Merge tag 'ieee802154-for-net-next-2022-06-09' of git://git.kernel.org/pub/scm/linux...
[platform/kernel/linux-starfive.git] / mm / compaction.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * linux/mm/compaction.c
4  *
5  * Memory compaction for the reduction of external fragmentation. Note that
6  * this heavily depends upon page migration to do all the real heavy
7  * lifting
8  *
9  * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
10  */
11 #include <linux/cpu.h>
12 #include <linux/swap.h>
13 #include <linux/migrate.h>
14 #include <linux/compaction.h>
15 #include <linux/mm_inline.h>
16 #include <linux/sched/signal.h>
17 #include <linux/backing-dev.h>
18 #include <linux/sysctl.h>
19 #include <linux/sysfs.h>
20 #include <linux/page-isolation.h>
21 #include <linux/kasan.h>
22 #include <linux/kthread.h>
23 #include <linux/freezer.h>
24 #include <linux/page_owner.h>
25 #include <linux/psi.h>
26 #include "internal.h"
27
28 #ifdef CONFIG_COMPACTION
29 /*
30  * Fragmentation score check interval for proactive compaction purposes.
31  */
32 #define HPAGE_FRAG_CHECK_INTERVAL_MSEC  (500)
33
34 static inline void count_compact_event(enum vm_event_item item)
35 {
36         count_vm_event(item);
37 }
38
39 static inline void count_compact_events(enum vm_event_item item, long delta)
40 {
41         count_vm_events(item, delta);
42 }
43 #else
44 #define count_compact_event(item) do { } while (0)
45 #define count_compact_events(item, delta) do { } while (0)
46 #endif
47
48 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
49
50 #define CREATE_TRACE_POINTS
51 #include <trace/events/compaction.h>
52
53 #define block_start_pfn(pfn, order)     round_down(pfn, 1UL << (order))
54 #define block_end_pfn(pfn, order)       ALIGN((pfn) + 1, 1UL << (order))
55 #define pageblock_start_pfn(pfn)        block_start_pfn(pfn, pageblock_order)
56 #define pageblock_end_pfn(pfn)          block_end_pfn(pfn, pageblock_order)
57
58 /*
59  * Page order with-respect-to which proactive compaction
60  * calculates external fragmentation, which is used as
61  * the "fragmentation score" of a node/zone.
62  */
63 #if defined CONFIG_TRANSPARENT_HUGEPAGE
64 #define COMPACTION_HPAGE_ORDER  HPAGE_PMD_ORDER
65 #elif defined CONFIG_HUGETLBFS
66 #define COMPACTION_HPAGE_ORDER  HUGETLB_PAGE_ORDER
67 #else
68 #define COMPACTION_HPAGE_ORDER  (PMD_SHIFT - PAGE_SHIFT)
69 #endif
70
71 static unsigned long release_freepages(struct list_head *freelist)
72 {
73         struct page *page, *next;
74         unsigned long high_pfn = 0;
75
76         list_for_each_entry_safe(page, next, freelist, lru) {
77                 unsigned long pfn = page_to_pfn(page);
78                 list_del(&page->lru);
79                 __free_page(page);
80                 if (pfn > high_pfn)
81                         high_pfn = pfn;
82         }
83
84         return high_pfn;
85 }
86
87 static void split_map_pages(struct list_head *list)
88 {
89         unsigned int i, order, nr_pages;
90         struct page *page, *next;
91         LIST_HEAD(tmp_list);
92
93         list_for_each_entry_safe(page, next, list, lru) {
94                 list_del(&page->lru);
95
96                 order = page_private(page);
97                 nr_pages = 1 << order;
98
99                 post_alloc_hook(page, order, __GFP_MOVABLE);
100                 if (order)
101                         split_page(page, order);
102
103                 for (i = 0; i < nr_pages; i++) {
104                         list_add(&page->lru, &tmp_list);
105                         page++;
106                 }
107         }
108
109         list_splice(&tmp_list, list);
110 }
111
112 #ifdef CONFIG_COMPACTION
113
114 int PageMovable(struct page *page)
115 {
116         struct address_space *mapping;
117
118         VM_BUG_ON_PAGE(!PageLocked(page), page);
119         if (!__PageMovable(page))
120                 return 0;
121
122         mapping = page_mapping(page);
123         if (mapping && mapping->a_ops && mapping->a_ops->isolate_page)
124                 return 1;
125
126         return 0;
127 }
128 EXPORT_SYMBOL(PageMovable);
129
130 void __SetPageMovable(struct page *page, struct address_space *mapping)
131 {
132         VM_BUG_ON_PAGE(!PageLocked(page), page);
133         VM_BUG_ON_PAGE((unsigned long)mapping & PAGE_MAPPING_MOVABLE, page);
134         page->mapping = (void *)((unsigned long)mapping | PAGE_MAPPING_MOVABLE);
135 }
136 EXPORT_SYMBOL(__SetPageMovable);
137
138 void __ClearPageMovable(struct page *page)
139 {
140         VM_BUG_ON_PAGE(!PageMovable(page), page);
141         /*
142          * Clear registered address_space val with keeping PAGE_MAPPING_MOVABLE
143          * flag so that VM can catch up released page by driver after isolation.
144          * With it, VM migration doesn't try to put it back.
145          */
146         page->mapping = (void *)((unsigned long)page->mapping &
147                                 PAGE_MAPPING_MOVABLE);
148 }
149 EXPORT_SYMBOL(__ClearPageMovable);
150
151 /* Do not skip compaction more than 64 times */
152 #define COMPACT_MAX_DEFER_SHIFT 6
153
154 /*
155  * Compaction is deferred when compaction fails to result in a page
156  * allocation success. 1 << compact_defer_shift, compactions are skipped up
157  * to a limit of 1 << COMPACT_MAX_DEFER_SHIFT
158  */
159 static void defer_compaction(struct zone *zone, int order)
160 {
161         zone->compact_considered = 0;
162         zone->compact_defer_shift++;
163
164         if (order < zone->compact_order_failed)
165                 zone->compact_order_failed = order;
166
167         if (zone->compact_defer_shift > COMPACT_MAX_DEFER_SHIFT)
168                 zone->compact_defer_shift = COMPACT_MAX_DEFER_SHIFT;
169
170         trace_mm_compaction_defer_compaction(zone, order);
171 }
172
173 /* Returns true if compaction should be skipped this time */
174 static bool compaction_deferred(struct zone *zone, int order)
175 {
176         unsigned long defer_limit = 1UL << zone->compact_defer_shift;
177
178         if (order < zone->compact_order_failed)
179                 return false;
180
181         /* Avoid possible overflow */
182         if (++zone->compact_considered >= defer_limit) {
183                 zone->compact_considered = defer_limit;
184                 return false;
185         }
186
187         trace_mm_compaction_deferred(zone, order);
188
189         return true;
190 }
191
192 /*
193  * Update defer tracking counters after successful compaction of given order,
194  * which means an allocation either succeeded (alloc_success == true) or is
195  * expected to succeed.
196  */
197 void compaction_defer_reset(struct zone *zone, int order,
198                 bool alloc_success)
199 {
200         if (alloc_success) {
201                 zone->compact_considered = 0;
202                 zone->compact_defer_shift = 0;
203         }
204         if (order >= zone->compact_order_failed)
205                 zone->compact_order_failed = order + 1;
206
207         trace_mm_compaction_defer_reset(zone, order);
208 }
209
210 /* Returns true if restarting compaction after many failures */
211 static bool compaction_restarting(struct zone *zone, int order)
212 {
213         if (order < zone->compact_order_failed)
214                 return false;
215
216         return zone->compact_defer_shift == COMPACT_MAX_DEFER_SHIFT &&
217                 zone->compact_considered >= 1UL << zone->compact_defer_shift;
218 }
219
220 /* Returns true if the pageblock should be scanned for pages to isolate. */
221 static inline bool isolation_suitable(struct compact_control *cc,
222                                         struct page *page)
223 {
224         if (cc->ignore_skip_hint)
225                 return true;
226
227         return !get_pageblock_skip(page);
228 }
229
230 static void reset_cached_positions(struct zone *zone)
231 {
232         zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn;
233         zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn;
234         zone->compact_cached_free_pfn =
235                                 pageblock_start_pfn(zone_end_pfn(zone) - 1);
236 }
237
238 /*
239  * Compound pages of >= pageblock_order should consistently be skipped until
240  * released. It is always pointless to compact pages of such order (if they are
241  * migratable), and the pageblocks they occupy cannot contain any free pages.
242  */
243 static bool pageblock_skip_persistent(struct page *page)
244 {
245         if (!PageCompound(page))
246                 return false;
247
248         page = compound_head(page);
249
250         if (compound_order(page) >= pageblock_order)
251                 return true;
252
253         return false;
254 }
255
256 static bool
257 __reset_isolation_pfn(struct zone *zone, unsigned long pfn, bool check_source,
258                                                         bool check_target)
259 {
260         struct page *page = pfn_to_online_page(pfn);
261         struct page *block_page;
262         struct page *end_page;
263         unsigned long block_pfn;
264
265         if (!page)
266                 return false;
267         if (zone != page_zone(page))
268                 return false;
269         if (pageblock_skip_persistent(page))
270                 return false;
271
272         /*
273          * If skip is already cleared do no further checking once the
274          * restart points have been set.
275          */
276         if (check_source && check_target && !get_pageblock_skip(page))
277                 return true;
278
279         /*
280          * If clearing skip for the target scanner, do not select a
281          * non-movable pageblock as the starting point.
282          */
283         if (!check_source && check_target &&
284             get_pageblock_migratetype(page) != MIGRATE_MOVABLE)
285                 return false;
286
287         /* Ensure the start of the pageblock or zone is online and valid */
288         block_pfn = pageblock_start_pfn(pfn);
289         block_pfn = max(block_pfn, zone->zone_start_pfn);
290         block_page = pfn_to_online_page(block_pfn);
291         if (block_page) {
292                 page = block_page;
293                 pfn = block_pfn;
294         }
295
296         /* Ensure the end of the pageblock or zone is online and valid */
297         block_pfn = pageblock_end_pfn(pfn) - 1;
298         block_pfn = min(block_pfn, zone_end_pfn(zone) - 1);
299         end_page = pfn_to_online_page(block_pfn);
300         if (!end_page)
301                 return false;
302
303         /*
304          * Only clear the hint if a sample indicates there is either a
305          * free page or an LRU page in the block. One or other condition
306          * is necessary for the block to be a migration source/target.
307          */
308         do {
309                 if (check_source && PageLRU(page)) {
310                         clear_pageblock_skip(page);
311                         return true;
312                 }
313
314                 if (check_target && PageBuddy(page)) {
315                         clear_pageblock_skip(page);
316                         return true;
317                 }
318
319                 page += (1 << PAGE_ALLOC_COSTLY_ORDER);
320         } while (page <= end_page);
321
322         return false;
323 }
324
325 /*
326  * This function is called to clear all cached information on pageblocks that
327  * should be skipped for page isolation when the migrate and free page scanner
328  * meet.
329  */
330 static void __reset_isolation_suitable(struct zone *zone)
331 {
332         unsigned long migrate_pfn = zone->zone_start_pfn;
333         unsigned long free_pfn = zone_end_pfn(zone) - 1;
334         unsigned long reset_migrate = free_pfn;
335         unsigned long reset_free = migrate_pfn;
336         bool source_set = false;
337         bool free_set = false;
338
339         if (!zone->compact_blockskip_flush)
340                 return;
341
342         zone->compact_blockskip_flush = false;
343
344         /*
345          * Walk the zone and update pageblock skip information. Source looks
346          * for PageLRU while target looks for PageBuddy. When the scanner
347          * is found, both PageBuddy and PageLRU are checked as the pageblock
348          * is suitable as both source and target.
349          */
350         for (; migrate_pfn < free_pfn; migrate_pfn += pageblock_nr_pages,
351                                         free_pfn -= pageblock_nr_pages) {
352                 cond_resched();
353
354                 /* Update the migrate PFN */
355                 if (__reset_isolation_pfn(zone, migrate_pfn, true, source_set) &&
356                     migrate_pfn < reset_migrate) {
357                         source_set = true;
358                         reset_migrate = migrate_pfn;
359                         zone->compact_init_migrate_pfn = reset_migrate;
360                         zone->compact_cached_migrate_pfn[0] = reset_migrate;
361                         zone->compact_cached_migrate_pfn[1] = reset_migrate;
362                 }
363
364                 /* Update the free PFN */
365                 if (__reset_isolation_pfn(zone, free_pfn, free_set, true) &&
366                     free_pfn > reset_free) {
367                         free_set = true;
368                         reset_free = free_pfn;
369                         zone->compact_init_free_pfn = reset_free;
370                         zone->compact_cached_free_pfn = reset_free;
371                 }
372         }
373
374         /* Leave no distance if no suitable block was reset */
375         if (reset_migrate >= reset_free) {
376                 zone->compact_cached_migrate_pfn[0] = migrate_pfn;
377                 zone->compact_cached_migrate_pfn[1] = migrate_pfn;
378                 zone->compact_cached_free_pfn = free_pfn;
379         }
380 }
381
382 void reset_isolation_suitable(pg_data_t *pgdat)
383 {
384         int zoneid;
385
386         for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
387                 struct zone *zone = &pgdat->node_zones[zoneid];
388                 if (!populated_zone(zone))
389                         continue;
390
391                 /* Only flush if a full compaction finished recently */
392                 if (zone->compact_blockskip_flush)
393                         __reset_isolation_suitable(zone);
394         }
395 }
396
397 /*
398  * Sets the pageblock skip bit if it was clear. Note that this is a hint as
399  * locks are not required for read/writers. Returns true if it was already set.
