Merge tag 'dmaengine-5.15-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/vkoul...
[platform/kernel/linux-rpi.git] / mm / compaction.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * linux/mm/compaction.c
4  *
5  * Memory compaction for the reduction of external fragmentation. Note that
6  * this heavily depends upon page migration to do all the real heavy
7  * lifting
8  *
9  * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
10  */
11 #include <linux/cpu.h>
12 #include <linux/swap.h>
13 #include <linux/migrate.h>
14 #include <linux/compaction.h>
15 #include <linux/mm_inline.h>
16 #include <linux/sched/signal.h>
17 #include <linux/backing-dev.h>
18 #include <linux/sysctl.h>
19 #include <linux/sysfs.h>
20 #include <linux/page-isolation.h>
21 #include <linux/kasan.h>
22 #include <linux/kthread.h>
23 #include <linux/freezer.h>
24 #include <linux/page_owner.h>
25 #include <linux/psi.h>
26 #include "internal.h"
27
28 #ifdef CONFIG_COMPACTION
29 static inline void count_compact_event(enum vm_event_item item)
30 {
31         count_vm_event(item);
32 }
33
34 static inline void count_compact_events(enum vm_event_item item, long delta)
35 {
36         count_vm_events(item, delta);
37 }
38 #else
39 #define count_compact_event(item) do { } while (0)
40 #define count_compact_events(item, delta) do { } while (0)
41 #endif
42
43 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
44
45 #define CREATE_TRACE_POINTS
46 #include <trace/events/compaction.h>
47
48 #define block_start_pfn(pfn, order)     round_down(pfn, 1UL << (order))
49 #define block_end_pfn(pfn, order)       ALIGN((pfn) + 1, 1UL << (order))
50 #define pageblock_start_pfn(pfn)        block_start_pfn(pfn, pageblock_order)
51 #define pageblock_end_pfn(pfn)          block_end_pfn(pfn, pageblock_order)
52
53 /*
54  * Fragmentation score check interval for proactive compaction purposes.
55  */
56 static const unsigned int HPAGE_FRAG_CHECK_INTERVAL_MSEC = 500;
57
58 /*
59  * Page order with-respect-to which proactive compaction
60  * calculates external fragmentation, which is used as
61  * the "fragmentation score" of a node/zone.
62  */
63 #if defined CONFIG_TRANSPARENT_HUGEPAGE
64 #define COMPACTION_HPAGE_ORDER  HPAGE_PMD_ORDER
65 #elif defined CONFIG_HUGETLBFS
66 #define COMPACTION_HPAGE_ORDER  HUGETLB_PAGE_ORDER
67 #else
68 #define COMPACTION_HPAGE_ORDER  (PMD_SHIFT - PAGE_SHIFT)
69 #endif
70
71 static unsigned long release_freepages(struct list_head *freelist)
72 {
73         struct page *page, *next;
74         unsigned long high_pfn = 0;
75
76         list_for_each_entry_safe(page, next, freelist, lru) {
77                 unsigned long pfn = page_to_pfn(page);
78                 list_del(&page->lru);
79                 __free_page(page);
80                 if (pfn > high_pfn)
81                         high_pfn = pfn;
82         }
83
84         return high_pfn;
85 }
86
87 static void split_map_pages(struct list_head *list)
88 {
89         unsigned int i, order, nr_pages;
90         struct page *page, *next;
91         LIST_HEAD(tmp_list);
92
93         list_for_each_entry_safe(page, next, list, lru) {
94                 list_del(&page->lru);
95
96                 order = page_private(page);
97                 nr_pages = 1 << order;
98
99                 post_alloc_hook(page, order, __GFP_MOVABLE);
100                 if (order)
101                         split_page(page, order);
102
103                 for (i = 0; i < nr_pages; i++) {
104                         list_add(&page->lru, &tmp_list);
105                         page++;
106                 }
107         }
108
109         list_splice(&tmp_list, list);
110 }
111
112 #ifdef CONFIG_COMPACTION
113
114 int PageMovable(struct page *page)
115 {
116         struct address_space *mapping;
117
118         VM_BUG_ON_PAGE(!PageLocked(page), page);
119         if (!__PageMovable(page))
120                 return 0;
121
122         mapping = page_mapping(page);
123         if (mapping && mapping->a_ops && mapping->a_ops->isolate_page)
124                 return 1;
125
126         return 0;
127 }
128 EXPORT_SYMBOL(PageMovable);
129
130 void __SetPageMovable(struct page *page, struct address_space *mapping)
131 {
132         VM_BUG_ON_PAGE(!PageLocked(page), page);
133         VM_BUG_ON_PAGE((unsigned long)mapping & PAGE_MAPPING_MOVABLE, page);
134         page->mapping = (void *)((unsigned long)mapping | PAGE_MAPPING_MOVABLE);
135 }
136 EXPORT_SYMBOL(__SetPageMovable);
137
138 void __ClearPageMovable(struct page *page)
139 {
140         VM_BUG_ON_PAGE(!PageMovable(page), page);
141         /*
142          * Clear registered address_space val with keeping PAGE_MAPPING_MOVABLE
143          * flag so that VM can catch up released page by driver after isolation.
