fs: Add aops->migrate_folio
[platform/kernel/linux-starfive.git] / mm / compaction.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * linux/mm/compaction.c
4  *
5  * Memory compaction for the reduction of external fragmentation. Note that
6  * this heavily depends upon page migration to do all the real heavy
7  * lifting
8  *
9  * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
10  */
11 #include <linux/cpu.h>
12 #include <linux/swap.h>
13 #include <linux/migrate.h>
14 #include <linux/compaction.h>
15 #include <linux/mm_inline.h>
16 #include <linux/sched/signal.h>
17 #include <linux/backing-dev.h>
18 #include <linux/sysctl.h>
19 #include <linux/sysfs.h>
20 #include <linux/page-isolation.h>
21 #include <linux/kasan.h>
22 #include <linux/kthread.h>
23 #include <linux/freezer.h>
24 #include <linux/page_owner.h>
25 #include <linux/psi.h>
26 #include "internal.h"
27
28 #ifdef CONFIG_COMPACTION
29 /*
30  * Fragmentation score check interval for proactive compaction purposes.
31  */
32 #define HPAGE_FRAG_CHECK_INTERVAL_MSEC  (500)
33
34 static inline void count_compact_event(enum vm_event_item item)
35 {
36         count_vm_event(item);
37 }
38
39 static inline void count_compact_events(enum vm_event_item item, long delta)
40 {
41         count_vm_events(item, delta);
42 }
43 #else
44 #define count_compact_event(item) do { } while (0)
45 #define count_compact_events(item, delta) do { } while (0)
46 #endif
47
48 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
49
50 #define CREATE_TRACE_POINTS
51 #include <trace/events/compaction.h>
52
53 #define block_start_pfn(pfn, order)     round_down(pfn, 1UL << (order))
54 #define block_end_pfn(pfn, order)       ALIGN((pfn) + 1, 1UL << (order))
55 #define pageblock_start_pfn(pfn)        block_start_pfn(pfn, pageblock_order)
56 #define pageblock_end_pfn(pfn)          block_end_pfn(pfn, pageblock_order)
57
58 /*
59  * Page order with-respect-to which proactive compaction
60  * calculates external fragmentation, which is used as
61  * the "fragmentation score" of a node/zone.
62  */
63 #if defined CONFIG_TRANSPARENT_HUGEPAGE
64 #define COMPACTION_HPAGE_ORDER  HPAGE_PMD_ORDER
65 #elif defined CONFIG_HUGETLBFS
66 #define COMPACTION_HPAGE_ORDER  HUGETLB_PAGE_ORDER
67 #else
68 #define COMPACTION_HPAGE_ORDER  (PMD_SHIFT - PAGE_SHIFT)
69 #endif
70
71 static unsigned long release_freepages(struct list_head *freelist)
72 {
73         struct page *page, *next;
74         unsigned long high_pfn = 0;
75
76         list_for_each_entry_safe(page, next, freelist, lru) {
77                 unsigned long pfn = page_to_pfn(page);
78                 list_del(&page->lru);
79                 __free_page(page);
80                 if (pfn > high_pfn)
81                         high_pfn = pfn;
82         }
83
84         return high_pfn;
85 }
86
87 static void split_map_pages(struct list_head *list)
88 {
89         unsigned int i, order, nr_pages;
90         struct page *page, *next;
91         LIST_HEAD(tmp_list);
92
93         list_for_each_entry_safe(page, next, list, lru) {
94                 list_del(&page->lru);
95
96                 order = page_private(page);
97                 nr_pages = 1 << order;
98
99                 post_alloc_hook(page, order, __GFP_MOVABLE);
100                 if (order)
101                         split_page(page, order);
102
103                 for (i = 0; i < nr_pages; i++) {
104                         list_add(&page->lru, &tmp_list);
105                         page++;
106                 }
107         }
108
109         list_splice(&tmp_list, list);
110 }
111
112 #ifdef CONFIG_COMPACTION
113 bool PageMovable(struct page *page)
114 {
115         const struct movable_operations *mops;
116
117         VM_BUG_ON_PAGE(!PageLocked(page), page);
118         if (!__PageMovable(page))
119                 return false;
120
121         mops = page_movable_ops(page);
122         if (mops)
123                 return true;
124
125         return false;
126 }
127 EXPORT_SYMBOL(PageMovable);
128
129 void __SetPageMovable(struct page *page, const struct movable_operations *mops)
130 {
131         VM_BUG_ON_PAGE(!PageLocked(page), page);
132         VM_BUG_ON_PAGE((unsigned long)mops & PAGE_MAPPING_MOVABLE, page);
133         page->mapping = (void *)((unsigned long)mops | PAGE_MAPPING_MOVABLE);
134 }
135 EXPORT_SYMBOL(__SetPageMovable);
136
137 void __ClearPageMovable(struct page *page)
138 {
139         VM_BUG_ON_PAGE(!PageMovable(page), page);
140         /*
141          * This page still has the type of a movable page, but it's
142          * actually not movable any more.
143          */
144         page->mapping = (void *)PAGE_MAPPING_MOVABLE;
145 }
146 EXPORT_SYMBOL(__ClearPageMovable);
147
148 /* Do not skip compaction more than 64 times */
149 #define COMPACT_MAX_DEFER_SHIFT 6
150
151 /*
152  * Compaction is deferred when compaction fails to result in a page
153  * allocation success. 1 << compact_defer_shift, compactions are skipped up
154  * to a limit of 1 << COMPACT_MAX_DEFER_SHIFT
155  */
156 static void defer_compaction(struct zone *zone, int order)
157 {
158         zone->compact_considered = 0;
159         zone->compact_defer_shift++;
160
161         if (order < zone->compact_order_failed)
162                 zone->compact_order_failed = order;
163
164         if (zone->compact_defer_shift > COMPACT_MAX_DEFER_SHIFT)
165                 zone->compact_defer_shift = COMPACT_MAX_DEFER_SHIFT;
166
167         trace_mm_compaction_defer_compaction(zone, order);
168 }
169
170 /* Returns true if compaction should be skipped this time */
171 static bool compaction_deferred(struct zone *zone, int order)
172 {
173         unsigned long defer_limit = 1UL << zone->compact_defer_shift;
174
175         if (order < zone->compact_order_failed)
176                 return false;
177
178         /* Avoid possible overflow */
179         if (++zone->compact_considered >= defer_limit) {
180                 zone->compact_considered = defer_limit;
181                 return false;
182         }
183
184         trace_mm_compaction_deferred(zone, order);
185
186         return true;
187 }
188
189 /*
190  * Update defer tracking counters after successful compaction of given order,
191  * which means an allocation either succeeded (alloc_success == true) or is
192  * expected to succeed.
193  */
194 void compaction_defer_reset(struct zone *zone, int order,
195                 bool alloc_success)
196 {
197         if (alloc_success) {
198                 zone->compact_considered = 0;
199                 zone->compact_defer_shift = 0;
200         }
201         if (order >= zone->compact_order_failed)
202                 zone->compact_order_failed = order + 1;
203
204         trace_mm_compaction_defer_reset(zone, order);
205 }
206
207 /* Returns true if restarting compaction after many failures */
208 static bool compaction_restarting(struct zone *zone, int order)
209 {
210         if (order < zone->compact_order_failed)
211                 return false;
212
213         return zone->compact_defer_shift == COMPACT_MAX_DEFER_SHIFT &&
214                 zone->compact_considered >= 1UL << zone->compact_defer_shift;
215 }
216
217 /* Returns true if the pageblock should be scanned for pages to isolate. */
218 static inline bool isolation_suitable(struct compact_control *cc,
219                                         struct page *page)
220 {
221         if (cc->ignore_skip_hint)
222                 return true;
223
224         return !get_pageblock_skip(page);
225 }
226
227 static void reset_cached_positions(struct zone *zone)
228 {
229         zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn;
230         zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn;
231         zone->compact_cached_free_pfn =
232                                 pageblock_start_pfn(zone_end_pfn(zone) - 1);
233 }
234
235 /*
236  * Compound pages of >= pageblock_order should consistently be skipped until
237  * released. It is always pointless to compact pages of such order (if they are
238  * migratable), and the pageblocks they occupy cannot contain any free pages.
239  */
240 static bool pageblock_skip_persistent(struct page *page)
241 {
242         if (!PageCompound(page))
243                 return false;
244
245         page = compound_head(page);
246
247         if (compound_order(page) >= pageblock_order)
248                 return true;
249
250         return false;
251 }
252
253 static bool
254 __reset_isolation_pfn(struct zone *zone, unsigned long pfn, bool check_source,
255                                                         bool check_target)
256 {
257         struct page *page = pfn_to_online_page(pfn);
258         struct page *block_page;
259         struct page *end_page;
260         unsigned long block_pfn;
261
262         if (!page)
263                 return false;
264         if (zone != page_zone(page))
265                 return false;
266         if (pageblock_skip_persistent(page))
267                 return false;
268
269         /*
270          * If skip is already cleared do no further checking once the
271          * restart points have been set.
272          */
273         if (check_source && check_target && !get_pageblock_skip(page))
274                 return true;
275
276         /*
277          * If clearing skip for the target scanner, do not select a
278          * non-movable pageblock as the starting point.
279          */
280         if (!check_source && check_target &&
281             get_pageblock_migratetype(page) != MIGRATE_MOVABLE)
282                 return false;
283
284         /* Ensure the start of the pageblock or zone is online and valid */
285         block_pfn = pageblock_start_pfn(pfn);
286         block_pfn = max(block_pfn, zone->zone_start_pfn);
287         block_page = pfn_to_online_page(block_pfn);
288         if (block_page) {
289                 page = block_page;
290                 pfn = block_pfn;
291         }
292
293         /* Ensure the end of the pageblock or zone is online and valid */
294         block_pfn = pageblock_end_pfn(pfn) - 1;
295         block_pfn = min(block_pfn, zone_end_pfn(zone) - 1);
296         end_page = pfn_to_online_page(block_pfn);
297         if (!end_page)
298                 return false;
299
300         /*
301          * Only clear the hint if a sample indicates there is either a
302          * free page or an LRU page in the block. One or other condition
303          * is necessary for the block to be a migration source/target.
304          */
305         do {
306                 if (check_source && PageLRU(page)) {
307                         clear_pageblock_skip(page);
308                         return true;
309                 }
310
311                 if (check_target && PageBuddy(page)) {
312                         clear_pageblock_skip(page);
313                         return true;
314                 }
315
316                 page += (1 << PAGE_ALLOC_COSTLY_ORDER);
317         } while (page <= end_page);
318
319         return false;
320 }
321
322 /*
323  * This function is called to clear all cached information on pageblocks that
324  * should be skipped for page isolation when the migrate and free page scanner
325  * meet.
326  */
327 static void __reset_isolation_suitable(struct zone *zone)
328 {
329         unsigned long migrate_pfn = zone->zone_start_pfn;
330         unsigned long free_pfn = zone_end_pfn(zone) - 1;
331         unsigned long reset_migrate = free_pfn;
332         unsigned long reset_free = migrate_pfn;
333         bool source_set = false;
334         bool free_set = false;
335
336         if (!zone->compact_blockskip_flush)
337                 return;
338
339         zone->compact_blockskip_flush = false;
340
341         /*
342          * Walk the zone and update pageblock skip information. Source looks
343          * for PageLRU while target looks for PageBuddy. When the scanner
344          * is found, both PageBuddy and PageLRU are checked as the pageblock
345          * is suitable as both source and target.
346          */
347         for (; migrate_pfn < free_pfn; migrate_pfn += pageblock_nr_pages,
348                                         free_pfn -= pageblock_nr_pages) {
349                 cond_resched();
350
351                 /* Update the migrate PFN */
352                 if (__reset_isolation_pfn(zone, migrate_pfn, true, source_set) &&
353                     migrate_pfn < reset_migrate) {
354                         source_set = true;
355                         reset_migrate = migrate_pfn;
356                         zone->compact_init_migrate_pfn = reset_migrate;
357                         zone->compact_cached_migrate_pfn[0] = reset_migrate;
358                         zone->compact_cached_migrate_pfn[1] = reset_migrate;
359                 }
360
361                 /* Update the free PFN */
362                 if (__reset_isolation_pfn(zone, free_pfn, free_set, true) &&
363                     free_pfn > reset_free) {
364                         free_set = true;
365                         reset_free = free_pfn;
366                         zone->compact_init_free_pfn = reset_free;
367                         zone->compact_cached_free_pfn = reset_free;
368                 }
369         }
370
371         /* Leave no distance if no suitable block was reset */
372         if (reset_migrate >= reset_free) {
373                 zone->compact_cached_migrate_pfn[0] = migrate_pfn;
374                 zone->compact_cached_migrate_pfn[1] = migrate_pfn;
375                 zone->compact_cached_free_pfn = free_pfn;
376         }
377 }
378
379 void reset_isolation_suitable(pg_data_t *pgdat)
380 {
381         int zoneid;
382
383         for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
384                 struct zone *zone = &pgdat->node_zones[zoneid];
385                 if (!populated_zone(zone))
386                         continue;
387
388                 /* Only flush if a full compaction finished recently */
389                 if (zone->compact_blockskip_flush)
390                         __reset_isolation_suitable(zone);
391         }
392 }
393
394 /*
395  * Sets the pageblock skip bit if it was clear. Note that this is a hint as
396  * locks are not required for read/writers. Returns true if it was already set.
