released. It is always pointless to compact pages of such order (if they are
235  * migratable), and the pageblocks they occupy cannot contain any free pages.
236  */
237 static bool pageblock_skip_persistent(struct page *page)
238 {
239         if (!PageCompound(page))
240                 return false;
241
242         page = compound_head(page);
243
244         if (compound_order(page) >= pageblock_order)
245                 return true;
246
247         return false;
248 }
249
250 static bool
251 __reset_isolation_pfn(struct zone *zone, unsigned long pfn, bool check_source,
252                                                         bool check_target)
253 {
254         struct page *page = pfn_to_online_page(pfn);
255         struct page *block_page;
256         struct page *end_page;
257         unsigned long block_pfn;
258
259         if (!page)
260                 return false;
261         if (zone != page_zone(page))
262                 return false;
263         if (pageblock_skip_persistent(page))
264                 return false;
265
266         /*
267          * If skip is already cleared do no further checking once the
268          * restart points have been set.
269          */
270         if (check_source && check_target && !get_pageblock_skip(page))
271                 return true;
272
273         /*
274          * If clearing skip for the target scanner, do not select a
275          * non-movable pageblock as the starting point.
276          */
277         if (!check_source && check_target &&
278             get_pageblock_migratetype(page) != MIGRATE_MOVABLE)
279                 return false;
280
281         /* Ensure the start of the pageblock or zone is online and valid */
282         block_pfn = pageblock_start_pfn(pfn);
283         block_pfn = max(block_pfn, zone->zone_start_pfn);
284         block_page = pfn_to_online_page(block_pfn);
285         if (block_page) {
286                 page = block_page;
287                 pfn = block_pfn;
288         }
289
290         /* Ensure the end of the pageblock or zone is online and valid */
291         block_pfn = pageblock_end_pfn(pfn) - 1;
292         block_pfn = min(block_pfn, zone_end_pfn(zone) - 1);
293         end_page = pfn_to_online_page(block_pfn);
294         if (!end_page)
295                 return false;
296
297         /*
298          * Only clear the hint if a sample indicates there is either a
299          * free page or an LRU page in the block. One or other condition
300          * is necessary for the block to be a migration source/target.
301          */
302         do {
303                 if (check_source && PageLRU(page)) {
304                         clear_pageblock_skip(page);
305                         return true;
306                 }
307
308                 if (check_target && PageBuddy(page)) {
309                         clear_pageblock_skip(page);
310                         return true;
311                 }
312
313                 page += (1 << PAGE_ALLOC_COSTLY_ORDER);
314         } while (page <= end_page);
315
316         return false;
317 }
318
319 /*
320  * This function is called to clear all cached information on pageblocks that
321  * should be skipped for page isolation when the migrate and free page scanner
322  * meet.
323  */
324 static void __reset_isolation_suitable(struct zone *zone)
325 {
326         unsigned long migrate_pfn = zone->zone_start_pfn;
327         unsigned long free_pfn = zone_end_pfn(zone) - 1;
328         unsigned long reset_migrate = free_pfn;
329         unsigned long reset_free = migrate_pfn;
330         bool source_set = false;
331         bool free_set = false;
332
333         if (!zone->compact_blockskip_flush)
334                 return;
335
336         zone->compact_blockskip_flush = false;
337
338         /*
339          * Walk the zone and update pageblock skip information. Source looks
340          * for PageLRU while target looks for PageBuddy. When the scanner
341          * is found, both PageBuddy and PageLRU are checked as the pageblock
342          * is suitable as both source and target.
343          */
344         for (; migrate_pfn < free_pfn; migrate_pfn += pageblock_nr_pages,
345                                         free_pfn -= pageblock_nr_pages) {
346                 cond_resched();
347
348                 /* Update the migrate PFN */
349                 if (__reset_isolation_pfn(zone, migrate_pfn, true, source_set) &&
350                     migrate_pfn < reset_migrate) {
351                         source_set = true;
352                         reset_migrate = migrate_pfn;
353                         zone->compact_init_migrate_pfn = reset_migrate;
354                         zone->compact_cached_migrate_pfn[0] = reset_migrate;
355                         zone->compact_cached_migrate_pfn[1] = reset_migrate;
356                 }
357
358                 /* Update the free PFN */
359                 if (__reset_isolation_pfn(zone, free_pfn, free_set, true) &&
360                     free_pfn > reset_free) {
361                         free_set = true;
362                         reset_free = free_pfn;
363                         zone->compact_init_free_pfn = reset_free;
364                         zone->compact_cached_free_pfn = reset_free;
365                 }
366         }
367
368         /* Leave no distance if no suitable block was reset */
369         if (reset_migrate >= reset_free) {
370                 zone->compact_cached_migrate_pfn[0] = migrate_pfn;
371                 zone->compact_cached_migrate_pfn[1] = migrate_pfn;
372                 zone->compact_cached_free_pfn = free_pfn;
373         }
374 }
375
376 void reset_isolation_suitable(pg_data_t *pgdat)
377 {
378         int zoneid;
379
380         for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
381                 struct zone *zone = &pgdat->node_zones[zoneid];
382                 if (!populated_zone(zone))
383                         continue;
384
385                 /* Only flush if a full compaction finished recently */
386                 if (zone->compact_blockskip_flush)
387                         __reset_isolation_suitable(zone);
388         }
389 }
390
391 /*
392  * Sets the pageblock skip bit if it was clear. Note that this is a hint as
393  * locks are not required for read/writers. Returns true if it was already set.
394  */
395 static bool test_and_set_skip(struct compact_control *cc, struct page *page)
396 {
397         bool skip;
398
399         /* Do not update if skip hint is being ignored */
400         if (cc->ignore_skip_hint)
401                 return false;
402
403         skip = get_pageblock_skip(page);
404         if (!skip && !cc->no_set_skip_hint)
405                 set_pageblock_skip(page);
406
407         return skip;
408 }
409
410 static void update_cached_migrate(struct compact_control *cc, unsigned long pfn)
411 {
412         struct zone *zone = cc->zone;
413
414         pfn = pageblock_end_pfn(pfn);
415
416         /* Set for isolation rather than compaction */
417         if (cc->no_set_skip_hint)
418                 return;
419
420         if (pfn > zone->compact_cached_migrate_pfn[0])
421                 zone->compact_cached_migrate_pfn[0] = pfn;
422         if (cc->mode != MIGRATE_ASYNC &&
423             pfn > zone->compact_cached_migrate_pfn[1])
424                 zone->compact_cached_migrate_pfn[1] = pfn;
425 }
426
427 /*
428  * If no pages were isolated then mark this pageblock to be skipped in the
429  * future. The information is later cleared by __reset_isolation_suitable().
430  */
431 static void update_pageblock_skip(struct compact_control *cc,
432                         struct page *page, unsigned long pfn)
433 {
434         struct zone *zone = cc->zone;
435
436         if (cc->no_set_skip_hint)
437                 return;
438
439         if (!page)
440                 return;
441
442         set_pageblock_skip(page);
443
444         /* Update where async and sync compaction should restart */
445         if (pfn < zone->compact_cached_free_pfn)
446                 zone->compact_cached_free_pfn = pfn;
447 }
448 #else
449 static inline bool isolation_suitable(struct compact_control *cc,
450                                         struct page *page)
451 {
452         return true;
453 }
454
455 static inline bool pageblock_skip_persistent(struct page *page)
456 {
457         return false;
458 }
459
460 static inline void update_pageblock_skip(struct compact_control *cc,
461                         struct page *page, unsigned long pfn)
462 {
463 }
464
465 static void update_cached_migrate(struct compact_control *cc, unsigned long pfn)
466 {
467 }
468
469 static bool test_and_set_skip(struct compact_control *cc, struct page *page)
470 {
471         return false;
472 }
473 #endif /* CONFIG_COMPACTION */
474
475 /*
476  * Compaction requires the taking of some coarse locks that are potentially
477  * very heavily contended. For async compaction, trylock and record if the
478  * lock is contended. The lock will still be acquired but compaction will
479  * abort when the current block is finished regardless of success rate.
480  * Sync compaction acquires the lock.
481  *
482  * Always returns true which makes it easier to track lock state in callers.
483  */
484 static bool compact_lock_irqsave(spinlock_t *lock, unsigned long *flags,
485                                                 struct compact_control *cc)
486         __acquires(lock)
487 {
488         /* Track if the lock is contended in async mode */
489         if (cc->mode == MIGRATE_ASYNC && !cc->contended) {
490                 if (spin_trylock_irqsave(lock, *flags))
491                         return true;
492
493                 cc->contended = true;
494         }
495
496         spin_lock_irqsave(lock, *flags);
497         return true;
498 }
499
500 /*
501  * Compaction requires the taking of some coarse locks that are potentially
502  * very heavily contended. The lock should be periodically unlocked to avoid
503  * having disabled IRQs for a long time, even when there is nobody waiting on
504  * the lock. It might also be that allowing the IRQs will result in
505  * need_resched() becoming true. If scheduling is needed, compaction schedules.
506  * Either compaction type will also abort if a fatal signal is pending.
507  * In either case if the lock was locked, it is dropped and not regained.
508  *
509  * Returns true if compaction should abort due to fatal signal pending.
510  * Returns false when compaction can continue.
511  */
512 static bool compact_unlock_should_abort(spinlock_t *lock,
513                 unsigned long flags, bool *locked, struct compact_control *cc)
514 {
515         if (*locked) {
516                 spin_unlock_irqrestore(lock, flags);
517                 *locked = false;
518         }
519
520         if (fatal_signal_pending(current)) {
521                 cc->contended = true;
522                 return true;
523         }
524
525         cond_resched();
526
527         return false;
528 }
529
530 /*
531  * Isolate free pages onto a private freelist. If @strict is true, will abort
532  * returning 0 on any invalid PFNs or non-free pages inside of the pageblock
533  * (even though it may still end up isolating some pages).
534  */
535 static unsigned long isolate_freepages_block(struct compact_control *cc,
536                                 unsigned long *start_pfn,
537                                 unsigned long end_pfn,
538                                 struct list_head *freelist,
539                                 unsigned int stride,
540                                 bool strict)
541 {
542         int nr_scanned = 0, total_isolated = 0;
543         struct page *cursor;
544         unsigned long flags = 0;
545         bool locked = false;
546         unsigned long blockpfn = *start_pfn;
547         unsigned int order;
548
549         /* Strict mode is for isolation, speed is secondary */
550         if (strict)
551                 stride = 1;
552
553         cursor = pfn_to_page(blockpfn);
554
555         /* Isolate free pages. */
556         for (; blockpfn < end_pfn; blockpfn += stride, cursor += stride) {
557                 int isolated;
558                 struct page *page = cursor;
559
560                 /*
561                  * Periodically drop the lock (if held) regardless of its
562                  * contention, to give chance to IRQs. Abort if fatal signal
563                  * pending.
564                  */
565                 if (!(blockpfn % COMPACT_CLUSTER_MAX)
566                     && compact_unlock_should_abort(&cc->zone->lock, flags,
567                                                                 &locked, cc))
568                         break;
569
570                 nr_scanned++;
571
572                 /*
573                  * For compound pages such as THP and hugetlbfs, we can save
574                  * potentially a lot of iterations if we skip them at once.
575                  * The check is racy, but we can consider only valid values
576                  * and the only danger is skipping too much.
577                  */
578                 if (PageCompound(page)) {
579                         const unsigned int order = compound_order(page);
580
581                         if (likely(order <= MAX_ORDER)) {
582                                 blockpfn += (1UL << order) - 1;
583                                 cursor += (1UL << order) - 1;
584                                 nr_scanned += (1UL << order) - 1;
585                         }
586                         goto isolate_fail;
587                 }
588
589                 if (!PageBuddy(page))
590                         goto isolate_fail;
591
592                 /* If we already hold the lock, we can skip some rechecking. */
593                 if (!locked) {
594                         locked = compact_lock_irqsave(&cc->zone->lock,
595                                                                 &flags, cc);
596
597                         /* Recheck this is a buddy page under lock */
598                         if (!PageBuddy(page))
599                                 goto isolate_fail;
600                 }
601
602                 /* Found a free page, will break it into order-0 pages */
603                 order = buddy_order(page);
604                 isolated = __isolate_free_page(page, order);
605                 if (!isolated)
606                         break;
607                 set_page_private(page, order);
608
609                 nr_scanned += isolated - 1;
610                 total_isolated += isolated;
611                 cc->nr_freepages += isolated;
612                 list_add_tail(&page->lru, freelist);
613
614                 if (!strict && cc->nr_migratepages <= cc->nr_freepages) {
615                         blockpfn += isolated;
616                         break;
617                 }
618                 /* Advance to the end of split page */
619                 blockpfn += isolated - 1;
620                 cursor += isolated - 1;
621                 continue;
622
623 isolate_fail:
624                 if (strict)
625                         break;
626                 else
627                         continue;
628
629         }
630
631         if (locked)
632                 spin_unlock_irqrestore(&cc->zone->lock, flags);
633
634         /*
635          * There is a tiny chance that we have read bogus compound_order(),
636          * so be careful to not go outside of the pageblock.
637          */
638         if (unlikely(blockpfn > end_pfn))
639                 blockpfn = end_pfn;
640
641         trace_mm_compaction_isolate_freepages(*start_pfn, blockpfn,
642                                         nr_scanned, total_isolated);
643
644         /* Record how far we have got within the block */
645         *start_pfn = blockpfn;
646
647         /*
648          * If strict isolation is requested by CMA then check that all the
649          * pages requested were isolated. If there were any failures, 0 is
650          * returned and CMA will fail.
