mm: Convert all PageMovable users to movable_operations
[platform/kernel/linux-starfive.git] / mm / compaction.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * linux/mm/compaction.c
4  *
5  * Memory compaction for the reduction of external fragmentation. Note that
6  * this heavily depends upon page migration to do all the real heavy
7  * lifting
8  *
9  * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
10  */
11 #include <linux/cpu.h>
12 #include <linux/swap.h>
13 #include <linux/migrate.h>
14 #include <linux/compaction.h>
15 #include <linux/mm_inline.h>
16 #include <linux/sched/signal.h>
17 #include <linux/backing-dev.h>
18 #include <linux/sysctl.h>
19 #include <linux/sysfs.h>
20 #include <linux/page-isolation.h>
21 #include <linux/kasan.h>
22 #include <linux/kthread.h>
23 #include <linux/freezer.h>
24 #include <linux/page_owner.h>
25 #include <linux/psi.h>
26 #include "internal.h"
27
28 #ifdef CONFIG_COMPACTION
29 /*
30  * Fragmentation score check interval for proactive compaction purposes.
31  */
32 #define HPAGE_FRAG_CHECK_INTERVAL_MSEC  (500)
33
34 static inline void count_compact_event(enum vm_event_item item)
35 {
36         count_vm_event(item);
37 }
38
39 static inline void count_compact_events(enum vm_event_item item, long delta)
40 {
41         count_vm_events(item, delta);
42 }
43 #else
44 #define count_compact_event(item) do { } while (0)
45 #define count_compact_events(item, delta) do { } while (0)
46 #endif
47
48 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
49
50 #define CREATE_TRACE_POINTS
51 #include <trace/events/compaction.h>
52
53 #define block_start_pfn(pfn, order)     round_down(pfn, 1UL << (order))
54 #define block_end_pfn(pfn, order)       ALIGN((pfn) + 1, 1UL << (order))
55 #define pageblock_start_pfn(pfn)        block_start_pfn(pfn, pageblock_order)
56 #define pageblock_end_pfn(pfn)          block_end_pfn(pfn, pageblock_order)
57
58 /*
59  * Page order with-respect-to which proactive compaction
60  * calculates external fragmentation, which is used as
61  * the "fragmentation score" of a node/zone.
62  */
63 #if defined CONFIG_TRANSPARENT_HUGEPAGE
64 #define COMPACTION_HPAGE_ORDER  HPAGE_PMD_ORDER
65 #elif defined CONFIG_HUGETLBFS
66 #define COMPACTION_HPAGE_ORDER  HUGETLB_PAGE_ORDER
67 #else
68 #define COMPACTION_HPAGE_ORDER  (PMD_SHIFT - PAGE_SHIFT)
69 #endif
70
71 static unsigned long release_freepages(struct list_head *freelist)
72 {
73         struct page *page, *next;
74         unsigned long high_pfn = 0;
75
76         list_for_each_entry_safe(page, next, freelist, lru) {
77                 unsigned long pfn = page_to_pfn(page);
78                 list_del(&page->lru);
79                 __free_page(page);
80                 if (pfn > high_pfn)
81                         high_pfn = pfn;
82         }
83
84         return high_pfn;
85 }
86
87 static void split_map_pages(struct list_head *list)
88 {
89         unsigned int i, order, nr_pages;
90         struct page *page, *next;
91         LIST_HEAD(tmp_list);
92
93         list_for_each_entry_safe(page, next, list, lru) {
94                 list_del(&page->lru);
95
96                 order = page_private(page);
97                 nr_pages = 1 << order;
98
99                 post_alloc_hook(page, order, __GFP_MOVABLE);
100                 if (order)
101                         split_page(page, order);
102
103                 for (i = 0; i < nr_pages; i++) {
104                         list_add(&page->lru, &tmp_list);
105                         page++;
106                 }
107         }
108
109         list_splice(&tmp_list, list);
110 }
111
112 #ifdef CONFIG_COMPACTION
113 bool PageMovable(struct page *page)
114 {
115         const struct movable_operations *mops;
116
117         VM_BUG_ON_PAGE(!PageLocked(page), page);
118         if (!__PageMovable(page))
119                 return false;
120
121         mops = page_movable_ops(page);
122         if (mops)
123                 return true;
124
125         return false;
126 }
127 EXPORT_SYMBOL(PageMovable);
128
129 void __SetPageMovable(struct page *page, const struct movable_operations *mops)
130 {
131         VM_BUG_ON_PAGE(!PageLocked(page), page);
132         VM_BUG_ON_PAGE((unsigned long)mops & PAGE_MAPPING_MOVABLE, page);
133         page->mapping = (void *)((unsigned long)mops | PAGE_MAPPING_MOVABLE);
134 }
135 EXPORT_SYMBOL(__SetPageMovable);
136
137 void __ClearPageMovable(struct page *page)
138 {
139         VM_BUG_ON_PAGE(!PageMovable(page), page);
140         /*
141          * This page still has the type of a movable page, but it's
142          * actually not movable any more.
143          */
144         page->mapping = (void *)PAGE_MAPPING_MOVABLE;
145 }
146 EXPORT_SYMBOL(__ClearPageMovable);
147
148 /* Do not skip compaction more than 64 times */
149 #define COMPACT_MAX_DEFER_SHIFT 6
150
151 /*
152  * Compaction is deferred when compaction fails to result in a page
153  * allocation success. 1 << compact_defer_shift, compactions are skipped up
154  * to a limit of 1 << COMPACT_MAX_DEFER_SHIFT
155  */
156 static void defer_compaction(struct zone *zone, int order)
157 {
158         zone->compact_considered = 0;
159         zone->compact_defer_shift++;
160
161         if (order < zone->compact_order_failed)
162                 zone->compact_order_failed = order;
163
164         if (zone->compact_defer_shift > COMPACT_MAX_DEFER_SHIFT)
165                 zone->compact_defer_shift = COMPACT_MAX_DEFER_SHIFT;
166
167         trace_mm_compaction_defer_compaction(zone, order);
168 }
169
170 /* Returns true if compaction should be skipped this time */
171 static bool compaction_deferred(struct zone *zone, int order)
172 {
173         unsigned long defer_limit = 1UL << zone->compact_defer_shift;
174
175         if (order < zone->compact_order_failed)
176                 return false;
177
178         /* Avoid possible overflow */
179         if (++zone->compact_considered >= defer_limit) {
180                 zone->compact_considered = defer_limit;
181                 return false;
182         }
183
184         trace_mm_compaction_deferred(zone, order);
185
186         return true;
187 }
188
189 /*
190  * Update defer tracking counters after successful compaction of given order,
191  * which means an allocation either succeeded (alloc_success == true) or is
192  * expected to succeed.
193  */
194 void compaction_defer_reset(struct zone *zone, int order,
195                 bool alloc_success)
196 {
197         if (alloc_success) {
198                 zone->compact_considered = 0;
199                 zone->compact_defer_shift = 0;
200         }
201         if (order >= zone->compact_order_failed)
202                 zone->compact_order_failed = order + 1;
203
204         trace_mm_compaction_defer_reset(zone, order);
205 }
206
207 /* Returns true if restarting compaction after many failures */
208 static bool compaction_restarting(struct zone *zone, int order)
209 {
210         if (order < zone->compact_order_failed)
211                 return false;
212
213         return zone->compact_defer_shift == COMPACT_MAX_DEFER_SHIFT &&
214                 zone->compact_considered >= 1UL << zone->compact_defer_shift;
215 }
216
217 /* Returns true if the pageblock should be scanned for pages to isolate. */
218 static inline bool isolation_suitable(struct compact_control *cc,
219                                         struct page *page)
220 {
221         if (cc->ignore_skip_hint)
222                 return true;
223
224         return !get_pageblock_skip(page);
225 }
226
227 static void reset_cached_positions(struct zone *zone)
228 {
229         zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn;
230         zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn;
231         zone->compact_cached_free_pfn =
232                                 pageblock_start_pfn(zone_end_pfn(zone) - 1);
233 }
234
235 /*
236  * Compound pages of >= pageblock_order should consistently be skipped until
237  * released. It is always pointless to compact pages of such order (if they are
238  * migratable), and the pageblocks they occupy cannot contain any free pages.
239  */
240 static bool pageblock_skip_persistent(struct page *page)
241 {
242         if (!PageCompound(page))
243                 return false;
244
245         page = compound_head(page);
246
247         if (compound_order(page) >= pageblock_order)
248                 return true;
249
250         return false;
251 }
252
253 static bool
254 __reset_isolation_pfn(struct zone *zone, unsigned long pfn, bool check_source,
255                                                         bool check_target)
256 {
257         struct page *page = pfn_to_online_page(pfn);
258         struct page *block_page;
259         struct page *end_page;
260         unsigned long block_pfn;
261
262         if (!page)
263                 return false;
264         if (zone != page_zone(page))
265                 return false;
266         if (pageblock_skip_persistent(page))
267                 return false;
268
269         /*
270          * If skip is already cleared do no further checking once the
271          * restart points have been set.
272          */
273         if (check_source && check_target && !get_pageblock_skip(page))
274                 return true;
275
276         /*
277          * If clearing skip for the target scanner, do not select a
278          * non-movable pageblock as the starting point.
279          */
280         if (!check_source && check_target &&
281             get_pageblock_migratetype(page) != MIGRATE_MOVABLE)
282                 return false;
283
284         /* Ensure the start of the pageblock or zone is online and valid */
285         block_pfn = pageblock_start_pfn(pfn);
286         block_pfn = max(block_pfn, zone->zone_start_pfn);
287         block_page = pfn_to_online_page(block_pfn);
288         if (block_page) {
289                 page = block_page;
290                 pfn = block_pfn;
291         }
292
293         /* Ensure the end of the pageblock or zone is online and valid */
294         block_pfn = pageblock_end_pfn(pfn) - 1;
295         block_pfn = min(block_pfn, zone_end_pfn(zone) - 1);
296         end_page = pfn_to_online_page(block_pfn);
297         if (!end_page)
298                 return false;
299
300         /*
301          * Only clear the hint if a sample indicates there is either a
302          * free page or an LRU page in the block. One or other condition
303          * is necessary for the block to be a migration source/target.
304          */
305         do {
306                 if (check_source && PageLRU(page)) {
307                         clear_pageblock_skip(page);
308                         return true;
309                 }
310
311                 if (check_target && PageBuddy(page)) {
312                         clear_pageblock_skip(page);
313                         return true;
314                 }
315
316                 page += (1 << PAGE_ALLOC_COSTLY_ORDER);
317         } while (page <= end_page);
318
319         return false;
320 }
321
322 /*
323  * This function is called to clear all cached information on pageblocks that
324  * should be skipped for page isolation when the migrate and free page scanner
325  * meet.
326  */
327 static void __reset_isolation_suitable(struct zone *zone)
328 {
329         unsigned long migrate_pfn = zone->zone_start_pfn;
330         unsigned long free_pfn = zone_end_pfn(zone) - 1;
331         unsigned long reset_migrate = free_pfn;
332         unsigned long reset_free = migrate_pfn;
333         bool source_set = false;
334         bool free_set = false;
335
336         if (!zone->compact_blockskip_flush)
337                 return;
338
339         zone->compact_blockskip_flush = false;
340
341         /*
342          * Walk the zone and update pageblock skip information. Source looks
343          * for PageLRU while target looks for PageBuddy. When the scanner
344          * is found, both PageBuddy and PageLRU are checked as the pageblock
345          * is suitable as both source and target.
346          */
347         for (; migrate_pfn < free_pfn; migrate_pfn += pageblock_nr_pages,
348                                         free_pfn -= pageblock_nr_pages) {
349                 cond_resched();
350
351                 /* Update the migrate PFN */
352                 if (__reset_isolation_pfn(zone, migrate_pfn, true, source_set) &&
353                     migrate_pfn < reset_migrate) {
354                         source_set = true;
355                         reset_migrate = migrate_pfn;
356                         zone->compact_init_migrate_pfn = reset_migrate;
357                         zone->compact_cached_migrate_pfn[0] = reset_migrate;
358                         zone->compact_cached_migrate_pfn[1] = reset_migrate;
359                 }
360
361                 /* Update the free PFN */
362                 if (__reset_isolation_pfn(zone, free_pfn, free_set, true) &&
363                     free_pfn > reset_free) {
364                         free_set = true;
365                         reset_free = free_pfn;
366                         zone->compact_init_free_pfn = reset_free;
367                         zone->compact_cached_free_pfn = reset_free;
368                 }
369         }
370
371         /* Leave no distance if no suitable block was reset */
372         if (reset_migrate >= reset_free) {
373                 zone->compact_cached_migrate_pfn[0] = migrate_pfn;
374                 zone->compact_cached_migrate_pfn[1] = migrate_pfn;
375                 zone->compact_cached_free_pfn = free_pfn;
376         }
377 }
378
379 void reset_isolation_suitable(pg_data_t *pgdat)
380 {
381         int zoneid;
382
383         for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
384                 struct zone *zone = &pgdat->node_zones[zoneid];
385                 if (!populated_zone(zone))
386                         continue;
387
388                 /* Only flush if a full compaction finished recently */
389                 if (zone->compact_blockskip_flush)
390                         __reset_isolation_suitable(zone);
391         }
392 }
393
394 /*
395  * Sets the pageblock skip bit if it was clear. Note that this is a hint as
396  * locks are not required for read/writers. Returns true if it was already set.
