mm/compaction: fix misbehaviors of fast_find_migrateblock()
[platform/kernel/linux-rpi.git] / mm / compaction.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * linux/mm/compaction.c
4  *
5  * Memory compaction for the reduction of external fragmentation. Note that
6  * this heavily depends upon page migration to do all the real heavy
7  * lifting
8  *
9  * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
10  */
11 #include <linux/cpu.h>
12 #include <linux/swap.h>
13 #include <linux/migrate.h>
14 #include <linux/compaction.h>
15 #include <linux/mm_inline.h>
16 #include <linux/sched/signal.h>
17 #include <linux/backing-dev.h>
18 #include <linux/sysctl.h>
19 #include <linux/sysfs.h>
20 #include <linux/page-isolation.h>
21 #include <linux/kasan.h>
22 #include <linux/kthread.h>
23 #include <linux/freezer.h>
24 #include <linux/page_owner.h>
25 #include <linux/psi.h>
26 #include "internal.h"
27
28 #ifdef CONFIG_COMPACTION
29 static inline void count_compact_event(enum vm_event_item item)
30 {
31         count_vm_event(item);
32 }
33
34 static inline void count_compact_events(enum vm_event_item item, long delta)
35 {
36         count_vm_events(item, delta);
37 }
38 #else
39 #define count_compact_event(item) do { } while (0)
40 #define count_compact_events(item, delta) do { } while (0)
41 #endif
42
43 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
44
45 #define CREATE_TRACE_POINTS
46 #include <trace/events/compaction.h>
47
48 #define block_start_pfn(pfn, order)     round_down(pfn, 1UL << (order))
49 #define block_end_pfn(pfn, order)       ALIGN((pfn) + 1, 1UL << (order))
50 #define pageblock_start_pfn(pfn)        block_start_pfn(pfn, pageblock_order)
51 #define pageblock_end_pfn(pfn)          block_end_pfn(pfn, pageblock_order)
52
53 /*
54  * Fragmentation score check interval for proactive compaction purposes.
55  */
56 static const unsigned int HPAGE_FRAG_CHECK_INTERVAL_MSEC = 500;
57
58 /*
59  * Page order with-respect-to which proactive compaction
60  * calculates external fragmentation, which is used as
61  * the "fragmentation score" of a node/zone.
62  */
63 #if defined CONFIG_TRANSPARENT_HUGEPAGE
64 #define COMPACTION_HPAGE_ORDER  HPAGE_PMD_ORDER
65 #elif defined CONFIG_HUGETLBFS
66 #define COMPACTION_HPAGE_ORDER  HUGETLB_PAGE_ORDER
67 #else
68 #define COMPACTION_HPAGE_ORDER  (PMD_SHIFT - PAGE_SHIFT)
69 #endif
70
71 static unsigned long release_freepages(struct list_head *freelist)
72 {
73         struct page *page, *next;
74         unsigned long high_pfn = 0;
75
76         list_for_each_entry_safe(page, next, freelist, lru) {
77                 unsigned long pfn = page_to_pfn(page);
78                 list_del(&page->lru);
79                 __free_page(page);
80                 if (pfn > high_pfn)
81                         high_pfn = pfn;
82         }
83
84         return high_pfn;
85 }
86
87 static void split_map_pages(struct list_head *list)
88 {
89         unsigned int i, order, nr_pages;
90         struct page *page, *next;
91         LIST_HEAD(tmp_list);
92
93         list_for_each_entry_safe(page, next, list, lru) {
94                 list_del(&page->lru);
95
96                 order = page_private(page);
97                 nr_pages = 1 << order;
98
99                 post_alloc_hook(page, order, __GFP_MOVABLE);
100                 if (order)
101                         split_page(page, order);
102
103                 for (i = 0; i < nr_pages; i++) {
104                         list_add(&page->lru, &tmp_list);
105                         page++;
106                 }
107         }
108
109         list_splice(&tmp_list, list);
110 }
111
112 #ifdef CONFIG_COMPACTION
113
114 int PageMovable(struct page *page)
115 {
116         struct address_space *mapping;
117
118         VM_BUG_ON_PAGE(!PageLocked(page), page);
119         if (!__PageMovable(page))
120                 return 0;
121
122         mapping = page_mapping(page);
123         if (mapping && mapping->a_ops && mapping->a_ops->isolate_page)
124                 return 1;
125
126         return 0;
127 }
128 EXPORT_SYMBOL(PageMovable);
129
130 void __SetPageMovable(struct page *page, struct address_space *mapping)
131 {
132         VM_BUG_ON_PAGE(!PageLocked(page), page);
133         VM_BUG_ON_PAGE((unsigned long)mapping & PAGE_MAPPING_MOVABLE, page);
134         page->mapping = (void *)((unsigned long)mapping | PAGE_MAPPING_MOVABLE);
135 }
136 EXPORT_SYMBOL(__SetPageMovable);
137
138 void __ClearPageMovable(struct page *page)
139 {
140         VM_BUG_ON_PAGE(!PageMovable(page), page);
141         /*
142          * Clear registered address_space val with keeping PAGE_MAPPING_MOVABLE
143          * flag so that VM can catch up released page by driver after isolation.
144          * With it, VM migration doesn't try to put it back.
145          */
146         page->mapping = (void *)((unsigned long)page->mapping &
147                                 PAGE_MAPPING_MOVABLE);
148 }
149 EXPORT_SYMBOL(__ClearPageMovable);
150
151 /* Do not skip compaction more than 64 times */
152 #define COMPACT_MAX_DEFER_SHIFT 6
153
154 /*
155  * Compaction is deferred when compaction fails to result in a page
156  * allocation success. 1 << compact_defer_shift, compactions are skipped up
157  * to a limit of 1 << COMPACT_MAX_DEFER_SHIFT
158  */
159 static void defer_compaction(struct zone *zone, int order)
160 {
161         zone->compact_considered = 0;
162         zone->compact_defer_shift++;
163
164         if (order < zone->compact_order_failed)
165                 zone->compact_order_failed = order;
166
167         if (zone->compact_defer_shift > COMPACT_MAX_DEFER_SHIFT)
168                 zone->compact_defer_shift = COMPACT_MAX_DEFER_SHIFT;
169
170         trace_mm_compaction_defer_compaction(zone, order);
171 }
172
173 /* Returns true if compaction should be skipped this time */
174 static bool compaction_deferred(struct zone *zone, int order)
175 {
176         unsigned long defer_limit = 1UL << zone->compact_defer_shift;
177
178         if (order < zone->compact_order_failed)
179                 return false;
180
181         /* Avoid possible overflow */
182         if (++zone->compact_considered >= defer_limit) {
183                 zone->compact_considered = defer_limit;
184                 return false;
185         }
186
187         trace_mm_compaction_deferred(zone, order);
188
189         return true;
190 }
191
192 /*
193  * Update defer tracking counters after successful compaction of given order,
194  * which means an allocation either succeeded (alloc_success == true) or is
195  * expected to succeed.
196  */
197 void compaction_defer_reset(struct zone *zone, int order,
198                 bool alloc_success)
199 {
200         if (alloc_success) {
201                 zone->compact_considered = 0;
202                 zone->compact_defer_shift = 0;
203         }
204         if (order >= zone->compact_order_failed)
205                 zone->compact_order_failed = order + 1;
206
207         trace_mm_compaction_defer_reset(zone, order);
208 }
209
210 /* Returns true if restarting compaction after many failures */
211 static bool compaction_restarting(struct zone *zone, int order)
212 {
213         if (order < zone->compact_order_failed)
214                 return false;
215
216         return zone->compact_defer_shift == COMPACT_MAX_DEFER_SHIFT &&
217                 zone->compact_considered >= 1UL << zone->compact_defer_shift;
218 }
219
220 /* Returns true if the pageblock should be scanned for pages to isolate. */
221 static inline bool isolation_suitable(struct compact_control *cc,
222                                         struct page *page)
223 {
224         if (cc->ignore_skip_hint)
225                 return true;
226
227         return !get_pageblock_skip(page);
228 }
229
230 static void reset_cached_positions(struct zone *zone)
231 {
232         zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn;
233         zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn;
234         zone->compact_cached_free_pfn =
235                                 pageblock_start_pfn(zone_end_pfn(zone) - 1);
236 }
237
238 /*
239  * Compound pages of >= pageblock_order should consistently be skipped until
240  * released. It is always pointless to compact pages of such order (if they are
241  * migratable), and the pageblocks they occupy cannot contain any free pages.
242  */
243 static bool pageblock_skip_persistent(struct page *page)
244 {
245         if (!PageCompound(page))
246                 return false;
247
248         page = compound_head(page);
249
250         if (compound_order(page) >= pageblock_order)
251                 return true;
252
253         return false;
254 }
255
256 static bool
257 __reset_isolation_pfn(struct zone *zone, unsigned long pfn, bool check_source,
258                                                         bool check_target)
259 {
260         struct page *page = pfn_to_online_page(pfn);
261         struct page *block_page;
262         struct page *end_page;
263         unsigned long block_pfn;
264
265         if (!page)
266                 return false;
267         if (zone != page_zone(page))
268                 return false;
269         if (pageblock_skip_persistent(page))
270                 return false;
271
272         /*
273          * If skip is already cleared do no further checking once the
274          * restart points have been set.
275          */
276         if (check_source && check_target && !get_pageblock_skip(page))
277                 return true;
278
279         /*
280          * If clearing skip for the target scanner, do not select a
281          * non-movable pageblock as the starting point.
282          */
283         if (!check_source && check_target &&
284             get_pageblock_migratetype(page) != MIGRATE_MOVABLE)
285                 return false;
286
287         /* Ensure the start of the pageblock or zone is online and valid */
288         block_pfn = pageblock_start_pfn(pfn);
289         block_pfn = max(block_pfn, zone->zone_start_pfn);
290         block_page = pfn_to_online_page(block_pfn);
291         if (block_page) {
292                 page = block_page;
293                 pfn = block_pfn;
294         }
295
296         /* Ensure the end of the pageblock or zone is online and valid */
297         block_pfn = pageblock_end_pfn(pfn) - 1;
298         block_pfn = min(block_pfn, zone_end_pfn(zone) - 1);
299         end_page = pfn_to_online_page(block_pfn);
300         if (!end_page)
301                 return false;
302
303         /*
304          * Only clear the hint if a sample indicates there is either a
305          * free page or an LRU page in the block. One or other condition
306          * is necessary for the block to be a migration source/target.
307          */
308         do {
309                 if (pfn_valid_within(pfn)) {
310                         if (check_source && PageLRU(page)) {
311                                 clear_pageblock_skip(page);
312                                 return true;
313                         }
314
315                         if (check_target && PageBuddy(page)) {
316                                 clear_pageblock_skip(page);
317                                 return true;
318                         }
319                 }
320
321                 page += (1 << PAGE_ALLOC_COSTLY_ORDER);
322                 pfn += (1 << PAGE_ALLOC_COSTLY_ORDER);
323         } while (page <= end_page);
324
325         return false;
326 }
327
328 /*
329  * This function is called to clear all cached information on pageblocks that
330  * should be skipped for page isolation when the migrate and free page scanner
331  * meet.
332  */
333 static void __reset_isolation_suitable(struct zone *zone)
334 {
335         unsigned long migrate_pfn = zone->zone_start_pfn;
336         unsigned long free_pfn = zone_end_pfn(zone) - 1;
337         unsigned long reset_migrate = free_pfn;
338         unsigned long reset_free = migrate_pfn;
339         bool source_set = false;
340         bool free_set = false;
341
342         if (!zone->compact_blockskip_flush)
343                 return;
344
345         zone->compact_blockskip_flush = false;
346
347         /*
348          * Walk the zone and update pageblock skip information. Source looks
349          * for PageLRU while target looks for PageBuddy. When the scanner
350          * is found, both PageBuddy and PageLRU are checked as the pageblock
351          * is suitable as both source and target.
352          */
353         for (; migrate_pfn < free_pfn; migrate_pfn += pageblock_nr_pages,
354                                         free_pfn -= pageblock_nr_pages) {
355                 cond_resched();
356
357                 /* Update the migrate PFN */
358                 if (__reset_isolation_pfn(zone, migrate_pfn, true, source_set) &&
359                     migrate_pfn < reset_migrate) {
360                         source_set = true;
361                         reset_migrate = migrate_pfn;
362                         zone->compact_init_migrate_pfn = reset_migrate;
363                         zone->compact_cached_migrate_pfn[0] = reset_migrate;
364                         zone->compact_cached_migrate_pfn[1] = reset_migrate;
365                 }
366
367                 /* Update the free PFN */
368                 if (__reset_isolation_pfn(zone, free_pfn, free_set, true) &&
369                     free_pfn > reset_free) {
370                         free_set = true;
371                         reset_free = free_pfn;
372                         zone->compact_init_free_pfn = reset_free;
373                         zone->compact_cached_free_pfn = reset_free;
374                 }
375         }
376
377         /* Leave no distance if no suitable block was reset */
378         if (reset_migrate >= reset_free) {
379                 zone->compact_cached_migrate_pfn[0] = migrate_pfn;
380                 zone->compact_cached_migrate_pfn[1] = migrate_pfn;
381                 zone->compact_cached_free_pfn = free_pfn;
382         }
383 }
384
385 void reset_isolation_suitable(pg_data_t *pgdat)
386 {
387         int zoneid;
388
389         for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
390                 struct zone *zone = &pgdat->node_zones[zoneid];
391                 if (!populated_zone(zone))
392                         continue;
393
394                 /* Only flush if a full compaction finished recently */
395                 if (zone->compact_blockskip_flush)
396                         __reset_isolation_suitable(zone);
397         }
398 }
399
400 /*
401  * Sets the pageblock skip bit if it was clear. Note that this is a hint as
402  * locks are not required for read/writers. Returns true if it was already set.