397  */
398 static bool test_and_set_skip(struct compact_control *cc, struct page *page,
399                                                         unsigned long pfn)
400 {
401         bool skip;
402
403         /* Do no update if skip hint is being ignored */
404         if (cc->ignore_skip_hint)
405                 return false;
406
407         if (!IS_ALIGNED(pfn, pageblock_nr_pages))
408                 return false;
409
410         skip = get_pageblock_skip(page);
411         if (!skip && !cc->no_set_skip_hint)
412                 set_pageblock_skip(page);
413
414         return skip;
415 }
416
417 static void update_cached_migrate(struct compact_control *cc, unsigned long pfn)
418 {
419         struct zone *zone = cc->zone;
420
421         pfn = pageblock_end_pfn(pfn);
422
423         /* Set for isolation rather than compaction */
424         if (cc->no_set_skip_hint)
425                 return;
426
427         if (pfn > zone->compact_cached_migrate_pfn[0])
428                 zone->compact_cached_migrate_pfn[0] = pfn;
429         if (cc->mode != MIGRATE_ASYNC &&
430             pfn > zone->compact_cached_migrate_pfn[1])
431                 zone->compact_cached_migrate_pfn[1] = pfn;
432 }
433
434 /*
435  * If no pages were isolated then mark this pageblock to be skipped in the
436  * future. The information is later cleared by __reset_isolation_suitable().
437  */
438 static void update_pageblock_skip(struct compact_control *cc,
439                         struct page *page, unsigned long pfn)
440 {
441         struct zone *zone = cc->zone;
442
443         if (cc->no_set_skip_hint)
444                 return;
445
446         if (!page)
447                 return;
448
449         set_pageblock_skip(page);
450
451         /* Update where async and sync compaction should restart */
452         if (pfn < zone->compact_cached_free_pfn)
453                 zone->compact_cached_free_pfn = pfn;
454 }
455 #else
456 static inline bool isolation_suitable(struct compact_control *cc,
457                                         struct page *page)
458 {
459         return true;
460 }
461
462 static inline bool pageblock_skip_persistent(struct page *page)
463 {
464         return false;
465 }
466
467 static inline void update_pageblock_skip(struct compact_control *cc,
468                         struct page *page, unsigned long pfn)
469 {
470 }
471
472 static void update_cached_migrate(struct compact_control *cc, unsigned long pfn)
473 {
474 }
475
476 static bool test_and_set_skip(struct compact_control *cc, struct page *page,
477                                                         unsigned long pfn)
478 {
479         return false;
480 }
481 #endif /* CONFIG_COMPACTION */
482
483 /*
484  * Compaction requires the taking of some coarse locks that are potentially
485  * very heavily contended. For async compaction, trylock and record if the
486  * lock is contended. The lock will still be acquired but compaction will
487  * abort when the current block is finished regardless of success rate.
488  * Sync compaction acquires the lock.
489  *
490  * Always returns true which makes it easier to track lock state in callers.
491  */
492 static bool compact_lock_irqsave(spinlock_t *lock, unsigned long *flags,
493                                                 struct compact_control *cc)
494         __acquires(lock)
495 {
496         /* Track if the lock is contended in async mode */
497         if (cc->mode == MIGRATE_ASYNC && !cc->contended) {
498                 if (spin_trylock_irqsave(lock, *flags))
499                         return true;
500
501                 cc->contended = true;
502         }
503
504         spin_lock_irqsave(lock, *flags);
505         return true;
506 }
507
508 /*
509  * Compaction requires the taking of some coarse locks that are potentially
510  * very heavily contended. The lock should be periodically unlocked to avoid
511  * having disabled IRQs for a long time, even when there is nobody waiting on
512  * the lock. It might also be that allowing the IRQs will result in
513  * need_resched() becoming true. If scheduling is needed, compaction schedules.
514  * Either compaction type will also abort if a fatal signal is pending.
515  * In either case if the lock was locked, it is dropped and not regained.
516  *
517  * Returns true if compaction should abort due to fatal signal pending.
518  * Returns false when compaction can continue.
519  */
520 static bool compact_unlock_should_abort(spinlock_t *lock,
521                 unsigned long flags, bool *locked, struct compact_control *cc)
522 {
523         if (*locked) {
524                 spin_unlock_irqrestore(lock, flags);
525                 *locked = false;
526         }
527
528         if (fatal_signal_pending(current)) {
529                 cc->contended = true;
530                 return true;
531         }
532
533         cond_resched();
534
535         return false;
536 }
537
538 /*
539  * Isolate free pages onto a private freelist. If @strict is true, will abort
540  * returning 0 on any invalid PFNs or non-free pages inside of the pageblock
541  * (even though it may still end up isolating some pages).
542  */
543 static unsigned long isolate_freepages_block(struct compact_control *cc,
544                                 unsigned long *start_pfn,
545                                 unsigned long end_pfn,
546                                 struct list_head *freelist,
547                                 unsigned int stride,
548                                 bool strict)
549 {
550         int nr_scanned = 0, total_isolated = 0;
551         struct page *cursor;
552         unsigned long flags = 0;
553         bool locked = false;
554         unsigned long blockpfn = *start_pfn;
555         unsigned int order;
556
557         /* Strict mode is for isolation, speed is secondary */
558         if (strict)
559                 stride = 1;
560
561         cursor = pfn_to_page(blockpfn);
562
563         /* Isolate free pages. */
564         for (; blockpfn < end_pfn; blockpfn += stride, cursor += stride) {
565                 int isolated;
566                 struct page *page = cursor;
567
568                 /*
569                  * Periodically drop the lock (if held) regardless of its
570                  * contention, to give chance to IRQs. Abort if fatal signal
571                  * pending.
572                  */
573                 if (!(blockpfn % COMPACT_CLUSTER_MAX)
574                     && compact_unlock_should_abort(&cc->zone->lock, flags,
575                                                                 &locked, cc))
576                         break;
577
578                 nr_scanned++;
579
580                 /*
581                  * For compound pages such as THP and hugetlbfs, we can save
582                  * potentially a lot of iterations if we skip them at once.
583                  * The check is racy, but we can consider only valid values
584                  * and the only danger is skipping too much.
585                  */
586                 if (PageCompound(page)) {
587                         const unsigned int order = compound_order(page);
588
589                         if (likely(order < MAX_ORDER)) {
590                                 blockpfn += (1UL << order) - 1;
591                                 cursor += (1UL << order) - 1;
592                         }
593                         goto isolate_fail;
594                 }
595
596                 if (!PageBuddy(page))
597                         goto isolate_fail;
598
599                 /* If we already hold the lock, we can skip some rechecking. */
600                 if (!locked) {
601                         locked = compact_lock_irqsave(&cc->zone->lock,
602                                                                 &flags, cc);
603
604                         /* Recheck this is a buddy page under lock */
605                         if (!PageBuddy(page))
606                                 goto isolate_fail;
607                 }
608
609                 /* Found a free page, will break it into order-0 pages */
610                 order = buddy_order(page);
611                 isolated = __isolate_free_page(page, order);
612                 if (!isolated)
613                         break;
614                 set_page_private(page, order);
615
616                 total_isolated += isolated;
617                 cc->nr_freepages += isolated;
618                 list_add_tail(&page->lru, freelist);
619
620                 if (!strict && cc->nr_migratepages <= cc->nr_freepages) {
621                         blockpfn += isolated;
622                         break;
623                 }
624                 /* Advance to the end of split page */
625                 blockpfn += isolated - 1;
626                 cursor += isolated - 1;
627                 continue;
628
629 isolate_fail:
630                 if (strict)
631                         break;
632                 else
633                         continue;
634
635         }
636
637         if (locked)
638                 spin_unlock_irqrestore(&cc->zone->lock, flags);
639
640         /*
641          * There is a tiny chance that we have read bogus compound_order(),
642          * so be careful to not go outside of the pageblock.
643          */
644         if (unlikely(blockpfn > end_pfn))
645                 blockpfn = end_pfn;
646
647         trace_mm_compaction_isolate_freepages(*start_pfn, blockpfn,
648                                         nr_scanned, total_isolated);
649
650         /* Record how far we have got within the block */
651         *start_pfn = blockpfn;
652
653         /*
654          * If strict isolation is requested by CMA then check that all the
655          * pages requested were isolated. If there were any failures, 0 is
656          * returned and CMA will fail.
657          */
658         if (strict && blockpfn < end_pfn)
659                 total_isolated = 0;
660
661         cc->total_free_scanned += nr_scanned;
662         if (total_isolated)
663                 count_compact_events(COMPACTISOLATED, total_isolated);
664         return total_isolated;
665 }
666
667 /**
668  * isolate_freepages_range() - isolate free pages.
669  * @cc:        Compaction control structure.
670  * @start_pfn: The first PFN to start isolating.
671  * @end_pfn:   The one-past-last PFN.
672  *
673  * Non-free pages, invalid PFNs, or zone boundaries within the
674  * [start_pfn, end_pfn) range are considered errors, cause function to
675  * undo its actions and return zero.
676  *
677  * Otherwise, function returns one-past-the-last PFN of isolated page
678  * (which may be greater then end_pfn if end fell in a middle of
679  * a free page).
680  */
681 unsigned long
682 isolate_freepages_range(struct compact_control *cc,
683                         unsigned long start_pfn, unsigned long end_pfn)
684 {
685         unsigned long isolated, pfn, block_start_pfn, block_end_pfn;
686         LIST_HEAD(freelist);
687
688         pfn = start_pfn;
689         block_start_pfn = pageblock_start_pfn(pfn);
690         if (block_start_pfn < cc->zone->zone_start_pfn)
691                 block_start_pfn = cc->zone->zone_start_pfn;
692         block_end_pfn = pageblock_end_pfn(pfn);
693
694         for (; pfn < end_pfn; pfn += isolated,
695                                 block_start_pfn = block_end_pfn,
696                                 block_end_pfn += pageblock_nr_pages) {
697                 /* Protect pfn from changing by isolate_freepages_block */
698                 unsigned long isolate_start_pfn = pfn;
699
700                 block_end_pfn = min(block_end_pfn, end_pfn);
701
702                 /*
703                  * pfn could pass the block_end_pfn if isolated freepage
704                  * is more than pageblock order. In this case, we adjust
705                  * scanning range to right one.
706                  */
707                 if (pfn >= block_end_pfn) {
708                         block_start_pfn = pageblock_start_pfn(pfn);
709                         block_end_pfn = pageblock_end_pfn(pfn);
710                         block_end_pfn = min(block_end_pfn, end_pfn);
711                 }
712
713                 if (!pageblock_pfn_to_page(block_start_pfn,
714                                         block_end_pfn, cc->zone))
715                         break;
716
717                 isolated = isolate_freepages_block(cc, &isolate_start_pfn,
718                                         block_end_pfn, &freelist, 0, true);
719
720                 /*
721                  * In strict mode, isolate_freepages_block() returns 0 if
722                  * there are any holes in the block (ie. invalid PFNs or
723                  * non-free pages).
724                  */
725                 if (!isolated)
726                         break;
727
728                 /*
729                  * If we managed to isolate pages, it is always (1 << n) *
730                  * pageblock_nr_pages for some non-negative n.  (Max order
731                  * page may span two pageblocks).
732                  */
733         }
734
735         /* __isolate_free_page() does not map the pages */
736         split_map_pages(&freelist);
737
738         if (pfn < end_pfn) {
739                 /* Loop terminated early, cleanup. */
740                 release_freepages(&freelist);
741                 return 0;
742         }
743
744         /* We don't use freelists for anything. */
745         return pfn;
746 }
747
748 /* Similar to reclaim, but different enough that they don't share logic */
749 static bool too_many_isolated(pg_data_t *pgdat)
750 {
751         bool too_many;
752
753         unsigned long active, inactive, isolated;
754
755         inactive = node_page_state(pgdat, NR_INACTIVE_FILE) +
756                         node_page_state(pgdat, NR_INACTIVE_ANON);
757         active = node_page_state(pgdat, NR_ACTIVE_FILE) +
758                         node_page_state(pgdat, NR_ACTIVE_ANON);
759         isolated = node_page_state(pgdat, NR_ISOLATED_FILE) +
760                         node_page_state(pgdat, NR_ISOLATED_ANON);
761
762         too_many = isolated > (inactive + active) / 2;
763         if (!too_many)
764                 wake_throttle_isolated(pgdat);
765
766         return too_many;
767 }
768
769 /**
770  * isolate_migratepages_block() - isolate all migrate-able pages within
771  *                                a single pageblock
772  * @cc:         Compaction control structure.
773  * @low_pfn:    The first PFN to isolate
774  * @end_pfn:    The one-past-the-last PFN to isolate, within same pageblock
775  * @mode:       Isolation mode to be used.
776  *
777  * Isolate all pages that can be migrated from the range specified by
778  * [low_pfn, end_pfn). The range is expected to be within same pageblock.
779  * Returns errno, like -EAGAIN or -EINTR in case e.g signal pending or congestion,
780  * -ENOMEM in case we could not allocate a page, or 0.
781  * cc->migrate_pfn will contain the next pfn to scan.
782  *
783  * The pages are isolated on cc->migratepages list (not required to be empty),
784  * and cc->nr_migratepages is updated accordingly.
785  */
786 static int
787 isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn,
788                         unsigned long end_pfn, isolate_mode_t mode)
789 {
790         pg_data_t *pgdat = cc->zone->zone_pgdat;
791         unsigned long nr_scanned = 0, nr_isolated = 0;
792         struct lruvec *lruvec;
793         unsigned long flags = 0;
794         struct lruvec *locked = NULL;
795         struct page *page = NULL, *valid_page = NULL;
796         struct address_space *mapping;
797         unsigned long start_pfn = low_pfn;
798         bool skip_on_failure = false;
799         unsigned long next_skip_pfn = 0;
800         bool skip_updated = false;
801         int ret = 0;
802
803         cc->migrate_pfn = low_pfn;
804
805         /*
806          * Ensure that there are not too many pages isolated from the LRU
807          * list by either parallel reclaimers or compaction. If there are,
808          * delay for some time until fewer pages are isolated
809          */
810         while (unlikely(too_many_isolated(pgdat))) {
811                 /* stop isolation if there are still pages not migrated */
812                 if (cc->nr_migratepages)
813                         return -EAGAIN;
814
815                 /* async migration should just abort */
816                 if (cc->mode == MIGRATE_ASYNC)
817                         return -EAGAIN;
818
819                 reclaim_throttle(pgdat, VMSCAN_THROTTLE_ISOLATED);
820
821                 if (fatal_signal_pending(current))
822                         return -EINTR;
823         }
824
825         cond_resched();
826
827         if (cc->direct_compaction && (cc->mode == MIGRATE_ASYNC)) {
828                 skip_on_failure = true;
829                 next_skip_pfn = block_end_pfn(low_pfn, cc->order);
830         }
831
832         /* Time to isolate some pages for migration */
833         for (; low_pfn < end_pfn; low_pfn++) {
834
835                 if (skip_on_failure && low_pfn >= next_skip_pfn) {
836                         /*
837                          * We have isolated all migration candidates in the
838                          * previous order-aligned block, and did not skip it due
839                          * to failure. We should migrate the pages now and
840                          * hopefully succeed compaction.