397  */
398 static bool test_and_set_skip(struct compact_control *cc, struct page *page,
399                                                         unsigned long pfn)
400 {
401         bool skip;
402
403         /* Do no update if skip hint is being ignored */
404         if (cc->ignore_skip_hint)
405                 return false;
406
407         if (!IS_ALIGNED(pfn, pageblock_nr_pages))
408                 return false;
409
410         skip = get_pageblock_skip(page);
411         if (!skip && !cc->no_set_skip_hint)
412                 set_pageblock_skip(page);
413
414         return skip;
415 }
416
417 static void update_cached_migrate(struct compact_control *cc, unsigned long pfn)
418 {
419         struct zone *zone = cc->zone;
420
421         pfn = pageblock_end_pfn(pfn);
422
423         /* Set for isolation rather than compaction */
424         if (cc->no_set_skip_hint)
425                 return;
426
427         if (pfn > zone->compact_cached_migrate_pfn[0])
428                 zone->compact_cached_migrate_pfn[0] = pfn;
429         if (cc->mode != MIGRATE_ASYNC &&
430             pfn > zone->compact_cached_migrate_pfn[1])
431                 zone->compact_cached_migrate_pfn[1] = pfn;
432 }
433
434 /*
435  * If no pages were isolated then mark this pageblock to be skipped in the
436  * future. The information is later cleared by __reset_isolation_suitable().
437  */
438 static void update_pageblock_skip(struct compact_control *cc,
439                         struct page *page, unsigned long pfn)
440 {
441         struct zone *zone = cc->zone;
442
443         if (cc->no_set_skip_hint)
444                 return;
445
446         if (!page)
447                 return;
448
449         set_pageblock_skip(page);
450
451         /* Update where async and sync compaction should restart */
452         if (pfn < zone->compact_cached_free_pfn)
453                 zone->compact_cached_free_pfn = pfn;
454 }
455 #else
456 static inline bool isolation_suitable(struct compact_control *cc,
457                                         struct page *page)
458 {
459         return true;
460 }
461
462 static inline bool pageblock_skip_persistent(struct page *page)
463 {
464         return false;
465 }
466
467 static inline void update_pageblock_skip(struct compact_control *cc,
468                         struct page *page, unsigned long pfn)
469 {
470 }
471
472 static void update_cached_migrate(struct compact_control *cc, unsigned long pfn)
473 {
474 }
475
476 static bool test_and_set_skip(struct compact_control *cc, struct page *page,
477                                                         unsigned long pfn)
478 {
479         return false;
480 }
481 #endif /* CONFIG_COMPACTION */
482
483 /*
484  * Compaction requires the taking of some coarse locks that are potentially
485  * very heavily contended. For async compaction, trylock and record if the
486  * lock is contended. The lock will still be acquired but compaction will
487  * abort when the current block is finished regardless of success rate.
488  * Sync compaction acquires the lock.
489  *
490  * Always returns true which makes it easier to track lock state in callers.
491  */
492 static bool compact_lock_irqsave(spinlock_t *lock, unsigned long *flags,
493                                                 struct compact_control *cc)
494         __acquires(lock)
495 {
496         /* Track if the lock is contended in async mode */
497         if (cc->mode == MIGRATE_ASYNC && !cc->contended) {
498                 if (spin_trylock_irqsave(lock, *flags))
499                         return true;
500
501                 cc->contended = true;
502         }
503
504         spin_lock_irqsave(lock, *flags);
505         return true;
506 }
507
508 /*
509  * Compaction requires the taking of some coarse locks that are potentially
510  * very heavily contended. The lock should be periodically unlocked to avoid
511  * having disabled IRQs for a long time, even when there is nobody waiting on
512  * the lock. It might also be that allowing the IRQs will result in
513  * need_resched() becoming true. If scheduling is needed, compaction schedules.
514  * Either compaction type will also abort if a fatal signal is pending.
515  * In either case if the lock was locked, it is dropped and not regained.
516  *
517  * Returns true if compaction should abort due to fatal signal pending.
518  * Returns false when compaction can continue.
519  */
520 static bool compact_unlock_should_abort(spinlock_t *lock,
521                 unsigned long flags, bool *locked, struct compact_control *cc)
522 {
523         if (*locked) {
524                 spin_unlock_irqrestore(lock, flags);
525                 *locked = false;
526         }
527
528         if (fatal_signal_pending(current)) {
529                 cc->contended = true;
530                 return true;
531         }
532
533         cond_resched();
534
535         return false;
536 }
537
538 /*
539  * Isolate free pages onto a private freelist. If @strict is true, will abort
540  * returning 0 on any invalid PFNs or non-free pages inside of the pageblock
541  * (even though it may still end up isolating some pages).
542  */
543 static unsigned long isolate_freepages_block(struct compact_control *cc,
544                                 unsigned long *start_pfn,
545                                 unsigned long end_pfn,
546                                 struct list_head *freelist,
547                                 unsigned int stride,
548                                 bool strict)
549 {
550         int nr_scanned = 0, total_isolated = 0;
551         struct page *cursor;
552         unsigned long flags = 0;
553         bool locked = false;
554         unsigned long blockpfn = *start_pfn;
555         unsigned int order;
556
557         /* Strict mode is for isolation, speed is secondary */
558         if (strict)
559                 stride = 1;
560
561         cursor = pfn_to_page(blockpfn);
562
563         /* Isolate free pages. */
564         for (; blockpfn < end_pfn; blockpfn += stride, cursor += stride) {
565                 int isolated;
566                 struct page *page = cursor;
567
568                 /*
569                  * Periodically drop the lock (if held) regardless of its
570                  * contention, to give chance to IRQs. Abort if fatal signal
571                  * pending.
572                  */
573                 if (!(blockpfn % COMPACT_CLUSTER_MAX)
574                     && compact_unlock_should_abort(&cc->zone->lock, flags,
575                                                                 &locked, cc))
576                         break;
577
578                 nr_scanned++;
579
580                 /*
581                  * For compound pages such as THP and hugetlbfs, we can save
582                  * potentially a lot of iterations if we skip them at once.
583                  * The check is racy, but we can consider only valid values
584                  * and the only danger is skipping too much.
585                  */
586                 if (PageCompound(page)) {
587                         const unsigned int order = compound_order(page);
588
589                         if (likely(order < MAX_ORDER)) {
590                                 blockpfn += (1UL << order) - 1;
591                                 cursor += (1UL << order) - 1;
592                         }
593                         goto isolate_fail;
594                 }
595
596                 if (!PageBuddy(page))
597                         goto isolate_fail;
598
599                 /* If we already hold the lock, we can skip some rechecking. */
600                 if (!locked) {
601                         locked = compact_lock_irqsave(&cc->zone->lock,
602                                                                 &flags, cc);
603
604                         /* Recheck this is a buddy page under lock */
605                         if (!PageBuddy(page))
606                                 goto isolate_fail;
607                 }
608
609                 /* Found a free page, will break it into order-0 pages */
610                 order = buddy_order(page);
611                 isolated = __isolate_free_page(page, order);
612                 if (!isolated)
613                         break;
614                 set_page_private(page, order);
615
616                 total_isolated += isolated;
617                 cc->nr_freepages += isolated;
618                 list_add_tail(&page->lru, freelist);
619
620                 if (!strict && cc->nr_migratepages <= cc->nr_freepages) {
621                         blockpfn += isolated;
622                         break;
623                 }
624                 /* Advance to the end of split page */
625                 blockpfn += isolated - 1;
626                 cursor += isolated - 1;
627                 continue;
628
629 isolate_fail:
630                 if (strict)
631                         break;
632                 else
633                         continue;
634
635         }
636
637         if (locked)
638                 spin_unlock_irqrestore(&cc->zone->lock, flags);
639
640         /*
641          * There is a tiny chance that we have read bogus compound_order(),
642          * so be careful to not go outside of the pageblock.
643          */
644         if (unlikely(blockpfn > end_pfn))
645                 blockpfn = end_pfn;
646
647         trace_mm_compaction_isolate_freepages(*start_pfn, blockpfn,
648                                         nr_scanned, total_isolated);
649
650         /* Record how far we have got within the block */
651         *start_pfn = blockpfn;
652
653         /*
654          * If strict isolation is requested by CMA then check that all the
655          * pages requested were isolated. If there were any failures, 0 is
656          * returned and CMA will fail.
657          */
658         if (strict && blockpfn < end_pfn)
659                 total_isolated = 0;
660
661         cc->total_free_scanned += nr_scanned;
662         if (total_isolated)
663                 count_compact_events(COMPACTISOLATED, total_isolated);
664         return total_isolated;
665 }
666
667 /**
668  * isolate_freepages_range() - isolate free pages.
669  * @cc:        Compaction control structure.
670  * @start_pfn: The first PFN to start isolating.
671  * @end_pfn:   The one-past-last PFN.
672  *
673  * Non-free pages, invalid PFNs, or zone boundaries within the
674  * [start_pfn, end_pfn) range are considered errors, cause function to
675  * undo its actions and return zero.
676  *
677  * Otherwise, function returns one-past-the-last PFN of isolated page
678  * (which may be greater then end_pfn if end fell in a middle of
679  * a free page).
680  */
681 unsigned long
682 isolate_freepages_range(struct compact_control *cc,
683                         unsigned long start_pfn, unsigned long end_pfn)
684 {
685         unsigned long isolated, pfn, block_start_pfn, block_end_pfn;
686         LIST_HEAD(freelist);
687
688         pfn = start_pfn;
689         block_start_pfn = pageblock_start_pfn(pfn);
690         if (block_start_pfn < cc->zone->zone_start_pfn)
691                 block_start_pfn = cc->zone->zone_start_pfn;
692         block_end_pfn = pageblock_end_pfn(pfn);
693
694         for (; pfn < end_pfn; pfn += isolated,
695                                 block_start_pfn = block_end_pfn,
696                                 block_end_pfn += pageblock_nr_pages) {
697                 /* Protect pfn from changing by isolate_freepages_block */
698                 unsigned long isolate_start_pfn = pfn;
699
700                 block_end_pfn = min(block_end_pfn, end_pfn);
701
702                 /*
703                  * pfn could pass the block_end_pfn if isolated freepage
704                  * is more than pageblock order. In this case, we adjust
705                  * scanning range to right one.
706                  */
707                 if (pfn >= block_end_pfn) {
708                         block_start_pfn = pageblock_start_pfn(pfn);
709                         block_end_pfn = pageblock_end_pfn(pfn);
710                         block_end_pfn = min(block_end_pfn, end_pfn);
711                 }
712
713                 if (!pageblock_pfn_to_page(block_start_pfn,
714                                         block_end_pfn, cc->zone))
715                         break;
716
717                 isolated = isolate_freepages_block(cc, &isolate_start_pfn,
718                                         block_end_pfn, &freelist, 0, true);
719
720                 /*
721                  * In strict mode, isolate_freepages_block() returns 0 if
722                  * there are any holes in the block (ie. invalid PFNs or
723                  * non-free pages).
724                  */
725                 if (!isolated)
726                         break;
727
728                 /*
729                  * If we managed to isolate pages, it is always (1 << n) *
730                  * pageblock_nr_pages for some non-negative n.  (Max order
731                  * page may span two pageblocks).
732                  */
733         }
734
735         /* __isolate_free_page() does not map the pages */
736         split_map_pages(&freelist);
737
738         if (pfn < end_pfn) {
739                 /* Loop terminated early, cleanup. */
740                 release_freepages(&freelist);
741                 return 0;
742         }
743
744         /* We don't use freelists for anything. */
745         return pfn;
746 }
747
748 /* Similar to reclaim, but different enough that they don't share logic */
749 static bool too_many_isolated(pg_data_t *pgdat)
750 {
751         bool too_many;
752
753         unsigned long active, inactive, isolated;
754
755         inactive = node_page_state(pgdat, NR_INACTIVE_FILE) +
756                         node_page_state(pgdat, NR_INACTIVE_ANON);
757         active = node_page_state(pgdat, NR_ACTIVE_FILE) +
758                         node_page_state(pgdat, NR_ACTIVE_ANON);
759         isolated = node_page_state(pgdat, NR_ISOLATED_FILE) +
760                         node_page_state(pgdat, NR_ISOLATED_ANON);
761
762         too_many = isolated > (inactive + active) / 2;
763         if (!too_many)
764                 wake_throttle_isolated(pgdat);
765
766         return too_many;
767 }
768
769 /**
770  * isolate_migratepages_block() - isolate all migrate-able pages within
771  *                                a single pageblock
772  * @cc:         Compaction control structure.
773  * @low_pfn:    The first PFN to isolate
774  * @end_pfn:    The one-past-the-last PFN to isolate, within same pageblock
775  * @mode:       Isolation mode to be used.
776  *
777  * Isolate all pages that can be migrated from the range specified by
778  * [low_pfn, end_pfn). The range is expected to be within same pageblock.
779  * Returns errno, like -EAGAIN or -EINTR in case e.g signal pending or congestion,
780  * -ENOMEM in case we could not allocate a page, or 0.
781  * cc->migrate_pfn will contain the next pfn to scan.
782  *
783  * The pages are isolated on cc->migratepages list (not required to be empty),
784  * and cc->nr_migratepages is updated accordingly.
785  */
786 static int
787 isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn,
788                         unsigned long end_pfn, isolate_mode_t mode)
789 {
790         pg_data_t *pgdat = cc->zone->zone_pgdat;
791         unsigned long nr_scanned = 0, nr_isolated = 0;
792         struct lruvec *lruvec;
793         unsigned long flags = 0;
794         struct lruvec *locked = NULL;
795         struct page *page = NULL, *valid_page = NULL;
796         struct address_space *mapping;
797         unsigned long start_pfn = low_pfn;
798         bool skip_on_failure = false;
799         unsigned long next_skip_pfn = 0;
800         bool skip_updated = false;
801         int ret = 0;
802
803         cc->migrate_pfn = low_pfn;
804
805         /*
806          * Ensure that there are not too many pages isolated from the LRU
807          * list by either parallel reclaimers or compaction. If there are,
808          * delay for some time until fewer pages are isolated
809          */
810         while (unlikely(too_many_isolated(pgdat))) {
811                 /* stop isolation if there are still pages not migrated */
812                 if (cc->nr_migratepages)
813                         return -EAGAIN;
814
815                 /* async migration should just abort */
816                 if (cc->mode == MIGRATE_ASYNC)
817                         return -EAGAIN;
818
819                 reclaim_throttle(pgdat, VMSCAN_THROTTLE_ISOLATED);
820
821                 if (fatal_signal_pending(current))
822                         return -EINTR;
823         }
824
825         cond_resched();
826
827         if (cc->direct_compaction && (cc->mode == MIGRATE_ASYNC)) {
828                 skip_on_failure = true;
829                 next_skip_pfn = block_end_pfn(low_pfn, cc->order);
830         }
831
832         /* Time to isolate some pages for migration */
833         for (; low_pfn < end_pfn; low_pfn++) {
834
835                 if (skip_on_failure && low_pfn >= next_skip_pfn) {
836                         /*
837                          * We have isolated all migration candidates in the
838                          * previous order-aligned block, and did not skip it due
839                          * to failure. We should migrate the pages now and
840                          * hopefully succeed compaction.
