mm: compaction: only set skip flag if cc->no_set_skip_hint is false
[platform/kernel/linux-starfive.git] / mm / compaction.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * linux/mm/compaction.c
4  *
5  * Memory compaction for the reduction of external fragmentation. Note that
6  * this heavily depends upon page migration to do all the real heavy
7  * lifting
8  *
9  * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
10  */
11 #include <linux/cpu.h>
12 #include <linux/swap.h>
13 #include <linux/migrate.h>
14 #include <linux/compaction.h>
15 #include <linux/mm_inline.h>
16 #include <linux/sched/signal.h>
17 #include <linux/backing-dev.h>
18 #include <linux/sysctl.h>
19 #include <linux/sysfs.h>
20 #include <linux/page-isolation.h>
21 #include <linux/kasan.h>
22 #include <linux/kthread.h>
23 #include <linux/freezer.h>
24 #include <linux/page_owner.h>
25 #include <linux/psi.h>
26 #include "internal.h"
27
28 #ifdef CONFIG_COMPACTION
29 /*
30  * Fragmentation score check interval for proactive compaction purposes.
31  */
32 #define HPAGE_FRAG_CHECK_INTERVAL_MSEC  (500)
33
34 static inline void count_compact_event(enum vm_event_item item)
35 {
36         count_vm_event(item);
37 }
38
39 static inline void count_compact_events(enum vm_event_item item, long delta)
40 {
41         count_vm_events(item, delta);
42 }
43 #else
44 #define count_compact_event(item) do { } while (0)
45 #define count_compact_events(item, delta) do { } while (0)
46 #endif
47
48 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
49
50 #define CREATE_TRACE_POINTS
51 #include <trace/events/compaction.h>
52
53 #define block_start_pfn(pfn, order)     round_down(pfn, 1UL << (order))
54 #define block_end_pfn(pfn, order)       ALIGN((pfn) + 1, 1UL << (order))
55
56 /*
57  * Page order with-respect-to which proactive compaction
58  * calculates external fragmentation, which is used as
59  * the "fragmentation score" of a node/zone.
60  */
61 #if defined CONFIG_TRANSPARENT_HUGEPAGE
62 #define COMPACTION_HPAGE_ORDER  HPAGE_PMD_ORDER
63 #elif defined CONFIG_HUGETLBFS
64 #define COMPACTION_HPAGE_ORDER  HUGETLB_PAGE_ORDER
65 #else
66 #define COMPACTION_HPAGE_ORDER  (PMD_SHIFT - PAGE_SHIFT)
67 #endif
68
69 static unsigned long release_freepages(struct list_head *freelist)
70 {
71         struct page *page, *next;
72         unsigned long high_pfn = 0;
73
74         list_for_each_entry_safe(page, next, freelist, lru) {
75                 unsigned long pfn = page_to_pfn(page);
76                 list_del(&page->lru);
77                 __free_page(page);
78                 if (pfn > high_pfn)
79                         high_pfn = pfn;
80         }
81
82         return high_pfn;
83 }
84
85 static void split_map_pages(struct list_head *list)
86 {
87         unsigned int i, order, nr_pages;
88         struct page *page, *next;
89         LIST_HEAD(tmp_list);
90
91         list_for_each_entry_safe(page, next, list, lru) {
92                 list_del(&page->lru);
93
94                 order = page_private(page);
95                 nr_pages = 1 << order;
96
97                 post_alloc_hook(page, order, __GFP_MOVABLE);
98                 if (order)
99                         split_page(page, order);
100
101                 for (i = 0; i < nr_pages; i++) {
102                         list_add(&page->lru, &tmp_list);
103                         page++;
104                 }
105         }
106
107         list_splice(&tmp_list, list);
108 }
109
110 #ifdef CONFIG_COMPACTION
111 bool PageMovable(struct page *page)
112 {
113         const struct movable_operations *mops;
114
115         VM_BUG_ON_PAGE(!PageLocked(page), page);
116         if (!__PageMovable(page))
117                 return false;
118
119         mops = page_movable_ops(page);
120         if (mops)
121                 return true;
122
123         return false;
124 }
125
126 void __SetPageMovable(struct page *page, const struct movable_operations *mops)
127 {
128         VM_BUG_ON_PAGE(!PageLocked(page), page);
129         VM_BUG_ON_PAGE((unsigned long)mops & PAGE_MAPPING_MOVABLE, page);
130         page->mapping = (void *)((unsigned long)mops | PAGE_MAPPING_MOVABLE);
131 }
132 EXPORT_SYMBOL(__SetPageMovable);
133
134 void __ClearPageMovable(struct page *page)
135 {
136         VM_BUG_ON_PAGE(!PageMovable(page), page);
137         /*
138          * This page still has the type of a movable page, but it's
139          * actually not movable any more.
140          */
141         page->mapping = (void *)PAGE_MAPPING_MOVABLE;
142 }
143 EXPORT_SYMBOL(__ClearPageMovable);
144
145 /* Do not skip compaction more than 64 times */
146 #define COMPACT_MAX_DEFER_SHIFT 6
147
148 /*
149  * Compaction is deferred when compaction fails to result in a page
150  * allocation success. 1 << compact_defer_shift, compactions are skipped up
151  * to a limit of 1 << COMPACT_MAX_DEFER_SHIFT
152  */
153 static void defer_compaction(struct zone *zone, int order)
154 {
155         zone->compact_considered = 0;
156         zone->compact_defer_shift++;
157
158         if (order < zone->compact_order_failed)
159                 zone->compact_order_failed = order;
160
161         if (zone->compact_defer_shift > COMPACT_MAX_DEFER_SHIFT)
162                 zone->compact_defer_shift = COMPACT_MAX_DEFER_SHIFT;
163
164         trace_mm_compaction_defer_compaction(zone, order);
165 }
166
167 /* Returns true if compaction should be skipped this time */
168 static bool compaction_deferred(struct zone *zone, int order)
169 {
170         unsigned long defer_limit = 1UL << zone->compact_defer_shift;
171
172         if (order < zone->compact_order_failed)
173                 return false;
174
175         /* Avoid possible overflow */
176         if (++zone->compact_considered >= defer_limit) {
177                 zone->compact_considered = defer_limit;
178                 return false;
179         }
180
181         trace_mm_compaction_deferred(zone, order);
182
183         return true;
184 }
185
186 /*
187  * Update defer tracking counters after successful compaction of given order,
188  * which means an allocation either succeeded (alloc_success == true) or is
189  * expected to succeed.
190  */
191 void compaction_defer_reset(struct zone *zone, int order,
192                 bool alloc_success)
193 {
194         if (alloc_success) {
195                 zone->compact_considered = 0;
196                 zone->compact_defer_shift = 0;
197         }
198         if (order >= zone->compact_order_failed)
199                 zone->compact_order_failed = order + 1;
200
201         trace_mm_compaction_defer_reset(zone, order);
202 }
203
204 /* Returns true if restarting compaction after many failures */
205 static bool compaction_restarting(struct zone *zone, int order)
206 {
207         if (order < zone->compact_order_failed)
208                 return false;
209
210         return zone->compact_defer_shift == COMPACT_MAX_DEFER_SHIFT &&
211                 zone->compact_considered >= 1UL << zone->compact_defer_shift;
212 }
213
214 /* Returns true if the pageblock should be scanned for pages to isolate. */
215 static inline bool isolation_suitable(struct compact_control *cc,
216                                         struct page *page)
217 {
218         if (cc->ignore_skip_hint)
219                 return true;
220
221         return !get_pageblock_skip(page);
222 }
223
224 static void reset_cached_positions(struct zone *zone)
225 {
226         zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn;
227         zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn;
228         zone->compact_cached_free_pfn =
229                                 pageblock_start_pfn(zone_end_pfn(zone) - 1);
230 }
231
232 /*
233  * Compound pages of >= pageblock_order should consistently be skipped until
234  * released. It is always pointless to compact pages of such order (if they are
235  * migratable), and the pageblocks they occupy cannot contain any free pages.
236  */
237 static bool pageblock_skip_persistent(struct page *page)
238 {
239         if (!PageCompound(page))
240                 return false;
241
242         page = compound_head(page);
243
244         if (compound_order(page) >= pageblock_order)
245                 return true;
246
247         return false;
248 }
249
250 static bool
251 __reset_isolation_pfn(struct zone *zone, unsigned long pfn, bool check_source,
252                                                         bool check_target)
253 {
254         struct page *page = pfn_to_online_page(pfn);
255         struct page *block_page;
256         struct page *end_page;
257         unsigned long block_pfn;
258
259         if (!page)
260                 return false;
261         if (zone != page_zone(page))
262                 return false;
263         if (pageblock_skip_persistent(page))
264                 return false;
265
266         /*
267          * If skip is already cleared do no further checking once the
268          * restart points have been set.
269          */
270         if (check_source && check_target && !get_pageblock_skip(page))
271                 return true;
272
273         /*
274          * If clearing skip for the target scanner, do not select a
275          * non-movable pageblock as the starting point.
276          */
277         if (!check_source && check_target &&
278             get_pageblock_migratetype(page) != MIGRATE_MOVABLE)
279                 return false;
280
281         /* Ensure the start of the pageblock or zone is online and valid */
282         block_pfn = pageblock_start_pfn(pfn);
283         block_pfn = max(block_pfn, zone->zone_start_pfn);
284         block_page = pfn_to_online_page(block_pfn);
285         if (block_page) {
286                 page = block_page;
287                 pfn = block_pfn;
288         }
289
290         /* Ensure the end of the pageblock or zone is online and valid */
291         block_pfn = pageblock_end_pfn(pfn) - 1;
292         block_pfn = min(block_pfn, zone_end_pfn(zone) - 1);
293         end_page = pfn_to_online_page(block_pfn);
294         if (!end_page)
295                 return false;
296
297         /*
298          * Only clear the hint if a sample indicates there is either a
299          * free page or an LRU page in the block. One or other condition
300          * is necessary for the block to be a migration source/target.
301          */
302         do {
303                 if (check_source && PageLRU(page)) {
304                         clear_pageblock_skip(page);
305                         return true;
306                 }
307
308                 if (check_target && PageBuddy(page)) {
309                         clear_pageblock_skip(page);
310                         return true;
311                 }
312
313                 page += (1 << PAGE_ALLOC_COSTLY_ORDER);
314         } while (page <= end_page);
315
316         return false;
317 }
318
319 /*
320  * This function is called to clear all cached information on pageblocks that
321  * should be skipped for page isolation when the migrate and free page scanner
322  * meet.
323  */
324 static void __reset_isolation_suitable(struct zone *zone)
325 {
326         unsigned long migrate_pfn = zone->zone_start_pfn;
327         unsigned long free_pfn = zone_end_pfn(zone) - 1;
328         unsigned long reset_migrate = free_pfn;
329         unsigned long reset_free = migrate_pfn;
330         bool source_set = false;
331         bool free_set = false;
332
333         if (!zone->compact_blockskip_flush)
334                 return;
335
336         zone->compact_blockskip_flush = false;
337
338         /*
339          * Walk the zone and update pageblock skip information. Source looks
340          * for PageLRU while target looks for PageBuddy. When the scanner
341          * is found, both PageBuddy and PageLRU are checked as the pageblock
342          * is suitable as both source and target.
343          */
344         for (; migrate_pfn < free_pfn; migrate_pfn += pageblock_nr_pages,
345                                         free_pfn -= pageblock_nr_pages) {
346                 cond_resched();
347
348                 /* Update the migrate PFN */
349                 if (__reset_isolation_pfn(zone, migrate_pfn, true, source_set) &&
350                     migrate_pfn < reset_migrate) {
351                         source_set = true;
352                         reset_migrate = migrate_pfn;
353                         zone->compact_init_migrate_pfn = reset_migrate;
354                         zone->compact_cached_migrate_pfn[0] = reset_migrate;
355                         zone->compact_cached_migrate_pfn[1] = reset_migrate;
356                 }
357
358                 /* Update the free PFN */
359                 if (__reset_isolation_pfn(zone, free_pfn, free_set, true) &&
360                     free_pfn > reset_free) {
361                         free_set = true;
362                         reset_free = free_pfn;
363                         zone->compact_init_free_pfn = reset_free;
364                         zone->compact_cached_free_pfn = reset_free;
365                 }
366         }
367
368         /* Leave no distance if no suitable block was reset */
369         if (reset_migrate >= reset_free) {
370                 zone->compact_cached_migrate_pfn[0] = migrate_pfn;
371                 zone->compact_cached_migrate_pfn[1] = migrate_pfn;
372                 zone->compact_cached_free_pfn = free_pfn;
373         }
374 }
375
376 void reset_isolation_suitable(pg_data_t *pgdat)
377 {
378         int zoneid;
379
380         for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
381                 struct zone *zone = &pgdat->node_zones[zoneid];
382                 if (!populated_zone(zone))
383                         continue;
384
385                 /* Only flush if a full compaction finished recently */
386                 if (zone->compact_blockskip_flush)
387                         __reset_isolation_suitable(zone);
388         }
389 }
390
391 /*
392  * Sets the pageblock skip bit if it was clear. Note that this is a hint as
393  * locks are not required for read/writers. Returns true if it was already set.
394  */
395 static bool test_and_set_skip(struct compact_control *cc, struct page *page)
396 {
397         bool skip;
398
399         /* Do not update if skip hint is being ignored */
400         if (cc->ignore_skip_hint)
401                 return false;
402
403         skip = get_pageblock_skip(page);
404         if (!skip && !cc->no_set_skip_hint)
405                 set_pageblock_skip(page);
406
407         return skip;
408 }
409
410 static void update_cached_migrate(struct compact_control *cc, unsigned long pfn)
411 {
412         struct zone *zone = cc->zone;
413
414         pfn = pageblock_end_pfn(pfn);
415
416         /* Set for isolation rather than compaction */
417         if (cc->no_set_skip_hint)
418                 return;
419
420         if (pfn > zone->compact_cached_migrate_pfn[0])
421                 zone->compact_cached_migrate_pfn[0] = pfn;
422         if (cc->mode != MIGRATE_ASYNC &&
423             pfn > zone->compact_cached_migrate_pfn[1])
424                 zone->compact_cached_migrate_pfn[1] = pfn;
425 }
426
427 /*
428  * If no pages were isolated then mark this pageblock to be skipped in the
429  * future. The information is later cleared by __reset_isolation_suitable().
