Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
[platform/kernel/linux-starfive.git] / mm / compaction.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * linux/mm/compaction.c
4  *
5  * Memory compaction for the reduction of external fragmentation. Note that
6  * this heavily depends upon page migration to do all the real heavy
7  * lifting
8  *
9  * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
10  */
11 #include <linux/cpu.h>
12 #include <linux/swap.h>
13 #include <linux/migrate.h>
14 #include <linux/compaction.h>
15 #include <linux/mm_inline.h>
16 #include <linux/sched/signal.h>
17 #include <linux/backing-dev.h>
18 #include <linux/sysctl.h>
19 #include <linux/sysfs.h>
20 #include <linux/page-isolation.h>
21 #include <linux/kasan.h>
22 #include <linux/kthread.h>
23 #include <linux/freezer.h>
24 #include <linux/page_owner.h>
25 #include <linux/psi.h>
26 #include "internal.h"
27
28 #ifdef CONFIG_COMPACTION
29 /*
30  * Fragmentation score check interval for proactive compaction purposes.
31  */
32 #define HPAGE_FRAG_CHECK_INTERVAL_MSEC  (500)
33
34 static inline void count_compact_event(enum vm_event_item item)
35 {
36         count_vm_event(item);
37 }
38
39 static inline void count_compact_events(enum vm_event_item item, long delta)
40 {
41         count_vm_events(item, delta);
42 }
43 #else
44 #define count_compact_event(item) do { } while (0)
45 #define count_compact_events(item, delta) do { } while (0)
46 #endif
47
48 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
49
50 #define CREATE_TRACE_POINTS
51 #include <trace/events/compaction.h>
52
53 #define block_start_pfn(pfn, order)     round_down(pfn, 1UL << (order))
54 #define block_end_pfn(pfn, order)       ALIGN((pfn) + 1, 1UL << (order))
55 #define pageblock_start_pfn(pfn)        block_start_pfn(pfn, pageblock_order)
56 #define pageblock_end_pfn(pfn)          block_end_pfn(pfn, pageblock_order)
57
58 /*
59  * Page order with-respect-to which proactive compaction
60  * calculates external fragmentation, which is used as
61  * the "fragmentation score" of a node/zone.
62  */
63 #if defined CONFIG_TRANSPARENT_HUGEPAGE
64 #define COMPACTION_HPAGE_ORDER  HPAGE_PMD_ORDER
65 #elif defined CONFIG_HUGETLBFS
66 #define COMPACTION_HPAGE_ORDER  HUGETLB_PAGE_ORDER
67 #else
68 #define COMPACTION_HPAGE_ORDER  (PMD_SHIFT - PAGE_SHIFT)
69 #endif
70
71 static unsigned long release_freepages(struct list_head *freelist)
72 {
73         struct page *page, *next;
74         unsigned long high_pfn = 0;
75
76         list_for_each_entry_safe(page, next, freelist, lru) {
77                 unsigned long pfn = page_to_pfn(page);
78                 list_del(&page->lru);
79                 __free_page(page);
80                 if (pfn > high_pfn)
81                         high_pfn = pfn;
82         }
83
84         return high_pfn;
85 }
86
87 static void split_map_pages(struct list_head *list)
88 {
89         unsigned int i, order, nr_pages;
90         struct page *page, *next;
91         LIST_HEAD(tmp_list);
92
93         list_for_each_entry_safe(page, next, list, lru) {
94                 list_del(&page->lru);
95
96                 order = page_private(page);
97                 nr_pages = 1 << order;
98
99                 post_alloc_hook(page, order, __GFP_MOVABLE);
100                 if (order)
101                         split_page(page, order);
102
103                 for (i = 0; i < nr_pages; i++) {
104                         list_add(&page->lru, &tmp_list);
105                         page++;
106                 }
107         }
108
109         list_splice(&tmp_list, list);
110 }
111
112 #ifdef CONFIG_COMPACTION
113 bool PageMovable(struct page *page)
114 {
115         const struct movable_operations *mops;
116
117         VM_BUG_ON_PAGE(!PageLocked(page), page);
118         if (!__PageMovable(page))
119                 return false;
120
121         mops = page_movable_ops(page);
122         if (mops)
123                 return true;
124
125         return false;
126 }
127 EXPORT_SYMBOL(PageMovable);
128
129 void __SetPageMovable(struct page *page, const struct movable_operations *mops)
130 {
131         VM_BUG_ON_PAGE(!PageLocked(page), page);
132         VM_BUG_ON_PAGE((unsigned long)mops & PAGE_MAPPING_MOVABLE, page);
133         page->mapping = (void *)((unsigned long)mops | PAGE_MAPPING_MOVABLE);
134 }
135 EXPORT_SYMBOL(__SetPageMovable);
136
137 void __ClearPageMovable(struct page *page)
138 {
139         VM_BUG_ON_PAGE(!PageMovable(page), page);
140         /*
141          * This page still has the type of a movable page, but it's
142          * actually not movable any more.
143          */
144         page->mapping = (void *)PAGE_MAPPING_MOVABLE;
145 }
146 EXPORT_SYMBOL(__ClearPageMovable);
147
148 /* Do not skip compaction more than 64 times */
149 #define COMPACT_MAX_DEFER_SHIFT 6
150
151 /*
152  * Compaction is deferred when compaction fails to result in a page
153  * allocation success. 1 << compact_defer_shift, compactions are skipped up
154  * to a limit of 1 << COMPACT_MAX_DEFER_SHIFT
155  */
156 static void defer_compaction(struct zone *zone, int order)
157 {
158         zone->compact_considered = 0;
159         zone->compact_defer_shift++;
160
161         if (order < zone->compact_order_failed)
162                 zone->compact_order_failed = order;
163
164         if (zone->compact_defer_shift > COMPACT_MAX_DEFER_SHIFT)
165                 zone->compact_defer_shift = COMPACT_MAX_DEFER_SHIFT;
166
167         trace_mm_compaction_defer_compaction(zone, order);
168 }
169
170 /* Returns true if compaction should be skipped this time */
171 static bool compaction_deferred(struct zone *zone, int order)
172 {
173         unsigned long defer_limit = 1UL << zone->compact_defer_shift;
174
175         if (order < zone->compact_order_failed)
176                 return false;
177
178         /* Avoid possible overflow */
179         if (++zone->compact_considered >= defer_limit) {
180                 zone->compact_considered = defer_limit;
181                 return false;
182         }
183
184         trace_mm_compaction_deferred(zone, order);
185
186         return true;
187 }
188
189 /*
190  * Update defer tracking counters after successful compaction of given order,
191  * which means an allocation either succeeded (alloc_success == true) or is
192  * expected to succeed.
193  */
194 void compaction_defer_reset(struct zone *zone, int order,
195                 bool alloc_success)
196 {
197         if (alloc_success) {
198                 zone->compact_considered = 0;
199                 zone->compact_defer_shift = 0;
200         }
201         if (order >= zone->compact_order_failed)
202                 zone->compact_order_failed = order + 1;
203
204         trace_mm_compaction_defer_reset(zone, order);
205 }
206
207 /* Returns true if restarting compaction after many failures */
208 static bool compaction_restarting(struct zone *zone, int order)
209 {
210         if (order < zone->compact_order_failed)
211                 return false;
212
213         return zone->compact_defer_shift == COMPACT_MAX_DEFER_SHIFT &&
214                 zone->compact_considered >= 1UL << zone->compact_defer_shift;
215 }
216
217 /* Returns true if the pageblock should be scanned for pages to isolate. */
218 static inline bool isolation_suitable(struct compact_control *cc,
219                                         struct page *page)
220 {
221         if (cc->ignore_skip_hint)
222                 return true;
223
224         return !get_pageblock_skip(page);
225 }
226
227 static void reset_cached_positions(struct zone *zone)
228 {
229         zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn;
230         zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn;
231         zone->compact_cached_free_pfn =
232                                 pageblock_start_pfn(zone_end_pfn(zone) - 1);
233 }
234
235 /*
236  * Compound pages of >= pageblock_order should consistently be skipped until
237  * released. It is always pointless to compact pages of such order (if they are
238  * migratable), and the pageblocks they occupy cannot contain any free pages.
239  */
240 static bool pageblock_skip_persistent(struct page *page)
241 {
242         if (!PageCompound(page))
243                 return false;
244
245         page = compound_head(page);
246
247         if (compound_order(page) >= pageblock_order)
248                 return true;
249
250         return false;
251 }
252
253 static bool
254 __reset_isolation_pfn(struct zone *zone, unsigned long pfn, bool check_source,
255                                                         bool check_target)
256 {
257         struct page *page = pfn_to_online_page(pfn);
258         struct page *block_page;
259         struct page *end_page;
260         unsigned long block_pfn;
261
262         if (!page)
263                 return false;
264         if (zone != page_zone(page))
265                 return false;
266         if (pageblock_skip_persistent(page))
267                 return false;
268
269         /*
270          * If skip is already cleared do no further checking once the
271          * restart points have been set.
272          */
273         if (check_source && check_target && !get_pageblock_skip(page))
274                 return true;
275
276         /*
277          * If clearing skip for the target scanner, do not select a
278          * non-movable pageblock as the starting point.
279          */
280         if (!check_source && check_target &&
281             get_pageblock_migratetype(page) != MIGRATE_MOVABLE)
282                 return false;
283
284         /* Ensure the start of the pageblock or zone is online and valid */
285         block_pfn = pageblock_start_pfn(pfn);
286         block_pfn = max(block_pfn, zone->zone_start_pfn);
287         block_page = pfn_to_online_page(block_pfn);
288         if (block_page) {
289                 page = block_page;
290                 pfn = block_pfn;
291         }
292
293         /* Ensure the end of the pageblock or zone is online and valid */
294         block_pfn = pageblock_end_pfn(pfn) - 1;
295         block_pfn = min(block_pfn, zone_end_pfn(zone) - 1);
296         end_page = pfn_to_online_page(block_pfn);
297         if (!end_page)
298                 return false;
299
300         /*
301          * Only clear the hint if a sample indicates there is either a
302          * free page or an LRU page in the block. One or other condition
303          * is necessary for the block to be a migration source/target.
304          */
305         do {
306                 if (check_source && PageLRU(page)) {
307                         clear_pageblock_skip(page);
308                         return true;
309                 }
310
311                 if (check_target && PageBuddy(page)) {
312                         clear_pageblock_skip(page);
313                         return true;
314                 }
315
316                 page += (1 << PAGE_ALLOC_COSTLY_ORDER);
317         } while (page <= end_page);
318
319         return false;
320 }
321
322 /*
323  * This function is called to clear all cached information on pageblocks that
324  * should be skipped for page isolation when the migrate and free page scanner
325  * meet.
326  */
327 static void __reset_isolation_suitable(struct zone *zone)
328 {
329         unsigned long migrate_pfn = zone->zone_start_pfn;
330         unsigned long free_pfn = zone_end_pfn(zone) - 1;
331         unsigned long reset_migrate = free_pfn;
332         unsigned long reset_free = migrate_pfn;
333         bool source_set = false;
334         bool free_set = false;
335
336         if (!zone->compact_blockskip_flush)
337                 return;
338
339         zone->compact_blockskip_flush = false;
340
341         /*
342          * Walk the zone and update pageblock skip information. Source looks
343          * for PageLRU while target looks for PageBuddy. When the scanner
344          * is found, both PageBuddy and PageLRU are checked as the pageblock
345          * is suitable as both source and target.
346          */
347         for (; migrate_pfn < free_pfn; migrate_pfn += pageblock_nr_pages,
348                                         free_pfn -= pageblock_nr_pages) {
349                 cond_resched();
350
351                 /* Update the migrate PFN */
352                 if (__reset_isolation_pfn(zone, migrate_pfn, true, source_set) &&
353                     migrate_pfn < reset_migrate) {
354                         source_set = true;
355                         reset_migrate = migrate_pfn;
356                         zone->compact_init_migrate_pfn = reset_migrate;
357                         zone->compact_cached_migrate_pfn[0] = reset_migrate;
358                         zone->compact_cached_migrate_pfn[1] = reset_migrate;
359                 }
360
361                 /* Update the free PFN */
362                 if (__reset_isolation_pfn(zone, free_pfn, free_set, true) &&
363                     free_pfn > reset_free) {
364                         free_set = true;
365                         reset_free = free_pfn;
366                         zone->compact_init_free_pfn = reset_free;
367                         zone->compact_cached_free_pfn = reset_free;
368                 }
369         }
370
371         /* Leave no distance if no suitable block was reset */
372         if (reset_migrate >= reset_free) {
373                 zone->compact_cached_migrate_pfn[0] = migrate_pfn;
374                 zone->compact_cached_migrate_pfn[1] = migrate_pfn;
375                 zone->compact_cached_free_pfn = free_pfn;
376         }
377 }
378
379 void reset_isolation_suitable(pg_data_t *pgdat)
380 {
381         int zoneid;
382
383         for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
384                 struct zone *zone = &pgdat->node_zones[zoneid];
385                 if (!populated_zone(zone))
386                         continue;
387
388                 /* Only flush if a full compaction finished recently */
389                 if (zone->compact_blockskip_flush)
390                         __reset_isolation_suitable(zone);
391         }
392 }
393
394 /*
395  * Sets the pageblock skip bit if it was clear. Note that this is a hint as
396  * locks are not required for read/writers. Returns true if it was already set.