144          * With it, VM migration doesn't try to put it back.
145          */
146         page->mapping = (void *)((unsigned long)page->mapping &
147                                 PAGE_MAPPING_MOVABLE);
148 }
149 EXPORT_SYMBOL(__ClearPageMovable);
150
151 /* Do not skip compaction more than 64 times */
152 #define COMPACT_MAX_DEFER_SHIFT 6
153
154 /*
155  * Compaction is deferred when compaction fails to result in a page
156  * allocation success. 1 << compact_defer_shift, compactions are skipped up
157  * to a limit of 1 << COMPACT_MAX_DEFER_SHIFT
158  */
159 static void defer_compaction(struct zone *zone, int order)
160 {
161         zone->compact_considered = 0;
162         zone->compact_defer_shift++;
163
164         if (order < zone->compact_order_failed)
165                 zone->compact_order_failed = order;
166
167         if (zone->compact_defer_shift > COMPACT_MAX_DEFER_SHIFT)
168                 zone->compact_defer_shift = COMPACT_MAX_DEFER_SHIFT;
169
170         trace_mm_compaction_defer_compaction(zone, order);
171 }
172
173 /* Returns true if compaction should be skipped this time */
174 static bool compaction_deferred(struct zone *zone, int order)
175 {
176         unsigned long defer_limit = 1UL << zone->compact_defer_shift;
177
178         if (order < zone->compact_order_failed)
179                 return false;
180
181         /* Avoid possible overflow */
182         if (++zone->compact_considered >= defer_limit) {
183                 zone->compact_considered = defer_limit;
184                 return false;
185         }
186
187         trace_mm_compaction_deferred(zone, order);
188
189         return true;
190 }
191
192 /*
193  * Update defer tracking counters after successful compaction of given order,
194  * which means an allocation either succeeded (alloc_success == true) or is
195  * expected to succeed.
196  */
197 void compaction_defer_reset(struct zone *zone, int order,
198                 bool alloc_success)
199 {
200         if (alloc_success) {
201                 zone->compact_considered = 0;
202                 zone->compact_defer_shift = 0;
203         }
204         if (order >= zone->compact_order_failed)
205                 zone->compact_order_failed = order + 1;
206
207         trace_mm_compaction_defer_reset(zone, order);
208 }
209
210 /* Returns true if restarting compaction after many failures */
211 static bool compaction_restarting(struct zone *zone, int order)
212 {
213         if (order < zone->compact_order_failed)
214                 return false;
215
216         return zone->compact_defer_shift == COMPACT_MAX_DEFER_SHIFT &&
217                 zone->compact_considered >= 1UL << zone->compact_defer_shift;
218 }
219
220 /* Returns true if the pageblock should be scanned for pages to isolate. */
221 static inline bool isolation_suitable(struct compact_control *cc,
222                                         struct page *page)
223 {
224         if (cc->ignore_skip_hint)
225                 return true;
226
227         return !get_pageblock_skip(page);
228 }
229
230 static void reset_cached_positions(struct zone *zone)
231 {
232         zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn;
233         zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn;
234         zone->compact_cached_free_pfn =
235                                 pageblock_start_pfn(zone_end_pfn(zone) - 1);
236 }
237
238 /*
239  * Compound pages of >= pageblock_order should consistently be skipped until
240  * released. It is always pointless to compact pages of such order (if they are
241  * migratable), and the pageblocks they occupy cannot contain any free pages.