651          */
652         if (strict && blockpfn < end_pfn)
653                 total_isolated = 0;
654
655         cc->total_free_scanned += nr_scanned;
656         if (total_isolated)
657                 count_compact_events(COMPACTISOLATED, total_isolated);
658         return total_isolated;
659 }
660
661 /**
662  * isolate_freepages_range() - isolate free pages.
663  * @cc:        Compaction control structure.
664  * @start_pfn: The first PFN to start isolating.
665  * @end_pfn:   The one-past-last PFN.
666  *
667  * Non-free pages, invalid PFNs, or zone boundaries within the
668  * [start_pfn, end_pfn) range are considered errors, cause function to
669  * undo its actions and return zero.
670  *
671  * Otherwise, function returns one-past-the-last PFN of isolated page
672  * (which may be greater then end_pfn if end fell in a middle of
673  * a free page).
674  */
675 unsigned long
676 isolate_freepages_range(struct compact_control *cc,
677                         unsigned long start_pfn, unsigned long end_pfn)
678 {
679         unsigned long isolated, pfn, block_start_pfn, block_end_pfn;
680         LIST_HEAD(freelist);
681
682         pfn = start_pfn;
683         block_start_pfn = pageblock_start_pfn(pfn);
684         if (block_start_pfn < cc->zone->zone_start_pfn)
685                 block_start_pfn = cc->zone->zone_start_pfn;
686         block_end_pfn = pageblock_end_pfn(pfn);
687
688         for (; pfn < end_pfn; pfn += isolated,
689                                 block_start_pfn = block_end_pfn,
690                                 block_end_pfn += pageblock_nr_pages) {
691                 /* Protect pfn from changing by isolate_freepages_block */
692                 unsigned long isolate_start_pfn = pfn;
693
694                 block_end_pfn = min(block_end_pfn, end_pfn);
695
696                 /*
697                  * pfn could pass the block_end_pfn if isolated freepage
698                  * is more than pageblock order. In this case, we adjust
699                  * scanning range to right one.
700                  */
701                 if (pfn >= block_end_pfn) {
702                         block_start_pfn = pageblock_start_pfn(pfn);
703                         block_end_pfn = pageblock_end_pfn(pfn);
704                         block_end_pfn = min(block_end_pfn, end_pfn);
705                 }
706
707                 if (!pageblock_pfn_to_page(block_start_pfn,
708                                         block_end_pfn, cc->zone))
709                         break;
710
711                 isolated = isolate_freepages_block(cc, &isolate_start_pfn,
712                                         block_end_pfn, &freelist, 0, true);
713
714                 /*
715                  * In strict mode, isolate_freepages_block() returns 0 if
716                  * there are any holes in the block (ie. invalid PFNs or
717                  * non-free pages).
718                  */
719                 if (!isolated)
720                         break;
721
722                 /*
723                  * If we managed to isolate pages, it is always (1 << n) *
724                  * pageblock_nr_pages for some non-negative n.  (Max order
725                  * page may span two pageblocks).
726                  */
727         }
728
729         /* __isolate_free_page() does not map the pages */
730         split_map_pages(&freelist);
731
732         if (pfn < end_pfn) {
733                 /* Loop terminated early, cleanup. */
734                 release_freepages(&freelist);
735                 return 0;
736         }
737
738         /* We don't use freelists for anything. */
739         return pfn;
740 }
741
742 /* Similar to reclaim, but different enough that they don't share logic */
743 static bool too_many_isolated(pg_data_t *pgdat)
744 {
745         bool too_many;
746
747         unsigned long active, inactive, isolated;
748
749         inactive = node_page_state(pgdat, NR_INACTIVE_FILE) +
750                         node_page_state(pgdat, NR_INACTIVE_ANON);
751         active = node_page_state(pgdat, NR_ACTIVE_FILE) +
752                         node_page_state(pgdat, NR_ACTIVE_ANON);
753         isolated = node_page_state(pgdat, NR_ISOLATED_FILE) +
754                         node_page_state(pgdat, NR_ISOLATED_ANON);
755
756         too_many = isolated > (inactive + active) / 2;
757         if (!too_many)
758                 wake_throttle_isolated(pgdat);
759
760         return too_many;
761 }
762
763 /**
764  * isolate_migratepages_block() - isolate all migrate-able pages within
765  *                                a single pageblock
766  * @cc:         Compaction control structure.
767  * @low_pfn:    The first PFN to isolate
768  * @end_pfn:    The one-past-the-last PFN to isolate, within same pageblock
769  * @mode:       Isolation mode to be used.
770  *
771  * Isolate all pages that can be migrated from the range specified by
772  * [low_pfn, end_pfn). The range is expected to be within same pageblock.
773  * Returns errno, like -EAGAIN or -EINTR in case e.g signal pending or congestion,
774  * -ENOMEM in case we could not allocate a page, or 0.
775  * cc->migrate_pfn will contain the next pfn to scan.
776  *
777  * The pages are isolated on cc->migratepages list (not required to be empty),
778  * and cc->nr_migratepages is updated accordingly.
779  */
780 static int
781 isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn,
782                         unsigned long end_pfn, isolate_mode_t mode)
783 {
784         pg_data_t *pgdat = cc->zone->zone_pgdat;
785         unsigned long nr_scanned = 0, nr_isolated = 0;
786         struct lruvec *lruvec;
787         unsigned long flags = 0;
788         struct lruvec *locked = NULL;
789         struct page *page = NULL, *valid_page = NULL;
790         struct address_space *mapping;
791         unsigned long start_pfn = low_pfn;
792         bool skip_on_failure = false;
793         unsigned long next_skip_pfn = 0;
794         bool skip_updated = false;
795         int ret = 0;
796
797         cc->migrate_pfn = low_pfn;
798
799         /*
800          * Ensure that there are not too many pages isolated from the LRU
801          * list by either parallel reclaimers or compaction. If there are,
802          * delay for some time until fewer pages are isolated
803          */
804         while (unlikely(too_many_isolated(pgdat))) {
805                 /* stop isolation if there are still pages not migrated */
806                 if (cc->nr_migratepages)
807                         return -EAGAIN;
808
809                 /* async migration should just abort */
810                 if (cc->mode == MIGRATE_ASYNC)
811                         return -EAGAIN;
812
813                 reclaim_throttle(pgdat, VMSCAN_THROTTLE_ISOLATED);
814
815                 if (fatal_signal_pending(current))
816                         return -EINTR;
817         }
818
819         cond_resched();
820
821         if (cc->direct_compaction && (cc->mode == MIGRATE_ASYNC)) {
822                 skip_on_failure = true;
823                 next_skip_pfn = block_end_pfn(low_pfn, cc->order);
824         }
825
826         /* Time to isolate some pages for migration */
827         for (; low_pfn < end_pfn; low_pfn++) {
828
829                 if (skip_on_failure && low_pfn >= next_skip_pfn) {
830                         /*
831                          * We have isolated all migration candidates in the
832                          * previous order-aligned block, and did not skip it due
833                          * to failure. We should migrate the pages now and
834                          * hopefully succeed compaction.
835                          */
836                         if (nr_isolated)
837                                 break;
838
839                         /*
840                          * We failed to isolate in the previous order-aligned
841                          * block. Set the new boundary to the end of the
842                          * current block. Note we can't simply increase
843                          * next_skip_pfn by 1 << order, as low_pfn might have
844                          * been incremented by a higher number due to skipping
845                          * a compound or a high-order buddy page in the
846                          * previous loop iteration.
847                          */
848                         next_skip_pfn = block_end_pfn(low_pfn, cc->order);
849                 }
850
851                 /*
852                  * Periodically drop the lock (if held) regardless of its
853                  * contention, to give chance to IRQs. Abort completely if
854                  * a fatal signal is pending.
855                  */
856                 if (!(low_pfn % COMPACT_CLUSTER_MAX)) {
857                         if (locked) {
858                                 unlock_page_lruvec_irqrestore(locked, flags);
859                                 locked = NULL;
860                         }
861
862                         if (fatal_signal_pending(current)) {
863                                 cc->contended = true;
864                                 ret = -EINTR;
865
866                                 goto fatal_pending;
867                         }
868
869                         cond_resched();
870                 }
871
872                 nr_scanned++;
873
874                 page = pfn_to_page(low_pfn);
875
876                 /*
877                  * Check if the pageblock has already been marked skipped.
878                  * Only the aligned PFN is checked as the caller isolates
879                  * COMPACT_CLUSTER_MAX at a time so the second call must
880                  * not falsely conclude that the block should be skipped.
881                  */
882                 if (!valid_page && pageblock_aligned(low_pfn)) {
883                         if (!isolation_suitable(cc, page)) {
884                                 low_pfn = end_pfn;
885                                 page = NULL;
886                                 goto isolate_abort;
887                         }
888                         valid_page = page;
889                 }
890
891                 if (PageHuge(page) && cc->alloc_contig) {
892                         if (locked) {
893                                 unlock_page_lruvec_irqrestore(locked, flags);
894                                 locked = NULL;
895                         }
896
897                         ret = isolate_or_dissolve_huge_page(page, &cc->migratepages);
898
899                         /*
900                          * Fail isolation in case isolate_or_dissolve_huge_page()
901                          * reports an error. In case of -ENOMEM, abort right away.
902                          */
903                         if (ret < 0) {
904                                  /* Do not report -EBUSY down the chain */
905                                 if (ret == -EBUSY)
906                                         ret = 0;
907                                 low_pfn += compound_nr(page) - 1;
908                                 nr_scanned += compound_nr(page) - 1;
909                                 goto isolate_fail;
910                         }
911
912                         if (PageHuge(page)) {
913                                 /*
914                                  * Hugepage was successfully isolated and placed
915                                  * on the cc->migratepages list.
916                                  */
917                                 low_pfn += compound_nr(page) - 1;
918                                 goto isolate_success_no_list;
919                         }
920
921                         /*
922                          * Ok, the hugepage was dissolved. Now these pages are
923                          * Buddy and cannot be re-allocated because they are
924                          * isolated. Fall-through as the check below handles
925                          * Buddy pages.
926                          */
927                 }
928
929                 /*
930                  * Skip if free. We read page order here without zone lock
931                  * which is generally unsafe, but the race window is small and
932                  * the worst thing that can happen is that we skip some
933                  * potential isolation targets.
934                  */
935                 if (PageBuddy(page)) {
936                         unsigned long freepage_order = buddy_order_unsafe(page);
937
938                         /*
939                          * Without lock, we cannot be sure that what we got is
940                          * a valid page order. Consider only values in the
941                          * valid order range to prevent low_pfn overflow.
942                          */
943                         if (freepage_order > 0 && freepage_order <= MAX_ORDER) {
944                                 low_pfn += (1UL << freepage_order) - 1;
945                                 nr_scanned += (1UL << freepage_order) - 1;
946                         }
947                         continue;
948                 }
949
950                 /*
951                  * Regardless of being on LRU, compound pages such as THP and
952                  * hugetlbfs are not to be compacted unless we are attempting
953                  * an allocation much larger than the huge page size (eg CMA).
954                  * We can potentially save a lot of iterations if we skip them
955                  * at once. The check is racy, but we can consider only valid
956                  * values and the only danger is skipping too much.
957                  */
958                 if (PageCompound(page) && !cc->alloc_contig) {
959                         const unsigned int order = compound_order(page);
960
961                         if (likely(order <= MAX_ORDER)) {
962                                 low_pfn += (1UL << order) - 1;
963                                 nr_scanned += (1UL << order) - 1;
964                         }
965                         goto isolate_fail;
966                 }
967
968                 /*
969                  * Check may be lockless but that's ok as we recheck later.
970                  * It's possible to migrate LRU and non-lru movable pages.
971                  * Skip any other type of page
972                  */
973                 if (!PageLRU(page)) {
974                         /*
975                          * __PageMovable can return false positive so we need
976                          * to verify it under page_lock.
977                          */
978                         if (unlikely(__PageMovable(page)) &&
979                                         !PageIsolated(page)) {
980                                 if (locked) {
981                                         unlock_page_lruvec_irqrestore(locked, flags);
982                                         locked = NULL;
983                                 }
984
985                                 if (isolate_movable_page(page, mode))
986                                         goto isolate_success;
987                         }
988
989                         goto isolate_fail;
990                 }
991
992                 /*
993                  * Be careful not to clear PageLRU until after we're
994                  * sure the page is not being freed elsewhere -- the
995                  * page release code relies on it.
996                  */
997                 if (unlikely(!get_page_unless_zero(page)))
998                         goto isolate_fail;
999
1000                 /*
1001                  * Migration will fail if an anonymous page is pinned in memory,
1002                  * so avoid taking lru_lock and isolating it unnecessarily in an
1003                  * admittedly racy check.
1004                  */
1005                 mapping = page_mapping(page);
1006                 if (!mapping && (page_count(page) - 1) > total_mapcount(page))
1007                         goto isolate_fail_put;
1008
1009                 /*
1010                  * Only allow to migrate anonymous pages in GFP_NOFS context
1011                  * because those do not depend on fs locks.