403  */
404 static bool test_and_set_skip(struct compact_control *cc, struct page *page,
405                                                         unsigned long pfn)
406 {
407         bool skip;
408
409         /* Do no update if skip hint is being ignored */
410         if (cc->ignore_skip_hint)
411                 return false;
412
413         if (!IS_ALIGNED(pfn, pageblock_nr_pages))
414                 return false;
415
416         skip = get_pageblock_skip(page);
417         if (!skip && !cc->no_set_skip_hint)
418                 set_pageblock_skip(page);
419
420         return skip;
421 }
422
423 static void update_cached_migrate(struct compact_control *cc, unsigned long pfn)
424 {
425         struct zone *zone = cc->zone;
426
427         pfn = pageblock_end_pfn(pfn);
428
429         /* Set for isolation rather than compaction */
430         if (cc->no_set_skip_hint)
431                 return;
432
433         if (pfn > zone->compact_cached_migrate_pfn[0])
434                 zone->compact_cached_migrate_pfn[0] = pfn;
435         if (cc->mode != MIGRATE_ASYNC &&
436             pfn > zone->compact_cached_migrate_pfn[1])
437                 zone->compact_cached_migrate_pfn[1] = pfn;
438 }
439
440 /*
441  * If no pages were isolated then mark this pageblock to be skipped in the
442  * future. The information is later cleared by __reset_isolation_suitable().
443  */
444 static void update_pageblock_skip(struct compact_control *cc,
445                         struct page *page, unsigned long pfn)
446 {
447         struct zone *zone = cc->zone;
448
449         if (cc->no_set_skip_hint)
450                 return;
451
452         if (!page)
453                 return;
454
455         set_pageblock_skip(page);
456
457         /* Update where async and sync compaction should restart */
458         if (pfn < zone->compact_cached_free_pfn)
459                 zone->compact_cached_free_pfn = pfn;
460 }
461 #else
462 static inline bool isolation_suitable(struct compact_control *cc,
463                                         struct page *page)
464 {
465         return true;
466 }
467
468 static inline bool pageblock_skip_persistent(struct page *page)
469 {
470         return false;
471 }
472
473 static inline void update_pageblock_skip(struct compact_control *cc,
474                         struct page *page, unsigned long pfn)
475 {
476 }
477
478 static void update_cached_migrate(struct compact_control *cc, unsigned long pfn)
479 {
480 }
481
482 static bool test_and_set_skip(struct compact_control *cc, struct page *page,
483                                                         unsigned long pfn)
484 {
485         return false;
486 }
487 #endif /* CONFIG_COMPACTION */
488
489 /*
490  * Compaction requires the taking of some coarse locks that are potentially
491  * very heavily contended. For async compaction, trylock and record if the
492  * lock is contended. The lock will still be acquired but compaction will
493  * abort when the current block is finished regardless of success rate.
494  * Sync compaction acquires the lock.
495  *
496  * Always returns true which makes it easier to track lock state in callers.
497  */
498 static bool compact_lock_irqsave(spinlock_t *lock, unsigned long *flags,
499                                                 struct compact_control *cc)
500         __acquires(lock)
501 {
502         /* Track if the lock is contended in async mode */
503         if (cc->mode == MIGRATE_ASYNC && !cc->contended) {
504                 if (spin_trylock_irqsave(lock, *flags))
505                         return true;
506
507                 cc->contended = true;
508         }
509
510         spin_lock_irqsave(lock, *flags);
511         return true;
512 }
513
514 /*
515  * Compaction requires the taking of some coarse locks that are potentially
516  * very heavily contended. The lock should be periodically unlocked to avoid
517  * having disabled IRQs for a long time, even when there is nobody waiting on
518  * the lock. It might also be that allowing the IRQs will result in
519  * need_resched() becoming true. If scheduling is needed, async compaction
520  * aborts. Sync compaction schedules.
521  * Either compaction type will also abort if a fatal signal is pending.
522  * In either case if the lock was locked, it is dropped and not regained.
523  *
524  * Returns true if compaction should abort due to fatal signal pending, or
525  *              async compaction due to need_resched()
526  * Returns false when compaction can continue (sync compaction might have
527  *              scheduled)
528  */
529 static bool compact_unlock_should_abort(spinlock_t *lock,
530                 unsigned long flags, bool *locked, struct compact_control *cc)
531 {
532         if (*locked) {
533                 spin_unlock_irqrestore(lock, flags);
534                 *locked = false;
535         }
536
537         if (fatal_signal_pending(current)) {
538                 cc->contended = true;
539                 return true;
540         }
541
542         cond_resched();
543
544         return false;
545 }
546
547 /*
548  * Isolate free pages onto a private freelist. If @strict is true, will abort
549  * returning 0 on any invalid PFNs or non-free pages inside of the pageblock
550  * (even though it may still end up isolating some pages).
551  */
552 static unsigned long isolate_freepages_block(struct compact_control *cc,
553                                 unsigned long *start_pfn,
554                                 unsigned long end_pfn,
555                                 struct list_head *freelist,
556                                 unsigned int stride,
557                                 bool strict)
558 {
559         int nr_scanned = 0, total_isolated = 0;
560         struct page *cursor;
561         unsigned long flags = 0;
562         bool locked = false;
563         unsigned long blockpfn = *start_pfn;
564         unsigned int order;
565
566         /* Strict mode is for isolation, speed is secondary */
567         if (strict)
568                 stride = 1;
569
570         cursor = pfn_to_page(blockpfn);
571
572         /* Isolate free pages. */
573         for (; blockpfn < end_pfn; blockpfn += stride, cursor += stride) {
574                 int isolated;
575                 struct page *page = cursor;
576
577                 /*
578                  * Periodically drop the lock (if held) regardless of its
579                  * contention, to give chance to IRQs. Abort if fatal signal
580                  * pending or async compaction detects need_resched()
581                  */
582                 if (!(blockpfn % SWAP_CLUSTER_MAX)
583                     && compact_unlock_should_abort(&cc->zone->lock, flags,
584                                                                 &locked, cc))
585                         break;
586
587                 nr_scanned++;
588                 if (!pfn_valid_within(blockpfn))
589                         goto isolate_fail;
590
591                 /*
592                  * For compound pages such as THP and hugetlbfs, we can save
593                  * potentially a lot of iterations if we skip them at once.
594                  * The check is racy, but we can consider only valid values
595                  * and the only danger is skipping too much.
596                  */
597                 if (PageCompound(page)) {
598                         const unsigned int order = compound_order(page);
599
600                         if (likely(order < MAX_ORDER)) {
601                                 blockpfn += (1UL << order) - 1;
602                                 cursor += (1UL << order) - 1;
603                         }
604                         goto isolate_fail;
605                 }
606
607                 if (!PageBuddy(page))
608                         goto isolate_fail;
609
610                 /*
611                  * If we already hold the lock, we can skip some rechecking.
612                  * Note that if we hold the lock now, checked_pageblock was
613                  * already set in some previous iteration (or strict is true),
614                  * so it is correct to skip the suitable migration target
615                  * recheck as well.
616                  */
617                 if (!locked) {
618                         locked = compact_lock_irqsave(&cc->zone->lock,
619                                                                 &flags, cc);
620
621                         /* Recheck this is a buddy page under lock */
622                         if (!PageBuddy(page))
623                                 goto isolate_fail;
624                 }
625
626                 /* Found a free page, will break it into order-0 pages */
627                 order = buddy_order(page);
628                 isolated = __isolate_free_page(page, order);
629                 if (!isolated)
630                         break;
631                 set_page_private(page, order);
632
633                 total_isolated += isolated;
634                 cc->nr_freepages += isolated;
635                 list_add_tail(&page->lru, freelist);
636
637                 if (!strict && cc->nr_migratepages <= cc->nr_freepages) {
638                         blockpfn += isolated;
639                         break;
640                 }
641                 /* Advance to the end of split page */
642                 blockpfn += isolated - 1;
643                 cursor += isolated - 1;
644                 continue;
645
646 isolate_fail:
647                 if (strict)
648                         break;
649                 else
650                         continue;
651
652         }
653
654         if (locked)
655                 spin_unlock_irqrestore(&cc->zone->lock, flags);
656
657         /*
658          * There is a tiny chance that we have read bogus compound_order(),
659          * so be careful to not go outside of the pageblock.
660          */
661         if (unlikely(blockpfn > end_pfn))
662                 blockpfn = end_pfn;
663
664         trace_mm_compaction_isolate_freepages(*start_pfn, blockpfn,
665                                         nr_scanned, total_isolated);
666
667         /* Record how far we have got within the block */
668         *start_pfn = blockpfn;
669
670         /*
671          * If strict isolation is requested by CMA then check that all the
672          * pages requested were isolated. If there were any failures, 0 is
673          * returned and CMA will fail.
674          */
675         if (strict && blockpfn < end_pfn)
676                 total_isolated = 0;
677
678         cc->total_free_scanned += nr_scanned;
679         if (total_isolated)
680                 count_compact_events(COMPACTISOLATED, total_isolated);
681         return total_isolated;
682 }
683
684 /**
685  * isolate_freepages_range() - isolate free pages.
686  * @cc:        Compaction control structure.
687  * @start_pfn: The first PFN to start isolating.
688  * @end_pfn:   The one-past-last PFN.
689  *
690  * Non-free pages, invalid PFNs, or zone boundaries within the
691  * [start_pfn, end_pfn) range are considered errors, cause function to
692  * undo its actions and return zero.
693  *
694  * Otherwise, function returns one-past-the-last PFN of isolated page
695  * (which may be greater then end_pfn if end fell in a middle of
696  * a free page).
697  */
698 unsigned long
699 isolate_freepages_range(struct compact_control *cc,
700                         unsigned long start_pfn, unsigned long end_pfn)
701 {
702         unsigned long isolated, pfn, block_start_pfn, block_end_pfn;
703         LIST_HEAD(freelist);
704
705         pfn = start_pfn;
706         block_start_pfn = pageblock_start_pfn(pfn);
707         if (block_start_pfn < cc->zone->zone_start_pfn)
708                 block_start_pfn = cc->zone->zone_start_pfn;
709         block_end_pfn = pageblock_end_pfn(pfn);
710
711         for (; pfn < end_pfn; pfn += isolated,
712                                 block_start_pfn = block_end_pfn,
713                                 block_end_pfn += pageblock_nr_pages) {
714                 /* Protect pfn from changing by isolate_freepages_block */
715                 unsigned long isolate_start_pfn = pfn;
716
717                 block_end_pfn = min(block_end_pfn, end_pfn);
718
719                 /*
720                  * pfn could pass the block_end_pfn if isolated freepage
721                  * is more than pageblock order. In this case, we adjust
722                  * scanning range to right one.
723                  */
724                 if (pfn >= block_end_pfn) {
725                         block_start_pfn = pageblock_start_pfn(pfn);
726                         block_end_pfn = pageblock_end_pfn(pfn);
727                         block_end_pfn = min(block_end_pfn, end_pfn);
728                 }
729
730                 if (!pageblock_pfn_to_page(block_start_pfn,
731                                         block_end_pfn, cc->zone))
732                         break;
733
734                 isolated = isolate_freepages_block(cc, &isolate_start_pfn,
735                                         block_end_pfn, &freelist, 0, true);
736
737                 /*
738                  * In strict mode, isolate_freepages_block() returns 0 if
739                  * there are any holes in the block (ie. invalid PFNs or
740                  * non-free pages).
741                  */
742                 if (!isolated)
743                         break;
744
745                 /*
746                  * If we managed to isolate pages, it is always (1 << n) *
747                  * pageblock_nr_pages for some non-negative n.  (Max order
748                  * page may span two pageblocks).
749                  */
750         }
751
752         /* __isolate_free_page() does not map the pages */
753         split_map_pages(&freelist);
754
755         if (pfn < end_pfn) {
756                 /* Loop terminated early, cleanup. */
757                 release_freepages(&freelist);
758                 return 0;
759         }
760
761         /* We don't use freelists for anything. */
762         return pfn;
763 }
764
765 /* Similar to reclaim, but different enough that they don't share logic */
766 static bool too_many_isolated(pg_data_t *pgdat)
767 {
768         unsigned long active, inactive, isolated;
769
770         inactive = node_page_state(pgdat, NR_INACTIVE_FILE) +
771                         node_page_state(pgdat, NR_INACTIVE_ANON);
772         active = node_page_state(pgdat, NR_ACTIVE_FILE) +
773                         node_page_state(pgdat, NR_ACTIVE_ANON);
774         isolated = node_page_state(pgdat, NR_ISOLATED_FILE) +
775                         node_page_state(pgdat, NR_ISOLATED_ANON);
776
777         return isolated > (inactive + active) / 2;
778 }
779
780 /**
781  * isolate_migratepages_block() - isolate all migrate-able pages within
782  *                                a single pageblock
783  * @cc:         Compaction control structure.
784  * @low_pfn:    The first PFN to isolate
785  * @end_pfn:    The one-past-the-last PFN to isolate, within same pageblock
786  * @isolate_mode: Isolation mode to be used.
787  *
788  * Isolate all pages that can be migrated from the range specified by
789  * [low_pfn, end_pfn). The range is expected to be within same pageblock.
790  * Returns zero if there is a fatal signal pending, otherwise PFN of the
791  * first page that was not scanned (which may be both less, equal to or more
792  * than end_pfn).