841                          */
842                         if (nr_isolated)
843                                 break;
844
845                         /*
846                          * We failed to isolate in the previous order-aligned
847                          * block. Set the new boundary to the end of the
848                          * current block. Note we can't simply increase
849                          * next_skip_pfn by 1 << order, as low_pfn might have
850                          * been incremented by a higher number due to skipping
851                          * a compound or a high-order buddy page in the
852                          * previous loop iteration.
853                          */
854                         next_skip_pfn = block_end_pfn(low_pfn, cc->order);
855                 }
856
857                 /*
858                  * Periodically drop the lock (if held) regardless of its
859                  * contention, to give chance to IRQs. Abort completely if
860                  * a fatal signal is pending.
861                  */
862                 if (!(low_pfn % COMPACT_CLUSTER_MAX)) {
863                         if (locked) {
864                                 unlock_page_lruvec_irqrestore(locked, flags);
865                                 locked = NULL;
866                         }
867
868                         if (fatal_signal_pending(current)) {
869                                 cc->contended = true;
870                                 ret = -EINTR;
871
872                                 goto fatal_pending;
873                         }
874
875                         cond_resched();
876                 }
877
878                 nr_scanned++;
879
880                 page = pfn_to_page(low_pfn);
881
882                 /*
883                  * Check if the pageblock has already been marked skipped.
884                  * Only the aligned PFN is checked as the caller isolates
885                  * COMPACT_CLUSTER_MAX at a time so the second call must
886                  * not falsely conclude that the block should be skipped.
887                  */
888                 if (!valid_page && IS_ALIGNED(low_pfn, pageblock_nr_pages)) {
889                         if (!isolation_suitable(cc, page)) {
890                                 low_pfn = end_pfn;
891                                 page = NULL;
892                                 goto isolate_abort;
893                         }
894                         valid_page = page;
895                 }
896
897                 if (PageHuge(page) && cc->alloc_contig) {
898                         ret = isolate_or_dissolve_huge_page(page, &cc->migratepages);
899
900                         /*
901                          * Fail isolation in case isolate_or_dissolve_huge_page()
902                          * reports an error. In case of -ENOMEM, abort right away.
903                          */
904                         if (ret < 0) {
905                                  /* Do not report -EBUSY down the chain */
906                                 if (ret == -EBUSY)
907                                         ret = 0;
908                                 low_pfn += compound_nr(page) - 1;
909                                 goto isolate_fail;
910                         }
911
912                         if (PageHuge(page)) {
913                                 /*
914                                  * Hugepage was successfully isolated and placed
915                                  * on the cc->migratepages list.
916                                  */
917                                 low_pfn += compound_nr(page) - 1;
918                                 goto isolate_success_no_list;
919                         }
920
921                         /*
922                          * Ok, the hugepage was dissolved. Now these pages are
923                          * Buddy and cannot be re-allocated because they are
924                          * isolated. Fall-through as the check below handles
925                          * Buddy pages.
926                          */
927                 }
928
929                 /*
930                  * Skip if free. We read page order here without zone lock
931                  * which is generally unsafe, but the race window is small and
932                  * the worst thing that can happen is that we skip some
933                  * potential isolation targets.
934                  */
935                 if (PageBuddy(page)) {
936                         unsigned long freepage_order = buddy_order_unsafe(page);
937
938                         /*
939                          * Without lock, we cannot be sure that what we got is
940                          * a valid page order. Consider only values in the
941                          * valid order range to prevent low_pfn overflow.
942                          */
943                         if (freepage_order > 0 && freepage_order < MAX_ORDER)
944                                 low_pfn += (1UL << freepage_order) - 1;
945                         continue;
946                 }
947
948                 /*
949                  * Regardless of being on LRU, compound pages such as THP and
950                  * hugetlbfs are not to be compacted unless we are attempting
951                  * an allocation much larger than the huge page size (eg CMA).
952                  * We can potentially save a lot of iterations if we skip them
953                  * at once. The check is racy, but we can consider only valid
954                  * values and the only danger is skipping too much.
955                  */
956                 if (PageCompound(page) && !cc->alloc_contig) {
957                         const unsigned int order = compound_order(page);
958
959                         if (likely(order < MAX_ORDER))
960                                 low_pfn += (1UL << order) - 1;
961                         goto isolate_fail;
962                 }
963
964                 /*
965                  * Check may be lockless but that's ok as we recheck later.
966                  * It's possible to migrate LRU and non-lru movable pages.
967                  * Skip any other type of page
968                  */
969                 if (!PageLRU(page)) {
970                         /*
971                          * __PageMovable can return false positive so we need
972                          * to verify it under page_lock.
973                          */
974                         if (unlikely(__PageMovable(page)) &&
975                                         !PageIsolated(page)) {
976                                 if (locked) {
977                                         unlock_page_lruvec_irqrestore(locked, flags);
978                                         locked = NULL;
979                                 }
980
981                                 if (!isolate_movable_page(page, mode))
982                                         goto isolate_success;
983                         }
984
985                         goto isolate_fail;
986                 }
987
988                 /*
989                  * Migration will fail if an anonymous page is pinned in memory,
990                  * so avoid taking lru_lock and isolating it unnecessarily in an
991                  * admittedly racy check.
992                  */
993                 mapping = page_mapping(page);
994                 if (!mapping && page_count(page) > page_mapcount(page))
995                         goto isolate_fail;
996
997                 /*
998                  * Only allow to migrate anonymous pages in GFP_NOFS context
999                  * because those do not depend on fs locks.
1000                  */
1001                 if (!(cc->gfp_mask & __GFP_FS) && mapping)
1002                         goto isolate_fail;
1003
1004                 /*
1005                  * Be careful not to clear PageLRU until after we're
1006                  * sure the page is not being freed elsewhere -- the
1007                  * page release code relies on it.
1008                  */
1009                 if (unlikely(!get_page_unless_zero(page)))
1010                         goto isolate_fail;
1011
1012                 /* Only take pages on LRU: a check now makes later tests safe */
1013                 if (!PageLRU(page))
1014                         goto isolate_fail_put;
1015
1016                 /* Compaction might skip unevictable pages but CMA takes them */
1017                 if (!(mode & ISOLATE_UNEVICTABLE) && PageUnevictable(page))
1018                         goto isolate_fail_put;
1019
1020                 /*
1021                  * To minimise LRU disruption, the caller can indicate with
1022                  * ISOLATE_ASYNC_MIGRATE that it only wants to isolate pages
1023                  * it will be able to migrate without blocking - clean pages
1024                  * for the most part.  PageWriteback would require blocking.
1025                  */
1026                 if ((mode & ISOLATE_ASYNC_MIGRATE) && PageWriteback(page))
1027                         goto isolate_fail_put;
1028
1029                 if ((mode & ISOLATE_ASYNC_MIGRATE) && PageDirty(page)) {
1030                         bool migrate_dirty;
1031
1032                         /*
1033                          * Only pages without mappings or that have a
1034                          * ->migratepage callback are possible to migrate
1035                          * without blocking. However, we can be racing with
1036                          * truncation so it's necessary to lock the page
1037                          * to stabilise the mapping as truncation holds
1038                          * the page lock until after the page is removed
1039                          * from the page cache.
1040                          */
1041                         if (!trylock_page(page))
1042                                 goto isolate_fail_put;
1043
1044                         mapping = page_mapping(page);
1045                         migrate_dirty = !mapping || mapping->a_ops->migratepage;
1046                         unlock_page(page);
1047                         if (!migrate_dirty)
1048                                 goto isolate_fail_put;
1049                 }
1050
1051                 /* Try isolate the page */
1052                 if (!TestClearPageLRU(page))
1053                         goto isolate_fail_put;
1054
1055                 lruvec = folio_lruvec(page_folio(page));
1056
1057                 /* If we already hold the lock, we can skip some rechecking */
1058                 if (lruvec != locked) {
1059                         if (locked)
1060                                 unlock_page_lruvec_irqrestore(locked, flags);
1061
1062                         compact_lock_irqsave(&lruvec->lru_lock, &flags, cc);
1063                         locked = lruvec;
1064
1065                         lruvec_memcg_debug(lruvec, page_folio(page));
1066
1067                         /* Try get exclusive access under lock */
1068                         if (!skip_updated) {
1069                                 skip_updated = true;
1070                                 if (test_and_set_skip(cc, page, low_pfn))
1071                                         goto isolate_abort;
1072                         }
1073
1074                         /*
1075                          * Page become compound since the non-locked check,
1076                          * and it's on LRU. It can only be a THP so the order
1077                          * is safe to read and it's 0 for tail pages.
1078                          */
1079                         if (unlikely(PageCompound(page) && !cc->alloc_contig)) {
1080                                 low_pfn += compound_nr(page) - 1;
1081                                 SetPageLRU(page);
1082                                 goto isolate_fail_put;
1083                         }
1084                 }
1085
1086                 /* The whole page is taken off the LRU; skip the tail pages. */
1087                 if (PageCompound(page))
1088                         low_pfn += compound_nr(page) - 1;
1089
1090                 /* Successfully isolated */
1091                 del_page_from_lru_list(page, lruvec);
1092                 mod_node_page_state(page_pgdat(page),
1093                                 NR_ISOLATED_ANON + page_is_file_lru(page),
1094                                 thp_nr_pages(page));
1095
1096 isolate_success:
1097                 list_add(&page->lru, &cc->migratepages);
1098 isolate_success_no_list:
1099                 cc->nr_migratepages += compound_nr(page);
1100                 nr_isolated += compound_nr(page);
1101
1102                 /*
1103                  * Avoid isolating too much unless this block is being
1104                  * rescanned (e.g. dirty/writeback pages, parallel allocation)
1105                  * or a lock is contended. For contention, isolate quickly to
1106                  * potentially remove one source of contention.
1107                  */
1108                 if (cc->nr_migratepages >= COMPACT_CLUSTER_MAX &&
1109                     !cc->rescan && !cc->contended) {
1110                         ++low_pfn;
1111                         break;
1112                 }
1113
1114                 continue;
1115
1116 isolate_fail_put:
1117                 /* Avoid potential deadlock in freeing page under lru_lock */
1118                 if (locked) {
1119                         unlock_page_lruvec_irqrestore(locked, flags);
1120                         locked = NULL;
1121                 }
1122                 put_page(page);
1123
1124 isolate_fail:
1125                 if (!skip_on_failure && ret != -ENOMEM)
1126                         continue;
1127
1128                 /*
1129                  * We have isolated some pages, but then failed. Release them
1130                  * instead of migrating, as we cannot form the cc->order buddy
1131                  * page anyway.
1132                  */
1133                 if (nr_isolated) {
1134                         if (locked) {
1135                                 unlock_page_lruvec_irqrestore(locked, flags);
1136                                 locked = NULL;
1137                         }
1138                         putback_movable_pages(&cc->migratepages);
1139                         cc->nr_migratepages = 0;
1140                         nr_isolated = 0;
1141                 }
1142
1143                 if (low_pfn < next_skip_pfn) {
1144                         low_pfn = next_skip_pfn - 1;
1145                         /*
1146                          * The check near the loop beginning would have updated
1147                          * next_skip_pfn too, but this is a bit simpler.
1148                          */
1149                         next_skip_pfn += 1UL << cc->order;
1150                 }
1151
1152                 if (ret == -ENOMEM)
1153                         break;
1154         }
1155
1156         /*
1157          * The PageBuddy() check could have potentially brought us outside
1158          * the range to be scanned.
1159          */
1160         if (unlikely(low_pfn > end_pfn))
1161                 low_pfn = end_pfn;
1162
1163         page = NULL;
1164
1165 isolate_abort:
1166         if (locked)
1167                 unlock_page_lruvec_irqrestore(locked, flags);
1168         if (page) {
1169                 SetPageLRU(page);
1170                 put_page(page);
1171         }
1172
1173         /*
1174          * Updated the cached scanner pfn once the pageblock has been scanned
1175          * Pages will either be migrated in which case there is no point
1176          * scanning in the near future or migration failed in which case the
1177          * failure reason may persist. The block is marked for skipping if
1178          * there were no pages isolated in the block or if the block is
1179          * rescanned twice in a row.
1180          */
1181         if (low_pfn == end_pfn && (!nr_isolated || cc->rescan)) {
1182                 if (valid_page && !skip_updated)
1183                         set_pageblock_skip(valid_page);
1184                 update_cached_migrate(cc, low_pfn);
1185         }
1186
1187         trace_mm_compaction_isolate_migratepages(start_pfn, low_pfn,
1188                                                 nr_scanned, nr_isolated);
1189
1190 fatal_pending:
1191         cc->total_migrate_scanned += nr_scanned;
1192         if (nr_isolated)
1193                 count_compact_events(COMPACTISOLATED, nr_isolated);
1194
1195         cc->migrate_pfn = low_pfn;
1196
1197         return ret;
1198 }
1199
1200 /**
1201  * isolate_migratepages_range() - isolate migrate-able pages in a PFN range
1202  * @cc:        Compaction control structure.
1203  * @start_pfn: The first PFN to start isolating.
1204  * @end_pfn:   The one-past-last PFN.
1205  *
1206  * Returns -EAGAIN when contented, -EINTR in case of a signal pending, -ENOMEM
1207  * in case we could not allocate a page, or 0.