430  */
431 static void update_pageblock_skip(struct compact_control *cc,
432                         struct page *page, unsigned long pfn)
433 {
434         struct zone *zone = cc->zone;
435
436         if (cc->no_set_skip_hint)
437                 return;
438
439         set_pageblock_skip(page);
440
441         /* Update where async and sync compaction should restart */
442         if (pfn < zone->compact_cached_free_pfn)
443                 zone->compact_cached_free_pfn = pfn;
444 }
445 #else
446 static inline bool isolation_suitable(struct compact_control *cc,
447                                         struct page *page)
448 {
449         return true;
450 }
451
452 static inline bool pageblock_skip_persistent(struct page *page)
453 {
454         return false;
455 }
456
457 static inline void update_pageblock_skip(struct compact_control *cc,
458                         struct page *page, unsigned long pfn)
459 {
460 }
461
462 static void update_cached_migrate(struct compact_control *cc, unsigned long pfn)
463 {
464 }
465
466 static bool test_and_set_skip(struct compact_control *cc, struct page *page)
467 {
468         return false;
469 }
470 #endif /* CONFIG_COMPACTION */
471
472 /*
473  * Compaction requires the taking of some coarse locks that are potentially
474  * very heavily contended. For async compaction, trylock and record if the
475  * lock is contended. The lock will still be acquired but compaction will
476  * abort when the current block is finished regardless of success rate.
477  * Sync compaction acquires the lock.
478  *
479  * Always returns true which makes it easier to track lock state in callers.
480  */
481 static bool compact_lock_irqsave(spinlock_t *lock, unsigned long *flags,
482                                                 struct compact_control *cc)
483         __acquires(lock)
484 {
485         /* Track if the lock is contended in async mode */
486         if (cc->mode == MIGRATE_ASYNC && !cc->contended) {
487                 if (spin_trylock_irqsave(lock, *flags))
488                         return true;
489
490                 cc->contended = true;
491         }
492
493         spin_lock_irqsave(lock, *flags);
494         return true;
495 }
496
497 /*
498  * Compaction requires the taking of some coarse locks that are potentially
499  * very heavily contended. The lock should be periodically unlocked to avoid
500  * having disabled IRQs for a long time, even when there is nobody waiting on
501  * the lock. It might also be that allowing the IRQs will result in
502  * need_resched() becoming true. If scheduling is needed, compaction schedules.
503  * Either compaction type will also abort if a fatal signal is pending.
504  * In either case if the lock was locked, it is dropped and not regained.
505  *
506  * Returns true if compaction should abort due to fatal signal pending.
507  * Returns false when compaction can continue.
508  */
509 static bool compact_unlock_should_abort(spinlock_t *lock,
510                 unsigned long flags, bool *locked, struct compact_control *cc)
511 {
512         if (*locked) {
513                 spin_unlock_irqrestore(lock, flags);
514                 *locked = false;
515         }
516
517         if (fatal_signal_pending(current)) {
518                 cc->contended = true;
519                 return true;
520         }
521
522         cond_resched();
523
524         return false;
525 }
526
527 /*
528  * Isolate free pages onto a private freelist. If @strict is true, will abort
529  * returning 0 on any invalid PFNs or non-free pages inside of the pageblock
530  * (even though it may still end up isolating some pages).
531  */
532 static unsigned long isolate_freepages_block(struct compact_control *cc,
533                                 unsigned long *start_pfn,
534                                 unsigned long end_pfn,
535                                 struct list_head *freelist,
536                                 unsigned int stride,
537                                 bool strict)
538 {
539         int nr_scanned = 0, total_isolated = 0;
540         struct page *cursor;
541         unsigned long flags = 0;
542         bool locked = false;
543         unsigned long blockpfn = *start_pfn;
544         unsigned int order;
545
546         /* Strict mode is for isolation, speed is secondary */
547         if (strict)
548                 stride = 1;
549
550         cursor = pfn_to_page(blockpfn);
551
552         /* Isolate free pages. */
553         for (; blockpfn < end_pfn; blockpfn += stride, cursor += stride) {
554                 int isolated;
555                 struct page *page = cursor;
556
557                 /*
558                  * Periodically drop the lock (if held) regardless of its
559                  * contention, to give chance to IRQs. Abort if fatal signal
560                  * pending.
561                  */
562                 if (!(blockpfn % COMPACT_CLUSTER_MAX)
563                     && compact_unlock_should_abort(&cc->zone->lock, flags,
564                                                                 &locked, cc))
565                         break;
566
567                 nr_scanned++;
568
569                 /*
570                  * For compound pages such as THP and hugetlbfs, we can save
571                  * potentially a lot of iterations if we skip them at once.
572                  * The check is racy, but we can consider only valid values
573                  * and the only danger is skipping too much.
574                  */
575                 if (PageCompound(page)) {
576                         const unsigned int order = compound_order(page);
577
578                         if (likely(order <= MAX_ORDER)) {
579                                 blockpfn += (1UL << order) - 1;
580                                 cursor += (1UL << order) - 1;
581                                 nr_scanned += (1UL << order) - 1;
582                         }
583                         goto isolate_fail;
584                 }
585
586                 if (!PageBuddy(page))
587                         goto isolate_fail;
588
589                 /* If we already hold the lock, we can skip some rechecking. */
590                 if (!locked) {
591                         locked = compact_lock_irqsave(&cc->zone->lock,
592                                                                 &flags, cc);
593
594                         /* Recheck this is a buddy page under lock */
595                         if (!PageBuddy(page))
596                                 goto isolate_fail;
597                 }
598
599                 /* Found a free page, will break it into order-0 pages */
600                 order = buddy_order(page);
601                 isolated = __isolate_free_page(page, order);
602                 if (!isolated)
603                         break;
604                 set_page_private(page, order);
605
606                 nr_scanned += isolated - 1;
607                 total_isolated += isolated;
608                 cc->nr_freepages += isolated;
609                 list_add_tail(&page->lru, freelist);
610
611                 if (!strict && cc->nr_migratepages <= cc->nr_freepages) {
612                         blockpfn += isolated;
613                         break;
614                 }
615                 /* Advance to the end of split page */
616                 blockpfn += isolated - 1;
617                 cursor += isolated - 1;
618                 continue;
619
620 isolate_fail:
621                 if (strict)
622                         break;
623                 else
624                         continue;
625
626         }
627
628         if (locked)
629                 spin_unlock_irqrestore(&cc->zone->lock, flags);
630
631         /*
632          * There is a tiny chance that we have read bogus compound_order(),
633          * so be careful to not go outside of the pageblock.
634          */
635         if (unlikely(blockpfn > end_pfn))
636                 blockpfn = end_pfn;
637
638         trace_mm_compaction_isolate_freepages(*start_pfn, blockpfn,
639                                         nr_scanned, total_isolated);
640
641         /* Record how far we have got within the block */
642         *start_pfn = blockpfn;
643
644         /*
645          * If strict isolation is requested by CMA then check that all the
646          * pages requested were isolated. If there were any failures, 0 is
647          * returned and CMA will fail.
648          */
649         if (strict && blockpfn < end_pfn)
650                 total_isolated = 0;
651
652         cc->total_free_scanned += nr_scanned;
653         if (total_isolated)
654                 count_compact_events(COMPACTISOLATED, total_isolated);
655         return total_isolated;
656 }
657
658 /**
659  * isolate_freepages_range() - isolate free pages.
660  * @cc:        Compaction control structure.
661  * @start_pfn: The first PFN to start isolating.
662  * @end_pfn:   The one-past-last PFN.
663  *
664  * Non-free pages, invalid PFNs, or zone boundaries within the
665  * [start_pfn, end_pfn) range are considered errors, cause function to
666  * undo its actions and return zero.
667  *
668  * Otherwise, function returns one-past-the-last PFN of isolated page
669  * (which may be greater then end_pfn if end fell in a middle of
670  * a free page).
671  */
672 unsigned long
673 isolate_freepages_range(struct compact_control *cc,
674                         unsigned long start_pfn, unsigned long end_pfn)
675 {
676         unsigned long isolated, pfn, block_start_pfn, block_end_pfn;
677         LIST_HEAD(freelist);
678
679         pfn = start_pfn;
680         block_start_pfn = pageblock_start_pfn(pfn);
681         if (block_start_pfn < cc->zone->zone_start_pfn)
682                 block_start_pfn = cc->zone->zone_start_pfn;
683         block_end_pfn = pageblock_end_pfn(pfn);
684
685         for (; pfn < end_pfn; pfn += isolated,
686                                 block_start_pfn = block_end_pfn,
687                                 block_end_pfn += pageblock_nr_pages) {
688                 /* Protect pfn from changing by isolate_freepages_block */
689                 unsigned long isolate_start_pfn = pfn;
690
691                 block_end_pfn = min(block_end_pfn, end_pfn);
692
693                 /*
694                  * pfn could pass the block_end_pfn if isolated freepage
695                  * is more than pageblock order. In this case, we adjust
696                  * scanning range to right one.
697                  */
698                 if (pfn >= block_end_pfn) {
699                         block_start_pfn = pageblock_start_pfn(pfn);
700                         block_end_pfn = pageblock_end_pfn(pfn);
701                         block_end_pfn = min(block_end_pfn, end_pfn);
702                 }
703
704                 if (!pageblock_pfn_to_page(block_start_pfn,
705                                         block_end_pfn, cc->zone))
706                         break;
707
708                 isolated = isolate_freepages_block(cc, &isolate_start_pfn,
709                                         block_end_pfn, &freelist, 0, true);
710
711                 /*
712                  * In strict mode, isolate_freepages_block() returns 0 if
713                  * there are any holes in the block (ie. invalid PFNs or
714                  * non-free pages).
715                  */
716                 if (!isolated)
717                         break;
718
719                 /*
720                  * If we managed to isolate pages, it is always (1 << n) *
721                  * pageblock_nr_pages for some non-negative n.  (Max order
722                  * page may span two pageblocks).
723                  */
724         }
725
726         /* __isolate_free_page() does not map the pages */
727         split_map_pages(&freelist);
728
729         if (pfn < end_pfn) {
730                 /* Loop terminated early, cleanup. */
731                 release_freepages(&freelist);
732                 return 0;
733         }
734
735         /* We don't use freelists for anything. */
736         return pfn;
737 }
738
739 /* Similar to reclaim, but different enough that they don't share logic */
740 static bool too_many_isolated(struct compact_control *cc)
741 {
742         pg_data_t *pgdat = cc->zone->zone_pgdat;
743         bool too_many;
744
745         unsigned long active, inactive, isolated;
746
747         inactive = node_page_state(pgdat, NR_INACTIVE_FILE) +
748                         node_page_state(pgdat, NR_INACTIVE_ANON);
749         active = node_page_state(pgdat, NR_ACTIVE_FILE) +
750                         node_page_state(pgdat, NR_ACTIVE_ANON);
751         isolated = node_page_state(pgdat, NR_ISOLATED_FILE) +
752                         node_page_state(pgdat, NR_ISOLATED_ANON);
753
754         /*
755          * Allow GFP_NOFS to isolate past the limit set for regular
756          * compaction runs. This prevents an ABBA deadlock when other
757          * compactors have already isolated to the limit, but are
758          * blocked on filesystem locks held by the GFP_NOFS thread.
759          */
760         if (cc->gfp_mask & __GFP_FS) {
761                 inactive >>= 3;
762                 active >>= 3;
763         }
764
765         too_many = isolated > (inactive + active) / 2;
766         if (!too_many)
767                 wake_throttle_isolated(pgdat);
768
769         return too_many;
770 }
771
772 /**
773  * isolate_migratepages_block() - isolate all migrate-able pages within
774  *                                a single pageblock
775  * @cc:         Compaction control structure.
776  * @low_pfn:    The first PFN to isolate
777  * @end_pfn:    The one-past-the-last PFN to isolate, within same pageblock
778  * @mode:       Isolation mode to be used.
779  *
780  * Isolate all pages that can be migrated from the range specified by
781  * [low_pfn, end_pfn). The range is expected to be within same pageblock.
782  * Returns errno, like -EAGAIN or -EINTR in case e.g signal pending or congestion,
783  * -ENOMEM in case we could not allocate a page, or 0.
784  * cc->migrate_pfn will contain the next pfn to scan.
785  *
786  * The pages are isolated on cc->migratepages list (not required to be empty),
787  * and cc->nr_migratepages is updated accordingly.
788  */
789 static int
790 isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn,
791                         unsigned long end_pfn, isolate_mode_t mode)
792 {
793         pg_data_t *pgdat = cc->zone->zone_pgdat;
794         unsigned long nr_scanned = 0, nr_isolated = 0;
795         struct lruvec *lruvec;
796         unsigned long flags = 0;
797         struct lruvec *locked = NULL;
798         struct page *page = NULL, *valid_page = NULL;
799         struct address_space *mapping;
800         unsigned long start_pfn = low_pfn;
801         bool skip_on_failure = false;
802         unsigned long next_skip_pfn = 0;
803         bool skip_updated = false;
804         int ret = 0;
805
806         cc->migrate_pfn = low_pfn;
807
808         /*
809          * Ensure that there are not too many pages isolated from the LRU
810          * list by either parallel reclaimers or compaction. If there are,
811          * delay for some time until fewer pages are isolated
812          */
813         while (unlikely(too_many_isolated(cc))) {
814                 /* stop isolation if there are still pages not migrated */
815                 if (cc->nr_migratepages)
816                         return -EAGAIN;
817
818                 /* async migration should just abort */
819                 if (cc->mode == MIGRATE_ASYNC)
820                         return -EAGAIN;
821
822                 reclaim_throttle(pgdat, VMSCAN_THROTTLE_ISOLATED);
823
824                 if (fatal_signal_pending(current))
825                         return -EINTR;
826         }
827
828         cond_resched();
829
830         if (cc->direct_compaction && (cc->mode == MIGRATE_ASYNC)) {
831                 skip_on_failure = true;
832                 next_skip_pfn = block_end_pfn(low_pfn, cc->order);
833         }
834
835         /* Time to isolate some pages for migration */
836         for (; low_pfn < end_pfn; low_pfn++) {
837
838                 if (skip_on_failure && low_pfn >= next_skip_pfn) {
839                         /*
840                          * We have isolated all migration candidates in the
841                          * previous order-aligned block, and did not skip it due
842                          * to failure. We should migrate the pages now and
843                          * hopefully succeed compaction.
844                          */
845                         if (nr_isolated)
846                                 break;
847
848                         /*
849                          * We failed to isolate in the previous order-aligned
850                          * block. Set the new boundary to the end of the
851                          * current block. Note we can't simply increase
852                          * next_skip_pfn by 1 << order, as low_pfn might have
853                          * been incremented by a higher number due to skipping
854                          * a compound or a high-order buddy page in the
855                          * previous loop iteration.