793  *
794  * The pages are isolated on cc->migratepages list (not required to be empty),
795  * and cc->nr_migratepages is updated accordingly. The cc->migrate_pfn field
796  * is neither read nor updated.
797  */
798 static unsigned long
799 isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn,
800                         unsigned long end_pfn, isolate_mode_t isolate_mode)
801 {
802         pg_data_t *pgdat = cc->zone->zone_pgdat;
803         unsigned long nr_scanned = 0, nr_isolated = 0;
804         struct lruvec *lruvec;
805         unsigned long flags = 0;
806         struct lruvec *locked = NULL;
807         struct page *page = NULL, *valid_page = NULL;
808         unsigned long start_pfn = low_pfn;
809         bool skip_on_failure = false;
810         unsigned long next_skip_pfn = 0;
811         bool skip_updated = false;
812
813         /*
814          * Ensure that there are not too many pages isolated from the LRU
815          * list by either parallel reclaimers or compaction. If there are,
816          * delay for some time until fewer pages are isolated
817          */
818         while (unlikely(too_many_isolated(pgdat))) {
819                 /* stop isolation if there are still pages not migrated */
820                 if (cc->nr_migratepages)
821                         return 0;
822
823                 /* async migration should just abort */
824                 if (cc->mode == MIGRATE_ASYNC)
825                         return 0;
826
827                 congestion_wait(BLK_RW_ASYNC, HZ/10);
828
829                 if (fatal_signal_pending(current))
830                         return 0;
831         }
832
833         cond_resched();
834
835         if (cc->direct_compaction && (cc->mode == MIGRATE_ASYNC)) {
836                 skip_on_failure = true;
837                 next_skip_pfn = block_end_pfn(low_pfn, cc->order);
838         }
839
840         /* Time to isolate some pages for migration */
841         for (; low_pfn < end_pfn; low_pfn++) {
842
843                 if (skip_on_failure && low_pfn >= next_skip_pfn) {
844                         /*
845                          * We have isolated all migration candidates in the
846                          * previous order-aligned block, and did not skip it due
847                          * to failure. We should migrate the pages now and
848                          * hopefully succeed compaction.
849                          */
850                         if (nr_isolated)
851                                 break;
852
853                         /*
854                          * We failed to isolate in the previous order-aligned
855                          * block. Set the new boundary to the end of the
856                          * current block. Note we can't simply increase
857                          * next_skip_pfn by 1 << order, as low_pfn might have
858                          * been incremented by a higher number due to skipping
859                          * a compound or a high-order buddy page in the
860                          * previous loop iteration.
861                          */
862                         next_skip_pfn = block_end_pfn(low_pfn, cc->order);
863                 }
864
865                 /*
866                  * Periodically drop the lock (if held) regardless of its
867                  * contention, to give chance to IRQs. Abort completely if
868                  * a fatal signal is pending.
869                  */
870                 if (!(low_pfn % SWAP_CLUSTER_MAX)) {
871                         if (locked) {
872                                 unlock_page_lruvec_irqrestore(locked, flags);
873                                 locked = NULL;
874                         }
875
876                         if (fatal_signal_pending(current)) {
877                                 cc->contended = true;
878
879                                 low_pfn = 0;
880                                 goto fatal_pending;
881                         }
882
883                         cond_resched();
884                 }
885
886                 if (!pfn_valid_within(low_pfn))
887                         goto isolate_fail;
888                 nr_scanned++;
889
890                 page = pfn_to_page(low_pfn);
891
892                 /*
893                  * Check if the pageblock has already been marked skipped.
894                  * Only the aligned PFN is checked as the caller isolates
895                  * COMPACT_CLUSTER_MAX at a time so the second call must
896                  * not falsely conclude that the block should be skipped.
897                  */
898                 if (!valid_page && IS_ALIGNED(low_pfn, pageblock_nr_pages)) {
899                         if (!cc->ignore_skip_hint && get_pageblock_skip(page)) {
900                                 low_pfn = end_pfn;
901                                 page = NULL;
902                                 goto isolate_abort;
903                         }
904                         valid_page = page;
905                 }
906
907                 /*
908                  * Skip if free. We read page order here without zone lock
909                  * which is generally unsafe, but the race window is small and
910                  * the worst thing that can happen is that we skip some
911                  * potential isolation targets.
912                  */
913                 if (PageBuddy(page)) {
914                         unsigned long freepage_order = buddy_order_unsafe(page);
915
916                         /*
917                          * Without lock, we cannot be sure that what we got is
918                          * a valid page order. Consider only values in the
919                          * valid order range to prevent low_pfn overflow.
920                          */
921                         if (freepage_order > 0 && freepage_order < MAX_ORDER)
922                                 low_pfn += (1UL << freepage_order) - 1;
923                         continue;
924                 }
925
926                 /*
927                  * Regardless of being on LRU, compound pages such as THP and
928                  * hugetlbfs are not to be compacted unless we are attempting
929                  * an allocation much larger than the huge page size (eg CMA).
930                  * We can potentially save a lot of iterations if we skip them
931                  * at once. The check is racy, but we can consider only valid
932                  * values and the only danger is skipping too much.
933                  */
934                 if (PageCompound(page) && !cc->alloc_contig) {
935                         const unsigned int order = compound_order(page);
936
937                         if (likely(order < MAX_ORDER))
938                                 low_pfn += (1UL << order) - 1;
939                         goto isolate_fail;
940                 }
941
942                 /*
943                  * Check may be lockless but that's ok as we recheck later.
944                  * It's possible to migrate LRU and non-lru movable pages.
945                  * Skip any other type of page
946                  */
947                 if (!PageLRU(page)) {
948                         /*
949                          * __PageMovable can return false positive so we need
950                          * to verify it under page_lock.
951                          */
952                         if (unlikely(__PageMovable(page)) &&
953                                         !PageIsolated(page)) {
954                                 if (locked) {
955                                         unlock_page_lruvec_irqrestore(locked, flags);
956                                         locked = NULL;
957                                 }
958
959                                 if (!isolate_movable_page(page, isolate_mode))
960                                         goto isolate_success;
961                         }
962
963                         goto isolate_fail;
964                 }
965
966                 /*
967                  * Migration will fail if an anonymous page is pinned in memory,
968                  * so avoid taking lru_lock and isolating it unnecessarily in an
969                  * admittedly racy check.
970                  */
971                 if (!page_mapping(page) &&
972                     page_count(page) > page_mapcount(page))
973                         goto isolate_fail;
974
975                 /*
976                  * Only allow to migrate anonymous pages in GFP_NOFS context
977                  * because those do not depend on fs locks.
978                  */
979                 if (!(cc->gfp_mask & __GFP_FS) && page_mapping(page))
980                         goto isolate_fail;
981
982                 /*
983                  * Be careful not to clear PageLRU until after we're
984                  * sure the page is not being freed elsewhere -- the
985                  * page release code relies on it.
986                  */
987                 if (unlikely(!get_page_unless_zero(page)))
988                         goto isolate_fail;
989
990                 if (!__isolate_lru_page_prepare(page, isolate_mode))
991                         goto isolate_fail_put;
992
993                 /* Try isolate the page */
994                 if (!TestClearPageLRU(page))
995                         goto isolate_fail_put;
996
997                 lruvec = mem_cgroup_page_lruvec(page, pgdat);
998
999                 /* If we already hold the lock, we can skip some rechecking */
1000                 if (lruvec != locked) {
1001                         if (locked)
1002                                 unlock_page_lruvec_irqrestore(locked, flags);
1003
1004                         compact_lock_irqsave(&lruvec->lru_lock, &flags, cc);
1005                         locked = lruvec;
1006
1007                         lruvec_memcg_debug(lruvec, page);
1008
1009                         /* Try get exclusive access under lock */
1010                         if (!skip_updated) {
1011                                 skip_updated = true;
1012                                 if (test_and_set_skip(cc, page, low_pfn))
1013                                         goto isolate_abort;
1014                         }
1015
1016                         /*
1017                          * Page become compound since the non-locked check,
1018                          * and it's on LRU. It can only be a THP so the order
1019                          * is safe to read and it's 0 for tail pages.
1020                          */
1021                         if (unlikely(PageCompound(page) && !cc->alloc_contig)) {
1022                                 low_pfn += compound_nr(page) - 1;
1023                                 SetPageLRU(page);
1024                                 goto isolate_fail_put;
1025                         }
1026                 }
1027
1028                 /* The whole page is taken off the LRU; skip the tail pages. */
1029                 if (PageCompound(page))
1030                         low_pfn += compound_nr(page) - 1;
1031
1032                 /* Successfully isolated */
1033                 del_page_from_lru_list(page, lruvec);
1034                 mod_node_page_state(page_pgdat(page),
1035                                 NR_ISOLATED_ANON + page_is_file_lru(page),
1036                                 thp_nr_pages(page));
1037
1038 isolate_success:
1039                 list_add(&page->lru, &cc->migratepages);
1040                 cc->nr_migratepages += compound_nr(page);
1041                 nr_isolated += compound_nr(page);
1042
1043                 /*
1044                  * Avoid isolating too much unless this block is being
1045                  * rescanned (e.g. dirty/writeback pages, parallel allocation)
1046                  * or a lock is contended. For contention, isolate quickly to
1047                  * potentially remove one source of contention.
1048                  */
1049                 if (cc->nr_migratepages >= COMPACT_CLUSTER_MAX &&
1050                     !cc->rescan && !cc->contended) {
1051                         ++low_pfn;
1052                         break;
1053                 }
1054
1055                 continue;
1056
1057 isolate_fail_put:
1058                 /* Avoid potential deadlock in freeing page under lru_lock */
1059                 if (locked) {
1060                         unlock_page_lruvec_irqrestore(locked, flags);
1061                         locked = NULL;
1062                 }
1063                 put_page(page);
1064
1065 isolate_fail:
1066                 if (!skip_on_failure)
1067                         continue;
1068
1069                 /*
1070                  * We have isolated some pages, but then failed. Release them
1071                  * instead of migrating, as we cannot form the cc->order buddy
1072                  * page anyway.
1073                  */
1074                 if (nr_isolated) {
1075                         if (locked) {
1076                                 unlock_page_lruvec_irqrestore(locked, flags);
1077                                 locked = NULL;
1078                         }
1079                         putback_movable_pages(&cc->migratepages);
1080                         cc->nr_migratepages = 0;
1081                         nr_isolated = 0;
1082                 }
1083
1084                 if (low_pfn < next_skip_pfn) {
1085                         low_pfn = next_skip_pfn - 1;
1086                         /*
1087                          * The check near the loop beginning would have updated
1088                          * next_skip_pfn too, but this is a bit simpler.
1089                          */
1090                         next_skip_pfn += 1UL << cc->order;
1091                 }
1092         }
1093
1094         /*
1095          * The PageBuddy() check could have potentially brought us outside
1096          * the range to be scanned.
1097          */
1098         if (unlikely(low_pfn > end_pfn))
1099                 low_pfn = end_pfn;
1100
1101         page = NULL;
1102
1103 isolate_abort:
1104         if (locked)
1105                 unlock_page_lruvec_irqrestore(locked, flags);
1106         if (page) {
1107                 SetPageLRU(page);
1108                 put_page(page);
1109         }
1110
1111         /*
1112          * Updated the cached scanner pfn once the pageblock has been scanned
1113          * Pages will either be migrated in which case there is no point
1114          * scanning in the near future or migration failed in which case the
1115          * failure reason may persist. The block is marked for skipping if
1116          * there were no pages isolated in the block or if the block is
1117          * rescanned twice in a row.
1118          */
1119         if (low_pfn == end_pfn && (!nr_isolated || cc->rescan)) {
1120                 if (valid_page && !skip_updated)
1121                         set_pageblock_skip(valid_page);
1122                 update_cached_migrate(cc, low_pfn);
1123         }
1124
1125         trace_mm_compaction_isolate_migratepages(start_pfn, low_pfn,
1126                                                 nr_scanned, nr_isolated);
1127
1128 fatal_pending:
1129         cc->total_migrate_scanned += nr_scanned;
1130         if (nr_isolated)
1131                 count_compact_events(COMPACTISOLATED, nr_isolated);
1132
1133         return low_pfn;
1134 }
1135
1136 /**
1137  * isolate_migratepages_range() - isolate migrate-able pages in a PFN range
1138  * @cc:        Compaction control structure.
1139  * @start_pfn: The first PFN to start isolating.
1140  * @end_pfn:   The one-past-last PFN.
1141  *
1142  * Returns zero if isolation fails fatally due to e.g. pending signal.
1143  * Otherwise, function returns one-past-the-last PFN of isolated page
1144  * (which may be greater than end_pfn if end fell in a middle of a THP page).