1208  */
1209 int
1210 isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn,
1211                                                         unsigned long end_pfn)
1212 {
1213         unsigned long pfn, block_start_pfn, block_end_pfn;
1214         int ret = 0;
1215
1216         /* Scan block by block. First and last block may be incomplete */
1217         pfn = start_pfn;
1218         block_start_pfn = pageblock_start_pfn(pfn);
1219         if (block_start_pfn < cc->zone->zone_start_pfn)
1220                 block_start_pfn = cc->zone->zone_start_pfn;
1221         block_end_pfn = pageblock_end_pfn(pfn);
1222
1223         for (; pfn < end_pfn; pfn = block_end_pfn,
1224                                 block_start_pfn = block_end_pfn,
1225                                 block_end_pfn += pageblock_nr_pages) {
1226
1227                 block_end_pfn = min(block_end_pfn, end_pfn);
1228
1229                 if (!pageblock_pfn_to_page(block_start_pfn,
1230                                         block_end_pfn, cc->zone))
1231                         continue;
1232
1233                 ret = isolate_migratepages_block(cc, pfn, block_end_pfn,
1234                                                  ISOLATE_UNEVICTABLE);
1235
1236                 if (ret)
1237                         break;
1238
1239                 if (cc->nr_migratepages >= COMPACT_CLUSTER_MAX)
1240                         break;
1241         }
1242
1243         return ret;
1244 }
1245
1246 #endif /* CONFIG_COMPACTION || CONFIG_CMA */
1247 #ifdef CONFIG_COMPACTION
1248
1249 static bool suitable_migration_source(struct compact_control *cc,
1250                                                         struct page *page)
1251 {
1252         int block_mt;
1253
1254         if (pageblock_skip_persistent(page))
1255                 return false;
1256
1257         if ((cc->mode != MIGRATE_ASYNC) || !cc->direct_compaction)
1258                 return true;
1259
1260         block_mt = get_pageblock_migratetype(page);
1261
1262         if (cc->migratetype == MIGRATE_MOVABLE)
1263                 return is_migrate_movable(block_mt);
1264         else
1265                 return block_mt == cc->migratetype;
1266 }
1267
1268 /* Returns true if the page is within a block suitable for migration to */
1269 static bool suitable_migration_target(struct compact_control *cc,
1270                                                         struct page *page)
1271 {
1272         /* If the page is a large free page, then disallow migration */
1273         if (PageBuddy(page)) {
1274                 /*
1275                  * We are checking page_order without zone->lock taken. But
1276                  * the only small danger is that we skip a potentially suitable
1277                  * pageblock, so it's not worth to check order for valid range.
1278                  */
1279                 if (buddy_order_unsafe(page) >= pageblock_order)
1280                         return false;
1281         }
1282
1283         if (cc->ignore_block_suitable)
1284                 return true;
1285
1286         /* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
1287         if (is_migrate_movable(get_pageblock_migratetype(page)))
1288                 return true;
1289
1290         /* Otherwise skip the block */
1291         return false;
1292 }
1293
1294 static inline unsigned int
1295 freelist_scan_limit(struct compact_control *cc)
1296 {
1297         unsigned short shift = BITS_PER_LONG - 1;
1298
1299         return (COMPACT_CLUSTER_MAX >> min(shift, cc->fast_search_fail)) + 1;
1300 }
1301
1302 /*
1303  * Test whether the free scanner has reached the same or lower pageblock than
1304  * the migration scanner, and compaction should thus terminate.
1305  */
1306 static inline bool compact_scanners_met(struct compact_control *cc)
1307 {
1308         return (cc->free_pfn >> pageblock_order)
1309                 <= (cc->migrate_pfn >> pageblock_order);
1310 }
1311
1312 /*
1313  * Used when scanning for a suitable migration target which scans freelists
1314  * in reverse. Reorders the list such as the unscanned pages are scanned
1315  * first on the next iteration of the free scanner
1316  */
1317 static void
1318 move_freelist_head(struct list_head *freelist, struct page *freepage)
1319 {
1320         LIST_HEAD(sublist);
1321
1322         if (!list_is_last(freelist, &freepage->lru)) {
1323                 list_cut_before(&sublist, freelist, &freepage->lru);
1324                 list_splice_tail(&sublist, freelist);
1325         }
1326 }
1327
1328 /*
1329  * Similar to move_freelist_head except used by the migration scanner
1330  * when scanning forward. It's possible for these list operations to
1331  * move against each other if they search the free list exactly in
1332  * lockstep.
1333  */
1334 static void
1335 move_freelist_tail(struct list_head *freelist, struct page *freepage)
1336 {
1337         LIST_HEAD(sublist);
1338
1339         if (!list_is_first(freelist, &freepage->lru)) {
1340                 list_cut_position(&sublist, freelist, &freepage->lru);
1341                 list_splice_tail(&sublist, freelist);
1342         }
1343 }
1344
1345 static void
1346 fast_isolate_around(struct compact_control *cc, unsigned long pfn, unsigned long nr_isolated)
1347 {
1348         unsigned long start_pfn, end_pfn;
1349         struct page *page;
1350
1351         /* Do not search around if there are enough pages already */
1352         if (cc->nr_freepages >= cc->nr_migratepages)
1353                 return;
1354
1355         /* Minimise scanning during async compaction */
1356         if (cc->direct_compaction && cc->mode == MIGRATE_ASYNC)
1357                 return;
1358
1359         /* Pageblock boundaries */
1360         start_pfn = max(pageblock_start_pfn(pfn), cc->zone->zone_start_pfn);
1361         end_pfn = min(pageblock_end_pfn(pfn), zone_end_pfn(cc->zone));
1362
1363         page = pageblock_pfn_to_page(start_pfn, end_pfn, cc->zone);
1364         if (!page)
1365                 return;
1366
1367         /* Scan before */
1368         if (start_pfn != pfn) {
1369                 isolate_freepages_block(cc, &start_pfn, pfn, &cc->freepages, 1, false);
1370                 if (cc->nr_freepages >= cc->nr_migratepages)
1371                         return;
1372         }
1373
1374         /* Scan after */
1375         start_pfn = pfn + nr_isolated;
1376         if (start_pfn < end_pfn)
1377                 isolate_freepages_block(cc, &start_pfn, end_pfn, &cc->freepages, 1, false);
1378
1379         /* Skip this pageblock in the future as it's full or nearly full */
1380         if (cc->nr_freepages < cc->nr_migratepages)
1381                 set_pageblock_skip(page);
1382 }
1383
1384 /* Search orders in round-robin fashion */
1385 static int next_search_order(struct compact_control *cc, int order)
1386 {
1387         order--;
1388         if (order < 0)
1389                 order = cc->order - 1;
1390
1391         /* Search wrapped around? */
1392         if (order == cc->search_order) {
1393                 cc->search_order--;
1394                 if (cc->search_order < 0)
1395                         cc->search_order = cc->order - 1;
1396                 return -1;
1397         }
1398
1399         return order;
1400 }
1401
1402 static unsigned long
1403 fast_isolate_freepages(struct compact_control *cc)
1404 {
1405         unsigned int limit = max(1U, freelist_scan_limit(cc) >> 1);
1406         unsigned int nr_scanned = 0;
1407         unsigned long low_pfn, min_pfn, highest = 0;
1408         unsigned long nr_isolated = 0;
1409         unsigned long distance;
1410         struct page *page = NULL;
1411         bool scan_start = false;
1412         int order;
1413
1414         /* Full compaction passes in a negative order */
1415         if (cc->order <= 0)
1416                 return cc->free_pfn;
1417
1418         /*
1419          * If starting the scan, use a deeper search and use the highest
1420          * PFN found if a suitable one is not found.
1421          */
1422         if (cc->free_pfn >= cc->zone->compact_init_free_pfn) {
1423                 limit = pageblock_nr_pages >> 1;
1424                 scan_start = true;
1425         }
1426
1427         /*
1428          * Preferred point is in the top quarter of the scan space but take
1429          * a pfn from the top half if the search is problematic.
1430          */
1431         distance = (cc->free_pfn - cc->migrate_pfn);
1432         low_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 2));
1433         min_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 1));
1434
1435         if (WARN_ON_ONCE(min_pfn > low_pfn))
1436                 low_pfn = min_pfn;
1437
1438         /*
1439          * Search starts from the last successful isolation order or the next
1440          * order to search after a previous failure
1441          */
1442         cc->search_order = min_t(unsigned int, cc->order - 1, cc->search_order);
1443
1444         for (order = cc->search_order;
1445              !page && order >= 0;
1446              order = next_search_order(cc, order)) {
1447                 struct free_area *area = &cc->zone->free_area[order];
1448                 struct list_head *freelist;
1449                 struct page *freepage;
1450                 unsigned long flags;
1451                 unsigned int order_scanned = 0;
1452                 unsigned long high_pfn = 0;
1453
1454                 if (!area->nr_free)
1455                         continue;
1456
1457                 spin_lock_irqsave(&cc->zone->lock, flags);
1458                 freelist = &area->free_list[MIGRATE_MOVABLE];
1459                 list_for_each_entry_reverse(freepage, freelist, lru) {
1460                         unsigned long pfn;
1461
1462                         order_scanned++;
1463                         nr_scanned++;
1464                         pfn = page_to_pfn(freepage);
1465
1466                         if (pfn >= highest)
1467                                 highest = max(pageblock_start_pfn(pfn),
1468                                               cc->zone->zone_start_pfn);
1469
1470                         if (pfn >= low_pfn) {
1471                                 cc->fast_search_fail = 0;
1472                                 cc->search_order = order;
1473                                 page = freepage;
1474                                 break;
1475                         }
1476
1477                         if (pfn >= min_pfn && pfn > high_pfn) {
1478                                 high_pfn = pfn;
1479
1480                                 /* Shorten the scan if a candidate is found */
1481                                 limit >>= 1;
1482                         }
1483
1484                         if (order_scanned >= limit)
1485                                 break;
1486                 }
1487
1488                 /* Use a minimum pfn if a preferred one was not found */
1489                 if (!page && high_pfn) {
1490                         page = pfn_to_page(high_pfn);
1491
1492                         /* Update freepage for the list reorder below */
1493                         freepage = page;
1494                 }
1495
1496                 /* Reorder to so a future search skips recent pages */
1497                 move_freelist_head(freelist, freepage);
1498
1499                 /* Isolate the page if available */
1500                 if (page) {
1501                         if (__isolate_free_page(page, order)) {
1502                                 set_page_private(page, order);
1503                                 nr_isolated = 1 << order;
1504                                 cc->nr_freepages += nr_isolated;
1505                                 list_add_tail(&page->lru, &cc->freepages);
1506                                 count_compact_events(COMPACTISOLATED, nr_isolated);
1507                         } else {
1508                                 /* If isolation fails, abort the search */
1509                                 order = cc->search_order + 1;
1510                                 page = NULL;
1511                         }
1512                 }
1513
1514                 spin_unlock_irqrestore(&cc->zone->lock, flags);
1515
1516                 /*
1517                  * Smaller scan on next order so the total scan is related
1518                  * to freelist_scan_limit.
1519                  */
1520                 if (order_scanned >= limit)
1521                         limit = max(1U, limit >> 1);
1522         }
1523
1524         if (!page) {
1525                 cc->fast_search_fail++;
1526                 if (scan_start) {
1527                         /*
1528                          * Use the highest PFN found above min. If one was
1529                          * not found, be pessimistic for direct compaction
1530                          * and use the min mark.
1531                          */
1532                         if (highest >= min_pfn) {
1533                                 page = pfn_to_page(highest);
1534                                 cc->free_pfn = highest;
1535                         } else {
1536                                 if (cc->direct_compaction && pfn_valid(min_pfn)) {
1537                                         page = pageblock_pfn_to_page(min_pfn,
1538                                                 min(pageblock_end_pfn(min_pfn),
1539                                                     zone_end_pfn(cc->zone)),
1540                                                 cc->zone);
1541                                         cc->free_pfn = min_pfn;
1542                                 }
1543                         }
1544                 }
1545         }
1546
1547         if (highest && highest >= cc->zone->compact_cached_free_pfn) {
1548                 highest -= pageblock_nr_pages;
1549                 cc->zone->compact_cached_free_pfn = highest;
1550         }
1551
1552         cc->total_free_scanned += nr_scanned;
1553         if (!page)
1554                 return cc->free_pfn;
1555
1556         low_pfn = page_to_pfn(page);
1557         fast_isolate_around(cc, low_pfn, nr_isolated);
1558         return low_pfn;
1559 }
1560
1561 /*
1562  * Based on information in the current compact_control, find blocks
1563  * suitable for isolating free pages from and then isolate them.
1564  */
1565 static void isolate_freepages(struct compact_control *cc)
1566 {
1567         struct zone *zone = cc->zone;
1568         struct page *page;
1569         unsigned long block_start_pfn;  /* start of current pageblock */
1570         unsigned long isolate_start_pfn; /* exact pfn we start at */
1571         unsigned long block_end_pfn;    /* end of current pageblock */
1572         unsigned long low_pfn;       /* lowest pfn scanner is able to scan */
1573         struct list_head *freelist = &cc->freepages;
1574         unsigned int stride;
1575
1576         /* Try a small search of the free lists for a candidate */
1577         fast_isolate_freepages(cc);
1578         if (cc->nr_freepages)
1579                 goto splitmap;
1580
1581         /*
1582          * Initialise the free scanner. The starting point is where we last
1583          * successfully isolated from, zone-cached value, or the end of the
1584          * zone when isolating for the first time. For looping we also need
1585          * this pfn aligned down to the pageblock boundary, because we do
1586          * block_start_pfn -= pageblock_nr_pages in the for loop.
1587          * For ending point, take care when isolating in last pageblock of a
1588          * zone which ends in the middle of a pageblock.
1589          * The low boundary is the end of the pageblock the migration scanner
1590          * is using.