400  */
401 static bool test_and_set_skip(struct compact_control *cc, struct page *page,
402                                                         unsigned long pfn)
403 {
404         bool skip;
405
406         /* Do no update if skip hint is being ignored */
407         if (cc->ignore_skip_hint)
408                 return false;
409
410         if (!IS_ALIGNED(pfn, pageblock_nr_pages))
411                 return false;
412
413         skip = get_pageblock_skip(page);
414         if (!skip && !cc->no_set_skip_hint)
415                 set_pageblock_skip(page);
416
417         return skip;
418 }
419
420 static void update_cached_migrate(struct compact_control *cc, unsigned long pfn)
421 {
422         struct zone *zone = cc->zone;
423
424         pfn = pageblock_end_pfn(pfn);
425
426         /* Set for isolation rather than compaction */
427         if (cc->no_set_skip_hint)
428                 return;
429
430         if (pfn > zone->compact_cached_migrate_pfn[0])
431                 zone->compact_cached_migrate_pfn[0] = pfn;
432         if (cc->mode != MIGRATE_ASYNC &&
433             pfn > zone->compact_cached_migrate_pfn[1])
434                 zone->compact_cached_migrate_pfn[1] = pfn;
435 }
436
437 /*
438  * If no pages were isolated then mark this pageblock to be skipped in the
439  * future. The information is later cleared by __reset_isolation_suitable().
440  */
441 static void update_pageblock_skip(struct compact_control *cc,
442                         struct page *page, unsigned long pfn)
443 {
444         struct zone *zone = cc->zone;
445
446         if (cc->no_set_skip_hint)
447                 return;
448
449         if (!page)
450                 return;
451
452         set_pageblock_skip(page);
453
454         /* Update where async and sync compaction should restart */
455         if (pfn < zone->compact_cached_free_pfn)
456                 zone->compact_cached_free_pfn = pfn;
457 }
458 #else
459 static inline bool isolation_suitable(struct compact_control *cc,
460                                         struct page *page)
461 {
462         return true;
463 }
464
465 static inline bool pageblock_skip_persistent(struct page *page)
466 {
467         return false;
468 }
469
470 static inline void update_pageblock_skip(struct compact_control *cc,
471                         struct page *page, unsigned long pfn)
472 {
473 }
474
475 static void update_cached_migrate(struct compact_control *cc, unsigned long pfn)
476 {
477 }
478
479 static bool test_and_set_skip(struct compact_control *cc, struct page *page,
480                                                         unsigned long pfn)
481 {
482         return false;
483 }
484 #endif /* CONFIG_COMPACTION */
485
486 /*
487  * Compaction requires the taking of some coarse locks that are potentially
488  * very heavily contended. For async compaction, trylock and record if the
489  * lock is contended. The lock will still be acquired but compaction will
490  * abort when the current block is finished regardless of success rate.
491  * Sync compaction acquires the lock.
492  *
493  * Always returns true which makes it easier to track lock state in callers.
494  */
495 static bool compact_lock_irqsave(spinlock_t *lock, unsigned long *flags,
496                                                 struct compact_control *cc)
497         __acquires(lock)
498 {
499         /* Track if the lock is contended in async mode */
500         if (cc->mode == MIGRATE_ASYNC && !cc->contended) {
501                 if (spin_trylock_irqsave(lock, *flags))
502                         return true;
503
504                 cc->contended = true;
505         }
506
507         spin_lock_irqsave(lock, *flags);
508         return true;
509 }
510
511 /*
512  * Compaction requires the taking of some coarse locks that are potentially
513  * very heavily contended. The lock should be periodically unlocked to avoid
514  * having disabled IRQs for a long time, even when there is nobody waiting on
515  * the lock. It might also be that allowing the IRQs will result in
516  * need_resched() becoming true. If scheduling is needed, compaction schedules.
517  * Either compaction type will also abort if a fatal signal is pending.
518  * In either case if the lock was locked, it is dropped and not regained.
519  *
520  * Returns true if compaction should abort due to fatal signal pending.
521  * Returns false when compaction can continue.
522  */
523 static bool compact_unlock_should_abort(spinlock_t *lock,
524                 unsigned long flags, bool *locked, struct compact_control *cc)
525 {
526         if (*locked) {
527                 spin_unlock_irqrestore(lock, flags);
528                 *locked = false;
529         }
530
531         if (fatal_signal_pending(current)) {
532                 cc->contended = true;
533                 return true;
534         }
535
536         cond_resched();
537
538         return false;
539 }
540
541 /*
542  * Isolate free pages onto a private freelist. If @strict is true, will abort
543  * returning 0 on any invalid PFNs or non-free pages inside of the pageblock
544  * (even though it may still end up isolating some pages).
545  */
546 static unsigned long isolate_freepages_block(struct compact_control *cc,
547                                 unsigned long *start_pfn,
548                                 unsigned long end_pfn,
549                                 struct list_head *freelist,
550                                 unsigned int stride,
551                                 bool strict)
552 {
553         int nr_scanned = 0, total_isolated = 0;
554         struct page *cursor;
555         unsigned long flags = 0;
556         bool locked = false;
557         unsigned long blockpfn = *start_pfn;
558         unsigned int order;
559
560         /* Strict mode is for isolation, speed is secondary */
561         if (strict)
562                 stride = 1;
563
564         cursor = pfn_to_page(blockpfn);
565
566         /* Isolate free pages. */
567         for (; blockpfn < end_pfn; blockpfn += stride, cursor += stride) {
568                 int isolated;
569                 struct page *page = cursor;
570
571                 /*
572                  * Periodically drop the lock (if held) regardless of its
573                  * contention, to give chance to IRQs. Abort if fatal signal
574                  * pending.
575                  */
576                 if (!(blockpfn % COMPACT_CLUSTER_MAX)
577                     && compact_unlock_should_abort(&cc->zone->lock, flags,
578                                                                 &locked, cc))
579                         break;
580
581                 nr_scanned++;
582
583                 /*
584                  * For compound pages such as THP and hugetlbfs, we can save
585                  * potentially a lot of iterations if we skip them at once.
586                  * The check is racy, but we can consider only valid values
587                  * and the only danger is skipping too much.
588                  */
589                 if (PageCompound(page)) {
590                         const unsigned int order = compound_order(page);
591
592                         if (likely(order < MAX_ORDER)) {
593                                 blockpfn += (1UL << order) - 1;
594                                 cursor += (1UL << order) - 1;
595                         }
596                         goto isolate_fail;
597                 }
598
599                 if (!PageBuddy(page))
600                         goto isolate_fail;
601
602                 /* If we already hold the lock, we can skip some rechecking. */
603                 if (!locked) {
604                         locked = compact_lock_irqsave(&cc->zone->lock,
605                                                                 &flags, cc);
606
607                         /* Recheck this is a buddy page under lock */
608                         if (!PageBuddy(page))
609                                 goto isolate_fail;
610                 }
611
612                 /* Found a free page, will break it into order-0 pages */
613                 order = buddy_order(page);
614                 isolated = __isolate_free_page(page, order);
615                 if (!isolated)
616                         break;
617                 set_page_private(page, order);
618
619                 total_isolated += isolated;
620                 cc->nr_freepages += isolated;
621                 list_add_tail(&page->lru, freelist);
622
623                 if (!strict && cc->nr_migratepages <= cc->nr_freepages) {
624                         blockpfn += isolated;
625                         break;
626                 }
627                 /* Advance to the end of split page */
628                 blockpfn += isolated - 1;
629                 cursor += isolated - 1;
630                 continue;
631
632 isolate_fail:
633                 if (strict)
634                         break;
635                 else
636                         continue;
637
638         }
639
640         if (locked)
641                 spin_unlock_irqrestore(&cc->zone->lock, flags);
642
643         /*
644          * There is a tiny chance that we have read bogus compound_order(),
645          * so be careful to not go outside of the pageblock.
646          */
647         if (unlikely(blockpfn > end_pfn))
648                 blockpfn = end_pfn;
649
650         trace_mm_compaction_isolate_freepages(*start_pfn, blockpfn,
651                                         nr_scanned, total_isolated);
652
653         /* Record how far we have got within the block */
654         *start_pfn = blockpfn;
655
656         /*
657          * If strict isolation is requested by CMA then check that all the
658          * pages requested were isolated. If there were any failures, 0 is
659          * returned and CMA will fail.
660          */
661         if (strict && blockpfn < end_pfn)
662                 total_isolated = 0;
663
664         cc->total_free_scanned += nr_scanned;
665         if (total_isolated)
666                 count_compact_events(COMPACTISOLATED, total_isolated);
667         return total_isolated;
668 }
669
670 /**
671  * isolate_freepages_range() - isolate free pages.
672  * @cc:        Compaction control structure.
673  * @start_pfn: The first PFN to start isolating.
674  * @end_pfn:   The one-past-last PFN.
675  *
676  * Non-free pages, invalid PFNs, or zone boundaries within the
677  * [start_pfn, end_pfn) range are considered errors, cause function to
678  * undo its actions and return zero.
679  *
680  * Otherwise, function returns one-past-the-last PFN of isolated page
681  * (which may be greater then end_pfn if end fell in a middle of
682  * a free page).
683  */
684 unsigned long
685 isolate_freepages_range(struct compact_control *cc,
686                         unsigned long start_pfn, unsigned long end_pfn)
687 {
688         unsigned long isolated, pfn, block_start_pfn, block_end_pfn;
689         LIST_HEAD(freelist);
690
691         pfn = start_pfn;
692         block_start_pfn = pageblock_start_pfn(pfn);
693         if (block_start_pfn < cc->zone->zone_start_pfn)
694                 block_start_pfn = cc->zone->zone_start_pfn;
695         block_end_pfn = pageblock_end_pfn(pfn);
696
697         for (; pfn < end_pfn; pfn += isolated,
698                                 block_start_pfn = block_end_pfn,
699                                 block_end_pfn += pageblock_nr_pages) {
700                 /* Protect pfn from changing by isolate_freepages_block */
701                 unsigned long isolate_start_pfn = pfn;
702
703                 block_end_pfn = min(block_end_pfn, end_pfn);
704
705                 /*
706                  * pfn could pass the block_end_pfn if isolated freepage
707                  * is more than pageblock order. In this case, we adjust
708                  * scanning range to right one.
709                  */
710                 if (pfn >= block_end_pfn) {
711                         block_start_pfn = pageblock_start_pfn(pfn);
712                         block_end_pfn = pageblock_end_pfn(pfn);
713                         block_end_pfn = min(block_end_pfn, end_pfn);
714                 }
715
716                 if (!pageblock_pfn_to_page(block_start_pfn,
717                                         block_end_pfn, cc->zone))
718                         break;
719
720                 isolated = isolate_freepages_block(cc, &isolate_start_pfn,
721                                         block_end_pfn, &freelist, 0, true);
722
723                 /*
724                  * In strict mode, isolate_freepages_block() returns 0 if
725                  * there are any holes in the block (ie. invalid PFNs or
726                  * non-free pages).
727                  */
728                 if (!isolated)
729                         break;
730
731                 /*
732                  * If we managed to isolate pages, it is always (1 << n) *
733                  * pageblock_nr_pages for some non-negative n.  (Max order
734                  * page may span two pageblocks).
735                  */
736         }
737
738         /* __isolate_free_page() does not map the pages */
739         split_map_pages(&freelist);
740
741         if (pfn < end_pfn) {
742                 /* Loop terminated early, cleanup. */
743                 release_freepages(&freelist);
744                 return 0;
745         }
746
747         /* We don't use freelists for anything. */
748         return pfn;
749 }
750
751 /* Similar to reclaim, but different enough that they don't share logic */
752 static bool too_many_isolated(pg_data_t *pgdat)
753 {
754         bool too_many;
755
756         unsigned long active, inactive, isolated;
757
758         inactive = node_page_state(pgdat, NR_INACTIVE_FILE) +
759                         node_page_state(pgdat, NR_INACTIVE_ANON);
760         active = node_page_state(pgdat, NR_ACTIVE_FILE) +
761                         node_page_state(pgdat, NR_ACTIVE_ANON);
762         isolated = node_page_state(pgdat, NR_ISOLATED_FILE) +
763                         node_page_state(pgdat, NR_ISOLATED_ANON);
764
765         too_many = isolated > (inactive + active) / 2;
766         if (!too_many)
767                 wake_throttle_isolated(pgdat);
768
769         return too_many;
770 }
771
772 /**
773  * isolate_migratepages_block() - isolate all migrate-able pages within
774  *                                a single pageblock
775  * @cc:         Compaction control structure.
776  * @low_pfn:    The first PFN to isolate
777  * @end_pfn:    The one-past-the-last PFN to isolate, within same pageblock
778  * @mode:       Isolation mode to be used.
779  *
780  * Isolate all pages that can be migrated from the range specified by
781  * [low_pfn, end_pfn). The range is expected to be within same pageblock.
782  * Returns errno, like -EAGAIN or -EINTR in case e.g signal pending or congestion,
783  * -ENOMEM in case we could not allocate a page, or 0.
784  * cc->migrate_pfn will contain the next pfn to scan.
785  *
786  * The pages are isolated on cc->migratepages list (not required to be empty),
787  * and cc->nr_migratepages is updated accordingly.
788  */
789 static int
790 isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn,
791                         unsigned long end_pfn, isolate_mode_t mode)
792 {
793         pg_data_t *pgdat = cc->zone->zone_pgdat;
794         unsigned long nr_scanned = 0, nr_isolated = 0;
795         struct lruvec *lruvec;
796         unsigned long flags = 0;
797         struct lruvec *locked = NULL;
798         struct page *page = NULL, *valid_page = NULL;
799         struct address_space *mapping;
800         unsigned long start_pfn = low_pfn;
801         bool skip_on_failure = false;
802         unsigned long next_skip_pfn = 0;
803         bool skip_updated = false;
804         int ret = 0;
805
806         cc->migrate_pfn = low_pfn;
807
808         /*
809          * Ensure that there are not too many pages isolated from the LRU
810          * list by either parallel reclaimers or compaction. If there are,
811          * delay for some time until fewer pages are isolated
812          */
813         while (unlikely(too_many_isolated(pgdat))) {
814                 /* stop isolation if there are still pages not migrated */
815                 if (cc->nr_migratepages)
816                         return -EAGAIN;
817
818                 /* async migration should just abort */
819                 if (cc->mode == MIGRATE_ASYNC)
820                         return -EAGAIN;
821
822                 reclaim_throttle(pgdat, VMSCAN_THROTTLE_ISOLATED);
823
824                 if (fatal_signal_pending(current))
825                         return -EINTR;
826         }
827
828         cond_resched();
829
830         if (cc->direct_compaction && (cc->mode == MIGRATE_ASYNC)) {
831                 skip_on_failure = true;
832                 next_skip_pfn = block_end_pfn(low_pfn, cc->order);
833         }
834
835         /* Time to isolate some pages for migration */
836         for (; low_pfn < end_pfn; low_pfn++) {
837
838                 if (skip_on_failure && low_pfn >= next_skip_pfn) {
839                         /*
840                          * We have isolated all migration candidates in the
841                          * previous order-aligned block, and did not skip it due
842                          * to failure. We should migrate the pages now and
843                          * hopefully succeed compaction.