1145  */
1146 unsigned long
1147 isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn,
1148                                                         unsigned long end_pfn)
1149 {
1150         unsigned long pfn, block_start_pfn, block_end_pfn;
1151
1152         /* Scan block by block. First and last block may be incomplete */
1153         pfn = start_pfn;
1154         block_start_pfn = pageblock_start_pfn(pfn);
1155         if (block_start_pfn < cc->zone->zone_start_pfn)
1156                 block_start_pfn = cc->zone->zone_start_pfn;
1157         block_end_pfn = pageblock_end_pfn(pfn);
1158
1159         for (; pfn < end_pfn; pfn = block_end_pfn,
1160                                 block_start_pfn = block_end_pfn,
1161                                 block_end_pfn += pageblock_nr_pages) {
1162
1163                 block_end_pfn = min(block_end_pfn, end_pfn);
1164
1165                 if (!pageblock_pfn_to_page(block_start_pfn,
1166                                         block_end_pfn, cc->zone))
1167                         continue;
1168
1169                 pfn = isolate_migratepages_block(cc, pfn, block_end_pfn,
1170                                                         ISOLATE_UNEVICTABLE);
1171
1172                 if (!pfn)
1173                         break;
1174
1175                 if (cc->nr_migratepages >= COMPACT_CLUSTER_MAX)
1176                         break;
1177         }
1178
1179         return pfn;
1180 }
1181
1182 #endif /* CONFIG_COMPACTION || CONFIG_CMA */
1183 #ifdef CONFIG_COMPACTION
1184
1185 static bool suitable_migration_source(struct compact_control *cc,
1186                                                         struct page *page)
1187 {
1188         int block_mt;
1189
1190         if (pageblock_skip_persistent(page))
1191                 return false;
1192
1193         if ((cc->mode != MIGRATE_ASYNC) || !cc->direct_compaction)
1194                 return true;
1195
1196         block_mt = get_pageblock_migratetype(page);
1197
1198         if (cc->migratetype == MIGRATE_MOVABLE)
1199                 return is_migrate_movable(block_mt);
1200         else
1201                 return block_mt == cc->migratetype;
1202 }
1203
1204 /* Returns true if the page is within a block suitable for migration to */
1205 static bool suitable_migration_target(struct compact_control *cc,
1206                                                         struct page *page)
1207 {
1208         /* If the page is a large free page, then disallow migration */
1209         if (PageBuddy(page)) {
1210                 /*
1211                  * We are checking page_order without zone->lock taken. But
1212                  * the only small danger is that we skip a potentially suitable
1213                  * pageblock, so it's not worth to check order for valid range.
1214                  */
1215                 if (buddy_order_unsafe(page) >= pageblock_order)
1216                         return false;
1217         }
1218
1219         if (cc->ignore_block_suitable)
1220                 return true;
1221
1222         /* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
1223         if (is_migrate_movable(get_pageblock_migratetype(page)))
1224                 return true;
1225
1226         /* Otherwise skip the block */
1227         return false;
1228 }
1229
1230 static inline unsigned int
1231 freelist_scan_limit(struct compact_control *cc)
1232 {
1233         unsigned short shift = BITS_PER_LONG - 1;
1234
1235         return (COMPACT_CLUSTER_MAX >> min(shift, cc->fast_search_fail)) + 1;
1236 }
1237
1238 /*
1239  * Test whether the free scanner has reached the same or lower pageblock than
1240  * the migration scanner, and compaction should thus terminate.
1241  */
1242 static inline bool compact_scanners_met(struct compact_control *cc)
1243 {
1244         return (cc->free_pfn >> pageblock_order)
1245                 <= (cc->migrate_pfn >> pageblock_order);
1246 }
1247
1248 /*
1249  * Used when scanning for a suitable migration target which scans freelists
1250  * in reverse. Reorders the list such as the unscanned pages are scanned
1251  * first on the next iteration of the free scanner
1252  */
1253 static void
1254 move_freelist_head(struct list_head *freelist, struct page *freepage)
1255 {
1256         LIST_HEAD(sublist);
1257
1258         if (!list_is_last(freelist, &freepage->lru)) {
1259                 list_cut_before(&sublist, freelist, &freepage->lru);
1260                 if (!list_empty(&sublist))
1261                         list_splice_tail(&sublist, freelist);
1262         }
1263 }
1264
1265 /*
1266  * Similar to move_freelist_head except used by the migration scanner
1267  * when scanning forward. It's possible for these list operations to
1268  * move against each other if they search the free list exactly in
1269  * lockstep.
1270  */
1271 static void
1272 move_freelist_tail(struct list_head *freelist, struct page *freepage)
1273 {
1274         LIST_HEAD(sublist);
1275
1276         if (!list_is_first(freelist, &freepage->lru)) {
1277                 list_cut_position(&sublist, freelist, &freepage->lru);
1278                 if (!list_empty(&sublist))
1279                         list_splice_tail(&sublist, freelist);
1280         }
1281 }
1282
1283 static void
1284 fast_isolate_around(struct compact_control *cc, unsigned long pfn, unsigned long nr_isolated)
1285 {
1286         unsigned long start_pfn, end_pfn;
1287         struct page *page = pfn_to_page(pfn);
1288
1289         /* Do not search around if there are enough pages already */
1290         if (cc->nr_freepages >= cc->nr_migratepages)
1291                 return;
1292
1293         /* Minimise scanning during async compaction */
1294         if (cc->direct_compaction && cc->mode == MIGRATE_ASYNC)
1295                 return;
1296
1297         /* Pageblock boundaries */
1298         start_pfn = pageblock_start_pfn(pfn);
1299         end_pfn = min(pageblock_end_pfn(pfn), zone_end_pfn(cc->zone)) - 1;
1300
1301         /* Scan before */
1302         if (start_pfn != pfn) {
1303                 isolate_freepages_block(cc, &start_pfn, pfn, &cc->freepages, 1, false);
1304                 if (cc->nr_freepages >= cc->nr_migratepages)
1305                         return;
1306         }
1307
1308         /* Scan after */
1309         start_pfn = pfn + nr_isolated;
1310         if (start_pfn < end_pfn)
1311                 isolate_freepages_block(cc, &start_pfn, end_pfn, &cc->freepages, 1, false);
1312
1313         /* Skip this pageblock in the future as it's full or nearly full */
1314         if (cc->nr_freepages < cc->nr_migratepages)
1315                 set_pageblock_skip(page);
1316 }
1317
1318 /* Search orders in round-robin fashion */
1319 static int next_search_order(struct compact_control *cc, int order)
1320 {
1321         order--;
1322         if (order < 0)
1323                 order = cc->order - 1;
1324
1325         /* Search wrapped around? */
1326         if (order == cc->search_order) {
1327                 cc->search_order--;
1328                 if (cc->search_order < 0)
1329                         cc->search_order = cc->order - 1;
1330                 return -1;
1331         }
1332
1333         return order;
1334 }
1335
1336 static unsigned long
1337 fast_isolate_freepages(struct compact_control *cc)
1338 {
1339         unsigned int limit = min(1U, freelist_scan_limit(cc) >> 1);
1340         unsigned int nr_scanned = 0;
1341         unsigned long low_pfn, min_pfn, highest = 0;
1342         unsigned long nr_isolated = 0;
1343         unsigned long distance;
1344         struct page *page = NULL;
1345         bool scan_start = false;
1346         int order;
1347
1348         /* Full compaction passes in a negative order */
1349         if (cc->order <= 0)
1350                 return cc->free_pfn;
1351
1352         /*
1353          * If starting the scan, use a deeper search and use the highest
1354          * PFN found if a suitable one is not found.
1355          */
1356         if (cc->free_pfn >= cc->zone->compact_init_free_pfn) {
1357                 limit = pageblock_nr_pages >> 1;
1358                 scan_start = true;
1359         }
1360
1361         /*
1362          * Preferred point is in the top quarter of the scan space but take
1363          * a pfn from the top half if the search is problematic.
1364          */
1365         distance = (cc->free_pfn - cc->migrate_pfn);
1366         low_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 2));
1367         min_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 1));
1368
1369         if (WARN_ON_ONCE(min_pfn > low_pfn))
1370                 low_pfn = min_pfn;
1371
1372         /*
1373          * Search starts from the last successful isolation order or the next
1374          * order to search after a previous failure
1375          */
1376         cc->search_order = min_t(unsigned int, cc->order - 1, cc->search_order);
1377
1378         for (order = cc->search_order;
1379              !page && order >= 0;
1380              order = next_search_order(cc, order)) {
1381                 struct free_area *area = &cc->zone->free_area[order];
1382                 struct list_head *freelist;
1383                 struct page *freepage;
1384                 unsigned long flags;
1385                 unsigned int order_scanned = 0;
1386                 unsigned long high_pfn = 0;
1387
1388                 if (!area->nr_free)
1389                         continue;
1390
1391                 spin_lock_irqsave(&cc->zone->lock, flags);
1392                 freelist = &area->free_list[MIGRATE_MOVABLE];
1393                 list_for_each_entry_reverse(freepage, freelist, lru) {
1394                         unsigned long pfn;
1395
1396                         order_scanned++;
1397                         nr_scanned++;
1398                         pfn = page_to_pfn(freepage);
1399
1400                         if (pfn >= highest)
1401                                 highest = pageblock_start_pfn(pfn);
1402
1403                         if (pfn >= low_pfn) {
1404                                 cc->fast_search_fail = 0;
1405                                 cc->search_order = order;
1406                                 page = freepage;
1407                                 break;
1408                         }
1409
1410                         if (pfn >= min_pfn && pfn > high_pfn) {
1411                                 high_pfn = pfn;
1412
1413                                 /* Shorten the scan if a candidate is found */
1414                                 limit >>= 1;
1415                         }
1416
1417                         if (order_scanned >= limit)
1418                                 break;
1419                 }
1420
1421                 /* Use a minimum pfn if a preferred one was not found */
1422                 if (!page && high_pfn) {
1423                         page = pfn_to_page(high_pfn);
1424
1425                         /* Update freepage for the list reorder below */
1426                         freepage = page;
1427                 }
1428
1429                 /* Reorder to so a future search skips recent pages */
1430                 move_freelist_head(freelist, freepage);
1431
1432                 /* Isolate the page if available */
1433                 if (page) {
1434                         if (__isolate_free_page(page, order)) {
1435                                 set_page_private(page, order);
1436                                 nr_isolated = 1 << order;
1437                                 cc->nr_freepages += nr_isolated;
1438                                 list_add_tail(&page->lru, &cc->freepages);
1439                                 count_compact_events(COMPACTISOLATED, nr_isolated);
1440                         } else {
1441                                 /* If isolation fails, abort the search */
1442                                 order = cc->search_order + 1;
1443                                 page = NULL;
1444                         }
1445                 }
1446
1447                 spin_unlock_irqrestore(&cc->zone->lock, flags);
1448
1449                 /*
1450                  * Smaller scan on next order so the total scan ig related
1451                  * to freelist_scan_limit.
1452                  */
1453                 if (order_scanned >= limit)
1454                         limit = min(1U, limit >> 1);
1455         }
1456
1457         if (!page) {
1458                 cc->fast_search_fail++;
1459                 if (scan_start) {
1460                         /*
1461                          * Use the highest PFN found above min. If one was
1462                          * not found, be pessimistic for direct compaction
1463                          * and use the min mark.
1464                          */
1465                         if (highest) {
1466                                 page = pfn_to_page(highest);
1467                                 cc->free_pfn = highest;
1468                         } else {
1469                                 if (cc->direct_compaction && pfn_valid(min_pfn)) {
1470                                         page = pageblock_pfn_to_page(min_pfn,
1471                                                 pageblock_end_pfn(min_pfn),
1472                                                 cc->zone);
1473                                         cc->free_pfn = min_pfn;
1474                                 }
1475                         }
1476                 }
1477         }
1478
1479         if (highest && highest >= cc->zone->compact_cached_free_pfn) {
1480                 highest -= pageblock_nr_pages;
1481                 cc->zone->compact_cached_free_pfn = highest;
1482         }
1483
1484         cc->total_free_scanned += nr_scanned;
1485         if (!page)
1486                 return cc->free_pfn;
1487
1488         low_pfn = page_to_pfn(page);
1489         fast_isolate_around(cc, low_pfn, nr_isolated);
1490         return low_pfn;
1491 }
1492
1493 /*
1494  * Based on information in the current compact_control, find blocks
1495  * suitable for isolating free pages from and then isolate them.
1496  */
1497 static void isolate_freepages(struct compact_control *cc)
1498 {
1499         struct zone *zone = cc->zone;
1500         struct page *page;
1501         unsigned long block_start_pfn;  /* start of current pageblock */
1502         unsigned long isolate_start_pfn; /* exact pfn we start at */
1503         unsigned long block_end_pfn;    /* end of current pageblock */
1504         unsigned long low_pfn;       /* lowest pfn scanner is able to scan */
1505         struct list_head *freelist = &cc->freepages;
1506         unsigned int stride;
1507
1508         /* Try a small search of the free lists for a candidate */
1509         isolate_start_pfn = fast_isolate_freepages(cc);
1510         if (cc->nr_freepages)
1511                 goto splitmap;
1512
1513         /*
1514          * Initialise the free scanner. The starting point is where we last
1515          * successfully isolated from, zone-cached value, or the end of the
1516          * zone when isolating for the first time. For looping we also need
1517          * this pfn aligned down to the pageblock boundary, because we do
1518          * block_start_pfn -= pageblock_nr_pages in the for loop.
1519          * For ending point, take care when isolating in last pageblock of a
1520          * zone which ends in the middle of a pageblock.
1521          * The low boundary is the end of the pageblock the migration scanner
1522          * is using.
1523          */
1524         isolate_start_pfn = cc->free_pfn;
1525         block_start_pfn = pageblock_start_pfn(isolate_start_pfn);
1526         block_end_pfn = min(block_start_pfn + pageblock_nr_pages,
1527                                                 zone_end_pfn(zone));
1528         low_pfn = pageblock_end_pfn(cc->migrate_pfn);
1529         stride = cc->mode == MIGRATE_ASYNC ? COMPACT_CLUSTER_MAX : 1;
1530
1531         /*
1532          * Isolate free pages until enough are available to migrate the
1533          * pages on cc->migratepages. We stop searching if the migrate
1534          * and free page scanners meet or enough free pages are isolated.