1591          */
1592         isolate_start_pfn = cc->free_pfn;
1593         block_start_pfn = pageblock_start_pfn(isolate_start_pfn);
1594         block_end_pfn = min(block_start_pfn + pageblock_nr_pages,
1595                                                 zone_end_pfn(zone));
1596         low_pfn = pageblock_end_pfn(cc->migrate_pfn);
1597         stride = cc->mode == MIGRATE_ASYNC ? COMPACT_CLUSTER_MAX : 1;
1598
1599         /*
1600          * Isolate free pages until enough are available to migrate the
1601          * pages on cc->migratepages. We stop searching if the migrate
1602          * and free page scanners meet or enough free pages are isolated.
1603          */
1604         for (; block_start_pfn >= low_pfn;
1605                                 block_end_pfn = block_start_pfn,
1606                                 block_start_pfn -= pageblock_nr_pages,
1607                                 isolate_start_pfn = block_start_pfn) {
1608                 unsigned long nr_isolated;
1609
1610                 /*
1611                  * This can iterate a massively long zone without finding any
1612                  * suitable migration targets, so periodically check resched.
1613                  */
1614                 if (!(block_start_pfn % (COMPACT_CLUSTER_MAX * pageblock_nr_pages)))
1615                         cond_resched();
1616
1617                 page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
1618                                                                         zone);
1619                 if (!page)
1620                         continue;
1621
1622                 /* Check the block is suitable for migration */
1623                 if (!suitable_migration_target(cc, page))
1624                         continue;
1625
1626                 /* If isolation recently failed, do not retry */
1627                 if (!isolation_suitable(cc, page))
1628                         continue;
1629
1630                 /* Found a block suitable for isolating free pages from. */
1631                 nr_isolated = isolate_freepages_block(cc, &isolate_start_pfn,
1632                                         block_end_pfn, freelist, stride, false);
1633
1634                 /* Update the skip hint if the full pageblock was scanned */
1635                 if (isolate_start_pfn == block_end_pfn)
1636                         update_pageblock_skip(cc, page, block_start_pfn);
1637
1638                 /* Are enough freepages isolated? */
1639                 if (cc->nr_freepages >= cc->nr_migratepages) {
1640                         if (isolate_start_pfn >= block_end_pfn) {
1641                                 /*
1642                                  * Restart at previous pageblock if more
1643                                  * freepages can be isolated next time.
1644                                  */
1645                                 isolate_start_pfn =
1646                                         block_start_pfn - pageblock_nr_pages;
1647                         }
1648                         break;
1649                 } else if (isolate_start_pfn < block_end_pfn) {
1650                         /*
1651                          * If isolation failed early, do not continue
1652                          * needlessly.
1653                          */
1654                         break;
1655                 }
1656
1657                 /* Adjust stride depending on isolation */
1658                 if (nr_isolated) {
1659                         stride = 1;
1660                         continue;
1661                 }
1662                 stride = min_t(unsigned int, COMPACT_CLUSTER_MAX, stride << 1);
1663         }
1664
1665         /*
1666          * Record where the free scanner will restart next time. Either we
1667          * broke from the loop and set isolate_start_pfn based on the last
1668          * call to isolate_freepages_block(), or we met the migration scanner
1669          * and the loop terminated due to isolate_start_pfn < low_pfn
1670          */
1671         cc->free_pfn = isolate_start_pfn;
1672
1673 splitmap:
1674         /* __isolate_free_page() does not map the pages */
1675         split_map_pages(freelist);
1676 }
1677
1678 /*
1679  * This is a migrate-callback that "allocates" freepages by taking pages
1680  * from the isolated freelists in the block we are migrating to.
1681  */
1682 static struct page *compaction_alloc(struct page *migratepage,
1683                                         unsigned long data)
1684 {
1685         struct compact_control *cc = (struct compact_control *)data;
1686         struct page *freepage;
1687
1688         if (list_empty(&cc->freepages)) {
1689                 isolate_freepages(cc);
1690
1691                 if (list_empty(&cc->freepages))
1692                         return NULL;
1693         }
1694
1695         freepage = list_entry(cc->freepages.next, struct page, lru);
1696         list_del(&freepage->lru);
1697         cc->nr_freepages--;
1698
1699         return freepage;
1700 }
1701
1702 /*
1703  * This is a migrate-callback that "frees" freepages back to the isolated
1704  * freelist.  All pages on the freelist are from the same zone, so there is no
1705  * special handling needed for NUMA.
1706  */
1707 static void compaction_free(struct page *page, unsigned long data)
1708 {
1709         struct compact_control *cc = (struct compact_control *)data;
1710
1711         list_add(&page->lru, &cc->freepages);
1712         cc->nr_freepages++;
1713 }
1714
1715 /* possible outcome of isolate_migratepages */
1716 typedef enum {
1717         ISOLATE_ABORT,          /* Abort compaction now */
1718         ISOLATE_NONE,           /* No pages isolated, continue scanning */
1719         ISOLATE_SUCCESS,        /* Pages isolated, migrate */
1720 } isolate_migrate_t;
1721
1722 /*
1723  * Allow userspace to control policy on scanning the unevictable LRU for
1724  * compactable pages.
1725  */
1726 #ifdef CONFIG_PREEMPT_RT
1727 int sysctl_compact_unevictable_allowed __read_mostly = 0;
1728 #else
1729 int sysctl_compact_unevictable_allowed __read_mostly = 1;
1730 #endif
1731
1732 static inline void
1733 update_fast_start_pfn(struct compact_control *cc, unsigned long pfn)
1734 {
1735         if (cc->fast_start_pfn == ULONG_MAX)
1736                 return;
1737
1738         if (!cc->fast_start_pfn)
1739                 cc->fast_start_pfn = pfn;
1740
1741         cc->fast_start_pfn = min(cc->fast_start_pfn, pfn);
1742 }
1743
1744 static inline unsigned long
1745 reinit_migrate_pfn(struct compact_control *cc)
1746 {
1747         if (!cc->fast_start_pfn || cc->fast_start_pfn == ULONG_MAX)
1748                 return cc->migrate_pfn;
1749
1750         cc->migrate_pfn = cc->fast_start_pfn;
1751         cc->fast_start_pfn = ULONG_MAX;
1752
1753         return cc->migrate_pfn;
1754 }
1755
1756 /*
1757  * Briefly search the free lists for a migration source that already has
1758  * some free pages to reduce the number of pages that need migration
1759  * before a pageblock is free.
1760  */
1761 static unsigned long fast_find_migrateblock(struct compact_control *cc)
1762 {
1763         unsigned int limit = freelist_scan_limit(cc);
1764         unsigned int nr_scanned = 0;
1765         unsigned long distance;
1766         unsigned long pfn = cc->migrate_pfn;
1767         unsigned long high_pfn;
1768         int order;
1769         bool found_block = false;
1770
1771         /* Skip hints are relied on to avoid repeats on the fast search */
1772         if (cc->ignore_skip_hint)
1773                 return pfn;
1774
1775         /*
1776          * If the migrate_pfn is not at the start of a zone or the start
1777          * of a pageblock then assume this is a continuation of a previous
1778          * scan restarted due to COMPACT_CLUSTER_MAX.
1779          */
1780         if (pfn != cc->zone->zone_start_pfn && pfn != pageblock_start_pfn(pfn))
1781                 return pfn;
1782
1783         /*
1784          * For smaller orders, just linearly scan as the number of pages
1785          * to migrate should be relatively small and does not necessarily
1786          * justify freeing up a large block for a small allocation.
1787          */
1788         if (cc->order <= PAGE_ALLOC_COSTLY_ORDER)
1789                 return pfn;
1790
1791         /*
1792          * Only allow kcompactd and direct requests for movable pages to
1793          * quickly clear out a MOVABLE pageblock for allocation. This
1794          * reduces the risk that a large movable pageblock is freed for
1795          * an unmovable/reclaimable small allocation.
1796          */
1797         if (cc->direct_compaction && cc->migratetype != MIGRATE_MOVABLE)
1798                 return pfn;
1799
1800         /*
1801          * When starting the migration scanner, pick any pageblock within the
1802          * first half of the search space. Otherwise try and pick a pageblock
1803          * within the first eighth to reduce the chances that a migration
1804          * target later becomes a source.
1805          */
1806         distance = (cc->free_pfn - cc->migrate_pfn) >> 1;
1807         if (cc->migrate_pfn != cc->zone->zone_start_pfn)
1808                 distance >>= 2;
1809         high_pfn = pageblock_start_pfn(cc->migrate_pfn + distance);
1810
1811         for (order = cc->order - 1;
1812              order >= PAGE_ALLOC_COSTLY_ORDER && !found_block && nr_scanned < limit;
1813              order--) {
1814                 struct free_area *area = &cc->zone->free_area[order];
1815                 struct list_head *freelist;
1816                 unsigned long flags;
1817                 struct page *freepage;
1818
1819                 if (!area->nr_free)
1820                         continue;
1821
1822                 spin_lock_irqsave(&cc->zone->lock, flags);
1823                 freelist = &area->free_list[MIGRATE_MOVABLE];
1824                 list_for_each_entry(freepage, freelist, lru) {
1825                         unsigned long free_pfn;
1826
1827                         if (nr_scanned++ >= limit) {
1828                                 move_freelist_tail(freelist, freepage);
1829                                 break;
1830                         }
1831
1832                         free_pfn = page_to_pfn(freepage);
1833                         if (free_pfn < high_pfn) {
1834                                 /*
1835                                  * Avoid if skipped recently. Ideally it would
1836                                  * move to the tail but even safe iteration of
1837                                  * the list assumes an entry is deleted, not
1838                                  * reordered.
1839                                  */
1840                                 if (get_pageblock_skip(freepage))
1841                                         continue;
1842
1843                                 /* Reorder to so a future search skips recent pages */
1844                                 move_freelist_tail(freelist, freepage);
1845
1846                                 update_fast_start_pfn(cc, free_pfn);
1847                                 pfn = pageblock_start_pfn(free_pfn);
1848                                 if (pfn < cc->zone->zone_start_pfn)
1849                                         pfn = cc->zone->zone_start_pfn;
1850                                 cc->fast_search_fail = 0;
1851                                 found_block = true;
1852                                 set_pageblock_skip(freepage);
1853                                 break;
1854                         }
1855                 }
1856                 spin_unlock_irqrestore(&cc->zone->lock, flags);
1857         }
1858
1859         cc->total_migrate_scanned += nr_scanned;
1860
1861         /*
1862          * If fast scanning failed then use a cached entry for a page block
1863          * that had free pages as the basis for starting a linear scan.
1864          */
1865         if (!found_block) {
1866                 cc->fast_search_fail++;
1867                 pfn = reinit_migrate_pfn(cc);
1868         }
1869         return pfn;
1870 }
1871
1872 /*
1873  * Isolate all pages that can be migrated from the first suitable block,
1874  * starting at the block pointed to by the migrate scanner pfn within
1875  * compact_control.
1876  */
1877 static isolate_migrate_t isolate_migratepages(struct compact_control *cc)
1878 {
1879         unsigned long block_start_pfn;
1880         unsigned long block_end_pfn;
1881         unsigned long low_pfn;
1882         struct page *page;
1883         const isolate_mode_t isolate_mode =
1884                 (sysctl_compact_unevictable_allowed ? ISOLATE_UNEVICTABLE : 0) |
1885                 (cc->mode != MIGRATE_SYNC ? ISOLATE_ASYNC_MIGRATE : 0);
1886         bool fast_find_block;
1887
1888         /*
1889          * Start at where we last stopped, or beginning of the zone as
1890          * initialized by compact_zone(). The first failure will use
1891          * the lowest PFN as the starting point for linear scanning.
1892          */
1893         low_pfn = fast_find_migrateblock(cc);
1894         block_start_pfn = pageblock_start_pfn(low_pfn);
1895         if (block_start_pfn < cc->zone->zone_start_pfn)
1896                 block_start_pfn = cc->zone->zone_start_pfn;
1897
1898         /*
1899          * fast_find_migrateblock marks a pageblock skipped so to avoid
1900          * the isolation_suitable check below, check whether the fast
1901          * search was successful.
1902          */
1903         fast_find_block = low_pfn != cc->migrate_pfn && !cc->fast_search_fail;
1904
1905         /* Only scan within a pageblock boundary */
1906         block_end_pfn = pageblock_end_pfn(low_pfn);
1907
1908         /*
1909          * Iterate over whole pageblocks until we find the first suitable.
1910          * Do not cross the free scanner.
1911          */
1912         for (; block_end_pfn <= cc->free_pfn;
1913                         fast_find_block = false,
1914                         cc->migrate_pfn = low_pfn = block_end_pfn,
1915                         block_start_pfn = block_end_pfn,
1916                         block_end_pfn += pageblock_nr_pages) {
1917
1918                 /*
1919                  * This can potentially iterate a massively long zone with
1920                  * many pageblocks unsuitable, so periodically check if we
1921                  * need to schedule.
1922                  */
1923                 if (!(low_pfn % (COMPACT_CLUSTER_MAX * pageblock_nr_pages)))
1924                         cond_resched();
1925
1926                 page = pageblock_pfn_to_page(block_start_pfn,
1927                                                 block_end_pfn, cc->zone);
1928                 if (!page)
1929                         continue;
1930
1931                 /*
1932                  * If isolation recently failed, do not retry. Only check the
1933                  * pageblock once. COMPACT_CLUSTER_MAX causes a pageblock
1934                  * to be visited multiple times. Assume skip was checked
1935                  * before making it "skip" so other compaction instances do
1936                  * not scan the same block.
1937                  */
1938                 if (IS_ALIGNED(low_pfn, pageblock_nr_pages) &&
1939                     !fast_find_block && !isolation_suitable(cc, page))
1940                         continue;
1941
1942                 /*
1943                  * For async direct compaction, only scan the pageblocks of the
1944                  * same migratetype without huge pages. Async direct compaction
1945                  * is optimistic to see if the minimum amount of work satisfies
1946                  * the allocation. The cached PFN is updated as it's possible
1947                  * that all remaining blocks between source and target are
1948                  * unsuitable and the compaction scanners fail to meet.