397  */
398 static bool test_and_set_skip(struct compact_control *cc, struct page *page,
399                                                         unsigned long pfn)
400 {
401         bool skip;
402
403         /* Do no update if skip hint is being ignored */
404         if (cc->ignore_skip_hint)
405                 return false;
406
407         if (!IS_ALIGNED(pfn, pageblock_nr_pages))
408                 return false;
409
410         skip = get_pageblock_skip(page);
411         if (!skip && !cc->no_set_skip_hint)
412                 set_pageblock_skip(page);
413
414         return skip;
415 }
416
417 static void update_cached_migrate(struct compact_control *cc, unsigned long pfn)
418 {
419         struct zone *zone = cc->zone;
420
421         pfn = pageblock_end_pfn(pfn);
422
423         /* Set for isolation rather than compaction */
424         if (cc->no_set_skip_hint)
425                 return;
426
427         if (pfn > zone->compact_cached_migrate_pfn[0])
428                 zone->compact_cached_migrate_pfn[0] = pfn;
429         if (cc->mode != MIGRATE_ASYNC &&
430             pfn > zone->compact_cached_migrate_pfn[1])
431                 zone->compact_cached_migrate_pfn[1] = pfn;
432 }
433
434 /*
435  * If no pages were isolated then mark this pageblock to be skipped in the
436  * future. The information is later cleared by __reset_isolation_suitable().
437  */
438 static void update_pageblock_skip(struct compact_control *cc,
439                         struct page *page, unsigned long pfn)
440 {
441         struct zone *zone = cc->zone;
442
443         if (cc->no_set_skip_hint)
444                 return;
445
446         if (!page)
447                 return;
448
449         set_pageblock_skip(page);
450
451         /* Update where async and sync compaction should restart */
452         if (pfn < zone->compact_cached_free_pfn)
453                 zone->compact_cached_free_pfn = pfn;
454 }
455 #else
456 static inline bool isolation_suitable(struct compact_control *cc,
457                                         struct page *page)
458 {
459         return true;
460 }
461
462 static inline bool pageblock_skip_persistent(struct page *page)
463 {
464         return false;
465 }
466
467 static inline void update_pageblock_skip(struct compact_control *cc,
468                         struct page *page, unsigned long pfn)
469 {
470 }
471
472 static void update_cached_migrate(struct compact_control *cc, unsigned long pfn)
473 {
474 }
475
476 static bool test_and_set_skip(struct compact_control *cc, struct page *page,
477                                                         unsigned long pfn)
478 {
479         return false;
480 }
481 #endif /* CONFIG_COMPACTION */
482
483 /*
484  * Compaction requires the taking of some coarse locks that are potentially
485  * very heavily contended. For async compaction, trylock and record if the
486  * lock is contended. The lock will still be acquired but compaction will
487  * abort when the current block is finished regardless of success rate.
488  * Sync compaction acquires the lock.
489  *
490  * Always returns true which makes it easier to track lock state in callers.
491  */
492 static bool compact_lock_irqsave(spinlock_t *lock, unsigned long *flags,
493                                                 struct compact_control *cc)
494         __acquires(lock)
495 {
496         /* Track if the lock is contended in async mode */
497         if (cc->mode == MIGRATE_ASYNC && !cc->contended) {
498                 if (spin_trylock_irqsave(lock, *flags))
499                         return true;
500
501                 cc->contended = true;
502         }
503
504         spin_lock_irqsave(lock, *flags);
505         return true;
506 }
507
508 /*
509  * Compaction requires the taking of some coarse locks that are potentially
510  * very heavily contended. The lock should be periodically unlocked to avoid
511  * having disabled IRQs for a long time, even when there is nobody waiting on
512  * the lock. It might also be that allowing the IRQs will result in
513  * need_resched() becoming true. If scheduling is needed, compaction schedules.
514  * Either compaction type will also abort if a fatal signal is pending.
515  * In either case if the lock was locked, it is dropped and not regained.
516  *
517  * Returns true if compaction should abort due to fatal signal pending.
518  * Returns false when compaction can continue.
519  */
520 static bool compact_unlock_should_abort(spinlock_t *lock,
521                 unsigned long flags, bool *locked, struct compact_control *cc)
522 {
523         if (*locked) {
524                 spin_unlock_irqrestore(lock, flags);
525                 *locked = false;
526         }
527
528         if (fatal_signal_pending(current)) {
529                 cc->contended = true;
530                 return true;
531         }
532
533         cond_resched();
534
535         return false;
536 }
537
538 /*
539  * Isolate free pages onto a private freelist. If @strict is true, will abort
540  * returning 0 on any invalid PFNs or non-free pages inside of the pageblock
541  * (even though it may still end up isolating some pages).
542  */
543 static unsigned long isolate_freepages_block(struct compact_control *cc,
544                                 unsigned long *start_pfn,
545                                 unsigned long end_pfn,
546                                 struct list_head *freelist,
547                                 unsigned int stride,
548                                 bool strict)
549 {
550         int nr_scanned = 0, total_isolated = 0;
551         struct page *cursor;
552         unsigned long flags = 0;
553         bool locked = false;
554         unsigned long blockpfn = *start_pfn;
555         unsigned int order;
556
557         /* Strict mode is for isolation, speed is secondary */
558         if (strict)
559                 stride = 1;
560
561         cursor = pfn_to_page(blockpfn);
562
563         /* Isolate free pages. */
564         for (; blockpfn < end_pfn; blockpfn += stride, cursor += stride) {
565                 int isolated;
566                 struct page *page = cursor;
567
568                 /*
569                  * Periodically drop the lock (if held) regardless of its
570                  * contention, to give chance to IRQs. Abort if fatal signal
571                  * pending.
572                  */
573                 if (!(blockpfn % COMPACT_CLUSTER_MAX)
574                     && compact_unlock_should_abort(&cc->zone->lock, flags,
575                                                                 &locked, cc))
576                         break;
577
578                 nr_scanned++;
579
580                 /*
581                  * For compound pages such as THP and hugetlbfs, we can save
582                  * potentially a lot of iterations if we skip them at once.
583                  * The check is racy, but we can consider only valid values
584                  * and the only danger is skipping too much.
585                  */
586                 if (PageCompound(page)) {
587                         const unsigned int order = compound_order(page);
588
589                         if (likely(order < MAX_ORDER)) {
590                                 blockpfn += (1UL << order) - 1;
591                                 cursor += (1UL << order) - 1;
592                         }
593                         goto isolate_fail;
594                 }
595
596                 if (!PageBuddy(page))
597                         goto isolate_fail;
598
599                 /* If we already hold the lock, we can skip some rechecking. */
600                 if (!locked) {
601                         locked = compact_lock_irqsave(&cc->zone->lock,
602                                                                 &flags, cc);
603
604                         /* Recheck this is a buddy page under lock */
605                         if (!PageBuddy(page))
606                                 goto isolate_fail;
607                 }
608
609                 /* Found a free page, will break it into order-0 pages */
610                 order = buddy_order(page);
611                 isolated = __isolate_free_page(page, order);
612                 if (!isolated)
613                         break;
614                 set_page_private(page, order);
615
616                 total_isolated += isolated;
617                 cc->nr_freepages += isolated;
618                 list_add_tail(&page->lru, freelist);
619
620                 if (!strict && cc->nr_migratepages <= cc->nr_freepages) {
621                         blockpfn += isolated;
622                         break;
623                 }
624                 /* Advance to the end of split page */
625                 blockpfn += isolated - 1;
626                 cursor += isolated - 1;
627                 continue;
628
629 isolate_fail:
630                 if (strict)
631                         break;
632                 else
633                         continue;
634
635         }
636
637         if (locked)
638                 spin_unlock_irqrestore(&cc->zone->lock, flags);
639
640         /*
641          * There is a tiny chance that we have read bogus compound_order(),
642          * so be careful to not go outside of the pageblock.
643          */
644         if (unlikely(blockpfn > end_pfn))
645                 blockpfn = end_pfn;
646
647         trace_mm_compaction_isolate_freepages(*start_pfn, blockpfn,
648                                         nr_scanned, total_isolated);
649
650         /* Record how far we have got within the block */
651         *start_pfn = blockpfn;
652
653         /*
654          * If strict isolation is requested by CMA then check that all the
655          * pages requested were isolated. If there were any failures, 0 is
656          * returned and CMA will fail.
657          */
658         if (strict && blockpfn < end_pfn)
659                 total_isolated = 0;
660
661         cc->total_free_scanned += nr_scanned;
662         if (total_isolated)
663                 count_compact_events(COMPACTISOLATED, total_isolated);
664         return total_isolated;
665 }
666
667 /**
668  * isolate_freepages_range() - isolate free pages.
669  * @cc:        Compaction control structure.
670  * @start_pfn: The first PFN to start isolating.
671  * @end_pfn:   The one-past-last PFN.
672  *
673  * Non-free pages, invalid PFNs, or zone boundaries within the
674  * [start_pfn, end_pfn) range are considered errors, cause function to
675  * undo its actions and return zero.
676  *
677  * Otherwise, function returns one-past-the-last PFN of isolated page
678  * (which may be greater then end_pfn if end fell in a middle of
679  * a free page).
680  */
681 unsigned long
682 isolate_freepages_range(struct compact_control *cc,
683                         unsigned long start_pfn, unsigned long end_pfn)
684 {
685         unsigned long isolated, pfn, block_start_pfn, block_end_pfn;
686         LIST_HEAD(freelist);
687
688         pfn = start_pfn;
689         block_start_pfn = pageblock_start_pfn(pfn);
690         if (block_start_pfn < cc->zone->zone_start_pfn)
691                 block_start_pfn = cc->zone->zone_start_pfn;
692         block_end_pfn = pageblock_end_pfn(pfn);
693
694         for (; pfn < end_pfn; pfn += isolated,
695                                 block_start_pfn = block_end_pfn,
696                                 block_end_pfn += pageblock_nr_pages) {
697                 /* Protect pfn from changing by isolate_freepages_block */
698                 unsigned long isolate_start_pfn = pfn;
699
700                 block_end_pfn = min(block_end_pfn, end_pfn);
701
702                 /*
703                  * pfn could pass the block_end_pfn if isolated freepage
704                  * is more than pageblock order. In this case, we adjust
705                  * scanning range to right one.
706                  */
707                 if (pfn >= block_end_pfn) {
708                         block_start_pfn = pageblock_start_pfn(pfn);
709                         block_end_pfn = pageblock_end_pfn(pfn);
710                         block_end_pfn = min(block_end_pfn, end_pfn);
711                 }
712
713                 if (!pageblock_pfn_to_page(block_start_pfn,
714                                         block_end_pfn, cc->zone))
715                         break;
716
717                 isolated = isolate_freepages_block(cc, &isolate_start_pfn,
718                                         block_end_pfn, &freelist, 0, true);
719
720                 /*
721                  * In strict mode, isolate_freepages_block() returns 0 if
722                  * there are any holes in the block (ie. invalid PFNs or
723                  * non-free pages).
724                  */
725                 if (!isolated)
726                         break;
727
728                 /*
729                  * If we managed to isolate pages, it is always (1 << n) *
730                  * pageblock_nr_pages for some non-negative n.  (Max order
731                  * page may span two pageblocks).
732                  */
733         }
734
735         /* __isolate_free_page() does not map the pages */
736         split_map_pages(&freelist);
737
738         if (pfn < end_pfn) {
739                 /* Loop terminated early, cleanup. */
740                 release_freepages(&freelist);
741                 return 0;
742         }
743
744         /* We don't use freelists for anything. */
745         return pfn;
746 }
747
748 /* Similar to reclaim, but different enough that they don't share logic */
749 static bool too_many_isolated(pg_data_t *pgdat)
750 {
751         bool too_many;
752
753         unsigned long active, inactive, isolated;
754
755         inactive = node_page_state(pgdat, NR_INACTIVE_FILE) +
756                         node_page_state(pgdat, NR_INACTIVE_ANON);
757         active = node_page_state(pgdat, NR_ACTIVE_FILE) +
758                         node_page_state(pgdat, NR_ACTIVE_ANON);
759         isolated = node_page_state(pgdat, NR_ISOLATED_FILE) +
760                         node_page_state(pgdat, NR_ISOLATED_ANON);
761
762         too_many = isolated > (inactive + active) / 2;
763         if (!too_many)
764                 wake_throttle_isolated(pgdat);
765
766         return too_many;
767 }
768
769 /**
770  * isolate_migratepages_block() - isolate all migrate-able pages within
771  *                                a single pageblock
772  * @cc:         Compaction control structure.
773  * @low_pfn:    The first PFN to isolate
774  * @end_pfn:    The one-past-the-last PFN to isolate, within same pageblock
775  * @mode:       Isolation mode to be used.
776  *
777  * Isolate all pages that can be migrated from the range specified by
778  * [low_pfn, end_pfn). The range is expected to be within same pageblock.
779  * Returns errno, like -EAGAIN or -EINTR in case e.g signal pending or congestion,
780  * -ENOMEM in case we could not allocate a page, or 0.
781  * cc->migrate_pfn will contain the next pfn to scan.
782  *
783  * The pages are isolated on cc->migratepages list (not required to be empty),
784  * and cc->nr_migratepages is updated accordingly.
785  */
786 static int
787 isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn,
788                         unsigned long end_pfn, isolate_mode_t mode)
789 {
790         pg_data_t *pgdat = cc->zone->zone_pgdat;
791         unsigned long nr_scanned = 0, nr_isolated = 0;
792         struct lruvec *lruvec;
793         unsigned long flags = 0;
794         struct lruvec *locked = NULL;
795         struct page *page = NULL, *valid_page = NULL;
796         struct address_space *mapping;
797         unsigned long start_pfn = low_pfn;
798         bool skip_on_failure = false;
799         unsigned long next_skip_pfn = 0;
800         bool skip_updated = false;
801         int ret = 0;
802
803         cc->migrate_pfn = low_pfn;
804
805         /*
806          * Ensure that there are not too many pages isolated from the LRU
807          * list by either parallel reclaimers or compaction. If there are,
808          * delay for some time until fewer pages are isolated
809          */
810         while (unlikely(too_many_isolated(pgdat))) {
811                 /* stop isolation if there are still pages not migrated */
812                 if (cc->nr_migratepages)
813                         return -EAGAIN;
814
815                 /* async migration should just abort */
816                 if (cc->mode == MIGRATE_ASYNC)
817                         return -EAGAIN;
818
819                 reclaim_throttle(pgdat, VMSCAN_THROTTLE_ISOLATED);
820
821                 if (fatal_signal_pending(current))
822                         return -EINTR;
823         }
824
825         cond_resched();
826
827         if (cc->direct_compaction && (cc->mode == MIGRATE_ASYNC)) {
828                 skip_on_failure = true;
829                 next_skip_pfn = block_end_pfn(low_pfn, cc->order);
830         }
831
832         /* Time to isolate some pages for migration */
833         for (; low_pfn < end_pfn; low_pfn++) {
834
835                 if (skip_on_failure && low_pfn >= next_skip_pfn) {
836                         /*
837                          * We have isolated all migration candidates in the
838                          * previous order-aligned block, and did not skip it due
839                          * to failure. We should migrate the pages now and
840                          * hopefully succeed compaction.