856                          */
857                         next_skip_pfn = block_end_pfn(low_pfn, cc->order);
858                 }
859
860                 /*
861                  * Periodically drop the lock (if held) regardless of its
862                  * contention, to give chance to IRQs. Abort completely if
863                  * a fatal signal is pending.
864                  */
865                 if (!(low_pfn % COMPACT_CLUSTER_MAX)) {
866                         if (locked) {
867                                 unlock_page_lruvec_irqrestore(locked, flags);
868                                 locked = NULL;
869                         }
870
871                         if (fatal_signal_pending(current)) {
872                                 cc->contended = true;
873                                 ret = -EINTR;
874
875                                 goto fatal_pending;
876                         }
877
878                         cond_resched();
879                 }
880
881                 nr_scanned++;
882
883                 page = pfn_to_page(low_pfn);
884
885                 /*
886                  * Check if the pageblock has already been marked skipped.
887                  * Only the aligned PFN is checked as the caller isolates
888                  * COMPACT_CLUSTER_MAX at a time so the second call must
889                  * not falsely conclude that the block should be skipped.
890                  */
891                 if (!valid_page && pageblock_aligned(low_pfn)) {
892                         if (!isolation_suitable(cc, page)) {
893                                 low_pfn = end_pfn;
894                                 page = NULL;
895                                 goto isolate_abort;
896                         }
897                         valid_page = page;
898                 }
899
900                 if (PageHuge(page) && cc->alloc_contig) {
901                         if (locked) {
902                                 unlock_page_lruvec_irqrestore(locked, flags);
903                                 locked = NULL;
904                         }
905
906                         ret = isolate_or_dissolve_huge_page(page, &cc->migratepages);
907
908                         /*
909                          * Fail isolation in case isolate_or_dissolve_huge_page()
910                          * reports an error. In case of -ENOMEM, abort right away.
911                          */
912                         if (ret < 0) {
913                                  /* Do not report -EBUSY down the chain */
914                                 if (ret == -EBUSY)
915                                         ret = 0;
916                                 low_pfn += compound_nr(page) - 1;
917                                 nr_scanned += compound_nr(page) - 1;
918                                 goto isolate_fail;
919                         }
920
921                         if (PageHuge(page)) {
922                                 /*
923                                  * Hugepage was successfully isolated and placed
924                                  * on the cc->migratepages list.
925                                  */
926                                 low_pfn += compound_nr(page) - 1;
927                                 goto isolate_success_no_list;
928                         }
929
930                         /*
931                          * Ok, the hugepage was dissolved. Now these pages are
932                          * Buddy and cannot be re-allocated because they are
933                          * isolated. Fall-through as the check below handles
934                          * Buddy pages.
935                          */
936                 }
937
938                 /*
939                  * Skip if free. We read page order here without zone lock
940                  * which is generally unsafe, but the race window is small and
941                  * the worst thing that can happen is that we skip some
942                  * potential isolation targets.
943                  */
944                 if (PageBuddy(page)) {
945                         unsigned long freepage_order = buddy_order_unsafe(page);
946
947                         /*
948                          * Without lock, we cannot be sure that what we got is
949                          * a valid page order. Consider only values in the
950                          * valid order range to prevent low_pfn overflow.
951                          */
952                         if (freepage_order > 0 && freepage_order <= MAX_ORDER) {
953                                 low_pfn += (1UL << freepage_order) - 1;
954                                 nr_scanned += (1UL << freepage_order) - 1;
955                         }
956                         continue;
957                 }
958
959                 /*
960                  * Regardless of being on LRU, compound pages such as THP and
961                  * hugetlbfs are not to be compacted unless we are attempting
962                  * an allocation much larger than the huge page size (eg CMA).
963                  * We can potentially save a lot of iterations if we skip them
964                  * at once. The check is racy, but we can consider only valid
965                  * values and the only danger is skipping too much.
966                  */
967                 if (PageCompound(page) && !cc->alloc_contig) {
968                         const unsigned int order = compound_order(page);
969
970                         if (likely(order <= MAX_ORDER)) {
971                                 low_pfn += (1UL << order) - 1;
972                                 nr_scanned += (1UL << order) - 1;
973                         }
974                         goto isolate_fail;
975                 }
976
977                 /*
978                  * Check may be lockless but that's ok as we recheck later.
979                  * It's possible to migrate LRU and non-lru movable pages.
980                  * Skip any other type of page
981                  */
982                 if (!PageLRU(page)) {
983                         /*
984                          * __PageMovable can return false positive so we need
985                          * to verify it under page_lock.
986                          */
987                         if (unlikely(__PageMovable(page)) &&
988                                         !PageIsolated(page)) {
989                                 if (locked) {
990                                         unlock_page_lruvec_irqrestore(locked, flags);
991                                         locked = NULL;
992                                 }
993
994                                 if (isolate_movable_page(page, mode))
995                                         goto isolate_success;
996                         }
997
998                         goto isolate_fail;
999                 }
1000
1001                 /*
1002                  * Be careful not to clear PageLRU until after we're
1003                  * sure the page is not being freed elsewhere -- the
1004                  * page release code relies on it.
1005                  */
1006                 if (unlikely(!get_page_unless_zero(page)))
1007                         goto isolate_fail;
1008
1009                 /*
1010                  * Migration will fail if an anonymous page is pinned in memory,
1011                  * so avoid taking lru_lock and isolating it unnecessarily in an
1012                  * admittedly racy check.
1013                  */
1014                 mapping = page_mapping(page);
1015                 if (!mapping && (page_count(page) - 1) > total_mapcount(page))
1016                         goto isolate_fail_put;
1017
1018                 /*
1019                  * Only allow to migrate anonymous pages in GFP_NOFS context
1020                  * because those do not depend on fs locks.
1021                  */
1022                 if (!(cc->gfp_mask & __GFP_FS) && mapping)
1023                         goto isolate_fail_put;
1024
1025                 /* Only take pages on LRU: a check now makes later tests safe */
1026                 if (!PageLRU(page))
1027                         goto isolate_fail_put;
1028
1029                 /* Compaction might skip unevictable pages but CMA takes them */
1030                 if (!(mode & ISOLATE_UNEVICTABLE) && PageUnevictable(page))
1031                         goto isolate_fail_put;
1032
1033                 /*
1034                  * To minimise LRU disruption, the caller can indicate with
1035                  * ISOLATE_ASYNC_MIGRATE that it only wants to isolate pages
1036                  * it will be able to migrate without blocking - clean pages
1037                  * for the most part.  PageWriteback would require blocking.
1038                  */
1039                 if ((mode & ISOLATE_ASYNC_MIGRATE) && PageWriteback(page))
1040                         goto isolate_fail_put;
1041
1042                 if ((mode & ISOLATE_ASYNC_MIGRATE) && PageDirty(page)) {
1043                         bool migrate_dirty;
1044
1045                         /*
1046                          * Only pages without mappings or that have a
1047                          * ->migrate_folio callback are possible to migrate
1048                          * without blocking. However, we can be racing with
1049                          * truncation so it's necessary to lock the page
1050                          * to stabilise the mapping as truncation holds
1051                          * the page lock until after the page is removed
1052                          * from the page cache.
1053                          */
1054                         if (!trylock_page(page))
1055                                 goto isolate_fail_put;
1056
1057                         mapping = page_mapping(page);
1058                         migrate_dirty = !mapping ||
1059                                         mapping->a_ops->migrate_folio;
1060                         unlock_page(page);
1061                         if (!migrate_dirty)
1062                                 goto isolate_fail_put;
1063                 }
1064
1065                 /* Try isolate the page */
1066                 if (!TestClearPageLRU(page))
1067                         goto isolate_fail_put;
1068
1069                 lruvec = folio_lruvec(page_folio(page));
1070
1071                 /* If we already hold the lock, we can skip some rechecking */
1072                 if (lruvec != locked) {
1073                         if (locked)
1074                                 unlock_page_lruvec_irqrestore(locked, flags);
1075
1076                         compact_lock_irqsave(&lruvec->lru_lock, &flags, cc);
1077                         locked = lruvec;
1078
1079                         lruvec_memcg_debug(lruvec, page_folio(page));
1080
1081                         /*
1082                          * Try get exclusive access under lock. If marked for
1083                          * skip, the scan is aborted unless the current context
1084                          * is a rescan to reach the end of the pageblock.
1085                          */
1086                         if (!skip_updated && valid_page) {
1087                                 skip_updated = true;
1088                                 if (test_and_set_skip(cc, valid_page) &&
1089                                     !cc->finish_pageblock) {
1090                                         goto isolate_abort;
1091                                 }
1092                         }
1093
1094                         /*
1095                          * Page become compound since the non-locked check,
1096                          * and it's on LRU. It can only be a THP so the order
1097                          * is safe to read and it's 0 for tail pages.
1098                          */
1099                         if (unlikely(PageCompound(page) && !cc->alloc_contig)) {
1100                                 low_pfn += compound_nr(page) - 1;
1101                                 nr_scanned += compound_nr(page) - 1;
1102                                 SetPageLRU(page);
1103                                 goto isolate_fail_put;
1104                         }
1105                 }
1106
1107                 /* The whole page is taken off the LRU; skip the tail pages. */
1108                 if (PageCompound(page))
1109                         low_pfn += compound_nr(page) - 1;
1110
1111                 /* Successfully isolated */
1112                 del_page_from_lru_list(page, lruvec);
1113                 mod_node_page_state(page_pgdat(page),
1114                                 NR_ISOLATED_ANON + page_is_file_lru(page),
1115                                 thp_nr_pages(page));
1116
1117 isolate_success:
1118                 list_add(&page->lru, &cc->migratepages);
1119 isolate_success_no_list:
1120                 cc->nr_migratepages += compound_nr(page);
1121                 nr_isolated += compound_nr(page);
1122                 nr_scanned += compound_nr(page) - 1;
1123
1124                 /*
1125                  * Avoid isolating too much unless this block is being
1126                  * fully scanned (e.g. dirty/writeback pages, parallel allocation)
1127                  * or a lock is contended. For contention, isolate quickly to
1128                  * potentially remove one source of contention.
1129                  */
1130                 if (cc->nr_migratepages >= COMPACT_CLUSTER_MAX &&
1131                     !cc->finish_pageblock && !cc->contended) {
1132                         ++low_pfn;
1133                         break;
1134                 }
1135
1136                 continue;
1137
1138 isolate_fail_put:
1139                 /* Avoid potential deadlock in freeing page under lru_lock */
1140                 if (locked) {
1141                         unlock_page_lruvec_irqrestore(locked, flags);
1142                         locked = NULL;
1143                 }
1144                 put_page(page);
1145
1146 isolate_fail:
1147                 if (!skip_on_failure && ret != -ENOMEM)
1148                         continue;
1149
1150                 /*
1151                  * We have isolated some pages, but then failed. Release them
1152                  * instead of migrating, as we cannot form the cc->order buddy
1153                  * page anyway.
1154                  */
1155                 if (nr_isolated) {
1156                         if (locked) {
1157                                 unlock_page_lruvec_irqrestore(locked, flags);
1158                                 locked = NULL;
1159                         }
1160                         putback_movable_pages(&cc->migratepages);
1161                         cc->nr_migratepages = 0;
1162                         nr_isolated = 0;
1163                 }
1164
1165                 if (low_pfn < next_skip_pfn) {
1166                         low_pfn = next_skip_pfn - 1;
1167                         /*
1168                          * The check near the loop beginning would have updated
1169                          * next_skip_pfn too, but this is a bit simpler.
1170                          */
1171                         next_skip_pfn += 1UL << cc->order;
1172                 }
1173
1174                 if (ret == -ENOMEM)
1175                         break;
1176         }
1177
1178         /*
1179          * The PageBuddy() check could have potentially brought us outside
1180          * the range to be scanned.
1181          */
1182         if (unlikely(low_pfn > end_pfn))
1183                 low_pfn = end_pfn;
1184
1185         page = NULL;
1186
1187 isolate_abort:
1188         if (locked)
1189                 unlock_page_lruvec_irqrestore(locked, flags);
1190         if (page) {
1191                 SetPageLRU(page);
1192                 put_page(page);
1193         }
1194
1195         /*
1196          * Update the cached scanner pfn once the pageblock has been scanned.
1197          * Pages will either be migrated in which case there is no point
1198          * scanning in the near future or migration failed in which case the
1199          * failure reason may persist. The block is marked for skipping if
1200          * there were no pages isolated in the block or if the block is
1201          * rescanned twice in a row.
1202          */
1203         if (low_pfn == end_pfn && (!nr_isolated || cc->finish_pageblock)) {
1204                 if (!cc->no_set_skip_hint && valid_page && !skip_updated)
1205                         set_pageblock_skip(valid_page);
1206                 update_cached_migrate(cc, low_pfn);
1207         }
1208
1209         trace_mm_compaction_isolate_migratepages(start_pfn, low_pfn,
1210                                                 nr_scanned, nr_isolated);
1211
1212 fatal_pending:
1213         cc->total_migrate_scanned += nr_scanned;
1214         if (nr_isolated)
1215                 count_compact_events(COMPACTISOLATED, nr_isolated);
1216
1217         cc->migrate_pfn = low_pfn;
1218
1219         return ret;
1220 }
1221
1222 /**
1223  * isolate_migratepages_range() - isolate migrate-able pages in a PFN range
1224  * @cc:        Compaction control structure.
1225  * @start_pfn: The first PFN to start isolating.
1226  * @end_pfn:   The one-past-last PFN.
1227  *
1228  * Returns -EAGAIN when contented, -EINTR in case of a signal pending, -ENOMEM
1229  * in case we could not allocate a page, or 0.
