1 // SPDX-License-Identifier: GPL-2.0
3 * linux/mm/compaction.c
5 * Memory compaction for the reduction of external fragmentation. Note that
6 * this heavily depends upon page migration to do all the real heavy
9 * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
11 #include <linux/cpu.h>
12 #include <linux/swap.h>
13 #include <linux/migrate.h>
14 #include <linux/compaction.h>
15 #include <linux/mm_inline.h>
16 #include <linux/sched/signal.h>
17 #include <linux/backing-dev.h>
18 #include <linux/sysctl.h>
19 #include <linux/sysfs.h>
20 #include <linux/page-isolation.h>
21 #include <linux/kasan.h>
22 #include <linux/kthread.h>
23 #include <linux/freezer.h>
24 #include <linux/page_owner.h>
25 #include <linux/psi.h>
28 #ifdef CONFIG_COMPACTION
30 * Fragmentation score check interval for proactive compaction purposes.
32 #define HPAGE_FRAG_CHECK_INTERVAL_MSEC (500)
34 static inline void count_compact_event(enum vm_event_item item)
39 static inline void count_compact_events(enum vm_event_item item, long delta)
41 count_vm_events(item, delta);
44 #define count_compact_event(item) do { } while (0)
45 #define count_compact_events(item, delta) do { } while (0)
48 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
50 #define CREATE_TRACE_POINTS
51 #include <trace/events/compaction.h>
53 #define block_start_pfn(pfn, order) round_down(pfn, 1UL << (order))
54 #define block_end_pfn(pfn, order) ALIGN((pfn) + 1, 1UL << (order))
55 #define pageblock_start_pfn(pfn) block_start_pfn(pfn, pageblock_order)
56 #define pageblock_end_pfn(pfn) block_end_pfn(pfn, pageblock_order)
59 * Page order with-respect-to which proactive compaction
60 * calculates external fragmentation, which is used as
61 * the "fragmentation score" of a node/zone.
63 #if defined CONFIG_TRANSPARENT_HUGEPAGE
64 #define COMPACTION_HPAGE_ORDER HPAGE_PMD_ORDER
65 #elif defined CONFIG_HUGETLBFS
66 #define COMPACTION_HPAGE_ORDER HUGETLB_PAGE_ORDER
68 #define COMPACTION_HPAGE_ORDER (PMD_SHIFT - PAGE_SHIFT)
71 static unsigned long release_freepages(struct list_head *freelist)
73 struct page *page, *next;
74 unsigned long high_pfn = 0;
76 list_for_each_entry_safe(page, next, freelist, lru) {
77 unsigned long pfn = page_to_pfn(page);
87 static void split_map_pages(struct list_head *list)
89 unsigned int i, order, nr_pages;
90 struct page *page, *next;
93 list_for_each_entry_safe(page, next, list, lru) {
96 order = page_private(page);
97 nr_pages = 1 << order;
99 post_alloc_hook(page, order, __GFP_MOVABLE);
101 split_page(page, order);
103 for (i = 0; i < nr_pages; i++) {
104 list_add(&page->lru, &tmp_list);
109 list_splice(&tmp_list, list);
112 #ifdef CONFIG_COMPACTION
113 bool PageMovable(struct page *page)
115 const struct movable_operations *mops;
117 VM_BUG_ON_PAGE(!PageLocked(page), page);
118 if (!__PageMovable(page))
121 mops = page_movable_ops(page);
127 EXPORT_SYMBOL(PageMovable);
129 void __SetPageMovable(struct page *page, const struct movable_operations *mops)
131 VM_BUG_ON_PAGE(!PageLocked(page), page);
132 VM_BUG_ON_PAGE((unsigned long)mops & PAGE_MAPPING_MOVABLE, page);
133 page->mapping = (void *)((unsigned long)mops | PAGE_MAPPING_MOVABLE);
135 EXPORT_SYMBOL(__SetPageMovable);
137 void __ClearPageMovable(struct page *page)
139 VM_BUG_ON_PAGE(!PageMovable(page), page);
141 * This page still has the type of a movable page, but it's
142 * actually not movable any more.
144 page->mapping = (void *)PAGE_MAPPING_MOVABLE;
146 EXPORT_SYMBOL(__ClearPageMovable);
148 /* Do not skip compaction more than 64 times */
149 #define COMPACT_MAX_DEFER_SHIFT 6
152 * Compaction is deferred when compaction fails to result in a page
153 * allocation success. 1 << compact_defer_shift, compactions are skipped up
154 * to a limit of 1 << COMPACT_MAX_DEFER_SHIFT
156 static void defer_compaction(struct zone *zone, int order)
158 zone->compact_considered = 0;
159 zone->compact_defer_shift++;
161 if (order < zone->compact_order_failed)
162 zone->compact_order_failed = order;
164 if (zone->compact_defer_shift > COMPACT_MAX_DEFER_SHIFT)
165 zone->compact_defer_shift = COMPACT_MAX_DEFER_SHIFT;
167 trace_mm_compaction_defer_compaction(zone, order);
170 /* Returns true if compaction should be skipped this time */
171 static bool compaction_deferred(struct zone *zone, int order)
173 unsigned long defer_limit = 1UL << zone->compact_defer_shift;
175 if (order < zone->compact_order_failed)
178 /* Avoid possible overflow */
179 if (++zone->compact_considered >= defer_limit) {
180 zone->compact_considered = defer_limit;
184 trace_mm_compaction_deferred(zone, order);
190 * Update defer tracking counters after successful compaction of given order,
191 * which means an allocation either succeeded (alloc_success == true) or is
192 * expected to succeed.
194 void compaction_defer_reset(struct zone *zone, int order,
198 zone->compact_considered = 0;
199 zone->compact_defer_shift = 0;
201 if (order >= zone->compact_order_failed)
202 zone->compact_order_failed = order + 1;
204 trace_mm_compaction_defer_reset(zone, order);
207 /* Returns true if restarting compaction after many failures */
208 static bool compaction_restarting(struct zone *zone, int order)
210 if (order < zone->compact_order_failed)
213 return zone->compact_defer_shift == COMPACT_MAX_DEFER_SHIFT &&
214 zone->compact_considered >= 1UL << zone->compact_defer_shift;
217 /* Returns true if the pageblock should be scanned for pages to isolate. */
218 static inline bool isolation_suitable(struct compact_control *cc,
221 if (cc->ignore_skip_hint)
224 return !get_pageblock_skip(page);
227 static void reset_cached_positions(struct zone *zone)
229 zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn;
230 zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn;
231 zone->compact_cached_free_pfn =
232 pageblock_start_pfn(zone_end_pfn(zone) - 1);
236 * Compound pages of >= pageblock_order should consistently be skipped until
237 * released. It is always pointless to compact pages of such order (if they are
238 * migratable), and the pageblocks they occupy cannot contain any free pages.
240 static bool pageblock_skip_persistent(struct page *page)
242 if (!PageCompound(page))
245 page = compound_head(page);
247 if (compound_order(page) >= pageblock_order)
254 __reset_isolation_pfn(struct zone *zone, unsigned long pfn, bool check_source,
257 struct page *page = pfn_to_online_page(pfn);
258 struct page *block_page;
259 struct page *end_page;
260 unsigned long block_pfn;
264 if (zone != page_zone(page))
266 if (pageblock_skip_persistent(page))
270 * If skip is already cleared do no further checking once the
271 * restart points have been set.
273 if (check_source && check_target && !get_pageblock_skip(page))
277 * If clearing skip for the target scanner, do not select a
278 * non-movable pageblock as the starting point.
280 if (!check_source && check_target &&
281 get_pageblock_migratetype(page) != MIGRATE_MOVABLE)
284 /* Ensure the start of the pageblock or zone is online and valid */
285 block_pfn = pageblock_start_pfn(pfn);
286 block_pfn = max(block_pfn, zone->zone_start_pfn);
287 block_page = pfn_to_online_page(block_pfn);
293 /* Ensure the end of the pageblock or zone is online and valid */
294 block_pfn = pageblock_end_pfn(pfn) - 1;
295 block_pfn = min(block_pfn, zone_end_pfn(zone) - 1);
296 end_page = pfn_to_online_page(block_pfn);
301 * Only clear the hint if a sample indicates there is either a
302 * free page or an LRU page in the block. One or other condition
303 * is necessary for the block to be a migration source/target.
306 if (check_source && PageLRU(page)) {
307 clear_pageblock_skip(page);
311 if (check_target && PageBuddy(page)) {
312 clear_pageblock_skip(page);
316 page += (1 << PAGE_ALLOC_COSTLY_ORDER);
317 } while (page <= end_page);
323 * This function is called to clear all cached information on pageblocks that
324 * should be skipped for page isolation when the migrate and free page scanner
327 static void __reset_isolation_suitable(struct zone *zone)
329 unsigned long migrate_pfn = zone->zone_start_pfn;
330 unsigned long free_pfn = zone_end_pfn(zone) - 1;
331 unsigned long reset_migrate = free_pfn;
332 unsigned long reset_free = migrate_pfn;
333 bool source_set = false;
334 bool free_set = false;
336 if (!zone->compact_blockskip_flush)
339 zone->compact_blockskip_flush = false;
342 * Walk the zone and update pageblock skip information. Source looks
343 * for PageLRU while target looks for PageBuddy. When the scanner
344 * is found, both PageBuddy and PageLRU are checked as the pageblock
345 * is suitable as both source and target.
347 for (; migrate_pfn < free_pfn; migrate_pfn += pageblock_nr_pages,
348 free_pfn -= pageblock_nr_pages) {
351 /* Update the migrate PFN */
352 if (__reset_isolation_pfn(zone, migrate_pfn, true, source_set) &&
353 migrate_pfn < reset_migrate) {
355 reset_migrate = migrate_pfn;
356 zone->compact_init_migrate_pfn = reset_migrate;
357 zone->compact_cached_migrate_pfn[0] = reset_migrate;
358 zone->compact_cached_migrate_pfn[1] = reset_migrate;
361 /* Update the free PFN */
362 if (__reset_isolation_pfn(zone, free_pfn, free_set, true) &&
363 free_pfn > reset_free) {
365 reset_free = free_pfn;
366 zone->compact_init_free_pfn = reset_free;
367 zone->compact_cached_free_pfn = reset_free;
371 /* Leave no distance if no suitable block was reset */
372 if (reset_migrate >= reset_free) {
373 zone->compact_cached_migrate_pfn[0] = migrate_pfn;
374 zone->compact_cached_migrate_pfn[1] = migrate_pfn;
375 zone->compact_cached_free_pfn = free_pfn;
379 void reset_isolation_suitable(pg_data_t *pgdat)
383 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
384 struct zone *zone = &pgdat->node_zones[zoneid];
385 if (!populated_zone(zone))
388 /* Only flush if a full compaction finished recently */
389 if (zone->compact_blockskip_flush)
390 __reset_isolation_suitable(zone);
395 * Sets the pageblock skip bit if it was clear. Note that this is a hint as
396 * locks are not required for read/writers. Returns true if it was already set.