841                          */
842                         if (nr_isolated)
843                                 break;
844
845                         /*
846                          * We failed to isolate in the previous order-aligned
847                          * block. Set the new boundary to the end of the
848                          * current block. Note we can't simply increase
849                          * next_skip_pfn by 1 << order, as low_pfn might have
850                          * been incremented by a higher number due to skipping
851                          * a compound or a high-order buddy page in the
852                          * previous loop iteration.
853                          */
854                         next_skip_pfn = block_end_pfn(low_pfn, cc->order);
855                 }
856
857                 /*
858                  * Periodically drop the lock (if held) regardless of its
859                  * contention, to give chance to IRQs. Abort completely if
860                  * a fatal signal is pending.
861                  */
862                 if (!(low_pfn % COMPACT_CLUSTER_MAX)) {
863                         if (locked) {
864                                 unlock_page_lruvec_irqrestore(locked, flags);
865                                 locked = NULL;
866                         }
867
868                         if (fatal_signal_pending(current)) {
869                                 cc->contended = true;
870                                 ret = -EINTR;
871
872                                 goto fatal_pending;
873                         }
874
875                         cond_resched();
876                 }
877
878                 nr_scanned++;
879
880                 page = pfn_to_page(low_pfn);
881
882                 /*
883                  * Check if the pageblock has already been marked skipped.
884                  * Only the aligned PFN is checked as the caller isolates
885                  * COMPACT_CLUSTER_MAX at a time so the second call must
886                  * not falsely conclude that the block should be skipped.
887                  */
888                 if (!valid_page && IS_ALIGNED(low_pfn, pageblock_nr_pages)) {
889                         if (!isolation_suitable(cc, page)) {
890                                 low_pfn = end_pfn;
891                                 page = NULL;
892                                 goto isolate_abort;
893                         }
894                         valid_page = page;
895                 }
896
897                 if (PageHuge(page) && cc->alloc_contig) {
898                         ret = isolate_or_dissolve_huge_page(page, &cc->migratepages);
899
900                         /*
901                          * Fail isolation in case isolate_or_dissolve_huge_page()
902                          * reports an error. In case of -ENOMEM, abort right away.
903                          */
904                         if (ret < 0) {
905                                  /* Do not report -EBUSY down the chain */
906                                 if (ret == -EBUSY)
907                                         ret = 0;
908                                 low_pfn += compound_nr(page) - 1;
909                                 goto isolate_fail;
910                         }
911
912                         if (PageHuge(page)) {
913                                 /*
914                                  * Hugepage was successfully isolated and placed
915                                  * on the cc->migratepages list.
916                                  */
917                                 low_pfn += compound_nr(page) - 1;
918                                 goto isolate_success_no_list;
919                         }
920
921                         /*
922                          * Ok, the hugepage was dissolved. Now these pages are
923                          * Buddy and cannot be re-allocated because they are
924                          * isolated. Fall-through as the check below handles
925                          * Buddy pages.
926                          */
927                 }
928
929                 /*
930                  * Skip if free. We read page order here without zone lock
931                  * which is generally unsafe, but the race window is small and
932                  * the worst thing that can happen is that we skip some
933                  * potential isolation targets.
934                  */
935                 if (PageBuddy(page)) {
936                         unsigned long freepage_order = buddy_order_unsafe(page);
937
938                         /*
939                          * Without lock, we cannot be sure that what we got is
940                          * a valid page order. Consider only values in the
941                          * valid order range to prevent low_pfn overflow.
942                          */
943                         if (freepage_order > 0 && freepage_order < MAX_ORDER)
944                                 low_pfn += (1UL << freepage_order) - 1;
945                         continue;
946                 }
947
948                 /*
949                  * Regardless of being on LRU, compound pages such as THP and
950                  * hugetlbfs are not to be compacted unless we are attempting
951                  * an allocation much larger than the huge page size (eg CMA).
952                  * We can potentially save a lot of iterations if we skip them
953                  * at once. The check is racy, but we can consider only valid
954                  * values and the only danger is skipping too much.
955                  */
956                 if (PageCompound(page) && !cc->alloc_contig) {
957                         const unsigned int order = compound_order(page);
958
959                         if (likely(order < MAX_ORDER))
960                                 low_pfn += (1UL << order) - 1;
961                         goto isolate_fail;
962                 }
963
964                 /*
965                  * Check may be lockless but that's ok as we recheck later.
966                  * It's possible to migrate LRU and non-lru movable pages.
967                  * Skip any other type of page
968                  */
969                 if (!PageLRU(page)) {
970                         /*
971                          * __PageMovable can return false positive so we need
972                          * to verify it under page_lock.
973                          */
974                         if (unlikely(__PageMovable(page)) &&
975                                         !PageIsolated(page)) {
976                                 if (locked) {
977                                         unlock_page_lruvec_irqrestore(locked, flags);
978                                         locked = NULL;
979                                 }
980
981                                 if (!isolate_movable_page(page, mode))
982                                         goto isolate_success;
983                         }
984
985                         goto isolate_fail;
986                 }
987
988                 /*
989                  * Migration will fail if an anonymous page is pinned in memory,
990                  * so avoid taking lru_lock and isolating it unnecessarily in an
991                  * admittedly racy check.
992                  */
993                 mapping = page_mapping(page);
994                 if (!mapping && page_count(page) > page_mapcount(page))
995                         goto isolate_fail;
996
997                 /*
998                  * Only allow to migrate anonymous pages in GFP_NOFS context
999                  * because those do not depend on fs locks.
1000                  */
1001                 if (!(cc->gfp_mask & __GFP_FS) && mapping)
1002                         goto isolate_fail;
1003
1004                 /*
1005                  * Be careful not to clear PageLRU until after we're
1006                  * sure the page is not being freed elsewhere -- the
1007                  * page release code relies on it.
1008                  */
1009                 if (unlikely(!get_page_unless_zero(page)))
1010                         goto isolate_fail;
1011
1012                 /* Only take pages on LRU: a check now makes later tests safe */
1013                 if (!PageLRU(page))
1014                         goto isolate_fail_put;
1015
1016                 /* Compaction might skip unevictable pages but CMA takes them */
1017                 if (!(mode & ISOLATE_UNEVICTABLE) && PageUnevictable(page))
1018                         goto isolate_fail_put;
1019
1020                 /*
1021                  * To minimise LRU disruption, the caller can indicate with
1022                  * ISOLATE_ASYNC_MIGRATE that it only wants to isolate pages
1023                  * it will be able to migrate without blocking - clean pages
1024                  * for the most part.  PageWriteback would require blocking.
1025                  */
1026                 if ((mode & ISOLATE_ASYNC_MIGRATE) && PageWriteback(page))
1027                         goto isolate_fail_put;
1028
1029                 if ((mode & ISOLATE_ASYNC_MIGRATE) && PageDirty(page)) {
1030                         bool migrate_dirty;
1031
1032                         /*
1033                          * Only pages without mappings or that have a
1034                          * ->migrate_folio callback are possible to migrate
1035                          * without blocking. However, we can be racing with
1036                          * truncation so it's necessary to lock the page
1037                          * to stabilise the mapping as truncation holds
1038                          * the page lock until after the page is removed
1039                          * from the page cache.
1040                          */
1041                         if (!trylock_page(page))
1042                                 goto isolate_fail_put;
1043
1044                         mapping = page_mapping(page);
1045                         migrate_dirty = !mapping ||
1046                                         mapping->a_ops->migrate_folio;
1047                         unlock_page(page);
1048                         if (!migrate_dirty)
1049                                 goto isolate_fail_put;
1050                 }
1051
1052                 /* Try isolate the page */
1053                 if (!TestClearPageLRU(page))
1054                         goto isolate_fail_put;
1055
1056                 lruvec = folio_lruvec(page_folio(page));
1057
1058                 /* If we already hold the lock, we can skip some rechecking */
1059                 if (lruvec != locked) {
1060                         if (locked)
1061                                 unlock_page_lruvec_irqrestore(locked, flags);
1062
1063                         compact_lock_irqsave(&lruvec->lru_lock, &flags, cc);
1064                         locked = lruvec;
1065
1066                         lruvec_memcg_debug(lruvec, page_folio(page));
1067
1068                         /* Try get exclusive access under lock */
1069                         if (!skip_updated) {
1070                                 skip_updated = true;
1071                                 if (test_and_set_skip(cc, page, low_pfn))
1072                                         goto isolate_abort;
1073                         }
1074
1075                         /*
1076                          * Page become compound since the non-locked check,
1077                          * and it's on LRU. It can only be a THP so the order
1078                          * is safe to read and it's 0 for tail pages.
1079                          */
1080                         if (unlikely(PageCompound(page) && !cc->alloc_contig)) {
1081                                 low_pfn += compound_nr(page) - 1;
1082                                 SetPageLRU(page);
1083                                 goto isolate_fail_put;
1084                         }
1085                 }
1086
1087                 /* The whole page is taken off the LRU; skip the tail pages. */
1088                 if (PageCompound(page))
1089                         low_pfn += compound_nr(page) - 1;
1090
1091                 /* Successfully isolated */
1092                 del_page_from_lru_list(page, lruvec);
1093                 mod_node_page_state(page_pgdat(page),
1094                                 NR_ISOLATED_ANON + page_is_file_lru(page),
1095                                 thp_nr_pages(page));
1096
1097 isolate_success:
1098                 list_add(&page->lru, &cc->migratepages);
1099 isolate_success_no_list:
1100                 cc->nr_migratepages += compound_nr(page);
1101                 nr_isolated += compound_nr(page);
1102
1103                 /*
1104                  * Avoid isolating too much unless this block is being
1105                  * rescanned (e.g. dirty/writeback pages, parallel allocation)
1106                  * or a lock is contended. For contention, isolate quickly to
1107                  * potentially remove one source of contention.
1108                  */
1109                 if (cc->nr_migratepages >= COMPACT_CLUSTER_MAX &&
1110                     !cc->rescan && !cc->contended) {
1111                         ++low_pfn;
1112                         break;
1113                 }
1114
1115                 continue;
1116
1117 isolate_fail_put:
1118                 /* Avoid potential deadlock in freeing page under lru_lock */
1119                 if (locked) {
1120                         unlock_page_lruvec_irqrestore(locked, flags);
1121                         locked = NULL;
1122                 }
1123                 put_page(page);
1124
1125 isolate_fail:
1126                 if (!skip_on_failure && ret != -ENOMEM)
1127                         continue;
1128
1129                 /*
1130                  * We have isolated some pages, but then failed. Release them
1131                  * instead of migrating, as we cannot form the cc->order buddy
1132                  * page anyway.
1133                  */
1134                 if (nr_isolated) {
1135                         if (locked) {
1136                                 unlock_page_lruvec_irqrestore(locked, flags);
1137                                 locked = NULL;
1138                         }
1139                         putback_movable_pages(&cc->migratepages);
1140                         cc->nr_migratepages = 0;
1141                         nr_isolated = 0;
1142                 }
1143
1144                 if (low_pfn < next_skip_pfn) {
1145                         low_pfn = next_skip_pfn - 1;
1146                         /*
1147                          * The check near the loop beginning would have updated
1148                          * next_skip_pfn too, but this is a bit simpler.
1149                          */
1150                         next_skip_pfn += 1UL << cc->order;
1151                 }
1152
1153                 if (ret == -ENOMEM)
1154                         break;
1155         }
1156
1157         /*
1158          * The PageBuddy() check could have potentially brought us outside
1159          * the range to be scanned.
1160          */
1161         if (unlikely(low_pfn > end_pfn))
1162                 low_pfn = end_pfn;
1163
1164         page = NULL;
1165
1166 isolate_abort:
1167         if (locked)
1168                 unlock_page_lruvec_irqrestore(locked, flags);
1169         if (page) {
1170                 SetPageLRU(page);
1171                 put_page(page);
1172         }
1173
1174         /*
1175          * Updated the cached scanner pfn once the pageblock has been scanned
1176          * Pages will either be migrated in which case there is no point
1177          * scanning in the near future or migration failed in which case the
1178          * failure reason may persist. The block is marked for skipping if
1179          * there were no pages isolated in the block or if the block is
1180          * rescanned twice in a row.
1181          */
1182         if (low_pfn == end_pfn && (!nr_isolated || cc->rescan)) {
1183                 if (valid_page && !skip_updated)
1184                         set_pageblock_skip(valid_page);
1185                 update_cached_migrate(cc, low_pfn);
1186         }
1187
1188         trace_mm_compaction_isolate_migratepages(start_pfn, low_pfn,
1189                                                 nr_scanned, nr_isolated);
1190
1191 fatal_pending:
1192         cc->total_migrate_scanned += nr_scanned;
1193         if (nr_isolated)
1194                 count_compact_events(COMPACTISOLATED, nr_isolated);
1195
1196         cc->migrate_pfn = low_pfn;
1197
1198         return ret;
1199 }
1200
1201 /**
1202  * isolate_migratepages_range() - isolate migrate-able pages in a PFN range
1203  * @cc:        Compaction control structure.
1204  * @start_pfn: The first PFN to start isolating.
1205  * @end_pfn:   The one-past-last PFN.
1206  *
1207  * Returns -EAGAIN when contented, -EINTR in case of a signal pending, -ENOMEM
1208  * in case we could not allocate a page, or 0.