242  */
243 static bool pageblock_skip_persistent(struct page *page)
244 {
245         if (!PageCompound(page))
246                 return false;
247
248         page = compound_head(page);
249
250         if (compound_order(page) >= pageblock_order)
251                 return true;
252
253         return false;
254 }
255
256 static bool
257 __reset_isolation_pfn(struct zone *zone, unsigned long pfn, bool check_source,
258                                                         bool check_target)
259 {
260         struct page *page = pfn_to_online_page(pfn);
261         struct page *block_page;
262         struct page *end_page;
263         unsigned long block_pfn;
264
265         if (!page)
266                 return false;
267         if (zone != page_zone(page))
268                 return false;
269         if (pageblock_skip_persistent(page))
270                 return false;
271
272         /*
273          * If skip is already cleared do no further checking once the
274          * restart points have been set.
275          */
276         if (check_source && check_target && !get_pageblock_skip(page))
277                 return true;
278
279         /*
280          * If clearing skip for the target scanner, do not select a
281          * non-movable pageblock as the starting point.
282          */
283         if (!check_source && check_target &&
284             get_pageblock_migratetype(page) != MIGRATE_MOVABLE)
285                 return false;
286
287         /* Ensure the start of the pageblock or zone is online and valid */
288         block_pfn = pageblock_start_pfn(pfn);
289         block_pfn = max(block_pfn, zone->zone_start_pfn);
290         block_page = pfn_to_online_page(block_pfn);
291         if (block_page) {
292                 page = block_page;
293                 pfn = block_pfn;
294         }
295
296         /* Ensure the end of the pageblock or zone is online and valid */
297         block_pfn = pageblock_end_pfn(pfn) - 1;
298         block_pfn = min(block_pfn, zone_end_pfn(zone) - 1);
299         end_page = pfn_to_online_page(block_pfn);
300         if (!end_page)
301                 return false;
302
303         /*
304          * Only clear the hint if a sample indicates there is either a
305          * free page or an LRU page in the block. One or other condition
306          * is necessary for the block to be a migration source/target.
307          */
308         do {
309                 if (check_source && PageLRU(page)) {
310                         clear_pageblock_skip(page);
311                         return true;
312                 }
313
314                 if (check_target && PageBuddy(page)) {
315                         clear_pageblock_skip(page);
316                         return true;
317                 }
318
319                 page += (1 << PAGE_ALLOC_COSTLY_ORDER);
320                 pfn += (1 << PAGE_ALLOC_COSTLY_ORDER);
321         } while (page <= end_page);
322
323         return false;
324 }
325
326 /*
327  * This function is called to clear all cached information on pageblocks that
328  * should be skipped for page isolation when the migrate and free page scanner
329  * meet.
330  */
331 static void __reset_isolation_suitable(struct zone *zone)
332 {
333         unsigned long migrate_pfn = zone->zone_start_pfn;
334         unsigned long free_pfn = zone_end_pfn(zone) - 1;
335         unsigned long reset_migrate = free_pfn;
336         unsigned long reset_free = migrate_pfn;
337         bool source_set = false;
338         bool free_set = false;
339
340         if (!zone->compact_blockskip_flush)
341                 return;
342
343         zone->compact_blockskip_flush = false;
344
345         /*
346          * Walk the zone and update pageblock skip information. Source looks
347          * for PageLRU while target looks for PageBuddy. When the scanner
348          * is found, both PageBuddy and PageLRU are checked as the pageblock
349          * is suitable as both source and target.
350          */
351         for (; migrate_pfn < free_pfn; migrate_pfn += pageblock_nr_pages,
352                                         free_pfn -= pageblock_nr_pages) {
353                 cond_resched();
354
355                 /* Update the migrate PFN */
356                 if (__reset_isolation_pfn(zone, migrate_pfn, true, source_set) &&
357                     migrate_pfn < reset_migrate) {
358                         source_set = true;
359                         reset_migrate = migrate_pfn;
360                         zone->compact_init_migrate_pfn = reset_migrate;
361                         zone->compact_cached_migrate_pfn[0] = reset_migrate;
362                         zone->compact_cached_migrate_pfn[1] = reset_migrate;
363                 }
364
365                 /* Update the free PFN */
366                 if (__reset_isolation_pfn(zone, free_pfn, free_set, true) &&
367                     free_pfn > reset_free) {
368                         free_set = true;
369                         reset_free = free_pfn;
370                         zone->compact_init_free_pfn = reset_free;
371                         zone->compact_cached_free_pfn = reset_free;
372                 }
373         }
374
375         /* Leave no distance if no suitable block was reset */
376         if (reset_migrate >= reset_free) {
377                 zone->compact_cached_migrate_pfn[0] = migrate_pfn;
378                 zone->compact_cached_migrate_pfn[1] = migrate_pfn;
379                 zone->compact_cached_free_pfn = free_pfn;
380         }
381 }
382
383 void reset_isolation_suitable(pg_data_t *pgdat)
384 {
385         int zoneid;
386
387         for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
388                 struct zone *zone = &pgdat->node_zones[zoneid];
389                 if (!populated_zone(zone))
390                         continue;
391
392                 /* Only flush if a full compaction finished recently */
393                 if (zone->compact_blockskip_flush)
394                         __reset_isolation_suitable(zone);
395         }
396 }
397
398 /*
399  * Sets the pageblock skip bit if it was clear. Note that this is a hint as
400  * locks are not required for read/writers. Returns true if it was already set.