841                          */
842                         if (nr_isolated)
843                                 break;
844
845                         /*
846                          * We failed to isolate in the previous order-aligned
847                          * block. Set the new boundary to the end of the
848                          * current block. Note we can't simply increase
849                          * next_skip_pfn by 1 << order, as low_pfn might have
850                          * been incremented by a higher number due to skipping
851                          * a compound or a high-order buddy page in the
852                          * previous loop iteration.
853                          */
854                         next_skip_pfn = block_end_pfn(low_pfn, cc->order);
855                 }
856
857                 /*
858                  * Periodically drop the lock (if held) regardless of its
859                  * contention, to give chance to IRQs. Abort completely if
860                  * a fatal signal is pending.
861                  */
862                 if (!(low_pfn % COMPACT_CLUSTER_MAX)) {
863                         if (locked) {
864                                 unlock_page_lruvec_irqrestore(locked, flags);
865                                 locked = NULL;
866                         }
867
868                         if (fatal_signal_pending(current)) {
869                                 cc->contended = true;
870                                 ret = -EINTR;
871
872                                 goto fatal_pending;
873                         }
874
875                         cond_resched();
876                 }
877
878                 nr_scanned++;
879
880                 page = pfn_to_page(low_pfn);
881
882                 /*
883                  * Check if the pageblock has already been marked skipped.
884                  * Only the aligned PFN is checked as the caller isolates
885                  * COMPACT_CLUSTER_MAX at a time so the second call must
886                  * not falsely conclude that the block should be skipped.
887                  */
888                 if (!valid_page && IS_ALIGNED(low_pfn, pageblock_nr_pages)) {
889                         if (!isolation_suitable(cc, page)) {
890                                 low_pfn = end_pfn;
891                                 page = NULL;
892                                 goto isolate_abort;
893                         }
894                         valid_page = page;
895                 }
896
897                 if (PageHuge(page) && cc->alloc_contig) {
898                         ret = isolate_or_dissolve_huge_page(page, &cc->migratepages);
899
900                         /*
901                          * Fail isolation in case isolate_or_dissolve_huge_page()
902                          * reports an error. In case of -ENOMEM, abort right away.
903                          */
904                         if (ret < 0) {
905                                  /* Do not report -EBUSY down the chain */
906                                 if (ret == -EBUSY)
907                                         ret = 0;
908                                 low_pfn += compound_nr(page) - 1;
909                                 goto isolate_fail;
910                         }
911
912                         if (PageHuge(page)) {
913                                 /*
914                                  * Hugepage was successfully isolated and placed
915                                  * on the cc->migratepages list.
916                                  */
917                                 low_pfn += compound_nr(page) - 1;
918                                 goto isolate_success_no_list;
919                         }
920
921                         /*
922                          * Ok, the hugepage was dissolved. Now these pages are
923                          * Buddy and cannot be re-allocated because they are
924                          * isolated. Fall-through as the check below handles
925                          * Buddy pages.
926                          */
927                 }
928
929                 /*
930                  * Skip if free. We read page order here without zone lock
931                  * which is generally unsafe, but the race window is small and
932                  * the worst thing that can happen is that we skip some
933                  * potential isolation targets.
934                  */
935                 if (PageBuddy(page)) {
936                         unsigned long freepage_order = buddy_order_unsafe(page);
937
938                         /*
939                          * Without lock, we cannot be sure that what we got is
940                          * a valid page order. Consider only values in the
941                          * valid order range to prevent low_pfn overflow.
942                          */
943                         if (freepage_order > 0 && freepage_order < MAX_ORDER)
944                                 low_pfn += (1UL << freepage_order) - 1;
945                         continue;
946                 }
947
948                 /*
949                  * Regardless of being on LRU, compound pages such as THP and
950                  * hugetlbfs are not to be compacted unless we are attempting
951                  * an allocation much larger than the huge page size (eg CMA).
952                  * We can potentially save a lot of iterations if we skip them
953                  * at once. The check is racy, but we can consider only valid
954                  * values and the only danger is skipping too much.
955                  */
956                 if (PageCompound(page) && !cc->alloc_contig) {
957                         const unsigned int order = compound_order(page);
958
959                         if (likely(order < MAX_ORDER))
960                                 low_pfn += (1UL << order) - 1;
961                         goto isolate_fail;
962                 }
963
964                 /*
965                  * Check may be lockless but that's ok as we recheck later.
966                  * It's possible to migrate LRU and non-lru movable pages.
967                  * Skip any other type of page
968                  */
969                 if (!PageLRU(page)) {
970                         /*
971                          * __PageMovable can return false positive so we need
972                          * to verify it under page_lock.
973                          */
974                         if (unlikely(__PageMovable(page)) &&
975                                         !PageIsolated(page)) {
976                                 if (locked) {
977                                         unlock_page_lruvec_irqrestore(locked, flags);
978                                         locked = NULL;
979                                 }
980
981                                 if (!isolate_movable_page(page, mode))
982                                         goto isolate_success;
983                         }
984
985                         goto isolate_fail;
986                 }
987
988                 /*
989                  * Migration will fail if an anonymous page is pinned in memory,
990                  * so avoid taking lru_lock and isolating it unnecessarily in an
991                  * admittedly racy check.
992                  */
993                 mapping = page_mapping(page);
994                 if (!mapping && page_count(page) > page_mapcount(page))
995                         goto isolate_fail;
996
997                 /*
998                  * Only allow to migrate anonymous pages in GFP_NOFS context
999                  * because those do not depend on fs locks.
1000                  */
1001                 if (!(cc->gfp_mask & __GFP_FS) && mapping)
1002                         goto isolate_fail;
1003
1004                 /*
1005                  * Be careful not to clear PageLRU until after we're
1006                  * sure the page is not being freed elsewhere -- the
1007                  * page release code relies on it.
1008                  */
1009                 if (unlikely(!get_page_unless_zero(page)))
1010                         goto isolate_fail;
1011
1012                 /* Only take pages on LRU: a check now makes later tests safe */
1013                 if (!PageLRU(page))
1014                         goto isolate_fail_put;
1015
1016                 /* Compaction might skip unevictable pages but CMA takes them */
1017                 if (!(mode & ISOLATE_UNEVICTABLE) && PageUnevictable(page))
1018                         goto isolate_fail_put;
1019
1020                 /*
1021                  * To minimise LRU disruption, the caller can indicate with
1022                  * ISOLATE_ASYNC_MIGRATE that it only wants to isolate pages
1023                  * it will be able to migrate without blocking - clean pages
1024                  * for the most part.  PageWriteback would require blocking.
1025                  */
1026                 if ((mode & ISOLATE_ASYNC_MIGRATE) && PageWriteback(page))
1027                         goto isolate_fail_put;
1028
1029                 if ((mode & ISOLATE_ASYNC_MIGRATE) && PageDirty(page)) {
1030                         bool migrate_dirty;
1031
1032                         /*
1033                          * Only pages without mappings or that have a
1034                          * ->migratepage callback are possible to migrate
1035                          * without blocking. However, we can be racing with
1036                          * truncation so it's necessary to lock the page
1037                          * to stabilise the mapping as truncation holds
1038                          * the page lock until after the page is removed
1039                          * from the page cache.
1040                          */
1041                         if (!trylock_page(page))
1042                                 goto isolate_fail_put;
1043
1044                         mapping = page_mapping(page);
1045                         migrate_dirty = !mapping ||
1046                                         mapping->a_ops->migrate_folio ||
1047                                         mapping->a_ops->migratepage;
1048                         unlock_page(page);
1049                         if (!migrate_dirty)
1050                                 goto isolate_fail_put;
1051                 }
1052
1053                 /* Try isolate the page */
1054                 if (!TestClearPageLRU(page))
1055                         goto isolate_fail_put;
1056
1057                 lruvec = folio_lruvec(page_folio(page));
1058
1059                 /* If we already hold the lock, we can skip some rechecking */
1060                 if (lruvec != locked) {
1061                         if (locked)
1062                                 unlock_page_lruvec_irqrestore(locked, flags);
1063
1064                         compact_lock_irqsave(&lruvec->lru_lock, &flags, cc);
1065                         locked = lruvec;
1066
1067                         lruvec_memcg_debug(lruvec, page_folio(page));
1068
1069                         /* Try get exclusive access under lock */
1070                         if (!skip_updated) {
1071                                 skip_updated = true;
1072                                 if (test_and_set_skip(cc, page, low_pfn))
1073                                         goto isolate_abort;
1074                         }
1075
1076                         /*
1077                          * Page become compound since the non-locked check,
1078                          * and it's on LRU. It can only be a THP so the order
1079                          * is safe to read and it's 0 for tail pages.
1080                          */
1081                         if (unlikely(PageCompound(page) && !cc->alloc_contig)) {
1082                                 low_pfn += compound_nr(page) - 1;
1083                                 SetPageLRU(page);
1084                                 goto isolate_fail_put;
1085                         }
1086                 }
1087
1088                 /* The whole page is taken off the LRU; skip the tail pages. */
1089                 if (PageCompound(page))
1090                         low_pfn += compound_nr(page) - 1;
1091
1092                 /* Successfully isolated */
1093                 del_page_from_lru_list(page, lruvec);
1094                 mod_node_page_state(page_pgdat(page),
1095                                 NR_ISOLATED_ANON + page_is_file_lru(page),
1096                                 thp_nr_pages(page));
1097
1098 isolate_success:
1099                 list_add(&page->lru, &cc->migratepages);
1100 isolate_success_no_list:
1101                 cc->nr_migratepages += compound_nr(page);
1102                 nr_isolated += compound_nr(page);
1103
1104                 /*
1105                  * Avoid isolating too much unless this block is being
1106                  * rescanned (e.g. dirty/writeback pages, parallel allocation)
1107                  * or a lock is contended. For contention, isolate quickly to
1108                  * potentially remove one source of contention.
1109                  */
1110                 if (cc->nr_migratepages >= COMPACT_CLUSTER_MAX &&
1111                     !cc->rescan && !cc->contended) {
1112                         ++low_pfn;
1113                         break;
1114                 }
1115
1116                 continue;
1117
1118 isolate_fail_put:
1119                 /* Avoid potential deadlock in freeing page under lru_lock */
1120                 if (locked) {
1121                         unlock_page_lruvec_irqrestore(locked, flags);
1122                         locked = NULL;
1123                 }
1124                 put_page(page);
1125
1126 isolate_fail:
1127                 if (!skip_on_failure && ret != -ENOMEM)
1128                         continue;
1129
1130                 /*
1131                  * We have isolated some pages, but then failed. Release them
1132                  * instead of migrating, as we cannot form the cc->order buddy
1133                  * page anyway.
1134                  */
1135                 if (nr_isolated) {
1136                         if (locked) {
1137                                 unlock_page_lruvec_irqrestore(locked, flags);
1138                                 locked = NULL;
1139                         }
1140                         putback_movable_pages(&cc->migratepages);
1141                         cc->nr_migratepages = 0;
1142                         nr_isolated = 0;
1143                 }
1144
1145                 if (low_pfn < next_skip_pfn) {
1146                         low_pfn = next_skip_pfn - 1;
1147                         /*
1148                          * The check near the loop beginning would have updated
1149                          * next_skip_pfn too, but this is a bit simpler.
1150                          */
1151                         next_skip_pfn += 1UL << cc->order;
1152                 }
1153
1154                 if (ret == -ENOMEM)
1155                         break;
1156         }
1157
1158         /*
1159          * The PageBuddy() check could have potentially brought us outside
1160          * the range to be scanned.
1161          */
1162         if (unlikely(low_pfn > end_pfn))
1163                 low_pfn = end_pfn;
1164
1165         page = NULL;
1166
1167 isolate_abort:
1168         if (locked)
1169                 unlock_page_lruvec_irqrestore(locked, flags);
1170         if (page) {
1171                 SetPageLRU(page);
1172                 put_page(page);
1173         }
1174
1175         /*
1176          * Updated the cached scanner pfn once the pageblock has been scanned
1177          * Pages will either be migrated in which case there is no point
1178          * scanning in the near future or migration failed in which case the
1179          * failure reason may persist. The block is marked for skipping if
1180          * there were no pages isolated in the block or if the block is
1181          * rescanned twice in a row.
1182          */
1183         if (low_pfn == end_pfn && (!nr_isolated || cc->rescan)) {
1184                 if (valid_page && !skip_updated)
1185                         set_pageblock_skip(valid_page);
1186                 update_cached_migrate(cc, low_pfn);
1187         }
1188
1189         trace_mm_compaction_isolate_migratepages(start_pfn, low_pfn,
1190                                                 nr_scanned, nr_isolated);
1191
1192 fatal_pending:
1193         cc->total_migrate_scanned += nr_scanned;
1194         if (nr_isolated)
1195                 count_compact_events(COMPACTISOLATED, nr_isolated);
1196
1197         cc->migrate_pfn = low_pfn;
1198
1199         return ret;
1200 }
1201
1202 /**
1203  * isolate_migratepages_range() - isolate migrate-able pages in a PFN range
1204  * @cc:        Compaction control structure.
1205  * @start_pfn: The first PFN to start isolating.
1206  * @end_pfn:   The one-past-last PFN.
1207  *
1208  * Returns -EAGAIN when contented, -EINTR in case of a signal pending, -ENOMEM
1209  * in case we could not allocate a page, or 0.