1012                  */
1013                 if (!(cc->gfp_mask & __GFP_FS) && mapping)
1014                         goto isolate_fail_put;
1015
1016                 /* Only take pages on LRU: a check now makes later tests safe */
1017                 if (!PageLRU(page))
1018                         goto isolate_fail_put;
1019
1020                 /* Compaction might skip unevictable pages but CMA takes them */
1021                 if (!(mode & ISOLATE_UNEVICTABLE) && PageUnevictable(page))
1022                         goto isolate_fail_put;
1023
1024                 /*
1025                  * To minimise LRU disruption, the caller can indicate with
1026                  * ISOLATE_ASYNC_MIGRATE that it only wants to isolate pages
1027                  * it will be able to migrate without blocking - clean pages
1028                  * for the most part.  PageWriteback would require blocking.
1029                  */
1030                 if ((mode & ISOLATE_ASYNC_MIGRATE) && PageWriteback(page))
1031                         goto isolate_fail_put;
1032
1033                 if ((mode & ISOLATE_ASYNC_MIGRATE) && PageDirty(page)) {
1034                         bool migrate_dirty;
1035
1036                         /*
1037                          * Only pages without mappings or that have a
1038                          * ->migrate_folio callback are possible to migrate
1039                          * without blocking. However, we can be racing with
1040                          * truncation so it's necessary to lock the page
1041                          * to stabilise the mapping as truncation holds
1042                          * the page lock until after the page is removed
1043                          * from the page cache.
1044                          */
1045                         if (!trylock_page(page))
1046                                 goto isolate_fail_put;
1047
1048                         mapping = page_mapping(page);
1049                         migrate_dirty = !mapping ||
1050                                         mapping->a_ops->migrate_folio;
1051                         unlock_page(page);
1052                         if (!migrate_dirty)
1053                                 goto isolate_fail_put;
1054                 }
1055
1056                 /* Try isolate the page */
1057                 if (!TestClearPageLRU(page))
1058                         goto isolate_fail_put;
1059
1060                 lruvec = folio_lruvec(page_folio(page));
1061
1062                 /* If we already hold the lock, we can skip some rechecking */
1063                 if (lruvec != locked) {
1064                         if (locked)
1065                                 unlock_page_lruvec_irqrestore(locked, flags);
1066
1067                         compact_lock_irqsave(&lruvec->lru_lock, &flags, cc);
1068                         locked = lruvec;
1069
1070                         lruvec_memcg_debug(lruvec, page_folio(page));
1071
1072                         /*
1073                          * Try get exclusive access under lock. If marked for
1074                          * skip, the scan is aborted unless the current context
1075                          * is a rescan to reach the end of the pageblock.
1076                          */
1077                         if (!skip_updated && valid_page) {
1078                                 skip_updated = true;
1079                                 if (test_and_set_skip(cc, valid_page) &&
1080                                     !cc->finish_pageblock) {
1081                                         goto isolate_abort;
1082                                 }
1083                         }
1084
1085                         /*
1086                          * Page become compound since the non-locked check,
1087                          * and it's on LRU. It can only be a THP so the order
1088                          * is safe to read and it's 0 for tail pages.
1089                          */
1090                         if (unlikely(PageCompound(page) && !cc->alloc_contig)) {
1091                                 low_pfn += compound_nr(page) - 1;
1092                                 nr_scanned += compound_nr(page) - 1;
1093                                 SetPageLRU(page);
1094                                 goto isolate_fail_put;
1095                         }
1096                 }
1097
1098                 /* The whole page is taken off the LRU; skip the tail pages. */
1099                 if (PageCompound(page))
1100                         low_pfn += compound_nr(page) - 1;
1101
1102                 /* Successfully isolated */
1103                 del_page_from_lru_list(page, lruvec);
1104                 mod_node_page_state(page_pgdat(page),
1105                                 NR_ISOLATED_ANON + page_is_file_lru(page),
1106                                 thp_nr_pages(page));
1107
1108 isolate_success:
1109                 list_add(&page->lru, &cc->migratepages);
1110 isolate_success_no_list:
1111                 cc->nr_migratepages += compound_nr(page);
1112                 nr_isolated += compound_nr(page);
1113                 nr_scanned += compound_nr(page) - 1;
1114
1115                 /*
1116                  * Avoid isolating too much unless this block is being
1117                  * fully scanned (e.g. dirty/writeback pages, parallel allocation)
1118                  * or a lock is contended. For contention, isolate quickly to
1119                  * potentially remove one source of contention.
1120                  */
1121                 if (cc->nr_migratepages >= COMPACT_CLUSTER_MAX &&
1122                     !cc->finish_pageblock && !cc->contended) {
1123                         ++low_pfn;
1124                         break;
1125                 }
1126
1127                 continue;
1128
1129 isolate_fail_put:
1130                 /* Avoid potential deadlock in freeing page under lru_lock */
1131                 if (locked) {
1132                         unlock_page_lruvec_irqrestore(locked, flags);
1133                         locked = NULL;
1134                 }
1135                 put_page(page);
1136
1137 isolate_fail:
1138                 if (!skip_on_failure && ret != -ENOMEM)
1139                         continue;
1140
1141                 /*
1142                  * We have isolated some pages, but then failed. Release them
1143                  * instead of migrating, as we cannot form the cc->order buddy
1144                  * page anyway.
1145                  */
1146                 if (nr_isolated) {
1147                         if (locked) {
1148                                 unlock_page_lruvec_irqrestore(locked, flags);
1149                                 locked = NULL;
1150                         }
1151                         putback_movable_pages(&cc->migratepages);
1152                         cc->nr_migratepages = 0;
1153                         nr_isolated = 0;
1154                 }
1155
1156                 if (low_pfn < next_skip_pfn) {
1157                         low_pfn = next_skip_pfn - 1;
1158                         /*
1159                          * The check near the loop beginning would have updated
1160                          * next_skip_pfn too, but this is a bit simpler.
1161                          */
1162                         next_skip_pfn += 1UL << cc->order;
1163                 }
1164
1165                 if (ret == -ENOMEM)
1166                         break;
1167         }
1168
1169         /*
1170          * The PageBuddy() check could have potentially brought us outside
1171          * the range to be scanned.
1172          */
1173         if (unlikely(low_pfn > end_pfn))
1174                 low_pfn = end_pfn;
1175
1176         page = NULL;
1177
1178 isolate_abort:
1179         if (locked)
1180                 unlock_page_lruvec_irqrestore(locked, flags);
1181         if (page) {
1182                 SetPageLRU(page);
1183                 put_page(page);
1184         }
1185
1186         /*
1187          * Update the cached scanner pfn once the pageblock has been scanned.
1188          * Pages will either be migrated in which case there is no point
1189          * scanning in the near future or migration failed in which case the
1190          * failure reason may persist. The block is marked for skipping if
1191          * there were no pages isolated in the block or if the block is
1192          * rescanned twice in a row.
1193          */
1194         if (low_pfn == end_pfn && (!nr_isolated || cc->finish_pageblock)) {
1195                 if (valid_page && !skip_updated)
1196                         set_pageblock_skip(valid_page);
1197                 update_cached_migrate(cc, low_pfn);
1198         }
1199
1200         trace_mm_compaction_isolate_migratepages(start_pfn, low_pfn,
1201                                                 nr_scanned, nr_isolated);
1202
1203 fatal_pending:
1204         cc->total_migrate_scanned += nr_scanned;
1205         if (nr_isolated)
1206                 count_compact_events(COMPACTISOLATED, nr_isolated);
1207
1208         cc->migrate_pfn = low_pfn;
1209
1210         return ret;
1211 }
1212
1213 /**
1214  * isolate_migratepages_range() - isolate migrate-able pages in a PFN range
1215  * @cc:        Compaction control structure.
1216  * @start_pfn: The first PFN to start isolating.
1217  * @end_pfn:   The one-past-last PFN.
1218  *
1219  * Returns -EAGAIN when contented, -EINTR in case of a signal pending, -ENOMEM
1220  * in case we could not allocate a page, or 0.
1221  */
1222 int
1223 isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn,
1224                                                         unsigned long end_pfn)
1225 {
1226         unsigned long pfn, block_start_pfn, block_end_pfn;
1227         int ret = 0;
1228
1229         /* Scan block by block. First and last block may be incomplete */
1230         pfn = start_pfn;
1231         block_start_pfn = pageblock_start_pfn(pfn);
1232         if (block_start_pfn < cc->zone->zone_start_pfn)
1233                 block_start_pfn = cc->zone->zone_start_pfn;
1234         block_end_pfn = pageblock_end_pfn(pfn);
1235
1236         for (; pfn < end_pfn; pfn = block_end_pfn,
1237                                 block_start_pfn = block_end_pfn,
1238                                 block_end_pfn += pageblock_nr_pages) {
1239
1240                 block_end_pfn = min(block_end_pfn, end_pfn);
1241
1242                 if (!pageblock_pfn_to_page(block_start_pfn,
1243                                         block_end_pfn, cc->zone))
1244                         continue;
1245
1246                 ret = isolate_migratepages_block(cc, pfn, block_end_pfn,
1247                                                  ISOLATE_UNEVICTABLE);
1248
1249                 if (ret)
1250                         break;
1251
1252                 if (cc->nr_migratepages >= COMPACT_CLUSTER_MAX)
1253                         break;
1254         }
1255
1256         return ret;
1257 }
1258
1259 #endif /* CONFIG_COMPACTION || CONFIG_CMA */
1260 #ifdef CONFIG_COMPACTION
1261
1262 static bool suitable_migration_source(struct compact_control *cc,
1263                                                         struct page *page)
1264 {
1265         int block_mt;
1266
1267         if (pageblock_skip_persistent(page))
1268                 return false;
1269
1270         if ((cc->mode != MIGRATE_ASYNC) || !cc->direct_compaction)
1271                 return true;
1272
1273         block_mt = get_pageblock_migratetype(page);
1274
1275         if (cc->migratetype == MIGRATE_MOVABLE)
1276                 return is_migrate_movable(block_mt);
1277         else
1278                 return block_mt == cc->migratetype;
1279 }
1280
1281 /* Returns true if the page is within a block suitable for migration to */
1282 static bool suitable_migration_target(struct compact_control *cc,
1283                                                         struct page *page)
1284 {
1285         /* If the page is a large free page, then disallow migration */
1286         if (PageBuddy(page)) {
1287                 /*
1288                  * We are checking page_order without zone->lock taken. But
1289                  * the only small danger is that we skip a potentially suitable
1290                  * pageblock, so it's not worth to check order for valid range.
1291                  */
1292                 if (buddy_order_unsafe(page) >= pageblock_order)
1293                         return false;
1294         }
1295
1296         if (cc->ignore_block_suitable)
1297                 return true;
1298
1299         /* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
1300         if (is_migrate_movable(get_pageblock_migratetype(page)))
1301                 return true;
1302
1303         /* Otherwise skip the block */
1304         return false;
1305 }
1306
1307 static inline unsigned int
1308 freelist_scan_limit(struct compact_control *cc)
1309 {
1310         unsigned short shift = BITS_PER_LONG - 1;
1311
1312         return (COMPACT_CLUSTER_MAX >> min(shift, cc->fast_search_fail)) + 1;
1313 }
1314
1315 /*
1316  * Test whether the free scanner has reached the same or lower pageblock than
1317  * the migration scanner, and compaction should thus terminate.
1318  */
1319 static inline bool compact_scanners_met(struct compact_control *cc)
1320 {
1321         return (cc->free_pfn >> pageblock_order)
1322                 <= (cc->migrate_pfn >> pageblock_order);
1323 }
1324
1325 /*
1326  * Used when scanning for a suitable migration target which scans freelists
1327  * in reverse. Reorders the list such as the unscanned pages are scanned
1328  * first on the next iteration of the free scanner
1329  */
1330 static void
1331 move_freelist_head(struct list_head *freelist, struct page *freepage)
1332 {
1333         LIST_HEAD(sublist);
1334
1335         if (!list_is_last(freelist, &freepage->lru)) {
1336                 list_cut_before(&sublist, freelist, &freepage->lru);
1337                 list_splice_tail(&sublist, freelist);
1338         }
1339 }
1340
1341 /*
1342  * Similar to move_freelist_head except used by the migration scanner
1343  * when scanning forward. It's possible for these list operations to
1344  * move against each other if they search the free list exactly in
1345  * lockstep.
1346  */
1347 static void
1348 move_freelist_tail(struct list_head *freelist, struct page *freepage)
1349 {
1350         LIST_HEAD(sublist);
1351
1352         if (!list_is_first(freelist, &freepage->lru)) {
1353                 list_cut_position(&sublist, freelist, &freepage->lru);
1354                 list_splice_tail(&sublist, freelist);
1355         }
1356 }
1357
1358 static void
1359 fast_isolate_around(struct compact_control *cc, unsigned long pfn)
1360 {
1361         unsigned long start_pfn, end_pfn;
1362         struct page *page;
1363
1364         /* Do not search around if there are enough pages already */
1365         if (cc->nr_freepages >= cc->nr_migratepages)
1366                 return;
1367
1368         /* Minimise scanning during async compaction */
1369         if (cc->direct_compaction && cc->mode == MIGRATE_ASYNC)
1370                 return;
1371
1372         /* Pageblock boundaries */
1373         start_pfn = max(pageblock_start_pfn(pfn), cc->zone->zone_start_pfn);
1374         end_pfn = min(pageblock_end_pfn(pfn), zone_end_pfn(cc->zone));
1375
1376         page = pageblock_pfn_to_page(start_pfn, end_pfn, cc->zone);
1377         if (!page)
1378                 return;
1379
1380         isolate_freepages_block(cc, &start_pfn, end_pfn, &cc->freepages, 1, false);
1381
1382         /* Skip this pageblock in the future as it's full or nearly full */
1383         if (cc->nr_freepages < cc->nr_migratepages)
1384                 set_pageblock_skip(page);
1385
1386         return;
1387 }
1388
1389 /* Search orders in round-robin fashion */
1390 static int next_search_order(struct compact_control *cc, int order)
1391 {
1392         order--;
1393         if (order < 0)
1394                 order = cc->order - 1;
1395
1396         /* Search wrapped around? */
1397         if (order == cc->search_order) {
1398                 cc->search_order--;
1399                 if (cc->search_order < 0)
1400                         cc->search_order = cc->order - 1;
1401                 return -1;
1402         }
1403
1404         return order;
1405 }
1406
1407 static unsigned long
1408 fast_isolate_freepages(struct compact_control *cc)
1409 {
1410         unsigned int limit = max(1U, freelist_scan_limit(cc) >> 1);
1411         unsigned int nr_scanned = 0;
1412         unsigned long low_pfn, min_pfn, highest = 0;
1413         unsigned long nr_isolated = 0;
1414         unsigned long distance;
1415         struct page *page = NULL;
1416         bool scan_start = false;
1417         int order;
1418
1419         /* Full compaction passes in a negative order */
1420         if (cc->order <= 0)
1421                 return cc->free_pfn;
1422
1423         /*
1424          * If starting the scan, use a deeper search and use the highest
1425          * PFN found if a suitable one is not found.