844                          */
845                         if (nr_isolated)
846                                 break;
847
848                         /*
849                          * We failed to isolate in the previous order-aligned
850                          * block. Set the new boundary to the end of the
851                          * current block. Note we can't simply increase
852                          * next_skip_pfn by 1 << order, as low_pfn might have
853                          * been incremented by a higher number due to skipping
854                          * a compound or a high-order buddy page in the
855                          * previous loop iteration.
856                          */
857                         next_skip_pfn = block_end_pfn(low_pfn, cc->order);
858                 }
859
860                 /*
861                  * Periodically drop the lock (if held) regardless of its
862                  * contention, to give chance to IRQs. Abort completely if
863                  * a fatal signal is pending.
864                  */
865                 if (!(low_pfn % COMPACT_CLUSTER_MAX)) {
866                         if (locked) {
867                                 unlock_page_lruvec_irqrestore(locked, flags);
868                                 locked = NULL;
869                         }
870
871                         if (fatal_signal_pending(current)) {
872                                 cc->contended = true;
873                                 ret = -EINTR;
874
875                                 goto fatal_pending;
876                         }
877
878                         cond_resched();
879                 }
880
881                 nr_scanned++;
882
883                 page = pfn_to_page(low_pfn);
884
885                 /*
886                  * Check if the pageblock has already been marked skipped.
887                  * Only the aligned PFN is checked as the caller isolates
888                  * COMPACT_CLUSTER_MAX at a time so the second call must
889                  * not falsely conclude that the block should be skipped.
890                  */
891                 if (!valid_page && IS_ALIGNED(low_pfn, pageblock_nr_pages)) {
892                         if (!isolation_suitable(cc, page)) {
893                                 low_pfn = end_pfn;
894                                 page = NULL;
895                                 goto isolate_abort;
896                         }
897                         valid_page = page;
898                 }
899
900                 if (PageHuge(page) && cc->alloc_contig) {
901                         ret = isolate_or_dissolve_huge_page(page, &cc->migratepages);
902
903                         /*
904                          * Fail isolation in case isolate_or_dissolve_huge_page()
905                          * reports an error. In case of -ENOMEM, abort right away.
906                          */
907                         if (ret < 0) {
908                                  /* Do not report -EBUSY down the chain */
909                                 if (ret == -EBUSY)
910                                         ret = 0;
911                                 low_pfn += compound_nr(page) - 1;
912                                 goto isolate_fail;
913                         }
914
915                         if (PageHuge(page)) {
916                                 /*
917                                  * Hugepage was successfully isolated and placed
918                                  * on the cc->migratepages list.
919                                  */
920                                 low_pfn += compound_nr(page) - 1;
921                                 goto isolate_success_no_list;
922                         }
923
924                         /*
925                          * Ok, the hugepage was dissolved. Now these pages are
926                          * Buddy and cannot be re-allocated because they are
927                          * isolated. Fall-through as the check below handles
928                          * Buddy pages.
929                          */
930                 }
931
932                 /*
933                  * Skip if free. We read page order here without zone lock
934                  * which is generally unsafe, but the race window is small and
935                  * the worst thing that can happen is that we skip some
936                  * potential isolation targets.
937                  */
938                 if (PageBuddy(page)) {
939                         unsigned long freepage_order = buddy_order_unsafe(page);
940
941                         /*
942                          * Without lock, we cannot be sure that what we got is
943                          * a valid page order. Consider only values in the
944                          * valid order range to prevent low_pfn overflow.
945                          */
946                         if (freepage_order > 0 && freepage_order < MAX_ORDER)
947                                 low_pfn += (1UL << freepage_order) - 1;
948                         continue;
949                 }
950
951                 /*
952                  * Regardless of being on LRU, compound pages such as THP and
953                  * hugetlbfs are not to be compacted unless we are attempting
954                  * an allocation much larger than the huge page size (eg CMA).
955                  * We can potentially save a lot of iterations if we skip them
956                  * at once. The check is racy, but we can consider only valid
957                  * values and the only danger is skipping too much.
958                  */
959                 if (PageCompound(page) && !cc->alloc_contig) {
960                         const unsigned int order = compound_order(page);
961
962                         if (likely(order < MAX_ORDER))
963                                 low_pfn += (1UL << order) - 1;
964                         goto isolate_fail;
965                 }
966
967                 /*
968                  * Check may be lockless but that's ok as we recheck later.
969                  * It's possible to migrate LRU and non-lru movable pages.
970                  * Skip any other type of page
971                  */
972                 if (!PageLRU(page)) {
973                         /*
974                          * __PageMovable can return false positive so we need
975                          * to verify it under page_lock.
976                          */
977                         if (unlikely(__PageMovable(page)) &&
978                                         !PageIsolated(page)) {
979                                 if (locked) {
980                                         unlock_page_lruvec_irqrestore(locked, flags);
981                                         locked = NULL;
982                                 }
983
984                                 if (!isolate_movable_page(page, mode))
985                                         goto isolate_success;
986                         }
987
988                         goto isolate_fail;
989                 }
990
991                 /*
992                  * Migration will fail if an anonymous page is pinned in memory,
993                  * so avoid taking lru_lock and isolating it unnecessarily in an
994                  * admittedly racy check.
995                  */
996                 mapping = page_mapping(page);
997                 if (!mapping && page_count(page) > page_mapcount(page))
998                         goto isolate_fail;
999
1000                 /*
1001                  * Only allow to migrate anonymous pages in GFP_NOFS context
1002                  * because those do not depend on fs locks.
1003                  */
1004                 if (!(cc->gfp_mask & __GFP_FS) && mapping)
1005                         goto isolate_fail;
1006
1007                 /*
1008                  * Be careful not to clear PageLRU until after we're
1009                  * sure the page is not being freed elsewhere -- the
1010                  * page release code relies on it.
1011                  */
1012                 if (unlikely(!get_page_unless_zero(page)))
1013                         goto isolate_fail;
1014
1015                 /* Only take pages on LRU: a check now makes later tests safe */
1016                 if (!PageLRU(page))
1017                         goto isolate_fail_put;
1018
1019                 /* Compaction might skip unevictable pages but CMA takes them */
1020                 if (!(mode & ISOLATE_UNEVICTABLE) && PageUnevictable(page))
1021                         goto isolate_fail_put;
1022
1023                 /*
1024                  * To minimise LRU disruption, the caller can indicate with
1025                  * ISOLATE_ASYNC_MIGRATE that it only wants to isolate pages
1026                  * it will be able to migrate without blocking - clean pages
1027                  * for the most part.  PageWriteback would require blocking.
1028                  */
1029                 if ((mode & ISOLATE_ASYNC_MIGRATE) && PageWriteback(page))
1030                         goto isolate_fail_put;
1031
1032                 if ((mode & ISOLATE_ASYNC_MIGRATE) && PageDirty(page)) {
1033                         bool migrate_dirty;
1034
1035                         /*
1036                          * Only pages without mappings or that have a
1037                          * ->migratepage callback are possible to migrate
1038                          * without blocking. However, we can be racing with
1039                          * truncation so it's necessary to lock the page
1040                          * to stabilise the mapping as truncation holds
1041                          * the page lock until after the page is removed
1042                          * from the page cache.
1043                          */
1044                         if (!trylock_page(page))
1045                                 goto isolate_fail_put;
1046
1047                         mapping = page_mapping(page);
1048                         migrate_dirty = !mapping || mapping->a_ops->migratepage;
1049                         unlock_page(page);
1050                         if (!migrate_dirty)
1051                                 goto isolate_fail_put;
1052                 }
1053
1054                 /* Try isolate the page */
1055                 if (!TestClearPageLRU(page))
1056                         goto isolate_fail_put;
1057
1058                 lruvec = folio_lruvec(page_folio(page));
1059
1060                 /* If we already hold the lock, we can skip some rechecking */
1061                 if (lruvec != locked) {
1062                         if (locked)
1063                                 unlock_page_lruvec_irqrestore(locked, flags);
1064
1065                         compact_lock_irqsave(&lruvec->lru_lock, &flags, cc);
1066                         locked = lruvec;
1067
1068                         lruvec_memcg_debug(lruvec, page_folio(page));
1069
1070                         /* Try get exclusive access under lock */
1071                         if (!skip_updated) {
1072                                 skip_updated = true;
1073                                 if (test_and_set_skip(cc, page, low_pfn))
1074                                         goto isolate_abort;
1075                         }
1076
1077                         /*
1078                          * Page become compound since the non-locked check,
1079                          * and it's on LRU. It can only be a THP so the order
1080                          * is safe to read and it's 0 for tail pages.
1081                          */
1082                         if (unlikely(PageCompound(page) && !cc->alloc_contig)) {
1083                                 low_pfn += compound_nr(page) - 1;
1084                                 SetPageLRU(page);
1085                                 goto isolate_fail_put;
1086                         }
1087                 }
1088
1089                 /* The whole page is taken off the LRU; skip the tail pages. */
1090                 if (PageCompound(page))
1091                         low_pfn += compound_nr(page) - 1;
1092
1093                 /* Successfully isolated */
1094                 del_page_from_lru_list(page, lruvec);
1095                 mod_node_page_state(page_pgdat(page),
1096                                 NR_ISOLATED_ANON + page_is_file_lru(page),
1097                                 thp_nr_pages(page));
1098
1099 isolate_success:
1100                 list_add(&page->lru, &cc->migratepages);
1101 isolate_success_no_list:
1102                 cc->nr_migratepages += compound_nr(page);
1103                 nr_isolated += compound_nr(page);
1104
1105                 /*
1106                  * Avoid isolating too much unless this block is being
1107                  * rescanned (e.g. dirty/writeback pages, parallel allocation)
1108                  * or a lock is contended. For contention, isolate quickly to
1109                  * potentially remove one source of contention.
1110                  */
1111                 if (cc->nr_migratepages >= COMPACT_CLUSTER_MAX &&
1112                     !cc->rescan && !cc->contended) {
1113                         ++low_pfn;
1114                         break;
1115                 }
1116
1117                 continue;
1118
1119 isolate_fail_put:
1120                 /* Avoid potential deadlock in freeing page under lru_lock */
1121                 if (locked) {
1122                         unlock_page_lruvec_irqrestore(locked, flags);
1123                         locked = NULL;
1124                 }
1125                 put_page(page);
1126
1127 isolate_fail:
1128                 if (!skip_on_failure && ret != -ENOMEM)
1129                         continue;
1130
1131                 /*
1132                  * We have isolated some pages, but then failed. Release them
1133                  * instead of migrating, as we cannot form the cc->order buddy
1134                  * page anyway.
1135                  */
1136                 if (nr_isolated) {
1137                         if (locked) {
1138                                 unlock_page_lruvec_irqrestore(locked, flags);
1139                                 locked = NULL;
1140                         }
1141                         putback_movable_pages(&cc->migratepages);
1142                         cc->nr_migratepages = 0;
1143                         nr_isolated = 0;
1144                 }
1145
1146                 if (low_pfn < next_skip_pfn) {
1147                         low_pfn = next_skip_pfn - 1;
1148                         /*
1149                          * The check near the loop beginning would have updated
1150                          * next_skip_pfn too, but this is a bit simpler.
1151                          */
1152                         next_skip_pfn += 1UL << cc->order;
1153                 }
1154
1155                 if (ret == -ENOMEM)
1156                         break;
1157         }
1158
1159         /*
1160          * The PageBuddy() check could have potentially brought us outside
1161          * the range to be scanned.
1162          */
1163         if (unlikely(low_pfn > end_pfn))
1164                 low_pfn = end_pfn;
1165
1166         page = NULL;
1167
1168 isolate_abort:
1169         if (locked)
1170                 unlock_page_lruvec_irqrestore(locked, flags);
1171         if (page) {
1172                 SetPageLRU(page);
1173                 put_page(page);
1174         }
1175
1176         /*
1177          * Updated the cached scanner pfn once the pageblock has been scanned
1178          * Pages will either be migrated in which case there is no point
1179          * scanning in the near future or migration failed in which case the
1180          * failure reason may persist. The block is marked for skipping if
1181          * there were no pages isolated in the block or if the block is
1182          * rescanned twice in a row.
1183          */
1184         if (low_pfn == end_pfn && (!nr_isolated || cc->rescan)) {
1185                 if (valid_page && !skip_updated)
1186                         set_pageblock_skip(valid_page);
1187                 update_cached_migrate(cc, low_pfn);
1188         }
1189
1190         trace_mm_compaction_isolate_migratepages(start_pfn, low_pfn,
1191                                                 nr_scanned, nr_isolated);
1192
1193 fatal_pending:
1194         cc->total_migrate_scanned += nr_scanned;
1195         if (nr_isolated)
1196                 count_compact_events(COMPACTISOLATED, nr_isolated);
1197
1198         cc->migrate_pfn = low_pfn;
1199
1200         return ret;
1201 }
1202
1203 /**
1204  * isolate_migratepages_range() - isolate migrate-able pages in a PFN range
1205  * @cc:        Compaction control structure.
1206  * @start_pfn: The first PFN to start isolating.
1207  * @end_pfn:   The one-past-last PFN.
1208  *
1209  * Returns -EAGAIN when contented, -EINTR in case of a signal pending, -ENOMEM
1210  * in case we could not allocate a page, or 0.