1210  */
1211 int
1212 isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn,
1213                                                         unsigned long end_pfn)
1214 {
1215         unsigned long pfn, block_start_pfn, block_end_pfn;
1216         int ret = 0;
1217
1218         /* Scan block by block. First and last block may be incomplete */
1219         pfn = start_pfn;
1220         block_start_pfn = pageblock_start_pfn(pfn);
1221         if (block_start_pfn < cc->zone->zone_start_pfn)
1222                 block_start_pfn = cc->zone->zone_start_pfn;
1223         block_end_pfn = pageblock_end_pfn(pfn);
1224
1225         for (; pfn < end_pfn; pfn = block_end_pfn,
1226                                 block_start_pfn = block_end_pfn,
1227                                 block_end_pfn += pageblock_nr_pages) {
1228
1229                 block_end_pfn = min(block_end_pfn, end_pfn);
1230
1231                 if (!pageblock_pfn_to_page(block_start_pfn,
1232                                         block_end_pfn, cc->zone))
1233                         continue;
1234
1235                 ret = isolate_migratepages_block(cc, pfn, block_end_pfn,
1236                                                  ISOLATE_UNEVICTABLE);
1237
1238                 if (ret)
1239                         break;
1240
1241                 if (cc->nr_migratepages >= COMPACT_CLUSTER_MAX)
1242                         break;
1243         }
1244
1245         return ret;
1246 }
1247
1248 #endif /* CONFIG_COMPACTION || CONFIG_CMA */
1249 #ifdef CONFIG_COMPACTION
1250
1251 static bool suitable_migration_source(struct compact_control *cc,
1252                                                         struct page *page)
1253 {
1254         int block_mt;
1255
1256         if (pageblock_skip_persistent(page))
1257                 return false;
1258
1259         if ((cc->mode != MIGRATE_ASYNC) || !cc->direct_compaction)
1260                 return true;
1261
1262         block_mt = get_pageblock_migratetype(page);
1263
1264         if (cc->migratetype == MIGRATE_MOVABLE)
1265                 return is_migrate_movable(block_mt);
1266         else
1267                 return block_mt == cc->migratetype;
1268 }
1269
1270 /* Returns true if the page is within a block suitable for migration to */
1271 static bool suitable_migration_target(struct compact_control *cc,
1272                                                         struct page *page)
1273 {
1274         /* If the page is a large free page, then disallow migration */
1275         if (PageBuddy(page)) {
1276                 /*
1277                  * We are checking page_order without zone->lock taken. But
1278                  * the only small danger is that we skip a potentially suitable
1279                  * pageblock, so it's not worth to check order for valid range.
1280                  */
1281                 if (buddy_order_unsafe(page) >= pageblock_order)
1282                         return false;
1283         }
1284
1285         if (cc->ignore_block_suitable)
1286                 return true;
1287
1288         /* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
1289         if (is_migrate_movable(get_pageblock_migratetype(page)))
1290                 return true;
1291
1292         /* Otherwise skip the block */
1293         return false;
1294 }
1295
1296 static inline unsigned int
1297 freelist_scan_limit(struct compact_control *cc)
1298 {
1299         unsigned short shift = BITS_PER_LONG - 1;
1300
1301         return (COMPACT_CLUSTER_MAX >> min(shift, cc->fast_search_fail)) + 1;
1302 }
1303
1304 /*
1305  * Test whether the free scanner has reached the same or lower pageblock than
1306  * the migration scanner, and compaction should thus terminate.
1307  */
1308 static inline bool compact_scanners_met(struct compact_control *cc)
1309 {
1310         return (cc->free_pfn >> pageblock_order)
1311                 <= (cc->migrate_pfn >> pageblock_order);
1312 }
1313
1314 /*
1315  * Used when scanning for a suitable migration target which scans freelists
1316  * in reverse. Reorders the list such as the unscanned pages are scanned
1317  * first on the next iteration of the free scanner
1318  */
1319 static void
1320 move_freelist_head(struct list_head *freelist, struct page *freepage)
1321 {
1322         LIST_HEAD(sublist);
1323
1324         if (!list_is_last(freelist, &freepage->lru)) {
1325                 list_cut_before(&sublist, freelist, &freepage->lru);
1326                 list_splice_tail(&sublist, freelist);
1327         }
1328 }
1329
1330 /*
1331  * Similar to move_freelist_head except used by the migration scanner
1332  * when scanning forward. It's possible for these list operations to
1333  * move against each other if they search the free list exactly in
1334  * lockstep.
1335  */
1336 static void
1337 move_freelist_tail(struct list_head *freelist, struct page *freepage)
1338 {
1339         LIST_HEAD(sublist);
1340
1341         if (!list_is_first(freelist, &freepage->lru)) {
1342                 list_cut_position(&sublist, freelist, &freepage->lru);
1343                 list_splice_tail(&sublist, freelist);
1344         }
1345 }
1346
1347 static void
1348 fast_isolate_around(struct compact_control *cc, unsigned long pfn, unsigned long nr_isolated)
1349 {
1350         unsigned long start_pfn, end_pfn;
1351         struct page *page;
1352
1353         /* Do not search around if there are enough pages already */
1354         if (cc->nr_freepages >= cc->nr_migratepages)
1355                 return;
1356
1357         /* Minimise scanning during async compaction */
1358         if (cc->direct_compaction && cc->mode == MIGRATE_ASYNC)
1359                 return;
1360
1361         /* Pageblock boundaries */
1362         start_pfn = max(pageblock_start_pfn(pfn), cc->zone->zone_start_pfn);
1363         end_pfn = min(pageblock_end_pfn(pfn), zone_end_pfn(cc->zone));
1364
1365         page = pageblock_pfn_to_page(start_pfn, end_pfn, cc->zone);
1366         if (!page)
1367                 return;
1368
1369         /* Scan before */
1370         if (start_pfn != pfn) {
1371                 isolate_freepages_block(cc, &start_pfn, pfn, &cc->freepages, 1, false);
1372                 if (cc->nr_freepages >= cc->nr_migratepages)
1373                         return;
1374         }
1375
1376         /* Scan after */
1377         start_pfn = pfn + nr_isolated;
1378         if (start_pfn < end_pfn)
1379                 isolate_freepages_block(cc, &start_pfn, end_pfn, &cc->freepages, 1, false);
1380
1381         /* Skip this pageblock in the future as it's full or nearly full */
1382         if (cc->nr_freepages < cc->nr_migratepages)
1383                 set_pageblock_skip(page);
1384 }
1385
1386 /* Search orders in round-robin fashion */
1387 static int next_search_order(struct compact_control *cc, int order)
1388 {
1389         order--;
1390         if (order < 0)
1391                 order = cc->order - 1;
1392
1393         /* Search wrapped around? */
1394         if (order == cc->search_order) {
1395                 cc->search_order--;
1396                 if (cc->search_order < 0)
1397                         cc->search_order = cc->order - 1;
1398                 return -1;
1399         }
1400
1401         return order;
1402 }
1403
1404 static unsigned long
1405 fast_isolate_freepages(struct compact_control *cc)
1406 {
1407         unsigned int limit = max(1U, freelist_scan_limit(cc) >> 1);
1408         unsigned int nr_scanned = 0;
1409         unsigned long low_pfn, min_pfn, highest = 0;
1410         unsigned long nr_isolated = 0;
1411         unsigned long distance;
1412         struct page *page = NULL;
1413         bool scan_start = false;
1414         int order;
1415
1416         /* Full compaction passes in a negative order */
1417         if (cc->order <= 0)
1418                 return cc->free_pfn;
1419
1420         /*
1421          * If starting the scan, use a deeper search and use the highest
1422          * PFN found if a suitable one is not found.
1423          */
1424         if (cc->free_pfn >= cc->zone->compact_init_free_pfn) {
1425                 limit = pageblock_nr_pages >> 1;
1426                 scan_start = true;
1427         }
1428
1429         /*
1430          * Preferred point is in the top quarter of the scan space but take
1431          * a pfn from the top half if the search is problematic.
1432          */
1433         distance = (cc->free_pfn - cc->migrate_pfn);
1434         low_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 2));
1435         min_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 1));
1436
1437         if (WARN_ON_ONCE(min_pfn > low_pfn))
1438                 low_pfn = min_pfn;
1439
1440         /*
1441          * Search starts from the last successful isolation order or the next
1442          * order to search after a previous failure
1443          */
1444         cc->search_order = min_t(unsigned int, cc->order - 1, cc->search_order);
1445
1446         for (order = cc->search_order;
1447              !page && order >= 0;
1448              order = next_search_order(cc, order)) {
1449                 struct free_area *area = &cc->zone->free_area[order];
1450                 struct list_head *freelist;
1451                 struct page *freepage;
1452                 unsigned long flags;
1453                 unsigned int order_scanned = 0;
1454                 unsigned long high_pfn = 0;
1455
1456                 if (!area->nr_free)
1457                         continue;
1458
1459                 spin_lock_irqsave(&cc->zone->lock, flags);
1460                 freelist = &area->free_list[MIGRATE_MOVABLE];
1461                 list_for_each_entry_reverse(freepage, freelist, lru) {
1462                         unsigned long pfn;
1463
1464                         order_scanned++;
1465                         nr_scanned++;
1466                         pfn = page_to_pfn(freepage);
1467
1468                         if (pfn >= highest)
1469                                 highest = max(pageblock_start_pfn(pfn),
1470                                               cc->zone->zone_start_pfn);
1471
1472                         if (pfn >= low_pfn) {
1473                                 cc->fast_search_fail = 0;
1474                                 cc->search_order = order;
1475                                 page = freepage;
1476                                 break;
1477                         }
1478
1479                         if (pfn >= min_pfn && pfn > high_pfn) {
1480                                 high_pfn = pfn;
1481
1482                                 /* Shorten the scan if a candidate is found */
1483                                 limit >>= 1;
1484                         }
1485
1486                         if (order_scanned >= limit)
1487                                 break;
1488                 }
1489
1490                 /* Use a minimum pfn if a preferred one was not found */
1491                 if (!page && high_pfn) {
1492                         page = pfn_to_page(high_pfn);
1493
1494                         /* Update freepage for the list reorder below */
1495                         freepage = page;
1496                 }
1497
1498                 /* Reorder to so a future search skips recent pages */
1499                 move_freelist_head(freelist, freepage);
1500
1501                 /* Isolate the page if available */
1502                 if (page) {
1503                         if (__isolate_free_page(page, order)) {
1504                                 set_page_private(page, order);
1505                                 nr_isolated = 1 << order;
1506                                 cc->nr_freepages += nr_isolated;
1507                                 list_add_tail(&page->lru, &cc->freepages);
1508                                 count_compact_events(COMPACTISOLATED, nr_isolated);
1509                         } else {
1510                                 /* If isolation fails, abort the search */
1511                                 order = cc->search_order + 1;
1512                                 page = NULL;
1513                         }
1514                 }
1515
1516                 spin_unlock_irqrestore(&cc->zone->lock, flags);
1517
1518                 /*
1519                  * Smaller scan on next order so the total scan is related
1520                  * to freelist_scan_limit.
1521                  */
1522                 if (order_scanned >= limit)
1523                         limit = max(1U, limit >> 1);
1524         }
1525
1526         if (!page) {
1527                 cc->fast_search_fail++;
1528                 if (scan_start) {
1529                         /*
1530                          * Use the highest PFN found above min. If one was
1531                          * not found, be pessimistic for direct compaction
1532                          * and use the min mark.
1533                          */
1534                         if (highest >= min_pfn) {
1535                                 page = pfn_to_page(highest);
1536                                 cc->free_pfn = highest;
1537                         } else {
1538                                 if (cc->direct_compaction && pfn_valid(min_pfn)) {
1539                                         page = pageblock_pfn_to_page(min_pfn,
1540                                                 min(pageblock_end_pfn(min_pfn),
1541                                                     zone_end_pfn(cc->zone)),
1542                                                 cc->zone);
1543                                         cc->free_pfn = min_pfn;
1544                                 }
1545                         }
1546                 }
1547         }
1548
1549         if (highest && highest >= cc->zone->compact_cached_free_pfn) {
1550                 highest -= pageblock_nr_pages;
1551                 cc->zone->compact_cached_free_pfn = highest;
1552         }
1553
1554         cc->total_free_scanned += nr_scanned;
1555         if (!page)
1556                 return cc->free_pfn;
1557
1558         low_pfn = page_to_pfn(page);
1559         fast_isolate_around(cc, low_pfn, nr_isolated);
1560         return low_pfn;
1561 }
1562
1563 /*
1564  * Based on information in the current compact_control, find blocks
1565  * suitable for isolating free pages from and then isolate them.
1566  */
1567 static void isolate_freepages(struct compact_control *cc)
1568 {
1569         struct zone *zone = cc->zone;
1570         struct page *page;
1571         unsigned long block_start_pfn;  /* start of current pageblock */
1572         unsigned long isolate_start_pfn; /* exact pfn we start at */
1573         unsigned long block_end_pfn;    /* end of current pageblock */
1574         unsigned long low_pfn;       /* lowest pfn scanner is able to scan */
1575         struct list_head *freelist = &cc->freepages;
1576         unsigned int stride;
1577
1578         /* Try a small search of the free lists for a candidate */
1579         fast_isolate_freepages(cc);
1580         if (cc->nr_freepages)
1581                 goto splitmap;
1582
1583         /*
1584          * Initialise the free scanner. The starting point is where we last
1585          * successfully isolated from, zone-cached value, or the end of the
1586          * zone when isolating for the first time. For looping we also need
1587          * this pfn aligned down to the pageblock boundary, because we do
1588          * block_start_pfn -= pageblock_nr_pages in the for loop.
1589          * For ending point, take care when isolating in last pageblock of a
1590          * zone which ends in the middle of a pageblock.
1591          * The low boundary is the end of the pageblock the migration scanner
1592          * is using.