1426          */
1427         if (cc->free_pfn >= cc->zone->compact_init_free_pfn) {
1428                 limit = pageblock_nr_pages >> 1;
1429                 scan_start = true;
1430         }
1431
1432         /*
1433          * Preferred point is in the top quarter of the scan space but take
1434          * a pfn from the top half if the search is problematic.
1435          */
1436         distance = (cc->free_pfn - cc->migrate_pfn);
1437         low_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 2));
1438         min_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 1));
1439
1440         if (WARN_ON_ONCE(min_pfn > low_pfn))
1441                 low_pfn = min_pfn;
1442
1443         /*
1444          * Search starts from the last successful isolation order or the next
1445          * order to search after a previous failure
1446          */
1447         cc->search_order = min_t(unsigned int, cc->order - 1, cc->search_order);
1448
1449         for (order = cc->search_order;
1450              !page && order >= 0;
1451              order = next_search_order(cc, order)) {
1452                 struct free_area *area = &cc->zone->free_area[order];
1453                 struct list_head *freelist;
1454                 struct page *freepage;
1455                 unsigned long flags;
1456                 unsigned int order_scanned = 0;
1457                 unsigned long high_pfn = 0;
1458
1459                 if (!area->nr_free)
1460                         continue;
1461
1462                 spin_lock_irqsave(&cc->zone->lock, flags);
1463                 freelist = &area->free_list[MIGRATE_MOVABLE];
1464                 list_for_each_entry_reverse(freepage, freelist, lru) {
1465                         unsigned long pfn;
1466
1467                         order_scanned++;
1468                         nr_scanned++;
1469                         pfn = page_to_pfn(freepage);
1470
1471                         if (pfn >= highest)
1472                                 highest = max(pageblock_start_pfn(pfn),
1473                                               cc->zone->zone_start_pfn);
1474
1475                         if (pfn >= low_pfn) {
1476                                 cc->fast_search_fail = 0;
1477                                 cc->search_order = order;
1478                                 page = freepage;
1479                                 break;
1480                         }
1481
1482                         if (pfn >= min_pfn && pfn > high_pfn) {
1483                                 high_pfn = pfn;
1484
1485                                 /* Shorten the scan if a candidate is found */
1486                                 limit >>= 1;
1487                         }
1488
1489                         if (order_scanned >= limit)
1490                                 break;
1491                 }
1492
1493                 /* Use a minimum pfn if a preferred one was not found */
1494                 if (!page && high_pfn) {
1495                         page = pfn_to_page(high_pfn);
1496
1497                         /* Update freepage for the list reorder below */
1498                         freepage = page;
1499                 }
1500
1501                 /* Reorder to so a future search skips recent pages */
1502                 move_freelist_head(freelist, freepage);
1503
1504                 /* Isolate the page if available */
1505                 if (page) {
1506                         if (__isolate_free_page(page, order)) {
1507                                 set_page_private(page, order);
1508                                 nr_isolated = 1 << order;
1509                                 nr_scanned += nr_isolated - 1;
1510                                 cc->nr_freepages += nr_isolated;
1511                                 list_add_tail(&page->lru, &cc->freepages);
1512                                 count_compact_events(COMPACTISOLATED, nr_isolated);
1513                         } else {
1514                                 /* If isolation fails, abort the search */
1515                                 order = cc->search_order + 1;
1516                                 page = NULL;
1517                         }
1518                 }
1519
1520                 spin_unlock_irqrestore(&cc->zone->lock, flags);
1521
1522                 /*
1523                  * Smaller scan on next order so the total scan is related
1524                  * to freelist_scan_limit.
1525                  */
1526                 if (order_scanned >= limit)
1527                         limit = max(1U, limit >> 1);
1528         }
1529
1530         if (!page) {
1531                 cc->fast_search_fail++;
1532                 if (scan_start) {
1533                         /*
1534                          * Use the highest PFN found above min. If one was
1535                          * not found, be pessimistic for direct compaction
1536                          * and use the min mark.
1537                          */
1538                         if (highest >= min_pfn) {
1539                                 page = pfn_to_page(highest);
1540                                 cc->free_pfn = highest;
1541                         } else {
1542                                 if (cc->direct_compaction && pfn_valid(min_pfn)) {
1543                                         page = pageblock_pfn_to_page(min_pfn,
1544                                                 min(pageblock_end_pfn(min_pfn),
1545                                                     zone_end_pfn(cc->zone)),
1546                                                 cc->zone);
1547                                         cc->free_pfn = min_pfn;
1548                                 }
1549                         }
1550                 }
1551         }
1552
1553         if (highest && highest >= cc->zone->compact_cached_free_pfn) {
1554                 highest -= pageblock_nr_pages;
1555                 cc->zone->compact_cached_free_pfn = highest;
1556         }
1557
1558         cc->total_free_scanned += nr_scanned;
1559         if (!page)
1560                 return cc->free_pfn;
1561
1562         low_pfn = page_to_pfn(page);
1563         fast_isolate_around(cc, low_pfn);
1564         return low_pfn;
1565 }
1566
1567 /*
1568  * Based on information in the current compact_control, find blocks
1569  * suitable for isolating free pages from and then isolate them.
1570  */
1571 static void isolate_freepages(struct compact_control *cc)
1572 {
1573         struct zone *zone = cc->zone;
1574         struct page *page;
1575         unsigned long block_start_pfn;  /* start of current pageblock */
1576         unsigned long isolate_start_pfn; /* exact pfn we start at */
1577         unsigned long block_end_pfn;    /* end of current pageblock */
1578         unsigned long low_pfn;       /* lowest pfn scanner is able to scan */
1579         struct list_head *freelist = &cc->freepages;
1580         unsigned int stride;
1581
1582         /* Try a small search of the free lists for a candidate */
1583         fast_isolate_freepages(cc);
1584         if (cc->nr_freepages)
1585                 goto splitmap;
1586
1587         /*
1588          * Initialise the free scanner. The starting point is where we last
1589          * successfully isolated from, zone-cached value, or the end of the
1590          * zone when isolating for the first time. For looping we also need
1591          * this pfn aligned down to the pageblock boundary, because we do
1592          * block_start_pfn -= pageblock_nr_pages in the for loop.
1593          * For ending point, take care when isolating in last pageblock of a
1594          * zone which ends in the middle of a pageblock.
1595          * The low boundary is the end of the pageblock the migration scanner
1596          * is using.
1597          */
1598         isolate_start_pfn = cc->free_pfn;
1599         block_start_pfn = pageblock_start_pfn(isolate_start_pfn);
1600         block_end_pfn = min(block_start_pfn + pageblock_nr_pages,
1601                                                 zone_end_pfn(zone));
1602         low_pfn = pageblock_end_pfn(cc->migrate_pfn);
1603         stride = cc->mode == MIGRATE_ASYNC ? COMPACT_CLUSTER_MAX : 1;
1604
1605         /*
1606          * Isolate free pages until enough are available to migrate the
1607          * pages on cc->migratepages. We stop searching if the migrate
1608          * and free page scanners meet or enough free pages are isolated.
1609          */
1610         for (; block_start_pfn >= low_pfn;
1611                                 block_end_pfn = block_start_pfn,
1612                                 block_start_pfn -= pageblock_nr_pages,
1613                                 isolate_start_pfn = block_start_pfn) {
1614                 unsigned long nr_isolated;
1615
1616                 /*
1617                  * This can iterate a massively long zone without finding any
1618                  * suitable migration targets, so periodically check resched.
1619                  */
1620                 if (!(block_start_pfn % (COMPACT_CLUSTER_MAX * pageblock_nr_pages)))
1621                         cond_resched();
1622
1623                 page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
1624                                                                         zone);
1625                 if (!page)
1626                         continue;
1627
1628                 /* Check the block is suitable for migration */
1629                 if (!suitable_migration_target(cc, page))
1630                         continue;
1631
1632                 /* If isolation recently failed, do not retry */
1633                 if (!isolation_suitable(cc, page))
1634                         continue;
1635
1636                 /* Found a block suitable for isolating free pages from. */
1637                 nr_isolated = isolate_freepages_block(cc, &isolate_start_pfn,
1638                                         block_end_pfn, freelist, stride, false);
1639
1640                 /* Update the skip hint if the full pageblock was scanned */
1641                 if (isolate_start_pfn == block_end_pfn)
1642                         update_pageblock_skip(cc, page, block_start_pfn);
1643
1644                 /* Are enough freepages isolated? */
1645                 if (cc->nr_freepages >= cc->nr_migratepages) {
1646                         if (isolate_start_pfn >= block_end_pfn) {
1647                                 /*
1648                                  * Restart at previous pageblock if more
1649                                  * freepages can be isolated next time.
1650                                  */
1651                                 isolate_start_pfn =
1652                                         block_start_pfn - pageblock_nr_pages;
1653                         }
1654                         break;
1655                 } else if (isolate_start_pfn < block_end_pfn) {
1656                         /*
1657                          * If isolation failed early, do not continue
1658                          * needlessly.
1659                          */
1660                         break;
1661                 }
1662
1663                 /* Adjust stride depending on isolation */
1664                 if (nr_isolated) {
1665                         stride = 1;
1666                         continue;
1667                 }
1668                 stride = min_t(unsigned int, COMPACT_CLUSTER_MAX, stride << 1);
1669         }
1670
1671         /*
1672          * Record where the free scanner will restart next time. Either we
1673          * broke from the loop and set isolate_start_pfn based on the last
1674          * call to isolate_freepages_block(), or we met the migration scanner
1675          * and the loop terminated due to isolate_start_pfn < low_pfn
1676          */
1677         cc->free_pfn = isolate_start_pfn;
1678
1679 splitmap:
1680         /* __isolate_free_page() does not map the pages */
1681         split_map_pages(freelist);
1682 }
1683
1684 /*
1685  * This is a migrate-callback that "allocates" freepages by taking pages
1686  * from the isolated freelists in the block we are migrating to.
1687  */
1688 static struct page *compaction_alloc(struct page *migratepage,
1689                                         unsigned long data)
1690 {
1691         struct compact_control *cc = (struct compact_control *)data;
1692         struct page *freepage;
1693
1694         if (list_empty(&cc->freepages)) {
1695                 isolate_freepages(cc);
1696
1697                 if (list_empty(&cc->freepages))
1698                         return NULL;
1699         }
1700
1701         freepage = list_entry(cc->freepages.next, struct page, lru);
1702         list_del(&freepage->lru);
1703         cc->nr_freepages--;
1704
1705         return freepage;
1706 }
1707
1708 /*
1709  * This is a migrate-callback that "frees" freepages back to the isolated
1710  * freelist.  All pages on the freelist are from the same zone, so there is no
1711  * special handling needed for NUMA.
1712  */
1713 static void compaction_free(struct page *page, unsigned long data)
1714 {
1715         struct compact_control *cc = (struct compact_control *)data;
1716
1717         list_add(&page->lru, &cc->freepages);
1718         cc->nr_freepages++;
1719 }
1720
1721 /* possible outcome of isolate_migratepages */
1722 typedef enum {
1723         ISOLATE_ABORT,          /* Abort compaction now */
1724         ISOLATE_NONE,           /* No pages isolated, continue scanning */
1725         ISOLATE_SUCCESS,        /* Pages isolated, migrate */
1726 } isolate_migrate_t;
1727
1728 /*
1729  * Allow userspace to control policy on scanning the unevictable LRU for
1730  * compactable pages.
1731  */
1732 static int sysctl_compact_unevictable_allowed __read_mostly = CONFIG_COMPACT_UNEVICTABLE_DEFAULT;
1733 /*
1734  * Tunable for proactive compaction. It determines how
1735  * aggressively the kernel should compact memory in the
1736  * background. It takes values in the range [0, 100].