1211  */
1212 int
1213 isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn,
1214                                                         unsigned long end_pfn)
1215 {
1216         unsigned long pfn, block_start_pfn, block_end_pfn;
1217         int ret = 0;
1218
1219         /* Scan block by block. First and last block may be incomplete */
1220         pfn = start_pfn;
1221         block_start_pfn = pageblock_start_pfn(pfn);
1222         if (block_start_pfn < cc->zone->zone_start_pfn)
1223                 block_start_pfn = cc->zone->zone_start_pfn;
1224         block_end_pfn = pageblock_end_pfn(pfn);
1225
1226         for (; pfn < end_pfn; pfn = block_end_pfn,
1227                                 block_start_pfn = block_end_pfn,
1228                                 block_end_pfn += pageblock_nr_pages) {
1229
1230                 block_end_pfn = min(block_end_pfn, end_pfn);
1231
1232                 if (!pageblock_pfn_to_page(block_start_pfn,
1233                                         block_end_pfn, cc->zone))
1234                         continue;
1235
1236                 ret = isolate_migratepages_block(cc, pfn, block_end_pfn,
1237                                                  ISOLATE_UNEVICTABLE);
1238
1239                 if (ret)
1240                         break;
1241
1242                 if (cc->nr_migratepages >= COMPACT_CLUSTER_MAX)
1243                         break;
1244         }
1245
1246         return ret;
1247 }
1248
1249 #endif /* CONFIG_COMPACTION || CONFIG_CMA */
1250 #ifdef CONFIG_COMPACTION
1251
1252 static bool suitable_migration_source(struct compact_control *cc,
1253                                                         struct page *page)
1254 {
1255         int block_mt;
1256
1257         if (pageblock_skip_persistent(page))
1258                 return false;
1259
1260         if ((cc->mode != MIGRATE_ASYNC) || !cc->direct_compaction)
1261                 return true;
1262
1263         block_mt = get_pageblock_migratetype(page);
1264
1265         if (cc->migratetype == MIGRATE_MOVABLE)
1266                 return is_migrate_movable(block_mt);
1267         else
1268                 return block_mt == cc->migratetype;
1269 }
1270
1271 /* Returns true if the page is within a block suitable for migration to */
1272 static bool suitable_migration_target(struct compact_control *cc,
1273                                                         struct page *page)
1274 {
1275         /* If the page is a large free page, then disallow migration */
1276         if (PageBuddy(page)) {
1277                 /*
1278                  * We are checking page_order without zone->lock taken. But
1279                  * the only small danger is that we skip a potentially suitable
1280                  * pageblock, so it's not worth to check order for valid range.
1281                  */
1282                 if (buddy_order_unsafe(page) >= pageblock_order)
1283                         return false;
1284         }
1285
1286         if (cc->ignore_block_suitable)
1287                 return true;
1288
1289         /* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
1290         if (is_migrate_movable(get_pageblock_migratetype(page)))
1291                 return true;
1292
1293         /* Otherwise skip the block */
1294         return false;
1295 }
1296
1297 static inline unsigned int
1298 freelist_scan_limit(struct compact_control *cc)
1299 {
1300         unsigned short shift = BITS_PER_LONG - 1;
1301
1302         return (COMPACT_CLUSTER_MAX >> min(shift, cc->fast_search_fail)) + 1;
1303 }
1304
1305 /*
1306  * Test whether the free scanner has reached the same or lower pageblock than
1307  * the migration scanner, and compaction should thus terminate.
1308  */
1309 static inline bool compact_scanners_met(struct compact_control *cc)
1310 {
1311         return (cc->free_pfn >> pageblock_order)
1312                 <= (cc->migrate_pfn >> pageblock_order);
1313 }
1314
1315 /*
1316  * Used when scanning for a suitable migration target which scans freelists
1317  * in reverse. Reorders the list such as the unscanned pages are scanned
1318  * first on the next iteration of the free scanner
1319  */
1320 static void
1321 move_freelist_head(struct list_head *freelist, struct page *freepage)
1322 {
1323         LIST_HEAD(sublist);
1324
1325         if (!list_is_last(freelist, &freepage->lru)) {
1326                 list_cut_before(&sublist, freelist, &freepage->lru);
1327                 list_splice_tail(&sublist, freelist);
1328         }
1329 }
1330
1331 /*
1332  * Similar to move_freelist_head except used by the migration scanner
1333  * when scanning forward. It's possible for these list operations to
1334  * move against each other if they search the free list exactly in
1335  * lockstep.
1336  */
1337 static void
1338 move_freelist_tail(struct list_head *freelist, struct page *freepage)
1339 {
1340         LIST_HEAD(sublist);
1341
1342         if (!list_is_first(freelist, &freepage->lru)) {
1343                 list_cut_position(&sublist, freelist, &freepage->lru);
1344                 list_splice_tail(&sublist, freelist);
1345         }
1346 }
1347
1348 static void
1349 fast_isolate_around(struct compact_control *cc, unsigned long pfn, unsigned long nr_isolated)
1350 {
1351         unsigned long start_pfn, end_pfn;
1352         struct page *page;
1353
1354         /* Do not search around if there are enough pages already */
1355         if (cc->nr_freepages >= cc->nr_migratepages)
1356                 return;
1357
1358         /* Minimise scanning during async compaction */
1359         if (cc->direct_compaction && cc->mode == MIGRATE_ASYNC)
1360                 return;
1361
1362         /* Pageblock boundaries */
1363         start_pfn = max(pageblock_start_pfn(pfn), cc->zone->zone_start_pfn);
1364         end_pfn = min(pageblock_end_pfn(pfn), zone_end_pfn(cc->zone));
1365
1366         page = pageblock_pfn_to_page(start_pfn, end_pfn, cc->zone);
1367         if (!page)
1368                 return;
1369
1370         /* Scan before */
1371         if (start_pfn != pfn) {
1372                 isolate_freepages_block(cc, &start_pfn, pfn, &cc->freepages, 1, false);
1373                 if (cc->nr_freepages >= cc->nr_migratepages)
1374                         return;
1375         }
1376
1377         /* Scan after */
1378         start_pfn = pfn + nr_isolated;
1379         if (start_pfn < end_pfn)
1380                 isolate_freepages_block(cc, &start_pfn, end_pfn, &cc->freepages, 1, false);
1381
1382         /* Skip this pageblock in the future as it's full or nearly full */
1383         if (cc->nr_freepages < cc->nr_migratepages)
1384                 set_pageblock_skip(page);
1385 }
1386
1387 /* Search orders in round-robin fashion */
1388 static int next_search_order(struct compact_control *cc, int order)
1389 {
1390         order--;
1391         if (order < 0)
1392                 order = cc->order - 1;
1393
1394         /* Search wrapped around? */
1395         if (order == cc->search_order) {
1396                 cc->search_order--;
1397                 if (cc->search_order < 0)
1398                         cc->search_order = cc->order - 1;
1399                 return -1;
1400         }
1401
1402         return order;
1403 }
1404
1405 static unsigned long
1406 fast_isolate_freepages(struct compact_control *cc)
1407 {
1408         unsigned int limit = max(1U, freelist_scan_limit(cc) >> 1);
1409         unsigned int nr_scanned = 0;
1410         unsigned long low_pfn, min_pfn, highest = 0;
1411         unsigned long nr_isolated = 0;
1412         unsigned long distance;
1413         struct page *page = NULL;
1414         bool scan_start = false;
1415         int order;
1416
1417         /* Full compaction passes in a negative order */
1418         if (cc->order <= 0)
1419                 return cc->free_pfn;
1420
1421         /*
1422          * If starting the scan, use a deeper search and use the highest
1423          * PFN found if a suitable one is not found.
1424          */
1425         if (cc->free_pfn >= cc->zone->compact_init_free_pfn) {
1426                 limit = pageblock_nr_pages >> 1;
1427                 scan_start = true;
1428         }
1429
1430         /*
1431          * Preferred point is in the top quarter of the scan space but take
1432          * a pfn from the top half if the search is problematic.
1433          */
1434         distance = (cc->free_pfn - cc->migrate_pfn);
1435         low_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 2));
1436         min_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 1));
1437
1438         if (WARN_ON_ONCE(min_pfn > low_pfn))
1439                 low_pfn = min_pfn;
1440
1441         /*
1442          * Search starts from the last successful isolation order or the next
1443          * order to search after a previous failure
1444          */
1445         cc->search_order = min_t(unsigned int, cc->order - 1, cc->search_order);
1446
1447         for (order = cc->search_order;
1448              !page && order >= 0;
1449              order = next_search_order(cc, order)) {
1450                 struct free_area *area = &cc->zone->free_area[order];
1451                 struct list_head *freelist;
1452                 struct page *freepage;
1453                 unsigned long flags;
1454                 unsigned int order_scanned = 0;
1455                 unsigned long high_pfn = 0;
1456
1457                 if (!area->nr_free)
1458                         continue;
1459
1460                 spin_lock_irqsave(&cc->zone->lock, flags);
1461                 freelist = &area->free_list[MIGRATE_MOVABLE];
1462                 list_for_each_entry_reverse(freepage, freelist, lru) {
1463                         unsigned long pfn;
1464
1465                         order_scanned++;
1466                         nr_scanned++;
1467                         pfn = page_to_pfn(freepage);
1468
1469                         if (pfn >= highest)
1470                                 highest = max(pageblock_start_pfn(pfn),
1471                                               cc->zone->zone_start_pfn);
1472
1473                         if (pfn >= low_pfn) {
1474                                 cc->fast_search_fail = 0;
1475                                 cc->search_order = order;
1476                                 page = freepage;
1477                                 break;
1478                         }
1479
1480                         if (pfn >= min_pfn && pfn > high_pfn) {
1481                                 high_pfn = pfn;
1482
1483                                 /* Shorten the scan if a candidate is found */
1484                                 limit >>= 1;
1485                         }
1486
1487                         if (order_scanned >= limit)
1488                                 break;
1489                 }
1490
1491                 /* Use a minimum pfn if a preferred one was not found */
1492                 if (!page && high_pfn) {
1493                         page = pfn_to_page(high_pfn);
1494
1495                         /* Update freepage for the list reorder below */
1496                         freepage = page;
1497                 }
1498
1499                 /* Reorder to so a future search skips recent pages */
1500                 move_freelist_head(freelist, freepage);
1501
1502                 /* Isolate the page if available */
1503                 if (page) {
1504                         if (__isolate_free_page(page, order)) {
1505                                 set_page_private(page, order);
1506                                 nr_isolated = 1 << order;
1507                                 cc->nr_freepages += nr_isolated;
1508                                 list_add_tail(&page->lru, &cc->freepages);
1509                                 count_compact_events(COMPACTISOLATED, nr_isolated);
1510                         } else {
1511                                 /* If isolation fails, abort the search */
1512                                 order = cc->search_order + 1;
1513                                 page = NULL;
1514                         }
1515                 }
1516
1517                 spin_unlock_irqrestore(&cc->zone->lock, flags);
1518
1519                 /*
1520                  * Smaller scan on next order so the total scan is related
1521                  * to freelist_scan_limit.
1522                  */
1523                 if (order_scanned >= limit)
1524                         limit = max(1U, limit >> 1);
1525         }
1526
1527         if (!page) {
1528                 cc->fast_search_fail++;
1529                 if (scan_start) {
1530                         /*
1531                          * Use the highest PFN found above min. If one was
1532                          * not found, be pessimistic for direct compaction
1533                          * and use the min mark.
1534                          */
1535                         if (highest >= min_pfn) {
1536                                 page = pfn_to_page(highest);
1537                                 cc->free_pfn = highest;
1538                         } else {
1539                                 if (cc->direct_compaction && pfn_valid(min_pfn)) {
1540                                         page = pageblock_pfn_to_page(min_pfn,
1541                                                 min(pageblock_end_pfn(min_pfn),
1542                                                     zone_end_pfn(cc->zone)),
1543                                                 cc->zone);
1544                                         cc->free_pfn = min_pfn;
1545                                 }
1546                         }
1547                 }
1548         }
1549
1550         if (highest && highest >= cc->zone->compact_cached_free_pfn) {
1551                 highest -= pageblock_nr_pages;
1552                 cc->zone->compact_cached_free_pfn = highest;
1553         }
1554
1555         cc->total_free_scanned += nr_scanned;
1556         if (!page)
1557                 return cc->free_pfn;
1558
1559         low_pfn = page_to_pfn(page);
1560         fast_isolate_around(cc, low_pfn, nr_isolated);
1561         return low_pfn;
1562 }
1563
1564 /*
1565  * Based on information in the current compact_control, find blocks
1566  * suitable for isolating free pages from and then isolate them.
1567  */
1568 static void isolate_freepages(struct compact_control *cc)
1569 {
1570         struct zone *zone = cc->zone;
1571         struct page *page;
1572         unsigned long block_start_pfn;  /* start of current pageblock */
1573         unsigned long isolate_start_pfn; /* exact pfn we start at */
1574         unsigned long block_end_pfn;    /* end of current pageblock */
1575         unsigned long low_pfn;       /* lowest pfn scanner is able to scan */
1576         struct list_head *freelist = &cc->freepages;
1577         unsigned int stride;
1578
1579         /* Try a small search of the free lists for a candidate */
1580         fast_isolate_freepages(cc);
1581         if (cc->nr_freepages)
1582                 goto splitmap;
1583
1584         /*
1585          * Initialise the free scanner. The starting point is where we last
1586          * successfully isolated from, zone-cached value, or the end of the
1587          * zone when isolating for the first time. For looping we also need
1588          * this pfn aligned down to the pageblock boundary, because we do
1589          * block_start_pfn -= pageblock_nr_pages in the for loop.
1590          * For ending point, take care when isolating in last pageblock of a
1591          * zone which ends in the middle of a pageblock.
1592          * The low boundary is the end of the pageblock the migration scanner
1593          * is using.