1593          */
1594         isolate_start_pfn = cc->free_pfn;
1595         block_start_pfn = pageblock_start_pfn(isolate_start_pfn);
1596         block_end_pfn = min(block_start_pfn + pageblock_nr_pages,
1597                                                 zone_end_pfn(zone));
1598         low_pfn = pageblock_end_pfn(cc->migrate_pfn);
1599         stride = cc->mode == MIGRATE_ASYNC ? COMPACT_CLUSTER_MAX : 1;
1600
1601         /*
1602          * Isolate free pages until enough are available to migrate the
1603          * pages on cc->migratepages. We stop searching if the migrate
1604          * and free page scanners meet or enough free pages are isolated.
1605          */
1606         for (; block_start_pfn >= low_pfn;
1607                                 block_end_pfn = block_start_pfn,
1608                                 block_start_pfn -= pageblock_nr_pages,
1609                                 isolate_start_pfn = block_start_pfn) {
1610                 unsigned long nr_isolated;
1611
1612                 /*
1613                  * This can iterate a massively long zone without finding any
1614                  * suitable migration targets, so periodically check resched.
1615                  */
1616                 if (!(block_start_pfn % (COMPACT_CLUSTER_MAX * pageblock_nr_pages)))
1617                         cond_resched();
1618
1619                 page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
1620                                                                         zone);
1621                 if (!page)
1622                         continue;
1623
1624                 /* Check the block is suitable for migration */
1625                 if (!suitable_migration_target(cc, page))
1626                         continue;
1627
1628                 /* If isolation recently failed, do not retry */
1629                 if (!isolation_suitable(cc, page))
1630                         continue;
1631
1632                 /* Found a block suitable for isolating free pages from. */
1633                 nr_isolated = isolate_freepages_block(cc, &isolate_start_pfn,
1634                                         block_end_pfn, freelist, stride, false);
1635
1636                 /* Update the skip hint if the full pageblock was scanned */
1637                 if (isolate_start_pfn == block_end_pfn)
1638                         update_pageblock_skip(cc, page, block_start_pfn);
1639
1640                 /* Are enough freepages isolated? */
1641                 if (cc->nr_freepages >= cc->nr_migratepages) {
1642                         if (isolate_start_pfn >= block_end_pfn) {
1643                                 /*
1644                                  * Restart at previous pageblock if more
1645                                  * freepages can be isolated next time.
1646                                  */
1647                                 isolate_start_pfn =
1648                                         block_start_pfn - pageblock_nr_pages;
1649                         }
1650                         break;
1651                 } else if (isolate_start_pfn < block_end_pfn) {
1652                         /*
1653                          * If isolation failed early, do not continue
1654                          * needlessly.
1655                          */
1656                         break;
1657                 }
1658
1659                 /* Adjust stride depending on isolation */
1660                 if (nr_isolated) {
1661                         stride = 1;
1662                         continue;
1663                 }
1664                 stride = min_t(unsigned int, COMPACT_CLUSTER_MAX, stride << 1);
1665         }
1666
1667         /*
1668          * Record where the free scanner will restart next time. Either we
1669          * broke from the loop and set isolate_start_pfn based on the last
1670          * call to isolate_freepages_block(), or we met the migration scanner
1671          * and the loop terminated due to isolate_start_pfn < low_pfn
1672          */
1673         cc->free_pfn = isolate_start_pfn;
1674
1675 splitmap:
1676         /* __isolate_free_page() does not map the pages */
1677         split_map_pages(freelist);
1678 }
1679
1680 /*
1681  * This is a migrate-callback that "allocates" freepages by taking pages
1682  * from the isolated freelists in the block we are migrating to.
1683  */
1684 static struct page *compaction_alloc(struct page *migratepage,
1685                                         unsigned long data)
1686 {
1687         struct compact_control *cc = (struct compact_control *)data;
1688         struct page *freepage;
1689
1690         if (list_empty(&cc->freepages)) {
1691                 isolate_freepages(cc);
1692
1693                 if (list_empty(&cc->freepages))
1694                         return NULL;
1695         }
1696
1697         freepage = list_entry(cc->freepages.next, struct page, lru);
1698         list_del(&freepage->lru);
1699         cc->nr_freepages--;
1700
1701         return freepage;
1702 }
1703
1704 /*
1705  * This is a migrate-callback that "frees" freepages back to the isolated
1706  * freelist.  All pages on the freelist are from the same zone, so there is no
1707  * special handling needed for NUMA.
1708  */
1709 static void compaction_free(struct page *page, unsigned long data)
1710 {
1711         struct compact_control *cc = (struct compact_control *)data;
1712
1713         list_add(&page->lru, &cc->freepages);
1714         cc->nr_freepages++;
1715 }
1716
1717 /* possible outcome of isolate_migratepages */
1718 typedef enum {
1719         ISOLATE_ABORT,          /* Abort compaction now */
1720         ISOLATE_NONE,           /* No pages isolated, continue scanning */
1721         ISOLATE_SUCCESS,        /* Pages isolated, migrate */
1722 } isolate_migrate_t;
1723
1724 /*
1725  * Allow userspace to control policy on scanning the unevictable LRU for
1726  * compactable pages.
1727  */
1728 #ifdef CONFIG_PREEMPT_RT
1729 int sysctl_compact_unevictable_allowed __read_mostly = 0;
1730 #else
1731 int sysctl_compact_unevictable_allowed __read_mostly = 1;
1732 #endif
1733
1734 static inline void
1735 update_fast_start_pfn(struct compact_control *cc, unsigned long pfn)
1736 {
1737         if (cc->fast_start_pfn == ULONG_MAX)
1738                 return;
1739
1740         if (!cc->fast_start_pfn)
1741                 cc->fast_start_pfn = pfn;
1742
1743         cc->fast_start_pfn = min(cc->fast_start_pfn, pfn);
1744 }
1745
1746 static inline unsigned long
1747 reinit_migrate_pfn(struct compact_control *cc)
1748 {
1749         if (!cc->fast_start_pfn || cc->fast_start_pfn == ULONG_MAX)
1750                 return cc->migrate_pfn;
1751
1752         cc->migrate_pfn = cc->fast_start_pfn;
1753         cc->fast_start_pfn = ULONG_MAX;
1754
1755         return cc->migrate_pfn;
1756 }
1757
1758 /*
1759  * Briefly search the free lists for a migration source that already has
1760  * some free pages to reduce the number of pages that need migration
1761  * before a pageblock is free.
1762  */
1763 static unsigned long fast_find_migrateblock(struct compact_control *cc)
1764 {
1765         unsigned int limit = freelist_scan_limit(cc);
1766         unsigned int nr_scanned = 0;
1767         unsigned long distance;
1768         unsigned long pfn = cc->migrate_pfn;
1769         unsigned long high_pfn;
1770         int order;
1771         bool found_block = false;
1772
1773         /* Skip hints are relied on to avoid repeats on the fast search */
1774         if (cc->ignore_skip_hint)
1775                 return pfn;
1776
1777         /*
1778          * If the migrate_pfn is not at the start of a zone or the start
1779          * of a pageblock then assume this is a continuation of a previous
1780          * scan restarted due to COMPACT_CLUSTER_MAX.
1781          */
1782         if (pfn != cc->zone->zone_start_pfn && pfn != pageblock_start_pfn(pfn))
1783                 return pfn;
1784
1785         /*
1786          * For smaller orders, just linearly scan as the number of pages
1787          * to migrate should be relatively small and does not necessarily
1788          * justify freeing up a large block for a small allocation.
1789          */
1790         if (cc->order <= PAGE_ALLOC_COSTLY_ORDER)
1791                 return pfn;
1792
1793         /*
1794          * Only allow kcompactd and direct requests for movable pages to
1795          * quickly clear out a MOVABLE pageblock for allocation. This
1796          * reduces the risk that a large movable pageblock is freed for
1797          * an unmovable/reclaimable small allocation.
1798          */
1799         if (cc->direct_compaction && cc->migratetype != MIGRATE_MOVABLE)
1800                 return pfn;
1801
1802         /*
1803          * When starting the migration scanner, pick any pageblock within the
1804          * first half of the search space. Otherwise try and pick a pageblock
1805          * within the first eighth to reduce the chances that a migration
1806          * target later becomes a source.
1807          */
1808         distance = (cc->free_pfn - cc->migrate_pfn) >> 1;
1809         if (cc->migrate_pfn != cc->zone->zone_start_pfn)
1810                 distance >>= 2;
1811         high_pfn = pageblock_start_pfn(cc->migrate_pfn + distance);
1812
1813         for (order = cc->order - 1;
1814              order >= PAGE_ALLOC_COSTLY_ORDER && !found_block && nr_scanned < limit;
1815              order--) {
1816                 struct free_area *area = &cc->zone->free_area[order];
1817                 struct list_head *freelist;
1818                 unsigned long flags;
1819                 struct page *freepage;
1820
1821                 if (!area->nr_free)
1822                         continue;
1823
1824                 spin_lock_irqsave(&cc->zone->lock, flags);
1825                 freelist = &area->free_list[MIGRATE_MOVABLE];
1826                 list_for_each_entry(freepage, freelist, lru) {
1827                         unsigned long free_pfn;
1828
1829                         if (nr_scanned++ >= limit) {
1830                                 move_freelist_tail(freelist, freepage);
1831                                 break;
1832                         }
1833
1834                         free_pfn = page_to_pfn(freepage);
1835                         if (free_pfn < high_pfn) {
1836                                 /*
1837                                  * Avoid if skipped recently. Ideally it would
1838                                  * move to the tail but even safe iteration of
1839                                  * the list assumes an entry is deleted, not
1840                                  * reordered.
1841                                  */
1842                                 if (get_pageblock_skip(freepage))
1843                                         continue;
1844
1845                                 /* Reorder to so a future search skips recent pages */
1846                                 move_freelist_tail(freelist, freepage);
1847
1848                                 update_fast_start_pfn(cc, free_pfn);
1849                                 pfn = pageblock_start_pfn(free_pfn);
1850                                 if (pfn < cc->zone->zone_start_pfn)
1851                                         pfn = cc->zone->zone_start_pfn;
1852                                 cc->fast_search_fail = 0;
1853                                 found_block = true;
1854                                 set_pageblock_skip(freepage);
1855                                 break;
1856                         }
1857                 }
1858                 spin_unlock_irqrestore(&cc->zone->lock, flags);
1859         }
1860
1861         cc->total_migrate_scanned += nr_scanned;
1862
1863         /*
1864          * If fast scanning failed then use a cached entry for a page block
1865          * that had free pages as the basis for starting a linear scan.
1866          */
1867         if (!found_block) {
1868                 cc->fast_search_fail++;
1869                 pfn = reinit_migrate_pfn(cc);
1870         }
1871         return pfn;
1872 }
1873
1874 /*
1875  * Isolate all pages that can be migrated from the first suitable block,
1876  * starting at the block pointed to by the migrate scanner pfn within
1877  * compact_control.
1878  */
1879 static isolate_migrate_t isolate_migratepages(struct compact_control *cc)
1880 {
1881         unsigned long block_start_pfn;
1882         unsigned long block_end_pfn;
1883         unsigned long low_pfn;
1884         struct page *page;
1885         const isolate_mode_t isolate_mode =
1886                 (sysctl_compact_unevictable_allowed ? ISOLATE_UNEVICTABLE : 0) |
1887                 (cc->mode != MIGRATE_SYNC ? ISOLATE_ASYNC_MIGRATE : 0);
1888         bool fast_find_block;
1889
1890         /*
1891          * Start at where we last stopped, or beginning of the zone as
1892          * initialized by compact_zone(). The first failure will use
1893          * the lowest PFN as the starting point for linear scanning.
1894          */
1895         low_pfn = fast_find_migrateblock(cc);
1896         block_start_pfn = pageblock_start_pfn(low_pfn);
1897         if (block_start_pfn < cc->zone->zone_start_pfn)
1898                 block_start_pfn = cc->zone->zone_start_pfn;
1899
1900         /*
1901          * fast_find_migrateblock marks a pageblock skipped so to avoid
1902          * the isolation_suitable check below, check whether the fast
1903          * search was successful.
1904          */
1905         fast_find_block = low_pfn != cc->migrate_pfn && !cc->fast_search_fail;
1906
1907         /* Only scan within a pageblock boundary */
1908         block_end_pfn = pageblock_end_pfn(low_pfn);
1909
1910         /*
1911          * Iterate over whole pageblocks until we find the first suitable.
1912          * Do not cross the free scanner.
1913          */
1914         for (; block_end_pfn <= cc->free_pfn;
1915                         fast_find_block = false,
1916                         cc->migrate_pfn = low_pfn = block_end_pfn,
1917                         block_start_pfn = block_end_pfn,
1918                         block_end_pfn += pageblock_nr_pages) {
1919
1920                 /*
1921                  * This can potentially iterate a massively long zone with
1922                  * many pageblocks unsuitable, so periodically check if we
1923                  * need to schedule.
1924                  */
1925                 if (!(low_pfn % (COMPACT_CLUSTER_MAX * pageblock_nr_pages)))
1926                         cond_resched();
1927
1928                 page = pageblock_pfn_to_page(block_start_pfn,
1929                                                 block_end_pfn, cc->zone);
1930                 if (!page)
1931                         continue;
1932
1933                 /*
1934                  * If isolation recently failed, do not retry. Only check the
1935                  * pageblock once. COMPACT_CLUSTER_MAX causes a pageblock
1936                  * to be visited multiple times. Assume skip was checked
1937                  * before making it "skip" so other compaction instances do
1938                  * not scan the same block.
1939                  */
1940                 if (IS_ALIGNED(low_pfn, pageblock_nr_pages) &&
1941                     !fast_find_block && !isolation_suitable(cc, page))
1942                         continue;
1943
1944                 /*
1945                  * For async direct compaction, only scan the pageblocks of the
1946                  * same migratetype without huge pages. Async direct compaction
1947                  * is optimistic to see if the minimum amount of work satisfies
1948                  * the allocation. The cached PFN is updated as it's possible
1949                  * that all remaining blocks between source and target are
1950                  * unsuitable and the compaction scanners fail to meet.