1737  */
1738 static unsigned int __read_mostly sysctl_compaction_proactiveness = 20;
1739 static int sysctl_extfrag_threshold = 500;
1740 static int __read_mostly sysctl_compact_memory;
1741
1742 static inline void
1743 update_fast_start_pfn(struct compact_control *cc, unsigned long pfn)
1744 {
1745         if (cc->fast_start_pfn == ULONG_MAX)
1746                 return;
1747
1748         if (!cc->fast_start_pfn)
1749                 cc->fast_start_pfn = pfn;
1750
1751         cc->fast_start_pfn = min(cc->fast_start_pfn, pfn);
1752 }
1753
1754 static inline unsigned long
1755 reinit_migrate_pfn(struct compact_control *cc)
1756 {
1757         if (!cc->fast_start_pfn || cc->fast_start_pfn == ULONG_MAX)
1758                 return cc->migrate_pfn;
1759
1760         cc->migrate_pfn = cc->fast_start_pfn;
1761         cc->fast_start_pfn = ULONG_MAX;
1762
1763         return cc->migrate_pfn;
1764 }
1765
1766 /*
1767  * Briefly search the free lists for a migration source that already has
1768  * some free pages to reduce the number of pages that need migration
1769  * before a pageblock is free.
1770  */
1771 static unsigned long fast_find_migrateblock(struct compact_control *cc)
1772 {
1773         unsigned int limit = freelist_scan_limit(cc);
1774         unsigned int nr_scanned = 0;
1775         unsigned long distance;
1776         unsigned long pfn = cc->migrate_pfn;
1777         unsigned long high_pfn;
1778         int order;
1779         bool found_block = false;
1780
1781         /* Skip hints are relied on to avoid repeats on the fast search */
1782         if (cc->ignore_skip_hint)
1783                 return pfn;
1784
1785         /*
1786          * If the pageblock should be finished then do not select a different
1787          * pageblock.
1788          */
1789         if (cc->finish_pageblock)
1790                 return pfn;
1791
1792         /*
1793          * If the migrate_pfn is not at the start of a zone or the start
1794          * of a pageblock then assume this is a continuation of a previous
1795          * scan restarted due to COMPACT_CLUSTER_MAX.
1796          */
1797         if (pfn != cc->zone->zone_start_pfn && pfn != pageblock_start_pfn(pfn))
1798                 return pfn;
1799
1800         /*
1801          * For smaller orders, just linearly scan as the number of pages
1802          * to migrate should be relatively small and does not necessarily
1803          * justify freeing up a large block for a small allocation.
1804          */
1805         if (cc->order <= PAGE_ALLOC_COSTLY_ORDER)
1806                 return pfn;
1807
1808         /*
1809          * Only allow kcompactd and direct requests for movable pages to
1810          * quickly clear out a MOVABLE pageblock for allocation. This
1811          * reduces the risk that a large movable pageblock is freed for
1812          * an unmovable/reclaimable small allocation.
1813          */
1814         if (cc->direct_compaction && cc->migratetype != MIGRATE_MOVABLE)
1815                 return pfn;
1816
1817         /*
1818          * When starting the migration scanner, pick any pageblock within the
1819          * first half of the search space. Otherwise try and pick a pageblock
1820          * within the first eighth to reduce the chances that a migration
1821          * target later becomes a source.
1822          */
1823         distance = (cc->free_pfn - cc->migrate_pfn) >> 1;
1824         if (cc->migrate_pfn != cc->zone->zone_start_pfn)
1825                 distance >>= 2;
1826         high_pfn = pageblock_start_pfn(cc->migrate_pfn + distance);
1827
1828         for (order = cc->order - 1;
1829              order >= PAGE_ALLOC_COSTLY_ORDER && !found_block && nr_scanned < limit;
1830              order--) {
1831                 struct free_area *area = &cc->zone->free_area[order];
1832                 struct list_head *freelist;
1833                 unsigned long flags;
1834                 struct page *freepage;
1835
1836                 if (!area->nr_free)
1837                         continue;
1838
1839                 spin_lock_irqsave(&cc->zone->lock, flags);
1840                 freelist = &area->free_list[MIGRATE_MOVABLE];
1841                 list_for_each_entry(freepage, freelist, lru) {
1842                         unsigned long free_pfn;
1843
1844                         if (nr_scanned++ >= limit) {
1845                                 move_freelist_tail(freelist, freepage);
1846                                 break;
1847                         }
1848
1849                         free_pfn = page_to_pfn(freepage);
1850                         if (free_pfn < high_pfn) {
1851                                 /*
1852                                  * Avoid if skipped recently. Ideally it would
1853                                  * move to the tail but even safe iteration of
1854                                  * the list assumes an entry is deleted, not
1855                                  * reordered.
1856                                  */
1857                                 if (get_pageblock_skip(freepage))
1858                                         continue;
1859
1860                                 /* Reorder to so a future search skips recent pages */
1861                                 move_freelist_tail(freelist, freepage);
1862
1863                                 update_fast_start_pfn(cc, free_pfn);
1864                                 pfn = pageblock_start_pfn(free_pfn);
1865                                 if (pfn < cc->zone->zone_start_pfn)
1866                                         pfn = cc->zone->zone_start_pfn;
1867                                 cc->fast_search_fail = 0;
1868                                 found_block = true;
1869                                 break;
1870                         }
1871                 }
1872                 spin_unlock_irqrestore(&cc->zone->lock, flags);
1873         }
1874
1875         cc->total_migrate_scanned += nr_scanned;
1876
1877         /*
1878          * If fast scanning failed then use a cached entry for a page block
1879          * that had free pages as the basis for starting a linear scan.
1880          */
1881         if (!found_block) {
1882                 cc->fast_search_fail++;
1883                 pfn = reinit_migrate_pfn(cc);
1884         }
1885         return pfn;
1886 }
1887
1888 /*
1889  * Isolate all pages that can be migrated from the first suitable block,
1890  * starting at the block pointed to by the migrate scanner pfn within
1891  * compact_control.
1892  */
1893 static isolate_migrate_t isolate_migratepages(struct compact_control *cc)
1894 {
1895         unsigned long block_start_pfn;
1896         unsigned long block_end_pfn;
1897         unsigned long low_pfn;
1898         struct page *page;
1899         const isolate_mode_t isolate_mode =
1900                 (sysctl_compact_unevictable_allowed ? ISOLATE_UNEVICTABLE : 0) |
1901                 (cc->mode != MIGRATE_SYNC ? ISOLATE_ASYNC_MIGRATE : 0);
1902         bool fast_find_block;
1903
1904         /*
1905          * Start at where we last stopped, or beginning of the zone as
1906          * initialized by compact_zone(). The first failure will use
1907          * the lowest PFN as the starting point for linear scanning.
1908          */
1909         low_pfn = fast_find_migrateblock(cc);
1910         block_start_pfn = pageblock_start_pfn(low_pfn);
1911         if (block_start_pfn < cc->zone->zone_start_pfn)
1912                 block_start_pfn = cc->zone->zone_start_pfn;
1913
1914         /*
1915          * fast_find_migrateblock marks a pageblock skipped so to avoid
1916          * the isolation_suitable check below, check whether the fast
1917          * search was successful.
1918          */
1919         fast_find_block = low_pfn != cc->migrate_pfn && !cc->fast_search_fail;
1920
1921         /* Only scan within a pageblock boundary */
1922         block_end_pfn = pageblock_end_pfn(low_pfn);
1923
1924         /*
1925          * Iterate over whole pageblocks until we find the first suitable.
1926          * Do not cross the free scanner.
1927          */
1928         for (; block_end_pfn <= cc->free_pfn;
1929                         fast_find_block = false,
1930                         cc->migrate_pfn = low_pfn = block_end_pfn,
1931                         block_start_pfn = block_end_pfn,
1932                         block_end_pfn += pageblock_nr_pages) {
1933
1934                 /*
1935                  * This can potentially iterate a massively long zone with
1936                  * many pageblocks unsuitable, so periodically check if we
1937                  * need to schedule.
1938                  */
1939                 if (!(low_pfn % (COMPACT_CLUSTER_MAX * pageblock_nr_pages)))
1940                         cond_resched();
1941
1942                 page = pageblock_pfn_to_page(block_start_pfn,
1943                                                 block_end_pfn, cc->zone);
1944                 if (!page)
1945                         continue;
1946
1947                 /*
1948                  * If isolation recently failed, do not retry. Only check the
1949                  * pageblock once. COMPACT_CLUSTER_MAX causes a pageblock
1950                  * to be visited multiple times. Assume skip was checked
1951                  * before making it "skip" so other compaction instances do
1952                  * not scan the same block.
1953                  */
1954                 if (pageblock_aligned(low_pfn) &&
1955                     !fast_find_block && !isolation_suitable(cc, page))
1956                         continue;
1957
1958                 /*
1959                  * For async direct compaction, only scan the pageblocks of the
1960                  * same migratetype without huge pages. Async direct compaction
1961                  * is optimistic to see if the minimum amount of work satisfies
1962                  * the allocation. The cached PFN is updated as it's possible
1963                  * that all remaining blocks between source and target are
1964                  * unsuitable and the compaction scanners fail to meet.
1965                  */
1966                 if (!suitable_migration_source(cc, page)) {
1967                         update_cached_migrate(cc, block_end_pfn);
1968                         continue;
1969                 }
1970
1971                 /* Perform the isolation */
1972                 if (isolate_migratepages_block(cc, low_pfn, block_end_pfn,
1973                                                 isolate_mode))
1974                         return ISOLATE_ABORT;
1975
1976                 /*
1977                  * Either we isolated something and proceed with migration. Or
1978                  * we failed and compact_zone should decide if we should
1979                  * continue or not.
1980                  */
1981                 break;
1982         }
1983
1984         return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE;
1985 }
1986
1987 /*
1988  * order == -1 is expected when compacting via
1989  * /proc/sys/vm/compact_memory
1990  */
1991 static inline bool is_via_compact_memory(int order)
1992 {
1993         return order == -1;
1994 }
1995
1996 /*
1997  * Determine whether kswapd is (or recently was!) running on this node.
1998  *
1999  * pgdat_kswapd_lock() pins pgdat->kswapd, so a concurrent kswapd_stop() can't
2000  * zero it.
2001  */
2002 static bool kswapd_is_running(pg_data_t *pgdat)
2003 {
2004         bool running;
2005
2006         pgdat_kswapd_lock(pgdat);
2007         running = pgdat->kswapd && task_is_running(pgdat->kswapd);
2008         pgdat_kswapd_unlock(pgdat);
2009
2010         return running;
2011 }
2012
2013 /*
2014  * A zone's fragmentation score is the external fragmentation wrt to the
2015  * COMPACTION_HPAGE_ORDER. It returns a value in the range [0, 100].
2016  */
2017 static unsigned int fragmentation_score_zone(struct zone *zone)
2018 {
2019         return extfrag_for_order(zone, COMPACTION_HPAGE_ORDER);
2020 }
2021
2022 /*
2023  * A weighted zone's fragmentation score is the external fragmentation
2024  * wrt to the COMPACTION_HPAGE_ORDER scaled by the zone's size. It
2025  * returns a value in the range [0, 100].
2026  *
2027  * The scaling factor ensures that proactive compaction focuses on larger
2028  * zones like ZONE_NORMAL, rather than smaller, specialized zones like
2029  * ZONE_DMA32. For smaller zones, the score value remains close to zero,
2030  * and thus never exceeds the high threshold for proactive compaction.
2031  */
2032 static unsigned int fragmentation_score_zone_weighted(struct zone *zone)
2033 {
2034         unsigned long score;
2035
2036         score = zone->present_pages * fragmentation_score_zone(zone);
2037         return div64_ul(score, zone->zone_pgdat->node_present_pages + 1);
2038 }
2039
2040 /*
2041  * The per-node proactive (background) compaction process is started by its
2042  * corresponding kcompactd thread when the node's fragmentation score
2043  * exceeds the high threshold. The compaction process remains active till
2044  * the node's score falls below the low threshold, or one of the back-off
2045  * conditions is met.
2046  */
2047 static unsigned int fragmentation_score_node(pg_data_t *pgdat)
2048 {
2049         unsigned int score = 0;
2050         int zoneid;
2051
2052         for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
2053                 struct zone *zone;
2054
2055                 zone = &pgdat->node_zones[zoneid];
2056                 if (!populated_zone(zone))
2057                         continue;
2058                 score += fragmentation_score_zone_weighted(zone);
2059         }
2060
2061         return score;
2062 }
2063
2064 static unsigned int fragmentation_score_wmark(pg_data_t *pgdat, bool low)
2065 {
2066         unsigned int wmark_low;
2067
2068         /*
2069          * Cap the low watermark to avoid excessive compaction
2070          * activity in case a user sets the proactiveness tunable
2071          * close to 100 (maximum).
2072          */
2073         wmark_low = max(100U - sysctl_compaction_proactiveness, 5U);
2074         return low ? wmark_low : min(wmark_low + 10, 100U);
2075 }
2076
2077 static bool should_proactive_compact_node(pg_data_t *pgdat)
2078 {
2079         int wmark_high;
2080
2081         if (!sysctl_compaction_proactiveness || kswapd_is_running(pgdat))
2082                 return false;
2083
2084         wmark_high = fragmentation_score_wmark(pgdat, false);
2085         return fragmentation_score_node(pgdat) > wmark_high;
2086 }
2087
2088 static enum compact_result __compact_finished(struct compact_control *cc)
2089 {
2090         unsigned int order;
2091         const int migratetype = cc->migratetype;
2092         int ret;
2093
2094         /* Compaction run completes if the migrate and free scanner meet */
2095         if (compact_scanners_met(cc)) {
2096                 /* Let the next compaction start anew. */
2097                 reset_cached_positions(cc->zone);
2098
2099                 /*
2100                  * Mark that the PG_migrate_skip information should be cleared
2101                  * by kswapd when it goes to sleep. kcompactd does not set the
2102                  * flag itself as the decision to be clear should be directly
2103                  * based on an allocation request.