398 static bool test_and_set_skip(struct compact_control *cc, struct page *page,
403 /* Do no update if skip hint is being ignored */
404 if (cc->ignore_skip_hint)
407 if (!IS_ALIGNED(pfn, pageblock_nr_pages))
410 skip = get_pageblock_skip(page);
411 if (!skip && !cc->no_set_skip_hint)
412 set_pageblock_skip(page);
417 static void update_cached_migrate(struct compact_control *cc, unsigned long pfn)
419 struct zone *zone = cc->zone;
421 pfn = pageblock_end_pfn(pfn);
423 /* Set for isolation rather than compaction */
424 if (cc->no_set_skip_hint)
427 if (pfn > zone->compact_cached_migrate_pfn[0])
428 zone->compact_cached_migrate_pfn[0] = pfn;
429 if (cc->mode != MIGRATE_ASYNC &&
430 pfn > zone->compact_cached_migrate_pfn[1])
431 zone->compact_cached_migrate_pfn[1] = pfn;
435 * If no pages were isolated then mark this pageblock to be skipped in the
436 * future. The information is later cleared by __reset_isolation_suitable().
438 static void update_pageblock_skip(struct compact_control *cc,
439 struct page *page, unsigned long pfn)
441 struct zone *zone = cc->zone;
443 if (cc->no_set_skip_hint)
449 set_pageblock_skip(page);
451 /* Update where async and sync compaction should restart */
452 if (pfn < zone->compact_cached_free_pfn)
453 zone->compact_cached_free_pfn = pfn;
456 static inline bool isolation_suitable(struct compact_control *cc,
462 static inline bool pageblock_skip_persistent(struct page *page)
467 static inline void update_pageblock_skip(struct compact_control *cc,
468 struct page *page, unsigned long pfn)
472 static void update_cached_migrate(struct compact_control *cc, unsigned long pfn)
476 static bool test_and_set_skip(struct compact_control *cc, struct page *page,
481 #endif /* CONFIG_COMPACTION */
484 * Compaction requires the taking of some coarse locks that are potentially
485 * very heavily contended. For async compaction, trylock and record if the
486 * lock is contended. The lock will still be acquired but compaction will
487 * abort when the current block is finished regardless of success rate.
488 * Sync compaction acquires the lock.
490 * Always returns true which makes it easier to track lock state in callers.
492 static bool compact_lock_irqsave(spinlock_t *lock, unsigned long *flags,
493 struct compact_control *cc)
496 /* Track if the lock is contended in async mode */
497 if (cc->mode == MIGRATE_ASYNC && !cc->contended) {
498 if (spin_trylock_irqsave(lock, *flags))
501 cc->contended = true;
504 spin_lock_irqsave(lock, *flags);
509 * Compaction requires the taking of some coarse locks that are potentially
510 * very heavily contended. The lock should be periodically unlocked to avoid
511 * having disabled IRQs for a long time, even when there is nobody waiting on
512 * the lock. It might also be that allowing the IRQs will result in
513 * need_resched() becoming true. If scheduling is needed, compaction schedules.
514 * Either compaction type will also abort if a fatal signal is pending.
515 * In either case if the lock was locked, it is dropped and not regained.
517 * Returns true if compaction should abort due to fatal signal pending.
518 * Returns false when compaction can continue.
520 static bool compact_unlock_should_abort(spinlock_t *lock,
521 unsigned long flags, bool *locked, struct compact_control *cc)
524 spin_unlock_irqrestore(lock, flags);
528 if (fatal_signal_pending(current)) {
529 cc->contended = true;
539 * Isolate free pages onto a private freelist. If @strict is true, will abort
540 * returning 0 on any invalid PFNs or non-free pages inside of the pageblock
541 * (even though it may still end up isolating some pages).
543 static unsigned long isolate_freepages_block(struct compact_control *cc,
544 unsigned long *start_pfn,
545 unsigned long end_pfn,
546 struct list_head *freelist,
550 int nr_scanned = 0, total_isolated = 0;
552 unsigned long flags = 0;
554 unsigned long blockpfn = *start_pfn;
557 /* Strict mode is for isolation, speed is secondary */
561 cursor = pfn_to_page(blockpfn);
563 /* Isolate free pages. */
564 for (; blockpfn < end_pfn; blockpfn += stride, cursor += stride) {
566 struct page *page = cursor;
569 * Periodically drop the lock (if held) regardless of its
570 * contention, to give chance to IRQs. Abort if fatal signal
573 if (!(blockpfn % COMPACT_CLUSTER_MAX)
574 && compact_unlock_should_abort(&cc->zone->lock, flags,
581 * For compound pages such as THP and hugetlbfs, we can save
582 * potentially a lot of iterations if we skip them at once.
583 * The check is racy, but we can consider only valid values
584 * and the only danger is skipping too much.
586 if (PageCompound(page)) {
587 const unsigned int order = compound_order(page);
589 if (likely(order < MAX_ORDER)) {
590 blockpfn += (1UL << order) - 1;
591 cursor += (1UL << order) - 1;
596 if (!PageBuddy(page))
599 /* If we already hold the lock, we can skip some rechecking. */
601 locked = compact_lock_irqsave(&cc->zone->lock,
604 /* Recheck this is a buddy page under lock */
605 if (!PageBuddy(page))
609 /* Found a free page, will break it into order-0 pages */
610 order = buddy_order(page);
611 isolated = __isolate_free_page(page, order);
614 set_page_private(page, order);
616 total_isolated += isolated;
617 cc->nr_freepages += isolated;
618 list_add_tail(&page->lru, freelist);
620 if (!strict && cc->nr_migratepages <= cc->nr_freepages) {
621 blockpfn += isolated;
624 /* Advance to the end of split page */
625 blockpfn += isolated - 1;
626 cursor += isolated - 1;
638 spin_unlock_irqrestore(&cc->zone->lock, flags);
641 * There is a tiny chance that we have read bogus compound_order(),
642 * so be careful to not go outside of the pageblock.
644 if (unlikely(blockpfn > end_pfn))
647 trace_mm_compaction_isolate_freepages(*start_pfn, blockpfn,
648 nr_scanned, total_isolated);
650 /* Record how far we have got within the block */
651 *start_pfn = blockpfn;
654 * If strict isolation is requested by CMA then check that all the
655 * pages requested were isolated. If there were any failures, 0 is
656 * returned and CMA will fail.
658 if (strict && blockpfn < end_pfn)
661 cc->total_free_scanned += nr_scanned;
663 count_compact_events(COMPACTISOLATED, total_isolated);
664 return total_isolated;
668 * isolate_freepages_range() - isolate free pages.
669 * @cc: Compaction control structure.
670 * @start_pfn: The first PFN to start isolating.
671 * @end_pfn: The one-past-last PFN.
673 * Non-free pages, invalid PFNs, or zone boundaries within the
674 * [start_pfn, end_pfn) range are considered errors, cause function to
675 * undo its actions and return zero.
677 * Otherwise, function returns one-past-the-last PFN of isolated page
678 * (which may be greater then end_pfn if end fell in a middle of
682 isolate_freepages_range(struct compact_control *cc,
683 unsigned long start_pfn, unsigned long end_pfn)
685 unsigned long isolated, pfn, block_start_pfn, block_end_pfn;
689 block_start_pfn = pageblock_start_pfn(pfn);
690 if (block_start_pfn < cc->zone->zone_start_pfn)
691 block_start_pfn = cc->zone->zone_start_pfn;
692 block_end_pfn = pageblock_end_pfn(pfn);
694 for (; pfn < end_pfn; pfn += isolated,
695 block_start_pfn = block_end_pfn,
696 block_end_pfn += pageblock_nr_pages) {
697 /* Protect pfn from changing by isolate_freepages_block */
698 unsigned long isolate_start_pfn = pfn;
700 block_end_pfn = min(block_end_pfn, end_pfn);
703 * pfn could pass the block_end_pfn if isolated freepage
704 * is more than pageblock order. In this case, we adjust
705 * scanning range to right one.
707 if (pfn >= block_end_pfn) {
708 block_start_pfn = pageblock_start_pfn(pfn);
709 block_end_pfn = pageblock_end_pfn(pfn);
710 block_end_pfn = min(block_end_pfn, end_pfn);
713 if (!pageblock_pfn_to_page(block_start_pfn,
714 block_end_pfn, cc->zone))
717 isolated = isolate_freepages_block(cc, &isolate_start_pfn,
718 block_end_pfn, &freelist, 0, true);
721 * In strict mode, isolate_freepages_block() returns 0 if
722 * there are any holes in the block (ie. invalid PFNs or
729 * If we managed to isolate pages, it is always (1 << n) *
730 * pageblock_nr_pages for some non-negative n. (Max order
731 * page may span two pageblocks).
735 /* __isolate_free_page() does not map the pages */
736 split_map_pages(&freelist);
739 /* Loop terminated early, cleanup. */
740 release_freepages(&freelist);
744 /* We don't use freelists for anything. */
748 /* Similar to reclaim, but different enough that they don't share logic */
749 static bool too_many_isolated(pg_data_t *pgdat)
753 unsigned long active, inactive, isolated;
755 inactive = node_page_state(pgdat, NR_INACTIVE_FILE) +
756 node_page_state(pgdat, NR_INACTIVE_ANON);
757 active = node_page_state(pgdat, NR_ACTIVE_FILE) +
758 node_page_state(pgdat, NR_ACTIVE_ANON);
759 isolated = node_page_state(pgdat, NR_ISOLATED_FILE) +
760 node_page_state(pgdat, NR_ISOLATED_ANON);
762 too_many = isolated > (inactive + active) / 2;
764 wake_throttle_isolated(pgdat);
770 * isolate_migratepages_block() - isolate all migrate-able pages within
772 * @cc: Compaction control structure.
773 * @low_pfn: The first PFN to isolate
774 * @end_pfn: The one-past-the-last PFN to isolate, within same pageblock
775 * @mode: Isolation mode to be used.
777 * Isolate all pages that can be migrated from the range specified by
778 * [low_pfn, end_pfn). The range is expected to be within same pageblock.
779 * Returns errno, like -EAGAIN or -EINTR in case e.g signal pending or congestion,
780 * -ENOMEM in case we could not allocate a page, or 0.
781 * cc->migrate_pfn will contain the next pfn to scan.
783 * The pages are isolated on cc->migratepages list (not required to be empty),
784 * and cc->nr_migratepages is updated accordingly.