1209  */
1210 int
1211 isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn,
1212                                                         unsigned long end_pfn)
1213 {
1214         unsigned long pfn, block_start_pfn, block_end_pfn;
1215         int ret = 0;
1216
1217         /* Scan block by block. First and last block may be incomplete */
1218         pfn = start_pfn;
1219         block_start_pfn = pageblock_start_pfn(pfn);
1220         if (block_start_pfn < cc->zone->zone_start_pfn)
1221                 block_start_pfn = cc->zone->zone_start_pfn;
1222         block_end_pfn = pageblock_end_pfn(pfn);
1223
1224         for (; pfn < end_pfn; pfn = block_end_pfn,
1225                                 block_start_pfn = block_end_pfn,
1226                                 block_end_pfn += pageblock_nr_pages) {
1227
1228                 block_end_pfn = min(block_end_pfn, end_pfn);
1229
1230                 if (!pageblock_pfn_to_page(block_start_pfn,
1231                                         block_end_pfn, cc->zone))
1232                         continue;
1233
1234                 ret = isolate_migratepages_block(cc, pfn, block_end_pfn,
1235                                                  ISOLATE_UNEVICTABLE);
1236
1237                 if (ret)
1238                         break;
1239
1240                 if (cc->nr_migratepages >= COMPACT_CLUSTER_MAX)
1241                         break;
1242         }
1243
1244         return ret;
1245 }
1246
1247 #endif /* CONFIG_COMPACTION || CONFIG_CMA */
1248 #ifdef CONFIG_COMPACTION
1249
1250 static bool suitable_migration_source(struct compact_control *cc,
1251                                                         struct page *page)
1252 {
1253         int block_mt;
1254
1255         if (pageblock_skip_persistent(page))
1256                 return false;
1257
1258         if ((cc->mode != MIGRATE_ASYNC) || !cc->direct_compaction)
1259                 return true;
1260
1261         block_mt = get_pageblock_migratetype(page);
1262
1263         if (cc->migratetype == MIGRATE_MOVABLE)
1264                 return is_migrate_movable(block_mt);
1265         else
1266                 return block_mt == cc->migratetype;
1267 }
1268
1269 /* Returns true if the page is within a block suitable for migration to */
1270 static bool suitable_migration_target(struct compact_control *cc,
1271                                                         struct page *page)
1272 {
1273         /* If the page is a large free page, then disallow migration */
1274         if (PageBuddy(page)) {
1275                 /*
1276                  * We are checking page_order without zone->lock taken. But
1277                  * the only small danger is that we skip a potentially suitable
1278                  * pageblock, so it's not worth to check order for valid range.
1279                  */
1280                 if (buddy_order_unsafe(page) >= pageblock_order)
1281                         return false;
1282         }
1283
1284         if (cc->ignore_block_suitable)
1285                 return true;
1286
1287         /* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
1288         if (is_migrate_movable(get_pageblock_migratetype(page)))
1289                 return true;
1290
1291         /* Otherwise skip the block */
1292         return false;
1293 }
1294
1295 static inline unsigned int
1296 freelist_scan_limit(struct compact_control *cc)
1297 {
1298         unsigned short shift = BITS_PER_LONG - 1;
1299
1300         return (COMPACT_CLUSTER_MAX >> min(shift, cc->fast_search_fail)) + 1;
1301 }
1302
1303 /*
1304  * Test whether the free scanner has reached the same or lower pageblock than
1305  * the migration scanner, and compaction should thus terminate.
1306  */
1307 static inline bool compact_scanners_met(struct compact_control *cc)
1308 {
1309         return (cc->free_pfn >> pageblock_order)
1310                 <= (cc->migrate_pfn >> pageblock_order);
1311 }
1312
1313 /*
1314  * Used when scanning for a suitable migration target which scans freelists
1315  * in reverse. Reorders the list such as the unscanned pages are scanned
1316  * first on the next iteration of the free scanner
1317  */
1318 static void
1319 move_freelist_head(struct list_head *freelist, struct page *freepage)
1320 {
1321         LIST_HEAD(sublist);
1322
1323         if (!list_is_last(freelist, &freepage->lru)) {
1324                 list_cut_before(&sublist, freelist, &freepage->lru);
1325                 list_splice_tail(&sublist, freelist);
1326         }
1327 }
1328
1329 /*
1330  * Similar to move_freelist_head except used by the migration scanner
1331  * when scanning forward. It's possible for these list operations to
1332  * move against each other if they search the free list exactly in
1333  * lockstep.
1334  */
1335 static void
1336 move_freelist_tail(struct list_head *freelist, struct page *freepage)
1337 {
1338         LIST_HEAD(sublist);
1339
1340         if (!list_is_first(freelist, &freepage->lru)) {
1341                 list_cut_position(&sublist, freelist, &freepage->lru);
1342                 list_splice_tail(&sublist, freelist);
1343         }
1344 }
1345
1346 static void
1347 fast_isolate_around(struct compact_control *cc, unsigned long pfn, unsigned long nr_isolated)
1348 {
1349         unsigned long start_pfn, end_pfn;
1350         struct page *page;
1351
1352         /* Do not search around if there are enough pages already */
1353         if (cc->nr_freepages >= cc->nr_migratepages)
1354                 return;
1355
1356         /* Minimise scanning during async compaction */
1357         if (cc->direct_compaction && cc->mode == MIGRATE_ASYNC)
1358                 return;
1359
1360         /* Pageblock boundaries */
1361         start_pfn = max(pageblock_start_pfn(pfn), cc->zone->zone_start_pfn);
1362         end_pfn = min(pageblock_end_pfn(pfn), zone_end_pfn(cc->zone));
1363
1364         page = pageblock_pfn_to_page(start_pfn, end_pfn, cc->zone);
1365         if (!page)
1366                 return;
1367
1368         /* Scan before */
1369         if (start_pfn != pfn) {
1370                 isolate_freepages_block(cc, &start_pfn, pfn, &cc->freepages, 1, false);
1371                 if (cc->nr_freepages >= cc->nr_migratepages)
1372                         return;
1373         }
1374
1375         /* Scan after */
1376         start_pfn = pfn + nr_isolated;
1377         if (start_pfn < end_pfn)
1378                 isolate_freepages_block(cc, &start_pfn, end_pfn, &cc->freepages, 1, false);
1379
1380         /* Skip this pageblock in the future as it's full or nearly full */
1381         if (cc->nr_freepages < cc->nr_migratepages)
1382                 set_pageblock_skip(page);
1383 }
1384
1385 /* Search orders in round-robin fashion */
1386 static int next_search_order(struct compact_control *cc, int order)
1387 {
1388         order--;
1389         if (order < 0)
1390                 order = cc->order - 1;
1391
1392         /* Search wrapped around? */
1393         if (order == cc->search_order) {
1394                 cc->search_order--;
1395                 if (cc->search_order < 0)
1396                         cc->search_order = cc->order - 1;
1397                 return -1;
1398         }
1399
1400         return order;
1401 }
1402
1403 static unsigned long
1404 fast_isolate_freepages(struct compact_control *cc)
1405 {
1406         unsigned int limit = max(1U, freelist_scan_limit(cc) >> 1);
1407         unsigned int nr_scanned = 0;
1408         unsigned long low_pfn, min_pfn, highest = 0;
1409         unsigned long nr_isolated = 0;
1410         unsigned long distance;
1411         struct page *page = NULL;
1412         bool scan_start = false;
1413         int order;
1414
1415         /* Full compaction passes in a negative order */
1416         if (cc->order <= 0)
1417                 return cc->free_pfn;
1418
1419         /*
1420          * If starting the scan, use a deeper search and use the highest
1421          * PFN found if a suitable one is not found.
1422          */
1423         if (cc->free_pfn >= cc->zone->compact_init_free_pfn) {
1424                 limit = pageblock_nr_pages >> 1;
1425                 scan_start = true;
1426         }
1427
1428         /*
1429          * Preferred point is in the top quarter of the scan space but take
1430          * a pfn from the top half if the search is problematic.
1431          */
1432         distance = (cc->free_pfn - cc->migrate_pfn);
1433         low_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 2));
1434         min_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 1));
1435
1436         if (WARN_ON_ONCE(min_pfn > low_pfn))
1437                 low_pfn = min_pfn;
1438
1439         /*
1440          * Search starts from the last successful isolation order or the next
1441          * order to search after a previous failure
1442          */
1443         cc->search_order = min_t(unsigned int, cc->order - 1, cc->search_order);
1444
1445         for (order = cc->search_order;
1446              !page && order >= 0;
1447              order = next_search_order(cc, order)) {
1448                 struct free_area *area = &cc->zone->free_area[order];
1449                 struct list_head *freelist;
1450                 struct page *freepage;
1451                 unsigned long flags;
1452                 unsigned int order_scanned = 0;
1453                 unsigned long high_pfn = 0;
1454
1455                 if (!area->nr_free)
1456                         continue;
1457
1458                 spin_lock_irqsave(&cc->zone->lock, flags);
1459                 freelist = &area->free_list[MIGRATE_MOVABLE];
1460                 list_for_each_entry_reverse(freepage, freelist, lru) {
1461                         unsigned long pfn;
1462
1463                         order_scanned++;
1464                         nr_scanned++;
1465                         pfn = page_to_pfn(freepage);
1466
1467                         if (pfn >= highest)
1468                                 highest = max(pageblock_start_pfn(pfn),
1469                                               cc->zone->zone_start_pfn);
1470
1471                         if (pfn >= low_pfn) {
1472                                 cc->fast_search_fail = 0;
1473                                 cc->search_order = order;
1474                                 page = freepage;
1475                                 break;
1476                         }
1477
1478                         if (pfn >= min_pfn && pfn > high_pfn) {
1479                                 high_pfn = pfn;
1480
1481                                 /* Shorten the scan if a candidate is found */
1482                                 limit >>= 1;
1483                         }
1484
1485                         if (order_scanned >= limit)
1486                                 break;
1487                 }
1488
1489                 /* Use a minimum pfn if a preferred one was not found */
1490                 if (!page && high_pfn) {
1491                         page = pfn_to_page(high_pfn);
1492
1493                         /* Update freepage for the list reorder below */
1494                         freepage = page;
1495                 }
1496
1497                 /* Reorder to so a future search skips recent pages */
1498                 move_freelist_head(freelist, freepage);
1499
1500                 /* Isolate the page if available */
1501                 if (page) {
1502                         if (__isolate_free_page(page, order)) {
1503                                 set_page_private(page, order);
1504                                 nr_isolated = 1 << order;
1505                                 cc->nr_freepages += nr_isolated;
1506                                 list_add_tail(&page->lru, &cc->freepages);
1507                                 count_compact_events(COMPACTISOLATED, nr_isolated);
1508                         } else {
1509                                 /* If isolation fails, abort the search */
1510                                 order = cc->search_order + 1;
1511                                 page = NULL;
1512                         }
1513                 }
1514
1515                 spin_unlock_irqrestore(&cc->zone->lock, flags);
1516
1517                 /*
1518                  * Smaller scan on next order so the total scan is related
1519                  * to freelist_scan_limit.
1520                  */
1521                 if (order_scanned >= limit)
1522                         limit = max(1U, limit >> 1);
1523         }
1524
1525         if (!page) {
1526                 cc->fast_search_fail++;
1527                 if (scan_start) {
1528                         /*
1529                          * Use the highest PFN found above min. If one was
1530                          * not found, be pessimistic for direct compaction
1531                          * and use the min mark.
1532                          */
1533                         if (highest >= min_pfn) {
1534                                 page = pfn_to_page(highest);
1535                                 cc->free_pfn = highest;
1536                         } else {
1537                                 if (cc->direct_compaction && pfn_valid(min_pfn)) {
1538                                         page = pageblock_pfn_to_page(min_pfn,
1539                                                 min(pageblock_end_pfn(min_pfn),
1540                                                     zone_end_pfn(cc->zone)),
1541                                                 cc->zone);
1542                                         cc->free_pfn = min_pfn;
1543                                 }
1544                         }
1545                 }
1546         }
1547
1548         if (highest && highest >= cc->zone->compact_cached_free_pfn) {
1549                 highest -= pageblock_nr_pages;
1550                 cc->zone->compact_cached_free_pfn = highest;
1551         }
1552
1553         cc->total_free_scanned += nr_scanned;
1554         if (!page)
1555                 return cc->free_pfn;
1556
1557         low_pfn = page_to_pfn(page);
1558         fast_isolate_around(cc, low_pfn, nr_isolated);
1559         return low_pfn;
1560 }
1561
1562 /*
1563  * Based on information in the current compact_control, find blocks
1564  * suitable for isolating free pages from and then isolate them.
1565  */
1566 static void isolate_freepages(struct compact_control *cc)
1567 {
1568         struct zone *zone = cc->zone;
1569         struct page *page;
1570         unsigned long block_start_pfn;  /* start of current pageblock */
1571         unsigned long isolate_start_pfn; /* exact pfn we start at */
1572         unsigned long block_end_pfn;    /* end of current pageblock */
1573         unsigned long low_pfn;       /* lowest pfn scanner is able to scan */
1574         struct list_head *freelist = &cc->freepages;
1575         unsigned int stride;
1576
1577         /* Try a small search of the free lists for a candidate */
1578         fast_isolate_freepages(cc);
1579         if (cc->nr_freepages)
1580                 goto splitmap;
1581
1582         /*
1583          * Initialise the free scanner. The starting point is where we last
1584          * successfully isolated from, zone-cached value, or the end of the
1585          * zone when isolating for the first time. For looping we also need
1586          * this pfn aligned down to the pageblock boundary, because we do
1587          * block_start_pfn -= pageblock_nr_pages in the for loop.
1588          * For ending point, take care when isolating in last pageblock of a
1589          * zone which ends in the middle of a pageblock.
1590          * The low boundary is the end of the pageblock the migration scanner
1591          * is using.