2104                  */
2105                 if (cc->direct_compaction)
2106                         cc->zone->compact_blockskip_flush = true;
2107
2108                 if (cc->whole_zone)
2109                         return COMPACT_COMPLETE;
2110                 else
2111                         return COMPACT_PARTIAL_SKIPPED;
2112         }
2113
2114         if (cc->proactive_compaction) {
2115                 int score, wmark_low;
2116                 pg_data_t *pgdat;
2117
2118                 pgdat = cc->zone->zone_pgdat;
2119                 if (kswapd_is_running(pgdat))
2120                         return COMPACT_PARTIAL_SKIPPED;
2121
2122                 score = fragmentation_score_zone(cc->zone);
2123                 wmark_low = fragmentation_score_wmark(pgdat, true);
2124
2125                 if (score > wmark_low)
2126                         ret = COMPACT_CONTINUE;
2127                 else
2128                         ret = COMPACT_SUCCESS;
2129
2130                 goto out;
2131         }
2132
2133         if (is_via_compact_memory(cc->order))
2134                 return COMPACT_CONTINUE;
2135
2136         /*
2137          * Always finish scanning a pageblock to reduce the possibility of
2138          * fallbacks in the future. This is particularly important when
2139          * migration source is unmovable/reclaimable but it's not worth
2140          * special casing.
2141          */
2142         if (!pageblock_aligned(cc->migrate_pfn))
2143                 return COMPACT_CONTINUE;
2144
2145         /* Direct compactor: Is a suitable page free? */
2146         ret = COMPACT_NO_SUITABLE_PAGE;
2147         for (order = cc->order; order <= MAX_ORDER; order++) {
2148                 struct free_area *area = &cc->zone->free_area[order];
2149                 bool can_steal;
2150
2151                 /* Job done if page is free of the right migratetype */
2152                 if (!free_area_empty(area, migratetype))
2153                         return COMPACT_SUCCESS;
2154
2155 #ifdef CONFIG_CMA
2156                 /* MIGRATE_MOVABLE can fallback on MIGRATE_CMA */
2157                 if (migratetype == MIGRATE_MOVABLE &&
2158                         !free_area_empty(area, MIGRATE_CMA))
2159                         return COMPACT_SUCCESS;
2160 #endif
2161                 /*
2162                  * Job done if allocation would steal freepages from
2163                  * other migratetype buddy lists.
2164                  */
2165                 if (find_suitable_fallback(area, order, migratetype,
2166                                                 true, &can_steal) != -1)
2167                         /*
2168                          * Movable pages are OK in any pageblock. If we are
2169                          * stealing for a non-movable allocation, make sure
2170                          * we finish compacting the current pageblock first
2171                          * (which is assured by the above migrate_pfn align
2172                          * check) so it is as free as possible and we won't
2173                          * have to steal another one soon.
2174                          */
2175                         return COMPACT_SUCCESS;
2176         }
2177
2178 out:
2179         if (cc->contended || fatal_signal_pending(current))
2180                 ret = COMPACT_CONTENDED;
2181
2182         return ret;
2183 }
2184
2185 static enum compact_result compact_finished(struct compact_control *cc)
2186 {
2187         int ret;
2188
2189         ret = __compact_finished(cc);
2190         trace_mm_compaction_finished(cc->zone, cc->order, ret);
2191         if (ret == COMPACT_NO_SUITABLE_PAGE)
2192                 ret = COMPACT_CONTINUE;
2193
2194         return ret;
2195 }
2196
2197 static enum compact_result __compaction_suitable(struct zone *zone, int order,
2198                                         unsigned int alloc_flags,
2199                                         int highest_zoneidx,
2200                                         unsigned long wmark_target)
2201 {
2202         unsigned long watermark;
2203
2204         if (is_via_compact_memory(order))
2205                 return COMPACT_CONTINUE;
2206
2207         watermark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
2208         /*
2209          * If watermarks for high-order allocation are already met, there
2210          * should be no need for compaction at all.
2211          */
2212         if (zone_watermark_ok(zone, order, watermark, highest_zoneidx,
2213                                                                 alloc_flags))
2214                 return COMPACT_SUCCESS;
2215
2216         /*
2217          * Watermarks for order-0 must be met for compaction to be able to
2218          * isolate free pages for migration targets. This means that the
2219          * watermark and alloc_flags have to match, or be more pessimistic than
2220          * the check in __isolate_free_page(). We don't use the direct
2221          * compactor's alloc_flags, as they are not relevant for freepage
2222          * isolation. We however do use the direct compactor's highest_zoneidx
2223          * to skip over zones where lowmem reserves would prevent allocation
2224          * even if compaction succeeds.
2225          * For costly orders, we require low watermark instead of min for
2226          * compaction to proceed to increase its chances.
2227          * ALLOC_CMA is used, as pages in CMA pageblocks are considered
2228          * suitable migration targets
2229          */
2230         watermark = (order > PAGE_ALLOC_COSTLY_ORDER) ?
2231                                 low_wmark_pages(zone) : min_wmark_pages(zone);
2232         watermark += compact_gap(order);
2233         if (!__zone_watermark_ok(zone, 0, watermark, highest_zoneidx,
2234                                                 ALLOC_CMA, wmark_target))
2235                 return COMPACT_SKIPPED;
2236
2237         return COMPACT_CONTINUE;
2238 }
2239
2240 /*
2241  * compaction_suitable: Is this suitable to run compaction on this zone now?
2242  * Returns
2243  *   COMPACT_SKIPPED  - If there are too few free pages for compaction
2244  *   COMPACT_SUCCESS  - If the allocation would succeed without compaction
2245  *   COMPACT_CONTINUE - If compaction should run now
2246  */
2247 enum compact_result compaction_suitable(struct zone *zone, int order,
2248                                         unsigned int alloc_flags,
2249                                         int highest_zoneidx)
2250 {
2251         enum compact_result ret;
2252         int fragindex;
2253
2254         ret = __compaction_suitable(zone, order, alloc_flags, highest_zoneidx,
2255                                     zone_page_state(zone, NR_FREE_PAGES));
2256         /*
2257          * fragmentation index determines if allocation failures are due to
2258          * low memory or external fragmentation
2259          *
2260          * index of -1000 would imply allocations might succeed depending on
2261          * watermarks, but we already failed the high-order watermark check
2262          * index towards 0 implies failure is due to lack of memory
2263          * index towards 1000 implies failure is due to fragmentation
2264          *
2265          * Only compact if a failure would be due to fragmentation. Also
2266          * ignore fragindex for non-costly orders where the alternative to
2267          * a successful reclaim/compaction is OOM. Fragindex and the
2268          * vm.extfrag_threshold sysctl is meant as a heuristic to prevent
2269          * excessive compaction for costly orders, but it should not be at the
2270          * expense of system stability.
2271          */
2272         if (ret == COMPACT_CONTINUE && (order > PAGE_ALLOC_COSTLY_ORDER)) {
2273                 fragindex = fragmentation_index(zone, order);
2274                 if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold)
2275                         ret = COMPACT_NOT_SUITABLE_ZONE;
2276         }
2277
2278         trace_mm_compaction_suitable(zone, order, ret);
2279         if (ret == COMPACT_NOT_SUITABLE_ZONE)
2280                 ret = COMPACT_SKIPPED;
2281
2282         return ret;
2283 }
2284
2285 bool compaction_zonelist_suitable(struct alloc_context *ac, int order,
2286                 int alloc_flags)
2287 {
2288         struct zone *zone;
2289         struct zoneref *z;
2290
2291         /*
2292          * Make sure at least one zone would pass __compaction_suitable if we continue
2293          * retrying the reclaim.
2294          */
2295         for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2296                                 ac->highest_zoneidx, ac->nodemask) {
2297                 unsigned long available;
2298                 enum compact_result compact_result;
2299
2300                 /*
2301                  * Do not consider all the reclaimable memory because we do not
2302                  * want to trash just for a single high order allocation which
2303                  * is even not guaranteed to appear even if __compaction_suitable
2304                  * is happy about the watermark check.
2305                  */
2306                 available = zone_reclaimable_pages(zone) / order;
2307                 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
2308                 compact_result = __compaction_suitable(zone, order, alloc_flags,
2309                                 ac->highest_zoneidx, available);
2310                 if (compact_result == COMPACT_CONTINUE)
2311                         return true;
2312         }
2313
2314         return false;
2315 }
2316
2317 static enum compact_result
2318 compact_zone(struct compact_control *cc, struct capture_control *capc)
2319 {
2320         enum compact_result ret;
2321         unsigned long start_pfn = cc->zone->zone_start_pfn;
2322         unsigned long end_pfn = zone_end_pfn(cc->zone);
2323         unsigned long last_migrated_pfn;
2324         const bool sync = cc->mode != MIGRATE_ASYNC;
2325         bool update_cached;
2326         unsigned int nr_succeeded = 0;
2327
2328         /*
2329          * These counters track activities during zone compaction.  Initialize
2330          * them before compacting a new zone.
2331          */
2332         cc->total_migrate_scanned = 0;
2333         cc->total_free_scanned = 0;
2334         cc->nr_migratepages = 0;
2335         cc->nr_freepages = 0;
2336         INIT_LIST_HEAD(&cc->freepages);
2337         INIT_LIST_HEAD(&cc->migratepages);
2338
2339         cc->migratetype = gfp_migratetype(cc->gfp_mask);
2340         ret = compaction_suitable(cc->zone, cc->order, cc->alloc_flags,
2341                                                         cc->highest_zoneidx);
2342         /* Compaction is likely to fail */
2343         if (ret == COMPACT_SUCCESS || ret == COMPACT_SKIPPED)
2344                 return ret;
2345
2346         /*
2347          * Clear pageblock skip if there were failures recently and compaction
2348          * is about to be retried after being deferred.
2349          */
2350         if (compaction_restarting(cc->zone, cc->order))
2351                 __reset_isolation_suitable(cc->zone);
2352
2353         /*
2354          * Setup to move all movable pages to the end of the zone. Used cached
2355          * information on where the scanners should start (unless we explicitly
2356          * want to compact the whole zone), but check that it is initialised
2357          * by ensuring the values are within zone boundaries.
2358          */
2359         cc->fast_start_pfn = 0;
2360         if (cc->whole_zone) {
2361                 cc->migrate_pfn = start_pfn;
2362                 cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
2363         } else {
2364                 cc->migrate_pfn = cc->zone->compact_cached_migrate_pfn[sync];
2365                 cc->free_pfn = cc->zone->compact_cached_free_pfn;
2366                 if (cc->free_pfn < start_pfn || cc->free_pfn >= end_pfn) {
2367                         cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
2368                         cc->zone->compact_cached_free_pfn = cc->free_pfn;
2369                 }
2370                 if (cc->migrate_pfn < start_pfn || cc->migrate_pfn >= end_pfn) {
2371                         cc->migrate_pfn = start_pfn;
2372                         cc->zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn;
2373                         cc->zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn;
2374                 }
2375
2376                 if (cc->migrate_pfn <= cc->zone->compact_init_migrate_pfn)
2377                         cc->whole_zone = true;
2378         }
2379
2380         last_migrated_pfn = 0;
2381
2382         /*
2383          * Migrate has separate cached PFNs for ASYNC and SYNC* migration on
2384          * the basis that some migrations will fail in ASYNC mode. However,
2385          * if the cached PFNs match and pageblocks are skipped due to having
2386          * no isolation candidates, then the sync state does not matter.
2387          * Until a pageblock with isolation candidates is found, keep the
2388          * cached PFNs in sync to avoid revisiting the same blocks.
2389          */
2390         update_cached = !sync &&
2391                 cc->zone->compact_cached_migrate_pfn[0] == cc->zone->compact_cached_migrate_pfn[1];
2392
2393         trace_mm_compaction_begin(cc, start_pfn, end_pfn, sync);
2394
2395         /* lru_add_drain_all could be expensive with involving other CPUs */
2396         lru_add_drain();
2397
2398         while ((ret = compact_finished(cc)) == COMPACT_CONTINUE) {
2399                 int err;
2400                 unsigned long iteration_start_pfn = cc->migrate_pfn;
2401
2402                 /*
2403                  * Avoid multiple rescans of the same pageblock which can
2404                  * happen if a page cannot be isolated (dirty/writeback in
2405                  * async mode) or if the migrated pages are being allocated
2406                  * before the pageblock is cleared.  The first rescan will
2407                  * capture the entire pageblock for migration. If it fails,
2408                  * it'll be marked skip and scanning will proceed as normal.
2409                  */
2410                 cc->finish_pageblock = false;
2411                 if (pageblock_start_pfn(last_migrated_pfn) ==
2412                     pageblock_start_pfn(iteration_start_pfn)) {
2413                         cc->finish_pageblock = true;
2414                 }
2415
2416 rescan:
2417                 switch (isolate_migratepages(cc)) {
2418                 case ISOLATE_ABORT:
2419                         ret = COMPACT_CONTENDED;
2420                         putback_movable_pages(&cc->migratepages);
2421                         cc->nr_migratepages = 0;
2422                         goto out;
2423                 case ISOLATE_NONE:
2424                         if (update_cached) {
2425                                 cc->zone->compact_cached_migrate_pfn[1] =
2426                                         cc->zone->compact_cached_migrate_pfn[0];
2427                         }
2428
2429                         /*
2430                          * We haven't isolated and migrated anything, but
2431                          * there might still be unflushed migrations from
2432                          * previous cc->order aligned block.