787 isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn,
788 unsigned long end_pfn, isolate_mode_t mode)
790 pg_data_t *pgdat = cc->zone->zone_pgdat;
791 unsigned long nr_scanned = 0, nr_isolated = 0;
792 struct lruvec *lruvec;
793 unsigned long flags = 0;
794 struct lruvec *locked = NULL;
795 struct page *page = NULL, *valid_page = NULL;
796 struct address_space *mapping;
797 unsigned long start_pfn = low_pfn;
798 bool skip_on_failure = false;
799 unsigned long next_skip_pfn = 0;
800 bool skip_updated = false;
803 cc->migrate_pfn = low_pfn;
806 * Ensure that there are not too many pages isolated from the LRU
807 * list by either parallel reclaimers or compaction. If there are,
808 * delay for some time until fewer pages are isolated
810 while (unlikely(too_many_isolated(pgdat))) {
811 /* stop isolation if there are still pages not migrated */
812 if (cc->nr_migratepages)
815 /* async migration should just abort */
816 if (cc->mode == MIGRATE_ASYNC)
819 reclaim_throttle(pgdat, VMSCAN_THROTTLE_ISOLATED);
821 if (fatal_signal_pending(current))
827 if (cc->direct_compaction && (cc->mode == MIGRATE_ASYNC)) {
828 skip_on_failure = true;
829 next_skip_pfn = block_end_pfn(low_pfn, cc->order);
832 /* Time to isolate some pages for migration */
833 for (; low_pfn < end_pfn; low_pfn++) {
835 if (skip_on_failure && low_pfn >= next_skip_pfn) {
837 * We have isolated all migration candidates in the
838 * previous order-aligned block, and did not skip it due
839 * to failure. We should migrate the pages now and
840 * hopefully succeed compaction.
846 * We failed to isolate in the previous order-aligned
847 * block. Set the new boundary to the end of the
848 * current block. Note we can't simply increase
849 * next_skip_pfn by 1 << order, as low_pfn might have
850 * been incremented by a higher number due to skipping
851 * a compound or a high-order buddy page in the
852 * previous loop iteration.
854 next_skip_pfn = block_end_pfn(low_pfn, cc->order);
858 * Periodically drop the lock (if held) regardless of its
859 * contention, to give chance to IRQs. Abort completely if
860 * a fatal signal is pending.
862 if (!(low_pfn % COMPACT_CLUSTER_MAX)) {
864 unlock_page_lruvec_irqrestore(locked, flags);
868 if (fatal_signal_pending(current)) {
869 cc->contended = true;
880 page = pfn_to_page(low_pfn);
883 * Check if the pageblock has already been marked skipped.
884 * Only the aligned PFN is checked as the caller isolates
885 * COMPACT_CLUSTER_MAX at a time so the second call must
886 * not falsely conclude that the block should be skipped.
888 if (!valid_page && IS_ALIGNED(low_pfn, pageblock_nr_pages)) {
889 if (!isolation_suitable(cc, page)) {
897 if (PageHuge(page) && cc->alloc_contig) {
898 ret = isolate_or_dissolve_huge_page(page, &cc->migratepages);
901 * Fail isolation in case isolate_or_dissolve_huge_page()
902 * reports an error. In case of -ENOMEM, abort right away.
905 /* Do not report -EBUSY down the chain */
908 low_pfn += compound_nr(page) - 1;
912 if (PageHuge(page)) {
914 * Hugepage was successfully isolated and placed
915 * on the cc->migratepages list.
917 low_pfn += compound_nr(page) - 1;
918 goto isolate_success_no_list;
922 * Ok, the hugepage was dissolved. Now these pages are
923 * Buddy and cannot be re-allocated because they are
924 * isolated. Fall-through as the check below handles
930 * Skip if free. We read page order here without zone lock
931 * which is generally unsafe, but the race window is small and
932 * the worst thing that can happen is that we skip some
933 * potential isolation targets.
935 if (PageBuddy(page)) {
936 unsigned long freepage_order = buddy_order_unsafe(page);
939 * Without lock, we cannot be sure that what we got is
940 * a valid page order. Consider only values in the
941 * valid order range to prevent low_pfn overflow.
943 if (freepage_order > 0 && freepage_order < MAX_ORDER)
944 low_pfn += (1UL << freepage_order) - 1;
949 * Regardless of being on LRU, compound pages such as THP and
950 * hugetlbfs are not to be compacted unless we are attempting
951 * an allocation much larger than the huge page size (eg CMA).
952 * We can potentially save a lot of iterations if we skip them
953 * at once. The check is racy, but we can consider only valid
954 * values and the only danger is skipping too much.
956 if (PageCompound(page) && !cc->alloc_contig) {
957 const unsigned int order = compound_order(page);
959 if (likely(order < MAX_ORDER))
960 low_pfn += (1UL << order) - 1;
965 * Check may be lockless but that's ok as we recheck later.
966 * It's possible to migrate LRU and non-lru movable pages.
967 * Skip any other type of page
969 if (!PageLRU(page)) {
971 * __PageMovable can return false positive so we need
972 * to verify it under page_lock.
974 if (unlikely(__PageMovable(page)) &&
975 !PageIsolated(page)) {
977 unlock_page_lruvec_irqrestore(locked, flags);
981 if (!isolate_movable_page(page, mode))
982 goto isolate_success;
989 * Migration will fail if an anonymous page is pinned in memory,
990 * so avoid taking lru_lock and isolating it unnecessarily in an
991 * admittedly racy check.
993 mapping = page_mapping(page);
994 if (!mapping && page_count(page) > page_mapcount(page))
998 * Only allow to migrate anonymous pages in GFP_NOFS context
999 * because those do not depend on fs locks.
1001 if (!(cc->gfp_mask & __GFP_FS) && mapping)
1005 * Be careful not to clear PageLRU until after we're
1006 * sure the page is not being freed elsewhere -- the
1007 * page release code relies on it.
1009 if (unlikely(!get_page_unless_zero(page)))
1012 /* Only take pages on LRU: a check now makes later tests safe */
1014 goto isolate_fail_put;
1016 /* Compaction might skip unevictable pages but CMA takes them */
1017 if (!(mode & ISOLATE_UNEVICTABLE) && PageUnevictable(page))
1018 goto isolate_fail_put;
1021 * To minimise LRU disruption, the caller can indicate with
1022 * ISOLATE_ASYNC_MIGRATE that it only wants to isolate pages
1023 * it will be able to migrate without blocking - clean pages
1024 * for the most part. PageWriteback would require blocking.
1026 if ((mode & ISOLATE_ASYNC_MIGRATE) && PageWriteback(page))
1027 goto isolate_fail_put;
1029 if ((mode & ISOLATE_ASYNC_MIGRATE) && PageDirty(page)) {
1033 * Only pages without mappings or that have a
1034 * ->migratepage callback are possible to migrate
1035 * without blocking. However, we can be racing with
1036 * truncation so it's necessary to lock the page
1037 * to stabilise the mapping as truncation holds
1038 * the page lock until after the page is removed
1039 * from the page cache.
1041 if (!trylock_page(page))
1042 goto isolate_fail_put;
1044 mapping = page_mapping(page);
1045 migrate_dirty = !mapping || mapping->a_ops->migratepage;
1048 goto isolate_fail_put;
1051 /* Try isolate the page */
1052 if (!TestClearPageLRU(page))
1053 goto isolate_fail_put;
1055 lruvec = folio_lruvec(page_folio(page));
1057 /* If we already hold the lock, we can skip some rechecking */
1058 if (lruvec != locked) {
1060 unlock_page_lruvec_irqrestore(locked, flags);
1062 compact_lock_irqsave(&lruvec->lru_lock, &flags, cc);
1065 lruvec_memcg_debug(lruvec, page_folio(page));
1067 /* Try get exclusive access under lock */
1068 if (!skip_updated) {
1069 skip_updated = true;
1070 if (test_and_set_skip(cc, page, low_pfn))
1075 * Page become compound since the non-locked check,
1076 * and it's on LRU. It can only be a THP so the order
1077 * is safe to read and it's 0 for tail pages.
1079 if (unlikely(PageCompound(page) && !cc->alloc_contig)) {
1080 low_pfn += compound_nr(page) - 1;
1082 goto isolate_fail_put;
1086 /* The whole page is taken off the LRU; skip the tail pages. */
1087 if (PageCompound(page))
1088 low_pfn += compound_nr(page) - 1;
1090 /* Successfully isolated */
1091 del_page_from_lru_list(page, lruvec);
1092 mod_node_page_state(page_pgdat(page),
1093 NR_ISOLATED_ANON + page_is_file_lru(page),
1094 thp_nr_pages(page));
1097 list_add(&page->lru, &cc->migratepages);
1098 isolate_success_no_list:
1099 cc->nr_migratepages += compound_nr(page);
1100 nr_isolated += compound_nr(page);
1103 * Avoid isolating too much unless this block is being
1104 * rescanned (e.g. dirty/writeback pages, parallel allocation)
1105 * or a lock is contended. For contention, isolate quickly to
1106 * potentially remove one source of contention.
1108 if (cc->nr_migratepages >= COMPACT_CLUSTER_MAX &&
1109 !cc->rescan && !cc->contended) {
1117 /* Avoid potential deadlock in freeing page under lru_lock */
1119 unlock_page_lruvec_irqrestore(locked, flags);
1125 if (!skip_on_failure && ret != -ENOMEM)
1129 * We have isolated some pages, but then failed. Release them
1130 * instead of migrating, as we cannot form the cc->order buddy
1135 unlock_page_lruvec_irqrestore(locked, flags);
1138 putback_movable_pages(&cc->migratepages);
1139 cc->nr_migratepages = 0;
1143 if (low_pfn < next_skip_pfn) {
1144 low_pfn = next_skip_pfn - 1;
1146 * The check near the loop beginning would have updated
1147 * next_skip_pfn too, but this is a bit simpler.
1149 next_skip_pfn += 1UL << cc->order;
1157 * The PageBuddy() check could have potentially brought us outside
1158 * the range to be scanned.
1160 if (unlikely(low_pfn > end_pfn))
1167 unlock_page_lruvec_irqrestore(locked, flags);
1174 * Updated the cached scanner pfn once the pageblock has been scanned
1175 * Pages will either be migrated in which case there is no point
1176 * scanning in the near future or migration failed in which case the
1177 * failure reason may persist. The block is marked for skipping if
1178 * there were no pages isolated in the block or if the block is
1179 * rescanned twice in a row.
1181 if (low_pfn == end_pfn && (!nr_isolated || cc->rescan)) {
1182 if (valid_page && !skip_updated)
1183 set_pageblock_skip(valid_page);
1184 update_cached_migrate(cc, low_pfn);
1187 trace_mm_compaction_isolate_migratepages(start_pfn, low_pfn,
1188 nr_scanned, nr_isolated);
1191 cc->total_migrate_scanned += nr_scanned;
1193 count_compact_events(COMPACTISOLATED, nr_isolated);
1195 cc->migrate_pfn = low_pfn;
1201 * isolate_migratepages_range() - isolate migrate-able pages in a PFN range
1202 * @cc: Compaction control structure.
1203 * @start_pfn: The first PFN to start isolating.
1204 * @end_pfn: The one-past-last PFN.
1206 * Returns -EAGAIN when contented, -EINTR in case of a signal pending, -ENOMEM
1207 * in case we could not allocate a page, or 0.