1535          */
1536         for (; block_start_pfn >= low_pfn;
1537                                 block_end_pfn = block_start_pfn,
1538                                 block_start_pfn -= pageblock_nr_pages,
1539                                 isolate_start_pfn = block_start_pfn) {
1540                 unsigned long nr_isolated;
1541
1542                 /*
1543                  * This can iterate a massively long zone without finding any
1544                  * suitable migration targets, so periodically check resched.
1545                  */
1546                 if (!(block_start_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages)))
1547                         cond_resched();
1548
1549                 page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
1550                                                                         zone);
1551                 if (!page)
1552                         continue;
1553
1554                 /* Check the block is suitable for migration */
1555                 if (!suitable_migration_target(cc, page))
1556                         continue;
1557
1558                 /* If isolation recently failed, do not retry */
1559                 if (!isolation_suitable(cc, page))
1560                         continue;
1561
1562                 /* Found a block suitable for isolating free pages from. */
1563                 nr_isolated = isolate_freepages_block(cc, &isolate_start_pfn,
1564                                         block_end_pfn, freelist, stride, false);
1565
1566                 /* Update the skip hint if the full pageblock was scanned */
1567                 if (isolate_start_pfn == block_end_pfn)
1568                         update_pageblock_skip(cc, page, block_start_pfn);
1569
1570                 /* Are enough freepages isolated? */
1571                 if (cc->nr_freepages >= cc->nr_migratepages) {
1572                         if (isolate_start_pfn >= block_end_pfn) {
1573                                 /*
1574                                  * Restart at previous pageblock if more
1575                                  * freepages can be isolated next time.
1576                                  */
1577                                 isolate_start_pfn =
1578                                         block_start_pfn - pageblock_nr_pages;
1579                         }
1580                         break;
1581                 } else if (isolate_start_pfn < block_end_pfn) {
1582                         /*
1583                          * If isolation failed early, do not continue
1584                          * needlessly.
1585                          */
1586                         break;
1587                 }
1588
1589                 /* Adjust stride depending on isolation */
1590                 if (nr_isolated) {
1591                         stride = 1;
1592                         continue;
1593                 }
1594                 stride = min_t(unsigned int, COMPACT_CLUSTER_MAX, stride << 1);
1595         }
1596
1597         /*
1598          * Record where the free scanner will restart next time. Either we
1599          * broke from the loop and set isolate_start_pfn based on the last
1600          * call to isolate_freepages_block(), or we met the migration scanner
1601          * and the loop terminated due to isolate_start_pfn < low_pfn
1602          */
1603         cc->free_pfn = isolate_start_pfn;
1604
1605 splitmap:
1606         /* __isolate_free_page() does not map the pages */
1607         split_map_pages(freelist);
1608 }
1609
1610 /*
1611  * This is a migrate-callback that "allocates" freepages by taking pages
1612  * from the isolated freelists in the block we are migrating to.
1613  */
1614 static struct page *compaction_alloc(struct page *migratepage,
1615                                         unsigned long data)
1616 {
1617         struct compact_control *cc = (struct compact_control *)data;
1618         struct page *freepage;
1619
1620         if (list_empty(&cc->freepages)) {
1621                 isolate_freepages(cc);
1622
1623                 if (list_empty(&cc->freepages))
1624                         return NULL;
1625         }
1626
1627         freepage = list_entry(cc->freepages.next, struct page, lru);
1628         list_del(&freepage->lru);
1629         cc->nr_freepages--;
1630
1631         return freepage;
1632 }
1633
1634 /*
1635  * This is a migrate-callback that "frees" freepages back to the isolated
1636  * freelist.  All pages on the freelist are from the same zone, so there is no
1637  * special handling needed for NUMA.
1638  */
1639 static void compaction_free(struct page *page, unsigned long data)
1640 {
1641         struct compact_control *cc = (struct compact_control *)data;
1642
1643         list_add(&page->lru, &cc->freepages);
1644         cc->nr_freepages++;
1645 }
1646
1647 /* possible outcome of isolate_migratepages */
1648 typedef enum {
1649         ISOLATE_ABORT,          /* Abort compaction now */
1650         ISOLATE_NONE,           /* No pages isolated, continue scanning */
1651         ISOLATE_SUCCESS,        /* Pages isolated, migrate */
1652 } isolate_migrate_t;
1653
1654 /*
1655  * Allow userspace to control policy on scanning the unevictable LRU for
1656  * compactable pages.
1657  */
1658 #ifdef CONFIG_PREEMPT_RT
1659 int sysctl_compact_unevictable_allowed __read_mostly = 0;
1660 #else
1661 int sysctl_compact_unevictable_allowed __read_mostly = 1;
1662 #endif
1663
1664 static inline void
1665 update_fast_start_pfn(struct compact_control *cc, unsigned long pfn)
1666 {
1667         if (cc->fast_start_pfn == ULONG_MAX)
1668                 return;
1669
1670         if (!cc->fast_start_pfn)
1671                 cc->fast_start_pfn = pfn;
1672
1673         cc->fast_start_pfn = min(cc->fast_start_pfn, pfn);
1674 }
1675
1676 static inline unsigned long
1677 reinit_migrate_pfn(struct compact_control *cc)
1678 {
1679         if (!cc->fast_start_pfn || cc->fast_start_pfn == ULONG_MAX)
1680                 return cc->migrate_pfn;
1681
1682         cc->migrate_pfn = cc->fast_start_pfn;
1683         cc->fast_start_pfn = ULONG_MAX;
1684
1685         return cc->migrate_pfn;
1686 }
1687
1688 /*
1689  * Briefly search the free lists for a migration source that already has
1690  * some free pages to reduce the number of pages that need migration
1691  * before a pageblock is free.
1692  */
1693 static unsigned long fast_find_migrateblock(struct compact_control *cc)
1694 {
1695         unsigned int limit = freelist_scan_limit(cc);
1696         unsigned int nr_scanned = 0;
1697         unsigned long distance;
1698         unsigned long pfn = cc->migrate_pfn;
1699         unsigned long high_pfn;
1700         int order;
1701         bool found_block = false;
1702
1703         /* Skip hints are relied on to avoid repeats on the fast search */
1704         if (cc->ignore_skip_hint)
1705                 return pfn;
1706
1707         /*
1708          * If the migrate_pfn is not at the start of a zone or the start
1709          * of a pageblock then assume this is a continuation of a previous
1710          * scan restarted due to COMPACT_CLUSTER_MAX.
1711          */
1712         if (pfn != cc->zone->zone_start_pfn && pfn != pageblock_start_pfn(pfn))
1713                 return pfn;
1714
1715         /*
1716          * For smaller orders, just linearly scan as the number of pages
1717          * to migrate should be relatively small and does not necessarily
1718          * justify freeing up a large block for a small allocation.
1719          */
1720         if (cc->order <= PAGE_ALLOC_COSTLY_ORDER)
1721                 return pfn;
1722
1723         /*
1724          * Only allow kcompactd and direct requests for movable pages to
1725          * quickly clear out a MOVABLE pageblock for allocation. This
1726          * reduces the risk that a large movable pageblock is freed for
1727          * an unmovable/reclaimable small allocation.
1728          */
1729         if (cc->direct_compaction && cc->migratetype != MIGRATE_MOVABLE)
1730                 return pfn;
1731
1732         /*
1733          * When starting the migration scanner, pick any pageblock within the
1734          * first half of the search space. Otherwise try and pick a pageblock
1735          * within the first eighth to reduce the chances that a migration
1736          * target later becomes a source.
1737          */
1738         distance = (cc->free_pfn - cc->migrate_pfn) >> 1;
1739         if (cc->migrate_pfn != cc->zone->zone_start_pfn)
1740                 distance >>= 2;
1741         high_pfn = pageblock_start_pfn(cc->migrate_pfn + distance);
1742
1743         for (order = cc->order - 1;
1744              order >= PAGE_ALLOC_COSTLY_ORDER && !found_block && nr_scanned < limit;
1745              order--) {
1746                 struct free_area *area = &cc->zone->free_area[order];
1747                 struct list_head *freelist;
1748                 unsigned long flags;
1749                 struct page *freepage;
1750
1751                 if (!area->nr_free)
1752                         continue;
1753
1754                 spin_lock_irqsave(&cc->zone->lock, flags);
1755                 freelist = &area->free_list[MIGRATE_MOVABLE];
1756                 list_for_each_entry(freepage, freelist, lru) {
1757                         unsigned long free_pfn;
1758
1759                         if (nr_scanned++ >= limit) {
1760                                 move_freelist_tail(freelist, freepage);
1761                                 break;
1762                         }
1763
1764                         free_pfn = page_to_pfn(freepage);
1765                         if (free_pfn < high_pfn) {
1766                                 /*
1767                                  * Avoid if skipped recently. Ideally it would
1768                                  * move to the tail but even safe iteration of
1769                                  * the list assumes an entry is deleted, not
1770                                  * reordered.
1771                                  */
1772                                 if (get_pageblock_skip(freepage))
1773                                         continue;
1774
1775                                 /* Reorder to so a future search skips recent pages */
1776                                 move_freelist_tail(freelist, freepage);
1777
1778                                 update_fast_start_pfn(cc, free_pfn);
1779                                 pfn = pageblock_start_pfn(free_pfn);
1780                                 cc->fast_search_fail = 0;
1781                                 found_block = true;
1782                                 set_pageblock_skip(freepage);
1783                                 break;
1784                         }
1785                 }
1786                 spin_unlock_irqrestore(&cc->zone->lock, flags);
1787         }
1788
1789         cc->total_migrate_scanned += nr_scanned;
1790
1791         /*
1792          * If fast scanning failed then use a cached entry for a page block
1793          * that had free pages as the basis for starting a linear scan.
1794          */
1795         if (!found_block) {
1796                 cc->fast_search_fail++;
1797                 pfn = reinit_migrate_pfn(cc);
1798         }
1799         return pfn;
1800 }
1801
1802 /*
1803  * Isolate all pages that can be migrated from the first suitable block,
1804  * starting at the block pointed to by the migrate scanner pfn within
1805  * compact_control.
1806  */
1807 static isolate_migrate_t isolate_migratepages(struct compact_control *cc)
1808 {
1809         unsigned long block_start_pfn;
1810         unsigned long block_end_pfn;
1811         unsigned long low_pfn;
1812         struct page *page;
1813         const isolate_mode_t isolate_mode =
1814                 (sysctl_compact_unevictable_allowed ? ISOLATE_UNEVICTABLE : 0) |
1815                 (cc->mode != MIGRATE_SYNC ? ISOLATE_ASYNC_MIGRATE : 0);
1816         bool fast_find_block;
1817
1818         /*
1819          * Start at where we last stopped, or beginning of the zone as
1820          * initialized by compact_zone(). The first failure will use
1821          * the lowest PFN as the starting point for linear scanning.
1822          */
1823         low_pfn = fast_find_migrateblock(cc);
1824         block_start_pfn = pageblock_start_pfn(low_pfn);
1825         if (block_start_pfn < cc->zone->zone_start_pfn)
1826                 block_start_pfn = cc->zone->zone_start_pfn;
1827
1828         /*
1829          * fast_find_migrateblock marks a pageblock skipped so to avoid
1830          * the isolation_suitable check below, check whether the fast
1831          * search was successful.
1832          */
1833         fast_find_block = low_pfn != cc->migrate_pfn && !cc->fast_search_fail;
1834
1835         /* Only scan within a pageblock boundary */
1836         block_end_pfn = pageblock_end_pfn(low_pfn);
1837
1838         /*
1839          * Iterate over whole pageblocks until we find the first suitable.
1840          * Do not cross the free scanner.
1841          */
1842         for (; block_end_pfn <= cc->free_pfn;
1843                         fast_find_block = false,
1844                         low_pfn = block_end_pfn,
1845                         block_start_pfn = block_end_pfn,
1846                         block_end_pfn += pageblock_nr_pages) {
1847
1848                 /*
1849                  * This can potentially iterate a massively long zone with
1850                  * many pageblocks unsuitable, so periodically check if we
1851                  * need to schedule.
1852                  */
1853                 if (!(low_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages)))
1854                         cond_resched();
1855
1856                 page = pageblock_pfn_to_page(block_start_pfn,
1857                                                 block_end_pfn, cc->zone);
1858                 if (!page)
1859                         continue;
1860
1861                 /*
1862                  * If isolation recently failed, do not retry. Only check the
1863                  * pageblock once. COMPACT_CLUSTER_MAX causes a pageblock
1864                  * to be visited multiple times. Assume skip was checked
1865                  * before making it "skip" so other compaction instances do
1866                  * not scan the same block.
1867                  */
1868                 if (IS_ALIGNED(low_pfn, pageblock_nr_pages) &&
1869                     !fast_find_block && !isolation_suitable(cc, page))
1870                         continue;
1871
1872                 /*
1873                  * For async compaction, also only scan in MOVABLE blocks
1874                  * without huge pages. Async compaction is optimistic to see
1875                  * if the minimum amount of work satisfies the allocation.
1876                  * The cached PFN is updated as it's possible that all
1877                  * remaining blocks between source and target are unsuitable
1878                  * and the compaction scanners fail to meet.
1879                  */
1880                 if (!suitable_migration_source(cc, page)) {
1881                         update_cached_migrate(cc, block_end_pfn);
1882                         continue;
1883                 }
1884
1885                 /* Perform the isolation */
1886                 low_pfn = isolate_migratepages_block(cc, low_pfn,
1887                                                 block_end_pfn, isolate_mode);
1888
1889                 if (!low_pfn)
1890                         return ISOLATE_ABORT;
1891
1892                 /*
1893                  * Either we isolated something and proceed with migration. Or
1894                  * we failed and compact_zone should decide if we should
1895                  * continue or not.