1230  */
1231 int
1232 isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn,
1233                                                         unsigned long end_pfn)
1234 {
1235         unsigned long pfn, block_start_pfn, block_end_pfn;
1236         int ret = 0;
1237
1238         /* Scan block by block. First and last block may be incomplete */
1239         pfn = start_pfn;
1240         block_start_pfn = pageblock_start_pfn(pfn);
1241         if (block_start_pfn < cc->zone->zone_start_pfn)
1242                 block_start_pfn = cc->zone->zone_start_pfn;
1243         block_end_pfn = pageblock_end_pfn(pfn);
1244
1245         for (; pfn < end_pfn; pfn = block_end_pfn,
1246                                 block_start_pfn = block_end_pfn,
1247                                 block_end_pfn += pageblock_nr_pages) {
1248
1249                 block_end_pfn = min(block_end_pfn, end_pfn);
1250
1251                 if (!pageblock_pfn_to_page(block_start_pfn,
1252                                         block_end_pfn, cc->zone))
1253                         continue;
1254
1255                 ret = isolate_migratepages_block(cc, pfn, block_end_pfn,
1256                                                  ISOLATE_UNEVICTABLE);
1257
1258                 if (ret)
1259                         break;
1260
1261                 if (cc->nr_migratepages >= COMPACT_CLUSTER_MAX)
1262                         break;
1263         }
1264
1265         return ret;
1266 }
1267
1268 #endif /* CONFIG_COMPACTION || CONFIG_CMA */
1269 #ifdef CONFIG_COMPACTION
1270
1271 static bool suitable_migration_source(struct compact_control *cc,
1272                                                         struct page *page)
1273 {
1274         int block_mt;
1275
1276         if (pageblock_skip_persistent(page))
1277                 return false;
1278
1279         if ((cc->mode != MIGRATE_ASYNC) || !cc->direct_compaction)
1280                 return true;
1281
1282         block_mt = get_pageblock_migratetype(page);
1283
1284         if (cc->migratetype == MIGRATE_MOVABLE)
1285                 return is_migrate_movable(block_mt);
1286         else
1287                 return block_mt == cc->migratetype;
1288 }
1289
1290 /* Returns true if the page is within a block suitable for migration to */
1291 static bool suitable_migration_target(struct compact_control *cc,
1292                                                         struct page *page)
1293 {
1294         /* If the page is a large free page, then disallow migration */
1295         if (PageBuddy(page)) {
1296                 /*
1297                  * We are checking page_order without zone->lock taken. But
1298                  * the only small danger is that we skip a potentially suitable
1299                  * pageblock, so it's not worth to check order for valid range.
1300                  */
1301                 if (buddy_order_unsafe(page) >= pageblock_order)
1302                         return false;
1303         }
1304
1305         if (cc->ignore_block_suitable)
1306                 return true;
1307
1308         /* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
1309         if (is_migrate_movable(get_pageblock_migratetype(page)))
1310                 return true;
1311
1312         /* Otherwise skip the block */
1313         return false;
1314 }
1315
1316 static inline unsigned int
1317 freelist_scan_limit(struct compact_control *cc)
1318 {
1319         unsigned short shift = BITS_PER_LONG - 1;
1320
1321         return (COMPACT_CLUSTER_MAX >> min(shift, cc->fast_search_fail)) + 1;
1322 }
1323
1324 /*
1325  * Test whether the free scanner has reached the same or lower pageblock than
1326  * the migration scanner, and compaction should thus terminate.
1327  */
1328 static inline bool compact_scanners_met(struct compact_control *cc)
1329 {
1330         return (cc->free_pfn >> pageblock_order)
1331                 <= (cc->migrate_pfn >> pageblock_order);
1332 }
1333
1334 /*
1335  * Used when scanning for a suitable migration target which scans freelists
1336  * in reverse. Reorders the list such as the unscanned pages are scanned
1337  * first on the next iteration of the free scanner
1338  */
1339 static void
1340 move_freelist_head(struct list_head *freelist, struct page *freepage)
1341 {
1342         LIST_HEAD(sublist);
1343
1344         if (!list_is_last(freelist, &freepage->lru)) {
1345                 list_cut_before(&sublist, freelist, &freepage->lru);
1346                 list_splice_tail(&sublist, freelist);
1347         }
1348 }
1349
1350 /*
1351  * Similar to move_freelist_head except used by the migration scanner
1352  * when scanning forward. It's possible for these list operations to
1353  * move against each other if they search the free list exactly in
1354  * lockstep.
1355  */
1356 static void
1357 move_freelist_tail(struct list_head *freelist, struct page *freepage)
1358 {
1359         LIST_HEAD(sublist);
1360
1361         if (!list_is_first(freelist, &freepage->lru)) {
1362                 list_cut_position(&sublist, freelist, &freepage->lru);
1363                 list_splice_tail(&sublist, freelist);
1364         }
1365 }
1366
1367 static void
1368 fast_isolate_around(struct compact_control *cc, unsigned long pfn)
1369 {
1370         unsigned long start_pfn, end_pfn;
1371         struct page *page;
1372
1373         /* Do not search around if there are enough pages already */
1374         if (cc->nr_freepages >= cc->nr_migratepages)
1375                 return;
1376
1377         /* Minimise scanning during async compaction */
1378         if (cc->direct_compaction && cc->mode == MIGRATE_ASYNC)
1379                 return;
1380
1381         /* Pageblock boundaries */
1382         start_pfn = max(pageblock_start_pfn(pfn), cc->zone->zone_start_pfn);
1383         end_pfn = min(pageblock_end_pfn(pfn), zone_end_pfn(cc->zone));
1384
1385         page = pageblock_pfn_to_page(start_pfn, end_pfn, cc->zone);
1386         if (!page)
1387                 return;
1388
1389         isolate_freepages_block(cc, &start_pfn, end_pfn, &cc->freepages, 1, false);
1390
1391         /* Skip this pageblock in the future as it's full or nearly full */
1392         if (start_pfn == end_pfn)
1393                 set_pageblock_skip(page);
1394
1395         return;
1396 }
1397
1398 /* Search orders in round-robin fashion */
1399 static int next_search_order(struct compact_control *cc, int order)
1400 {
1401         order--;
1402         if (order < 0)
1403                 order = cc->order - 1;
1404
1405         /* Search wrapped around? */
1406         if (order == cc->search_order) {
1407                 cc->search_order--;
1408                 if (cc->search_order < 0)
1409                         cc->search_order = cc->order - 1;
1410                 return -1;
1411         }
1412
1413         return order;
1414 }
1415
1416 static void fast_isolate_freepages(struct compact_control *cc)
1417 {
1418         unsigned int limit = max(1U, freelist_scan_limit(cc) >> 1);
1419         unsigned int nr_scanned = 0;
1420         unsigned long low_pfn, min_pfn, highest = 0;
1421         unsigned long nr_isolated = 0;
1422         unsigned long distance;
1423         struct page *page = NULL;
1424         bool scan_start = false;
1425         int order;
1426
1427         /* Full compaction passes in a negative order */
1428         if (cc->order <= 0)
1429                 return;
1430
1431         /*
1432          * If starting the scan, use a deeper search and use the highest
1433          * PFN found if a suitable one is not found.
1434          */
1435         if (cc->free_pfn >= cc->zone->compact_init_free_pfn) {
1436                 limit = pageblock_nr_pages >> 1;
1437                 scan_start = true;
1438         }
1439
1440         /*
1441          * Preferred point is in the top quarter of the scan space but take
1442          * a pfn from the top half if the search is problematic.
1443          */
1444         distance = (cc->free_pfn - cc->migrate_pfn);
1445         low_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 2));
1446         min_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 1));
1447
1448         if (WARN_ON_ONCE(min_pfn > low_pfn))
1449                 low_pfn = min_pfn;
1450
1451         /*
1452          * Search starts from the last successful isolation order or the next
1453          * order to search after a previous failure
1454          */
1455         cc->search_order = min_t(unsigned int, cc->order - 1, cc->search_order);
1456
1457         for (order = cc->search_order;
1458              !page && order >= 0;
1459              order = next_search_order(cc, order)) {
1460                 struct free_area *area = &cc->zone->free_area[order];
1461                 struct list_head *freelist;
1462                 struct page *freepage;
1463                 unsigned long flags;
1464                 unsigned int order_scanned = 0;
1465                 unsigned long high_pfn = 0;
1466
1467                 if (!area->nr_free)
1468                         continue;
1469
1470                 spin_lock_irqsave(&cc->zone->lock, flags);
1471                 freelist = &area->free_list[MIGRATE_MOVABLE];
1472                 list_for_each_entry_reverse(freepage, freelist, lru) {
1473                         unsigned long pfn;
1474
1475                         order_scanned++;
1476                         nr_scanned++;
1477                         pfn = page_to_pfn(freepage);
1478
1479                         if (pfn >= highest)
1480                                 highest = max(pageblock_start_pfn(pfn),
1481                                               cc->zone->zone_start_pfn);
1482
1483                         if (pfn >= low_pfn) {
1484                                 cc->fast_search_fail = 0;
1485                                 cc->search_order = order;
1486                                 page = freepage;
1487                                 break;
1488                         }
1489
1490                         if (pfn >= min_pfn && pfn > high_pfn) {
1491                                 high_pfn = pfn;
1492
1493                                 /* Shorten the scan if a candidate is found */
1494                                 limit >>= 1;
1495                         }
1496
1497                         if (order_scanned >= limit)
1498                                 break;
1499                 }
1500
1501                 /* Use a minimum pfn if a preferred one was not found */
1502                 if (!page && high_pfn) {
1503                         page = pfn_to_page(high_pfn);
1504
1505                         /* Update freepage for the list reorder below */
1506                         freepage = page;
1507                 }
1508
1509                 /* Reorder to so a future search skips recent pages */
1510                 move_freelist_head(freelist, freepage);
1511
1512                 /* Isolate the page if available */
1513                 if (page) {
1514                         if (__isolate_free_page(page, order)) {
1515                                 set_page_private(page, order);
1516                                 nr_isolated = 1 << order;
1517                                 nr_scanned += nr_isolated - 1;
1518                                 cc->nr_freepages += nr_isolated;
1519                                 list_add_tail(&page->lru, &cc->freepages);
1520                                 count_compact_events(COMPACTISOLATED, nr_isolated);
1521                         } else {
1522                                 /* If isolation fails, abort the search */
1523                                 order = cc->search_order + 1;
1524                                 page = NULL;
1525                         }
1526                 }
1527
1528                 spin_unlock_irqrestore(&cc->zone->lock, flags);
1529
1530                 /*
1531                  * Smaller scan on next order so the total scan is related
1532                  * to freelist_scan_limit.
1533                  */
1534                 if (order_scanned >= limit)
1535                         limit = max(1U, limit >> 1);
1536         }
1537
1538         if (!page) {
1539                 cc->fast_search_fail++;
1540                 if (scan_start) {
1541                         /*
1542                          * Use the highest PFN found above min. If one was
1543                          * not found, be pessimistic for direct compaction
1544                          * and use the min mark.
1545                          */
1546                         if (highest >= min_pfn) {
1547                                 page = pfn_to_page(highest);
1548                                 cc->free_pfn = highest;
1549                         } else {
1550                                 if (cc->direct_compaction && pfn_valid(min_pfn)) {
1551                                         page = pageblock_pfn_to_page(min_pfn,
1552                                                 min(pageblock_end_pfn(min_pfn),
1553                                                     zone_end_pfn(cc->zone)),
1554                                                 cc->zone);
1555                                         cc->free_pfn = min_pfn;
1556                                 }
1557                         }
1558                 }
1559         }
1560
1561         if (highest && highest >= cc->zone->compact_cached_free_pfn) {
1562                 highest -= pageblock_nr_pages;
1563                 cc->zone->compact_cached_free_pfn = highest;
1564         }
1565
1566         cc->total_free_scanned += nr_scanned;
1567         if (!page)
1568                 return;
1569
1570         low_pfn = page_to_pfn(page);
1571         fast_isolate_around(cc, low_pfn);
1572 }
1573
1574 /*
1575  * Based on information in the current compact_control, find blocks
1576  * suitable for isolating free pages from and then isolate them.
1577  */
1578 static void isolate_freepages(struct compact_control *cc)
1579 {
1580         struct zone *zone = cc->zone;
1581         struct page *page;
1582         unsigned long block_start_pfn;  /* start of current pageblock */
1583         unsigned long isolate_start_pfn; /* exact pfn we start at */
1584         unsigned long block_end_pfn;    /* end of current pageblock */
1585         unsigned long low_pfn;       /* lowest pfn scanner is able to scan */
1586         struct list_head *freelist = &cc->freepages;
1587         unsigned int stride;
1588
1589         /* Try a small search of the free lists for a candidate */
1590         fast_isolate_freepages(cc);
1591         if (cc->nr_freepages)
1592                 goto splitmap;
1593
1594         /*
1595          * Initialise the free scanner. The starting point is where we last
1596          * successfully isolated from, zone-cached value, or the end of the
1597          * zone when isolating for the first time. For looping we also need
1598          * this pfn aligned down to the pageblock boundary, because we do
1599          * block_start_pfn -= pageblock_nr_pages in the for loop.
1600          * For ending point, take care when isolating in last pageblock of a
1601          * zone which ends in the middle of a pageblock.
1602          * The low boundary is the end of the pageblock the migration scanner
1603          * is using.
1604          */
1605         isolate_start_pfn = cc->free_pfn;
1606         block_start_pfn = pageblock_start_pfn(isolate_start_pfn);
1607         block_end_pfn = min(block_start_pfn + pageblock_nr_pages,
1608                                                 zone_end_pfn(zone));
1609         low_pfn = pageblock_end_pfn(cc->migrate_pfn);
1610         stride = cc->mode == MIGRATE_ASYNC ? COMPACT_CLUSTER_MAX : 1;
1611
1612         /*
1613          * Isolate free pages until enough are available to migrate the
1614          * pages on cc->migratepages. We stop searching if the migrate
1615          * and free page scanners meet or enough free pages are isolated.
1616          */
1617         for (; block_start_pfn >= low_pfn;
1618                                 block_end_pfn = block_start_pfn,
1619                                 block_start_pfn -= pageblock_nr_pages,
1620                                 isolate_start_pfn = block_start_pfn) {
1621                 unsigned long nr_isolated;
1622
1623                 /*
1624                  * This can iterate a massively long zone without finding any
1625                  * suitable migration targets, so periodically check resched.
1626                  */
1627                 if (!(block_start_pfn % (COMPACT_CLUSTER_MAX * pageblock_nr_pages)))
1628                         cond_resched();
1629
1630                 page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
1631                                                                         zone);
1632                 if (!page)
1633                         continue;
1634
1635                 /* Check the block is suitable for migration */
1636                 if (!suitable_migration_target(cc, page))
1637                         continue;
1638
1639                 /* If isolation recently failed, do not retry */
1640                 if (!isolation_suitable(cc, page))
1641                         continue;
1642
1643                 /* Found a block suitable for isolating free pages from. */
1644                 nr_isolated = isolate_freepages_block(cc, &isolate_start_pfn,
1645                                         block_end_pfn, freelist, stride, false);
1646
1647                 /* Update the skip hint if the full pageblock was scanned */
1648                 if (isolate_start_pfn == block_end_pfn)
1649                         update_pageblock_skip(cc, page, block_start_pfn);
1650
1651                 /* Are enough freepages isolated? */
1652                 if (cc->nr_freepages >= cc->nr_migratepages) {
1653                         if (isolate_start_pfn >= block_end_pfn) {
1654                                 /*
1655                                  * Restart at previous pageblock if more
1656                                  * freepages can be isolated next time.