2433                          */
2434                         goto check_drain;
2435                 case ISOLATE_SUCCESS:
2436                         update_cached = false;
2437                         last_migrated_pfn = iteration_start_pfn;
2438                 }
2439
2440                 err = migrate_pages(&cc->migratepages, compaction_alloc,
2441                                 compaction_free, (unsigned long)cc, cc->mode,
2442                                 MR_COMPACTION, &nr_succeeded);
2443
2444                 trace_mm_compaction_migratepages(cc, nr_succeeded);
2445
2446                 /* All pages were either migrated or will be released */
2447                 cc->nr_migratepages = 0;
2448                 if (err) {
2449                         putback_movable_pages(&cc->migratepages);
2450                         /*
2451                          * migrate_pages() may return -ENOMEM when scanners meet
2452                          * and we want compact_finished() to detect it
2453                          */
2454                         if (err == -ENOMEM && !compact_scanners_met(cc)) {
2455                                 ret = COMPACT_CONTENDED;
2456                                 goto out;
2457                         }
2458                         /*
2459                          * If an ASYNC or SYNC_LIGHT fails to migrate a page
2460                          * within the current order-aligned block and
2461                          * fast_find_migrateblock may be used then scan the
2462                          * remainder of the pageblock. This will mark the
2463                          * pageblock "skip" to avoid rescanning in the near
2464                          * future. This will isolate more pages than necessary
2465                          * for the request but avoid loops due to
2466                          * fast_find_migrateblock revisiting blocks that were
2467                          * recently partially scanned.
2468                          */
2469                         if (!pageblock_aligned(cc->migrate_pfn) &&
2470                             !cc->ignore_skip_hint && !cc->finish_pageblock &&
2471                             (cc->mode < MIGRATE_SYNC)) {
2472                                 cc->finish_pageblock = true;
2473
2474                                 /*
2475                                  * Draining pcplists does not help THP if
2476                                  * any page failed to migrate. Even after
2477                                  * drain, the pageblock will not be free.
2478                                  */
2479                                 if (cc->order == COMPACTION_HPAGE_ORDER)
2480                                         last_migrated_pfn = 0;
2481
2482                                 goto rescan;
2483                         }
2484                 }
2485
2486                 /* Stop if a page has been captured */
2487                 if (capc && capc->page) {
2488                         ret = COMPACT_SUCCESS;
2489                         break;
2490                 }
2491
2492 check_drain:
2493                 /*
2494                  * Has the migration scanner moved away from the previous
2495                  * cc->order aligned block where we migrated from? If yes,
2496                  * flush the pages that were freed, so that they can merge and
2497                  * compact_finished() can detect immediately if allocation
2498                  * would succeed.
2499                  */
2500                 if (cc->order > 0 && last_migrated_pfn) {
2501                         unsigned long current_block_start =
2502                                 block_start_pfn(cc->migrate_pfn, cc->order);
2503
2504                         if (last_migrated_pfn < current_block_start) {
2505                                 lru_add_drain_cpu_zone(cc->zone);
2506                                 /* No more flushing until we migrate again */
2507                                 last_migrated_pfn = 0;
2508                         }
2509                 }
2510         }
2511
2512 out:
2513         /*
2514          * Release free pages and update where the free scanner should restart,
2515          * so we don't leave any returned pages behind in the next attempt.
2516          */
2517         if (cc->nr_freepages > 0) {
2518                 unsigned long free_pfn = release_freepages(&cc->freepages);
2519
2520                 cc->nr_freepages = 0;
2521                 VM_BUG_ON(free_pfn == 0);
2522                 /* The cached pfn is always the first in a pageblock */
2523                 free_pfn = pageblock_start_pfn(free_pfn);
2524                 /*
2525                  * Only go back, not forward. The cached pfn might have been
2526                  * already reset to zone end in compact_finished()
2527                  */
2528                 if (free_pfn > cc->zone->compact_cached_free_pfn)
2529                         cc->zone->compact_cached_free_pfn = free_pfn;
2530         }
2531
2532         count_compact_events(COMPACTMIGRATE_SCANNED, cc->total_migrate_scanned);
2533         count_compact_events(COMPACTFREE_SCANNED, cc->total_free_scanned);
2534
2535         trace_mm_compaction_end(cc, start_pfn, end_pfn, sync, ret);
2536
2537         VM_BUG_ON(!list_empty(&cc->freepages));
2538         VM_BUG_ON(!list_empty(&cc->migratepages));
2539
2540         return ret;
2541 }
2542
2543 static enum compact_result compact_zone_order(struct zone *zone, int order,
2544                 gfp_t gfp_mask, enum compact_priority prio,
2545                 unsigned int alloc_flags, int highest_zoneidx,
2546                 struct page **capture)
2547 {
2548         enum compact_result ret;
2549         struct compact_control cc = {
2550                 .order = order,
2551                 .search_order = order,
2552                 .gfp_mask = gfp_mask,
2553                 .zone = zone,
2554                 .mode = (prio == COMPACT_PRIO_ASYNC) ?
2555                                         MIGRATE_ASYNC : MIGRATE_SYNC_LIGHT,
2556                 .alloc_flags = alloc_flags,
2557                 .highest_zoneidx = highest_zoneidx,
2558                 .direct_compaction = true,
2559                 .whole_zone = (prio == MIN_COMPACT_PRIORITY),
2560                 .ignore_skip_hint = (prio == MIN_COMPACT_PRIORITY),
2561                 .ignore_block_suitable = (prio == MIN_COMPACT_PRIORITY)
2562         };
2563         struct capture_control capc = {
2564                 .cc = &cc,
2565                 .page = NULL,
2566         };
2567
2568         /*
2569          * Make sure the structs are really initialized before we expose the
2570          * capture control, in case we are interrupted and the interrupt handler
2571          * frees a page.
2572          */
2573         barrier();
2574         WRITE_ONCE(current->capture_control, &capc);
2575
2576         ret = compact_zone(&cc, &capc);
2577
2578         /*
2579          * Make sure we hide capture control first before we read the captured
2580          * page pointer, otherwise an interrupt could free and capture a page
2581          * and we would leak it.
2582          */
2583         WRITE_ONCE(current->capture_control, NULL);
2584         *capture = READ_ONCE(capc.page);
2585         /*
2586          * Technically, it is also possible that compaction is skipped but
2587          * the page is still captured out of luck(IRQ came and freed the page).
2588          * Returning COMPACT_SUCCESS in such cases helps in properly accounting
2589          * the COMPACT[STALL|FAIL] when compaction is skipped.
2590          */
2591         if (*capture)
2592                 ret = COMPACT_SUCCESS;
2593
2594         return ret;
2595 }
2596
2597 /**
2598  * try_to_compact_pages - Direct compact to satisfy a high-order allocation
2599  * @gfp_mask: The GFP mask of the current allocation
2600  * @order: The order of the current allocation
2601  * @alloc_flags: The allocation flags of the current allocation
2602  * @ac: The context of current allocation
2603  * @prio: Determines how hard direct compaction should try to succeed
2604  * @capture: Pointer to free page created by compaction will be stored here
2605  *
2606  * This is the main entry point for direct page compaction.
2607  */
2608 enum compact_result try_to_compact_pages(gfp_t gfp_mask, unsigned int order,
2609                 unsigned int alloc_flags, const struct alloc_context *ac,
2610                 enum compact_priority prio, struct page **capture)
2611 {
2612         int may_perform_io = (__force int)(gfp_mask & __GFP_IO);
2613         struct zoneref *z;
2614         struct zone *zone;
2615         enum compact_result rc = COMPACT_SKIPPED;
2616
2617         /*
2618          * Check if the GFP flags allow compaction - GFP_NOIO is really
2619          * tricky context because the migration might require IO
2620          */
2621         if (!may_perform_io)
2622                 return COMPACT_SKIPPED;
2623
2624         trace_mm_compaction_try_to_compact_pages(order, gfp_mask, prio);
2625
2626         /* Compact each zone in the list */
2627         for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2628                                         ac->highest_zoneidx, ac->nodemask) {
2629                 enum compact_result status;
2630
2631                 if (prio > MIN_COMPACT_PRIORITY
2632                                         && compaction_deferred(zone, order)) {
2633                         rc = max_t(enum compact_result, COMPACT_DEFERRED, rc);
2634                         continue;
2635                 }
2636
2637                 status = compact_zone_order(zone, order, gfp_mask, prio,
2638                                 alloc_flags, ac->highest_zoneidx, capture);
2639                 rc = max(status, rc);
2640
2641                 /* The allocation should succeed, stop compacting */
2642                 if (status == COMPACT_SUCCESS) {
2643                         /*
2644                          * We think the allocation will succeed in this zone,
2645                          * but it is not certain, hence the false. The caller
2646                          * will repeat this with true if allocation indeed
2647                          * succeeds in this zone.
2648                          */
2649                         compaction_defer_reset(zone, order, false);
2650
2651                         break;
2652                 }
2653
2654                 if (prio != COMPACT_PRIO_ASYNC && (status == COMPACT_COMPLETE ||
2655                                         status == COMPACT_PARTIAL_SKIPPED))
2656                         /*
2657                          * We think that allocation won't succeed in this zone
2658                          * so we defer compaction there. If it ends up
2659                          * succeeding after all, it will be reset.
2660                          */
2661                         defer_compaction(zone, order);
2662
2663                 /*
2664                  * We might have stopped compacting due to need_resched() in
2665                  * async compaction, or due to a fatal signal detected. In that
2666                  * case do not try further zones
2667                  */
2668                 if ((prio == COMPACT_PRIO_ASYNC && need_resched())
2669                                         || fatal_signal_pending(current))
2670                         break;
2671         }
2672
2673         return rc;
2674 }
2675
2676 /*
2677  * Compact all zones within a node till each zone's fragmentation score
2678  * reaches within proactive compaction thresholds (as determined by the
2679  * proactiveness tunable).
2680  *
2681  * It is possible that the function returns before reaching score targets
2682  * due to various back-off conditions, such as, contention on per-node or
2683  * per-zone locks.
2684  */
2685 static void proactive_compact_node(pg_data_t *pgdat)
2686 {
2687         int zoneid;
2688         struct zone *zone;
2689         struct compact_control cc = {
2690                 .order = -1,
2691                 .mode = MIGRATE_SYNC_LIGHT,
2692                 .ignore_skip_hint = true,
2693                 .whole_zone = true,
2694                 .gfp_mask = GFP_KERNEL,
2695                 .proactive_compaction = true,
2696         };
2697
2698         for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
2699                 zone = &pgdat->node_zones[zoneid];
2700                 if (!populated_zone(zone))
2701                         continue;
2702
2703                 cc.zone = zone;
2704
2705                 compact_zone(&cc, NULL);
2706
2707                 count_compact_events(KCOMPACTD_MIGRATE_SCANNED,
2708                                      cc.total_migrate_scanned);
2709                 count_compact_events(KCOMPACTD_FREE_SCANNED,
2710                                      cc.total_free_scanned);
2711         }
2712 }
2713
2714 /* Compact all zones within a node */
2715 static void compact_node(int nid)
2716 {
2717         pg_data_t *pgdat = NODE_DATA(nid);
2718         int zoneid;
2719         struct zone *zone;
2720         struct compact_control cc = {
2721                 .order = -1,
2722                 .mode = MIGRATE_SYNC,
2723                 .ignore_skip_hint = true,
2724                 .whole_zone = true,
2725                 .gfp_mask = GFP_KERNEL,
2726         };
2727
2728
2729         for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
2730
2731                 zone = &pgdat->node_zones[zoneid];
2732                 if (!populated_zone(zone))
2733                         continue;
2734
2735                 cc.zone = zone;
2736
2737                 compact_zone(&cc, NULL);
2738         }
2739 }
2740
2741 /* Compact all nodes in the system */
2742 static void compact_nodes(void)
2743 {
2744         int nid;
2745
2746         /* Flush pending updates to the LRU lists */
2747         lru_add_drain_all();
2748
2749         for_each_online_node(nid)
2750                 compact_node(nid);
2751 }
2752
2753 static int compaction_proactiveness_sysctl_handler(struct ctl_table *table, int write,
2754                 void *buffer, size_t *length, loff_t *ppos)
2755 {
2756         int rc, nid;
2757
2758         rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
2759         if (rc)
2760                 return rc;
2761
2762         if (write && sysctl_compaction_proactiveness) {
2763                 for_each_online_node(nid) {
2764                         pg_data_t *pgdat = NODE_DATA(nid);
2765
2766                         if (pgdat->proactive_compact_trigger)
2767                                 continue;
2768
2769                         pgdat->proactive_compact_trigger = true;
2770                         trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, -1,
2771                                                              pgdat->nr_zones - 1);
2772                         wake_up_interruptible(&pgdat->kcompactd_wait);
2773                 }
2774         }
2775
2776         return 0;
2777 }
2778
2779 /*
2780  * This is the entry point for compacting all nodes via
2781  * /proc/sys/vm/compact_memory
2782  */
2783 static int sysctl_compaction_handler(struct ctl_table *table, int write,
2784                         void *buffer, size_t *length, loff_t *ppos)
2785 {
2786         int ret;
2787
2788         ret = proc_dointvec(table, write, buffer, length, ppos);
2789         if (ret)
2790                 return ret;
2791
2792         if (sysctl_compact_memory != 1)
2793                 return -EINVAL;
2794
2795         if (write)
2796                 compact_nodes();
2797
2798         return 0;
2799 }
2800
2801 #if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
2802 static ssize_t compact_store(struct device *dev,
2803                              struct device_attribute *attr,
2804                              const char *buf, size_t count)
2805 {
2806         int nid = dev->id;
2807
2808         if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
2809                 /* Flush pending updates to the LRU lists */
2810                 lru_add_drain_all();
2811
2812                 compact_node(nid);
2813         }
2814
2815         return count;
2816 }
2817 static DEVICE_ATTR_WO(compact);
2818
2819 int compaction_register_node(struct node *node)
2820 {
2821         return device_create_file(&node->dev, &dev_attr_compact);
2822 }
2823
2824 void compaction_unregister_node(struct node *node)
2825 {
2826         return device_remove_file(&node->dev, &dev_attr_compact);
2827 }
2828 #endif /* CONFIG_SYSFS && CONFIG_NUMA */
2829
2830 static inline bool kcompactd_work_requested(pg_data_t *pgdat)
2831 {
2832         return pgdat->kcompactd_max_order > 0 || kthread_should_stop() ||
2833                 pgdat->proactive_compact_trigger;
2834 }
2835
2836 static bool kcompactd_node_suitable(pg_data_t *pgdat)
2837 {
2838         int zoneid;
2839         struct zone *zone;
2840         enum zone_type highest_zoneidx = pgdat->kcompactd_highest_zoneidx;
2841
2842         for (zoneid = 0; zoneid <= highest_zoneidx; zoneid++) {
2843                 zone = &pgdat->node_zones[zoneid];
2844
2845                 if (!populated_zone(zone))
2846                         continue;
2847
2848                 if (compaction_suitable(zone, pgdat->kcompactd_max_order, 0,
2849                                         highest_zoneidx) == COMPACT_CONTINUE)
2850                         return true;
2851         }
2852
2853         return false;
2854 }
2855
2856 static void kcompactd_do_work(pg_data_t *pgdat)
2857 {
2858         /*
2859          * With no special task, compact all zones so that a page of requested
2860          * order is allocatable.