1896                  */
1897                 break;
1898         }
1899
1900         /* Record where migration scanner will be restarted. */
1901         cc->migrate_pfn = low_pfn;
1902
1903         return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE;
1904 }
1905
1906 /*
1907  * order == -1 is expected when compacting via
1908  * /proc/sys/vm/compact_memory
1909  */
1910 static inline bool is_via_compact_memory(int order)
1911 {
1912         return order == -1;
1913 }
1914
1915 static bool kswapd_is_running(pg_data_t *pgdat)
1916 {
1917         return pgdat->kswapd && (pgdat->kswapd->state == TASK_RUNNING);
1918 }
1919
1920 /*
1921  * A zone's fragmentation score is the external fragmentation wrt to the
1922  * COMPACTION_HPAGE_ORDER. It returns a value in the range [0, 100].
1923  */
1924 static unsigned int fragmentation_score_zone(struct zone *zone)
1925 {
1926         return extfrag_for_order(zone, COMPACTION_HPAGE_ORDER);
1927 }
1928
1929 /*
1930  * A weighted zone's fragmentation score is the external fragmentation
1931  * wrt to the COMPACTION_HPAGE_ORDER scaled by the zone's size. It
1932  * returns a value in the range [0, 100].
1933  *
1934  * The scaling factor ensures that proactive compaction focuses on larger
1935  * zones like ZONE_NORMAL, rather than smaller, specialized zones like
1936  * ZONE_DMA32. For smaller zones, the score value remains close to zero,
1937  * and thus never exceeds the high threshold for proactive compaction.
1938  */
1939 static unsigned int fragmentation_score_zone_weighted(struct zone *zone)
1940 {
1941         unsigned long score;
1942
1943         score = zone->present_pages * fragmentation_score_zone(zone);
1944         return div64_ul(score, zone->zone_pgdat->node_present_pages + 1);
1945 }
1946
1947 /*
1948  * The per-node proactive (background) compaction process is started by its
1949  * corresponding kcompactd thread when the node's fragmentation score
1950  * exceeds the high threshold. The compaction process remains active till
1951  * the node's score falls below the low threshold, or one of the back-off
1952  * conditions is met.
1953  */
1954 static unsigned int fragmentation_score_node(pg_data_t *pgdat)
1955 {
1956         unsigned int score = 0;
1957         int zoneid;
1958
1959         for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
1960                 struct zone *zone;
1961
1962                 zone = &pgdat->node_zones[zoneid];
1963                 score += fragmentation_score_zone_weighted(zone);
1964         }
1965
1966         return score;
1967 }
1968
1969 static unsigned int fragmentation_score_wmark(pg_data_t *pgdat, bool low)
1970 {
1971         unsigned int wmark_low;
1972
1973         /*
1974          * Cap the low watermak to avoid excessive compaction
1975          * activity in case a user sets the proactivess tunable
1976          * close to 100 (maximum).
1977          */
1978         wmark_low = max(100U - sysctl_compaction_proactiveness, 5U);
1979         return low ? wmark_low : min(wmark_low + 10, 100U);
1980 }
1981
1982 static bool should_proactive_compact_node(pg_data_t *pgdat)
1983 {
1984         int wmark_high;
1985
1986         if (!sysctl_compaction_proactiveness || kswapd_is_running(pgdat))
1987                 return false;
1988
1989         wmark_high = fragmentation_score_wmark(pgdat, false);
1990         return fragmentation_score_node(pgdat) > wmark_high;
1991 }
1992
1993 static enum compact_result __compact_finished(struct compact_control *cc)
1994 {
1995         unsigned int order;
1996         const int migratetype = cc->migratetype;
1997         int ret;
1998
1999         /* Compaction run completes if the migrate and free scanner meet */
2000         if (compact_scanners_met(cc)) {
2001                 /* Let the next compaction start anew. */
2002                 reset_cached_positions(cc->zone);
2003
2004                 /*
2005                  * Mark that the PG_migrate_skip information should be cleared
2006                  * by kswapd when it goes to sleep. kcompactd does not set the
2007                  * flag itself as the decision to be clear should be directly
2008                  * based on an allocation request.
2009                  */
2010                 if (cc->direct_compaction)
2011                         cc->zone->compact_blockskip_flush = true;
2012
2013                 if (cc->whole_zone)
2014                         return COMPACT_COMPLETE;
2015                 else
2016                         return COMPACT_PARTIAL_SKIPPED;
2017         }
2018
2019         if (cc->proactive_compaction) {
2020                 int score, wmark_low;
2021                 pg_data_t *pgdat;
2022
2023                 pgdat = cc->zone->zone_pgdat;
2024                 if (kswapd_is_running(pgdat))
2025                         return COMPACT_PARTIAL_SKIPPED;
2026
2027                 score = fragmentation_score_zone(cc->zone);
2028                 wmark_low = fragmentation_score_wmark(pgdat, true);
2029
2030                 if (score > wmark_low)
2031                         ret = COMPACT_CONTINUE;
2032                 else
2033                         ret = COMPACT_SUCCESS;
2034
2035                 goto out;
2036         }
2037
2038         if (is_via_compact_memory(cc->order))
2039                 return COMPACT_CONTINUE;
2040
2041         /*
2042          * Always finish scanning a pageblock to reduce the possibility of
2043          * fallbacks in the future. This is particularly important when
2044          * migration source is unmovable/reclaimable but it's not worth
2045          * special casing.
2046          */
2047         if (!IS_ALIGNED(cc->migrate_pfn, pageblock_nr_pages))
2048                 return COMPACT_CONTINUE;
2049
2050         /* Direct compactor: Is a suitable page free? */
2051         ret = COMPACT_NO_SUITABLE_PAGE;
2052         for (order = cc->order; order < MAX_ORDER; order++) {
2053                 struct free_area *area = &cc->zone->free_area[order];
2054                 bool can_steal;
2055
2056                 /* Job done if page is free of the right migratetype */
2057                 if (!free_area_empty(area, migratetype))
2058                         return COMPACT_SUCCESS;
2059
2060 #ifdef CONFIG_CMA
2061                 /* MIGRATE_MOVABLE can fallback on MIGRATE_CMA */
2062                 if (migratetype == MIGRATE_MOVABLE &&
2063                         !free_area_empty(area, MIGRATE_CMA))
2064                         return COMPACT_SUCCESS;
2065 #endif
2066                 /*
2067                  * Job done if allocation would steal freepages from
2068                  * other migratetype buddy lists.
2069                  */
2070                 if (find_suitable_fallback(area, order, migratetype,
2071                                                 true, &can_steal) != -1) {
2072
2073                         /* movable pages are OK in any pageblock */
2074                         if (migratetype == MIGRATE_MOVABLE)
2075                                 return COMPACT_SUCCESS;
2076
2077                         /*
2078                          * We are stealing for a non-movable allocation. Make
2079                          * sure we finish compacting the current pageblock
2080                          * first so it is as free as possible and we won't
2081                          * have to steal another one soon. This only applies
2082                          * to sync compaction, as async compaction operates
2083                          * on pageblocks of the same migratetype.
2084                          */
2085                         if (cc->mode == MIGRATE_ASYNC ||
2086                                         IS_ALIGNED(cc->migrate_pfn,
2087                                                         pageblock_nr_pages)) {
2088                                 return COMPACT_SUCCESS;
2089                         }
2090
2091                         ret = COMPACT_CONTINUE;
2092                         break;
2093                 }
2094         }
2095
2096 out:
2097         if (cc->contended || fatal_signal_pending(current))
2098                 ret = COMPACT_CONTENDED;
2099
2100         return ret;
2101 }
2102
2103 static enum compact_result compact_finished(struct compact_control *cc)
2104 {
2105         int ret;
2106
2107         ret = __compact_finished(cc);
2108         trace_mm_compaction_finished(cc->zone, cc->order, ret);
2109         if (ret == COMPACT_NO_SUITABLE_PAGE)
2110                 ret = COMPACT_CONTINUE;
2111
2112         return ret;
2113 }
2114
2115 static enum compact_result __compaction_suitable(struct zone *zone, int order,
2116                                         unsigned int alloc_flags,
2117                                         int highest_zoneidx,
2118                                         unsigned long wmark_target)
2119 {
2120         unsigned long watermark;
2121
2122         if (is_via_compact_memory(order))
2123                 return COMPACT_CONTINUE;
2124
2125         watermark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
2126         /*
2127          * If watermarks for high-order allocation are already met, there
2128          * should be no need for compaction at all.
2129          */
2130         if (zone_watermark_ok(zone, order, watermark, highest_zoneidx,
2131                                                                 alloc_flags))
2132                 return COMPACT_SUCCESS;
2133
2134         /*
2135          * Watermarks for order-0 must be met for compaction to be able to
2136          * isolate free pages for migration targets. This means that the
2137          * watermark and alloc_flags have to match, or be more pessimistic than
2138          * the check in __isolate_free_page(). We don't use the direct
2139          * compactor's alloc_flags, as they are not relevant for freepage
2140          * isolation. We however do use the direct compactor's highest_zoneidx
2141          * to skip over zones where lowmem reserves would prevent allocation
2142          * even if compaction succeeds.
2143          * For costly orders, we require low watermark instead of min for
2144          * compaction to proceed to increase its chances.
2145          * ALLOC_CMA is used, as pages in CMA pageblocks are considered
2146          * suitable migration targets
2147          */
2148         watermark = (order > PAGE_ALLOC_COSTLY_ORDER) ?
2149                                 low_wmark_pages(zone) : min_wmark_pages(zone);
2150         watermark += compact_gap(order);
2151         if (!__zone_watermark_ok(zone, 0, watermark, highest_zoneidx,
2152                                                 ALLOC_CMA, wmark_target))
2153                 return COMPACT_SKIPPED;
2154
2155         return COMPACT_CONTINUE;
2156 }
2157
2158 /*
2159  * compaction_suitable: Is this suitable to run compaction on this zone now?
2160  * Returns
2161  *   COMPACT_SKIPPED  - If there are too few free pages for compaction
2162  *   COMPACT_SUCCESS  - If the allocation would succeed without compaction
2163  *   COMPACT_CONTINUE - If compaction should run now
2164  */
2165 enum compact_result compaction_suitable(struct zone *zone, int order,
2166                                         unsigned int alloc_flags,
2167                                         int highest_zoneidx)
2168 {
2169         enum compact_result ret;
2170         int fragindex;
2171
2172         ret = __compaction_suitable(zone, order, alloc_flags, highest_zoneidx,
2173                                     zone_page_state(zone, NR_FREE_PAGES));
2174         /*
2175          * fragmentation index determines if allocation failures are due to
2176          * low memory or external fragmentation
2177          *
2178          * index of -1000 would imply allocations might succeed depending on
2179          * watermarks, but we already failed the high-order watermark check
2180          * index towards 0 implies failure is due to lack of memory
2181          * index towards 1000 implies failure is due to fragmentation
2182          *
2183          * Only compact if a failure would be due to fragmentation. Also
2184          * ignore fragindex for non-costly orders where the alternative to
2185          * a successful reclaim/compaction is OOM. Fragindex and the
2186          * vm.extfrag_threshold sysctl is meant as a heuristic to prevent
2187          * excessive compaction for costly orders, but it should not be at the
2188          * expense of system stability.
2189          */
2190         if (ret == COMPACT_CONTINUE && (order > PAGE_ALLOC_COSTLY_ORDER)) {
2191                 fragindex = fragmentation_index(zone, order);
2192                 if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold)
2193                         ret = COMPACT_NOT_SUITABLE_ZONE;
2194         }
2195
2196         trace_mm_compaction_suitable(zone, order, ret);
2197         if (ret == COMPACT_NOT_SUITABLE_ZONE)
2198                 ret = COMPACT_SKIPPED;
2199
2200         return ret;
2201 }
2202
2203 bool compaction_zonelist_suitable(struct alloc_context *ac, int order,
2204                 int alloc_flags)
2205 {
2206         struct zone *zone;
2207         struct zoneref *z;
2208
2209         /*
2210          * Make sure at least one zone would pass __compaction_suitable if we continue
2211          * retrying the reclaim.
2212          */
2213         for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2214                                 ac->highest_zoneidx, ac->nodemask) {
2215                 unsigned long available;
2216                 enum compact_result compact_result;
2217
2218                 /*
2219                  * Do not consider all the reclaimable memory because we do not
2220                  * want to trash just for a single high order allocation which
2221                  * is even not guaranteed to appear even if __compaction_suitable
2222                  * is happy about the watermark check.
2223                  */
2224                 available = zone_reclaimable_pages(zone) / order;
2225                 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
2226                 compact_result = __compaction_suitable(zone, order, alloc_flags,
2227                                 ac->highest_zoneidx, available);
2228                 if (compact_result != COMPACT_SKIPPED)
2229                         return true;
2230         }
2231
2232         return false;
2233 }
2234
2235 static enum compact_result
2236 compact_zone(struct compact_control *cc, struct capture_control *capc)
2237 {
2238         enum compact_result ret;
2239         unsigned long start_pfn = cc->zone->zone_start_pfn;
2240         unsigned long end_pfn = zone_end_pfn(cc->zone);
2241         unsigned long last_migrated_pfn;
2242         const bool sync = cc->mode != MIGRATE_ASYNC;
2243         bool update_cached;
2244
2245         /*
2246          * These counters track activities during zone compaction.  Initialize
2247          * them before compacting a new zone.