1657                                  */
1658                                 isolate_start_pfn =
1659                                         block_start_pfn - pageblock_nr_pages;
1660                         }
1661                         break;
1662                 } else if (isolate_start_pfn < block_end_pfn) {
1663                         /*
1664                          * If isolation failed early, do not continue
1665                          * needlessly.
1666                          */
1667                         break;
1668                 }
1669
1670                 /* Adjust stride depending on isolation */
1671                 if (nr_isolated) {
1672                         stride = 1;
1673                         continue;
1674                 }
1675                 stride = min_t(unsigned int, COMPACT_CLUSTER_MAX, stride << 1);
1676         }
1677
1678         /*
1679          * Record where the free scanner will restart next time. Either we
1680          * broke from the loop and set isolate_start_pfn based on the last
1681          * call to isolate_freepages_block(), or we met the migration scanner
1682          * and the loop terminated due to isolate_start_pfn < low_pfn
1683          */
1684         cc->free_pfn = isolate_start_pfn;
1685
1686 splitmap:
1687         /* __isolate_free_page() does not map the pages */
1688         split_map_pages(freelist);
1689 }
1690
1691 /*
1692  * This is a migrate-callback that "allocates" freepages by taking pages
1693  * from the isolated freelists in the block we are migrating to.
1694  */
1695 static struct folio *compaction_alloc(struct folio *src, unsigned long data)
1696 {
1697         struct compact_control *cc = (struct compact_control *)data;
1698         struct folio *dst;
1699
1700         if (list_empty(&cc->freepages)) {
1701                 isolate_freepages(cc);
1702
1703                 if (list_empty(&cc->freepages))
1704                         return NULL;
1705         }
1706
1707         dst = list_entry(cc->freepages.next, struct folio, lru);
1708         list_del(&dst->lru);
1709         cc->nr_freepages--;
1710
1711         return dst;
1712 }
1713
1714 /*
1715  * This is a migrate-callback that "frees" freepages back to the isolated
1716  * freelist.  All pages on the freelist are from the same zone, so there is no
1717  * special handling needed for NUMA.
1718  */
1719 static void compaction_free(struct folio *dst, unsigned long data)
1720 {
1721         struct compact_control *cc = (struct compact_control *)data;
1722
1723         list_add(&dst->lru, &cc->freepages);
1724         cc->nr_freepages++;
1725 }
1726
1727 /* possible outcome of isolate_migratepages */
1728 typedef enum {
1729         ISOLATE_ABORT,          /* Abort compaction now */
1730         ISOLATE_NONE,           /* No pages isolated, continue scanning */
1731         ISOLATE_SUCCESS,        /* Pages isolated, migrate */
1732 } isolate_migrate_t;
1733
1734 /*
1735  * Allow userspace to control policy on scanning the unevictable LRU for
1736  * compactable pages.
1737  */
1738 static int sysctl_compact_unevictable_allowed __read_mostly = CONFIG_COMPACT_UNEVICTABLE_DEFAULT;
1739 /*
1740  * Tunable for proactive compaction. It determines how
1741  * aggressively the kernel should compact memory in the
1742  * background. It takes values in the range [0, 100].
1743  */
1744 static unsigned int __read_mostly sysctl_compaction_proactiveness = 20;
1745 static int sysctl_extfrag_threshold = 500;
1746 static int __read_mostly sysctl_compact_memory;
1747
1748 static inline void
1749 update_fast_start_pfn(struct compact_control *cc, unsigned long pfn)
1750 {
1751         if (cc->fast_start_pfn == ULONG_MAX)
1752                 return;
1753
1754         if (!cc->fast_start_pfn)
1755                 cc->fast_start_pfn = pfn;
1756
1757         cc->fast_start_pfn = min(cc->fast_start_pfn, pfn);
1758 }
1759
1760 static inline unsigned long
1761 reinit_migrate_pfn(struct compact_control *cc)
1762 {
1763         if (!cc->fast_start_pfn || cc->fast_start_pfn == ULONG_MAX)
1764                 return cc->migrate_pfn;
1765
1766         cc->migrate_pfn = cc->fast_start_pfn;
1767         cc->fast_start_pfn = ULONG_MAX;
1768
1769         return cc->migrate_pfn;
1770 }
1771
1772 /*
1773  * Briefly search the free lists for a migration source that already has
1774  * some free pages to reduce the number of pages that need migration
1775  * before a pageblock is free.
1776  */
1777 static unsigned long fast_find_migrateblock(struct compact_control *cc)
1778 {
1779         unsigned int limit = freelist_scan_limit(cc);
1780         unsigned int nr_scanned = 0;
1781         unsigned long distance;
1782         unsigned long pfn = cc->migrate_pfn;
1783         unsigned long high_pfn;
1784         int order;
1785         bool found_block = false;
1786
1787         /* Skip hints are relied on to avoid repeats on the fast search */
1788         if (cc->ignore_skip_hint)
1789                 return pfn;
1790
1791         /*
1792          * If the pageblock should be finished then do not select a different
1793          * pageblock.
1794          */
1795         if (cc->finish_pageblock)
1796                 return pfn;
1797
1798         /*
1799          * If the migrate_pfn is not at the start of a zone or the start
1800          * of a pageblock then assume this is a continuation of a previous
1801          * scan restarted due to COMPACT_CLUSTER_MAX.
1802          */
1803         if (pfn != cc->zone->zone_start_pfn && pfn != pageblock_start_pfn(pfn))
1804                 return pfn;
1805
1806         /*
1807          * For smaller orders, just linearly scan as the number of pages
1808          * to migrate should be relatively small and does not necessarily
1809          * justify freeing up a large block for a small allocation.
1810          */
1811         if (cc->order <= PAGE_ALLOC_COSTLY_ORDER)
1812                 return pfn;
1813
1814         /*
1815          * Only allow kcompactd and direct requests for movable pages to
1816          * quickly clear out a MOVABLE pageblock for allocation. This
1817          * reduces the risk that a large movable pageblock is freed for
1818          * an unmovable/reclaimable small allocation.
1819          */
1820         if (cc->direct_compaction && cc->migratetype != MIGRATE_MOVABLE)
1821                 return pfn;
1822
1823         /*
1824          * When starting the migration scanner, pick any pageblock within the
1825          * first half of the search space. Otherwise try and pick a pageblock
1826          * within the first eighth to reduce the chances that a migration
1827          * target later becomes a source.
1828          */
1829         distance = (cc->free_pfn - cc->migrate_pfn) >> 1;
1830         if (cc->migrate_pfn != cc->zone->zone_start_pfn)
1831                 distance >>= 2;
1832         high_pfn = pageblock_start_pfn(cc->migrate_pfn + distance);
1833
1834         for (order = cc->order - 1;
1835              order >= PAGE_ALLOC_COSTLY_ORDER && !found_block && nr_scanned < limit;
1836              order--) {
1837                 struct free_area *area = &cc->zone->free_area[order];
1838                 struct list_head *freelist;
1839                 unsigned long flags;
1840                 struct page *freepage;
1841
1842                 if (!area->nr_free)
1843                         continue;
1844
1845                 spin_lock_irqsave(&cc->zone->lock, flags);
1846                 freelist = &area->free_list[MIGRATE_MOVABLE];
1847                 list_for_each_entry(freepage, freelist, lru) {
1848                         unsigned long free_pfn;
1849
1850                         if (nr_scanned++ >= limit) {
1851                                 move_freelist_tail(freelist, freepage);
1852                                 break;
1853                         }
1854
1855                         free_pfn = page_to_pfn(freepage);
1856                         if (free_pfn < high_pfn) {
1857                                 /*
1858                                  * Avoid if skipped recently. Ideally it would
1859                                  * move to the tail but even safe iteration of
1860                                  * the list assumes an entry is deleted, not
1861                                  * reordered.
1862                                  */
1863                                 if (get_pageblock_skip(freepage))
1864                                         continue;
1865
1866                                 /* Reorder to so a future search skips recent pages */
1867                                 move_freelist_tail(freelist, freepage);
1868
1869                                 update_fast_start_pfn(cc, free_pfn);
1870                                 pfn = pageblock_start_pfn(free_pfn);
1871                                 if (pfn < cc->zone->zone_start_pfn)
1872                                         pfn = cc->zone->zone_start_pfn;
1873                                 cc->fast_search_fail = 0;
1874                                 found_block = true;
1875                                 break;
1876                         }
1877                 }
1878                 spin_unlock_irqrestore(&cc->zone->lock, flags);
1879         }
1880
1881         cc->total_migrate_scanned += nr_scanned;
1882
1883         /*
1884          * If fast scanning failed then use a cached entry for a page block
1885          * that had free pages as the basis for starting a linear scan.
1886          */
1887         if (!found_block) {
1888                 cc->fast_search_fail++;
1889                 pfn = reinit_migrate_pfn(cc);
1890         }
1891         return pfn;
1892 }
1893
1894 /*
1895  * Isolate all pages that can be migrated from the first suitable block,
1896  * starting at the block pointed to by the migrate scanner pfn within
1897  * compact_control.
1898  */
1899 static isolate_migrate_t isolate_migratepages(struct compact_control *cc)
1900 {
1901         unsigned long block_start_pfn;
1902         unsigned long block_end_pfn;
1903         unsigned long low_pfn;
1904         struct page *page;
1905         const isolate_mode_t isolate_mode =
1906                 (sysctl_compact_unevictable_allowed ? ISOLATE_UNEVICTABLE : 0) |
1907                 (cc->mode != MIGRATE_SYNC ? ISOLATE_ASYNC_MIGRATE : 0);
1908         bool fast_find_block;
1909
1910         /*
1911          * Start at where we last stopped, or beginning of the zone as
1912          * initialized by compact_zone(). The first failure will use
1913          * the lowest PFN as the starting point for linear scanning.
1914          */
1915         low_pfn = fast_find_migrateblock(cc);
1916         block_start_pfn = pageblock_start_pfn(low_pfn);
1917         if (block_start_pfn < cc->zone->zone_start_pfn)
1918                 block_start_pfn = cc->zone->zone_start_pfn;
1919
1920         /*
1921          * fast_find_migrateblock marks a pageblock skipped so to avoid
1922          * the isolation_suitable check below, check whether the fast
1923          * search was successful.
1924          */
1925         fast_find_block = low_pfn != cc->migrate_pfn && !cc->fast_search_fail;
1926
1927         /* Only scan within a pageblock boundary */
1928         block_end_pfn = pageblock_end_pfn(low_pfn);
1929
1930         /*
1931          * Iterate over whole pageblocks until we find the first suitable.
1932          * Do not cross the free scanner.
1933          */
1934         for (; block_end_pfn <= cc->free_pfn;
1935                         fast_find_block = false,
1936                         cc->migrate_pfn = low_pfn = block_end_pfn,
1937                         block_start_pfn = block_end_pfn,
1938                         block_end_pfn += pageblock_nr_pages) {
1939
1940                 /*
1941                  * This can potentially iterate a massively long zone with
1942                  * many pageblocks unsuitable, so periodically check if we
1943                  * need to schedule.
1944                  */
1945                 if (!(low_pfn % (COMPACT_CLUSTER_MAX * pageblock_nr_pages)))
1946                         cond_resched();
1947
1948                 page = pageblock_pfn_to_page(block_start_pfn,
1949                                                 block_end_pfn, cc->zone);
1950                 if (!page)
1951                         continue;
1952
1953                 /*
1954                  * If isolation recently failed, do not retry. Only check the
1955                  * pageblock once. COMPACT_CLUSTER_MAX causes a pageblock
1956                  * to be visited multiple times. Assume skip was checked
1957                  * before making it "skip" so other compaction instances do
1958                  * not scan the same block.
1959                  */
1960                 if (pageblock_aligned(low_pfn) &&
1961                     !fast_find_block && !isolation_suitable(cc, page))
1962                         continue;
1963
1964                 /*
1965                  * For async direct compaction, only scan the pageblocks of the
1966                  * same migratetype without huge pages. Async direct compaction
1967                  * is optimistic to see if the minimum amount of work satisfies
1968                  * the allocation. The cached PFN is updated as it's possible
1969                  * that all remaining blocks between source and target are
1970                  * unsuitable and the compaction scanners fail to meet.
1971                  */
1972                 if (!suitable_migration_source(cc, page)) {
1973                         update_cached_migrate(cc, block_end_pfn);
1974                         continue;
1975                 }
1976
1977                 /* Perform the isolation */
1978                 if (isolate_migratepages_block(cc, low_pfn, block_end_pfn,
1979                                                 isolate_mode))
1980                         return ISOLATE_ABORT;
1981
1982                 /*
1983                  * Either we isolated something and proceed with migration. Or
1984                  * we failed and compact_zone should decide if we should
1985                  * continue or not.
1986                  */
1987                 break;
1988         }
1989
1990         return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE;
1991 }
1992
1993 /*
1994  * order == -1 is expected when compacting via
1995  * /proc/sys/vm/compact_memory
1996  */
1997 static inline bool is_via_compact_memory(int order)
1998 {
1999         return order == -1;
2000 }
2001
2002 /*
2003  * Determine whether kswapd is (or recently was!) running on this node.
2004  *
2005  * pgdat_kswapd_lock() pins pgdat->kswapd, so a concurrent kswapd_stop() can't
2006  * zero it.
2007  */
2008 static bool kswapd_is_running(pg_data_t *pgdat)
2009 {
2010         bool running;
2011
2012         pgdat_kswapd_lock(pgdat);
2013         running = pgdat->kswapd && task_is_running(pgdat->kswapd);
2014         pgdat_kswapd_unlock(pgdat);
2015
2016         return running;
2017 }
2018
2019 /*
2020  * A zone's fragmentation score is the external fragmentation wrt to the
2021  * COMPACTION_HPAGE_ORDER. It returns a value in the range [0, 100].