1951                  */
1952                 if (!suitable_migration_source(cc, page)) {
1953                         update_cached_migrate(cc, block_end_pfn);
1954                         continue;
1955                 }
1956
1957                 /* Perform the isolation */
1958                 if (isolate_migratepages_block(cc, low_pfn, block_end_pfn,
1959                                                 isolate_mode))
1960                         return ISOLATE_ABORT;
1961
1962                 /*
1963                  * Either we isolated something and proceed with migration. Or
1964                  * we failed and compact_zone should decide if we should
1965                  * continue or not.
1966                  */
1967                 break;
1968         }
1969
1970         return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE;
1971 }
1972
1973 /*
1974  * order == -1 is expected when compacting via
1975  * /proc/sys/vm/compact_memory
1976  */
1977 static inline bool is_via_compact_memory(int order)
1978 {
1979         return order == -1;
1980 }
1981
1982 static bool kswapd_is_running(pg_data_t *pgdat)
1983 {
1984         return pgdat->kswapd && task_is_running(pgdat->kswapd);
1985 }
1986
1987 /*
1988  * A zone's fragmentation score is the external fragmentation wrt to the
1989  * COMPACTION_HPAGE_ORDER. It returns a value in the range [0, 100].
1990  */
1991 static unsigned int fragmentation_score_zone(struct zone *zone)
1992 {
1993         return extfrag_for_order(zone, COMPACTION_HPAGE_ORDER);
1994 }
1995
1996 /*
1997  * A weighted zone's fragmentation score is the external fragmentation
1998  * wrt to the COMPACTION_HPAGE_ORDER scaled by the zone's size. It
1999  * returns a value in the range [0, 100].
2000  *
2001  * The scaling factor ensures that proactive compaction focuses on larger
2002  * zones like ZONE_NORMAL, rather than smaller, specialized zones like
2003  * ZONE_DMA32. For smaller zones, the score value remains close to zero,
2004  * and thus never exceeds the high threshold for proactive compaction.
2005  */
2006 static unsigned int fragmentation_score_zone_weighted(struct zone *zone)
2007 {
2008         unsigned long score;
2009
2010         score = zone->present_pages * fragmentation_score_zone(zone);
2011         return div64_ul(score, zone->zone_pgdat->node_present_pages + 1);
2012 }
2013
2014 /*
2015  * The per-node proactive (background) compaction process is started by its
2016  * corresponding kcompactd thread when the node's fragmentation score
2017  * exceeds the high threshold. The compaction process remains active till
2018  * the node's score falls below the low threshold, or one of the back-off
2019  * conditions is met.
2020  */
2021 static unsigned int fragmentation_score_node(pg_data_t *pgdat)
2022 {
2023         unsigned int score = 0;
2024         int zoneid;
2025
2026         for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
2027                 struct zone *zone;
2028
2029                 zone = &pgdat->node_zones[zoneid];
2030                 score += fragmentation_score_zone_weighted(zone);
2031         }
2032
2033         return score;
2034 }
2035
2036 static unsigned int fragmentation_score_wmark(pg_data_t *pgdat, bool low)
2037 {
2038         unsigned int wmark_low;
2039
2040         /*
2041          * Cap the low watermark to avoid excessive compaction
2042          * activity in case a user sets the proactiveness tunable
2043          * close to 100 (maximum).
2044          */
2045         wmark_low = max(100U - sysctl_compaction_proactiveness, 5U);
2046         return low ? wmark_low : min(wmark_low + 10, 100U);
2047 }
2048
2049 static bool should_proactive_compact_node(pg_data_t *pgdat)
2050 {
2051         int wmark_high;
2052
2053         if (!sysctl_compaction_proactiveness || kswapd_is_running(pgdat))
2054                 return false;
2055
2056         wmark_high = fragmentation_score_wmark(pgdat, false);
2057         return fragmentation_score_node(pgdat) > wmark_high;
2058 }
2059
2060 static enum compact_result __compact_finished(struct compact_control *cc)
2061 {
2062         unsigned int order;
2063         const int migratetype = cc->migratetype;
2064         int ret;
2065
2066         /* Compaction run completes if the migrate and free scanner meet */
2067         if (compact_scanners_met(cc)) {
2068                 /* Let the next compaction start anew. */
2069                 reset_cached_positions(cc->zone);
2070
2071                 /*
2072                  * Mark that the PG_migrate_skip information should be cleared
2073                  * by kswapd when it goes to sleep. kcompactd does not set the
2074                  * flag itself as the decision to be clear should be directly
2075                  * based on an allocation request.
2076                  */
2077                 if (cc->direct_compaction)
2078                         cc->zone->compact_blockskip_flush = true;
2079
2080                 if (cc->whole_zone)
2081                         return COMPACT_COMPLETE;
2082                 else
2083                         return COMPACT_PARTIAL_SKIPPED;
2084         }
2085
2086         if (cc->proactive_compaction) {
2087                 int score, wmark_low;
2088                 pg_data_t *pgdat;
2089
2090                 pgdat = cc->zone->zone_pgdat;
2091                 if (kswapd_is_running(pgdat))
2092                         return COMPACT_PARTIAL_SKIPPED;
2093
2094                 score = fragmentation_score_zone(cc->zone);
2095                 wmark_low = fragmentation_score_wmark(pgdat, true);
2096
2097                 if (score > wmark_low)
2098                         ret = COMPACT_CONTINUE;
2099                 else
2100                         ret = COMPACT_SUCCESS;
2101
2102                 goto out;
2103         }
2104
2105         if (is_via_compact_memory(cc->order))
2106                 return COMPACT_CONTINUE;
2107
2108         /*
2109          * Always finish scanning a pageblock to reduce the possibility of
2110          * fallbacks in the future. This is particularly important when
2111          * migration source is unmovable/reclaimable but it's not worth
2112          * special casing.
2113          */
2114         if (!IS_ALIGNED(cc->migrate_pfn, pageblock_nr_pages))
2115                 return COMPACT_CONTINUE;
2116
2117         /* Direct compactor: Is a suitable page free? */
2118         ret = COMPACT_NO_SUITABLE_PAGE;
2119         for (order = cc->order; order < MAX_ORDER; order++) {
2120                 struct free_area *area = &cc->zone->free_area[order];
2121                 bool can_steal;
2122
2123                 /* Job done if page is free of the right migratetype */
2124                 if (!free_area_empty(area, migratetype))
2125                         return COMPACT_SUCCESS;
2126
2127 #ifdef CONFIG_CMA
2128                 /* MIGRATE_MOVABLE can fallback on MIGRATE_CMA */
2129                 if (migratetype == MIGRATE_MOVABLE &&
2130                         !free_area_empty(area, MIGRATE_CMA))
2131                         return COMPACT_SUCCESS;
2132 #endif
2133                 /*
2134                  * Job done if allocation would steal freepages from
2135                  * other migratetype buddy lists.
2136                  */
2137                 if (find_suitable_fallback(area, order, migratetype,
2138                                                 true, &can_steal) != -1)
2139                         /*
2140                          * Movable pages are OK in any pageblock. If we are
2141                          * stealing for a non-movable allocation, make sure
2142                          * we finish compacting the current pageblock first
2143                          * (which is assured by the above migrate_pfn align
2144                          * check) so it is as free as possible and we won't
2145                          * have to steal another one soon.
2146                          */
2147                         return COMPACT_SUCCESS;
2148         }
2149
2150 out:
2151         if (cc->contended || fatal_signal_pending(current))
2152                 ret = COMPACT_CONTENDED;
2153
2154         return ret;
2155 }
2156
2157 static enum compact_result compact_finished(struct compact_control *cc)
2158 {
2159         int ret;
2160
2161         ret = __compact_finished(cc);
2162         trace_mm_compaction_finished(cc->zone, cc->order, ret);
2163         if (ret == COMPACT_NO_SUITABLE_PAGE)
2164                 ret = COMPACT_CONTINUE;
2165
2166         return ret;
2167 }
2168
2169 static enum compact_result __compaction_suitable(struct zone *zone, int order,
2170                                         unsigned int alloc_flags,
2171                                         int highest_zoneidx,
2172                                         unsigned long wmark_target)
2173 {
2174         unsigned long watermark;
2175
2176         if (is_via_compact_memory(order))
2177                 return COMPACT_CONTINUE;
2178
2179         watermark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
2180         /*
2181          * If watermarks for high-order allocation are already met, there
2182          * should be no need for compaction at all.
2183          */
2184         if (zone_watermark_ok(zone, order, watermark, highest_zoneidx,
2185                                                                 alloc_flags))
2186                 return COMPACT_SUCCESS;
2187
2188         /*
2189          * Watermarks for order-0 must be met for compaction to be able to
2190          * isolate free pages for migration targets. This means that the
2191          * watermark and alloc_flags have to match, or be more pessimistic than
2192          * the check in __isolate_free_page(). We don't use the direct
2193          * compactor's alloc_flags, as they are not relevant for freepage
2194          * isolation. We however do use the direct compactor's highest_zoneidx
2195          * to skip over zones where lowmem reserves would prevent allocation
2196          * even if compaction succeeds.
2197          * For costly orders, we require low watermark instead of min for
2198          * compaction to proceed to increase its chances.
2199          * ALLOC_CMA is used, as pages in CMA pageblocks are considered
2200          * suitable migration targets
2201          */
2202         watermark = (order > PAGE_ALLOC_COSTLY_ORDER) ?
2203                                 low_wmark_pages(zone) : min_wmark_pages(zone);
2204         watermark += compact_gap(order);
2205         if (!__zone_watermark_ok(zone, 0, watermark, highest_zoneidx,
2206                                                 ALLOC_CMA, wmark_target))
2207                 return COMPACT_SKIPPED;
2208
2209         return COMPACT_CONTINUE;
2210 }
2211
2212 /*
2213  * compaction_suitable: Is this suitable to run compaction on this zone now?
2214  * Returns
2215  *   COMPACT_SKIPPED  - If there are too few free pages for compaction
2216  *   COMPACT_SUCCESS  - If the allocation would succeed without compaction
2217  *   COMPACT_CONTINUE - If compaction should run now
2218  */
2219 enum compact_result compaction_suitable(struct zone *zone, int order,
2220                                         unsigned int alloc_flags,
2221                                         int highest_zoneidx)
2222 {
2223         enum compact_result ret;
2224         int fragindex;
2225
2226         ret = __compaction_suitable(zone, order, alloc_flags, highest_zoneidx,
2227                                     zone_page_state(zone, NR_FREE_PAGES));
2228         /*
2229          * fragmentation index determines if allocation failures are due to
2230          * low memory or external fragmentation
2231          *
2232          * index of -1000 would imply allocations might succeed depending on
2233          * watermarks, but we already failed the high-order watermark check
2234          * index towards 0 implies failure is due to lack of memory
2235          * index towards 1000 implies failure is due to fragmentation
2236          *
2237          * Only compact if a failure would be due to fragmentation. Also
2238          * ignore fragindex for non-costly orders where the alternative to
2239          * a successful reclaim/compaction is OOM. Fragindex and the
2240          * vm.extfrag_threshold sysctl is meant as a heuristic to prevent
2241          * excessive compaction for costly orders, but it should not be at the
2242          * expense of system stability.
2243          */
2244         if (ret == COMPACT_CONTINUE && (order > PAGE_ALLOC_COSTLY_ORDER)) {
2245                 fragindex = fragmentation_index(zone, order);
2246                 if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold)
2247                         ret = COMPACT_NOT_SUITABLE_ZONE;
2248         }
2249
2250         trace_mm_compaction_suitable(zone, order, ret);
2251         if (ret == COMPACT_NOT_SUITABLE_ZONE)
2252                 ret = COMPACT_SKIPPED;
2253
2254         return ret;
2255 }
2256
2257 bool compaction_zonelist_suitable(struct alloc_context *ac, int order,
2258                 int alloc_flags)
2259 {
2260         struct zone *zone;
2261         struct zoneref *z;
2262
2263         /*
2264          * Make sure at least one zone would pass __compaction_suitable if we continue
2265          * retrying the reclaim.
2266          */
2267         for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2268                                 ac->highest_zoneidx, ac->nodemask) {
2269                 unsigned long available;
2270                 enum compact_result compact_result;
2271
2272                 /*
2273                  * Do not consider all the reclaimable memory because we do not
2274                  * want to trash just for a single high order allocation which
2275                  * is even not guaranteed to appear even if __compaction_suitable
2276                  * is happy about the watermark check.
2277                  */
2278                 available = zone_reclaimable_pages(zone) / order;
2279                 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
2280                 compact_result = __compaction_suitable(zone, order, alloc_flags,
2281                                 ac->highest_zoneidx, available);
2282                 if (compact_result == COMPACT_CONTINUE)
2283                         return true;
2284         }
2285
2286         return false;
2287 }
2288
2289 static enum compact_result
2290 compact_zone(struct compact_control *cc, struct capture_control *capc)
2291 {
2292         enum compact_result ret;
2293         unsigned long start_pfn = cc->zone->zone_start_pfn;
2294         unsigned long end_pfn = zone_end_pfn(cc->zone);
2295         unsigned long last_migrated_pfn;
2296         const bool sync = cc->mode != MIGRATE_ASYNC;
2297         bool update_cached;
2298         unsigned int nr_succeeded = 0;
2299
2300         /*
2301          * These counters track activities during zone compaction.  Initialize
2302          * them before compacting a new zone.
2303          */
2304         cc->total_migrate_scanned = 0;
2305         cc->total_free_scanned = 0;
2306         cc->nr_migratepages = 0;
2307         cc->nr_freepages = 0;
2308         INIT_LIST_HEAD(&cc->freepages);
2309         INIT_LIST_HEAD(&cc->migratepages);
2310
2311         cc->migratetype = gfp_migratetype(cc->gfp_mask);
2312         ret = compaction_suitable(cc->zone, cc->order, cc->alloc_flags,
2313                                                         cc->highest_zoneidx);
2314         /* Compaction is likely to fail */
2315         if (ret == COMPACT_SUCCESS || ret == COMPACT_SKIPPED)
2316                 return ret;
2317
2318         /* huh, compaction_suitable is returning something unexpected */
2319         VM_BUG_ON(ret != COMPACT_CONTINUE);
2320
2321         /*
2322          * Clear pageblock skip if there were failures recently and compaction
2323          * is about to be retried after being deferred.