1592          */
1593         isolate_start_pfn = cc->free_pfn;
1594         block_start_pfn = pageblock_start_pfn(isolate_start_pfn);
1595         block_end_pfn = min(block_start_pfn + pageblock_nr_pages,
1596                                                 zone_end_pfn(zone));
1597         low_pfn = pageblock_end_pfn(cc->migrate_pfn);
1598         stride = cc->mode == MIGRATE_ASYNC ? COMPACT_CLUSTER_MAX : 1;
1599
1600         /*
1601          * Isolate free pages until enough are available to migrate the
1602          * pages on cc->migratepages. We stop searching if the migrate
1603          * and free page scanners meet or enough free pages are isolated.
1604          */
1605         for (; block_start_pfn >= low_pfn;
1606                                 block_end_pfn = block_start_pfn,
1607                                 block_start_pfn -= pageblock_nr_pages,
1608                                 isolate_start_pfn = block_start_pfn) {
1609                 unsigned long nr_isolated;
1610
1611                 /*
1612                  * This can iterate a massively long zone without finding any
1613                  * suitable migration targets, so periodically check resched.
1614                  */
1615                 if (!(block_start_pfn % (COMPACT_CLUSTER_MAX * pageblock_nr_pages)))
1616                         cond_resched();
1617
1618                 page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
1619                                                                         zone);
1620                 if (!page)
1621                         continue;
1622
1623                 /* Check the block is suitable for migration */
1624                 if (!suitable_migration_target(cc, page))
1625                         continue;
1626
1627                 /* If isolation recently failed, do not retry */
1628                 if (!isolation_suitable(cc, page))
1629                         continue;
1630
1631                 /* Found a block suitable for isolating free pages from. */
1632                 nr_isolated = isolate_freepages_block(cc, &isolate_start_pfn,
1633                                         block_end_pfn, freelist, stride, false);
1634
1635                 /* Update the skip hint if the full pageblock was scanned */
1636                 if (isolate_start_pfn == block_end_pfn)
1637                         update_pageblock_skip(cc, page, block_start_pfn);
1638
1639                 /* Are enough freepages isolated? */
1640                 if (cc->nr_freepages >= cc->nr_migratepages) {
1641                         if (isolate_start_pfn >= block_end_pfn) {
1642                                 /*
1643                                  * Restart at previous pageblock if more
1644                                  * freepages can be isolated next time.
1645                                  */
1646                                 isolate_start_pfn =
1647                                         block_start_pfn - pageblock_nr_pages;
1648                         }
1649                         break;
1650                 } else if (isolate_start_pfn < block_end_pfn) {
1651                         /*
1652                          * If isolation failed early, do not continue
1653                          * needlessly.
1654                          */
1655                         break;
1656                 }
1657
1658                 /* Adjust stride depending on isolation */
1659                 if (nr_isolated) {
1660                         stride = 1;
1661                         continue;
1662                 }
1663                 stride = min_t(unsigned int, COMPACT_CLUSTER_MAX, stride << 1);
1664         }
1665
1666         /*
1667          * Record where the free scanner will restart next time. Either we
1668          * broke from the loop and set isolate_start_pfn based on the last
1669          * call to isolate_freepages_block(), or we met the migration scanner
1670          * and the loop terminated due to isolate_start_pfn < low_pfn
1671          */
1672         cc->free_pfn = isolate_start_pfn;
1673
1674 splitmap:
1675         /* __isolate_free_page() does not map the pages */
1676         split_map_pages(freelist);
1677 }
1678
1679 /*
1680  * This is a migrate-callback that "allocates" freepages by taking pages
1681  * from the isolated freelists in the block we are migrating to.
1682  */
1683 static struct page *compaction_alloc(struct page *migratepage,
1684                                         unsigned long data)
1685 {
1686         struct compact_control *cc = (struct compact_control *)data;
1687         struct page *freepage;
1688
1689         if (list_empty(&cc->freepages)) {
1690                 isolate_freepages(cc);
1691
1692                 if (list_empty(&cc->freepages))
1693                         return NULL;
1694         }
1695
1696         freepage = list_entry(cc->freepages.next, struct page, lru);
1697         list_del(&freepage->lru);
1698         cc->nr_freepages--;
1699
1700         return freepage;
1701 }
1702
1703 /*
1704  * This is a migrate-callback that "frees" freepages back to the isolated
1705  * freelist.  All pages on the freelist are from the same zone, so there is no
1706  * special handling needed for NUMA.
1707  */
1708 static void compaction_free(struct page *page, unsigned long data)
1709 {
1710         struct compact_control *cc = (struct compact_control *)data;
1711
1712         list_add(&page->lru, &cc->freepages);
1713         cc->nr_freepages++;
1714 }
1715
1716 /* possible outcome of isolate_migratepages */
1717 typedef enum {
1718         ISOLATE_ABORT,          /* Abort compaction now */
1719         ISOLATE_NONE,           /* No pages isolated, continue scanning */
1720         ISOLATE_SUCCESS,        /* Pages isolated, migrate */
1721 } isolate_migrate_t;
1722
1723 /*
1724  * Allow userspace to control policy on scanning the unevictable LRU for
1725  * compactable pages.
1726  */
1727 #ifdef CONFIG_PREEMPT_RT
1728 int sysctl_compact_unevictable_allowed __read_mostly = 0;
1729 #else
1730 int sysctl_compact_unevictable_allowed __read_mostly = 1;
1731 #endif
1732
1733 static inline void
1734 update_fast_start_pfn(struct compact_control *cc, unsigned long pfn)
1735 {
1736         if (cc->fast_start_pfn == ULONG_MAX)
1737                 return;
1738
1739         if (!cc->fast_start_pfn)
1740                 cc->fast_start_pfn = pfn;
1741
1742         cc->fast_start_pfn = min(cc->fast_start_pfn, pfn);
1743 }
1744
1745 static inline unsigned long
1746 reinit_migrate_pfn(struct compact_control *cc)
1747 {
1748         if (!cc->fast_start_pfn || cc->fast_start_pfn == ULONG_MAX)
1749                 return cc->migrate_pfn;
1750
1751         cc->migrate_pfn = cc->fast_start_pfn;
1752         cc->fast_start_pfn = ULONG_MAX;
1753
1754         return cc->migrate_pfn;
1755 }
1756
1757 /*
1758  * Briefly search the free lists for a migration source that already has
1759  * some free pages to reduce the number of pages that need migration
1760  * before a pageblock is free.
1761  */
1762 static unsigned long fast_find_migrateblock(struct compact_control *cc)
1763 {
1764         unsigned int limit = freelist_scan_limit(cc);
1765         unsigned int nr_scanned = 0;
1766         unsigned long distance;
1767         unsigned long pfn = cc->migrate_pfn;
1768         unsigned long high_pfn;
1769         int order;
1770         bool found_block = false;
1771
1772         /* Skip hints are relied on to avoid repeats on the fast search */
1773         if (cc->ignore_skip_hint)
1774                 return pfn;
1775
1776         /*
1777          * If the migrate_pfn is not at the start of a zone or the start
1778          * of a pageblock then assume this is a continuation of a previous
1779          * scan restarted due to COMPACT_CLUSTER_MAX.
1780          */
1781         if (pfn != cc->zone->zone_start_pfn && pfn != pageblock_start_pfn(pfn))
1782                 return pfn;
1783
1784         /*
1785          * For smaller orders, just linearly scan as the number of pages
1786          * to migrate should be relatively small and does not necessarily
1787          * justify freeing up a large block for a small allocation.
1788          */
1789         if (cc->order <= PAGE_ALLOC_COSTLY_ORDER)
1790                 return pfn;
1791
1792         /*
1793          * Only allow kcompactd and direct requests for movable pages to
1794          * quickly clear out a MOVABLE pageblock for allocation. This
1795          * reduces the risk that a large movable pageblock is freed for
1796          * an unmovable/reclaimable small allocation.
1797          */
1798         if (cc->direct_compaction && cc->migratetype != MIGRATE_MOVABLE)
1799                 return pfn;
1800
1801         /*
1802          * When starting the migration scanner, pick any pageblock within the
1803          * first half of the search space. Otherwise try and pick a pageblock
1804          * within the first eighth to reduce the chances that a migration
1805          * target later becomes a source.
1806          */
1807         distance = (cc->free_pfn - cc->migrate_pfn) >> 1;
1808         if (cc->migrate_pfn != cc->zone->zone_start_pfn)
1809                 distance >>= 2;
1810         high_pfn = pageblock_start_pfn(cc->migrate_pfn + distance);
1811
1812         for (order = cc->order - 1;
1813              order >= PAGE_ALLOC_COSTLY_ORDER && !found_block && nr_scanned < limit;
1814              order--) {
1815                 struct free_area *area = &cc->zone->free_area[order];
1816                 struct list_head *freelist;
1817                 unsigned long flags;
1818                 struct page *freepage;
1819
1820                 if (!area->nr_free)
1821                         continue;
1822
1823                 spin_lock_irqsave(&cc->zone->lock, flags);
1824                 freelist = &area->free_list[MIGRATE_MOVABLE];
1825                 list_for_each_entry(freepage, freelist, lru) {
1826                         unsigned long free_pfn;
1827
1828                         if (nr_scanned++ >= limit) {
1829                                 move_freelist_tail(freelist, freepage);
1830                                 break;
1831                         }
1832
1833                         free_pfn = page_to_pfn(freepage);
1834                         if (free_pfn < high_pfn) {
1835                                 /*
1836                                  * Avoid if skipped recently. Ideally it would
1837                                  * move to the tail but even safe iteration of
1838                                  * the list assumes an entry is deleted, not
1839                                  * reordered.
1840                                  */
1841                                 if (get_pageblock_skip(freepage))
1842                                         continue;
1843
1844                                 /* Reorder to so a future search skips recent pages */
1845                                 move_freelist_tail(freelist, freepage);
1846
1847                                 update_fast_start_pfn(cc, free_pfn);
1848                                 pfn = pageblock_start_pfn(free_pfn);
1849                                 if (pfn < cc->zone->zone_start_pfn)
1850                                         pfn = cc->zone->zone_start_pfn;
1851                                 cc->fast_search_fail = 0;
1852                                 found_block = true;
1853                                 set_pageblock_skip(freepage);
1854                                 break;
1855                         }
1856                 }
1857                 spin_unlock_irqrestore(&cc->zone->lock, flags);
1858         }
1859
1860         cc->total_migrate_scanned += nr_scanned;
1861
1862         /*
1863          * If fast scanning failed then use a cached entry for a page block
1864          * that had free pages as the basis for starting a linear scan.
1865          */
1866         if (!found_block) {
1867                 cc->fast_search_fail++;
1868                 pfn = reinit_migrate_pfn(cc);
1869         }
1870         return pfn;
1871 }
1872
1873 /*
1874  * Isolate all pages that can be migrated from the first suitable block,
1875  * starting at the block pointed to by the migrate scanner pfn within
1876  * compact_control.
1877  */
1878 static isolate_migrate_t isolate_migratepages(struct compact_control *cc)
1879 {
1880         unsigned long block_start_pfn;
1881         unsigned long block_end_pfn;
1882         unsigned long low_pfn;
1883         struct page *page;
1884         const isolate_mode_t isolate_mode =
1885                 (sysctl_compact_unevictable_allowed ? ISOLATE_UNEVICTABLE : 0) |
1886                 (cc->mode != MIGRATE_SYNC ? ISOLATE_ASYNC_MIGRATE : 0);
1887         bool fast_find_block;
1888
1889         /*
1890          * Start at where we last stopped, or beginning of the zone as
1891          * initialized by compact_zone(). The first failure will use
1892          * the lowest PFN as the starting point for linear scanning.
1893          */
1894         low_pfn = fast_find_migrateblock(cc);
1895         block_start_pfn = pageblock_start_pfn(low_pfn);
1896         if (block_start_pfn < cc->zone->zone_start_pfn)
1897                 block_start_pfn = cc->zone->zone_start_pfn;
1898
1899         /*
1900          * fast_find_migrateblock marks a pageblock skipped so to avoid
1901          * the isolation_suitable check below, check whether the fast
1902          * search was successful.
1903          */
1904         fast_find_block = low_pfn != cc->migrate_pfn && !cc->fast_search_fail;
1905
1906         /* Only scan within a pageblock boundary */
1907         block_end_pfn = pageblock_end_pfn(low_pfn);
1908
1909         /*
1910          * Iterate over whole pageblocks until we find the first suitable.
1911          * Do not cross the free scanner.
1912          */
1913         for (; block_end_pfn <= cc->free_pfn;
1914                         fast_find_block = false,
1915                         cc->migrate_pfn = low_pfn = block_end_pfn,
1916                         block_start_pfn = block_end_pfn,
1917                         block_end_pfn += pageblock_nr_pages) {
1918
1919                 /*
1920                  * This can potentially iterate a massively long zone with
1921                  * many pageblocks unsuitable, so periodically check if we
1922                  * need to schedule.
1923                  */
1924                 if (!(low_pfn % (COMPACT_CLUSTER_MAX * pageblock_nr_pages)))
1925                         cond_resched();
1926
1927                 page = pageblock_pfn_to_page(block_start_pfn,
1928                                                 block_end_pfn, cc->zone);
1929                 if (!page)
1930                         continue;
1931
1932                 /*
1933                  * If isolation recently failed, do not retry. Only check the
1934                  * pageblock once. COMPACT_CLUSTER_MAX causes a pageblock
1935                  * to be visited multiple times. Assume skip was checked
1936                  * before making it "skip" so other compaction instances do
1937                  * not scan the same block.
1938                  */
1939                 if (IS_ALIGNED(low_pfn, pageblock_nr_pages) &&
1940                     !fast_find_block && !isolation_suitable(cc, page))
1941                         continue;
1942
1943                 /*
1944                  * For async direct compaction, only scan the pageblocks of the
1945                  * same migratetype without huge pages. Async direct compaction
1946                  * is optimistic to see if the minimum amount of work satisfies
1947                  * the allocation. The cached PFN is updated as it's possible
1948                  * that all remaining blocks between source and target are
1949                  * unsuitable and the compaction scanners fail to meet.