2022  */
2023 static unsigned int fragmentation_score_zone(struct zone *zone)
2024 {
2025         return extfrag_for_order(zone, COMPACTION_HPAGE_ORDER);
2026 }
2027
2028 /*
2029  * A weighted zone's fragmentation score is the external fragmentation
2030  * wrt to the COMPACTION_HPAGE_ORDER scaled by the zone's size. It
2031  * returns a value in the range [0, 100].
2032  *
2033  * The scaling factor ensures that proactive compaction focuses on larger
2034  * zones like ZONE_NORMAL, rather than smaller, specialized zones like
2035  * ZONE_DMA32. For smaller zones, the score value remains close to zero,
2036  * and thus never exceeds the high threshold for proactive compaction.
2037  */
2038 static unsigned int fragmentation_score_zone_weighted(struct zone *zone)
2039 {
2040         unsigned long score;
2041
2042         score = zone->present_pages * fragmentation_score_zone(zone);
2043         return div64_ul(score, zone->zone_pgdat->node_present_pages + 1);
2044 }
2045
2046 /*
2047  * The per-node proactive (background) compaction process is started by its
2048  * corresponding kcompactd thread when the node's fragmentation score
2049  * exceeds the high threshold. The compaction process remains active till
2050  * the node's score falls below the low threshold, or one of the back-off
2051  * conditions is met.
2052  */
2053 static unsigned int fragmentation_score_node(pg_data_t *pgdat)
2054 {
2055         unsigned int score = 0;
2056         int zoneid;
2057
2058         for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
2059                 struct zone *zone;
2060
2061                 zone = &pgdat->node_zones[zoneid];
2062                 if (!populated_zone(zone))
2063                         continue;
2064                 score += fragmentation_score_zone_weighted(zone);
2065         }
2066
2067         return score;
2068 }
2069
2070 static unsigned int fragmentation_score_wmark(pg_data_t *pgdat, bool low)
2071 {
2072         unsigned int wmark_low;
2073
2074         /*
2075          * Cap the low watermark to avoid excessive compaction
2076          * activity in case a user sets the proactiveness tunable
2077          * close to 100 (maximum).
2078          */
2079         wmark_low = max(100U - sysctl_compaction_proactiveness, 5U);
2080         return low ? wmark_low : min(wmark_low + 10, 100U);
2081 }
2082
2083 static bool should_proactive_compact_node(pg_data_t *pgdat)
2084 {
2085         int wmark_high;
2086
2087         if (!sysctl_compaction_proactiveness || kswapd_is_running(pgdat))
2088                 return false;
2089
2090         wmark_high = fragmentation_score_wmark(pgdat, false);
2091         return fragmentation_score_node(pgdat) > wmark_high;
2092 }
2093
2094 static enum compact_result __compact_finished(struct compact_control *cc)
2095 {
2096         unsigned int order;
2097         const int migratetype = cc->migratetype;
2098         int ret;
2099
2100         /* Compaction run completes if the migrate and free scanner meet */
2101         if (compact_scanners_met(cc)) {
2102                 /* Let the next compaction start anew. */
2103                 reset_cached_positions(cc->zone);
2104
2105                 /*
2106                  * Mark that the PG_migrate_skip information should be cleared
2107                  * by kswapd when it goes to sleep. kcompactd does not set the
2108                  * flag itself as the decision to be clear should be directly
2109                  * based on an allocation request.
2110                  */
2111                 if (cc->direct_compaction)
2112                         cc->zone->compact_blockskip_flush = true;
2113
2114                 if (cc->whole_zone)
2115                         return COMPACT_COMPLETE;
2116                 else
2117                         return COMPACT_PARTIAL_SKIPPED;
2118         }
2119
2120         if (cc->proactive_compaction) {
2121                 int score, wmark_low;
2122                 pg_data_t *pgdat;
2123
2124                 pgdat = cc->zone->zone_pgdat;
2125                 if (kswapd_is_running(pgdat))
2126                         return COMPACT_PARTIAL_SKIPPED;
2127
2128                 score = fragmentation_score_zone(cc->zone);
2129                 wmark_low = fragmentation_score_wmark(pgdat, true);
2130
2131                 if (score > wmark_low)
2132                         ret = COMPACT_CONTINUE;
2133                 else
2134                         ret = COMPACT_SUCCESS;
2135
2136                 goto out;
2137         }
2138
2139         if (is_via_compact_memory(cc->order))
2140                 return COMPACT_CONTINUE;
2141
2142         /*
2143          * Always finish scanning a pageblock to reduce the possibility of
2144          * fallbacks in the future. This is particularly important when
2145          * migration source is unmovable/reclaimable but it's not worth
2146          * special casing.
2147          */
2148         if (!pageblock_aligned(cc->migrate_pfn))
2149                 return COMPACT_CONTINUE;
2150
2151         /* Direct compactor: Is a suitable page free? */
2152         ret = COMPACT_NO_SUITABLE_PAGE;
2153         for (order = cc->order; order <= MAX_ORDER; order++) {
2154                 struct free_area *area = &cc->zone->free_area[order];
2155                 bool can_steal;
2156
2157                 /* Job done if page is free of the right migratetype */
2158                 if (!free_area_empty(area, migratetype))
2159                         return COMPACT_SUCCESS;
2160
2161 #ifdef CONFIG_CMA
2162                 /* MIGRATE_MOVABLE can fallback on MIGRATE_CMA */
2163                 if (migratetype == MIGRATE_MOVABLE &&
2164                         !free_area_empty(area, MIGRATE_CMA))
2165                         return COMPACT_SUCCESS;
2166 #endif
2167                 /*
2168                  * Job done if allocation would steal freepages from
2169                  * other migratetype buddy lists.
2170                  */
2171                 if (find_suitable_fallback(area, order, migratetype,
2172                                                 true, &can_steal) != -1)
2173                         /*
2174                          * Movable pages are OK in any pageblock. If we are
2175                          * stealing for a non-movable allocation, make sure
2176                          * we finish compacting the current pageblock first
2177                          * (which is assured by the above migrate_pfn align
2178                          * check) so it is as free as possible and we won't
2179                          * have to steal another one soon.
2180                          */
2181                         return COMPACT_SUCCESS;
2182         }
2183
2184 out:
2185         if (cc->contended || fatal_signal_pending(current))
2186                 ret = COMPACT_CONTENDED;
2187
2188         return ret;
2189 }
2190
2191 static enum compact_result compact_finished(struct compact_control *cc)
2192 {
2193         int ret;
2194
2195         ret = __compact_finished(cc);
2196         trace_mm_compaction_finished(cc->zone, cc->order, ret);
2197         if (ret == COMPACT_NO_SUITABLE_PAGE)
2198                 ret = COMPACT_CONTINUE;
2199
2200         return ret;
2201 }
2202
2203 static bool __compaction_suitable(struct zone *zone, int order,
2204                                   int highest_zoneidx,
2205                                   unsigned long wmark_target)
2206 {
2207         unsigned long watermark;
2208         /*
2209          * Watermarks for order-0 must be met for compaction to be able to
2210          * isolate free pages for migration targets. This means that the
2211          * watermark and alloc_flags have to match, or be more pessimistic than
2212          * the check in __isolate_free_page(). We don't use the direct
2213          * compactor's alloc_flags, as they are not relevant for freepage
2214          * isolation. We however do use the direct compactor's highest_zoneidx
2215          * to skip over zones where lowmem reserves would prevent allocation
2216          * even if compaction succeeds.
2217          * For costly orders, we require low watermark instead of min for
2218          * compaction to proceed to increase its chances.
2219          * ALLOC_CMA is used, as pages in CMA pageblocks are considered
2220          * suitable migration targets
2221          */
2222         watermark = (order > PAGE_ALLOC_COSTLY_ORDER) ?
2223                                 low_wmark_pages(zone) : min_wmark_pages(zone);
2224         watermark += compact_gap(order);
2225         return __zone_watermark_ok(zone, 0, watermark, highest_zoneidx,
2226                                    ALLOC_CMA, wmark_target);
2227 }
2228
2229 /*
2230  * compaction_suitable: Is this suitable to run compaction on this zone now?
2231  */
2232 bool compaction_suitable(struct zone *zone, int order, int highest_zoneidx)
2233 {
2234         enum compact_result compact_result;
2235         bool suitable;
2236
2237         suitable = __compaction_suitable(zone, order, highest_zoneidx,
2238                                          zone_page_state(zone, NR_FREE_PAGES));
2239         /*
2240          * fragmentation index determines if allocation failures are due to
2241          * low memory or external fragmentation
2242          *
2243          * index of -1000 would imply allocations might succeed depending on
2244          * watermarks, but we already failed the high-order watermark check
2245          * index towards 0 implies failure is due to lack of memory
2246          * index towards 1000 implies failure is due to fragmentation
2247          *
2248          * Only compact if a failure would be due to fragmentation. Also
2249          * ignore fragindex for non-costly orders where the alternative to
2250          * a successful reclaim/compaction is OOM. Fragindex and the
2251          * vm.extfrag_threshold sysctl is meant as a heuristic to prevent
2252          * excessive compaction for costly orders, but it should not be at the
2253          * expense of system stability.
2254          */
2255         if (suitable) {
2256                 compact_result = COMPACT_CONTINUE;
2257                 if (order > PAGE_ALLOC_COSTLY_ORDER) {
2258                         int fragindex = fragmentation_index(zone, order);
2259
2260                         if (fragindex >= 0 &&
2261                             fragindex <= sysctl_extfrag_threshold) {
2262                                 suitable = false;
2263                                 compact_result = COMPACT_NOT_SUITABLE_ZONE;
2264                         }
2265                 }
2266         } else {
2267                 compact_result = COMPACT_SKIPPED;
2268         }
2269
2270         trace_mm_compaction_suitable(zone, order, compact_result);
2271
2272         return suitable;
2273 }
2274
2275 bool compaction_zonelist_suitable(struct alloc_context *ac, int order,
2276                 int alloc_flags)
2277 {
2278         struct zone *zone;
2279         struct zoneref *z;
2280
2281         /*
2282          * Make sure at least one zone would pass __compaction_suitable if we continue
2283          * retrying the reclaim.
2284          */
2285         for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2286                                 ac->highest_zoneidx, ac->nodemask) {
2287                 unsigned long available;
2288
2289                 /*
2290                  * Do not consider all the reclaimable memory because we do not
2291                  * want to trash just for a single high order allocation which
2292                  * is even not guaranteed to appear even if __compaction_suitable
2293                  * is happy about the watermark check.
2294                  */
2295                 available = zone_reclaimable_pages(zone) / order;
2296                 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
2297                 if (__compaction_suitable(zone, order, ac->highest_zoneidx,
2298                                           available))
2299                         return true;
2300         }
2301
2302         return false;
2303 }
2304
2305 static enum compact_result
2306 compact_zone(struct compact_control *cc, struct capture_control *capc)
2307 {
2308         enum compact_result ret;
2309         unsigned long start_pfn = cc->zone->zone_start_pfn;
2310         unsigned long end_pfn = zone_end_pfn(cc->zone);
2311         unsigned long last_migrated_pfn;
2312         const bool sync = cc->mode != MIGRATE_ASYNC;
2313         bool update_cached;
2314         unsigned int nr_succeeded = 0;
2315
2316         /*
2317          * These counters track activities during zone compaction.  Initialize
2318          * them before compacting a new zone.
2319          */
2320         cc->total_migrate_scanned = 0;
2321         cc->total_free_scanned = 0;
2322         cc->nr_migratepages = 0;
2323         cc->nr_freepages = 0;
2324         INIT_LIST_HEAD(&cc->freepages);
2325         INIT_LIST_HEAD(&cc->migratepages);
2326
2327         cc->migratetype = gfp_migratetype(cc->gfp_mask);
2328
2329         if (!is_via_compact_memory(cc->order)) {
2330                 unsigned long watermark;
2331
2332                 /* Allocation can already succeed, nothing to do */
2333                 watermark = wmark_pages(cc->zone,
2334                                         cc->alloc_flags & ALLOC_WMARK_MASK);
2335                 if (zone_watermark_ok(cc->zone, cc->order, watermark,
2336                                       cc->highest_zoneidx, cc->alloc_flags))
2337                         return COMPACT_SUCCESS;
2338
2339                 /* Compaction is likely to fail */
2340                 if (!compaction_suitable(cc->zone, cc->order,
2341                                          cc->highest_zoneidx))
2342                         return COMPACT_SKIPPED;
2343         }
2344
2345         /*
2346          * Clear pageblock skip if there were failures recently and compaction
2347          * is about to be retried after being deferred.
2348          */
2349         if (compaction_restarting(cc->zone, cc->order))
2350                 __reset_isolation_suitable(cc->zone);
2351
2352         /*
2353          * Setup to move all movable pages to the end of the zone. Used cached
2354          * information on where the scanners should start (unless we explicitly
2355          * want to compact the whole zone), but check that it is initialised
2356          * by ensuring the values are within zone boundaries.
2357          */
2358         cc->fast_start_pfn = 0;
2359         if (cc->whole_zone) {
2360                 cc->migrate_pfn = start_pfn;
2361                 cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
2362         } else {
2363                 cc->migrate_pfn = cc->zone->compact_cached_migrate_pfn[sync];
2364                 cc->free_pfn = cc->zone->compact_cached_free_pfn;
2365                 if (cc->free_pfn < start_pfn || cc->free_pfn >= end_pfn) {
2366                         cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
2367                         cc->zone->compact_cached_free_pfn = cc->free_pfn;
2368                 }
2369                 if (cc->migrate_pfn < start_pfn || cc->migrate_pfn >= end_pfn) {
2370                         cc->migrate_pfn = start_pfn;
2371                         cc->zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn;
2372                         cc->zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn;
2373                 }
2374
2375                 if (cc->migrate_pfn <= cc->zone->compact_init_migrate_pfn)
2376                         cc->whole_zone = true;
2377         }
2378
2379         last_migrated_pfn = 0;
2380
2381         /*
2382          * Migrate has separate cached PFNs for ASYNC and SYNC* migration on
2383          * the basis that some migrations will fail in ASYNC mode. However,
2384          * if the cached PFNs match and pageblocks are skipped due to having
2385          * no isolation candidates, then the sync state does not matter.
2386          * Until a pageblock with isolation candidates is found, keep the
2387          * cached PFNs in sync to avoid revisiting the same blocks.