2248          */
2249         cc->total_migrate_scanned = 0;
2250         cc->total_free_scanned = 0;
2251         cc->nr_migratepages = 0;
2252         cc->nr_freepages = 0;
2253         INIT_LIST_HEAD(&cc->freepages);
2254         INIT_LIST_HEAD(&cc->migratepages);
2255
2256         cc->migratetype = gfp_migratetype(cc->gfp_mask);
2257         ret = compaction_suitable(cc->zone, cc->order, cc->alloc_flags,
2258                                                         cc->highest_zoneidx);
2259         /* Compaction is likely to fail */
2260         if (ret == COMPACT_SUCCESS || ret == COMPACT_SKIPPED)
2261                 return ret;
2262
2263         /* huh, compaction_suitable is returning something unexpected */
2264         VM_BUG_ON(ret != COMPACT_CONTINUE);
2265
2266         /*
2267          * Clear pageblock skip if there were failures recently and compaction
2268          * is about to be retried after being deferred.
2269          */
2270         if (compaction_restarting(cc->zone, cc->order))
2271                 __reset_isolation_suitable(cc->zone);
2272
2273         /*
2274          * Setup to move all movable pages to the end of the zone. Used cached
2275          * information on where the scanners should start (unless we explicitly
2276          * want to compact the whole zone), but check that it is initialised
2277          * by ensuring the values are within zone boundaries.
2278          */
2279         cc->fast_start_pfn = 0;
2280         if (cc->whole_zone) {
2281                 cc->migrate_pfn = start_pfn;
2282                 cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
2283         } else {
2284                 cc->migrate_pfn = cc->zone->compact_cached_migrate_pfn[sync];
2285                 cc->free_pfn = cc->zone->compact_cached_free_pfn;
2286                 if (cc->free_pfn < start_pfn || cc->free_pfn >= end_pfn) {
2287                         cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
2288                         cc->zone->compact_cached_free_pfn = cc->free_pfn;
2289                 }
2290                 if (cc->migrate_pfn < start_pfn || cc->migrate_pfn >= end_pfn) {
2291                         cc->migrate_pfn = start_pfn;
2292                         cc->zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn;
2293                         cc->zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn;
2294                 }
2295
2296                 if (cc->migrate_pfn <= cc->zone->compact_init_migrate_pfn)
2297                         cc->whole_zone = true;
2298         }
2299
2300         last_migrated_pfn = 0;
2301
2302         /*
2303          * Migrate has separate cached PFNs for ASYNC and SYNC* migration on
2304          * the basis that some migrations will fail in ASYNC mode. However,
2305          * if the cached PFNs match and pageblocks are skipped due to having
2306          * no isolation candidates, then the sync state does not matter.
2307          * Until a pageblock with isolation candidates is found, keep the
2308          * cached PFNs in sync to avoid revisiting the same blocks.
2309          */
2310         update_cached = !sync &&
2311                 cc->zone->compact_cached_migrate_pfn[0] == cc->zone->compact_cached_migrate_pfn[1];
2312
2313         trace_mm_compaction_begin(start_pfn, cc->migrate_pfn,
2314                                 cc->free_pfn, end_pfn, sync);
2315
2316         migrate_prep_local();
2317
2318         while ((ret = compact_finished(cc)) == COMPACT_CONTINUE) {
2319                 int err;
2320                 unsigned long iteration_start_pfn = cc->migrate_pfn;
2321
2322                 /*
2323                  * Avoid multiple rescans which can happen if a page cannot be
2324                  * isolated (dirty/writeback in async mode) or if the migrated
2325                  * pages are being allocated before the pageblock is cleared.
2326                  * The first rescan will capture the entire pageblock for
2327                  * migration. If it fails, it'll be marked skip and scanning
2328                  * will proceed as normal.
2329                  */
2330                 cc->rescan = false;
2331                 if (pageblock_start_pfn(last_migrated_pfn) ==
2332                     pageblock_start_pfn(iteration_start_pfn)) {
2333                         cc->rescan = true;
2334                 }
2335
2336                 switch (isolate_migratepages(cc)) {
2337                 case ISOLATE_ABORT:
2338                         ret = COMPACT_CONTENDED;
2339                         putback_movable_pages(&cc->migratepages);
2340                         cc->nr_migratepages = 0;
2341                         goto out;
2342                 case ISOLATE_NONE:
2343                         if (update_cached) {
2344                                 cc->zone->compact_cached_migrate_pfn[1] =
2345                                         cc->zone->compact_cached_migrate_pfn[0];
2346                         }
2347
2348                         /*
2349                          * We haven't isolated and migrated anything, but
2350                          * there might still be unflushed migrations from
2351                          * previous cc->order aligned block.
2352                          */
2353                         goto check_drain;
2354                 case ISOLATE_SUCCESS:
2355                         update_cached = false;
2356                         last_migrated_pfn = iteration_start_pfn;
2357                 }
2358
2359                 err = migrate_pages(&cc->migratepages, compaction_alloc,
2360                                 compaction_free, (unsigned long)cc, cc->mode,
2361                                 MR_COMPACTION);
2362
2363                 trace_mm_compaction_migratepages(cc->nr_migratepages, err,
2364                                                         &cc->migratepages);
2365
2366                 /* All pages were either migrated or will be released */
2367                 cc->nr_migratepages = 0;
2368                 if (err) {
2369                         putback_movable_pages(&cc->migratepages);
2370                         /*
2371                          * migrate_pages() may return -ENOMEM when scanners meet
2372                          * and we want compact_finished() to detect it
2373                          */
2374                         if (err == -ENOMEM && !compact_scanners_met(cc)) {
2375                                 ret = COMPACT_CONTENDED;
2376                                 goto out;
2377                         }
2378                         /*
2379                          * We failed to migrate at least one page in the current
2380                          * order-aligned block, so skip the rest of it.
2381                          */
2382                         if (cc->direct_compaction &&
2383                                                 (cc->mode == MIGRATE_ASYNC)) {
2384                                 cc->migrate_pfn = block_end_pfn(
2385                                                 cc->migrate_pfn - 1, cc->order);
2386                                 /* Draining pcplists is useless in this case */
2387                                 last_migrated_pfn = 0;
2388                         }
2389                 }
2390
2391 check_drain:
2392                 /*
2393                  * Has the migration scanner moved away from the previous
2394                  * cc->order aligned block where we migrated from? If yes,
2395                  * flush the pages that were freed, so that they can merge and
2396                  * compact_finished() can detect immediately if allocation
2397                  * would succeed.
2398                  */
2399                 if (cc->order > 0 && last_migrated_pfn) {
2400                         unsigned long current_block_start =
2401                                 block_start_pfn(cc->migrate_pfn, cc->order);
2402
2403                         if (last_migrated_pfn < current_block_start) {
2404                                 lru_add_drain_cpu_zone(cc->zone);
2405                                 /* No more flushing until we migrate again */
2406                                 last_migrated_pfn = 0;
2407                         }
2408                 }
2409
2410                 /* Stop if a page has been captured */
2411                 if (capc && capc->page) {
2412                         ret = COMPACT_SUCCESS;
2413                         break;
2414                 }
2415         }
2416
2417 out:
2418         /*
2419          * Release free pages and update where the free scanner should restart,
2420          * so we don't leave any returned pages behind in the next attempt.
2421          */
2422         if (cc->nr_freepages > 0) {
2423                 unsigned long free_pfn = release_freepages(&cc->freepages);
2424
2425                 cc->nr_freepages = 0;
2426                 VM_BUG_ON(free_pfn == 0);
2427                 /* The cached pfn is always the first in a pageblock */
2428                 free_pfn = pageblock_start_pfn(free_pfn);
2429                 /*
2430                  * Only go back, not forward. The cached pfn might have been
2431                  * already reset to zone end in compact_finished()
2432                  */
2433                 if (free_pfn > cc->zone->compact_cached_free_pfn)
2434                         cc->zone->compact_cached_free_pfn = free_pfn;
2435         }
2436
2437         count_compact_events(COMPACTMIGRATE_SCANNED, cc->total_migrate_scanned);
2438         count_compact_events(COMPACTFREE_SCANNED, cc->total_free_scanned);
2439
2440         trace_mm_compaction_end(start_pfn, cc->migrate_pfn,
2441                                 cc->free_pfn, end_pfn, sync, ret);
2442
2443         return ret;
2444 }
2445
2446 static enum compact_result compact_zone_order(struct zone *zone, int order,
2447                 gfp_t gfp_mask, enum compact_priority prio,
2448                 unsigned int alloc_flags, int highest_zoneidx,
2449                 struct page **capture)
2450 {
2451         enum compact_result ret;
2452         struct compact_control cc = {
2453                 .order = order,
2454                 .search_order = order,
2455                 .gfp_mask = gfp_mask,
2456                 .zone = zone,
2457                 .mode = (prio == COMPACT_PRIO_ASYNC) ?
2458                                         MIGRATE_ASYNC : MIGRATE_SYNC_LIGHT,
2459                 .alloc_flags = alloc_flags,
2460                 .highest_zoneidx = highest_zoneidx,
2461                 .direct_compaction = true,
2462                 .whole_zone = (prio == MIN_COMPACT_PRIORITY),
2463                 .ignore_skip_hint = (prio == MIN_COMPACT_PRIORITY),
2464                 .ignore_block_suitable = (prio == MIN_COMPACT_PRIORITY)
2465         };
2466         struct capture_control capc = {
2467                 .cc = &cc,
2468                 .page = NULL,
2469         };
2470
2471         /*
2472          * Make sure the structs are really initialized before we expose the
2473          * capture control, in case we are interrupted and the interrupt handler
2474          * frees a page.
2475          */
2476         barrier();
2477         WRITE_ONCE(current->capture_control, &capc);
2478
2479         ret = compact_zone(&cc, &capc);
2480
2481         VM_BUG_ON(!list_empty(&cc.freepages));
2482         VM_BUG_ON(!list_empty(&cc.migratepages));
2483
2484         /*
2485          * Make sure we hide capture control first before we read the captured
2486          * page pointer, otherwise an interrupt could free and capture a page
2487          * and we would leak it.
2488          */
2489         WRITE_ONCE(current->capture_control, NULL);
2490         *capture = READ_ONCE(capc.page);
2491
2492         return ret;
2493 }
2494
2495 int sysctl_extfrag_threshold = 500;
2496
2497 /**
2498  * try_to_compact_pages - Direct compact to satisfy a high-order allocation
2499  * @gfp_mask: The GFP mask of the current allocation
2500  * @order: The order of the current allocation
2501  * @alloc_flags: The allocation flags of the current allocation
2502  * @ac: The context of current allocation
2503  * @prio: Determines how hard direct compaction should try to succeed
2504  * @capture: Pointer to free page created by compaction will be stored here
2505  *
2506  * This is the main entry point for direct page compaction.
2507  */
2508 enum compact_result try_to_compact_pages(gfp_t gfp_mask, unsigned int order,
2509                 unsigned int alloc_flags, const struct alloc_context *ac,
2510                 enum compact_priority prio, struct page **capture)
2511 {
2512         int may_perform_io = gfp_mask & __GFP_IO;
2513         struct zoneref *z;
2514         struct zone *zone;
2515         enum compact_result rc = COMPACT_SKIPPED;
2516
2517         /*
2518          * Check if the GFP flags allow compaction - GFP_NOIO is really
2519          * tricky context because the migration might require IO
2520          */
2521         if (!may_perform_io)
2522                 return COMPACT_SKIPPED;
2523
2524         trace_mm_compaction_try_to_compact_pages(order, gfp_mask, prio);
2525
2526         /* Compact each zone in the list */
2527         for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2528                                         ac->highest_zoneidx, ac->nodemask) {
2529                 enum compact_result status;
2530
2531                 if (prio > MIN_COMPACT_PRIORITY
2532                                         && compaction_deferred(zone, order)) {
2533                         rc = max_t(enum compact_result, COMPACT_DEFERRED, rc);
2534                         continue;
2535                 }
2536
2537                 status = compact_zone_order(zone, order, gfp_mask, prio,
2538                                 alloc_flags, ac->highest_zoneidx, capture);
2539                 rc = max(status, rc);
2540
2541                 /* The allocation should succeed, stop compacting */
2542                 if (status == COMPACT_SUCCESS) {
2543                         /*
2544                          * We think the allocation will succeed in this zone,
2545                          * but it is not certain, hence the false. The caller
2546                          * will repeat this with true if allocation indeed
2547                          * succeeds in this zone.
2548                          */
2549                         compaction_defer_reset(zone, order, false);
2550
2551                         break;
2552                 }
2553
2554                 if (prio != COMPACT_PRIO_ASYNC && (status == COMPACT_COMPLETE ||
2555                                         status == COMPACT_PARTIAL_SKIPPED))
2556                         /*
2557                          * We think that allocation won't succeed in this zone
2558                          * so we defer compaction there. If it ends up
2559                          * succeeding after all, it will be reset.
2560                          */
2561                         defer_compaction(zone, order);
2562
2563                 /*
2564                  * We might have stopped compacting due to need_resched() in
2565                  * async compaction, or due to a fatal signal detected. In that
2566                  * case do not try further zones
2567                  */
2568                 if ((prio == COMPACT_PRIO_ASYNC && need_resched())
2569                                         || fatal_signal_pending(current))
2570                         break;
2571         }
2572
2573         return rc;
2574 }
2575
2576 /*
2577  * Compact all zones within a node till each zone's fragmentation score
2578  * reaches within proactive compaction thresholds (as determined by the
2579  * proactiveness tunable).