2324          */
2325         if (compaction_restarting(cc->zone, cc->order))
2326                 __reset_isolation_suitable(cc->zone);
2327
2328         /*
2329          * Setup to move all movable pages to the end of the zone. Used cached
2330          * information on where the scanners should start (unless we explicitly
2331          * want to compact the whole zone), but check that it is initialised
2332          * by ensuring the values are within zone boundaries.
2333          */
2334         cc->fast_start_pfn = 0;
2335         if (cc->whole_zone) {
2336                 cc->migrate_pfn = start_pfn;
2337                 cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
2338         } else {
2339                 cc->migrate_pfn = cc->zone->compact_cached_migrate_pfn[sync];
2340                 cc->free_pfn = cc->zone->compact_cached_free_pfn;
2341                 if (cc->free_pfn < start_pfn || cc->free_pfn >= end_pfn) {
2342                         cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
2343                         cc->zone->compact_cached_free_pfn = cc->free_pfn;
2344                 }
2345                 if (cc->migrate_pfn < start_pfn || cc->migrate_pfn >= end_pfn) {
2346                         cc->migrate_pfn = start_pfn;
2347                         cc->zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn;
2348                         cc->zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn;
2349                 }
2350
2351                 if (cc->migrate_pfn <= cc->zone->compact_init_migrate_pfn)
2352                         cc->whole_zone = true;
2353         }
2354
2355         last_migrated_pfn = 0;
2356
2357         /*
2358          * Migrate has separate cached PFNs for ASYNC and SYNC* migration on
2359          * the basis that some migrations will fail in ASYNC mode. However,
2360          * if the cached PFNs match and pageblocks are skipped due to having
2361          * no isolation candidates, then the sync state does not matter.
2362          * Until a pageblock with isolation candidates is found, keep the
2363          * cached PFNs in sync to avoid revisiting the same blocks.
2364          */
2365         update_cached = !sync &&
2366                 cc->zone->compact_cached_migrate_pfn[0] == cc->zone->compact_cached_migrate_pfn[1];
2367
2368         trace_mm_compaction_begin(cc, start_pfn, end_pfn, sync);
2369
2370         /* lru_add_drain_all could be expensive with involving other CPUs */
2371         lru_add_drain();
2372
2373         while ((ret = compact_finished(cc)) == COMPACT_CONTINUE) {
2374                 int err;
2375                 unsigned long iteration_start_pfn = cc->migrate_pfn;
2376
2377                 /*
2378                  * Avoid multiple rescans which can happen if a page cannot be
2379                  * isolated (dirty/writeback in async mode) or if the migrated
2380                  * pages are being allocated before the pageblock is cleared.
2381                  * The first rescan will capture the entire pageblock for
2382                  * migration. If it fails, it'll be marked skip and scanning
2383                  * will proceed as normal.
2384                  */
2385                 cc->rescan = false;
2386                 if (pageblock_start_pfn(last_migrated_pfn) ==
2387                     pageblock_start_pfn(iteration_start_pfn)) {
2388                         cc->rescan = true;
2389                 }
2390
2391                 switch (isolate_migratepages(cc)) {
2392                 case ISOLATE_ABORT:
2393                         ret = COMPACT_CONTENDED;
2394                         putback_movable_pages(&cc->migratepages);
2395                         cc->nr_migratepages = 0;
2396                         goto out;
2397                 case ISOLATE_NONE:
2398                         if (update_cached) {
2399                                 cc->zone->compact_cached_migrate_pfn[1] =
2400                                         cc->zone->compact_cached_migrate_pfn[0];
2401                         }
2402
2403                         /*
2404                          * We haven't isolated and migrated anything, but
2405                          * there might still be unflushed migrations from
2406                          * previous cc->order aligned block.
2407                          */
2408                         goto check_drain;
2409                 case ISOLATE_SUCCESS:
2410                         update_cached = false;
2411                         last_migrated_pfn = iteration_start_pfn;
2412                 }
2413
2414                 err = migrate_pages(&cc->migratepages, compaction_alloc,
2415                                 compaction_free, (unsigned long)cc, cc->mode,
2416                                 MR_COMPACTION, &nr_succeeded);
2417
2418                 trace_mm_compaction_migratepages(cc, nr_succeeded);
2419
2420                 /* All pages were either migrated or will be released */
2421                 cc->nr_migratepages = 0;
2422                 if (err) {
2423                         putback_movable_pages(&cc->migratepages);
2424                         /*
2425                          * migrate_pages() may return -ENOMEM when scanners meet
2426                          * and we want compact_finished() to detect it
2427                          */
2428                         if (err == -ENOMEM && !compact_scanners_met(cc)) {
2429                                 ret = COMPACT_CONTENDED;
2430                                 goto out;
2431                         }
2432                         /*
2433                          * We failed to migrate at least one page in the current
2434                          * order-aligned block, so skip the rest of it.
2435                          */
2436                         if (cc->direct_compaction &&
2437                                                 (cc->mode == MIGRATE_ASYNC)) {
2438                                 cc->migrate_pfn = block_end_pfn(
2439                                                 cc->migrate_pfn - 1, cc->order);
2440                                 /* Draining pcplists is useless in this case */
2441                                 last_migrated_pfn = 0;
2442                         }
2443                 }
2444
2445 check_drain:
2446                 /*
2447                  * Has the migration scanner moved away from the previous
2448                  * cc->order aligned block where we migrated from? If yes,
2449                  * flush the pages that were freed, so that they can merge and
2450                  * compact_finished() can detect immediately if allocation
2451                  * would succeed.
2452                  */
2453                 if (cc->order > 0 && last_migrated_pfn) {
2454                         unsigned long current_block_start =
2455                                 block_start_pfn(cc->migrate_pfn, cc->order);
2456
2457                         if (last_migrated_pfn < current_block_start) {
2458                                 lru_add_drain_cpu_zone(cc->zone);
2459                                 /* No more flushing until we migrate again */
2460                                 last_migrated_pfn = 0;
2461                         }
2462                 }
2463
2464                 /* Stop if a page has been captured */
2465                 if (capc && capc->page) {
2466                         ret = COMPACT_SUCCESS;
2467                         break;
2468                 }
2469         }
2470
2471 out:
2472         /*
2473          * Release free pages and update where the free scanner should restart,
2474          * so we don't leave any returned pages behind in the next attempt.
2475          */
2476         if (cc->nr_freepages > 0) {
2477                 unsigned long free_pfn = release_freepages(&cc->freepages);
2478
2479                 cc->nr_freepages = 0;
2480                 VM_BUG_ON(free_pfn == 0);
2481                 /* The cached pfn is always the first in a pageblock */
2482                 free_pfn = pageblock_start_pfn(free_pfn);
2483                 /*
2484                  * Only go back, not forward. The cached pfn might have been
2485                  * already reset to zone end in compact_finished()
2486                  */
2487                 if (free_pfn > cc->zone->compact_cached_free_pfn)
2488                         cc->zone->compact_cached_free_pfn = free_pfn;
2489         }
2490
2491         count_compact_events(COMPACTMIGRATE_SCANNED, cc->total_migrate_scanned);
2492         count_compact_events(COMPACTFREE_SCANNED, cc->total_free_scanned);
2493
2494         trace_mm_compaction_end(cc, start_pfn, end_pfn, sync, ret);
2495
2496         return ret;
2497 }
2498
2499 static enum compact_result compact_zone_order(struct zone *zone, int order,
2500                 gfp_t gfp_mask, enum compact_priority prio,
2501                 unsigned int alloc_flags, int highest_zoneidx,
2502                 struct page **capture)
2503 {
2504         enum compact_result ret;
2505         struct compact_control cc = {
2506                 .order = order,
2507                 .search_order = order,
2508                 .gfp_mask = gfp_mask,
2509                 .zone = zone,
2510                 .mode = (prio == COMPACT_PRIO_ASYNC) ?
2511                                         MIGRATE_ASYNC : MIGRATE_SYNC_LIGHT,
2512                 .alloc_flags = alloc_flags,
2513                 .highest_zoneidx = highest_zoneidx,
2514                 .direct_compaction = true,
2515                 .whole_zone = (prio == MIN_COMPACT_PRIORITY),
2516                 .ignore_skip_hint = (prio == MIN_COMPACT_PRIORITY),
2517                 .ignore_block_suitable = (prio == MIN_COMPACT_PRIORITY)
2518         };
2519         struct capture_control capc = {
2520                 .cc = &cc,
2521                 .page = NULL,
2522         };
2523
2524         /*
2525          * Make sure the structs are really initialized before we expose the
2526          * capture control, in case we are interrupted and the interrupt handler
2527          * frees a page.
2528          */
2529         barrier();
2530         WRITE_ONCE(current->capture_control, &capc);
2531
2532         ret = compact_zone(&cc, &capc);
2533
2534         VM_BUG_ON(!list_empty(&cc.freepages));
2535         VM_BUG_ON(!list_empty(&cc.migratepages));
2536
2537         /*
2538          * Make sure we hide capture control first before we read the captured
2539          * page pointer, otherwise an interrupt could free and capture a page
2540          * and we would leak it.
2541          */
2542         WRITE_ONCE(current->capture_control, NULL);
2543         *capture = READ_ONCE(capc.page);
2544         /*
2545          * Technically, it is also possible that compaction is skipped but
2546          * the page is still captured out of luck(IRQ came and freed the page).
2547          * Returning COMPACT_SUCCESS in such cases helps in properly accounting
2548          * the COMPACT[STALL|FAIL] when compaction is skipped.
2549          */
2550         if (*capture)
2551                 ret = COMPACT_SUCCESS;
2552
2553         return ret;
2554 }
2555
2556 int sysctl_extfrag_threshold = 500;
2557
2558 /**
2559  * try_to_compact_pages - Direct compact to satisfy a high-order allocation
2560  * @gfp_mask: The GFP mask of the current allocation
2561  * @order: The order of the current allocation
2562  * @alloc_flags: The allocation flags of the current allocation
2563  * @ac: The context of current allocation
2564  * @prio: Determines how hard direct compaction should try to succeed
2565  * @capture: Pointer to free page created by compaction will be stored here
2566  *
2567  * This is the main entry point for direct page compaction.
2568  */
2569 enum compact_result try_to_compact_pages(gfp_t gfp_mask, unsigned int order,
2570                 unsigned int alloc_flags, const struct alloc_context *ac,
2571                 enum compact_priority prio, struct page **capture)
2572 {
2573         int may_perform_io = (__force int)(gfp_mask & __GFP_IO);
2574         struct zoneref *z;
2575         struct zone *zone;
2576         enum compact_result rc = COMPACT_SKIPPED;
2577
2578         /*
2579          * Check if the GFP flags allow compaction - GFP_NOIO is really
2580          * tricky context because the migration might require IO
2581          */
2582         if (!may_perform_io)
2583                 return COMPACT_SKIPPED;
2584
2585         trace_mm_compaction_try_to_compact_pages(order, gfp_mask, prio);
2586
2587         /* Compact each zone in the list */
2588         for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2589                                         ac->highest_zoneidx, ac->nodemask) {
2590                 enum compact_result status;
2591
2592                 if (prio > MIN_COMPACT_PRIORITY
2593                                         && compaction_deferred(zone, order)) {
2594                         rc = max_t(enum compact_result, COMPACT_DEFERRED, rc);
2595                         continue;
2596                 }
2597
2598                 status = compact_zone_order(zone, order, gfp_mask, prio,
2599                                 alloc_flags, ac->highest_zoneidx, capture);
2600                 rc = max(status, rc);
2601
2602                 /* The allocation should succeed, stop compacting */
2603                 if (status == COMPACT_SUCCESS) {
2604                         /*
2605                          * We think the allocation will succeed in this zone,
2606                          * but it is not certain, hence the false. The caller
2607                          * will repeat this with true if allocation indeed
2608                          * succeeds in this zone.
2609                          */
2610                         compaction_defer_reset(zone, order, false);
2611
2612                         break;
2613                 }
2614
2615                 if (prio != COMPACT_PRIO_ASYNC && (status == COMPACT_COMPLETE ||
2616                                         status == COMPACT_PARTIAL_SKIPPED))
2617                         /*
2618                          * We think that allocation won't succeed in this zone
2619                          * so we defer compaction there. If it ends up
2620                          * succeeding after all, it will be reset.
2621                          */
2622                         defer_compaction(zone, order);
2623
2624                 /*
2625                  * We might have stopped compacting due to need_resched() in
2626                  * async compaction, or due to a fatal signal detected. In that
2627                  * case do not try further zones
2628                  */
2629                 if ((prio == COMPACT_PRIO_ASYNC && need_resched())
2630                                         || fatal_signal_pending(current))
2631                         break;
2632         }
2633
2634         return rc;
2635 }
2636
2637 /*
2638  * Compact all zones within a node till each zone's fragmentation score
2639  * reaches within proactive compaction thresholds (as determined by the
2640  * proactiveness tunable).
2641  *
2642  * It is possible that the function returns before reaching score targets
2643  * due to various back-off conditions, such as, contention on per-node or
2644  * per-zone locks.