2388          */
2389         update_cached = !sync &&
2390                 cc->zone->compact_cached_migrate_pfn[0] == cc->zone->compact_cached_migrate_pfn[1];
2391
2392         trace_mm_compaction_begin(cc, start_pfn, end_pfn, sync);
2393
2394         /* lru_add_drain_all could be expensive with involving other CPUs */
2395         lru_add_drain();
2396
2397         while ((ret = compact_finished(cc)) == COMPACT_CONTINUE) {
2398                 int err;
2399                 unsigned long iteration_start_pfn = cc->migrate_pfn;
2400
2401                 /*
2402                  * Avoid multiple rescans of the same pageblock which can
2403                  * happen if a page cannot be isolated (dirty/writeback in
2404                  * async mode) or if the migrated pages are being allocated
2405                  * before the pageblock is cleared.  The first rescan will
2406                  * capture the entire pageblock for migration. If it fails,
2407                  * it'll be marked skip and scanning will proceed as normal.
2408                  */
2409                 cc->finish_pageblock = false;
2410                 if (pageblock_start_pfn(last_migrated_pfn) ==
2411                     pageblock_start_pfn(iteration_start_pfn)) {
2412                         cc->finish_pageblock = true;
2413                 }
2414
2415 rescan:
2416                 switch (isolate_migratepages(cc)) {
2417                 case ISOLATE_ABORT:
2418                         ret = COMPACT_CONTENDED;
2419                         putback_movable_pages(&cc->migratepages);
2420                         cc->nr_migratepages = 0;
2421                         goto out;
2422                 case ISOLATE_NONE:
2423                         if (update_cached) {
2424                                 cc->zone->compact_cached_migrate_pfn[1] =
2425                                         cc->zone->compact_cached_migrate_pfn[0];
2426                         }
2427
2428                         /*
2429                          * We haven't isolated and migrated anything, but
2430                          * there might still be unflushed migrations from
2431                          * previous cc->order aligned block.
2432                          */
2433                         goto check_drain;
2434                 case ISOLATE_SUCCESS:
2435                         update_cached = false;
2436                         last_migrated_pfn = iteration_start_pfn;
2437                 }
2438
2439                 err = migrate_pages(&cc->migratepages, compaction_alloc,
2440                                 compaction_free, (unsigned long)cc, cc->mode,
2441                                 MR_COMPACTION, &nr_succeeded);
2442
2443                 trace_mm_compaction_migratepages(cc, nr_succeeded);
2444
2445                 /* All pages were either migrated or will be released */
2446                 cc->nr_migratepages = 0;
2447                 if (err) {
2448                         putback_movable_pages(&cc->migratepages);
2449                         /*
2450                          * migrate_pages() may return -ENOMEM when scanners meet
2451                          * and we want compact_finished() to detect it
2452                          */
2453                         if (err == -ENOMEM && !compact_scanners_met(cc)) {
2454                                 ret = COMPACT_CONTENDED;
2455                                 goto out;
2456                         }
2457                         /*
2458                          * If an ASYNC or SYNC_LIGHT fails to migrate a page
2459                          * within the current order-aligned block and
2460                          * fast_find_migrateblock may be used then scan the
2461                          * remainder of the pageblock. This will mark the
2462                          * pageblock "skip" to avoid rescanning in the near
2463                          * future. This will isolate more pages than necessary
2464                          * for the request but avoid loops due to
2465                          * fast_find_migrateblock revisiting blocks that were
2466                          * recently partially scanned.
2467                          */
2468                         if (!pageblock_aligned(cc->migrate_pfn) &&
2469                             !cc->ignore_skip_hint && !cc->finish_pageblock &&
2470                             (cc->mode < MIGRATE_SYNC)) {
2471                                 cc->finish_pageblock = true;
2472
2473                                 /*
2474                                  * Draining pcplists does not help THP if
2475                                  * any page failed to migrate. Even after
2476                                  * drain, the pageblock will not be free.
2477                                  */
2478                                 if (cc->order == COMPACTION_HPAGE_ORDER)
2479                                         last_migrated_pfn = 0;
2480
2481                                 goto rescan;
2482                         }
2483                 }
2484
2485                 /* Stop if a page has been captured */
2486                 if (capc && capc->page) {
2487                         ret = COMPACT_SUCCESS;
2488                         break;
2489                 }
2490
2491 check_drain:
2492                 /*
2493                  * Has the migration scanner moved away from the previous
2494                  * cc->order aligned block where we migrated from? If yes,
2495                  * flush the pages that were freed, so that they can merge and
2496                  * compact_finished() can detect immediately if allocation
2497                  * would succeed.
2498                  */
2499                 if (cc->order > 0 && last_migrated_pfn) {
2500                         unsigned long current_block_start =
2501                                 block_start_pfn(cc->migrate_pfn, cc->order);
2502
2503                         if (last_migrated_pfn < current_block_start) {
2504                                 lru_add_drain_cpu_zone(cc->zone);
2505                                 /* No more flushing until we migrate again */
2506                                 last_migrated_pfn = 0;
2507                         }
2508                 }
2509         }
2510
2511 out:
2512         /*
2513          * Release free pages and update where the free scanner should restart,
2514          * so we don't leave any returned pages behind in the next attempt.
2515          */
2516         if (cc->nr_freepages > 0) {
2517                 unsigned long free_pfn = release_freepages(&cc->freepages);
2518
2519                 cc->nr_freepages = 0;
2520                 VM_BUG_ON(free_pfn == 0);
2521                 /* The cached pfn is always the first in a pageblock */
2522                 free_pfn = pageblock_start_pfn(free_pfn);
2523                 /*
2524                  * Only go back, not forward. The cached pfn might have been
2525                  * already reset to zone end in compact_finished()
2526                  */
2527                 if (free_pfn > cc->zone->compact_cached_free_pfn)
2528                         cc->zone->compact_cached_free_pfn = free_pfn;
2529         }
2530
2531         count_compact_events(COMPACTMIGRATE_SCANNED, cc->total_migrate_scanned);
2532         count_compact_events(COMPACTFREE_SCANNED, cc->total_free_scanned);
2533
2534         trace_mm_compaction_end(cc, start_pfn, end_pfn, sync, ret);
2535
2536         VM_BUG_ON(!list_empty(&cc->freepages));
2537         VM_BUG_ON(!list_empty(&cc->migratepages));
2538
2539         return ret;
2540 }
2541
2542 static enum compact_result compact_zone_order(struct zone *zone, int order,
2543                 gfp_t gfp_mask, enum compact_priority prio,
2544                 unsigned int alloc_flags, int highest_zoneidx,
2545                 struct page **capture)
2546 {
2547         enum compact_result ret;
2548         struct compact_control cc = {
2549                 .order = order,
2550                 .search_order = order,
2551                 .gfp_mask = gfp_mask,
2552                 .zone = zone,
2553                 .mode = (prio == COMPACT_PRIO_ASYNC) ?
2554                                         MIGRATE_ASYNC : MIGRATE_SYNC_LIGHT,
2555                 .alloc_flags = alloc_flags,
2556                 .highest_zoneidx = highest_zoneidx,
2557                 .direct_compaction = true,
2558                 .whole_zone = (prio == MIN_COMPACT_PRIORITY),
2559                 .ignore_skip_hint = (prio == MIN_COMPACT_PRIORITY),
2560                 .ignore_block_suitable = (prio == MIN_COMPACT_PRIORITY)
2561         };
2562         struct capture_control capc = {
2563                 .cc = &cc,
2564                 .page = NULL,
2565         };
2566
2567         /*
2568          * Make sure the structs are really initialized before we expose the
2569          * capture control, in case we are interrupted and the interrupt handler
2570          * frees a page.
2571          */
2572         barrier();
2573         WRITE_ONCE(current->capture_control, &capc);
2574
2575         ret = compact_zone(&cc, &capc);
2576
2577         /*
2578          * Make sure we hide capture control first before we read the captured
2579          * page pointer, otherwise an interrupt could free and capture a page
2580          * and we would leak it.
2581          */
2582         WRITE_ONCE(current->capture_control, NULL);
2583         *capture = READ_ONCE(capc.page);
2584         /*
2585          * Technically, it is also possible that compaction is skipped but
2586          * the page is still captured out of luck(IRQ came and freed the page).
2587          * Returning COMPACT_SUCCESS in such cases helps in properly accounting
2588          * the COMPACT[STALL|FAIL] when compaction is skipped.
2589          */
2590         if (*capture)
2591                 ret = COMPACT_SUCCESS;
2592
2593         return ret;
2594 }
2595
2596 /**
2597  * try_to_compact_pages - Direct compact to satisfy a high-order allocation
2598  * @gfp_mask: The GFP mask of the current allocation
2599  * @order: The order of the current allocation
2600  * @alloc_flags: The allocation flags of the current allocation
2601  * @ac: The context of current allocation
2602  * @prio: Determines how hard direct compaction should try to succeed
2603  * @capture: Pointer to free page created by compaction will be stored here
2604  *
2605  * This is the main entry point for direct page compaction.
2606  */
2607 enum compact_result try_to_compact_pages(gfp_t gfp_mask, unsigned int order,
2608                 unsigned int alloc_flags, const struct alloc_context *ac,
2609                 enum compact_priority prio, struct page **capture)
2610 {
2611         int may_perform_io = (__force int)(gfp_mask & __GFP_IO);
2612         struct zoneref *z;
2613         struct zone *zone;
2614         enum compact_result rc = COMPACT_SKIPPED;
2615
2616         /*
2617          * Check if the GFP flags allow compaction - GFP_NOIO is really
2618          * tricky context because the migration might require IO
2619          */
2620         if (!may_perform_io)
2621                 return COMPACT_SKIPPED;
2622
2623         trace_mm_compaction_try_to_compact_pages(order, gfp_mask, prio);
2624
2625         /* Compact each zone in the list */
2626         for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2627                                         ac->highest_zoneidx, ac->nodemask) {
2628                 enum compact_result status;
2629
2630                 if (prio > MIN_COMPACT_PRIORITY
2631                                         && compaction_deferred(zone, order)) {
2632                         rc = max_t(enum compact_result, COMPACT_DEFERRED, rc);
2633                         continue;
2634                 }
2635
2636                 status = compact_zone_order(zone, order, gfp_mask, prio,
2637                                 alloc_flags, ac->highest_zoneidx, capture);
2638                 rc = max(status, rc);
2639
2640                 /* The allocation should succeed, stop compacting */
2641                 if (status == COMPACT_SUCCESS) {
2642                         /*
2643                          * We think the allocation will succeed in this zone,
2644                          * but it is not certain, hence the false. The caller
2645                          * will repeat this with true if allocation indeed
2646                          * succeeds in this zone.
2647                          */
2648                         compaction_defer_reset(zone, order, false);
2649
2650                         break;
2651                 }
2652
2653                 if (prio != COMPACT_PRIO_ASYNC && (status == COMPACT_COMPLETE ||
2654                                         status == COMPACT_PARTIAL_SKIPPED))
2655                         /*
2656                          * We think that allocation won't succeed in this zone
2657                          * so we defer compaction there. If it ends up
2658                          * succeeding after all, it will be reset.
2659                          */
2660                         defer_compaction(zone, order);
2661
2662                 /*
2663                  * We might have stopped compacting due to need_resched() in
2664                  * async compaction, or due to a fatal signal detected. In that
2665                  * case do not try further zones
2666                  */
2667                 if ((prio == COMPACT_PRIO_ASYNC && need_resched())
2668                                         || fatal_signal_pending(current))
2669                         break;
2670         }
2671
2672         return rc;
2673 }
2674
2675 /*
2676  * Compact all zones within a node till each zone's fragmentation score
2677  * reaches within proactive compaction thresholds (as determined by the
2678  * proactiveness tunable).
2679  *
2680  * It is possible that the function returns before reaching score targets
2681  * due to various back-off conditions, such as, contention on per-node or
2682  * per-zone locks.
2683  */
2684 static void proactive_compact_node(pg_data_t *pgdat)
2685 {
2686         int zoneid;
2687         struct zone *zone;
2688         struct compact_control cc = {
2689                 .order = -1,
2690                 .mode = MIGRATE_SYNC_LIGHT,
2691                 .ignore_skip_hint = true,
2692                 .whole_zone = true,
2693                 .gfp_mask = GFP_KERNEL,
2694                 .proactive_compaction = true,
2695         };
2696
2697         for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
2698                 zone = &pgdat->node_zones[zoneid];
2699                 if (!populated_zone(zone))
2700                         continue;
2701
2702                 cc.zone = zone;
2703
2704                 compact_zone(&cc, NULL);
2705
2706                 count_compact_events(KCOMPACTD_MIGRATE_SCANNED,
2707                                      cc.total_migrate_scanned);
2708                 count_compact_events(KCOMPACTD_FREE_SCANNED,
2709                                      cc.total_free_scanned);
2710         }
2711 }
2712
2713 /* Compact all zones within a node */
2714 static void compact_node(int nid)
2715 {
2716         pg_data_t *pgdat = NODE_DATA(nid);
2717         int zoneid;
2718         struct zone *zone;
2719         struct compact_control cc = {
2720                 .order = -1,
2721                 .mode = MIGRATE_SYNC,
2722                 .ignore_skip_hint = true,
2723                 .whole_zone = true,
2724                 .gfp_mask = GFP_KERNEL,
2725         };
2726
2727
2728         for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
2729
2730                 zone = &pgdat->node_zones[zoneid];
2731                 if (!populated_zone(zone))
2732                         continue;
2733
2734                 cc.zone = zone;
2735
2736                 compact_zone(&cc, NULL);
2737         }
2738 }
2739
2740 /* Compact all nodes in the system */
2741 static void compact_nodes(void)
2742 {
2743         int nid;
2744
2745         /* Flush pending updates to the LRU lists */
2746         lru_add_drain_all();
2747
2748         for_each_online_node(nid)
2749                 compact_node(nid);
2750 }
2751
2752 static int compaction_proactiveness_sysctl_handler(struct ctl_table *table, int write,
2753                 void *buffer, size_t *length, loff_t *ppos)
2754 {
2755         int rc, nid;
2756
2757         rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
2758         if (rc)
2759                 return rc;
2760
2761         if (write && sysctl_compaction_proactiveness) {
2762                 for_each_online_node(nid) {
2763                         pg_data_t *pgdat = NODE_DATA(nid);
2764
2765                         if (pgdat->proactive_compact_trigger)
2766                                 continue;
2767
2768                         pgdat->proactive_compact_trigger = true;
2769                         trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, -1,
2770                                                              pgdat->nr_zones - 1);
2771                         wake_up_interruptible(&pgdat->kcompactd_wait);
2772                 }
2773         }
2774
2775         return 0;
2776 }
2777
2778 /*
2779  * This is the entry point for compacting all nodes via
2780  * /proc/sys/vm/compact_memory
2781  */
2782 static int sysctl_compaction_handler(struct ctl_table *table, int write,
2783                         void *buffer, size_t *length, loff_t *ppos)
2784 {
2785         int ret;
2786
2787         ret = proc_dointvec(table, write, buffer, length, ppos);
2788         if (ret)
2789                 return ret;
2790
2791         if (sysctl_compact_memory != 1)
2792                 return -EINVAL;
2793
2794         if (write)
2795                 compact_nodes();
2796
2797         return 0;
2798 }
2799
2800 #if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
2801 static ssize_t compact_store(struct device *dev,
2802                              struct device_attribute *attr,
2803                              const char *buf, size_t count)
2804 {
2805         int nid = dev->id;
2806
2807         if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
2808                 /* Flush pending updates to the LRU lists */
2809                 lru_add_drain_all();
2810
2811                 compact_node(nid);
2812         }
2813
2814         return count;
2815 }
2816 static DEVICE_ATTR_WO(compact);
2817
2818 int compaction_register_node(struct node *node)
2819 {
2820         return device_create_file(&node->dev, &dev_attr_compact);
2821 }
2822
2823 void compaction_unregister_node(struct node *node)
2824 {
2825         return device_remove_file(&node->dev, &dev_attr_compact);
2826 }
2827 #endif /* CONFIG_SYSFS && CONFIG_NUMA */
2828
2829 static inline bool kcompactd_work_requested(pg_data_t *pgdat)
2830 {
2831         return pgdat->kcompactd_max_order > 0 || kthread_should_stop() ||
2832                 pgdat->proactive_compact_trigger;
2833 }
2834
2835 static bool kcompactd_node_suitable(pg_data_t *pgdat)
2836 {
2837         int zoneid;
2838         struct zone *zone;
2839         enum zone_type highest_zoneidx = pgdat->kcompactd_highest_zoneidx;
2840
2841         for (zoneid = 0; zoneid <= highest_zoneidx; zoneid++) {
2842                 zone = &pgdat->node_zones[zoneid];
2843
2844                 if (!populated_zone(zone))
2845                         continue;
2846
2847                 /* Allocation can already succeed, check other zones */
2848                 if (zone_watermark_ok(zone, pgdat->kcompactd_max_order,
2849                                       min_wmark_pages(zone),
2850                                       highest_zoneidx, 0))
2851                         continue;
2852
2853                 if (compaction_suitable(zone, pgdat->kcompactd_max_order,
2854                                         highest_zoneidx))
2855                         return true;
2856         }
2857
2858         return false;
2859 }
2860
2861 static void kcompactd_do_work(pg_data_t *pgdat)
2862 {
2863         /*
2864          * With no special task, compact all zones so that a page of requested
2865          * order is allocatable.