401  */
402 static bool test_and_set_skip(struct compact_control *cc, struct page *page,
403                                                         unsigned long pfn)
404 {
405         bool skip;
406
407         /* Do no update if skip hint is being ignored */
408         if (cc->ignore_skip_hint)
409                 return false;
410
411         if (!IS_ALIGNED(pfn, pageblock_nr_pages))
412                 return false;
413
414         skip = get_pageblock_skip(page);
415         if (!skip && !cc->no_set_skip_hint)
416                 set_pageblock_skip(page);
417
418         return skip;
419 }
420
421 static void update_cached_migrate(struct compact_control *cc, unsigned long pfn)
422 {
423         struct zone *zone = cc->zone;
424
425         pfn = pageblock_end_pfn(pfn);
426
427         /* Set for isolation rather than compaction */
428         if (cc->no_set_skip_hint)
429                 return;
430
431         if (pfn > zone->compact_cached_migrate_pfn[0])
432                 zone->compact_cached_migrate_pfn[0] = pfn;
433         if (cc->mode != MIGRATE_ASYNC &&
434             pfn > zone->compact_cached_migrate_pfn[1])
435                 zone->compact_cached_migrate_pfn[1] = pfn;
436 }
437
438 /*
439  * If no pages were isolated then mark this pageblock to be skipped in the
440  * future. The information is later cleared by __reset_isolation_suitable().
441  */
442 static void update_pageblock_skip(struct compact_control *cc,
443                         struct page *page, unsigned long pfn)
444 {
445         struct zone *zone = cc->zone;
446
447         if (cc->no_set_skip_hint)
448                 return;
449
450         if (!page)
451                 return;
452
453         set_pageblock_skip(page);
454
455         /* Update where async and sync compaction should restart */
456         if (pfn < zone->compact_cached_free_pfn)
457                 zone->compact_cached_free_pfn = pfn;
458 }
459 #else
460 static inline bool isolation_suitable(struct compact_control *cc,
461                                         struct page *page)
462 {
463         return true;
464 }
465
466 static inline bool pageblock_skip_persistent(struct page *page)
467 {
468         return false;
469 }
470
471 static inline void update_pageblock_skip(struct compact_control *cc,
472                         struct page *page, unsigned long pfn)
473 {
474 }
475
476 static void update_cached_migrate(struct compact_control *cc, unsigned long pfn)
477 {
478 }
479
480 static bool test_and_set_skip(struct compact_control *cc, struct page *page,
481                                                         unsigned long pfn)
482 {
483         return false;
484 }
485 #endif /* CONFIG_COMPACTION */
486
487 /*
488  * Compaction requires the taking of some coarse locks that are potentially
489  * very heavily contended. For async compaction, trylock and record if the
490  * lock is contended. The lock will still be acquired but compaction will
491  * abort when the current block is finished regardless of success rate.
492  * Sync compaction acquires the lock.
493  *
494  * Always returns true which makes it easier to track lock state in callers.
495  */
496 static bool compact_lock_irqsave(spinlock_t *lock, unsigned long *flags,
497                                                 struct compact_control *cc)
498         __acquires(lock)
499 {
500         /* Track if the lock is contended in async mode */
501         if (cc->mode == MIGRATE_ASYNC && !cc->contended) {
502                 if (spin_trylock_irqsave(lock, *flags))
503                         return true;
504
505                 cc->contended = true;
506         }
507
508         spin_lock_irqsave(lock, *flags);
509         return true;
510 }
511
512 /*
513  * Compaction requires the taking of some coarse locks that are potentially
514  * very heavily contended. The lock should be periodically unlocked to avoid
515  * having disabled IRQs for a long time, even when there is nobody waiting on
516  * the lock. It might also be that allowing the IRQs will result in
517  * need_resched() becoming true. If scheduling is needed, async compaction
518  * aborts. Sync compaction schedules.