1949                  */
1950                 if (!suitable_migration_source(cc, page)) {
1951                         update_cached_migrate(cc, block_end_pfn);
1952                         continue;
1953                 }
1954
1955                 /* Perform the isolation */
1956                 if (isolate_migratepages_block(cc, low_pfn, block_end_pfn,
1957                                                 isolate_mode))
1958                         return ISOLATE_ABORT;
1959
1960                 /*
1961                  * Either we isolated something and proceed with migration. Or
1962                  * we failed and compact_zone should decide if we should
1963                  * continue or not.
1964                  */
1965                 break;
1966         }
1967
1968         return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE;
1969 }
1970
1971 /*
1972  * order == -1 is expected when compacting via
1973  * /proc/sys/vm/compact_memory
1974  */
1975 static inline bool is_via_compact_memory(int order)
1976 {
1977         return order == -1;
1978 }
1979
1980 static bool kswapd_is_running(pg_data_t *pgdat)
1981 {
1982         return pgdat->kswapd && task_is_running(pgdat->kswapd);
1983 }
1984
1985 /*
1986  * A zone's fragmentation score is the external fragmentation wrt to the
1987  * COMPACTION_HPAGE_ORDER. It returns a value in the range [0, 100].
1988  */
1989 static unsigned int fragmentation_score_zone(struct zone *zone)
1990 {
1991         return extfrag_for_order(zone, COMPACTION_HPAGE_ORDER);
1992 }
1993
1994 /*
1995  * A weighted zone's fragmentation score is the external fragmentation
1996  * wrt to the COMPACTION_HPAGE_ORDER scaled by the zone's size. It
1997  * returns a value in the range [0, 100].
1998  *
1999  * The scaling factor ensures that proactive compaction focuses on larger
2000  * zones like ZONE_NORMAL, rather than smaller, specialized zones like
2001  * ZONE_DMA32. For smaller zones, the score value remains close to zero,
2002  * and thus never exceeds the high threshold for proactive compaction.
2003  */
2004 static unsigned int fragmentation_score_zone_weighted(struct zone *zone)
2005 {
2006         unsigned long score;
2007
2008         score = zone->present_pages * fragmentation_score_zone(zone);
2009         return div64_ul(score, zone->zone_pgdat->node_present_pages + 1);
2010 }
2011
2012 /*
2013  * The per-node proactive (background) compaction process is started by its
2014  * corresponding kcompactd thread when the node's fragmentation score
2015  * exceeds the high threshold. The compaction process remains active till
2016  * the node's score falls below the low threshold, or one of the back-off
2017  * conditions is met.
2018  */
2019 static unsigned int fragmentation_score_node(pg_data_t *pgdat)
2020 {
2021         unsigned int score = 0;
2022         int zoneid;
2023
2024         for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
2025                 struct zone *zone;
2026
2027                 zone = &pgdat->node_zones[zoneid];
2028                 score += fragmentation_score_zone_weighted(zone);
2029         }
2030
2031         return score;
2032 }
2033
2034 static unsigned int fragmentation_score_wmark(pg_data_t *pgdat, bool low)
2035 {
2036         unsigned int wmark_low;
2037
2038         /*
2039          * Cap the low watermark to avoid excessive compaction
2040          * activity in case a user sets the proactiveness tunable
2041          * close to 100 (maximum).
2042          */
2043         wmark_low = max(100U - sysctl_compaction_proactiveness, 5U);
2044         return low ? wmark_low : min(wmark_low + 10, 100U);
2045 }
2046
2047 static bool should_proactive_compact_node(pg_data_t *pgdat)
2048 {
2049         int wmark_high;
2050
2051         if (!sysctl_compaction_proactiveness || kswapd_is_running(pgdat))
2052                 return false;
2053
2054         wmark_high = fragmentation_score_wmark(pgdat, false);
2055         return fragmentation_score_node(pgdat) > wmark_high;
2056 }
2057
2058 static enum compact_result __compact_finished(struct compact_control *cc)
2059 {
2060         unsigned int order;
2061         const int migratetype = cc->migratetype;
2062         int ret;
2063
2064         /* Compaction run completes if the migrate and free scanner meet */
2065         if (compact_scanners_met(cc)) {
2066                 /* Let the next compaction start anew. */
2067                 reset_cached_positions(cc->zone);
2068
2069                 /*
2070                  * Mark that the PG_migrate_skip information should be cleared
2071                  * by kswapd when it goes to sleep. kcompactd does not set the
2072                  * flag itself as the decision to be clear should be directly
2073                  * based on an allocation request.
2074                  */
2075                 if (cc->direct_compaction)
2076                         cc->zone->compact_blockskip_flush = true;
2077
2078                 if (cc->whole_zone)
2079                         return COMPACT_COMPLETE;
2080                 else
2081                         return COMPACT_PARTIAL_SKIPPED;
2082         }
2083
2084         if (cc->proactive_compaction) {
2085                 int score, wmark_low;
2086                 pg_data_t *pgdat;
2087
2088                 pgdat = cc->zone->zone_pgdat;
2089                 if (kswapd_is_running(pgdat))
2090                         return COMPACT_PARTIAL_SKIPPED;
2091
2092                 score = fragmentation_score_zone(cc->zone);
2093                 wmark_low = fragmentation_score_wmark(pgdat, true);
2094
2095                 if (score > wmark_low)
2096                         ret = COMPACT_CONTINUE;
2097                 else
2098                         ret = COMPACT_SUCCESS;
2099
2100                 goto out;
2101         }
2102
2103         if (is_via_compact_memory(cc->order))
2104                 return COMPACT_CONTINUE;
2105
2106         /*
2107          * Always finish scanning a pageblock to reduce the possibility of
2108          * fallbacks in the future. This is particularly important when
2109          * migration source is unmovable/reclaimable but it's not worth
2110          * special casing.
2111          */
2112         if (!IS_ALIGNED(cc->migrate_pfn, pageblock_nr_pages))
2113                 return COMPACT_CONTINUE;
2114
2115         /* Direct compactor: Is a suitable page free? */
2116         ret = COMPACT_NO_SUITABLE_PAGE;
2117         for (order = cc->order; order < MAX_ORDER; order++) {
2118                 struct free_area *area = &cc->zone->free_area[order];
2119                 bool can_steal;
2120
2121                 /* Job done if page is free of the right migratetype */
2122                 if (!free_area_empty(area, migratetype))
2123                         return COMPACT_SUCCESS;
2124
2125 #ifdef CONFIG_CMA
2126                 /* MIGRATE_MOVABLE can fallback on MIGRATE_CMA */
2127                 if (migratetype == MIGRATE_MOVABLE &&
2128                         !free_area_empty(area, MIGRATE_CMA))
2129                         return COMPACT_SUCCESS;
2130 #endif
2131                 /*
2132                  * Job done if allocation would steal freepages from
2133                  * other migratetype buddy lists.
2134                  */
2135                 if (find_suitable_fallback(area, order, migratetype,
2136                                                 true, &can_steal) != -1)
2137                         /*
2138                          * Movable pages are OK in any pageblock. If we are
2139                          * stealing for a non-movable allocation, make sure
2140                          * we finish compacting the current pageblock first
2141                          * (which is assured by the above migrate_pfn align
2142                          * check) so it is as free as possible and we won't
2143                          * have to steal another one soon.
2144                          */
2145                         return COMPACT_SUCCESS;
2146         }
2147
2148 out:
2149         if (cc->contended || fatal_signal_pending(current))
2150                 ret = COMPACT_CONTENDED;
2151
2152         return ret;
2153 }
2154
2155 static enum compact_result compact_finished(struct compact_control *cc)
2156 {
2157         int ret;
2158
2159         ret = __compact_finished(cc);
2160         trace_mm_compaction_finished(cc->zone, cc->order, ret);
2161         if (ret == COMPACT_NO_SUITABLE_PAGE)
2162                 ret = COMPACT_CONTINUE;
2163
2164         return ret;
2165 }
2166
2167 static enum compact_result __compaction_suitable(struct zone *zone, int order,
2168                                         unsigned int alloc_flags,
2169                                         int highest_zoneidx,
2170                                         unsigned long wmark_target)
2171 {
2172         unsigned long watermark;
2173
2174         if (is_via_compact_memory(order))
2175                 return COMPACT_CONTINUE;
2176
2177         watermark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
2178         /*
2179          * If watermarks for high-order allocation are already met, there
2180          * should be no need for compaction at all.
2181          */
2182         if (zone_watermark_ok(zone, order, watermark, highest_zoneidx,
2183                                                                 alloc_flags))
2184                 return COMPACT_SUCCESS;
2185
2186         /*
2187          * Watermarks for order-0 must be met for compaction to be able to
2188          * isolate free pages for migration targets. This means that the
2189          * watermark and alloc_flags have to match, or be more pessimistic than
2190          * the check in __isolate_free_page(). We don't use the direct
2191          * compactor's alloc_flags, as they are not relevant for freepage
2192          * isolation. We however do use the direct compactor's highest_zoneidx
2193          * to skip over zones where lowmem reserves would prevent allocation
2194          * even if compaction succeeds.
2195          * For costly orders, we require low watermark instead of min for
2196          * compaction to proceed to increase its chances.
2197          * ALLOC_CMA is used, as pages in CMA pageblocks are considered
2198          * suitable migration targets
2199          */
2200         watermark = (order > PAGE_ALLOC_COSTLY_ORDER) ?
2201                                 low_wmark_pages(zone) : min_wmark_pages(zone);
2202         watermark += compact_gap(order);
2203         if (!__zone_watermark_ok(zone, 0, watermark, highest_zoneidx,
2204                                                 ALLOC_CMA, wmark_target))
2205                 return COMPACT_SKIPPED;
2206
2207         return COMPACT_CONTINUE;
2208 }
2209
2210 /*
2211  * compaction_suitable: Is this suitable to run compaction on this zone now?
2212  * Returns
2213  *   COMPACT_SKIPPED  - If there are too few free pages for compaction
2214  *   COMPACT_SUCCESS  - If the allocation would succeed without compaction
2215  *   COMPACT_CONTINUE - If compaction should run now
2216  */
2217 enum compact_result compaction_suitable(struct zone *zone, int order,
2218                                         unsigned int alloc_flags,
2219                                         int highest_zoneidx)
2220 {
2221         enum compact_result ret;
2222         int fragindex;
2223
2224         ret = __compaction_suitable(zone, order, alloc_flags, highest_zoneidx,
2225                                     zone_page_state(zone, NR_FREE_PAGES));
2226         /*
2227          * fragmentation index determines if allocation failures are due to
2228          * low memory or external fragmentation
2229          *
2230          * index of -1000 would imply allocations might succeed depending on
2231          * watermarks, but we already failed the high-order watermark check
2232          * index towards 0 implies failure is due to lack of memory
2233          * index towards 1000 implies failure is due to fragmentation
2234          *
2235          * Only compact if a failure would be due to fragmentation. Also
2236          * ignore fragindex for non-costly orders where the alternative to
2237          * a successful reclaim/compaction is OOM. Fragindex and the
2238          * vm.extfrag_threshold sysctl is meant as a heuristic to prevent
2239          * excessive compaction for costly orders, but it should not be at the
2240          * expense of system stability.
2241          */
2242         if (ret == COMPACT_CONTINUE && (order > PAGE_ALLOC_COSTLY_ORDER)) {
2243                 fragindex = fragmentation_index(zone, order);
2244                 if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold)
2245                         ret = COMPACT_NOT_SUITABLE_ZONE;
2246         }
2247
2248         trace_mm_compaction_suitable(zone, order, ret);
2249         if (ret == COMPACT_NOT_SUITABLE_ZONE)
2250                 ret = COMPACT_SKIPPED;
2251
2252         return ret;
2253 }
2254
2255 bool compaction_zonelist_suitable(struct alloc_context *ac, int order,
2256                 int alloc_flags)
2257 {
2258         struct zone *zone;
2259         struct zoneref *z;
2260
2261         /*
2262          * Make sure at least one zone would pass __compaction_suitable if we continue
2263          * retrying the reclaim.
2264          */
2265         for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2266                                 ac->highest_zoneidx, ac->nodemask) {
2267                 unsigned long available;
2268                 enum compact_result compact_result;
2269
2270                 /*
2271                  * Do not consider all the reclaimable memory because we do not
2272                  * want to trash just for a single high order allocation which
2273                  * is even not guaranteed to appear even if __compaction_suitable
2274                  * is happy about the watermark check.
2275                  */
2276                 available = zone_reclaimable_pages(zone) / order;
2277                 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
2278                 compact_result = __compaction_suitable(zone, order, alloc_flags,
2279                                 ac->highest_zoneidx, available);
2280                 if (compact_result == COMPACT_CONTINUE)
2281                         return true;
2282         }
2283
2284         return false;
2285 }
2286
2287 static enum compact_result
2288 compact_zone(struct compact_control *cc, struct capture_control *capc)
2289 {
2290         enum compact_result ret;
2291         unsigned long start_pfn = cc->zone->zone_start_pfn;
2292         unsigned long end_pfn = zone_end_pfn(cc->zone);
2293         unsigned long last_migrated_pfn;
2294         const bool sync = cc->mode != MIGRATE_ASYNC;
2295         bool update_cached;
2296         unsigned int nr_succeeded = 0;
2297
2298         /*
2299          * These counters track activities during zone compaction.  Initialize
2300          * them before compacting a new zone.
2301          */
2302         cc->total_migrate_scanned = 0;
2303         cc->total_free_scanned = 0;
2304         cc->nr_migratepages = 0;
2305         cc->nr_freepages = 0;
2306         INIT_LIST_HEAD(&cc->freepages);
2307         INIT_LIST_HEAD(&cc->migratepages);
2308
2309         cc->migratetype = gfp_migratetype(cc->gfp_mask);
2310         ret = compaction_suitable(cc->zone, cc->order, cc->alloc_flags,
2311                                                         cc->highest_zoneidx);
2312         /* Compaction is likely to fail */
2313         if (ret == COMPACT_SUCCESS || ret == COMPACT_SKIPPED)
2314                 return ret;
2315
2316         /* huh, compaction_suitable is returning something unexpected */
2317         VM_BUG_ON(ret != COMPACT_CONTINUE);
2318
2319         /*
2320          * Clear pageblock skip if there were failures recently and compaction
2321          * is about to be retried after being deferred.