2580  *
2581  * It is possible that the function returns before reaching score targets
2582  * due to various back-off conditions, such as, contention on per-node or
2583  * per-zone locks.
2584  */
2585 static void proactive_compact_node(pg_data_t *pgdat)
2586 {
2587         int zoneid;
2588         struct zone *zone;
2589         struct compact_control cc = {
2590                 .order = -1,
2591                 .mode = MIGRATE_SYNC_LIGHT,
2592                 .ignore_skip_hint = true,
2593                 .whole_zone = true,
2594                 .gfp_mask = GFP_KERNEL,
2595                 .proactive_compaction = true,
2596         };
2597
2598         for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
2599                 zone = &pgdat->node_zones[zoneid];
2600                 if (!populated_zone(zone))
2601                         continue;
2602
2603                 cc.zone = zone;
2604
2605                 compact_zone(&cc, NULL);
2606
2607                 VM_BUG_ON(!list_empty(&cc.freepages));
2608                 VM_BUG_ON(!list_empty(&cc.migratepages));
2609         }
2610 }
2611
2612 /* Compact all zones within a node */
2613 static void compact_node(int nid)
2614 {
2615         pg_data_t *pgdat = NODE_DATA(nid);
2616         int zoneid;
2617         struct zone *zone;
2618         struct compact_control cc = {
2619                 .order = -1,
2620                 .mode = MIGRATE_SYNC,
2621                 .ignore_skip_hint = true,
2622                 .whole_zone = true,
2623                 .gfp_mask = GFP_KERNEL,
2624         };
2625
2626
2627         for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
2628
2629                 zone = &pgdat->node_zones[zoneid];
2630                 if (!populated_zone(zone))
2631                         continue;
2632
2633                 cc.zone = zone;
2634
2635                 compact_zone(&cc, NULL);
2636
2637                 VM_BUG_ON(!list_empty(&cc.freepages));
2638                 VM_BUG_ON(!list_empty(&cc.migratepages));
2639         }
2640 }
2641
2642 /* Compact all nodes in the system */
2643 static void compact_nodes(void)
2644 {
2645         int nid;
2646
2647         /* Flush pending updates to the LRU lists */
2648         lru_add_drain_all();
2649
2650         for_each_online_node(nid)
2651                 compact_node(nid);
2652 }
2653
2654 /* The written value is actually unused, all memory is compacted */
2655 int sysctl_compact_memory;
2656
2657 /*
2658  * Tunable for proactive compaction. It determines how
2659  * aggressively the kernel should compact memory in the
2660  * background. It takes values in the range [0, 100].
2661  */
2662 unsigned int __read_mostly sysctl_compaction_proactiveness = 20;
2663
2664 /*
2665  * This is the entry point for compacting all nodes via
2666  * /proc/sys/vm/compact_memory
2667  */
2668 int sysctl_compaction_handler(struct ctl_table *table, int write,
2669                         void *buffer, size_t *length, loff_t *ppos)
2670 {
2671         if (write)
2672                 compact_nodes();
2673
2674         return 0;
2675 }
2676
2677 #if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
2678 static ssize_t sysfs_compact_node(struct device *dev,
2679                         struct device_attribute *attr,
2680                         const char *buf, size_t count)
2681 {
2682         int nid = dev->id;
2683
2684         if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
2685                 /* Flush pending updates to the LRU lists */
2686                 lru_add_drain_all();
2687
2688                 compact_node(nid);
2689         }
2690
2691         return count;
2692 }
2693 static DEVICE_ATTR(compact, 0200, NULL, sysfs_compact_node);
2694
2695 int compaction_register_node(struct node *node)
2696 {
2697         return device_create_file(&node->dev, &dev_attr_compact);
2698 }
2699
2700 void compaction_unregister_node(struct node *node)
2701 {
2702         return device_remove_file(&node->dev, &dev_attr_compact);
2703 }
2704 #endif /* CONFIG_SYSFS && CONFIG_NUMA */
2705
2706 static inline bool kcompactd_work_requested(pg_data_t *pgdat)
2707 {
2708         return pgdat->kcompactd_max_order > 0 || kthread_should_stop();
2709 }
2710
2711 static bool kcompactd_node_suitable(pg_data_t *pgdat)
2712 {
2713         int zoneid;
2714         struct zone *zone;
2715         enum zone_type highest_zoneidx = pgdat->kcompactd_highest_zoneidx;
2716
2717         for (zoneid = 0; zoneid <= highest_zoneidx; zoneid++) {
2718                 zone = &pgdat->node_zones[zoneid];
2719
2720                 if (!populated_zone(zone))
2721                         continue;
2722
2723                 if (compaction_suitable(zone, pgdat->kcompactd_max_order, 0,
2724                                         highest_zoneidx) == COMPACT_CONTINUE)
2725                         return true;
2726         }
2727
2728         return false;
2729 }
2730
2731 static void kcompactd_do_work(pg_data_t *pgdat)
2732 {
2733         /*
2734          * With no special task, compact all zones so that a page of requested
2735          * order is allocatable.
2736          */
2737         int zoneid;
2738         struct zone *zone;
2739         struct compact_control cc = {
2740                 .order = pgdat->kcompactd_max_order,
2741                 .search_order = pgdat->kcompactd_max_order,
2742                 .highest_zoneidx = pgdat->kcompactd_highest_zoneidx,
2743                 .mode = MIGRATE_SYNC_LIGHT,
2744                 .ignore_skip_hint = false,
2745                 .gfp_mask = GFP_KERNEL,
2746         };
2747         trace_mm_compaction_kcompactd_wake(pgdat->node_id, cc.order,
2748                                                         cc.highest_zoneidx);
2749         count_compact_event(KCOMPACTD_WAKE);
2750
2751         for (zoneid = 0; zoneid <= cc.highest_zoneidx; zoneid++) {
2752                 int status;
2753
2754                 zone = &pgdat->node_zones[zoneid];
2755                 if (!populated_zone(zone))
2756                         continue;
2757
2758                 if (compaction_deferred(zone, cc.order))
2759                         continue;
2760
2761                 if (compaction_suitable(zone, cc.order, 0, zoneid) !=
2762                                                         COMPACT_CONTINUE)
2763                         continue;
2764
2765                 if (kthread_should_stop())
2766                         return;
2767
2768                 cc.zone = zone;
2769                 status = compact_zone(&cc, NULL);
2770
2771                 if (status == COMPACT_SUCCESS) {
2772                         compaction_defer_reset(zone, cc.order, false);
2773                 } else if (status == COMPACT_PARTIAL_SKIPPED || status == COMPACT_COMPLETE) {
2774                         /*
2775                          * Buddy pages may become stranded on pcps that could
2776                          * otherwise coalesce on the zone's free area for
2777                          * order >= cc.order.  This is ratelimited by the
2778                          * upcoming deferral.
2779                          */
2780                         drain_all_pages(zone);
2781
2782                         /*
2783                          * We use sync migration mode here, so we defer like
2784                          * sync direct compaction does.
2785                          */
2786                         defer_compaction(zone, cc.order);
2787                 }
2788
2789                 count_compact_events(KCOMPACTD_MIGRATE_SCANNED,
2790                                      cc.total_migrate_scanned);
2791                 count_compact_events(KCOMPACTD_FREE_SCANNED,
2792                                      cc.total_free_scanned);
2793
2794                 VM_BUG_ON(!list_empty(&cc.freepages));
2795                 VM_BUG_ON(!list_empty(&cc.migratepages));
2796         }
2797
2798         /*
2799          * Regardless of success, we are done until woken up next. But remember
2800          * the requested order/highest_zoneidx in case it was higher/tighter
2801          * than our current ones
2802          */
2803         if (pgdat->kcompactd_max_order <= cc.order)
2804                 pgdat->kcompactd_max_order = 0;
2805         if (pgdat->kcompactd_highest_zoneidx >= cc.highest_zoneidx)
2806                 pgdat->kcompactd_highest_zoneidx = pgdat->nr_zones - 1;
2807 }
2808
2809 void wakeup_kcompactd(pg_data_t *pgdat, int order, int highest_zoneidx)
2810 {
2811         if (!order)
2812                 return;
2813
2814         if (pgdat->kcompactd_max_order < order)
2815                 pgdat->kcompactd_max_order = order;
2816
2817         if (pgdat->kcompactd_highest_zoneidx > highest_zoneidx)
2818                 pgdat->kcompactd_highest_zoneidx = highest_zoneidx;
2819
2820         /*
2821          * Pairs with implicit barrier in wait_event_freezable()
2822          * such that wakeups are not missed.
2823          */
2824         if (!wq_has_sleeper(&pgdat->kcompactd_wait))
2825                 return;
2826
2827         if (!kcompactd_node_suitable(pgdat))
2828                 return;
2829
2830         trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, order,
2831                                                         highest_zoneidx);
2832         wake_up_interruptible(&pgdat->kcompactd_wait);
2833 }
2834
2835 /*
2836  * The background compaction daemon, started as a kernel thread
2837  * from the init process.
2838  */
2839 static int kcompactd(void *p)
2840 {
2841         pg_data_t *pgdat = (pg_data_t*)p;
2842         struct task_struct *tsk = current;
2843         unsigned int proactive_defer = 0;
2844
2845         const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2846
2847         if (!cpumask_empty(cpumask))
2848                 set_cpus_allowed_ptr(tsk, cpumask);
2849
2850         set_freezable();
2851
2852         pgdat->kcompactd_max_order = 0;
2853         pgdat->kcompactd_highest_zoneidx = pgdat->nr_zones - 1;
2854
2855         while (!kthread_should_stop()) {
2856                 unsigned long pflags;
2857
2858                 trace_mm_compaction_kcompactd_sleep(pgdat->node_id);
2859                 if (wait_event_freezable_timeout(pgdat->kcompactd_wait,
2860                         kcompactd_work_requested(pgdat),
2861                         msecs_to_jiffies(HPAGE_FRAG_CHECK_INTERVAL_MSEC))) {
2862
2863                         psi_memstall_enter(&pflags);
2864                         kcompactd_do_work(pgdat);
2865                         psi_memstall_leave(&pflags);
2866                         continue;
2867                 }
2868
2869                 /* kcompactd wait timeout */
2870                 if (should_proactive_compact_node(pgdat)) {
2871                         unsigned int prev_score, score;
2872
2873                         if (proactive_defer) {
2874                                 proactive_defer--;
2875                                 continue;
2876                         }
2877                         prev_score = fragmentation_score_node(pgdat);
2878                         proactive_compact_node(pgdat);
2879                         score = fragmentation_score_node(pgdat);
2880                         /*
2881                          * Defer proactive compaction if the fragmentation
2882                          * score did not go down i.e. no progress made.
2883                          */
2884                         proactive_defer = score < prev_score ?
2885                                         0 : 1 << COMPACT_MAX_DEFER_SHIFT;
2886                 }
2887         }
2888
2889         return 0;
2890 }
2891
2892 /*
2893  * This kcompactd start function will be called by init and node-hot-add.
2894  * On node-hot-add, kcompactd will moved to proper cpus if cpus are hot-added.
2895  */
2896 int kcompactd_run(int nid)
2897 {
2898         pg_data_t *pgdat = NODE_DATA(nid);
2899         int ret = 0;
2900
2901         if (pgdat->kcompactd)
2902                 return 0;
2903
2904         pgdat->kcompactd = kthread_run(kcompactd, pgdat, "kcompactd%d", nid);
2905         if (IS_ERR(pgdat->kcompactd)) {
2906                 pr_err("Failed to start kcompactd on node %d\n", nid);
2907                 ret = PTR_ERR(pgdat->kcompactd);
2908                 pgdat->kcompactd = NULL;
2909         }
2910         return ret;
2911 }
2912
2913 /*
2914  * Called by memory hotplug when all memory in a node is offlined. Caller must
2915  * hold mem_hotplug_begin/end().
2916  */
2917 void kcompactd_stop(int nid)
2918 {
2919         struct task_struct *kcompactd = NODE_DATA(nid)->kcompactd;
2920
2921         if (kcompactd) {
2922                 kthread_stop(kcompactd);
2923                 NODE_DATA(nid)->kcompactd = NULL;
2924         }
2925 }
2926
2927 /*
2928  * It's optimal to keep kcompactd on the same CPUs as their memory, but
2929  * not required for correctness. So if the last cpu in a node goes
2930  * away, we get changed to run anywhere: as the first one comes back,
2931  * restore their cpu bindings.
2932  */
2933 static int kcompactd_cpu_online(unsigned int cpu)
2934 {
2935         int nid;
2936
2937         for_each_node_state(nid, N_MEMORY) {
2938                 pg_data_t *pgdat = NODE_DATA(nid);
2939                 const struct cpumask *mask;
2940
2941                 mask = cpumask_of_node(pgdat->node_id);
2942
2943                 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
2944                         /* One of our CPUs online: restore mask */
2945                         set_cpus_allowed_ptr(pgdat->kcompactd, mask);
2946         }
2947         return 0;
2948 }
2949
2950 static int __init kcompactd_init(void)
2951 {
2952         int nid;
2953         int ret;
2954
2955         ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
2956                                         "mm/compaction:online",
2957                                         kcompactd_cpu_online, NULL);
2958         if (ret < 0) {
2959                 pr_err("kcompactd: failed to register hotplug callbacks.\n");
2960                 return ret;
2961         }
2962
2963         for_each_node_state(nid, N_MEMORY)
2964                 kcompactd_run(nid);
2965         return 0;
2966 }
2967 subsys_initcall(kcompactd_init)
2968
2969 #endif /* CONFIG_COMPACTION */