1594          */
1595         isolate_start_pfn = cc->free_pfn;
1596         block_start_pfn = pageblock_start_pfn(isolate_start_pfn);
1597         block_end_pfn = min(block_start_pfn + pageblock_nr_pages,
1598                                                 zone_end_pfn(zone));
1599         low_pfn = pageblock_end_pfn(cc->migrate_pfn);
1600         stride = cc->mode == MIGRATE_ASYNC ? COMPACT_CLUSTER_MAX : 1;
1601
1602         /*
1603          * Isolate free pages until enough are available to migrate the
1604          * pages on cc->migratepages. We stop searching if the migrate
1605          * and free page scanners meet or enough free pages are isolated.
1606          */
1607         for (; block_start_pfn >= low_pfn;
1608                                 block_end_pfn = block_start_pfn,
1609                                 block_start_pfn -= pageblock_nr_pages,
1610                                 isolate_start_pfn = block_start_pfn) {
1611                 unsigned long nr_isolated;
1612
1613                 /*
1614                  * This can iterate a massively long zone without finding any
1615                  * suitable migration targets, so periodically check resched.
1616                  */
1617                 if (!(block_start_pfn % (COMPACT_CLUSTER_MAX * pageblock_nr_pages)))
1618                         cond_resched();
1619
1620                 page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
1621                                                                         zone);
1622                 if (!page)
1623                         continue;
1624
1625                 /* Check the block is suitable for migration */
1626                 if (!suitable_migration_target(cc, page))
1627                         continue;
1628
1629                 /* If isolation recently failed, do not retry */
1630                 if (!isolation_suitable(cc, page))
1631                         continue;
1632
1633                 /* Found a block suitable for isolating free pages from. */
1634                 nr_isolated = isolate_freepages_block(cc, &isolate_start_pfn,
1635                                         block_end_pfn, freelist, stride, false);
1636
1637                 /* Update the skip hint if the full pageblock was scanned */
1638                 if (isolate_start_pfn == block_end_pfn)
1639                         update_pageblock_skip(cc, page, block_start_pfn);
1640
1641                 /* Are enough freepages isolated? */
1642                 if (cc->nr_freepages >= cc->nr_migratepages) {
1643                         if (isolate_start_pfn >= block_end_pfn) {
1644                                 /*
1645                                  * Restart at previous pageblock if more
1646                                  * freepages can be isolated next time.
1647                                  */
1648                                 isolate_start_pfn =
1649                                         block_start_pfn - pageblock_nr_pages;
1650                         }
1651                         break;
1652                 } else if (isolate_start_pfn < block_end_pfn) {
1653                         /*
1654                          * If isolation failed early, do not continue
1655                          * needlessly.
1656                          */
1657                         break;
1658                 }
1659
1660                 /* Adjust stride depending on isolation */
1661                 if (nr_isolated) {
1662                         stride = 1;
1663                         continue;
1664                 }
1665                 stride = min_t(unsigned int, COMPACT_CLUSTER_MAX, stride << 1);
1666         }
1667
1668         /*
1669          * Record where the free scanner will restart next time. Either we
1670          * broke from the loop and set isolate_start_pfn based on the last
1671          * call to isolate_freepages_block(), or we met the migration scanner
1672          * and the loop terminated due to isolate_start_pfn < low_pfn
1673          */
1674         cc->free_pfn = isolate_start_pfn;
1675
1676 splitmap:
1677         /* __isolate_free_page() does not map the pages */
1678         split_map_pages(freelist);
1679 }
1680
1681 /*
1682  * This is a migrate-callback that "allocates" freepages by taking pages
1683  * from the isolated freelists in the block we are migrating to.
1684  */
1685 static struct page *compaction_alloc(struct page *migratepage,
1686                                         unsigned long data)
1687 {
1688         struct compact_control *cc = (struct compact_control *)data;
1689         struct page *freepage;
1690
1691         if (list_empty(&cc->freepages)) {
1692                 isolate_freepages(cc);
1693
1694                 if (list_empty(&cc->freepages))
1695                         return NULL;
1696         }
1697
1698         freepage = list_entry(cc->freepages.next, struct page, lru);
1699         list_del(&freepage->lru);
1700         cc->nr_freepages--;
1701
1702         return freepage;
1703 }
1704
1705 /*
1706  * This is a migrate-callback that "frees" freepages back to the isolated
1707  * freelist.  All pages on the freelist are from the same zone, so there is no
1708  * special handling needed for NUMA.
1709  */
1710 static void compaction_free(struct page *page, unsigned long data)
1711 {
1712         struct compact_control *cc = (struct compact_control *)data;
1713
1714         list_add(&page->lru, &cc->freepages);
1715         cc->nr_freepages++;
1716 }
1717
1718 /* possible outcome of isolate_migratepages */
1719 typedef enum {
1720         ISOLATE_ABORT,          /* Abort compaction now */
1721         ISOLATE_NONE,           /* No pages isolated, continue scanning */
1722         ISOLATE_SUCCESS,        /* Pages isolated, migrate */
1723 } isolate_migrate_t;
1724
1725 /*
1726  * Allow userspace to control policy on scanning the unevictable LRU for
1727  * compactable pages.
1728  */
1729 #ifdef CONFIG_PREEMPT_RT
1730 int sysctl_compact_unevictable_allowed __read_mostly = 0;
1731 #else
1732 int sysctl_compact_unevictable_allowed __read_mostly = 1;
1733 #endif
1734
1735 static inline void
1736 update_fast_start_pfn(struct compact_control *cc, unsigned long pfn)
1737 {
1738         if (cc->fast_start_pfn == ULONG_MAX)
1739                 return;
1740
1741         if (!cc->fast_start_pfn)
1742                 cc->fast_start_pfn = pfn;
1743
1744         cc->fast_start_pfn = min(cc->fast_start_pfn, pfn);
1745 }
1746
1747 static inline unsigned long
1748 reinit_migrate_pfn(struct compact_control *cc)
1749 {
1750         if (!cc->fast_start_pfn || cc->fast_start_pfn == ULONG_MAX)
1751                 return cc->migrate_pfn;
1752
1753         cc->migrate_pfn = cc->fast_start_pfn;
1754         cc->fast_start_pfn = ULONG_MAX;
1755
1756         return cc->migrate_pfn;
1757 }
1758
1759 /*
1760  * Briefly search the free lists for a migration source that already has
1761  * some free pages to reduce the number of pages that need migration
1762  * before a pageblock is free.
1763  */
1764 static unsigned long fast_find_migrateblock(struct compact_control *cc)
1765 {
1766         unsigned int limit = freelist_scan_limit(cc);
1767         unsigned int nr_scanned = 0;
1768         unsigned long distance;
1769         unsigned long pfn = cc->migrate_pfn;
1770         unsigned long high_pfn;
1771         int order;
1772         bool found_block = false;
1773
1774         /* Skip hints are relied on to avoid repeats on the fast search */
1775         if (cc->ignore_skip_hint)
1776                 return pfn;
1777
1778         /*
1779          * If the migrate_pfn is not at the start of a zone or the start
1780          * of a pageblock then assume this is a continuation of a previous
1781          * scan restarted due to COMPACT_CLUSTER_MAX.
1782          */
1783         if (pfn != cc->zone->zone_start_pfn && pfn != pageblock_start_pfn(pfn))
1784                 return pfn;
1785
1786         /*
1787          * For smaller orders, just linearly scan as the number of pages
1788          * to migrate should be relatively small and does not necessarily
1789          * justify freeing up a large block for a small allocation.
1790          */
1791         if (cc->order <= PAGE_ALLOC_COSTLY_ORDER)
1792                 return pfn;
1793
1794         /*
1795          * Only allow kcompactd and direct requests for movable pages to
1796          * quickly clear out a MOVABLE pageblock for allocation. This
1797          * reduces the risk that a large movable pageblock is freed for
1798          * an unmovable/reclaimable small allocation.
1799          */
1800         if (cc->direct_compaction && cc->migratetype != MIGRATE_MOVABLE)
1801                 return pfn;
1802
1803         /*
1804          * When starting the migration scanner, pick any pageblock within the
1805          * first half of the search space. Otherwise try and pick a pageblock
1806          * within the first eighth to reduce the chances that a migration
1807          * target later becomes a source.
1808          */
1809         distance = (cc->free_pfn - cc->migrate_pfn) >> 1;
1810         if (cc->migrate_pfn != cc->zone->zone_start_pfn)
1811                 distance >>= 2;
1812         high_pfn = pageblock_start_pfn(cc->migrate_pfn + distance);
1813
1814         for (order = cc->order - 1;
1815              order >= PAGE_ALLOC_COSTLY_ORDER && !found_block && nr_scanned < limit;
1816              order--) {
1817                 struct free_area *area = &cc->zone->free_area[order];
1818                 struct list_head *freelist;
1819                 unsigned long flags;
1820                 struct page *freepage;
1821
1822                 if (!area->nr_free)
1823                         continue;
1824
1825                 spin_lock_irqsave(&cc->zone->lock, flags);
1826                 freelist = &area->free_list[MIGRATE_MOVABLE];
1827                 list_for_each_entry(freepage, freelist, lru) {
1828                         unsigned long free_pfn;
1829
1830                         if (nr_scanned++ >= limit) {
1831                                 move_freelist_tail(freelist, freepage);
1832                                 break;
1833                         }
1834
1835                         free_pfn = page_to_pfn(freepage);
1836                         if (free_pfn < high_pfn) {
1837                                 /*
1838                                  * Avoid if skipped recently. Ideally it would
1839                                  * move to the tail but even safe iteration of
1840                                  * the list assumes an entry is deleted, not
1841                                  * reordered.
1842                                  */
1843                                 if (get_pageblock_skip(freepage))
1844                                         continue;
1845
1846                                 /* Reorder to so a future search skips recent pages */
1847                                 move_freelist_tail(freelist, freepage);
1848
1849                                 update_fast_start_pfn(cc, free_pfn);
1850                                 pfn = pageblock_start_pfn(free_pfn);
1851                                 if (pfn < cc->zone->zone_start_pfn)
1852                                         pfn = cc->zone->zone_start_pfn;
1853                                 cc->fast_search_fail = 0;
1854                                 found_block = true;
1855                                 set_pageblock_skip(freepage);
1856                                 break;
1857                         }
1858                 }
1859                 spin_unlock_irqrestore(&cc->zone->lock, flags);
1860         }
1861
1862         cc->total_migrate_scanned += nr_scanned;
1863
1864         /*
1865          * If fast scanning failed then use a cached entry for a page block
1866          * that had free pages as the basis for starting a linear scan.
1867          */
1868         if (!found_block) {
1869                 cc->fast_search_fail++;
1870                 pfn = reinit_migrate_pfn(cc);
1871         }
1872         return pfn;
1873 }
1874
1875 /*
1876  * Isolate all pages that can be migrated from the first suitable block,
1877  * starting at the block pointed to by the migrate scanner pfn within
1878  * compact_control.
1879  */
1880 static isolate_migrate_t isolate_migratepages(struct compact_control *cc)
1881 {
1882         unsigned long block_start_pfn;
1883         unsigned long block_end_pfn;
1884         unsigned long low_pfn;
1885         struct page *page;
1886         const isolate_mode_t isolate_mode =
1887                 (sysctl_compact_unevictable_allowed ? ISOLATE_UNEVICTABLE : 0) |
1888                 (cc->mode != MIGRATE_SYNC ? ISOLATE_ASYNC_MIGRATE : 0);
1889         bool fast_find_block;
1890
1891         /*
1892          * Start at where we last stopped, or beginning of the zone as
1893          * initialized by compact_zone(). The first failure will use
1894          * the lowest PFN as the starting point for linear scanning.
1895          */
1896         low_pfn = fast_find_migrateblock(cc);
1897         block_start_pfn = pageblock_start_pfn(low_pfn);
1898         if (block_start_pfn < cc->zone->zone_start_pfn)
1899                 block_start_pfn = cc->zone->zone_start_pfn;
1900
1901         /*
1902          * fast_find_migrateblock marks a pageblock skipped so to avoid
1903          * the isolation_suitable check below, check whether the fast
1904          * search was successful.
1905          */
1906         fast_find_block = low_pfn != cc->migrate_pfn && !cc->fast_search_fail;
1907
1908         /* Only scan within a pageblock boundary */
1909         block_end_pfn = pageblock_end_pfn(low_pfn);
1910
1911         /*
1912          * Iterate over whole pageblocks until we find the first suitable.
1913          * Do not cross the free scanner.
1914          */
1915         for (; block_end_pfn <= cc->free_pfn;
1916                         fast_find_block = false,
1917                         cc->migrate_pfn = low_pfn = block_end_pfn,
1918                         block_start_pfn = block_end_pfn,
1919                         block_end_pfn += pageblock_nr_pages) {
1920
1921                 /*
1922                  * This can potentially iterate a massively long zone with
1923                  * many pageblocks unsuitable, so periodically check if we
1924                  * need to schedule.
1925                  */
1926                 if (!(low_pfn % (COMPACT_CLUSTER_MAX * pageblock_nr_pages)))
1927                         cond_resched();
1928
1929                 page = pageblock_pfn_to_page(block_start_pfn,
1930                                                 block_end_pfn, cc->zone);
1931                 if (!page)
1932                         continue;
1933
1934                 /*
1935                  * If isolation recently failed, do not retry. Only check the
1936                  * pageblock once. COMPACT_CLUSTER_MAX causes a pageblock
1937                  * to be visited multiple times. Assume skip was checked
1938                  * before making it "skip" so other compaction instances do
1939                  * not scan the same block.
1940                  */
1941                 if (IS_ALIGNED(low_pfn, pageblock_nr_pages) &&
1942                     !fast_find_block && !isolation_suitable(cc, page))
1943                         continue;
1944
1945                 /*
1946                  * For async direct compaction, only scan the pageblocks of the
1947                  * same migratetype without huge pages. Async direct compaction
1948                  * is optimistic to see if the minimum amount of work satisfies
1949                  * the allocation. The cached PFN is updated as it's possible
1950                  * that all remaining blocks between source and target are
1951                  * unsuitable and the compaction scanners fail to meet.