2322          */
2323         if (compaction_restarting(cc->zone, cc->order))
2324                 __reset_isolation_suitable(cc->zone);
2325
2326         /*
2327          * Setup to move all movable pages to the end of the zone. Used cached
2328          * information on where the scanners should start (unless we explicitly
2329          * want to compact the whole zone), but check that it is initialised
2330          * by ensuring the values are within zone boundaries.
2331          */
2332         cc->fast_start_pfn = 0;
2333         if (cc->whole_zone) {
2334                 cc->migrate_pfn = start_pfn;
2335                 cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
2336         } else {
2337                 cc->migrate_pfn = cc->zone->compact_cached_migrate_pfn[sync];
2338                 cc->free_pfn = cc->zone->compact_cached_free_pfn;
2339                 if (cc->free_pfn < start_pfn || cc->free_pfn >= end_pfn) {
2340                         cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
2341                         cc->zone->compact_cached_free_pfn = cc->free_pfn;
2342                 }
2343                 if (cc->migrate_pfn < start_pfn || cc->migrate_pfn >= end_pfn) {
2344                         cc->migrate_pfn = start_pfn;
2345                         cc->zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn;
2346                         cc->zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn;
2347                 }
2348
2349                 if (cc->migrate_pfn <= cc->zone->compact_init_migrate_pfn)
2350                         cc->whole_zone = true;
2351         }
2352
2353         last_migrated_pfn = 0;
2354
2355         /*
2356          * Migrate has separate cached PFNs for ASYNC and SYNC* migration on
2357          * the basis that some migrations will fail in ASYNC mode. However,
2358          * if the cached PFNs match and pageblocks are skipped due to having
2359          * no isolation candidates, then the sync state does not matter.
2360          * Until a pageblock with isolation candidates is found, keep the
2361          * cached PFNs in sync to avoid revisiting the same blocks.
2362          */
2363         update_cached = !sync &&
2364                 cc->zone->compact_cached_migrate_pfn[0] == cc->zone->compact_cached_migrate_pfn[1];
2365
2366         trace_mm_compaction_begin(cc, start_pfn, end_pfn, sync);
2367
2368         /* lru_add_drain_all could be expensive with involving other CPUs */
2369         lru_add_drain();
2370
2371         while ((ret = compact_finished(cc)) == COMPACT_CONTINUE) {
2372                 int err;
2373                 unsigned long iteration_start_pfn = cc->migrate_pfn;
2374
2375                 /*
2376                  * Avoid multiple rescans which can happen if a page cannot be
2377                  * isolated (dirty/writeback in async mode) or if the migrated
2378                  * pages are being allocated before the pageblock is cleared.
2379                  * The first rescan will capture the entire pageblock for
2380                  * migration. If it fails, it'll be marked skip and scanning
2381                  * will proceed as normal.
2382                  */
2383                 cc->rescan = false;
2384                 if (pageblock_start_pfn(last_migrated_pfn) ==
2385                     pageblock_start_pfn(iteration_start_pfn)) {
2386                         cc->rescan = true;
2387                 }
2388
2389                 switch (isolate_migratepages(cc)) {
2390                 case ISOLATE_ABORT:
2391                         ret = COMPACT_CONTENDED;
2392                         putback_movable_pages(&cc->migratepages);
2393                         cc->nr_migratepages = 0;
2394                         goto out;
2395                 case ISOLATE_NONE:
2396                         if (update_cached) {
2397                                 cc->zone->compact_cached_migrate_pfn[1] =
2398                                         cc->zone->compact_cached_migrate_pfn[0];
2399                         }
2400
2401                         /*
2402                          * We haven't isolated and migrated anything, but
2403                          * there might still be unflushed migrations from
2404                          * previous cc->order aligned block.
2405                          */
2406                         goto check_drain;
2407                 case ISOLATE_SUCCESS:
2408                         update_cached = false;
2409                         last_migrated_pfn = iteration_start_pfn;
2410                 }
2411
2412                 err = migrate_pages(&cc->migratepages, compaction_alloc,
2413                                 compaction_free, (unsigned long)cc, cc->mode,
2414                                 MR_COMPACTION, &nr_succeeded);
2415
2416                 trace_mm_compaction_migratepages(cc, nr_succeeded);
2417
2418                 /* All pages were either migrated or will be released */
2419                 cc->nr_migratepages = 0;
2420                 if (err) {
2421                         putback_movable_pages(&cc->migratepages);
2422                         /*
2423                          * migrate_pages() may return -ENOMEM when scanners meet
2424                          * and we want compact_finished() to detect it
2425                          */
2426                         if (err == -ENOMEM && !compact_scanners_met(cc)) {
2427                                 ret = COMPACT_CONTENDED;
2428                                 goto out;
2429                         }
2430                         /*
2431                          * We failed to migrate at least one page in the current
2432                          * order-aligned block, so skip the rest of it.
2433                          */
2434                         if (cc->direct_compaction &&
2435                                                 (cc->mode == MIGRATE_ASYNC)) {
2436                                 cc->migrate_pfn = block_end_pfn(
2437                                                 cc->migrate_pfn - 1, cc->order);
2438                                 /* Draining pcplists is useless in this case */
2439                                 last_migrated_pfn = 0;
2440                         }
2441                 }
2442
2443 check_drain:
2444                 /*
2445                  * Has the migration scanner moved away from the previous
2446                  * cc->order aligned block where we migrated from? If yes,
2447                  * flush the pages that were freed, so that they can merge and
2448                  * compact_finished() can detect immediately if allocation
2449                  * would succeed.
2450                  */
2451                 if (cc->order > 0 && last_migrated_pfn) {
2452                         unsigned long current_block_start =
2453                                 block_start_pfn(cc->migrate_pfn, cc->order);
2454
2455                         if (last_migrated_pfn < current_block_start) {
2456                                 lru_add_drain_cpu_zone(cc->zone);
2457                                 /* No more flushing until we migrate again */
2458                                 last_migrated_pfn = 0;
2459                         }
2460                 }
2461
2462                 /* Stop if a page has been captured */
2463                 if (capc && capc->page) {
2464                         ret = COMPACT_SUCCESS;
2465                         break;
2466                 }
2467         }
2468
2469 out:
2470         /*
2471          * Release free pages and update where the free scanner should restart,
2472          * so we don't leave any returned pages behind in the next attempt.
2473          */
2474         if (cc->nr_freepages > 0) {
2475                 unsigned long free_pfn = release_freepages(&cc->freepages);
2476
2477                 cc->nr_freepages = 0;
2478                 VM_BUG_ON(free_pfn == 0);
2479                 /* The cached pfn is always the first in a pageblock */
2480                 free_pfn = pageblock_start_pfn(free_pfn);
2481                 /*
2482                  * Only go back, not forward. The cached pfn might have been
2483                  * already reset to zone end in compact_finished()
2484                  */
2485                 if (free_pfn > cc->zone->compact_cached_free_pfn)
2486                         cc->zone->compact_cached_free_pfn = free_pfn;
2487         }
2488
2489         count_compact_events(COMPACTMIGRATE_SCANNED, cc->total_migrate_scanned);
2490         count_compact_events(COMPACTFREE_SCANNED, cc->total_free_scanned);
2491
2492         trace_mm_compaction_end(cc, start_pfn, end_pfn, sync, ret);
2493
2494         return ret;
2495 }
2496
2497 static enum compact_result compact_zone_order(struct zone *zone, int order,
2498                 gfp_t gfp_mask, enum compact_priority prio,
2499                 unsigned int alloc_flags, int highest_zoneidx,
2500                 struct page **capture)
2501 {
2502         enum compact_result ret;
2503         struct compact_control cc = {
2504                 .order = order,
2505                 .search_order = order,
2506                 .gfp_mask = gfp_mask,
2507                 .zone = zone,
2508                 .mode = (prio == COMPACT_PRIO_ASYNC) ?
2509                                         MIGRATE_ASYNC : MIGRATE_SYNC_LIGHT,
2510                 .alloc_flags = alloc_flags,
2511                 .highest_zoneidx = highest_zoneidx,
2512                 .direct_compaction = true,
2513                 .whole_zone = (prio == MIN_COMPACT_PRIORITY),
2514                 .ignore_skip_hint = (prio == MIN_COMPACT_PRIORITY),
2515                 .ignore_block_suitable = (prio == MIN_COMPACT_PRIORITY)
2516         };
2517         struct capture_control capc = {
2518                 .cc = &cc,
2519                 .page = NULL,
2520         };
2521
2522         /*
2523          * Make sure the structs are really initialized before we expose the
2524          * capture control, in case we are interrupted and the interrupt handler
2525          * frees a page.
2526          */
2527         barrier();
2528         WRITE_ONCE(current->capture_control, &capc);
2529
2530         ret = compact_zone(&cc, &capc);
2531
2532         VM_BUG_ON(!list_empty(&cc.freepages));
2533         VM_BUG_ON(!list_empty(&cc.migratepages));
2534
2535         /*
2536          * Make sure we hide capture control first before we read the captured
2537          * page pointer, otherwise an interrupt could free and capture a page
2538          * and we would leak it.
2539          */
2540         WRITE_ONCE(current->capture_control, NULL);
2541         *capture = READ_ONCE(capc.page);
2542         /*
2543          * Technically, it is also possible that compaction is skipped but
2544          * the page is still captured out of luck(IRQ came and freed the page).
2545          * Returning COMPACT_SUCCESS in such cases helps in properly accounting
2546          * the COMPACT[STALL|FAIL] when compaction is skipped.
2547          */
2548         if (*capture)
2549                 ret = COMPACT_SUCCESS;
2550
2551         return ret;
2552 }
2553
2554 int sysctl_extfrag_threshold = 500;
2555
2556 /**
2557  * try_to_compact_pages - Direct compact to satisfy a high-order allocation
2558  * @gfp_mask: The GFP mask of the current allocation
2559  * @order: The order of the current allocation
2560  * @alloc_flags: The allocation flags of the current allocation
2561  * @ac: The context of current allocation
2562  * @prio: Determines how hard direct compaction should try to succeed
2563  * @capture: Pointer to free page created by compaction will be stored here
2564  *
2565  * This is the main entry point for direct page compaction.
2566  */
2567 enum compact_result try_to_compact_pages(gfp_t gfp_mask, unsigned int order,
2568                 unsigned int alloc_flags, const struct alloc_context *ac,
2569                 enum compact_priority prio, struct page **capture)
2570 {
2571         int may_perform_io = (__force int)(gfp_mask & __GFP_IO);
2572         struct zoneref *z;
2573         struct zone *zone;
2574         enum compact_result rc = COMPACT_SKIPPED;
2575
2576         /*
2577          * Check if the GFP flags allow compaction - GFP_NOIO is really
2578          * tricky context because the migration might require IO
2579          */
2580         if (!may_perform_io)
2581                 return COMPACT_SKIPPED;
2582
2583         trace_mm_compaction_try_to_compact_pages(order, gfp_mask, prio);
2584
2585         /* Compact each zone in the list */
2586         for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2587                                         ac->highest_zoneidx, ac->nodemask) {
2588                 enum compact_result status;
2589
2590                 if (prio > MIN_COMPACT_PRIORITY
2591                                         && compaction_deferred(zone, order)) {
2592                         rc = max_t(enum compact_result, COMPACT_DEFERRED, rc);
2593                         continue;
2594                 }
2595
2596                 status = compact_zone_order(zone, order, gfp_mask, prio,
2597                                 alloc_flags, ac->highest_zoneidx, capture);
2598                 rc = max(status, rc);
2599
2600                 /* The allocation should succeed, stop compacting */
2601                 if (status == COMPACT_SUCCESS) {
2602                         /*
2603                          * We think the allocation will succeed in this zone,
2604                          * but it is not certain, hence the false. The caller
2605                          * will repeat this with true if allocation indeed
2606                          * succeeds in this zone.
2607                          */
2608                         compaction_defer_reset(zone, order, false);
2609
2610                         break;
2611                 }
2612
2613                 if (prio != COMPACT_PRIO_ASYNC && (status == COMPACT_COMPLETE ||
2614                                         status == COMPACT_PARTIAL_SKIPPED))
2615                         /*
2616                          * We think that allocation won't succeed in this zone
2617                          * so we defer compaction there. If it ends up
2618                          * succeeding after all, it will be reset.
2619                          */
2620                         defer_compaction(zone, order);
2621
2622                 /*
2623                  * We might have stopped compacting due to need_resched() in
2624                  * async compaction, or due to a fatal signal detected. In that
2625                  * case do not try further zones
2626                  */
2627                 if ((prio == COMPACT_PRIO_ASYNC && need_resched())
2628                                         || fatal_signal_pending(current))
2629                         break;
2630         }
2631
2632         return rc;
2633 }
2634
2635 /*
2636  * Compact all zones within a node till each zone's fragmentation score
2637  * reaches within proactive compaction thresholds (as determined by the
2638  * proactiveness tunable).
2639  *
2640  * It is possible that the function returns before reaching score targets
2641  * due to various back-off conditions, such as, contention on per-node or
2642  * per-zone locks.