1210 isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn,
1211 unsigned long end_pfn)
1213 unsigned long pfn, block_start_pfn, block_end_pfn;
1216 /* Scan block by block. First and last block may be incomplete */
1218 block_start_pfn = pageblock_start_pfn(pfn);
1219 if (block_start_pfn < cc->zone->zone_start_pfn)
1220 block_start_pfn = cc->zone->zone_start_pfn;
1221 block_end_pfn = pageblock_end_pfn(pfn);
1223 for (; pfn < end_pfn; pfn = block_end_pfn,
1224 block_start_pfn = block_end_pfn,
1225 block_end_pfn += pageblock_nr_pages) {
1227 block_end_pfn = min(block_end_pfn, end_pfn);
1229 if (!pageblock_pfn_to_page(block_start_pfn,
1230 block_end_pfn, cc->zone))
1233 ret = isolate_migratepages_block(cc, pfn, block_end_pfn,
1234 ISOLATE_UNEVICTABLE);
1239 if (cc->nr_migratepages >= COMPACT_CLUSTER_MAX)
1246 #endif /* CONFIG_COMPACTION || CONFIG_CMA */
1247 #ifdef CONFIG_COMPACTION
1249 static bool suitable_migration_source(struct compact_control *cc,
1254 if (pageblock_skip_persistent(page))
1257 if ((cc->mode != MIGRATE_ASYNC) || !cc->direct_compaction)
1260 block_mt = get_pageblock_migratetype(page);
1262 if (cc->migratetype == MIGRATE_MOVABLE)
1263 return is_migrate_movable(block_mt);
1265 return block_mt == cc->migratetype;
1268 /* Returns true if the page is within a block suitable for migration to */
1269 static bool suitable_migration_target(struct compact_control *cc,
1272 /* If the page is a large free page, then disallow migration */
1273 if (PageBuddy(page)) {
1275 * We are checking page_order without zone->lock taken. But
1276 * the only small danger is that we skip a potentially suitable
1277 * pageblock, so it's not worth to check order for valid range.
1279 if (buddy_order_unsafe(page) >= pageblock_order)
1283 if (cc->ignore_block_suitable)
1286 /* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
1287 if (is_migrate_movable(get_pageblock_migratetype(page)))
1290 /* Otherwise skip the block */
1294 static inline unsigned int
1295 freelist_scan_limit(struct compact_control *cc)
1297 unsigned short shift = BITS_PER_LONG - 1;
1299 return (COMPACT_CLUSTER_MAX >> min(shift, cc->fast_search_fail)) + 1;
1303 * Test whether the free scanner has reached the same or lower pageblock than
1304 * the migration scanner, and compaction should thus terminate.
1306 static inline bool compact_scanners_met(struct compact_control *cc)
1308 return (cc->free_pfn >> pageblock_order)
1309 <= (cc->migrate_pfn >> pageblock_order);
1313 * Used when scanning for a suitable migration target which scans freelists
1314 * in reverse. Reorders the list such as the unscanned pages are scanned
1315 * first on the next iteration of the free scanner
1318 move_freelist_head(struct list_head *freelist, struct page *freepage)
1322 if (!list_is_last(freelist, &freepage->lru)) {
1323 list_cut_before(&sublist, freelist, &freepage->lru);
1324 list_splice_tail(&sublist, freelist);
1329 * Similar to move_freelist_head except used by the migration scanner
1330 * when scanning forward. It's possible for these list operations to
1331 * move against each other if they search the free list exactly in
1335 move_freelist_tail(struct list_head *freelist, struct page *freepage)
1339 if (!list_is_first(freelist, &freepage->lru)) {
1340 list_cut_position(&sublist, freelist, &freepage->lru);
1341 list_splice_tail(&sublist, freelist);
1346 fast_isolate_around(struct compact_control *cc, unsigned long pfn, unsigned long nr_isolated)
1348 unsigned long start_pfn, end_pfn;
1351 /* Do not search around if there are enough pages already */
1352 if (cc->nr_freepages >= cc->nr_migratepages)
1355 /* Minimise scanning during async compaction */
1356 if (cc->direct_compaction && cc->mode == MIGRATE_ASYNC)
1359 /* Pageblock boundaries */
1360 start_pfn = max(pageblock_start_pfn(pfn), cc->zone->zone_start_pfn);
1361 end_pfn = min(pageblock_end_pfn(pfn), zone_end_pfn(cc->zone));
1363 page = pageblock_pfn_to_page(start_pfn, end_pfn, cc->zone);
1368 if (start_pfn != pfn) {
1369 isolate_freepages_block(cc, &start_pfn, pfn, &cc->freepages, 1, false);
1370 if (cc->nr_freepages >= cc->nr_migratepages)
1375 start_pfn = pfn + nr_isolated;
1376 if (start_pfn < end_pfn)
1377 isolate_freepages_block(cc, &start_pfn, end_pfn, &cc->freepages, 1, false);
1379 /* Skip this pageblock in the future as it's full or nearly full */
1380 if (cc->nr_freepages < cc->nr_migratepages)
1381 set_pageblock_skip(page);
1384 /* Search orders in round-robin fashion */
1385 static int next_search_order(struct compact_control *cc, int order)
1389 order = cc->order - 1;
1391 /* Search wrapped around? */
1392 if (order == cc->search_order) {
1394 if (cc->search_order < 0)
1395 cc->search_order = cc->order - 1;
1402 static unsigned long
1403 fast_isolate_freepages(struct compact_control *cc)
1405 unsigned int limit = max(1U, freelist_scan_limit(cc) >> 1);
1406 unsigned int nr_scanned = 0;
1407 unsigned long low_pfn, min_pfn, highest = 0;
1408 unsigned long nr_isolated = 0;
1409 unsigned long distance;
1410 struct page *page = NULL;
1411 bool scan_start = false;
1414 /* Full compaction passes in a negative order */
1416 return cc->free_pfn;
1419 * If starting the scan, use a deeper search and use the highest
1420 * PFN found if a suitable one is not found.
1422 if (cc->free_pfn >= cc->zone->compact_init_free_pfn) {
1423 limit = pageblock_nr_pages >> 1;
1428 * Preferred point is in the top quarter of the scan space but take
1429 * a pfn from the top half if the search is problematic.
1431 distance = (cc->free_pfn - cc->migrate_pfn);
1432 low_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 2));
1433 min_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 1));
1435 if (WARN_ON_ONCE(min_pfn > low_pfn))
1439 * Search starts from the last successful isolation order or the next
1440 * order to search after a previous failure
1442 cc->search_order = min_t(unsigned int, cc->order - 1, cc->search_order);
1444 for (order = cc->search_order;
1445 !page && order >= 0;
1446 order = next_search_order(cc, order)) {
1447 struct free_area *area = &cc->zone->free_area[order];
1448 struct list_head *freelist;
1449 struct page *freepage;
1450 unsigned long flags;
1451 unsigned int order_scanned = 0;
1452 unsigned long high_pfn = 0;
1457 spin_lock_irqsave(&cc->zone->lock, flags);
1458 freelist = &area->free_list[MIGRATE_MOVABLE];
1459 list_for_each_entry_reverse(freepage, freelist, lru) {
1464 pfn = page_to_pfn(freepage);
1467 highest = max(pageblock_start_pfn(pfn),
1468 cc->zone->zone_start_pfn);
1470 if (pfn >= low_pfn) {
1471 cc->fast_search_fail = 0;
1472 cc->search_order = order;
1477 if (pfn >= min_pfn && pfn > high_pfn) {
1480 /* Shorten the scan if a candidate is found */
1484 if (order_scanned >= limit)
1488 /* Use a minimum pfn if a preferred one was not found */
1489 if (!page && high_pfn) {
1490 page = pfn_to_page(high_pfn);
1492 /* Update freepage for the list reorder below */
1496 /* Reorder to so a future search skips recent pages */
1497 move_freelist_head(freelist, freepage);
1499 /* Isolate the page if available */
1501 if (__isolate_free_page(page, order)) {
1502 set_page_private(page, order);
1503 nr_isolated = 1 << order;
1504 cc->nr_freepages += nr_isolated;
1505 list_add_tail(&page->lru, &cc->freepages);
1506 count_compact_events(COMPACTISOLATED, nr_isolated);
1508 /* If isolation fails, abort the search */
1509 order = cc->search_order + 1;
1514 spin_unlock_irqrestore(&cc->zone->lock, flags);
1517 * Smaller scan on next order so the total scan is related
1518 * to freelist_scan_limit.
1520 if (order_scanned >= limit)
1521 limit = max(1U, limit >> 1);
1525 cc->fast_search_fail++;
1528 * Use the highest PFN found above min. If one was
1529 * not found, be pessimistic for direct compaction
1530 * and use the min mark.
1532 if (highest >= min_pfn) {
1533 page = pfn_to_page(highest);
1534 cc->free_pfn = highest;
1536 if (cc->direct_compaction && pfn_valid(min_pfn)) {
1537 page = pageblock_pfn_to_page(min_pfn,
1538 min(pageblock_end_pfn(min_pfn),
1539 zone_end_pfn(cc->zone)),
1541 cc->free_pfn = min_pfn;
1547 if (highest && highest >= cc->zone->compact_cached_free_pfn) {
1548 highest -= pageblock_nr_pages;
1549 cc->zone->compact_cached_free_pfn = highest;
1552 cc->total_free_scanned += nr_scanned;
1554 return cc->free_pfn;
1556 low_pfn = page_to_pfn(page);
1557 fast_isolate_around(cc, low_pfn, nr_isolated);
1562 * Based on information in the current compact_control, find blocks
1563 * suitable for isolating free pages from and then isolate them.
1565 static void isolate_freepages(struct compact_control *cc)
1567 struct zone *zone = cc->zone;
1569 unsigned long block_start_pfn; /* start of current pageblock */
1570 unsigned long isolate_start_pfn; /* exact pfn we start at */
1571 unsigned long block_end_pfn; /* end of current pageblock */
1572 unsigned long low_pfn; /* lowest pfn scanner is able to scan */
1573 struct list_head *freelist = &cc->freepages;
1574 unsigned int stride;
1576 /* Try a small search of the free lists for a candidate */
1577 fast_isolate_freepages(cc);
1578 if (cc->nr_freepages)
1582 * Initialise the free scanner. The starting point is where we last
1583 * successfully isolated from, zone-cached value, or the end of the
1584 * zone when isolating for the first time. For looping we also need
1585 * this pfn aligned down to the pageblock boundary, because we do
1586 * block_start_pfn -= pageblock_nr_pages in the for loop.
1587 * For ending point, take care when isolating in last pageblock of a
1588 * zone which ends in the middle of a pageblock.
1589 * The low boundary is the end of the pageblock the migration scanner
1592 isolate_start_pfn = cc->free_pfn;
1593 block_start_pfn = pageblock_start_pfn(isolate_start_pfn);
1594 block_end_pfn = min(block_start_pfn + pageblock_nr_pages,
1595 zone_end_pfn(zone));
1596 low_pfn = pageblock_end_pfn(cc->migrate_pfn);
1597 stride = cc->mode == MIGRATE_ASYNC ? COMPACT_CLUSTER_MAX : 1;
1600 * Isolate free pages until enough are available to migrate the
1601 * pages on cc->migratepages. We stop searching if the migrate
1602 * and free page scanners meet or enough free pages are isolated.
1604 for (; block_start_pfn >= low_pfn;
1605 block_end_pfn = block_start_pfn,
1606 block_start_pfn -= pageblock_nr_pages,
1607 isolate_start_pfn = block_start_pfn) {
1608 unsigned long nr_isolated;
1611 * This can iterate a massively long zone without finding any
1612 * suitable migration targets, so periodically check resched.