2861          */
2862         int zoneid;
2863         struct zone *zone;
2864         struct compact_control cc = {
2865                 .order = pgdat->kcompactd_max_order,
2866                 .search_order = pgdat->kcompactd_max_order,
2867                 .highest_zoneidx = pgdat->kcompactd_highest_zoneidx,
2868                 .mode = MIGRATE_SYNC_LIGHT,
2869                 .ignore_skip_hint = false,
2870                 .gfp_mask = GFP_KERNEL,
2871         };
2872         trace_mm_compaction_kcompactd_wake(pgdat->node_id, cc.order,
2873                                                         cc.highest_zoneidx);
2874         count_compact_event(KCOMPACTD_WAKE);
2875
2876         for (zoneid = 0; zoneid <= cc.highest_zoneidx; zoneid++) {
2877                 int status;
2878
2879                 zone = &pgdat->node_zones[zoneid];
2880                 if (!populated_zone(zone))
2881                         continue;
2882
2883                 if (compaction_deferred(zone, cc.order))
2884                         continue;
2885
2886                 if (compaction_suitable(zone, cc.order, 0, zoneid) !=
2887                                                         COMPACT_CONTINUE)
2888                         continue;
2889
2890                 if (kthread_should_stop())
2891                         return;
2892
2893                 cc.zone = zone;
2894                 status = compact_zone(&cc, NULL);
2895
2896                 if (status == COMPACT_SUCCESS) {
2897                         compaction_defer_reset(zone, cc.order, false);
2898                 } else if (status == COMPACT_PARTIAL_SKIPPED || status == COMPACT_COMPLETE) {
2899                         /*
2900                          * Buddy pages may become stranded on pcps that could
2901                          * otherwise coalesce on the zone's free area for
2902                          * order >= cc.order.  This is ratelimited by the
2903                          * upcoming deferral.
2904                          */
2905                         drain_all_pages(zone);
2906
2907                         /*
2908                          * We use sync migration mode here, so we defer like
2909                          * sync direct compaction does.
2910                          */
2911                         defer_compaction(zone, cc.order);
2912                 }
2913
2914                 count_compact_events(KCOMPACTD_MIGRATE_SCANNED,
2915                                      cc.total_migrate_scanned);
2916                 count_compact_events(KCOMPACTD_FREE_SCANNED,
2917                                      cc.total_free_scanned);
2918         }
2919
2920         /*
2921          * Regardless of success, we are done until woken up next. But remember
2922          * the requested order/highest_zoneidx in case it was higher/tighter
2923          * than our current ones
2924          */
2925         if (pgdat->kcompactd_max_order <= cc.order)
2926                 pgdat->kcompactd_max_order = 0;
2927         if (pgdat->kcompactd_highest_zoneidx >= cc.highest_zoneidx)
2928                 pgdat->kcompactd_highest_zoneidx = pgdat->nr_zones - 1;
2929 }
2930
2931 void wakeup_kcompactd(pg_data_t *pgdat, int order, int highest_zoneidx)
2932 {
2933         if (!order)
2934                 return;
2935
2936         if (pgdat->kcompactd_max_order < order)
2937                 pgdat->kcompactd_max_order = order;
2938
2939         if (pgdat->kcompactd_highest_zoneidx > highest_zoneidx)
2940                 pgdat->kcompactd_highest_zoneidx = highest_zoneidx;
2941
2942         /*
2943          * Pairs with implicit barrier in wait_event_freezable()
2944          * such that wakeups are not missed.
2945          */
2946         if (!wq_has_sleeper(&pgdat->kcompactd_wait))
2947                 return;
2948
2949         if (!kcompactd_node_suitable(pgdat))
2950                 return;
2951
2952         trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, order,
2953                                                         highest_zoneidx);
2954         wake_up_interruptible(&pgdat->kcompactd_wait);
2955 }
2956
2957 /*
2958  * The background compaction daemon, started as a kernel thread
2959  * from the init process.
2960  */
2961 static int kcompactd(void *p)
2962 {
2963         pg_data_t *pgdat = (pg_data_t *)p;
2964         struct task_struct *tsk = current;
2965         long default_timeout = msecs_to_jiffies(HPAGE_FRAG_CHECK_INTERVAL_MSEC);
2966         long timeout = default_timeout;
2967
2968         const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2969
2970         if (!cpumask_empty(cpumask))
2971                 set_cpus_allowed_ptr(tsk, cpumask);
2972
2973         set_freezable();
2974
2975         pgdat->kcompactd_max_order = 0;
2976         pgdat->kcompactd_highest_zoneidx = pgdat->nr_zones - 1;
2977
2978         while (!kthread_should_stop()) {
2979                 unsigned long pflags;
2980
2981                 /*
2982                  * Avoid the unnecessary wakeup for proactive compaction
2983                  * when it is disabled.
2984                  */
2985                 if (!sysctl_compaction_proactiveness)
2986                         timeout = MAX_SCHEDULE_TIMEOUT;
2987                 trace_mm_compaction_kcompactd_sleep(pgdat->node_id);
2988                 if (wait_event_freezable_timeout(pgdat->kcompactd_wait,
2989                         kcompactd_work_requested(pgdat), timeout) &&
2990                         !pgdat->proactive_compact_trigger) {
2991
2992                         psi_memstall_enter(&pflags);
2993                         kcompactd_do_work(pgdat);
2994                         psi_memstall_leave(&pflags);
2995                         /*
2996                          * Reset the timeout value. The defer timeout from
2997                          * proactive compaction is lost here but that is fine
2998                          * as the condition of the zone changing substantionally
2999                          * then carrying on with the previous defer interval is
3000                          * not useful.
3001                          */
3002                         timeout = default_timeout;
3003                         continue;
3004                 }
3005
3006                 /*
3007                  * Start the proactive work with default timeout. Based
3008                  * on the fragmentation score, this timeout is updated.
3009                  */
3010                 timeout = default_timeout;
3011                 if (should_proactive_compact_node(pgdat)) {
3012                         unsigned int prev_score, score;
3013
3014                         prev_score = fragmentation_score_node(pgdat);
3015                         proactive_compact_node(pgdat);
3016                         score = fragmentation_score_node(pgdat);
3017                         /*
3018                          * Defer proactive compaction if the fragmentation
3019                          * score did not go down i.e. no progress made.
3020                          */
3021                         if (unlikely(score >= prev_score))
3022                                 timeout =
3023                                    default_timeout << COMPACT_MAX_DEFER_SHIFT;
3024                 }
3025                 if (unlikely(pgdat->proactive_compact_trigger))
3026                         pgdat->proactive_compact_trigger = false;
3027         }
3028
3029         return 0;
3030 }
3031
3032 /*
3033  * This kcompactd start function will be called by init and node-hot-add.
3034  * On node-hot-add, kcompactd will moved to proper cpus if cpus are hot-added.
3035  */
3036 void kcompactd_run(int nid)
3037 {
3038         pg_data_t *pgdat = NODE_DATA(nid);
3039
3040         if (pgdat->kcompactd)
3041                 return;
3042
3043         pgdat->kcompactd = kthread_run(kcompactd, pgdat, "kcompactd%d", nid);
3044         if (IS_ERR(pgdat->kcompactd)) {
3045                 pr_err("Failed to start kcompactd on node %d\n", nid);
3046                 pgdat->kcompactd = NULL;
3047         }
3048 }
3049
3050 /*
3051  * Called by memory hotplug when all memory in a node is offlined. Caller must
3052  * be holding mem_hotplug_begin/done().
3053  */
3054 void kcompactd_stop(int nid)
3055 {
3056         struct task_struct *kcompactd = NODE_DATA(nid)->kcompactd;
3057
3058         if (kcompactd) {
3059                 kthread_stop(kcompactd);
3060                 NODE_DATA(nid)->kcompactd = NULL;
3061         }
3062 }
3063
3064 /*
3065  * It's optimal to keep kcompactd on the same CPUs as their memory, but
3066  * not required for correctness. So if the last cpu in a node goes
3067  * away, we get changed to run anywhere: as the first one comes back,
3068  * restore their cpu bindings.
3069  */
3070 static int kcompactd_cpu_online(unsigned int cpu)
3071 {
3072         int nid;
3073
3074         for_each_node_state(nid, N_MEMORY) {
3075                 pg_data_t *pgdat = NODE_DATA(nid);
3076                 const struct cpumask *mask;
3077
3078                 mask = cpumask_of_node(pgdat->node_id);
3079
3080                 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3081                         /* One of our CPUs online: restore mask */
3082                         if (pgdat->kcompactd)
3083                                 set_cpus_allowed_ptr(pgdat->kcompactd, mask);
3084         }
3085         return 0;
3086 }
3087
3088 static int proc_dointvec_minmax_warn_RT_change(struct ctl_table *table,
3089                 int write, void *buffer, size_t *lenp, loff_t *ppos)
3090 {
3091         int ret, old;
3092
3093         if (!IS_ENABLED(CONFIG_PREEMPT_RT) || !write)
3094                 return proc_dointvec_minmax(table, write, buffer, lenp, ppos);
3095
3096         old = *(int *)table->data;
3097         ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
3098         if (ret)
3099                 return ret;
3100         if (old != *(int *)table->data)
3101                 pr_warn_once("sysctl attribute %s changed by %s[%d]\n",
3102                              table->procname, current->comm,
3103                              task_pid_nr(current));
3104         return ret;
3105 }
3106
3107 static struct ctl_table vm_compaction[] = {
3108         {
3109                 .procname       = "compact_memory",
3110                 .data           = &sysctl_compact_memory,
3111                 .maxlen         = sizeof(int),
3112                 .mode           = 0200,
3113                 .proc_handler   = sysctl_compaction_handler,
3114         },
3115         {
3116                 .procname       = "compaction_proactiveness",
3117                 .data           = &sysctl_compaction_proactiveness,
3118                 .maxlen         = sizeof(sysctl_compaction_proactiveness),
3119                 .mode           = 0644,
3120                 .proc_handler   = compaction_proactiveness_sysctl_handler,
3121                 .extra1         = SYSCTL_ZERO,
3122                 .extra2         = SYSCTL_ONE_HUNDRED,
3123         },
3124         {
3125                 .procname       = "extfrag_threshold",
3126                 .data           = &sysctl_extfrag_threshold,
3127                 .maxlen         = sizeof(int),
3128                 .mode           = 0644,
3129                 .proc_handler   = proc_dointvec_minmax,
3130                 .extra1         = SYSCTL_ZERO,
3131                 .extra2         = SYSCTL_ONE_THOUSAND,
3132         },
3133         {
3134                 .procname       = "compact_unevictable_allowed",
3135                 .data           = &sysctl_compact_unevictable_allowed,
3136                 .maxlen         = sizeof(int),
3137                 .mode           = 0644,
3138                 .proc_handler   = proc_dointvec_minmax_warn_RT_change,
3139                 .extra1         = SYSCTL_ZERO,
3140                 .extra2         = SYSCTL_ONE,
3141         },
3142         { }
3143 };
3144
3145 static int __init kcompactd_init(void)
3146 {
3147         int nid;
3148         int ret;
3149
3150         ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
3151                                         "mm/compaction:online",
3152                                         kcompactd_cpu_online, NULL);
3153         if (ret < 0) {
3154                 pr_err("kcompactd: failed to register hotplug callbacks.\n");
3155                 return ret;
3156         }
3157
3158         for_each_node_state(nid, N_MEMORY)
3159                 kcompactd_run(nid);
3160         register_sysctl_init("vm", vm_compaction);
3161         return 0;
3162 }
3163 subsys_initcall(kcompactd_init)
3164
3165 #endif /* CONFIG_COMPACTION */