1950                  */
1951                 if (!suitable_migration_source(cc, page)) {
1952                         update_cached_migrate(cc, block_end_pfn);
1953                         continue;
1954                 }
1955
1956                 /* Perform the isolation */
1957                 if (isolate_migratepages_block(cc, low_pfn, block_end_pfn,
1958                                                 isolate_mode))
1959                         return ISOLATE_ABORT;
1960
1961                 /*
1962                  * Either we isolated something and proceed with migration. Or
1963                  * we failed and compact_zone should decide if we should
1964                  * continue or not.
1965                  */
1966                 break;
1967         }
1968
1969         return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE;
1970 }
1971
1972 /*
1973  * order == -1 is expected when compacting via
1974  * /proc/sys/vm/compact_memory
1975  */
1976 static inline bool is_via_compact_memory(int order)
1977 {
1978         return order == -1;
1979 }
1980
1981 static bool kswapd_is_running(pg_data_t *pgdat)
1982 {
1983         return pgdat->kswapd && task_is_running(pgdat->kswapd);
1984 }
1985
1986 /*
1987  * A zone's fragmentation score is the external fragmentation wrt to the
1988  * COMPACTION_HPAGE_ORDER. It returns a value in the range [0, 100].
1989  */
1990 static unsigned int fragmentation_score_zone(struct zone *zone)
1991 {
1992         return extfrag_for_order(zone, COMPACTION_HPAGE_ORDER);
1993 }
1994
1995 /*
1996  * A weighted zone's fragmentation score is the external fragmentation
1997  * wrt to the COMPACTION_HPAGE_ORDER scaled by the zone's size. It
1998  * returns a value in the range [0, 100].
1999  *
2000  * The scaling factor ensures that proactive compaction focuses on larger
2001  * zones like ZONE_NORMAL, rather than smaller, specialized zones like
2002  * ZONE_DMA32. For smaller zones, the score value remains close to zero,
2003  * and thus never exceeds the high threshold for proactive compaction.
2004  */
2005 static unsigned int fragmentation_score_zone_weighted(struct zone *zone)
2006 {
2007         unsigned long score;
2008
2009         score = zone->present_pages * fragmentation_score_zone(zone);
2010         return div64_ul(score, zone->zone_pgdat->node_present_pages + 1);
2011 }
2012
2013 /*
2014  * The per-node proactive (background) compaction process is started by its
2015  * corresponding kcompactd thread when the node's fragmentation score
2016  * exceeds the high threshold. The compaction process remains active till
2017  * the node's score falls below the low threshold, or one of the back-off
2018  * conditions is met.
2019  */
2020 static unsigned int fragmentation_score_node(pg_data_t *pgdat)
2021 {
2022         unsigned int score = 0;
2023         int zoneid;
2024
2025         for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
2026                 struct zone *zone;
2027
2028                 zone = &pgdat->node_zones[zoneid];
2029                 score += fragmentation_score_zone_weighted(zone);
2030         }
2031
2032         return score;
2033 }
2034
2035 static unsigned int fragmentation_score_wmark(pg_data_t *pgdat, bool low)
2036 {
2037         unsigned int wmark_low;
2038
2039         /*
2040          * Cap the low watermark to avoid excessive compaction
2041          * activity in case a user sets the proactiveness tunable
2042          * close to 100 (maximum).
2043          */
2044         wmark_low = max(100U - sysctl_compaction_proactiveness, 5U);
2045         return low ? wmark_low : min(wmark_low + 10, 100U);
2046 }
2047
2048 static bool should_proactive_compact_node(pg_data_t *pgdat)
2049 {
2050         int wmark_high;
2051
2052         if (!sysctl_compaction_proactiveness || kswapd_is_running(pgdat))
2053                 return false;
2054
2055         wmark_high = fragmentation_score_wmark(pgdat, false);
2056         return fragmentation_score_node(pgdat) > wmark_high;
2057 }
2058
2059 static enum compact_result __compact_finished(struct compact_control *cc)
2060 {
2061         unsigned int order;
2062         const int migratetype = cc->migratetype;
2063         int ret;
2064
2065         /* Compaction run completes if the migrate and free scanner meet */
2066         if (compact_scanners_met(cc)) {
2067                 /* Let the next compaction start anew. */
2068                 reset_cached_positions(cc->zone);
2069
2070                 /*
2071                  * Mark that the PG_migrate_skip information should be cleared
2072                  * by kswapd when it goes to sleep. kcompactd does not set the
2073                  * flag itself as the decision to be clear should be directly
2074                  * based on an allocation request.
2075                  */
2076                 if (cc->direct_compaction)
2077                         cc->zone->compact_blockskip_flush = true;
2078
2079                 if (cc->whole_zone)
2080                         return COMPACT_COMPLETE;
2081                 else
2082                         return COMPACT_PARTIAL_SKIPPED;
2083         }
2084
2085         if (cc->proactive_compaction) {
2086                 int score, wmark_low;
2087                 pg_data_t *pgdat;
2088
2089                 pgdat = cc->zone->zone_pgdat;
2090                 if (kswapd_is_running(pgdat))
2091                         return COMPACT_PARTIAL_SKIPPED;
2092
2093                 score = fragmentation_score_zone(cc->zone);
2094                 wmark_low = fragmentation_score_wmark(pgdat, true);
2095
2096                 if (score > wmark_low)
2097                         ret = COMPACT_CONTINUE;
2098                 else
2099                         ret = COMPACT_SUCCESS;
2100
2101                 goto out;
2102         }
2103
2104         if (is_via_compact_memory(cc->order))
2105                 return COMPACT_CONTINUE;
2106
2107         /*
2108          * Always finish scanning a pageblock to reduce the possibility of
2109          * fallbacks in the future. This is particularly important when
2110          * migration source is unmovable/reclaimable but it's not worth
2111          * special casing.
2112          */
2113         if (!IS_ALIGNED(cc->migrate_pfn, pageblock_nr_pages))
2114                 return COMPACT_CONTINUE;
2115
2116         /* Direct compactor: Is a suitable page free? */
2117         ret = COMPACT_NO_SUITABLE_PAGE;
2118         for (order = cc->order; order < MAX_ORDER; order++) {
2119                 struct free_area *area = &cc->zone->free_area[order];
2120                 bool can_steal;
2121
2122                 /* Job done if page is free of the right migratetype */
2123                 if (!free_area_empty(area, migratetype))
2124                         return COMPACT_SUCCESS;
2125
2126 #ifdef CONFIG_CMA
2127                 /* MIGRATE_MOVABLE can fallback on MIGRATE_CMA */
2128                 if (migratetype == MIGRATE_MOVABLE &&
2129                         !free_area_empty(area, MIGRATE_CMA))
2130                         return COMPACT_SUCCESS;
2131 #endif
2132                 /*
2133                  * Job done if allocation would steal freepages from
2134                  * other migratetype buddy lists.
2135                  */
2136                 if (find_suitable_fallback(area, order, migratetype,
2137                                                 true, &can_steal) != -1)
2138                         /*
2139                          * Movable pages are OK in any pageblock. If we are
2140                          * stealing for a non-movable allocation, make sure
2141                          * we finish compacting the current pageblock first
2142                          * (which is assured by the above migrate_pfn align
2143                          * check) so it is as free as possible and we won't
2144                          * have to steal another one soon.
2145                          */
2146                         return COMPACT_SUCCESS;
2147         }
2148
2149 out:
2150         if (cc->contended || fatal_signal_pending(current))
2151                 ret = COMPACT_CONTENDED;
2152
2153         return ret;
2154 }
2155
2156 static enum compact_result compact_finished(struct compact_control *cc)
2157 {
2158         int ret;
2159
2160         ret = __compact_finished(cc);
2161         trace_mm_compaction_finished(cc->zone, cc->order, ret);
2162         if (ret == COMPACT_NO_SUITABLE_PAGE)
2163                 ret = COMPACT_CONTINUE;
2164
2165         return ret;
2166 }
2167
2168 static enum compact_result __compaction_suitable(struct zone *zone, int order,
2169                                         unsigned int alloc_flags,
2170                                         int highest_zoneidx,
2171                                         unsigned long wmark_target)
2172 {
2173         unsigned long watermark;
2174
2175         if (is_via_compact_memory(order))
2176                 return COMPACT_CONTINUE;
2177
2178         watermark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
2179         /*
2180          * If watermarks for high-order allocation are already met, there
2181          * should be no need for compaction at all.
2182          */
2183         if (zone_watermark_ok(zone, order, watermark, highest_zoneidx,
2184                                                                 alloc_flags))
2185                 return COMPACT_SUCCESS;
2186
2187         /*
2188          * Watermarks for order-0 must be met for compaction to be able to
2189          * isolate free pages for migration targets. This means that the
2190          * watermark and alloc_flags have to match, or be more pessimistic than
2191          * the check in __isolate_free_page(). We don't use the direct
2192          * compactor's alloc_flags, as they are not relevant for freepage
2193          * isolation. We however do use the direct compactor's highest_zoneidx
2194          * to skip over zones where lowmem reserves would prevent allocation
2195          * even if compaction succeeds.
2196          * For costly orders, we require low watermark instead of min for
2197          * compaction to proceed to increase its chances.
2198          * ALLOC_CMA is used, as pages in CMA pageblocks are considered
2199          * suitable migration targets
2200          */
2201         watermark = (order > PAGE_ALLOC_COSTLY_ORDER) ?
2202                                 low_wmark_pages(zone) : min_wmark_pages(zone);
2203         watermark += compact_gap(order);
2204         if (!__zone_watermark_ok(zone, 0, watermark, highest_zoneidx,
2205                                                 ALLOC_CMA, wmark_target))
2206                 return COMPACT_SKIPPED;
2207
2208         return COMPACT_CONTINUE;
2209 }
2210
2211 /*
2212  * compaction_suitable: Is this suitable to run compaction on this zone now?
2213  * Returns
2214  *   COMPACT_SKIPPED  - If there are too few free pages for compaction
2215  *   COMPACT_SUCCESS  - If the allocation would succeed without compaction
2216  *   COMPACT_CONTINUE - If compaction should run now
2217  */
2218 enum compact_result compaction_suitable(struct zone *zone, int order,
2219                                         unsigned int alloc_flags,
2220                                         int highest_zoneidx)
2221 {
2222         enum compact_result ret;
2223         int fragindex;
2224
2225         ret = __compaction_suitable(zone, order, alloc_flags, highest_zoneidx,
2226                                     zone_page_state(zone, NR_FREE_PAGES));
2227         /*
2228          * fragmentation index determines if allocation failures are due to
2229          * low memory or external fragmentation
2230          *
2231          * index of -1000 would imply allocations might succeed depending on
2232          * watermarks, but we already failed the high-order watermark check
2233          * index towards 0 implies failure is due to lack of memory
2234          * index towards 1000 implies failure is due to fragmentation
2235          *
2236          * Only compact if a failure would be due to fragmentation. Also
2237          * ignore fragindex for non-costly orders where the alternative to
2238          * a successful reclaim/compaction is OOM. Fragindex and the
2239          * vm.extfrag_threshold sysctl is meant as a heuristic to prevent
2240          * excessive compaction for costly orders, but it should not be at the
2241          * expense of system stability.
2242          */
2243         if (ret == COMPACT_CONTINUE && (order > PAGE_ALLOC_COSTLY_ORDER)) {
2244                 fragindex = fragmentation_index(zone, order);
2245                 if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold)
2246                         ret = COMPACT_NOT_SUITABLE_ZONE;
2247         }
2248
2249         trace_mm_compaction_suitable(zone, order, ret);
2250         if (ret == COMPACT_NOT_SUITABLE_ZONE)
2251                 ret = COMPACT_SKIPPED;
2252
2253         return ret;
2254 }
2255
2256 bool compaction_zonelist_suitable(struct alloc_context *ac, int order,
2257                 int alloc_flags)
2258 {
2259         struct zone *zone;
2260         struct zoneref *z;
2261
2262         /*
2263          * Make sure at least one zone would pass __compaction_suitable if we continue
2264          * retrying the reclaim.
2265          */
2266         for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2267                                 ac->highest_zoneidx, ac->nodemask) {
2268                 unsigned long available;
2269                 enum compact_result compact_result;
2270
2271                 /*
2272                  * Do not consider all the reclaimable memory because we do not
2273                  * want to trash just for a single high order allocation which
2274                  * is even not guaranteed to appear even if __compaction_suitable
2275                  * is happy about the watermark check.
2276                  */
2277                 available = zone_reclaimable_pages(zone) / order;
2278                 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
2279                 compact_result = __compaction_suitable(zone, order, alloc_flags,
2280                                 ac->highest_zoneidx, available);
2281                 if (compact_result == COMPACT_CONTINUE)
2282                         return true;
2283         }
2284
2285         return false;
2286 }
2287
2288 static enum compact_result
2289 compact_zone(struct compact_control *cc, struct capture_control *capc)
2290 {
2291         enum compact_result ret;
2292         unsigned long start_pfn = cc->zone->zone_start_pfn;
2293         unsigned long end_pfn = zone_end_pfn(cc->zone);
2294         unsigned long last_migrated_pfn;
2295         const bool sync = cc->mode != MIGRATE_ASYNC;
2296         bool update_cached;
2297         unsigned int nr_succeeded = 0;
2298
2299         /*
2300          * These counters track activities during zone compaction.  Initialize
2301          * them before compacting a new zone.
2302          */
2303         cc->total_migrate_scanned = 0;
2304         cc->total_free_scanned = 0;
2305         cc->nr_migratepages = 0;
2306         cc->nr_freepages = 0;
2307         INIT_LIST_HEAD(&cc->freepages);
2308         INIT_LIST_HEAD(&cc->migratepages);
2309
2310         cc->migratetype = gfp_migratetype(cc->gfp_mask);
2311         ret = compaction_suitable(cc->zone, cc->order, cc->alloc_flags,
2312                                                         cc->highest_zoneidx);
2313         /* Compaction is likely to fail */
2314         if (ret == COMPACT_SUCCESS || ret == COMPACT_SKIPPED)
2315                 return ret;
2316
2317         /* huh, compaction_suitable is returning something unexpected */
2318         VM_BUG_ON(ret != COMPACT_CONTINUE);
2319
2320         /*
2321          * Clear pageblock skip if there were failures recently and compaction
2322          * is about to be retried after being deferred.