1614 if (!(block_start_pfn % (COMPACT_CLUSTER_MAX * pageblock_nr_pages)))
1617 page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
1622 /* Check the block is suitable for migration */
1623 if (!suitable_migration_target(cc, page))
1626 /* If isolation recently failed, do not retry */
1627 if (!isolation_suitable(cc, page))
1630 /* Found a block suitable for isolating free pages from. */
1631 nr_isolated = isolate_freepages_block(cc, &isolate_start_pfn,
1632 block_end_pfn, freelist, stride, false);
1634 /* Update the skip hint if the full pageblock was scanned */
1635 if (isolate_start_pfn == block_end_pfn)
1636 update_pageblock_skip(cc, page, block_start_pfn);
1638 /* Are enough freepages isolated? */
1639 if (cc->nr_freepages >= cc->nr_migratepages) {
1640 if (isolate_start_pfn >= block_end_pfn) {
1642 * Restart at previous pageblock if more
1643 * freepages can be isolated next time.
1646 block_start_pfn - pageblock_nr_pages;
1649 } else if (isolate_start_pfn < block_end_pfn) {
1651 * If isolation failed early, do not continue
1657 /* Adjust stride depending on isolation */
1662 stride = min_t(unsigned int, COMPACT_CLUSTER_MAX, stride << 1);
1666 * Record where the free scanner will restart next time. Either we
1667 * broke from the loop and set isolate_start_pfn based on the last
1668 * call to isolate_freepages_block(), or we met the migration scanner
1669 * and the loop terminated due to isolate_start_pfn < low_pfn
1671 cc->free_pfn = isolate_start_pfn;
1674 /* __isolate_free_page() does not map the pages */
1675 split_map_pages(freelist);
1679 * This is a migrate-callback that "allocates" freepages by taking pages
1680 * from the isolated freelists in the block we are migrating to.
1682 static struct page *compaction_alloc(struct page *migratepage,
1685 struct compact_control *cc = (struct compact_control *)data;
1686 struct page *freepage;
1688 if (list_empty(&cc->freepages)) {
1689 isolate_freepages(cc);
1691 if (list_empty(&cc->freepages))
1695 freepage = list_entry(cc->freepages.next, struct page, lru);
1696 list_del(&freepage->lru);
1703 * This is a migrate-callback that "frees" freepages back to the isolated
1704 * freelist. All pages on the freelist are from the same zone, so there is no
1705 * special handling needed for NUMA.
1707 static void compaction_free(struct page *page, unsigned long data)
1709 struct compact_control *cc = (struct compact_control *)data;
1711 list_add(&page->lru, &cc->freepages);
1715 /* possible outcome of isolate_migratepages */
1717 ISOLATE_ABORT, /* Abort compaction now */
1718 ISOLATE_NONE, /* No pages isolated, continue scanning */
1719 ISOLATE_SUCCESS, /* Pages isolated, migrate */
1720 } isolate_migrate_t;
1723 * Allow userspace to control policy on scanning the unevictable LRU for
1724 * compactable pages.
1726 #ifdef CONFIG_PREEMPT_RT
1727 int sysctl_compact_unevictable_allowed __read_mostly = 0;
1729 int sysctl_compact_unevictable_allowed __read_mostly = 1;
1733 update_fast_start_pfn(struct compact_control *cc, unsigned long pfn)
1735 if (cc->fast_start_pfn == ULONG_MAX)
1738 if (!cc->fast_start_pfn)
1739 cc->fast_start_pfn = pfn;
1741 cc->fast_start_pfn = min(cc->fast_start_pfn, pfn);
1744 static inline unsigned long
1745 reinit_migrate_pfn(struct compact_control *cc)
1747 if (!cc->fast_start_pfn || cc->fast_start_pfn == ULONG_MAX)
1748 return cc->migrate_pfn;
1750 cc->migrate_pfn = cc->fast_start_pfn;
1751 cc->fast_start_pfn = ULONG_MAX;
1753 return cc->migrate_pfn;
1757 * Briefly search the free lists for a migration source that already has
1758 * some free pages to reduce the number of pages that need migration
1759 * before a pageblock is free.
1761 static unsigned long fast_find_migrateblock(struct compact_control *cc)
1763 unsigned int limit = freelist_scan_limit(cc);
1764 unsigned int nr_scanned = 0;
1765 unsigned long distance;
1766 unsigned long pfn = cc->migrate_pfn;
1767 unsigned long high_pfn;
1769 bool found_block = false;
1771 /* Skip hints are relied on to avoid repeats on the fast search */
1772 if (cc->ignore_skip_hint)
1776 * If the migrate_pfn is not at the start of a zone or the start
1777 * of a pageblock then assume this is a continuation of a previous
1778 * scan restarted due to COMPACT_CLUSTER_MAX.
1780 if (pfn != cc->zone->zone_start_pfn && pfn != pageblock_start_pfn(pfn))
1784 * For smaller orders, just linearly scan as the number of pages
1785 * to migrate should be relatively small and does not necessarily
1786 * justify freeing up a large block for a small allocation.
1788 if (cc->order <= PAGE_ALLOC_COSTLY_ORDER)
1792 * Only allow kcompactd and direct requests for movable pages to
1793 * quickly clear out a MOVABLE pageblock for allocation. This
1794 * reduces the risk that a large movable pageblock is freed for
1795 * an unmovable/reclaimable small allocation.
1797 if (cc->direct_compaction && cc->migratetype != MIGRATE_MOVABLE)
1801 * When starting the migration scanner, pick any pageblock within the
1802 * first half of the search space. Otherwise try and pick a pageblock
1803 * within the first eighth to reduce the chances that a migration
1804 * target later becomes a source.
1806 distance = (cc->free_pfn - cc->migrate_pfn) >> 1;
1807 if (cc->migrate_pfn != cc->zone->zone_start_pfn)
1809 high_pfn = pageblock_start_pfn(cc->migrate_pfn + distance);
1811 for (order = cc->order - 1;
1812 order >= PAGE_ALLOC_COSTLY_ORDER && !found_block && nr_scanned < limit;
1814 struct free_area *area = &cc->zone->free_area[order];
1815 struct list_head *freelist;
1816 unsigned long flags;
1817 struct page *freepage;
1822 spin_lock_irqsave(&cc->zone->lock, flags);
1823 freelist = &area->free_list[MIGRATE_MOVABLE];
1824 list_for_each_entry(freepage, freelist, lru) {
1825 unsigned long free_pfn;
1827 if (nr_scanned++ >= limit) {
1828 move_freelist_tail(freelist, freepage);
1832 free_pfn = page_to_pfn(freepage);
1833 if (free_pfn < high_pfn) {
1835 * Avoid if skipped recently. Ideally it would
1836 * move to the tail but even safe iteration of
1837 * the list assumes an entry is deleted, not
1840 if (get_pageblock_skip(freepage))
1843 /* Reorder to so a future search skips recent pages */
1844 move_freelist_tail(freelist, freepage);
1846 update_fast_start_pfn(cc, free_pfn);
1847 pfn = pageblock_start_pfn(free_pfn);
1848 if (pfn < cc->zone->zone_start_pfn)
1849 pfn = cc->zone->zone_start_pfn;
1850 cc->fast_search_fail = 0;
1852 set_pageblock_skip(freepage);
1856 spin_unlock_irqrestore(&cc->zone->lock, flags);
1859 cc->total_migrate_scanned += nr_scanned;
1862 * If fast scanning failed then use a cached entry for a page block
1863 * that had free pages as the basis for starting a linear scan.
1866 cc->fast_search_fail++;
1867 pfn = reinit_migrate_pfn(cc);
1873 * Isolate all pages that can be migrated from the first suitable block,
1874 * starting at the block pointed to by the migrate scanner pfn within
1877 static isolate_migrate_t isolate_migratepages(struct compact_control *cc)
1879 unsigned long block_start_pfn;
1880 unsigned long block_end_pfn;
1881 unsigned long low_pfn;
1883 const isolate_mode_t isolate_mode =
1884 (sysctl_compact_unevictable_allowed ? ISOLATE_UNEVICTABLE : 0) |
1885 (cc->mode != MIGRATE_SYNC ? ISOLATE_ASYNC_MIGRATE : 0);
1886 bool fast_find_block;
1889 * Start at where we last stopped, or beginning of the zone as
1890 * initialized by compact_zone(). The first failure will use
1891 * the lowest PFN as the starting point for linear scanning.
1893 low_pfn = fast_find_migrateblock(cc);
1894 block_start_pfn = pageblock_start_pfn(low_pfn);
1895 if (block_start_pfn < cc->zone->zone_start_pfn)
1896 block_start_pfn = cc->zone->zone_start_pfn;
1899 * fast_find_migrateblock marks a pageblock skipped so to avoid
1900 * the isolation_suitable check below, check whether the fast
1901 * search was successful.
1903 fast_find_block = low_pfn != cc->migrate_pfn && !cc->fast_search_fail;
1905 /* Only scan within a pageblock boundary */
1906 block_end_pfn = pageblock_end_pfn(low_pfn);
1909 * Iterate over whole pageblocks until we find the first suitable.
1910 * Do not cross the free scanner.
1912 for (; block_end_pfn <= cc->free_pfn;
1913 fast_find_block = false,
1914 cc->migrate_pfn = low_pfn = block_end_pfn,
1915 block_start_pfn = block_end_pfn,
1916 block_end_pfn += pageblock_nr_pages) {
1919 * This can potentially iterate a massively long zone with
1920 * many pageblocks unsuitable, so periodically check if we
1923 if (!(low_pfn % (COMPACT_CLUSTER_MAX * pageblock_nr_pages)))
1926 page = pageblock_pfn_to_page(block_start_pfn,
1927 block_end_pfn, cc->zone);
1932 * If isolation recently failed, do not retry. Only check the
1933 * pageblock once. COMPACT_CLUSTER_MAX causes a pageblock
1934 * to be visited multiple times. Assume skip was checked
1935 * before making it "skip" so other compaction instances do
1936 * not scan the same block.
1938 if (IS_ALIGNED(low_pfn, pageblock_nr_pages) &&
1939 !fast_find_block && !isolation_suitable(cc, page))
1943 * For async direct compaction, only scan the pageblocks of the
1944 * same migratetype without huge pages. Async direct compaction
1945 * is optimistic to see if the minimum amount of work satisfies
1946 * the allocation. The cached PFN is updated as it's possible
1947 * that all remaining blocks between source and target are
1948 * unsuitable and the compaction scanners fail to meet.
1950 if (!suitable_migration_source(cc, page)) {
1951 update_cached_migrate(cc, block_end_pfn);
1955 /* Perform the isolation */
1956 if (isolate_migratepages_block(cc, low_pfn, block_end_pfn,
1958 return ISOLATE_ABORT;
1961 * Either we isolated something and proceed with migration. Or
1962 * we failed and compact_zone should decide if we should
1968 return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE;
1972 * order == -1 is expected when compacting via
1973 * /proc/sys/vm/compact_memory
1975 static inline bool is_via_compact_memory(int order)
1980 static bool kswapd_is_running(pg_data_t *pgdat)
1982 return pgdat->kswapd && task_is_running(pgdat->kswapd);
1986 * A zone's fragmentation score is the external fragmentation wrt to the
1987 * COMPACTION_HPAGE_ORDER. It returns a value in the range [0, 100].