2643  */
2644 static void proactive_compact_node(pg_data_t *pgdat)
2645 {
2646         int zoneid;
2647         struct zone *zone;
2648         struct compact_control cc = {
2649                 .order = -1,
2650                 .mode = MIGRATE_SYNC_LIGHT,
2651                 .ignore_skip_hint = true,
2652                 .whole_zone = true,
2653                 .gfp_mask = GFP_KERNEL,
2654                 .proactive_compaction = true,
2655         };
2656
2657         for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
2658                 zone = &pgdat->node_zones[zoneid];
2659                 if (!populated_zone(zone))
2660                         continue;
2661
2662                 cc.zone = zone;
2663
2664                 compact_zone(&cc, NULL);
2665
2666                 VM_BUG_ON(!list_empty(&cc.freepages));
2667                 VM_BUG_ON(!list_empty(&cc.migratepages));
2668         }
2669 }
2670
2671 /* Compact all zones within a node */
2672 static void compact_node(int nid)
2673 {
2674         pg_data_t *pgdat = NODE_DATA(nid);
2675         int zoneid;
2676         struct zone *zone;
2677         struct compact_control cc = {
2678                 .order = -1,
2679                 .mode = MIGRATE_SYNC,
2680                 .ignore_skip_hint = true,
2681                 .whole_zone = true,
2682                 .gfp_mask = GFP_KERNEL,
2683         };
2684
2685
2686         for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
2687
2688                 zone = &pgdat->node_zones[zoneid];
2689                 if (!populated_zone(zone))
2690                         continue;
2691
2692                 cc.zone = zone;
2693
2694                 compact_zone(&cc, NULL);
2695
2696                 VM_BUG_ON(!list_empty(&cc.freepages));
2697                 VM_BUG_ON(!list_empty(&cc.migratepages));
2698         }
2699 }
2700
2701 /* Compact all nodes in the system */
2702 static void compact_nodes(void)
2703 {
2704         int nid;
2705
2706         /* Flush pending updates to the LRU lists */
2707         lru_add_drain_all();
2708
2709         for_each_online_node(nid)
2710                 compact_node(nid);
2711 }
2712
2713 /*
2714  * Tunable for proactive compaction. It determines how
2715  * aggressively the kernel should compact memory in the
2716  * background. It takes values in the range [0, 100].
2717  */
2718 unsigned int __read_mostly sysctl_compaction_proactiveness = 20;
2719
2720 int compaction_proactiveness_sysctl_handler(struct ctl_table *table, int write,
2721                 void *buffer, size_t *length, loff_t *ppos)
2722 {
2723         int rc, nid;
2724
2725         rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
2726         if (rc)
2727                 return rc;
2728
2729         if (write && sysctl_compaction_proactiveness) {
2730                 for_each_online_node(nid) {
2731                         pg_data_t *pgdat = NODE_DATA(nid);
2732
2733                         if (pgdat->proactive_compact_trigger)
2734                                 continue;
2735
2736                         pgdat->proactive_compact_trigger = true;
2737                         wake_up_interruptible(&pgdat->kcompactd_wait);
2738                 }
2739         }
2740
2741         return 0;
2742 }
2743
2744 /*
2745  * This is the entry point for compacting all nodes via
2746  * /proc/sys/vm/compact_memory
2747  */
2748 int sysctl_compaction_handler(struct ctl_table *table, int write,
2749                         void *buffer, size_t *length, loff_t *ppos)
2750 {
2751         if (write)
2752                 compact_nodes();
2753
2754         return 0;
2755 }
2756
2757 #if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
2758 static ssize_t compact_store(struct device *dev,
2759                              struct device_attribute *attr,
2760                              const char *buf, size_t count)
2761 {
2762         int nid = dev->id;
2763
2764         if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
2765                 /* Flush pending updates to the LRU lists */
2766                 lru_add_drain_all();
2767
2768                 compact_node(nid);
2769         }
2770
2771         return count;
2772 }
2773 static DEVICE_ATTR_WO(compact);
2774
2775 int compaction_register_node(struct node *node)
2776 {
2777         return device_create_file(&node->dev, &dev_attr_compact);
2778 }
2779
2780 void compaction_unregister_node(struct node *node)
2781 {
2782         return device_remove_file(&node->dev, &dev_attr_compact);
2783 }
2784 #endif /* CONFIG_SYSFS && CONFIG_NUMA */
2785
2786 static inline bool kcompactd_work_requested(pg_data_t *pgdat)
2787 {
2788         return pgdat->kcompactd_max_order > 0 || kthread_should_stop() ||
2789                 pgdat->proactive_compact_trigger;
2790 }
2791
2792 static bool kcompactd_node_suitable(pg_data_t *pgdat)
2793 {
2794         int zoneid;
2795         struct zone *zone;
2796         enum zone_type highest_zoneidx = pgdat->kcompactd_highest_zoneidx;
2797
2798         for (zoneid = 0; zoneid <= highest_zoneidx; zoneid++) {
2799                 zone = &pgdat->node_zones[zoneid];
2800
2801                 if (!populated_zone(zone))
2802                         continue;
2803
2804                 if (compaction_suitable(zone, pgdat->kcompactd_max_order, 0,
2805                                         highest_zoneidx) == COMPACT_CONTINUE)
2806                         return true;
2807         }
2808
2809         return false;
2810 }
2811
2812 static void kcompactd_do_work(pg_data_t *pgdat)
2813 {
2814         /*
2815          * With no special task, compact all zones so that a page of requested
2816          * order is allocatable.
2817          */
2818         int zoneid;
2819         struct zone *zone;
2820         struct compact_control cc = {
2821                 .order = pgdat->kcompactd_max_order,
2822                 .search_order = pgdat->kcompactd_max_order,
2823                 .highest_zoneidx = pgdat->kcompactd_highest_zoneidx,
2824                 .mode = MIGRATE_SYNC_LIGHT,
2825                 .ignore_skip_hint = false,
2826                 .gfp_mask = GFP_KERNEL,
2827         };
2828         trace_mm_compaction_kcompactd_wake(pgdat->node_id, cc.order,
2829                                                         cc.highest_zoneidx);
2830         count_compact_event(KCOMPACTD_WAKE);
2831
2832         for (zoneid = 0; zoneid <= cc.highest_zoneidx; zoneid++) {
2833                 int status;
2834
2835                 zone = &pgdat->node_zones[zoneid];
2836                 if (!populated_zone(zone))
2837                         continue;
2838
2839                 if (compaction_deferred(zone, cc.order))
2840                         continue;
2841
2842                 if (compaction_suitable(zone, cc.order, 0, zoneid) !=
2843                                                         COMPACT_CONTINUE)
2844                         continue;
2845
2846                 if (kthread_should_stop())
2847                         return;
2848
2849                 cc.zone = zone;
2850                 status = compact_zone(&cc, NULL);
2851
2852                 if (status == COMPACT_SUCCESS) {
2853                         compaction_defer_reset(zone, cc.order, false);
2854                 } else if (status == COMPACT_PARTIAL_SKIPPED || status == COMPACT_COMPLETE) {
2855                         /*
2856                          * Buddy pages may become stranded on pcps that could
2857                          * otherwise coalesce on the zone's free area for
2858                          * order >= cc.order.  This is ratelimited by the
2859                          * upcoming deferral.
2860                          */
2861                         drain_all_pages(zone);
2862
2863                         /*
2864                          * We use sync migration mode here, so we defer like
2865                          * sync direct compaction does.
2866                          */
2867                         defer_compaction(zone, cc.order);
2868                 }
2869
2870                 count_compact_events(KCOMPACTD_MIGRATE_SCANNED,
2871                                      cc.total_migrate_scanned);
2872                 count_compact_events(KCOMPACTD_FREE_SCANNED,
2873                                      cc.total_free_scanned);
2874
2875                 VM_BUG_ON(!list_empty(&cc.freepages));
2876                 VM_BUG_ON(!list_empty(&cc.migratepages));
2877         }
2878
2879         /*
2880          * Regardless of success, we are done until woken up next. But remember
2881          * the requested order/highest_zoneidx in case it was higher/tighter
2882          * than our current ones
2883          */
2884         if (pgdat->kcompactd_max_order <= cc.order)
2885                 pgdat->kcompactd_max_order = 0;
2886         if (pgdat->kcompactd_highest_zoneidx >= cc.highest_zoneidx)
2887                 pgdat->kcompactd_highest_zoneidx = pgdat->nr_zones - 1;
2888 }
2889
2890 void wakeup_kcompactd(pg_data_t *pgdat, int order, int highest_zoneidx)
2891 {
2892         if (!order)
2893                 return;
2894
2895         if (pgdat->kcompactd_max_order < order)
2896                 pgdat->kcompactd_max_order = order;
2897
2898         if (pgdat->kcompactd_highest_zoneidx > highest_zoneidx)
2899                 pgdat->kcompactd_highest_zoneidx = highest_zoneidx;
2900
2901         /*
2902          * Pairs with implicit barrier in wait_event_freezable()
2903          * such that wakeups are not missed.
2904          */
2905         if (!wq_has_sleeper(&pgdat->kcompactd_wait))
2906                 return;
2907
2908         if (!kcompactd_node_suitable(pgdat))
2909                 return;
2910
2911         trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, order,
2912                                                         highest_zoneidx);
2913         wake_up_interruptible(&pgdat->kcompactd_wait);
2914 }
2915
2916 /*
2917  * The background compaction daemon, started as a kernel thread
2918  * from the init process.
2919  */
2920 static int kcompactd(void *p)
2921 {
2922         pg_data_t *pgdat = (pg_data_t *)p;
2923         struct task_struct *tsk = current;
2924         long default_timeout = msecs_to_jiffies(HPAGE_FRAG_CHECK_INTERVAL_MSEC);
2925         long timeout = default_timeout;
2926
2927         const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2928
2929         if (!cpumask_empty(cpumask))
2930                 set_cpus_allowed_ptr(tsk, cpumask);
2931
2932         set_freezable();
2933
2934         pgdat->kcompactd_max_order = 0;
2935         pgdat->kcompactd_highest_zoneidx = pgdat->nr_zones - 1;
2936
2937         while (!kthread_should_stop()) {
2938                 unsigned long pflags;
2939
2940                 /*
2941                  * Avoid the unnecessary wakeup for proactive compaction
2942                  * when it is disabled.
2943                  */
2944                 if (!sysctl_compaction_proactiveness)
2945                         timeout = MAX_SCHEDULE_TIMEOUT;
2946                 trace_mm_compaction_kcompactd_sleep(pgdat->node_id);
2947                 if (wait_event_freezable_timeout(pgdat->kcompactd_wait,
2948                         kcompactd_work_requested(pgdat), timeout) &&
2949                         !pgdat->proactive_compact_trigger) {
2950
2951                         psi_memstall_enter(&pflags);
2952                         kcompactd_do_work(pgdat);
2953                         psi_memstall_leave(&pflags);
2954                         /*
2955                          * Reset the timeout value. The defer timeout from
2956                          * proactive compaction is lost here but that is fine
2957                          * as the condition of the zone changing substantionally
2958                          * then carrying on with the previous defer interval is
2959                          * not useful.
2960                          */
2961                         timeout = default_timeout;
2962                         continue;
2963                 }
2964
2965                 /*
2966                  * Start the proactive work with default timeout. Based
2967                  * on the fragmentation score, this timeout is updated.
2968                  */
2969                 timeout = default_timeout;
2970                 if (should_proactive_compact_node(pgdat)) {
2971                         unsigned int prev_score, score;
2972
2973                         prev_score = fragmentation_score_node(pgdat);
2974                         proactive_compact_node(pgdat);
2975                         score = fragmentation_score_node(pgdat);
2976                         /*
2977                          * Defer proactive compaction if the fragmentation
2978                          * score did not go down i.e. no progress made.
2979                          */
2980                         if (unlikely(score >= prev_score))
2981                                 timeout =
2982                                    default_timeout << COMPACT_MAX_DEFER_SHIFT;
2983                 }
2984                 if (unlikely(pgdat->proactive_compact_trigger))
2985                         pgdat->proactive_compact_trigger = false;
2986         }
2987
2988         return 0;
2989 }
2990
2991 /*
2992  * This kcompactd start function will be called by init and node-hot-add.
2993  * On node-hot-add, kcompactd will moved to proper cpus if cpus are hot-added.
2994  */
2995 void kcompactd_run(int nid)
2996 {
2997         pg_data_t *pgdat = NODE_DATA(nid);
2998
2999         if (pgdat->kcompactd)
3000                 return;
3001
3002         pgdat->kcompactd = kthread_run(kcompactd, pgdat, "kcompactd%d", nid);
3003         if (IS_ERR(pgdat->kcompactd)) {
3004                 pr_err("Failed to start kcompactd on node %d\n", nid);
3005                 pgdat->kcompactd = NULL;
3006         }
3007 }
3008
3009 /*
3010  * Called by memory hotplug when all memory in a node is offlined. Caller must
3011  * hold mem_hotplug_begin/end().
3012  */
3013 void kcompactd_stop(int nid)
3014 {
3015         struct task_struct *kcompactd = NODE_DATA(nid)->kcompactd;
3016
3017         if (kcompactd) {
3018                 kthread_stop(kcompactd);
3019                 NODE_DATA(nid)->kcompactd = NULL;
3020         }
3021 }
3022
3023 /*
3024  * It's optimal to keep kcompactd on the same CPUs as their memory, but
3025  * not required for correctness. So if the last cpu in a node goes
3026  * away, we get changed to run anywhere: as the first one comes back,
3027  * restore their cpu bindings.
3028  */
3029 static int kcompactd_cpu_online(unsigned int cpu)
3030 {
3031         int nid;
3032
3033         for_each_node_state(nid, N_MEMORY) {
3034                 pg_data_t *pgdat = NODE_DATA(nid);
3035                 const struct cpumask *mask;
3036
3037                 mask = cpumask_of_node(pgdat->node_id);
3038
3039                 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3040                         /* One of our CPUs online: restore mask */
3041                         if (pgdat->kcompactd)
3042                                 set_cpus_allowed_ptr(pgdat->kcompactd, mask);
3043         }
3044         return 0;
3045 }
3046
3047 static int __init kcompactd_init(void)
3048 {
3049         int nid;
3050         int ret;
3051
3052         ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
3053                                         "mm/compaction:online",
3054                                         kcompactd_cpu_online, NULL);
3055         if (ret < 0) {
3056                 pr_err("kcompactd: failed to register hotplug callbacks.\n");
3057                 return ret;
3058         }
3059
3060         for_each_node_state(nid, N_MEMORY)
3061                 kcompactd_run(nid);
3062         return 0;
3063 }
3064 subsys_initcall(kcompactd_init)
3065
3066 #endif /* CONFIG_COMPACTION */