2323          */
2324         if (compaction_restarting(cc->zone, cc->order))
2325                 __reset_isolation_suitable(cc->zone);
2326
2327         /*
2328          * Setup to move all movable pages to the end of the zone. Used cached
2329          * information on where the scanners should start (unless we explicitly
2330          * want to compact the whole zone), but check that it is initialised
2331          * by ensuring the values are within zone boundaries.
2332          */
2333         cc->fast_start_pfn = 0;
2334         if (cc->whole_zone) {
2335                 cc->migrate_pfn = start_pfn;
2336                 cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
2337         } else {
2338                 cc->migrate_pfn = cc->zone->compact_cached_migrate_pfn[sync];
2339                 cc->free_pfn = cc->zone->compact_cached_free_pfn;
2340                 if (cc->free_pfn < start_pfn || cc->free_pfn >= end_pfn) {
2341                         cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
2342                         cc->zone->compact_cached_free_pfn = cc->free_pfn;
2343                 }
2344                 if (cc->migrate_pfn < start_pfn || cc->migrate_pfn >= end_pfn) {
2345                         cc->migrate_pfn = start_pfn;
2346                         cc->zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn;
2347                         cc->zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn;
2348                 }
2349
2350                 if (cc->migrate_pfn <= cc->zone->compact_init_migrate_pfn)
2351                         cc->whole_zone = true;
2352         }
2353
2354         last_migrated_pfn = 0;
2355
2356         /*
2357          * Migrate has separate cached PFNs for ASYNC and SYNC* migration on
2358          * the basis that some migrations will fail in ASYNC mode. However,
2359          * if the cached PFNs match and pageblocks are skipped due to having
2360          * no isolation candidates, then the sync state does not matter.
2361          * Until a pageblock with isolation candidates is found, keep the
2362          * cached PFNs in sync to avoid revisiting the same blocks.
2363          */
2364         update_cached = !sync &&
2365                 cc->zone->compact_cached_migrate_pfn[0] == cc->zone->compact_cached_migrate_pfn[1];
2366
2367         trace_mm_compaction_begin(cc, start_pfn, end_pfn, sync);
2368
2369         /* lru_add_drain_all could be expensive with involving other CPUs */
2370         lru_add_drain();
2371
2372         while ((ret = compact_finished(cc)) == COMPACT_CONTINUE) {
2373                 int err;
2374                 unsigned long iteration_start_pfn = cc->migrate_pfn;
2375
2376                 /*
2377                  * Avoid multiple rescans which can happen if a page cannot be
2378                  * isolated (dirty/writeback in async mode) or if the migrated
2379                  * pages are being allocated before the pageblock is cleared.
2380                  * The first rescan will capture the entire pageblock for
2381                  * migration. If it fails, it'll be marked skip and scanning
2382                  * will proceed as normal.
2383                  */
2384                 cc->rescan = false;
2385                 if (pageblock_start_pfn(last_migrated_pfn) ==
2386                     pageblock_start_pfn(iteration_start_pfn)) {
2387                         cc->rescan = true;
2388                 }
2389
2390                 switch (isolate_migratepages(cc)) {
2391                 case ISOLATE_ABORT:
2392                         ret = COMPACT_CONTENDED;
2393                         putback_movable_pages(&cc->migratepages);
2394                         cc->nr_migratepages = 0;
2395                         goto out;
2396                 case ISOLATE_NONE:
2397                         if (update_cached) {
2398                                 cc->zone->compact_cached_migrate_pfn[1] =
2399                                         cc->zone->compact_cached_migrate_pfn[0];
2400                         }
2401
2402                         /*
2403                          * We haven't isolated and migrated anything, but
2404                          * there might still be unflushed migrations from
2405                          * previous cc->order aligned block.
2406                          */
2407                         goto check_drain;
2408                 case ISOLATE_SUCCESS:
2409                         update_cached = false;
2410                         last_migrated_pfn = iteration_start_pfn;
2411                 }
2412
2413                 err = migrate_pages(&cc->migratepages, compaction_alloc,
2414                                 compaction_free, (unsigned long)cc, cc->mode,
2415                                 MR_COMPACTION, &nr_succeeded);
2416
2417                 trace_mm_compaction_migratepages(cc, nr_succeeded);
2418
2419                 /* All pages were either migrated or will be released */
2420                 cc->nr_migratepages = 0;
2421                 if (err) {
2422                         putback_movable_pages(&cc->migratepages);
2423                         /*
2424                          * migrate_pages() may return -ENOMEM when scanners meet
2425                          * and we want compact_finished() to detect it
2426                          */
2427                         if (err == -ENOMEM && !compact_scanners_met(cc)) {
2428                                 ret = COMPACT_CONTENDED;
2429                                 goto out;
2430                         }
2431                         /*
2432                          * We failed to migrate at least one page in the current
2433                          * order-aligned block, so skip the rest of it.
2434                          */
2435                         if (cc->direct_compaction &&
2436                                                 (cc->mode == MIGRATE_ASYNC)) {
2437                                 cc->migrate_pfn = block_end_pfn(
2438                                                 cc->migrate_pfn - 1, cc->order);
2439                                 /* Draining pcplists is useless in this case */
2440                                 last_migrated_pfn = 0;
2441                         }
2442                 }
2443
2444 check_drain:
2445                 /*
2446                  * Has the migration scanner moved away from the previous
2447                  * cc->order aligned block where we migrated from? If yes,
2448                  * flush the pages that were freed, so that they can merge and
2449                  * compact_finished() can detect immediately if allocation
2450                  * would succeed.
2451                  */
2452                 if (cc->order > 0 && last_migrated_pfn) {
2453                         unsigned long current_block_start =
2454                                 block_start_pfn(cc->migrate_pfn, cc->order);
2455
2456                         if (last_migrated_pfn < current_block_start) {
2457                                 lru_add_drain_cpu_zone(cc->zone);
2458                                 /* No more flushing until we migrate again */
2459                                 last_migrated_pfn = 0;
2460                         }
2461                 }
2462
2463                 /* Stop if a page has been captured */
2464                 if (capc && capc->page) {
2465                         ret = COMPACT_SUCCESS;
2466                         break;
2467                 }
2468         }
2469
2470 out:
2471         /*
2472          * Release free pages and update where the free scanner should restart,
2473          * so we don't leave any returned pages behind in the next attempt.
2474          */
2475         if (cc->nr_freepages > 0) {
2476                 unsigned long free_pfn = release_freepages(&cc->freepages);
2477
2478                 cc->nr_freepages = 0;
2479                 VM_BUG_ON(free_pfn == 0);
2480                 /* The cached pfn is always the first in a pageblock */
2481                 free_pfn = pageblock_start_pfn(free_pfn);
2482                 /*
2483                  * Only go back, not forward. The cached pfn might have been
2484                  * already reset to zone end in compact_finished()
2485                  */
2486                 if (free_pfn > cc->zone->compact_cached_free_pfn)
2487                         cc->zone->compact_cached_free_pfn = free_pfn;
2488         }
2489
2490         count_compact_events(COMPACTMIGRATE_SCANNED, cc->total_migrate_scanned);
2491         count_compact_events(COMPACTFREE_SCANNED, cc->total_free_scanned);
2492
2493         trace_mm_compaction_end(cc, start_pfn, end_pfn, sync, ret);
2494
2495         return ret;
2496 }
2497
2498 static enum compact_result compact_zone_order(struct zone *zone, int order,
2499                 gfp_t gfp_mask, enum compact_priority prio,
2500                 unsigned int alloc_flags, int highest_zoneidx,
2501                 struct page **capture)
2502 {
2503         enum compact_result ret;
2504         struct compact_control cc = {
2505                 .order = order,
2506                 .search_order = order,
2507                 .gfp_mask = gfp_mask,
2508                 .zone = zone,
2509                 .mode = (prio == COMPACT_PRIO_ASYNC) ?
2510                                         MIGRATE_ASYNC : MIGRATE_SYNC_LIGHT,
2511                 .alloc_flags = alloc_flags,
2512                 .highest_zoneidx = highest_zoneidx,
2513                 .direct_compaction = true,
2514                 .whole_zone = (prio == MIN_COMPACT_PRIORITY),
2515                 .ignore_skip_hint = (prio == MIN_COMPACT_PRIORITY),
2516                 .ignore_block_suitable = (prio == MIN_COMPACT_PRIORITY)
2517         };
2518         struct capture_control capc = {
2519                 .cc = &cc,
2520                 .page = NULL,
2521         };
2522
2523         /*
2524          * Make sure the structs are really initialized before we expose the
2525          * capture control, in case we are interrupted and the interrupt handler
2526          * frees a page.
2527          */
2528         barrier();
2529         WRITE_ONCE(current->capture_control, &capc);
2530
2531         ret = compact_zone(&cc, &capc);
2532
2533         VM_BUG_ON(!list_empty(&cc.freepages));
2534         VM_BUG_ON(!list_empty(&cc.migratepages));
2535
2536         /*
2537          * Make sure we hide capture control first before we read the captured
2538          * page pointer, otherwise an interrupt could free and capture a page
2539          * and we would leak it.
2540          */
2541         WRITE_ONCE(current->capture_control, NULL);
2542         *capture = READ_ONCE(capc.page);
2543         /*
2544          * Technically, it is also possible that compaction is skipped but
2545          * the page is still captured out of luck(IRQ came and freed the page).
2546          * Returning COMPACT_SUCCESS in such cases helps in properly accounting
2547          * the COMPACT[STALL|FAIL] when compaction is skipped.
2548          */
2549         if (*capture)
2550                 ret = COMPACT_SUCCESS;
2551
2552         return ret;
2553 }
2554
2555 int sysctl_extfrag_threshold = 500;
2556
2557 /**
2558  * try_to_compact_pages - Direct compact to satisfy a high-order allocation
2559  * @gfp_mask: The GFP mask of the current allocation
2560  * @order: The order of the current allocation
2561  * @alloc_flags: The allocation flags of the current allocation
2562  * @ac: The context of current allocation
2563  * @prio: Determines how hard direct compaction should try to succeed
2564  * @capture: Pointer to free page created by compaction will be stored here
2565  *
2566  * This is the main entry point for direct page compaction.
2567  */
2568 enum compact_result try_to_compact_pages(gfp_t gfp_mask, unsigned int order,
2569                 unsigned int alloc_flags, const struct alloc_context *ac,
2570                 enum compact_priority prio, struct page **capture)
2571 {
2572         int may_perform_io = (__force int)(gfp_mask & __GFP_IO);
2573         struct zoneref *z;
2574         struct zone *zone;
2575         enum compact_result rc = COMPACT_SKIPPED;
2576
2577         /*
2578          * Check if the GFP flags allow compaction - GFP_NOIO is really
2579          * tricky context because the migration might require IO
2580          */
2581         if (!may_perform_io)
2582                 return COMPACT_SKIPPED;
2583
2584         trace_mm_compaction_try_to_compact_pages(order, gfp_mask, prio);
2585
2586         /* Compact each zone in the list */
2587         for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2588                                         ac->highest_zoneidx, ac->nodemask) {
2589                 enum compact_result status;
2590
2591                 if (prio > MIN_COMPACT_PRIORITY
2592                                         && compaction_deferred(zone, order)) {
2593                         rc = max_t(enum compact_result, COMPACT_DEFERRED, rc);
2594                         continue;
2595                 }
2596
2597                 status = compact_zone_order(zone, order, gfp_mask, prio,
2598                                 alloc_flags, ac->highest_zoneidx, capture);
2599                 rc = max(status, rc);
2600
2601                 /* The allocation should succeed, stop compacting */
2602                 if (status == COMPACT_SUCCESS) {
2603                         /*
2604                          * We think the allocation will succeed in this zone,
2605                          * but it is not certain, hence the false. The caller
2606                          * will repeat this with true if allocation indeed
2607                          * succeeds in this zone.
2608                          */
2609                         compaction_defer_reset(zone, order, false);
2610
2611                         break;
2612                 }
2613
2614                 if (prio != COMPACT_PRIO_ASYNC && (status == COMPACT_COMPLETE ||
2615                                         status == COMPACT_PARTIAL_SKIPPED))
2616                         /*
2617                          * We think that allocation won't succeed in this zone
2618                          * so we defer compaction there. If it ends up
2619                          * succeeding after all, it will be reset.
2620                          */
2621                         defer_compaction(zone, order);
2622
2623                 /*
2624                  * We might have stopped compacting due to need_resched() in
2625                  * async compaction, or due to a fatal signal detected. In that
2626                  * case do not try further zones
2627                  */
2628                 if ((prio == COMPACT_PRIO_ASYNC && need_resched())
2629                                         || fatal_signal_pending(current))
2630                         break;
2631         }
2632
2633         return rc;
2634 }
2635
2636 /*
2637  * Compact all zones within a node till each zone's fragmentation score
2638  * reaches within proactive compaction thresholds (as determined by the
2639  * proactiveness tunable).
2640  *
2641  * It is possible that the function returns before reaching score targets
2642  * due to various back-off conditions, such as, contention on per-node or
2643  * per-zone locks.