1989 static unsigned int fragmentation_score_zone(struct zone *zone)
1991 return extfrag_for_order(zone, COMPACTION_HPAGE_ORDER);
1995 * A weighted zone's fragmentation score is the external fragmentation
1996 * wrt to the COMPACTION_HPAGE_ORDER scaled by the zone's size. It
1997 * returns a value in the range [0, 100].
1999 * The scaling factor ensures that proactive compaction focuses on larger
2000 * zones like ZONE_NORMAL, rather than smaller, specialized zones like
2001 * ZONE_DMA32. For smaller zones, the score value remains close to zero,
2002 * and thus never exceeds the high threshold for proactive compaction.
2004 static unsigned int fragmentation_score_zone_weighted(struct zone *zone)
2006 unsigned long score;
2008 score = zone->present_pages * fragmentation_score_zone(zone);
2009 return div64_ul(score, zone->zone_pgdat->node_present_pages + 1);
2013 * The per-node proactive (background) compaction process is started by its
2014 * corresponding kcompactd thread when the node's fragmentation score
2015 * exceeds the high threshold. The compaction process remains active till
2016 * the node's score falls below the low threshold, or one of the back-off
2017 * conditions is met.
2019 static unsigned int fragmentation_score_node(pg_data_t *pgdat)
2021 unsigned int score = 0;
2024 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
2027 zone = &pgdat->node_zones[zoneid];
2028 score += fragmentation_score_zone_weighted(zone);
2034 static unsigned int fragmentation_score_wmark(pg_data_t *pgdat, bool low)
2036 unsigned int wmark_low;
2039 * Cap the low watermark to avoid excessive compaction
2040 * activity in case a user sets the proactiveness tunable
2041 * close to 100 (maximum).
2043 wmark_low = max(100U - sysctl_compaction_proactiveness, 5U);
2044 return low ? wmark_low : min(wmark_low + 10, 100U);
2047 static bool should_proactive_compact_node(pg_data_t *pgdat)
2051 if (!sysctl_compaction_proactiveness || kswapd_is_running(pgdat))
2054 wmark_high = fragmentation_score_wmark(pgdat, false);
2055 return fragmentation_score_node(pgdat) > wmark_high;
2058 static enum compact_result __compact_finished(struct compact_control *cc)
2061 const int migratetype = cc->migratetype;
2064 /* Compaction run completes if the migrate and free scanner meet */
2065 if (compact_scanners_met(cc)) {
2066 /* Let the next compaction start anew. */
2067 reset_cached_positions(cc->zone);
2070 * Mark that the PG_migrate_skip information should be cleared
2071 * by kswapd when it goes to sleep. kcompactd does not set the
2072 * flag itself as the decision to be clear should be directly
2073 * based on an allocation request.
2075 if (cc->direct_compaction)
2076 cc->zone->compact_blockskip_flush = true;
2079 return COMPACT_COMPLETE;
2081 return COMPACT_PARTIAL_SKIPPED;
2084 if (cc->proactive_compaction) {
2085 int score, wmark_low;
2088 pgdat = cc->zone->zone_pgdat;
2089 if (kswapd_is_running(pgdat))
2090 return COMPACT_PARTIAL_SKIPPED;
2092 score = fragmentation_score_zone(cc->zone);
2093 wmark_low = fragmentation_score_wmark(pgdat, true);
2095 if (score > wmark_low)
2096 ret = COMPACT_CONTINUE;
2098 ret = COMPACT_SUCCESS;
2103 if (is_via_compact_memory(cc->order))
2104 return COMPACT_CONTINUE;
2107 * Always finish scanning a pageblock to reduce the possibility of
2108 * fallbacks in the future. This is particularly important when
2109 * migration source is unmovable/reclaimable but it's not worth
2112 if (!IS_ALIGNED(cc->migrate_pfn, pageblock_nr_pages))
2113 return COMPACT_CONTINUE;
2115 /* Direct compactor: Is a suitable page free? */
2116 ret = COMPACT_NO_SUITABLE_PAGE;
2117 for (order = cc->order; order < MAX_ORDER; order++) {
2118 struct free_area *area = &cc->zone->free_area[order];
2121 /* Job done if page is free of the right migratetype */
2122 if (!free_area_empty(area, migratetype))
2123 return COMPACT_SUCCESS;
2126 /* MIGRATE_MOVABLE can fallback on MIGRATE_CMA */
2127 if (migratetype == MIGRATE_MOVABLE &&
2128 !free_area_empty(area, MIGRATE_CMA))
2129 return COMPACT_SUCCESS;
2132 * Job done if allocation would steal freepages from
2133 * other migratetype buddy lists.
2135 if (find_suitable_fallback(area, order, migratetype,
2136 true, &can_steal) != -1)
2138 * Movable pages are OK in any pageblock. If we are
2139 * stealing for a non-movable allocation, make sure
2140 * we finish compacting the current pageblock first
2141 * (which is assured by the above migrate_pfn align
2142 * check) so it is as free as possible and we won't
2143 * have to steal another one soon.
2145 return COMPACT_SUCCESS;
2149 if (cc->contended || fatal_signal_pending(current))
2150 ret = COMPACT_CONTENDED;
2155 static enum compact_result compact_finished(struct compact_control *cc)
2159 ret = __compact_finished(cc);
2160 trace_mm_compaction_finished(cc->zone, cc->order, ret);
2161 if (ret == COMPACT_NO_SUITABLE_PAGE)
2162 ret = COMPACT_CONTINUE;
2167 static enum compact_result __compaction_suitable(struct zone *zone, int order,
2168 unsigned int alloc_flags,
2169 int highest_zoneidx,
2170 unsigned long wmark_target)
2172 unsigned long watermark;
2174 if (is_via_compact_memory(order))
2175 return COMPACT_CONTINUE;
2177 watermark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
2179 * If watermarks for high-order allocation are already met, there
2180 * should be no need for compaction at all.
2182 if (zone_watermark_ok(zone, order, watermark, highest_zoneidx,
2184 return COMPACT_SUCCESS;
2187 * Watermarks for order-0 must be met for compaction to be able to
2188 * isolate free pages for migration targets. This means that the
2189 * watermark and alloc_flags have to match, or be more pessimistic than
2190 * the check in __isolate_free_page(). We don't use the direct
2191 * compactor's alloc_flags, as they are not relevant for freepage
2192 * isolation. We however do use the direct compactor's highest_zoneidx
2193 * to skip over zones where lowmem reserves would prevent allocation
2194 * even if compaction succeeds.
2195 * For costly orders, we require low watermark instead of min for
2196 * compaction to proceed to increase its chances.
2197 * ALLOC_CMA is used, as pages in CMA pageblocks are considered
2198 * suitable migration targets
2200 watermark = (order > PAGE_ALLOC_COSTLY_ORDER) ?
2201 low_wmark_pages(zone) : min_wmark_pages(zone);
2202 watermark += compact_gap(order);
2203 if (!__zone_watermark_ok(zone, 0, watermark, highest_zoneidx,
2204 ALLOC_CMA, wmark_target))
2205 return COMPACT_SKIPPED;
2207 return COMPACT_CONTINUE;
2211 * compaction_suitable: Is this suitable to run compaction on this zone now?
2213 * COMPACT_SKIPPED - If there are too few free pages for compaction
2214 * COMPACT_SUCCESS - If the allocation would succeed without compaction
2215 * COMPACT_CONTINUE - If compaction should run now
2217 enum compact_result compaction_suitable(struct zone *zone, int order,
2218 unsigned int alloc_flags,
2219 int highest_zoneidx)
2221 enum compact_result ret;
2224 ret = __compaction_suitable(zone, order, alloc_flags, highest_zoneidx,
2225 zone_page_state(zone, NR_FREE_PAGES));
2227 * fragmentation index determines if allocation failures are due to
2228 * low memory or external fragmentation
2230 * index of -1000 would imply allocations might succeed depending on
2231 * watermarks, but we already failed the high-order watermark check
2232 * index towards 0 implies failure is due to lack of memory
2233 * index towards 1000 implies failure is due to fragmentation
2235 * Only compact if a failure would be due to fragmentation. Also
2236 * ignore fragindex for non-costly orders where the alternative to
2237 * a successful reclaim/compaction is OOM. Fragindex and the
2238 * vm.extfrag_threshold sysctl is meant as a heuristic to prevent
2239 * excessive compaction for costly orders, but it should not be at the
2240 * expense of system stability.
2242 if (ret == COMPACT_CONTINUE && (order > PAGE_ALLOC_COSTLY_ORDER)) {
2243 fragindex = fragmentation_index(zone, order);
2244 if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold)
2245 ret = COMPACT_NOT_SUITABLE_ZONE;
2248 trace_mm_compaction_suitable(zone, order, ret);
2249 if (ret == COMPACT_NOT_SUITABLE_ZONE)
2250 ret = COMPACT_SKIPPED;
2255 bool compaction_zonelist_suitable(struct alloc_context *ac, int order,
2262 * Make sure at least one zone would pass __compaction_suitable if we continue
2263 * retrying the reclaim.
2265 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2266 ac->highest_zoneidx, ac->nodemask) {
2267 unsigned long available;
2268 enum compact_result compact_result;
2271 * Do not consider all the reclaimable memory because we do not
2272 * want to trash just for a single high order allocation which
2273 * is even not guaranteed to appear even if __compaction_suitable
2274 * is happy about the watermark check.
2276 available = zone_reclaimable_pages(zone) / order;
2277 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
2278 compact_result = __compaction_suitable(zone, order, alloc_flags,
2279 ac->highest_zoneidx, available);
2280 if (compact_result == COMPACT_CONTINUE)
2287 static enum compact_result
2288 compact_zone(struct compact_control *cc, struct capture_control *capc)
2290 enum compact_result ret;
2291 unsigned long start_pfn = cc->zone->zone_start_pfn;
2292 unsigned long end_pfn = zone_end_pfn(cc->zone);
2293 unsigned long last_migrated_pfn;
2294 const bool sync = cc->mode != MIGRATE_ASYNC;
2296 unsigned int nr_succeeded = 0;
2299 * These counters track activities during zone compaction. Initialize
2300 * them before compacting a new zone.
2302 cc->total_migrate_scanned = 0;
2303 cc->total_free_scanned = 0;
2304 cc->nr_migratepages = 0;
2305 cc->nr_freepages = 0;
2306 INIT_LIST_HEAD(&cc->freepages);
2307 INIT_LIST_HEAD(&cc->migratepages);
2309 cc->migratetype = gfp_migratetype(cc->gfp_mask);
2310 ret = compaction_suitable(cc->zone, cc->order, cc->alloc_flags,
2311 cc->highest_zoneidx);
2312 /* Compaction is likely to fail */
2313 if (ret == COMPACT_SUCCESS || ret == COMPACT_SKIPPED)
2316 /* huh, compaction_suitable is returning something unexpected */
2317 VM_BUG_ON(ret != COMPACT_CONTINUE);
2320 * Clear pageblock skip if there were failures recently and compaction
2321 * is about to be retried after being deferred.