1952                  */
1953                 if (!suitable_migration_source(cc, page)) {
1954                         update_cached_migrate(cc, block_end_pfn);
1955                         continue;
1956                 }
1957
1958                 /* Perform the isolation */
1959                 if (isolate_migratepages_block(cc, low_pfn, block_end_pfn,
1960                                                 isolate_mode))
1961                         return ISOLATE_ABORT;
1962
1963                 /*
1964                  * Either we isolated something and proceed with migration. Or
1965                  * we failed and compact_zone should decide if we should
1966                  * continue or not.
1967                  */
1968                 break;
1969         }
1970
1971         return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE;
1972 }
1973
1974 /*
1975  * order == -1 is expected when compacting via
1976  * /proc/sys/vm/compact_memory
1977  */
1978 static inline bool is_via_compact_memory(int order)
1979 {
1980         return order == -1;
1981 }
1982
1983 static bool kswapd_is_running(pg_data_t *pgdat)
1984 {
1985         return pgdat->kswapd && task_is_running(pgdat->kswapd);
1986 }
1987
1988 /*
1989  * A zone's fragmentation score is the external fragmentation wrt to the
1990  * COMPACTION_HPAGE_ORDER. It returns a value in the range [0, 100].
1991  */
1992 static unsigned int fragmentation_score_zone(struct zone *zone)
1993 {
1994         return extfrag_for_order(zone, COMPACTION_HPAGE_ORDER);
1995 }
1996
1997 /*
1998  * A weighted zone's fragmentation score is the external fragmentation
1999  * wrt to the COMPACTION_HPAGE_ORDER scaled by the zone's size. It
2000  * returns a value in the range [0, 100].
2001  *
2002  * The scaling factor ensures that proactive compaction focuses on larger
2003  * zones like ZONE_NORMAL, rather than smaller, specialized zones like
2004  * ZONE_DMA32. For smaller zones, the score value remains close to zero,
2005  * and thus never exceeds the high threshold for proactive compaction.
2006  */
2007 static unsigned int fragmentation_score_zone_weighted(struct zone *zone)
2008 {
2009         unsigned long score;
2010
2011         score = zone->present_pages * fragmentation_score_zone(zone);
2012         return div64_ul(score, zone->zone_pgdat->node_present_pages + 1);
2013 }
2014
2015 /*
2016  * The per-node proactive (background) compaction process is started by its
2017  * corresponding kcompactd thread when the node's fragmentation score
2018  * exceeds the high threshold. The compaction process remains active till
2019  * the node's score falls below the low threshold, or one of the back-off
2020  * conditions is met.
2021  */
2022 static unsigned int fragmentation_score_node(pg_data_t *pgdat)
2023 {
2024         unsigned int score = 0;
2025         int zoneid;
2026
2027         for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
2028                 struct zone *zone;
2029
2030                 zone = &pgdat->node_zones[zoneid];
2031                 score += fragmentation_score_zone_weighted(zone);
2032         }
2033
2034         return score;
2035 }
2036
2037 static unsigned int fragmentation_score_wmark(pg_data_t *pgdat, bool low)
2038 {
2039         unsigned int wmark_low;
2040
2041         /*
2042          * Cap the low watermark to avoid excessive compaction
2043          * activity in case a user sets the proactiveness tunable
2044          * close to 100 (maximum).
2045          */
2046         wmark_low = max(100U - sysctl_compaction_proactiveness, 5U);
2047         return low ? wmark_low : min(wmark_low + 10, 100U);
2048 }
2049
2050 static bool should_proactive_compact_node(pg_data_t *pgdat)
2051 {
2052         int wmark_high;
2053
2054         if (!sysctl_compaction_proactiveness || kswapd_is_running(pgdat))
2055                 return false;
2056
2057         wmark_high = fragmentation_score_wmark(pgdat, false);
2058         return fragmentation_score_node(pgdat) > wmark_high;
2059 }
2060
2061 static enum compact_result __compact_finished(struct compact_control *cc)
2062 {
2063         unsigned int order;
2064         const int migratetype = cc->migratetype;
2065         int ret;
2066
2067         /* Compaction run completes if the migrate and free scanner meet */
2068         if (compact_scanners_met(cc)) {
2069                 /* Let the next compaction start anew. */
2070                 reset_cached_positions(cc->zone);
2071
2072                 /*
2073                  * Mark that the PG_migrate_skip information should be cleared
2074                  * by kswapd when it goes to sleep. kcompactd does not set the
2075                  * flag itself as the decision to be clear should be directly
2076                  * based on an allocation request.
2077                  */
2078                 if (cc->direct_compaction)
2079                         cc->zone->compact_blockskip_flush = true;
2080
2081                 if (cc->whole_zone)
2082                         return COMPACT_COMPLETE;
2083                 else
2084                         return COMPACT_PARTIAL_SKIPPED;
2085         }
2086
2087         if (cc->proactive_compaction) {
2088                 int score, wmark_low;
2089                 pg_data_t *pgdat;
2090
2091                 pgdat = cc->zone->zone_pgdat;
2092                 if (kswapd_is_running(pgdat))
2093                         return COMPACT_PARTIAL_SKIPPED;
2094
2095                 score = fragmentation_score_zone(cc->zone);
2096                 wmark_low = fragmentation_score_wmark(pgdat, true);
2097
2098                 if (score > wmark_low)
2099                         ret = COMPACT_CONTINUE;
2100                 else
2101                         ret = COMPACT_SUCCESS;
2102
2103                 goto out;
2104         }
2105
2106         if (is_via_compact_memory(cc->order))
2107                 return COMPACT_CONTINUE;
2108
2109         /*
2110          * Always finish scanning a pageblock to reduce the possibility of
2111          * fallbacks in the future. This is particularly important when
2112          * migration source is unmovable/reclaimable but it's not worth
2113          * special casing.
2114          */
2115         if (!IS_ALIGNED(cc->migrate_pfn, pageblock_nr_pages))
2116                 return COMPACT_CONTINUE;
2117
2118         /* Direct compactor: Is a suitable page free? */
2119         ret = COMPACT_NO_SUITABLE_PAGE;
2120         for (order = cc->order; order < MAX_ORDER; order++) {
2121                 struct free_area *area = &cc->zone->free_area[order];
2122                 bool can_steal;
2123
2124                 /* Job done if page is free of the right migratetype */
2125                 if (!free_area_empty(area, migratetype))
2126                         return COMPACT_SUCCESS;
2127
2128 #ifdef CONFIG_CMA
2129                 /* MIGRATE_MOVABLE can fallback on MIGRATE_CMA */
2130                 if (migratetype == MIGRATE_MOVABLE &&
2131                         !free_area_empty(area, MIGRATE_CMA))
2132                         return COMPACT_SUCCESS;
2133 #endif
2134                 /*
2135                  * Job done if allocation would steal freepages from
2136                  * other migratetype buddy lists.
2137                  */
2138                 if (find_suitable_fallback(area, order, migratetype,
2139                                                 true, &can_steal) != -1)
2140                         /*
2141                          * Movable pages are OK in any pageblock. If we are
2142                          * stealing for a non-movable allocation, make sure
2143                          * we finish compacting the current pageblock first
2144                          * (which is assured by the above migrate_pfn align
2145                          * check) so it is as free as possible and we won't
2146                          * have to steal another one soon.
2147                          */
2148                         return COMPACT_SUCCESS;
2149         }
2150
2151 out:
2152         if (cc->contended || fatal_signal_pending(current))
2153                 ret = COMPACT_CONTENDED;
2154
2155         return ret;
2156 }
2157
2158 static enum compact_result compact_finished(struct compact_control *cc)
2159 {
2160         int ret;
2161
2162         ret = __compact_finished(cc);
2163         trace_mm_compaction_finished(cc->zone, cc->order, ret);
2164         if (ret == COMPACT_NO_SUITABLE_PAGE)
2165                 ret = COMPACT_CONTINUE;
2166
2167         return ret;
2168 }
2169
2170 static enum compact_result __compaction_suitable(struct zone *zone, int order,
2171                                         unsigned int alloc_flags,
2172                                         int highest_zoneidx,
2173                                         unsigned long wmark_target)
2174 {
2175         unsigned long watermark;
2176
2177         if (is_via_compact_memory(order))
2178                 return COMPACT_CONTINUE;
2179
2180         watermark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
2181         /*
2182          * If watermarks for high-order allocation are already met, there
2183          * should be no need for compaction at all.
2184          */
2185         if (zone_watermark_ok(zone, order, watermark, highest_zoneidx,
2186                                                                 alloc_flags))
2187                 return COMPACT_SUCCESS;
2188
2189         /*
2190          * Watermarks for order-0 must be met for compaction to be able to
2191          * isolate free pages for migration targets. This means that the
2192          * watermark and alloc_flags have to match, or be more pessimistic than
2193          * the check in __isolate_free_page(). We don't use the direct
2194          * compactor's alloc_flags, as they are not relevant for freepage
2195          * isolation. We however do use the direct compactor's highest_zoneidx
2196          * to skip over zones where lowmem reserves would prevent allocation
2197          * even if compaction succeeds.
2198          * For costly orders, we require low watermark instead of min for
2199          * compaction to proceed to increase its chances.
2200          * ALLOC_CMA is used, as pages in CMA pageblocks are considered
2201          * suitable migration targets
2202          */
2203         watermark = (order > PAGE_ALLOC_COSTLY_ORDER) ?
2204                                 low_wmark_pages(zone) : min_wmark_pages(zone);
2205         watermark += compact_gap(order);
2206         if (!__zone_watermark_ok(zone, 0, watermark, highest_zoneidx,
2207                                                 ALLOC_CMA, wmark_target))
2208                 return COMPACT_SKIPPED;
2209
2210         return COMPACT_CONTINUE;
2211 }
2212
2213 /*
2214  * compaction_suitable: Is this suitable to run compaction on this zone now?
2215  * Returns
2216  *   COMPACT_SKIPPED  - If there are too few free pages for compaction
2217  *   COMPACT_SUCCESS  - If the allocation would succeed without compaction
2218  *   COMPACT_CONTINUE - If compaction should run now
2219  */
2220 enum compact_result compaction_suitable(struct zone *zone, int order,
2221                                         unsigned int alloc_flags,
2222                                         int highest_zoneidx)
2223 {
2224         enum compact_result ret;
2225         int fragindex;
2226
2227         ret = __compaction_suitable(zone, order, alloc_flags, highest_zoneidx,
2228                                     zone_page_state(zone, NR_FREE_PAGES));
2229         /*
2230          * fragmentation index determines if allocation failures are due to
2231          * low memory or external fragmentation
2232          *
2233          * index of -1000 would imply allocations might succeed depending on
2234          * watermarks, but we already failed the high-order watermark check
2235          * index towards 0 implies failure is due to lack of memory
2236          * index towards 1000 implies failure is due to fragmentation
2237          *
2238          * Only compact if a failure would be due to fragmentation. Also
2239          * ignore fragindex for non-costly orders where the alternative to
2240          * a successful reclaim/compaction is OOM. Fragindex and the
2241          * vm.extfrag_threshold sysctl is meant as a heuristic to prevent
2242          * excessive compaction for costly orders, but it should not be at the
2243          * expense of system stability.
2244          */
2245         if (ret == COMPACT_CONTINUE && (order > PAGE_ALLOC_COSTLY_ORDER)) {
2246                 fragindex = fragmentation_index(zone, order);
2247                 if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold)
2248                         ret = COMPACT_NOT_SUITABLE_ZONE;
2249         }
2250
2251         trace_mm_compaction_suitable(zone, order, ret);
2252         if (ret == COMPACT_NOT_SUITABLE_ZONE)
2253                 ret = COMPACT_SKIPPED;
2254
2255         return ret;
2256 }
2257
2258 bool compaction_zonelist_suitable(struct alloc_context *ac, int order,
2259                 int alloc_flags)
2260 {
2261         struct zone *zone;
2262         struct zoneref *z;
2263
2264         /*
2265          * Make sure at least one zone would pass __compaction_suitable if we continue
2266          * retrying the reclaim.
2267          */
2268         for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2269                                 ac->highest_zoneidx, ac->nodemask) {
2270                 unsigned long available;
2271                 enum compact_result compact_result;
2272
2273                 /*
2274                  * Do not consider all the reclaimable memory because we do not
2275                  * want to trash just for a single high order allocation which
2276                  * is even not guaranteed to appear even if __compaction_suitable
2277                  * is happy about the watermark check.
2278                  */
2279                 available = zone_reclaimable_pages(zone) / order;
2280                 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
2281                 compact_result = __compaction_suitable(zone, order, alloc_flags,
2282                                 ac->highest_zoneidx, available);
2283                 if (compact_result == COMPACT_CONTINUE)
2284                         return true;
2285         }
2286
2287         return false;
2288 }
2289
2290 static enum compact_result
2291 compact_zone(struct compact_control *cc, struct capture_control *capc)
2292 {
2293         enum compact_result ret;
2294         unsigned long start_pfn = cc->zone->zone_start_pfn;
2295         unsigned long end_pfn = zone_end_pfn(cc->zone);
2296         unsigned long last_migrated_pfn;
2297         const bool sync = cc->mode != MIGRATE_ASYNC;
2298         bool update_cached;
2299         unsigned int nr_succeeded = 0;
2300
2301         /*
2302          * These counters track activities during zone compaction.  Initialize
2303          * them before compacting a new zone.
2304          */
2305         cc->total_migrate_scanned = 0;
2306         cc->total_free_scanned = 0;
2307         cc->nr_migratepages = 0;
2308         cc->nr_freepages = 0;
2309         INIT_LIST_HEAD(&cc->freepages);
2310         INIT_LIST_HEAD(&cc->migratepages);
2311
2312         cc->migratetype = gfp_migratetype(cc->gfp_mask);
2313         ret = compaction_suitable(cc->zone, cc->order, cc->alloc_flags,
2314                                                         cc->highest_zoneidx);
2315         /* Compaction is likely to fail */
2316         if (ret == COMPACT_SUCCESS || ret == COMPACT_SKIPPED)
2317                 return ret;
2318
2319         /* huh, compaction_suitable is returning something unexpected */
2320         VM_BUG_ON(ret != COMPACT_CONTINUE);
2321
2322         /*
2323          * Clear pageblock skip if there were failures recently and compaction
2324          * is about to be retried after being deferred.