2644  */
2645 static void proactive_compact_node(pg_data_t *pgdat)
2646 {
2647         int zoneid;
2648         struct zone *zone;
2649         struct compact_control cc = {
2650                 .order = -1,
2651                 .mode = MIGRATE_SYNC_LIGHT,
2652                 .ignore_skip_hint = true,
2653                 .whole_zone = true,
2654                 .gfp_mask = GFP_KERNEL,
2655                 .proactive_compaction = true,
2656         };
2657
2658         for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
2659                 zone = &pgdat->node_zones[zoneid];
2660                 if (!populated_zone(zone))
2661                         continue;
2662
2663                 cc.zone = zone;
2664
2665                 compact_zone(&cc, NULL);
2666
2667                 VM_BUG_ON(!list_empty(&cc.freepages));
2668                 VM_BUG_ON(!list_empty(&cc.migratepages));
2669         }
2670 }
2671
2672 /* Compact all zones within a node */
2673 static void compact_node(int nid)
2674 {
2675         pg_data_t *pgdat = NODE_DATA(nid);
2676         int zoneid;
2677         struct zone *zone;
2678         struct compact_control cc = {
2679                 .order = -1,
2680                 .mode = MIGRATE_SYNC,
2681                 .ignore_skip_hint = true,
2682                 .whole_zone = true,
2683                 .gfp_mask = GFP_KERNEL,
2684         };
2685
2686
2687         for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
2688
2689                 zone = &pgdat->node_zones[zoneid];
2690                 if (!populated_zone(zone))
2691                         continue;
2692
2693                 cc.zone = zone;
2694
2695                 compact_zone(&cc, NULL);
2696
2697                 VM_BUG_ON(!list_empty(&cc.freepages));
2698                 VM_BUG_ON(!list_empty(&cc.migratepages));
2699         }
2700 }
2701
2702 /* Compact all nodes in the system */
2703 static void compact_nodes(void)
2704 {
2705         int nid;
2706
2707         /* Flush pending updates to the LRU lists */
2708         lru_add_drain_all();
2709
2710         for_each_online_node(nid)
2711                 compact_node(nid);
2712 }
2713
2714 /*
2715  * Tunable for proactive compaction. It determines how
2716  * aggressively the kernel should compact memory in the
2717  * background. It takes values in the range [0, 100].
2718  */
2719 unsigned int __read_mostly sysctl_compaction_proactiveness = 20;
2720
2721 int compaction_proactiveness_sysctl_handler(struct ctl_table *table, int write,
2722                 void *buffer, size_t *length, loff_t *ppos)
2723 {
2724         int rc, nid;
2725
2726         rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
2727         if (rc)
2728                 return rc;
2729
2730         if (write && sysctl_compaction_proactiveness) {
2731                 for_each_online_node(nid) {
2732                         pg_data_t *pgdat = NODE_DATA(nid);
2733
2734                         if (pgdat->proactive_compact_trigger)
2735                                 continue;
2736
2737                         pgdat->proactive_compact_trigger = true;
2738                         wake_up_interruptible(&pgdat->kcompactd_wait);
2739                 }
2740         }
2741
2742         return 0;
2743 }
2744
2745 /*
2746  * This is the entry point for compacting all nodes via
2747  * /proc/sys/vm/compact_memory
2748  */
2749 int sysctl_compaction_handler(struct ctl_table *table, int write,
2750                         void *buffer, size_t *length, loff_t *ppos)
2751 {
2752         if (write)
2753                 compact_nodes();
2754
2755         return 0;
2756 }
2757
2758 #if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
2759 static ssize_t compact_store(struct device *dev,
2760                              struct device_attribute *attr,
2761                              const char *buf, size_t count)
2762 {
2763         int nid = dev->id;
2764
2765         if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
2766                 /* Flush pending updates to the LRU lists */
2767                 lru_add_drain_all();
2768
2769                 compact_node(nid);
2770         }
2771
2772         return count;
2773 }
2774 static DEVICE_ATTR_WO(compact);
2775
2776 int compaction_register_node(struct node *node)
2777 {
2778         return device_create_file(&node->dev, &dev_attr_compact);
2779 }
2780
2781 void compaction_unregister_node(struct node *node)
2782 {
2783         return device_remove_file(&node->dev, &dev_attr_compact);
2784 }
2785 #endif /* CONFIG_SYSFS && CONFIG_NUMA */
2786
2787 static inline bool kcompactd_work_requested(pg_data_t *pgdat)
2788 {
2789         return pgdat->kcompactd_max_order > 0 || kthread_should_stop() ||
2790                 pgdat->proactive_compact_trigger;
2791 }
2792
2793 static bool kcompactd_node_suitable(pg_data_t *pgdat)
2794 {
2795         int zoneid;
2796         struct zone *zone;
2797         enum zone_type highest_zoneidx = pgdat->kcompactd_highest_zoneidx;
2798
2799         for (zoneid = 0; zoneid <= highest_zoneidx; zoneid++) {
2800                 zone = &pgdat->node_zones[zoneid];
2801
2802                 if (!populated_zone(zone))
2803                         continue;
2804
2805                 if (compaction_suitable(zone, pgdat->kcompactd_max_order, 0,
2806                                         highest_zoneidx) == COMPACT_CONTINUE)
2807                         return true;
2808         }
2809
2810         return false;
2811 }
2812
2813 static void kcompactd_do_work(pg_data_t *pgdat)
2814 {
2815         /*
2816          * With no special task, compact all zones so that a page of requested
2817          * order is allocatable.
2818          */
2819         int zoneid;
2820         struct zone *zone;
2821         struct compact_control cc = {
2822                 .order = pgdat->kcompactd_max_order,
2823                 .search_order = pgdat->kcompactd_max_order,
2824                 .highest_zoneidx = pgdat->kcompactd_highest_zoneidx,
2825                 .mode = MIGRATE_SYNC_LIGHT,
2826                 .ignore_skip_hint = false,
2827                 .gfp_mask = GFP_KERNEL,
2828         };
2829         trace_mm_compaction_kcompactd_wake(pgdat->node_id, cc.order,
2830                                                         cc.highest_zoneidx);
2831         count_compact_event(KCOMPACTD_WAKE);
2832
2833         for (zoneid = 0; zoneid <= cc.highest_zoneidx; zoneid++) {
2834                 int status;
2835
2836                 zone = &pgdat->node_zones[zoneid];
2837                 if (!populated_zone(zone))
2838                         continue;
2839
2840                 if (compaction_deferred(zone, cc.order))
2841                         continue;
2842
2843                 if (compaction_suitable(zone, cc.order, 0, zoneid) !=
2844                                                         COMPACT_CONTINUE)
2845                         continue;
2846
2847                 if (kthread_should_stop())
2848                         return;
2849
2850                 cc.zone = zone;
2851                 status = compact_zone(&cc, NULL);
2852
2853                 if (status == COMPACT_SUCCESS) {
2854                         compaction_defer_reset(zone, cc.order, false);
2855                 } else if (status == COMPACT_PARTIAL_SKIPPED || status == COMPACT_COMPLETE) {
2856                         /*
2857                          * Buddy pages may become stranded on pcps that could
2858                          * otherwise coalesce on the zone's free area for
2859                          * order >= cc.order.  This is ratelimited by the
2860                          * upcoming deferral.
2861                          */
2862                         drain_all_pages(zone);
2863
2864                         /*
2865                          * We use sync migration mode here, so we defer like
2866                          * sync direct compaction does.
2867                          */
2868                         defer_compaction(zone, cc.order);
2869                 }
2870
2871                 count_compact_events(KCOMPACTD_MIGRATE_SCANNED,
2872                                      cc.total_migrate_scanned);
2873                 count_compact_events(KCOMPACTD_FREE_SCANNED,
2874                                      cc.total_free_scanned);
2875
2876                 VM_BUG_ON(!list_empty(&cc.freepages));
2877                 VM_BUG_ON(!list_empty(&cc.migratepages));
2878         }
2879
2880         /*
2881          * Regardless of success, we are done until woken up next. But remember
2882          * the requested order/highest_zoneidx in case it was higher/tighter
2883          * than our current ones
2884          */
2885         if (pgdat->kcompactd_max_order <= cc.order)
2886                 pgdat->kcompactd_max_order = 0;
2887         if (pgdat->kcompactd_highest_zoneidx >= cc.highest_zoneidx)
2888                 pgdat->kcompactd_highest_zoneidx = pgdat->nr_zones - 1;
2889 }
2890
2891 void wakeup_kcompactd(pg_data_t *pgdat, int order, int highest_zoneidx)
2892 {
2893         if (!order)
2894                 return;
2895
2896         if (pgdat->kcompactd_max_order < order)
2897                 pgdat->kcompactd_max_order = order;
2898
2899         if (pgdat->kcompactd_highest_zoneidx > highest_zoneidx)
2900                 pgdat->kcompactd_highest_zoneidx = highest_zoneidx;
2901
2902         /*
2903          * Pairs with implicit barrier in wait_event_freezable()
2904          * such that wakeups are not missed.
2905          */
2906         if (!wq_has_sleeper(&pgdat->kcompactd_wait))
2907                 return;
2908
2909         if (!kcompactd_node_suitable(pgdat))
2910                 return;
2911
2912         trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, order,
2913                                                         highest_zoneidx);
2914         wake_up_interruptible(&pgdat->kcompactd_wait);
2915 }
2916
2917 /*
2918  * The background compaction daemon, started as a kernel thread
2919  * from the init process.
2920  */
2921 static int kcompactd(void *p)
2922 {
2923         pg_data_t *pgdat = (pg_data_t *)p;
2924         struct task_struct *tsk = current;
2925         long default_timeout = msecs_to_jiffies(HPAGE_FRAG_CHECK_INTERVAL_MSEC);
2926         long timeout = default_timeout;
2927
2928         const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2929
2930         if (!cpumask_empty(cpumask))
2931                 set_cpus_allowed_ptr(tsk, cpumask);
2932
2933         set_freezable();
2934
2935         pgdat->kcompactd_max_order = 0;
2936         pgdat->kcompactd_highest_zoneidx = pgdat->nr_zones - 1;
2937
2938         while (!kthread_should_stop()) {
2939                 unsigned long pflags;
2940
2941                 /*
2942                  * Avoid the unnecessary wakeup for proactive compaction
2943                  * when it is disabled.
2944                  */
2945                 if (!sysctl_compaction_proactiveness)
2946                         timeout = MAX_SCHEDULE_TIMEOUT;
2947                 trace_mm_compaction_kcompactd_sleep(pgdat->node_id);
2948                 if (wait_event_freezable_timeout(pgdat->kcompactd_wait,
2949                         kcompactd_work_requested(pgdat), timeout) &&
2950                         !pgdat->proactive_compact_trigger) {
2951
2952                         psi_memstall_enter(&pflags);
2953                         kcompactd_do_work(pgdat);
2954                         psi_memstall_leave(&pflags);
2955                         /*
2956                          * Reset the timeout value. The defer timeout from
2957                          * proactive compaction is lost here but that is fine
2958                          * as the condition of the zone changing substantionally
2959                          * then carrying on with the previous defer interval is
2960                          * not useful.
2961                          */
2962                         timeout = default_timeout;
2963                         continue;
2964                 }
2965
2966                 /*
2967                  * Start the proactive work with default timeout. Based
2968                  * on the fragmentation score, this timeout is updated.
2969                  */
2970                 timeout = default_timeout;
2971                 if (should_proactive_compact_node(pgdat)) {
2972                         unsigned int prev_score, score;
2973
2974                         prev_score = fragmentation_score_node(pgdat);
2975                         proactive_compact_node(pgdat);
2976                         score = fragmentation_score_node(pgdat);
2977                         /*
2978                          * Defer proactive compaction if the fragmentation
2979                          * score did not go down i.e. no progress made.
2980                          */
2981                         if (unlikely(score >= prev_score))
2982                                 timeout =
2983                                    default_timeout << COMPACT_MAX_DEFER_SHIFT;
2984                 }
2985                 if (unlikely(pgdat->proactive_compact_trigger))
2986                         pgdat->proactive_compact_trigger = false;
2987         }
2988
2989         return 0;
2990 }
2991
2992 /*
2993  * This kcompactd start function will be called by init and node-hot-add.
2994  * On node-hot-add, kcompactd will moved to proper cpus if cpus are hot-added.
2995  */
2996 void kcompactd_run(int nid)
2997 {
2998         pg_data_t *pgdat = NODE_DATA(nid);
2999
3000         if (pgdat->kcompactd)
3001                 return;
3002
3003         pgdat->kcompactd = kthread_run(kcompactd, pgdat, "kcompactd%d", nid);
3004         if (IS_ERR(pgdat->kcompactd)) {
3005                 pr_err("Failed to start kcompactd on node %d\n", nid);
3006                 pgdat->kcompactd = NULL;
3007         }
3008 }
3009
3010 /*
3011  * Called by memory hotplug when all memory in a node is offlined. Caller must
3012  * hold mem_hotplug_begin/end().
3013  */
3014 void kcompactd_stop(int nid)
3015 {
3016         struct task_struct *kcompactd = NODE_DATA(nid)->kcompactd;
3017
3018         if (kcompactd) {
3019                 kthread_stop(kcompactd);
3020                 NODE_DATA(nid)->kcompactd = NULL;
3021         }
3022 }
3023
3024 /*
3025  * It's optimal to keep kcompactd on the same CPUs as their memory, but
3026  * not required for correctness. So if the last cpu in a node goes
3027  * away, we get changed to run anywhere: as the first one comes back,
3028  * restore their cpu bindings.
3029  */
3030 static int kcompactd_cpu_online(unsigned int cpu)
3031 {
3032         int nid;
3033
3034         for_each_node_state(nid, N_MEMORY) {
3035                 pg_data_t *pgdat = NODE_DATA(nid);
3036                 const struct cpumask *mask;
3037
3038                 mask = cpumask_of_node(pgdat->node_id);
3039
3040                 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3041                         /* One of our CPUs online: restore mask */
3042                         if (pgdat->kcompactd)
3043                                 set_cpus_allowed_ptr(pgdat->kcompactd, mask);
3044         }
3045         return 0;
3046 }
3047
3048 static int __init kcompactd_init(void)
3049 {
3050         int nid;
3051         int ret;
3052
3053         ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
3054                                         "mm/compaction:online",
3055                                         kcompactd_cpu_online, NULL);
3056         if (ret < 0) {
3057                 pr_err("kcompactd: failed to register hotplug callbacks.\n");
3058                 return ret;
3059         }
3060
3061         for_each_node_state(nid, N_MEMORY)
3062                 kcompactd_run(nid);
3063         return 0;
3064 }
3065 subsys_initcall(kcompactd_init)
3066
3067 #endif /* CONFIG_COMPACTION */