2323 if (compaction_restarting(cc->zone, cc->order))
2324 __reset_isolation_suitable(cc->zone);
2327 * Setup to move all movable pages to the end of the zone. Used cached
2328 * information on where the scanners should start (unless we explicitly
2329 * want to compact the whole zone), but check that it is initialised
2330 * by ensuring the values are within zone boundaries.
2332 cc->fast_start_pfn = 0;
2333 if (cc->whole_zone) {
2334 cc->migrate_pfn = start_pfn;
2335 cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
2337 cc->migrate_pfn = cc->zone->compact_cached_migrate_pfn[sync];
2338 cc->free_pfn = cc->zone->compact_cached_free_pfn;
2339 if (cc->free_pfn < start_pfn || cc->free_pfn >= end_pfn) {
2340 cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
2341 cc->zone->compact_cached_free_pfn = cc->free_pfn;
2343 if (cc->migrate_pfn < start_pfn || cc->migrate_pfn >= end_pfn) {
2344 cc->migrate_pfn = start_pfn;
2345 cc->zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn;
2346 cc->zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn;
2349 if (cc->migrate_pfn <= cc->zone->compact_init_migrate_pfn)
2350 cc->whole_zone = true;
2353 last_migrated_pfn = 0;
2356 * Migrate has separate cached PFNs for ASYNC and SYNC* migration on
2357 * the basis that some migrations will fail in ASYNC mode. However,
2358 * if the cached PFNs match and pageblocks are skipped due to having
2359 * no isolation candidates, then the sync state does not matter.
2360 * Until a pageblock with isolation candidates is found, keep the
2361 * cached PFNs in sync to avoid revisiting the same blocks.
2363 update_cached = !sync &&
2364 cc->zone->compact_cached_migrate_pfn[0] == cc->zone->compact_cached_migrate_pfn[1];
2366 trace_mm_compaction_begin(cc, start_pfn, end_pfn, sync);
2368 /* lru_add_drain_all could be expensive with involving other CPUs */
2371 while ((ret = compact_finished(cc)) == COMPACT_CONTINUE) {
2373 unsigned long iteration_start_pfn = cc->migrate_pfn;
2376 * Avoid multiple rescans which can happen if a page cannot be
2377 * isolated (dirty/writeback in async mode) or if the migrated
2378 * pages are being allocated before the pageblock is cleared.
2379 * The first rescan will capture the entire pageblock for
2380 * migration. If it fails, it'll be marked skip and scanning
2381 * will proceed as normal.
2384 if (pageblock_start_pfn(last_migrated_pfn) ==
2385 pageblock_start_pfn(iteration_start_pfn)) {
2389 switch (isolate_migratepages(cc)) {
2391 ret = COMPACT_CONTENDED;
2392 putback_movable_pages(&cc->migratepages);
2393 cc->nr_migratepages = 0;
2396 if (update_cached) {
2397 cc->zone->compact_cached_migrate_pfn[1] =
2398 cc->zone->compact_cached_migrate_pfn[0];
2402 * We haven't isolated and migrated anything, but
2403 * there might still be unflushed migrations from
2404 * previous cc->order aligned block.
2407 case ISOLATE_SUCCESS:
2408 update_cached = false;
2409 last_migrated_pfn = iteration_start_pfn;
2412 err = migrate_pages(&cc->migratepages, compaction_alloc,
2413 compaction_free, (unsigned long)cc, cc->mode,
2414 MR_COMPACTION, &nr_succeeded);
2416 trace_mm_compaction_migratepages(cc, nr_succeeded);
2418 /* All pages were either migrated or will be released */
2419 cc->nr_migratepages = 0;
2421 putback_movable_pages(&cc->migratepages);
2423 * migrate_pages() may return -ENOMEM when scanners meet
2424 * and we want compact_finished() to detect it
2426 if (err == -ENOMEM && !compact_scanners_met(cc)) {
2427 ret = COMPACT_CONTENDED;
2431 * We failed to migrate at least one page in the current
2432 * order-aligned block, so skip the rest of it.
2434 if (cc->direct_compaction &&
2435 (cc->mode == MIGRATE_ASYNC)) {
2436 cc->migrate_pfn = block_end_pfn(
2437 cc->migrate_pfn - 1, cc->order);
2438 /* Draining pcplists is useless in this case */
2439 last_migrated_pfn = 0;
2445 * Has the migration scanner moved away from the previous
2446 * cc->order aligned block where we migrated from? If yes,
2447 * flush the pages that were freed, so that they can merge and
2448 * compact_finished() can detect immediately if allocation
2451 if (cc->order > 0 && last_migrated_pfn) {
2452 unsigned long current_block_start =
2453 block_start_pfn(cc->migrate_pfn, cc->order);
2455 if (last_migrated_pfn < current_block_start) {
2456 lru_add_drain_cpu_zone(cc->zone);
2457 /* No more flushing until we migrate again */
2458 last_migrated_pfn = 0;
2462 /* Stop if a page has been captured */
2463 if (capc && capc->page) {
2464 ret = COMPACT_SUCCESS;
2471 * Release free pages and update where the free scanner should restart,
2472 * so we don't leave any returned pages behind in the next attempt.
2474 if (cc->nr_freepages > 0) {
2475 unsigned long free_pfn = release_freepages(&cc->freepages);
2477 cc->nr_freepages = 0;
2478 VM_BUG_ON(free_pfn == 0);
2479 /* The cached pfn is always the first in a pageblock */
2480 free_pfn = pageblock_start_pfn(free_pfn);
2482 * Only go back, not forward. The cached pfn might have been
2483 * already reset to zone end in compact_finished()
2485 if (free_pfn > cc->zone->compact_cached_free_pfn)
2486 cc->zone->compact_cached_free_pfn = free_pfn;
2489 count_compact_events(COMPACTMIGRATE_SCANNED, cc->total_migrate_scanned);
2490 count_compact_events(COMPACTFREE_SCANNED, cc->total_free_scanned);
2492 trace_mm_compaction_end(cc, start_pfn, end_pfn, sync, ret);
2497 static enum compact_result compact_zone_order(struct zone *zone, int order,
2498 gfp_t gfp_mask, enum compact_priority prio,
2499 unsigned int alloc_flags, int highest_zoneidx,
2500 struct page **capture)
2502 enum compact_result ret;
2503 struct compact_control cc = {
2505 .search_order = order,
2506 .gfp_mask = gfp_mask,
2508 .mode = (prio == COMPACT_PRIO_ASYNC) ?
2509 MIGRATE_ASYNC : MIGRATE_SYNC_LIGHT,
2510 .alloc_flags = alloc_flags,
2511 .highest_zoneidx = highest_zoneidx,
2512 .direct_compaction = true,
2513 .whole_zone = (prio == MIN_COMPACT_PRIORITY),
2514 .ignore_skip_hint = (prio == MIN_COMPACT_PRIORITY),
2515 .ignore_block_suitable = (prio == MIN_COMPACT_PRIORITY)
2517 struct capture_control capc = {
2523 * Make sure the structs are really initialized before we expose the
2524 * capture control, in case we are interrupted and the interrupt handler
2528 WRITE_ONCE(current->capture_control, &capc);
2530 ret = compact_zone(&cc, &capc);
2532 VM_BUG_ON(!list_empty(&cc.freepages));
2533 VM_BUG_ON(!list_empty(&cc.migratepages));
2536 * Make sure we hide capture control first before we read the captured
2537 * page pointer, otherwise an interrupt could free and capture a page
2538 * and we would leak it.
2540 WRITE_ONCE(current->capture_control, NULL);
2541 *capture = READ_ONCE(capc.page);
2543 * Technically, it is also possible that compaction is skipped but
2544 * the page is still captured out of luck(IRQ came and freed the page).
2545 * Returning COMPACT_SUCCESS in such cases helps in properly accounting
2546 * the COMPACT[STALL|FAIL] when compaction is skipped.
2549 ret = COMPACT_SUCCESS;
2554 int sysctl_extfrag_threshold = 500;
2557 * try_to_compact_pages - Direct compact to satisfy a high-order allocation
2558 * @gfp_mask: The GFP mask of the current allocation
2559 * @order: The order of the current allocation
2560 * @alloc_flags: The allocation flags of the current allocation
2561 * @ac: The context of current allocation
2562 * @prio: Determines how hard direct compaction should try to succeed
2563 * @capture: Pointer to free page created by compaction will be stored here
2565 * This is the main entry point for direct page compaction.
2567 enum compact_result try_to_compact_pages(gfp_t gfp_mask, unsigned int order,
2568 unsigned int alloc_flags, const struct alloc_context *ac,
2569 enum compact_priority prio, struct page **capture)
2571 int may_perform_io = (__force int)(gfp_mask & __GFP_IO);
2574 enum compact_result rc = COMPACT_SKIPPED;
2577 * Check if the GFP flags allow compaction - GFP_NOIO is really
2578 * tricky context because the migration might require IO
2580 if (!may_perform_io)
2581 return COMPACT_SKIPPED;
2583 trace_mm_compaction_try_to_compact_pages(order, gfp_mask, prio);
2585 /* Compact each zone in the list */
2586 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2587 ac->highest_zoneidx, ac->nodemask) {
2588 enum compact_result status;
2590 if (prio > MIN_COMPACT_PRIORITY
2591 && compaction_deferred(zone, order)) {
2592 rc = max_t(enum compact_result, COMPACT_DEFERRED, rc);
2596 status = compact_zone_order(zone, order, gfp_mask, prio,
2597 alloc_flags, ac->highest_zoneidx, capture);
2598 rc = max(status, rc);
2600 /* The allocation should succeed, stop compacting */
2601 if (status == COMPACT_SUCCESS) {
2603 * We think the allocation will succeed in this zone,
2604 * but it is not certain, hence the false. The caller
2605 * will repeat this with true if allocation indeed
2606 * succeeds in this zone.
2608 compaction_defer_reset(zone, order, false);
2613 if (prio != COMPACT_PRIO_ASYNC && (status == COMPACT_COMPLETE ||
2614 status == COMPACT_PARTIAL_SKIPPED))
2616 * We think that allocation won't succeed in this zone
2617 * so we defer compaction there. If it ends up
2618 * succeeding after all, it will be reset.
2620 defer_compaction(zone, order);
2623 * We might have stopped compacting due to need_resched() in
2624 * async compaction, or due to a fatal signal detected. In that
2625 * case do not try further zones
2627 if ((prio == COMPACT_PRIO_ASYNC && need_resched())
2628 || fatal_signal_pending(current))
2636 * Compact all zones within a node till each zone's fragmentation score
2637 * reaches within proactive compaction thresholds (as determined by the
2638 * proactiveness tunable).