2325          */
2326         if (compaction_restarting(cc->zone, cc->order))
2327                 __reset_isolation_suitable(cc->zone);
2328
2329         /*
2330          * Setup to move all movable pages to the end of the zone. Used cached
2331          * information on where the scanners should start (unless we explicitly
2332          * want to compact the whole zone), but check that it is initialised
2333          * by ensuring the values are within zone boundaries.
2334          */
2335         cc->fast_start_pfn = 0;
2336         if (cc->whole_zone) {
2337                 cc->migrate_pfn = start_pfn;
2338                 cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
2339         } else {
2340                 cc->migrate_pfn = cc->zone->compact_cached_migrate_pfn[sync];
2341                 cc->free_pfn = cc->zone->compact_cached_free_pfn;
2342                 if (cc->free_pfn < start_pfn || cc->free_pfn >= end_pfn) {
2343                         cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
2344                         cc->zone->compact_cached_free_pfn = cc->free_pfn;
2345                 }
2346                 if (cc->migrate_pfn < start_pfn || cc->migrate_pfn >= end_pfn) {
2347                         cc->migrate_pfn = start_pfn;
2348                         cc->zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn;
2349                         cc->zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn;
2350                 }
2351
2352                 if (cc->migrate_pfn <= cc->zone->compact_init_migrate_pfn)
2353                         cc->whole_zone = true;
2354         }
2355
2356         last_migrated_pfn = 0;
2357
2358         /*
2359          * Migrate has separate cached PFNs for ASYNC and SYNC* migration on
2360          * the basis that some migrations will fail in ASYNC mode. However,
2361          * if the cached PFNs match and pageblocks are skipped due to having
2362          * no isolation candidates, then the sync state does not matter.
2363          * Until a pageblock with isolation candidates is found, keep the
2364          * cached PFNs in sync to avoid revisiting the same blocks.
2365          */
2366         update_cached = !sync &&
2367                 cc->zone->compact_cached_migrate_pfn[0] == cc->zone->compact_cached_migrate_pfn[1];
2368
2369         trace_mm_compaction_begin(cc, start_pfn, end_pfn, sync);
2370
2371         /* lru_add_drain_all could be expensive with involving other CPUs */
2372         lru_add_drain();
2373
2374         while ((ret = compact_finished(cc)) == COMPACT_CONTINUE) {
2375                 int err;
2376                 unsigned long iteration_start_pfn = cc->migrate_pfn;
2377
2378                 /*
2379                  * Avoid multiple rescans which can happen if a page cannot be
2380                  * isolated (dirty/writeback in async mode) or if the migrated
2381                  * pages are being allocated before the pageblock is cleared.
2382                  * The first rescan will capture the entire pageblock for
2383                  * migration. If it fails, it'll be marked skip and scanning
2384                  * will proceed as normal.
2385                  */
2386                 cc->rescan = false;
2387                 if (pageblock_start_pfn(last_migrated_pfn) ==
2388                     pageblock_start_pfn(iteration_start_pfn)) {
2389                         cc->rescan = true;
2390                 }
2391
2392                 switch (isolate_migratepages(cc)) {
2393                 case ISOLATE_ABORT:
2394                         ret = COMPACT_CONTENDED;
2395                         putback_movable_pages(&cc->migratepages);
2396                         cc->nr_migratepages = 0;
2397                         goto out;
2398                 case ISOLATE_NONE:
2399                         if (update_cached) {
2400                                 cc->zone->compact_cached_migrate_pfn[1] =
2401                                         cc->zone->compact_cached_migrate_pfn[0];
2402                         }
2403
2404                         /*
2405                          * We haven't isolated and migrated anything, but
2406                          * there might still be unflushed migrations from
2407                          * previous cc->order aligned block.
2408                          */
2409                         goto check_drain;
2410                 case ISOLATE_SUCCESS:
2411                         update_cached = false;
2412                         last_migrated_pfn = iteration_start_pfn;
2413                 }
2414
2415                 err = migrate_pages(&cc->migratepages, compaction_alloc,
2416                                 compaction_free, (unsigned long)cc, cc->mode,
2417                                 MR_COMPACTION, &nr_succeeded);
2418
2419                 trace_mm_compaction_migratepages(cc, nr_succeeded);
2420
2421                 /* All pages were either migrated or will be released */
2422                 cc->nr_migratepages = 0;
2423                 if (err) {
2424                         putback_movable_pages(&cc->migratepages);
2425                         /*
2426                          * migrate_pages() may return -ENOMEM when scanners meet
2427                          * and we want compact_finished() to detect it
2428                          */
2429                         if (err == -ENOMEM && !compact_scanners_met(cc)) {
2430                                 ret = COMPACT_CONTENDED;
2431                                 goto out;
2432                         }
2433                         /*
2434                          * We failed to migrate at least one page in the current
2435                          * order-aligned block, so skip the rest of it.
2436                          */
2437                         if (cc->direct_compaction &&
2438                                                 (cc->mode == MIGRATE_ASYNC)) {
2439                                 cc->migrate_pfn = block_end_pfn(
2440                                                 cc->migrate_pfn - 1, cc->order);
2441                                 /* Draining pcplists is useless in this case */
2442                                 last_migrated_pfn = 0;
2443                         }
2444                 }
2445
2446 check_drain:
2447                 /*
2448                  * Has the migration scanner moved away from the previous
2449                  * cc->order aligned block where we migrated from? If yes,
2450                  * flush the pages that were freed, so that they can merge and
2451                  * compact_finished() can detect immediately if allocation
2452                  * would succeed.
2453                  */
2454                 if (cc->order > 0 && last_migrated_pfn) {
2455                         unsigned long current_block_start =
2456                                 block_start_pfn(cc->migrate_pfn, cc->order);
2457
2458                         if (last_migrated_pfn < current_block_start) {
2459                                 lru_add_drain_cpu_zone(cc->zone);
2460                                 /* No more flushing until we migrate again */
2461                                 last_migrated_pfn = 0;
2462                         }
2463                 }
2464
2465                 /* Stop if a page has been captured */
2466                 if (capc && capc->page) {
2467                         ret = COMPACT_SUCCESS;
2468                         break;
2469                 }
2470         }
2471
2472 out:
2473         /*
2474          * Release free pages and update where the free scanner should restart,
2475          * so we don't leave any returned pages behind in the next attempt.
2476          */
2477         if (cc->nr_freepages > 0) {
2478                 unsigned long free_pfn = release_freepages(&cc->freepages);
2479
2480                 cc->nr_freepages = 0;
2481                 VM_BUG_ON(free_pfn == 0);
2482                 /* The cached pfn is always the first in a pageblock */
2483                 free_pfn = pageblock_start_pfn(free_pfn);
2484                 /*
2485                  * Only go back, not forward. The cached pfn might have been
2486                  * already reset to zone end in compact_finished()
2487                  */
2488                 if (free_pfn > cc->zone->compact_cached_free_pfn)
2489                         cc->zone->compact_cached_free_pfn = free_pfn;
2490         }
2491
2492         count_compact_events(COMPACTMIGRATE_SCANNED, cc->total_migrate_scanned);
2493         count_compact_events(COMPACTFREE_SCANNED, cc->total_free_scanned);
2494
2495         trace_mm_compaction_end(cc, start_pfn, end_pfn, sync, ret);
2496
2497         return ret;
2498 }
2499
2500 static enum compact_result compact_zone_order(struct zone *zone, int order,
2501                 gfp_t gfp_mask, enum compact_priority prio,
2502                 unsigned int alloc_flags, int highest_zoneidx,
2503                 struct page **capture)
2504 {
2505         enum compact_result ret;
2506         struct compact_control cc = {
2507                 .order = order,
2508                 .search_order = order,
2509                 .gfp_mask = gfp_mask,
2510                 .zone = zone,
2511                 .mode = (prio == COMPACT_PRIO_ASYNC) ?
2512                                         MIGRATE_ASYNC : MIGRATE_SYNC_LIGHT,
2513                 .alloc_flags = alloc_flags,
2514                 .highest_zoneidx = highest_zoneidx,
2515                 .direct_compaction = true,
2516                 .whole_zone = (prio == MIN_COMPACT_PRIORITY),
2517                 .ignore_skip_hint = (prio == MIN_COMPACT_PRIORITY),
2518                 .ignore_block_suitable = (prio == MIN_COMPACT_PRIORITY)
2519         };
2520         struct capture_control capc = {
2521                 .cc = &cc,
2522                 .page = NULL,
2523         };
2524
2525         /*
2526          * Make sure the structs are really initialized before we expose the
2527          * capture control, in case we are interrupted and the interrupt handler
2528          * frees a page.
2529          */
2530         barrier();
2531         WRITE_ONCE(current->capture_control, &capc);
2532
2533         ret = compact_zone(&cc, &capc);
2534
2535         VM_BUG_ON(!list_empty(&cc.freepages));
2536         VM_BUG_ON(!list_empty(&cc.migratepages));
2537
2538         /*
2539          * Make sure we hide capture control first before we read the captured
2540          * page pointer, otherwise an interrupt could free and capture a page
2541          * and we would leak it.
2542          */
2543         WRITE_ONCE(current->capture_control, NULL);
2544         *capture = READ_ONCE(capc.page);
2545         /*
2546          * Technically, it is also possible that compaction is skipped but
2547          * the page is still captured out of luck(IRQ came and freed the page).
2548          * Returning COMPACT_SUCCESS in such cases helps in properly accounting
2549          * the COMPACT[STALL|FAIL] when compaction is skipped.
2550          */
2551         if (*capture)
2552                 ret = COMPACT_SUCCESS;
2553
2554         return ret;
2555 }
2556
2557 int sysctl_extfrag_threshold = 500;
2558
2559 /**
2560  * try_to_compact_pages - Direct compact to satisfy a high-order allocation
2561  * @gfp_mask: The GFP mask of the current allocation
2562  * @order: The order of the current allocation
2563  * @alloc_flags: The allocation flags of the current allocation
2564  * @ac: The context of current allocation
2565  * @prio: Determines how hard direct compaction should try to succeed
2566  * @capture: Pointer to free page created by compaction will be stored here
2567  *
2568  * This is the main entry point for direct page compaction.
2569  */
2570 enum compact_result try_to_compact_pages(gfp_t gfp_mask, unsigned int order,
2571                 unsigned int alloc_flags, const struct alloc_context *ac,
2572                 enum compact_priority prio, struct page **capture)
2573 {
2574         int may_perform_io = (__force int)(gfp_mask & __GFP_IO);
2575         struct zoneref *z;
2576         struct zone *zone;
2577         enum compact_result rc = COMPACT_SKIPPED;
2578
2579         /*
2580          * Check if the GFP flags allow compaction - GFP_NOIO is really
2581          * tricky context because the migration might require IO
2582          */
2583         if (!may_perform_io)
2584                 return COMPACT_SKIPPED;
2585
2586         trace_mm_compaction_try_to_compact_pages(order, gfp_mask, prio);
2587
2588         /* Compact each zone in the list */
2589         for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2590                                         ac->highest_zoneidx, ac->nodemask) {
2591                 enum compact_result status;
2592
2593                 if (prio > MIN_COMPACT_PRIORITY
2594                                         && compaction_deferred(zone, order)) {
2595                         rc = max_t(enum compact_result, COMPACT_DEFERRED, rc);
2596                         continue;
2597                 }
2598
2599                 status = compact_zone_order(zone, order, gfp_mask, prio,
2600                                 alloc_flags, ac->highest_zoneidx, capture);
2601                 rc = max(status, rc);
2602
2603                 /* The allocation should succeed, stop compacting */
2604                 if (status == COMPACT_SUCCESS) {
2605                         /*
2606                          * We think the allocation will succeed in this zone,
2607                          * but it is not certain, hence the false. The caller
2608                          * will repeat this with true if allocation indeed
2609                          * succeeds in this zone.
2610                          */
2611                         compaction_defer_reset(zone, order, false);
2612
2613                         break;
2614                 }
2615
2616                 if (prio != COMPACT_PRIO_ASYNC && (status == COMPACT_COMPLETE ||
2617                                         status == COMPACT_PARTIAL_SKIPPED))
2618                         /*
2619                          * We think that allocation won't succeed in this zone
2620                          * so we defer compaction there. If it ends up
2621                          * succeeding after all, it will be reset.
2622                          */
2623                         defer_compaction(zone, order);
2624
2625                 /*
2626                  * We might have stopped compacting due to need_resched() in
2627                  * async compaction, or due to a fatal signal detected. In that
2628                  * case do not try further zones
2629                  */
2630                 if ((prio == COMPACT_PRIO_ASYNC && need_resched())
2631                                         || fatal_signal_pending(current))
2632                         break;
2633         }
2634
2635         return rc;
2636 }
2637
2638 /*
2639  * Compact all zones within a node till each zone's fragmentation score
2640  * reaches within proactive compaction thresholds (as determined by the
2641  * proactiveness tunable).
2642  *
2643  * It is possible that the function returns before reaching score targets
2644  * due to various back-off conditions, such as, contention on per-node or
2645  * per-zone locks.