2645  */
2646 static void proactive_compact_node(pg_data_t *pgdat)
2647 {
2648         int zoneid;
2649         struct zone *zone;
2650         struct compact_control cc = {
2651                 .order = -1,
2652                 .mode = MIGRATE_SYNC_LIGHT,
2653                 .ignore_skip_hint = true,
2654                 .whole_zone = true,
2655                 .gfp_mask = GFP_KERNEL,
2656                 .proactive_compaction = true,
2657         };
2658
2659         for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
2660                 zone = &pgdat->node_zones[zoneid];
2661                 if (!populated_zone(zone))
2662                         continue;
2663
2664                 cc.zone = zone;
2665
2666                 compact_zone(&cc, NULL);
2667
2668                 VM_BUG_ON(!list_empty(&cc.freepages));
2669                 VM_BUG_ON(!list_empty(&cc.migratepages));
2670         }
2671 }
2672
2673 /* Compact all zones within a node */
2674 static void compact_node(int nid)
2675 {
2676         pg_data_t *pgdat = NODE_DATA(nid);
2677         int zoneid;
2678         struct zone *zone;
2679         struct compact_control cc = {
2680                 .order = -1,
2681                 .mode = MIGRATE_SYNC,
2682                 .ignore_skip_hint = true,
2683                 .whole_zone = true,
2684                 .gfp_mask = GFP_KERNEL,
2685         };
2686
2687
2688         for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
2689
2690                 zone = &pgdat->node_zones[zoneid];
2691                 if (!populated_zone(zone))
2692                         continue;
2693
2694                 cc.zone = zone;
2695
2696                 compact_zone(&cc, NULL);
2697
2698                 VM_BUG_ON(!list_empty(&cc.freepages));
2699                 VM_BUG_ON(!list_empty(&cc.migratepages));
2700         }
2701 }
2702
2703 /* Compact all nodes in the system */
2704 static void compact_nodes(void)
2705 {
2706         int nid;
2707
2708         /* Flush pending updates to the LRU lists */
2709         lru_add_drain_all();
2710
2711         for_each_online_node(nid)
2712                 compact_node(nid);
2713 }
2714
2715 /*
2716  * Tunable for proactive compaction. It determines how
2717  * aggressively the kernel should compact memory in the
2718  * background. It takes values in the range [0, 100].
2719  */
2720 unsigned int __read_mostly sysctl_compaction_proactiveness = 20;
2721
2722 int compaction_proactiveness_sysctl_handler(struct ctl_table *table, int write,
2723                 void *buffer, size_t *length, loff_t *ppos)
2724 {
2725         int rc, nid;
2726
2727         rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
2728         if (rc)
2729                 return rc;
2730
2731         if (write && sysctl_compaction_proactiveness) {
2732                 for_each_online_node(nid) {
2733                         pg_data_t *pgdat = NODE_DATA(nid);
2734
2735                         if (pgdat->proactive_compact_trigger)
2736                                 continue;
2737
2738                         pgdat->proactive_compact_trigger = true;
2739                         wake_up_interruptible(&pgdat->kcompactd_wait);
2740                 }
2741         }
2742
2743         return 0;
2744 }
2745
2746 /*
2747  * This is the entry point for compacting all nodes via
2748  * /proc/sys/vm/compact_memory
2749  */
2750 int sysctl_compaction_handler(struct ctl_table *table, int write,
2751                         void *buffer, size_t *length, loff_t *ppos)
2752 {
2753         if (write)
2754                 compact_nodes();
2755
2756         return 0;
2757 }
2758
2759 #if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
2760 static ssize_t compact_store(struct device *dev,
2761                              struct device_attribute *attr,
2762                              const char *buf, size_t count)
2763 {
2764         int nid = dev->id;
2765
2766         if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
2767                 /* Flush pending updates to the LRU lists */
2768                 lru_add_drain_all();
2769
2770                 compact_node(nid);
2771         }
2772
2773         return count;
2774 }
2775 static DEVICE_ATTR_WO(compact);
2776
2777 int compaction_register_node(struct node *node)
2778 {
2779         return device_create_file(&node->dev, &dev_attr_compact);
2780 }
2781
2782 void compaction_unregister_node(struct node *node)
2783 {
2784         return device_remove_file(&node->dev, &dev_attr_compact);
2785 }
2786 #endif /* CONFIG_SYSFS && CONFIG_NUMA */
2787
2788 static inline bool kcompactd_work_requested(pg_data_t *pgdat)
2789 {
2790         return pgdat->kcompactd_max_order > 0 || kthread_should_stop() ||
2791                 pgdat->proactive_compact_trigger;
2792 }
2793
2794 static bool kcompactd_node_suitable(pg_data_t *pgdat)
2795 {
2796         int zoneid;
2797         struct zone *zone;
2798         enum zone_type highest_zoneidx = pgdat->kcompactd_highest_zoneidx;
2799
2800         for (zoneid = 0; zoneid <= highest_zoneidx; zoneid++) {
2801                 zone = &pgdat->node_zones[zoneid];
2802
2803                 if (!populated_zone(zone))
2804                         continue;
2805
2806                 if (compaction_suitable(zone, pgdat->kcompactd_max_order, 0,
2807                                         highest_zoneidx) == COMPACT_CONTINUE)
2808                         return true;
2809         }
2810
2811         return false;
2812 }
2813
2814 static void kcompactd_do_work(pg_data_t *pgdat)
2815 {
2816         /*
2817          * With no special task, compact all zones so that a page of requested
2818          * order is allocatable.
2819          */
2820         int zoneid;
2821         struct zone *zone;
2822         struct compact_control cc = {
2823                 .order = pgdat->kcompactd_max_order,
2824                 .search_order = pgdat->kcompactd_max_order,
2825                 .highest_zoneidx = pgdat->kcompactd_highest_zoneidx,
2826                 .mode = MIGRATE_SYNC_LIGHT,
2827                 .ignore_skip_hint = false,
2828                 .gfp_mask = GFP_KERNEL,
2829         };
2830         trace_mm_compaction_kcompactd_wake(pgdat->node_id, cc.order,
2831                                                         cc.highest_zoneidx);
2832         count_compact_event(KCOMPACTD_WAKE);
2833
2834         for (zoneid = 0; zoneid <= cc.highest_zoneidx; zoneid++) {
2835                 int status;
2836
2837                 zone = &pgdat->node_zones[zoneid];
2838                 if (!populated_zone(zone))
2839                         continue;
2840
2841                 if (compaction_deferred(zone, cc.order))
2842                         continue;
2843
2844                 if (compaction_suitable(zone, cc.order, 0, zoneid) !=
2845                                                         COMPACT_CONTINUE)
2846                         continue;
2847
2848                 if (kthread_should_stop())
2849                         return;
2850
2851                 cc.zone = zone;
2852                 status = compact_zone(&cc, NULL);
2853
2854                 if (status == COMPACT_SUCCESS) {
2855                         compaction_defer_reset(zone, cc.order, false);
2856                 } else if (status == COMPACT_PARTIAL_SKIPPED || status == COMPACT_COMPLETE) {
2857                         /*
2858                          * Buddy pages may become stranded on pcps that could
2859                          * otherwise coalesce on the zone's free area for
2860                          * order >= cc.order.  This is ratelimited by the
2861                          * upcoming deferral.
2862                          */
2863                         drain_all_pages(zone);
2864
2865                         /*
2866                          * We use sync migration mode here, so we defer like
2867                          * sync direct compaction does.
2868                          */
2869                         defer_compaction(zone, cc.order);
2870                 }
2871
2872                 count_compact_events(KCOMPACTD_MIGRATE_SCANNED,
2873                                      cc.total_migrate_scanned);
2874                 count_compact_events(KCOMPACTD_FREE_SCANNED,
2875                                      cc.total_free_scanned);
2876
2877                 VM_BUG_ON(!list_empty(&cc.freepages));
2878                 VM_BUG_ON(!list_empty(&cc.migratepages));
2879         }
2880
2881         /*
2882          * Regardless of success, we are done until woken up next. But remember
2883          * the requested order/highest_zoneidx in case it was higher/tighter
2884          * than our current ones
2885          */
2886         if (pgdat->kcompactd_max_order <= cc.order)
2887                 pgdat->kcompactd_max_order = 0;
2888         if (pgdat->kcompactd_highest_zoneidx >= cc.highest_zoneidx)
2889                 pgdat->kcompactd_highest_zoneidx = pgdat->nr_zones - 1;
2890 }
2891
2892 void wakeup_kcompactd(pg_data_t *pgdat, int order, int highest_zoneidx)
2893 {
2894         if (!order)
2895                 return;
2896
2897         if (pgdat->kcompactd_max_order < order)
2898                 pgdat->kcompactd_max_order = order;
2899
2900         if (pgdat->kcompactd_highest_zoneidx > highest_zoneidx)
2901                 pgdat->kcompactd_highest_zoneidx = highest_zoneidx;
2902
2903         /*
2904          * Pairs with implicit barrier in wait_event_freezable()
2905          * such that wakeups are not missed.
2906          */
2907         if (!wq_has_sleeper(&pgdat->kcompactd_wait))
2908                 return;
2909
2910         if (!kcompactd_node_suitable(pgdat))
2911                 return;
2912
2913         trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, order,
2914                                                         highest_zoneidx);
2915         wake_up_interruptible(&pgdat->kcompactd_wait);
2916 }
2917
2918 /*
2919  * The background compaction daemon, started as a kernel thread
2920  * from the init process.
2921  */
2922 static int kcompactd(void *p)
2923 {
2924         pg_data_t *pgdat = (pg_data_t *)p;
2925         struct task_struct *tsk = current;
2926         long default_timeout = msecs_to_jiffies(HPAGE_FRAG_CHECK_INTERVAL_MSEC);
2927         long timeout = default_timeout;
2928
2929         const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2930
2931         if (!cpumask_empty(cpumask))
2932                 set_cpus_allowed_ptr(tsk, cpumask);
2933
2934         set_freezable();
2935
2936         pgdat->kcompactd_max_order = 0;
2937         pgdat->kcompactd_highest_zoneidx = pgdat->nr_zones - 1;
2938
2939         while (!kthread_should_stop()) {
2940                 unsigned long pflags;
2941
2942                 /*
2943                  * Avoid the unnecessary wakeup for proactive compaction
2944                  * when it is disabled.
2945                  */
2946                 if (!sysctl_compaction_proactiveness)
2947                         timeout = MAX_SCHEDULE_TIMEOUT;
2948                 trace_mm_compaction_kcompactd_sleep(pgdat->node_id);
2949                 if (wait_event_freezable_timeout(pgdat->kcompactd_wait,
2950                         kcompactd_work_requested(pgdat), timeout) &&
2951                         !pgdat->proactive_compact_trigger) {
2952
2953                         psi_memstall_enter(&pflags);
2954                         kcompactd_do_work(pgdat);
2955                         psi_memstall_leave(&pflags);
2956                         /*
2957                          * Reset the timeout value. The defer timeout from
2958                          * proactive compaction is lost here but that is fine
2959                          * as the condition of the zone changing substantionally
2960                          * then carrying on with the previous defer interval is
2961                          * not useful.
2962                          */
2963                         timeout = default_timeout;
2964                         continue;
2965                 }
2966
2967                 /*
2968                  * Start the proactive work with default timeout. Based
2969                  * on the fragmentation score, this timeout is updated.
2970                  */
2971                 timeout = default_timeout;
2972                 if (should_proactive_compact_node(pgdat)) {
2973                         unsigned int prev_score, score;
2974
2975                         prev_score = fragmentation_score_node(pgdat);
2976                         proactive_compact_node(pgdat);
2977                         score = fragmentation_score_node(pgdat);
2978                         /*
2979                          * Defer proactive compaction if the fragmentation
2980                          * score did not go down i.e. no progress made.
2981                          */
2982                         if (unlikely(score >= prev_score))
2983                                 timeout =
2984                                    default_timeout << COMPACT_MAX_DEFER_SHIFT;
2985                 }
2986                 if (unlikely(pgdat->proactive_compact_trigger))
2987                         pgdat->proactive_compact_trigger = false;
2988         }
2989
2990         return 0;
2991 }
2992
2993 /*
2994  * This kcompactd start function will be called by init and node-hot-add.
2995  * On node-hot-add, kcompactd will moved to proper cpus if cpus are hot-added.
2996  */
2997 void kcompactd_run(int nid)
2998 {
2999         pg_data_t *pgdat = NODE_DATA(nid);
3000
3001         if (pgdat->kcompactd)
3002                 return;
3003
3004         pgdat->kcompactd = kthread_run(kcompactd, pgdat, "kcompactd%d", nid);
3005         if (IS_ERR(pgdat->kcompactd)) {
3006                 pr_err("Failed to start kcompactd on node %d\n", nid);
3007                 pgdat->kcompactd = NULL;
3008         }
3009 }
3010
3011 /*
3012  * Called by memory hotplug when all memory in a node is offlined. Caller must
3013  * hold mem_hotplug_begin/end().
3014  */
3015 void kcompactd_stop(int nid)
3016 {
3017         struct task_struct *kcompactd = NODE_DATA(nid)->kcompactd;
3018
3019         if (kcompactd) {
3020                 kthread_stop(kcompactd);
3021                 NODE_DATA(nid)->kcompactd = NULL;
3022         }
3023 }
3024
3025 /*
3026  * It's optimal to keep kcompactd on the same CPUs as their memory, but
3027  * not required for correctness. So if the last cpu in a node goes
3028  * away, we get changed to run anywhere: as the first one comes back,
3029  * restore their cpu bindings.
3030  */
3031 static int kcompactd_cpu_online(unsigned int cpu)
3032 {
3033         int nid;
3034
3035         for_each_node_state(nid, N_MEMORY) {
3036                 pg_data_t *pgdat = NODE_DATA(nid);
3037                 const struct cpumask *mask;
3038
3039                 mask = cpumask_of_node(pgdat->node_id);
3040
3041                 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3042                         /* One of our CPUs online: restore mask */
3043                         if (pgdat->kcompactd)
3044                                 set_cpus_allowed_ptr(pgdat->kcompactd, mask);
3045         }
3046         return 0;
3047 }
3048
3049 static int __init kcompactd_init(void)
3050 {
3051         int nid;
3052         int ret;
3053
3054         ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
3055                                         "mm/compaction:online",
3056                                         kcompactd_cpu_online, NULL);
3057         if (ret < 0) {
3058                 pr_err("kcompactd: failed to register hotplug callbacks.\n");
3059                 return ret;
3060         }
3061
3062         for_each_node_state(nid, N_MEMORY)
3063                 kcompactd_run(nid);
3064         return 0;
3065 }
3066 subsys_initcall(kcompactd_init)
3067
3068 #endif /* CONFIG_COMPACTION */