2640 * It is possible that the function returns before reaching score targets
2641 * due to various back-off conditions, such as, contention on per-node or
2644 static void proactive_compact_node(pg_data_t *pgdat)
2648 struct compact_control cc = {
2650 .mode = MIGRATE_SYNC_LIGHT,
2651 .ignore_skip_hint = true,
2653 .gfp_mask = GFP_KERNEL,
2654 .proactive_compaction = true,
2657 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
2658 zone = &pgdat->node_zones[zoneid];
2659 if (!populated_zone(zone))
2664 compact_zone(&cc, NULL);
2666 VM_BUG_ON(!list_empty(&cc.freepages));
2667 VM_BUG_ON(!list_empty(&cc.migratepages));
2671 /* Compact all zones within a node */
2672 static void compact_node(int nid)
2674 pg_data_t *pgdat = NODE_DATA(nid);
2677 struct compact_control cc = {
2679 .mode = MIGRATE_SYNC,
2680 .ignore_skip_hint = true,
2682 .gfp_mask = GFP_KERNEL,
2686 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
2688 zone = &pgdat->node_zones[zoneid];
2689 if (!populated_zone(zone))
2694 compact_zone(&cc, NULL);
2696 VM_BUG_ON(!list_empty(&cc.freepages));
2697 VM_BUG_ON(!list_empty(&cc.migratepages));
2701 /* Compact all nodes in the system */
2702 static void compact_nodes(void)
2706 /* Flush pending updates to the LRU lists */
2707 lru_add_drain_all();
2709 for_each_online_node(nid)
2714 * Tunable for proactive compaction. It determines how
2715 * aggressively the kernel should compact memory in the
2716 * background. It takes values in the range [0, 100].
2718 unsigned int __read_mostly sysctl_compaction_proactiveness = 20;
2720 int compaction_proactiveness_sysctl_handler(struct ctl_table *table, int write,
2721 void *buffer, size_t *length, loff_t *ppos)
2725 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
2729 if (write && sysctl_compaction_proactiveness) {
2730 for_each_online_node(nid) {
2731 pg_data_t *pgdat = NODE_DATA(nid);
2733 if (pgdat->proactive_compact_trigger)
2736 pgdat->proactive_compact_trigger = true;
2737 wake_up_interruptible(&pgdat->kcompactd_wait);
2745 * This is the entry point for compacting all nodes via
2746 * /proc/sys/vm/compact_memory
2748 int sysctl_compaction_handler(struct ctl_table *table, int write,
2749 void *buffer, size_t *length, loff_t *ppos)
2757 #if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
2758 static ssize_t compact_store(struct device *dev,
2759 struct device_attribute *attr,
2760 const char *buf, size_t count)
2764 if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
2765 /* Flush pending updates to the LRU lists */
2766 lru_add_drain_all();
2773 static DEVICE_ATTR_WO(compact);
2775 int compaction_register_node(struct node *node)
2777 return device_create_file(&node->dev, &dev_attr_compact);
2780 void compaction_unregister_node(struct node *node)
2782 return device_remove_file(&node->dev, &dev_attr_compact);
2784 #endif /* CONFIG_SYSFS && CONFIG_NUMA */
2786 static inline bool kcompactd_work_requested(pg_data_t *pgdat)
2788 return pgdat->kcompactd_max_order > 0 || kthread_should_stop() ||
2789 pgdat->proactive_compact_trigger;
2792 static bool kcompactd_node_suitable(pg_data_t *pgdat)
2796 enum zone_type highest_zoneidx = pgdat->kcompactd_highest_zoneidx;
2798 for (zoneid = 0; zoneid <= highest_zoneidx; zoneid++) {
2799 zone = &pgdat->node_zones[zoneid];
2801 if (!populated_zone(zone))
2804 if (compaction_suitable(zone, pgdat->kcompactd_max_order, 0,
2805 highest_zoneidx) == COMPACT_CONTINUE)
2812 static void kcompactd_do_work(pg_data_t *pgdat)
2815 * With no special task, compact all zones so that a page of requested
2816 * order is allocatable.
2820 struct compact_control cc = {
2821 .order = pgdat->kcompactd_max_order,
2822 .search_order = pgdat->kcompactd_max_order,
2823 .highest_zoneidx = pgdat->kcompactd_highest_zoneidx,
2824 .mode = MIGRATE_SYNC_LIGHT,
2825 .ignore_skip_hint = false,
2826 .gfp_mask = GFP_KERNEL,
2828 trace_mm_compaction_kcompactd_wake(pgdat->node_id, cc.order,
2829 cc.highest_zoneidx);
2830 count_compact_event(KCOMPACTD_WAKE);
2832 for (zoneid = 0; zoneid <= cc.highest_zoneidx; zoneid++) {
2835 zone = &pgdat->node_zones[zoneid];
2836 if (!populated_zone(zone))
2839 if (compaction_deferred(zone, cc.order))
2842 if (compaction_suitable(zone, cc.order, 0, zoneid) !=
2846 if (kthread_should_stop())
2850 status = compact_zone(&cc, NULL);
2852 if (status == COMPACT_SUCCESS) {
2853 compaction_defer_reset(zone, cc.order, false);
2854 } else if (status == COMPACT_PARTIAL_SKIPPED || status == COMPACT_COMPLETE) {
2856 * Buddy pages may become stranded on pcps that could
2857 * otherwise coalesce on the zone's free area for
2858 * order >= cc.order. This is ratelimited by the
2859 * upcoming deferral.
2861 drain_all_pages(zone);
2864 * We use sync migration mode here, so we defer like
2865 * sync direct compaction does.
2867 defer_compaction(zone, cc.order);
2870 count_compact_events(KCOMPACTD_MIGRATE_SCANNED,
2871 cc.total_migrate_scanned);
2872 count_compact_events(KCOMPACTD_FREE_SCANNED,
2873 cc.total_free_scanned);
2875 VM_BUG_ON(!list_empty(&cc.freepages));
2876 VM_BUG_ON(!list_empty(&cc.migratepages));
2880 * Regardless of success, we are done until woken up next. But remember
2881 * the requested order/highest_zoneidx in case it was higher/tighter
2882 * than our current ones
2884 if (pgdat->kcompactd_max_order <= cc.order)
2885 pgdat->kcompactd_max_order = 0;
2886 if (pgdat->kcompactd_highest_zoneidx >= cc.highest_zoneidx)
2887 pgdat->kcompactd_highest_zoneidx = pgdat->nr_zones - 1;
2890 void wakeup_kcompactd(pg_data_t *pgdat, int order, int highest_zoneidx)
2895 if (pgdat->kcompactd_max_order < order)
2896 pgdat->kcompactd_max_order = order;
2898 if (pgdat->kcompactd_highest_zoneidx > highest_zoneidx)
2899 pgdat->kcompactd_highest_zoneidx = highest_zoneidx;
2902 * Pairs with implicit barrier in wait_event_freezable()
2903 * such that wakeups are not missed.
2905 if (!wq_has_sleeper(&pgdat->kcompactd_wait))
2908 if (!kcompactd_node_suitable(pgdat))
2911 trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, order,
2913 wake_up_interruptible(&pgdat->kcompactd_wait);
2917 * The background compaction daemon, started as a kernel thread
2918 * from the init process.
2920 static int kcompactd(void *p)
2922 pg_data_t *pgdat = (pg_data_t *)p;
2923 struct task_struct *tsk = current;
2924 long default_timeout = msecs_to_jiffies(HPAGE_FRAG_CHECK_INTERVAL_MSEC);
2925 long timeout = default_timeout;
2927 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2929 if (!cpumask_empty(cpumask))
2930 set_cpus_allowed_ptr(tsk, cpumask);
2934 pgdat->kcompactd_max_order = 0;
2935 pgdat->kcompactd_highest_zoneidx = pgdat->nr_zones - 1;
2937 while (!kthread_should_stop()) {
2938 unsigned long pflags;
2941 * Avoid the unnecessary wakeup for proactive compaction
2942 * when it is disabled.
2944 if (!sysctl_compaction_proactiveness)
2945 timeout = MAX_SCHEDULE_TIMEOUT;
2946 trace_mm_compaction_kcompactd_sleep(pgdat->node_id);
2947 if (wait_event_freezable_timeout(pgdat->kcompactd_wait,
2948 kcompactd_work_requested(pgdat), timeout) &&
2949 !pgdat->proactive_compact_trigger) {
2951 psi_memstall_enter(&pflags);
2952 kcompactd_do_work(pgdat);
2953 psi_memstall_leave(&pflags);
2955 * Reset the timeout value. The defer timeout from
2956 * proactive compaction is lost here but that is fine
2957 * as the condition of the zone changing substantionally
2958 * then carrying on with the previous defer interval is
2961 timeout = default_timeout;
2966 * Start the proactive work with default timeout. Based
2967 * on the fragmentation score, this timeout is updated.
2969 timeout = default_timeout;
2970 if (should_proactive_compact_node(pgdat)) {
2971 unsigned int prev_score, score;
2973 prev_score = fragmentation_score_node(pgdat);
2974 proactive_compact_node(pgdat);
2975 score = fragmentation_score_node(pgdat);
2977 * Defer proactive compaction if the fragmentation
2978 * score did not go down i.e. no progress made.
2980 if (unlikely(score >= prev_score))
2982 default_timeout << COMPACT_MAX_DEFER_SHIFT;
2984 if (unlikely(pgdat->proactive_compact_trigger))
2985 pgdat->proactive_compact_trigger = false;
2992 * This kcompactd start function will be called by init and node-hot-add.
2993 * On node-hot-add, kcompactd will moved to proper cpus if cpus are hot-added.
2995 void kcompactd_run(int nid)
2997 pg_data_t *pgdat = NODE_DATA(nid);
2999 if (pgdat->kcompactd)
3002 pgdat->kcompactd = kthread_run(kcompactd, pgdat, "kcompactd%d", nid);
3003 if (IS_ERR(pgdat->kcompactd)) {
3004 pr_err("Failed to start kcompactd on node %d\n", nid);
3005 pgdat->kcompactd = NULL;
3010 * Called by memory hotplug when all memory in a node is offlined. Caller must
3011 * hold mem_hotplug_begin/end().
3013 void kcompactd_stop(int nid)
3015 struct task_struct *kcompactd = NODE_DATA(nid)->kcompactd;
3018 kthread_stop(kcompactd);
3019 NODE_DATA(nid)->kcompactd = NULL;
3024 * It's optimal to keep kcompactd on the same CPUs as their memory, but
3025 * not required for correctness. So if the last cpu in a node goes
3026 * away, we get changed to run anywhere: as the first one comes back,
3027 * restore their cpu bindings.
3029 static int kcompactd_cpu_online(unsigned int cpu)
3033 for_each_node_state(nid, N_MEMORY) {
3034 pg_data_t *pgdat = NODE_DATA(nid);
3035 const struct cpumask *mask;
3037 mask = cpumask_of_node(pgdat->node_id);
3039 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3040 /* One of our CPUs online: restore mask */
3041 if (pgdat->kcompactd)
3042 set_cpus_allowed_ptr(pgdat->kcompactd, mask);
3047 static int __init kcompactd_init(void)
3052 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
3053 "mm/compaction:online",
3054 kcompactd_cpu_online, NULL);
3056 pr_err("kcompactd: failed to register hotplug callbacks.\n");
3060 for_each_node_state(nid, N_MEMORY)
3064 subsys_initcall(kcompactd_init)
3066 #endif /* CONFIG_COMPACTION */