2646  */
2647 static void proactive_compact_node(pg_data_t *pgdat)
2648 {
2649         int zoneid;
2650         struct zone *zone;
2651         struct compact_control cc = {
2652                 .order = -1,
2653                 .mode = MIGRATE_SYNC_LIGHT,
2654                 .ignore_skip_hint = true,
2655                 .whole_zone = true,
2656                 .gfp_mask = GFP_KERNEL,
2657                 .proactive_compaction = true,
2658         };
2659
2660         for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
2661                 zone = &pgdat->node_zones[zoneid];
2662                 if (!populated_zone(zone))
2663                         continue;
2664
2665                 cc.zone = zone;
2666
2667                 compact_zone(&cc, NULL);
2668
2669                 VM_BUG_ON(!list_empty(&cc.freepages));
2670                 VM_BUG_ON(!list_empty(&cc.migratepages));
2671         }
2672 }
2673
2674 /* Compact all zones within a node */
2675 static void compact_node(int nid)
2676 {
2677         pg_data_t *pgdat = NODE_DATA(nid);
2678         int zoneid;
2679         struct zone *zone;
2680         struct compact_control cc = {
2681                 .order = -1,
2682                 .mode = MIGRATE_SYNC,
2683                 .ignore_skip_hint = true,
2684                 .whole_zone = true,
2685                 .gfp_mask = GFP_KERNEL,
2686         };
2687
2688
2689         for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
2690
2691                 zone = &pgdat->node_zones[zoneid];
2692                 if (!populated_zone(zone))
2693                         continue;
2694
2695                 cc.zone = zone;
2696
2697                 compact_zone(&cc, NULL);
2698
2699                 VM_BUG_ON(!list_empty(&cc.freepages));
2700                 VM_BUG_ON(!list_empty(&cc.migratepages));
2701         }
2702 }
2703
2704 /* Compact all nodes in the system */
2705 static void compact_nodes(void)
2706 {
2707         int nid;
2708
2709         /* Flush pending updates to the LRU lists */
2710         lru_add_drain_all();
2711
2712         for_each_online_node(nid)
2713                 compact_node(nid);
2714 }
2715
2716 /*
2717  * Tunable for proactive compaction. It determines how
2718  * aggressively the kernel should compact memory in the
2719  * background. It takes values in the range [0, 100].
2720  */
2721 unsigned int __read_mostly sysctl_compaction_proactiveness = 20;
2722
2723 int compaction_proactiveness_sysctl_handler(struct ctl_table *table, int write,
2724                 void *buffer, size_t *length, loff_t *ppos)
2725 {
2726         int rc, nid;
2727
2728         rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
2729         if (rc)
2730                 return rc;
2731
2732         if (write && sysctl_compaction_proactiveness) {
2733                 for_each_online_node(nid) {
2734                         pg_data_t *pgdat = NODE_DATA(nid);
2735
2736                         if (pgdat->proactive_compact_trigger)
2737                                 continue;
2738
2739                         pgdat->proactive_compact_trigger = true;
2740                         wake_up_interruptible(&pgdat->kcompactd_wait);
2741                 }
2742         }
2743
2744         return 0;
2745 }
2746
2747 /*
2748  * This is the entry point for compacting all nodes via
2749  * /proc/sys/vm/compact_memory
2750  */
2751 int sysctl_compaction_handler(struct ctl_table *table, int write,
2752                         void *buffer, size_t *length, loff_t *ppos)
2753 {
2754         if (write)
2755                 compact_nodes();
2756
2757         return 0;
2758 }
2759
2760 #if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
2761 static ssize_t compact_store(struct device *dev,
2762                              struct device_attribute *attr,
2763                              const char *buf, size_t count)
2764 {
2765         int nid = dev->id;
2766
2767         if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
2768                 /* Flush pending updates to the LRU lists */
2769                 lru_add_drain_all();
2770
2771                 compact_node(nid);
2772         }
2773
2774         return count;
2775 }
2776 static DEVICE_ATTR_WO(compact);
2777
2778 int compaction_register_node(struct node *node)
2779 {
2780         return device_create_file(&node->dev, &dev_attr_compact);
2781 }
2782
2783 void compaction_unregister_node(struct node *node)
2784 {
2785         return device_remove_file(&node->dev, &dev_attr_compact);
2786 }
2787 #endif /* CONFIG_SYSFS && CONFIG_NUMA */
2788
2789 static inline bool kcompactd_work_requested(pg_data_t *pgdat)
2790 {
2791         return pgdat->kcompactd_max_order > 0 || kthread_should_stop() ||
2792                 pgdat->proactive_compact_trigger;
2793 }
2794
2795 static bool kcompactd_node_suitable(pg_data_t *pgdat)
2796 {
2797         int zoneid;
2798         struct zone *zone;
2799         enum zone_type highest_zoneidx = pgdat->kcompactd_highest_zoneidx;
2800
2801         for (zoneid = 0; zoneid <= highest_zoneidx; zoneid++) {
2802                 zone = &pgdat->node_zones[zoneid];
2803
2804                 if (!populated_zone(zone))
2805                         continue;
2806
2807                 if (compaction_suitable(zone, pgdat->kcompactd_max_order, 0,
2808                                         highest_zoneidx) == COMPACT_CONTINUE)
2809                         return true;
2810         }
2811
2812         return false;
2813 }
2814
2815 static void kcompactd_do_work(pg_data_t *pgdat)
2816 {
2817         /*
2818          * With no special task, compact all zones so that a page of requested
2819          * order is allocatable.
2820          */
2821         int zoneid;
2822         struct zone *zone;
2823         struct compact_control cc = {
2824                 .order = pgdat->kcompactd_max_order,
2825                 .search_order = pgdat->kcompactd_max_order,
2826                 .highest_zoneidx = pgdat->kcompactd_highest_zoneidx,
2827                 .mode = MIGRATE_SYNC_LIGHT,
2828                 .ignore_skip_hint = false,
2829                 .gfp_mask = GFP_KERNEL,
2830         };
2831         trace_mm_compaction_kcompactd_wake(pgdat->node_id, cc.order,
2832                                                         cc.highest_zoneidx);
2833         count_compact_event(KCOMPACTD_WAKE);
2834
2835         for (zoneid = 0; zoneid <= cc.highest_zoneidx; zoneid++) {
2836                 int status;
2837
2838                 zone = &pgdat->node_zones[zoneid];
2839                 if (!populated_zone(zone))
2840                         continue;
2841
2842                 if (compaction_deferred(zone, cc.order))
2843                         continue;
2844
2845                 if (compaction_suitable(zone, cc.order, 0, zoneid) !=
2846                                                         COMPACT_CONTINUE)
2847                         continue;
2848
2849                 if (kthread_should_stop())
2850                         return;
2851
2852                 cc.zone = zone;
2853                 status = compact_zone(&cc, NULL);
2854
2855                 if (status == COMPACT_SUCCESS) {
2856                         compaction_defer_reset(zone, cc.order, false);
2857                 } else if (status == COMPACT_PARTIAL_SKIPPED || status == COMPACT_COMPLETE) {
2858                         /*
2859                          * Buddy pages may become stranded on pcps that could
2860                          * otherwise coalesce on the zone's free area for
2861                          * order >= cc.order.  This is ratelimited by the
2862                          * upcoming deferral.
2863                          */
2864                         drain_all_pages(zone);
2865
2866                         /*
2867                          * We use sync migration mode here, so we defer like
2868                          * sync direct compaction does.
2869                          */
2870                         defer_compaction(zone, cc.order);
2871                 }
2872
2873                 count_compact_events(KCOMPACTD_MIGRATE_SCANNED,
2874                                      cc.total_migrate_scanned);
2875                 count_compact_events(KCOMPACTD_FREE_SCANNED,
2876                                      cc.total_free_scanned);
2877
2878                 VM_BUG_ON(!list_empty(&cc.freepages));
2879                 VM_BUG_ON(!list_empty(&cc.migratepages));
2880         }
2881
2882         /*
2883          * Regardless of success, we are done until woken up next. But remember
2884          * the requested order/highest_zoneidx in case it was higher/tighter
2885          * than our current ones
2886          */
2887         if (pgdat->kcompactd_max_order <= cc.order)
2888                 pgdat->kcompactd_max_order = 0;
2889         if (pgdat->kcompactd_highest_zoneidx >= cc.highest_zoneidx)
2890                 pgdat->kcompactd_highest_zoneidx = pgdat->nr_zones - 1;
2891 }
2892
2893 void wakeup_kcompactd(pg_data_t *pgdat, int order, int highest_zoneidx)
2894 {
2895         if (!order)
2896                 return;
2897
2898         if (pgdat->kcompactd_max_order < order)
2899                 pgdat->kcompactd_max_order = order;
2900
2901         if (pgdat->kcompactd_highest_zoneidx > highest_zoneidx)
2902                 pgdat->kcompactd_highest_zoneidx = highest_zoneidx;
2903
2904         /*
2905          * Pairs with implicit barrier in wait_event_freezable()
2906          * such that wakeups are not missed.
2907          */
2908         if (!wq_has_sleeper(&pgdat->kcompactd_wait))
2909                 return;
2910
2911         if (!kcompactd_node_suitable(pgdat))
2912                 return;
2913
2914         trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, order,
2915                                                         highest_zoneidx);
2916         wake_up_interruptible(&pgdat->kcompactd_wait);
2917 }
2918
2919 /*
2920  * The background compaction daemon, started as a kernel thread
2921  * from the init process.
2922  */
2923 static int kcompactd(void *p)
2924 {
2925         pg_data_t *pgdat = (pg_data_t *)p;
2926         struct task_struct *tsk = current;
2927         long default_timeout = msecs_to_jiffies(HPAGE_FRAG_CHECK_INTERVAL_MSEC);
2928         long timeout = default_timeout;
2929
2930         const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2931
2932         if (!cpumask_empty(cpumask))
2933                 set_cpus_allowed_ptr(tsk, cpumask);
2934
2935         set_freezable();
2936
2937         pgdat->kcompactd_max_order = 0;
2938         pgdat->kcompactd_highest_zoneidx = pgdat->nr_zones - 1;
2939
2940         while (!kthread_should_stop()) {
2941                 unsigned long pflags;
2942
2943                 /*
2944                  * Avoid the unnecessary wakeup for proactive compaction
2945                  * when it is disabled.
2946                  */
2947                 if (!sysctl_compaction_proactiveness)
2948                         timeout = MAX_SCHEDULE_TIMEOUT;
2949                 trace_mm_compaction_kcompactd_sleep(pgdat->node_id);
2950                 if (wait_event_freezable_timeout(pgdat->kcompactd_wait,
2951                         kcompactd_work_requested(pgdat), timeout) &&
2952                         !pgdat->proactive_compact_trigger) {
2953
2954                         psi_memstall_enter(&pflags);
2955                         kcompactd_do_work(pgdat);
2956                         psi_memstall_leave(&pflags);
2957                         /*
2958                          * Reset the timeout value. The defer timeout from
2959                          * proactive compaction is lost here but that is fine
2960                          * as the condition of the zone changing substantionally
2961                          * then carrying on with the previous defer interval is
2962                          * not useful.
2963                          */
2964                         timeout = default_timeout;
2965                         continue;
2966                 }
2967
2968                 /*
2969                  * Start the proactive work with default timeout. Based
2970                  * on the fragmentation score, this timeout is updated.
2971                  */
2972                 timeout = default_timeout;
2973                 if (should_proactive_compact_node(pgdat)) {
2974                         unsigned int prev_score, score;
2975
2976                         prev_score = fragmentation_score_node(pgdat);
2977                         proactive_compact_node(pgdat);
2978                         score = fragmentation_score_node(pgdat);
2979                         /*
2980                          * Defer proactive compaction if the fragmentation
2981                          * score did not go down i.e. no progress made.
2982                          */
2983                         if (unlikely(score >= prev_score))
2984                                 timeout =
2985                                    default_timeout << COMPACT_MAX_DEFER_SHIFT;
2986                 }
2987                 if (unlikely(pgdat->proactive_compact_trigger))
2988                         pgdat->proactive_compact_trigger = false;
2989         }
2990
2991         return 0;
2992 }
2993
2994 /*
2995  * This kcompactd start function will be called by init and node-hot-add.
2996  * On node-hot-add, kcompactd will moved to proper cpus if cpus are hot-added.
2997  */
2998 void kcompactd_run(int nid)
2999 {
3000         pg_data_t *pgdat = NODE_DATA(nid);
3001
3002         if (pgdat->kcompactd)
3003                 return;
3004
3005         pgdat->kcompactd = kthread_run(kcompactd, pgdat, "kcompactd%d", nid);
3006         if (IS_ERR(pgdat->kcompactd)) {
3007                 pr_err("Failed to start kcompactd on node %d\n", nid);
3008                 pgdat->kcompactd = NULL;
3009         }
3010 }
3011
3012 /*
3013  * Called by memory hotplug when all memory in a node is offlined. Caller must
3014  * hold mem_hotplug_begin/end().
3015  */
3016 void kcompactd_stop(int nid)
3017 {
3018         struct task_struct *kcompactd = NODE_DATA(nid)->kcompactd;
3019
3020         if (kcompactd) {
3021                 kthread_stop(kcompactd);
3022                 NODE_DATA(nid)->kcompactd = NULL;
3023         }
3024 }
3025
3026 /*
3027  * It's optimal to keep kcompactd on the same CPUs as their memory, but
3028  * not required for correctness. So if the last cpu in a node goes
3029  * away, we get changed to run anywhere: as the first one comes back,
3030  * restore their cpu bindings.
3031  */
3032 static int kcompactd_cpu_online(unsigned int cpu)
3033 {
3034         int nid;
3035
3036         for_each_node_state(nid, N_MEMORY) {
3037                 pg_data_t *pgdat = NODE_DATA(nid);
3038                 const struct cpumask *mask;
3039
3040                 mask = cpumask_of_node(pgdat->node_id);
3041
3042                 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3043                         /* One of our CPUs online: restore mask */
3044                         if (pgdat->kcompactd)
3045                                 set_cpus_allowed_ptr(pgdat->kcompactd, mask);
3046         }
3047         return 0;
3048 }
3049
3050 static int __init kcompactd_init(void)
3051 {
3052         int nid;
3053         int ret;
3054
3055         ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
3056                                         "mm/compaction:online",
3057                                         kcompactd_cpu_online, NULL);
3058         if (ret < 0) {
3059                 pr_err("kcompactd: failed to register hotplug callbacks.\n");
3060                 return ret;
3061         }
3062
3063         for_each_node_state(nid, N_MEMORY)
3064                 kcompactd_run(nid);
3065         return 0;
3066 }
3067 subsys_initcall(kcompactd_init)
3068
3069 #endif /* CONFIG_COMPACTION */