2866          */
2867         int zoneid;
2868         struct zone *zone;
2869         struct compact_control cc = {
2870                 .order = pgdat->kcompactd_max_order,
2871                 .search_order = pgdat->kcompactd_max_order,
2872                 .highest_zoneidx = pgdat->kcompactd_highest_zoneidx,
2873                 .mode = MIGRATE_SYNC_LIGHT,
2874                 .ignore_skip_hint = false,
2875                 .gfp_mask = GFP_KERNEL,
2876         };
2877         trace_mm_compaction_kcompactd_wake(pgdat->node_id, cc.order,
2878                                                         cc.highest_zoneidx);
2879         count_compact_event(KCOMPACTD_WAKE);
2880
2881         for (zoneid = 0; zoneid <= cc.highest_zoneidx; zoneid++) {
2882                 int status;
2883
2884                 zone = &pgdat->node_zones[zoneid];
2885                 if (!populated_zone(zone))
2886                         continue;
2887
2888                 if (compaction_deferred(zone, cc.order))
2889                         continue;
2890
2891                 /* Allocation can already succeed, nothing to do */
2892                 if (zone_watermark_ok(zone, cc.order,
2893                                       min_wmark_pages(zone), zoneid, 0))
2894                         continue;
2895
2896                 if (!compaction_suitable(zone, cc.order, zoneid))
2897                         continue;
2898
2899                 if (kthread_should_stop())
2900                         return;
2901
2902                 cc.zone = zone;
2903                 status = compact_zone(&cc, NULL);
2904
2905                 if (status == COMPACT_SUCCESS) {
2906                         compaction_defer_reset(zone, cc.order, false);
2907                 } else if (status == COMPACT_PARTIAL_SKIPPED || status == COMPACT_COMPLETE) {
2908                         /*
2909                          * Buddy pages may become stranded on pcps that could
2910                          * otherwise coalesce on the zone's free area for
2911                          * order >= cc.order.  This is ratelimited by the
2912                          * upcoming deferral.
2913                          */
2914                         drain_all_pages(zone);
2915
2916                         /*
2917                          * We use sync migration mode here, so we defer like
2918                          * sync direct compaction does.
2919                          */
2920                         defer_compaction(zone, cc.order);
2921                 }
2922
2923                 count_compact_events(KCOMPACTD_MIGRATE_SCANNED,
2924                                      cc.total_migrate_scanned);
2925                 count_compact_events(KCOMPACTD_FREE_SCANNED,
2926                                      cc.total_free_scanned);
2927         }
2928
2929         /*
2930          * Regardless of success, we are done until woken up next. But remember
2931          * the requested order/highest_zoneidx in case it was higher/tighter
2932          * than our current ones
2933          */
2934         if (pgdat->kcompactd_max_order <= cc.order)
2935                 pgdat->kcompactd_max_order = 0;
2936         if (pgdat->kcompactd_highest_zoneidx >= cc.highest_zoneidx)
2937                 pgdat->kcompactd_highest_zoneidx = pgdat->nr_zones - 1;
2938 }
2939
2940 void wakeup_kcompactd(pg_data_t *pgdat, int order, int highest_zoneidx)
2941 {
2942         if (!order)
2943                 return;
2944
2945         if (pgdat->kcompactd_max_order < order)
2946                 pgdat->kcompactd_max_order = order;
2947
2948         if (pgdat->kcompactd_highest_zoneidx > highest_zoneidx)
2949                 pgdat->kcompactd_highest_zoneidx = highest_zoneidx;
2950
2951         /*
2952          * Pairs with implicit barrier in wait_event_freezable()
2953          * such that wakeups are not missed.
2954          */
2955         if (!wq_has_sleeper(&pgdat->kcompactd_wait))
2956                 return;
2957
2958         if (!kcompactd_node_suitable(pgdat))
2959                 return;
2960
2961         trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, order,
2962                                                         highest_zoneidx);
2963         wake_up_interruptible(&pgdat->kcompactd_wait);
2964 }
2965
2966 /*
2967  * The background compaction daemon, started as a kernel thread
2968  * from the init process.
2969  */
2970 static int kcompactd(void *p)
2971 {
2972         pg_data_t *pgdat = (pg_data_t *)p;
2973         struct task_struct *tsk = current;
2974         long default_timeout = msecs_to_jiffies(HPAGE_FRAG_CHECK_INTERVAL_MSEC);
2975         long timeout = default_timeout;
2976
2977         const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2978
2979         if (!cpumask_empty(cpumask))
2980                 set_cpus_allowed_ptr(tsk, cpumask);
2981
2982         set_freezable();
2983
2984         pgdat->kcompactd_max_order = 0;
2985         pgdat->kcompactd_highest_zoneidx = pgdat->nr_zones - 1;
2986
2987         while (!kthread_should_stop()) {
2988                 unsigned long pflags;
2989
2990                 /*
2991                  * Avoid the unnecessary wakeup for proactive compaction
2992                  * when it is disabled.
2993                  */
2994                 if (!sysctl_compaction_proactiveness)
2995                         timeout = MAX_SCHEDULE_TIMEOUT;
2996                 trace_mm_compaction_kcompactd_sleep(pgdat->node_id);
2997                 if (wait_event_freezable_timeout(pgdat->kcompactd_wait,
2998                         kcompactd_work_requested(pgdat), timeout) &&
2999                         !pgdat->proactive_compact_trigger) {
3000
3001                         psi_memstall_enter(&pflags);
3002                         kcompactd_do_work(pgdat);
3003                         psi_memstall_leave(&pflags);
3004                         /*
3005                          * Reset the timeout value. The defer timeout from
3006                          * proactive compaction is lost here but that is fine
3007                          * as the condition of the zone changing substantionally
3008                          * then carrying on with the previous defer interval is
3009                          * not useful.
3010                          */
3011                         timeout = default_timeout;
3012                         continue;
3013                 }
3014
3015                 /*
3016                  * Start the proactive work with default timeout. Based
3017                  * on the fragmentation score, this timeout is updated.
3018                  */
3019                 timeout = default_timeout;
3020                 if (should_proactive_compact_node(pgdat)) {
3021                         unsigned int prev_score, score;
3022
3023                         prev_score = fragmentation_score_node(pgdat);
3024                         proactive_compact_node(pgdat);
3025                         score = fragmentation_score_node(pgdat);
3026                         /*
3027                          * Defer proactive compaction if the fragmentation
3028                          * score did not go down i.e. no progress made.
3029                          */
3030                         if (unlikely(score >= prev_score))
3031                                 timeout =
3032                                    default_timeout << COMPACT_MAX_DEFER_SHIFT;
3033                 }
3034                 if (unlikely(pgdat->proactive_compact_trigger))
3035                         pgdat->proactive_compact_trigger = false;
3036         }
3037
3038         return 0;
3039 }
3040
3041 /*
3042  * This kcompactd start function will be called by init and node-hot-add.
3043  * On node-hot-add, kcompactd will moved to proper cpus if cpus are hot-added.
3044  */
3045 void kcompactd_run(int nid)
3046 {
3047         pg_data_t *pgdat = NODE_DATA(nid);
3048
3049         if (pgdat->kcompactd)
3050                 return;
3051
3052         pgdat->kcompactd = kthread_run(kcompactd, pgdat, "kcompactd%d", nid);
3053         if (IS_ERR(pgdat->kcompactd)) {
3054                 pr_err("Failed to start kcompactd on node %d\n", nid);
3055                 pgdat->kcompactd = NULL;
3056         }
3057 }
3058
3059 /*
3060  * Called by memory hotplug when all memory in a node is offlined. Caller must
3061  * be holding mem_hotplug_begin/done().
3062  */
3063 void kcompactd_stop(int nid)
3064 {
3065         struct task_struct *kcompactd = NODE_DATA(nid)->kcompactd;
3066
3067         if (kcompactd) {
3068                 kthread_stop(kcompactd);
3069                 NODE_DATA(nid)->kcompactd = NULL;
3070         }
3071 }
3072
3073 /*
3074  * It's optimal to keep kcompactd on the same CPUs as their memory, but
3075  * not required for correctness. So if the last cpu in a node goes
3076  * away, we get changed to run anywhere: as the first one comes back,
3077  * restore their cpu bindings.
3078  */
3079 static int kcompactd_cpu_online(unsigned int cpu)
3080 {
3081         int nid;
3082
3083         for_each_node_state(nid, N_MEMORY) {
3084                 pg_data_t *pgdat = NODE_DATA(nid);
3085                 const struct cpumask *mask;
3086
3087                 mask = cpumask_of_node(pgdat->node_id);
3088
3089                 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3090                         /* One of our CPUs online: restore mask */
3091                         if (pgdat->kcompactd)
3092                                 set_cpus_allowed_ptr(pgdat->kcompactd, mask);
3093         }
3094         return 0;
3095 }
3096
3097 static int proc_dointvec_minmax_warn_RT_change(struct ctl_table *table,
3098                 int write, void *buffer, size_t *lenp, loff_t *ppos)
3099 {
3100         int ret, old;
3101
3102         if (!IS_ENABLED(CONFIG_PREEMPT_RT) || !write)
3103                 return proc_dointvec_minmax(table, write, buffer, lenp, ppos);
3104
3105         old = *(int *)table->data;
3106         ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
3107         if (ret)
3108                 return ret;
3109         if (old != *(int *)table->data)
3110                 pr_warn_once("sysctl attribute %s changed by %s[%d]\n",
3111                              table->procname, current->comm,
3112                              task_pid_nr(current));
3113         return ret;
3114 }
3115
3116 static struct ctl_table vm_compaction[] = {
3117         {
3118                 .procname       = "compact_memory",
3119                 .data           = &sysctl_compact_memory,
3120                 .maxlen         = sizeof(int),
3121                 .mode           = 0200,
3122                 .proc_handler   = sysctl_compaction_handler,
3123         },
3124         {
3125                 .procname       = "compaction_proactiveness",
3126                 .data           = &sysctl_compaction_proactiveness,
3127                 .maxlen         = sizeof(sysctl_compaction_proactiveness),
3128                 .mode           = 0644,
3129                 .proc_handler   = compaction_proactiveness_sysctl_handler,
3130                 .extra1         = SYSCTL_ZERO,
3131                 .extra2         = SYSCTL_ONE_HUNDRED,
3132         },
3133         {
3134                 .procname       = "extfrag_threshold",
3135                 .data           = &sysctl_extfrag_threshold,
3136                 .maxlen         = sizeof(int),
3137                 .mode           = 0644,
3138                 .proc_handler   = proc_dointvec_minmax,
3139                 .extra1         = SYSCTL_ZERO,
3140                 .extra2         = SYSCTL_ONE_THOUSAND,
3141         },
3142         {
3143                 .procname       = "compact_unevictable_allowed",
3144                 .data           = &sysctl_compact_unevictable_allowed,
3145                 .maxlen         = sizeof(int),
3146                 .mode           = 0644,
3147                 .proc_handler   = proc_dointvec_minmax_warn_RT_change,
3148                 .extra1         = SYSCTL_ZERO,
3149                 .extra2         = SYSCTL_ONE,
3150         },
3151         { }
3152 };
3153
3154 static int __init kcompactd_init(void)
3155 {
3156         int nid;
3157         int ret;
3158
3159         ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
3160                                         "mm/compaction:online",
3161                                         kcompactd_cpu_online, NULL);
3162         if (ret < 0) {
3163                 pr_err("kcompactd: failed to register hotplug callbacks.\n");
3164                 return ret;
3165         }
3166
3167         for_each_node_state(nid, N_MEMORY)
3168                 kcompactd_run(nid);
3169         register_sysctl_init("vm", vm_compaction);
3170         return 0;
3171 }
3172 subsys_initcall(kcompactd_init)
3173
3174 #endif /* CONFIG_COMPACTION */