519  * Either compaction type will also abort if a fatal signal is pending.
520  * In either case if the lock was locked, it is dropped and not regained.
521  *
522  * Returns true if compaction should abort due to fatal signal pending, or
523  *              async compaction due to need_resched()
524  * Returns false when compaction can continue (sync compaction might have
525  *              scheduled)
526  */
527 static bool compact_unlock_should_abort(spinlock_t *lock,
528                 unsigned long flags, bool *locked, struct compact_control *cc)
529 {
530         if (*locked) {
531                 spin_unlock_irqrestore(lock, flags);
532                 *locked = false;
533         }
534
535         if (fatal_signal_pending(current)) {
536                 cc->contended = true;
537                 return true;
538         }
539
540         cond_resched();
541
542         return false;
543 }
544
545 /*
546  * Isolate free pages onto a private freelist. If @strict is true, will abort
547  * returning 0 on any invalid PFNs or non-free pages inside of the pageblock
548  * (even though it may still end up isolating some pages).
549  */
550 static unsigned long isolate_freepages_block(struct compact_control *cc,
551                                 unsigned long *start_pfn,
552                                 unsigned long end_pfn,
553                                 struct list_head *freelist,
554                                 unsigned int stride,
555                                 bool strict)
556 {
557         int nr_scanned = 0, total_isolated = 0;
558         struct page *cursor;
559         unsigned long flags = 0;
560         bool locked = false;
561         unsigned long blockpfn = *start_pfn;
562         unsigned int order;
563
564         /* Strict mode is for isolation, speed is secondary */
565         if (strict)
566                 stride = 1;
567
568         cursor = pfn_to_page(blockpfn);
569
570         /* Isolate free pages. */
571         for (; blockpfn < end_pfn; blockpfn += stride, cursor += stride) {
572                 int isolated;
573                 struct page *page = cursor;
574
575                 /*
576                  * Periodically drop the lock (if held) regardless of its
577                  * contention, to give chance to IRQs. Abort if fatal signal
578                  * pending or async compaction detects need_resched()
579                  */
580                 if (!(blockpfn % SWAP_CLUSTER_MAX)
581                     && compact_unlock_should_abort(&cc->zone->lock, flags,
582                                                                 &locked, cc))
583                         break;
584
585                 nr_scanned++;
586
587                 /*
588                  * For compound pages such as THP and hugetlbfs, we can save
589                  * potentially a lot of iterations if we skip them at once.
590                  * The check is racy, but we can consider only valid values
591                  * and the only danger is skipping too much.
592                  */
593                 if (PageCompound(page)) {
594                         const unsigned int order = compound_order(page);
595
596                         if (likely(order < MAX_ORDER)) {
597                                 blockpfn += (1UL << order) - 1;
598                                 cursor += (1UL << order) - 1;
599                         }
600                         goto isolate_fail;
601                 }
602
603                 if (!PageBuddy(page))
604                         goto isolate_fail;
605
606                 /*
607                  * If we already hold the lock, we can skip some rechecking.
608                  * Note that if we hold the lock now, checked_pageblock was
609                  * already set in some previous iteration (or strict is true),
610                  * so it is correct to skip the suitable migration target
611                  * recheck as well.
612                  */
613                 if (!locked) {
614                         locked = compact_lock_irqsave(&cc->zone->lock,
615                                                                 &flags, cc);
616
617                         /* Recheck this is a buddy page under lock */
618                         if (!PageBuddy(page))
619                                 goto isolate_fail;
620                 }
621
622                 /* Found a free page, will break it into order-0 pages */
623                 order = buddy_order(page);
624                 isolated = __isolate_free_page(page, order);
625                 if (!isolated)
626                         break;
627                 set_page_private(page, order);
628
629                 total_isolated += isolated;
630                 cc->nr_freepages += isolated;
631                 list_add_tail(&page->lru, freelist);
632
633                 if (!strict && cc->nr_migratepages <= cc->nr_freepages) {
634                         blockpfn += isolated;
635                         break;
636                 }
637                 /* Advance to the end of split page */
638                 blockpfn += isolated - 1;
639                 cursor += isolated - 1;
640                 continue;
641
642 isolate_fail:
643                 if (strict)
644                         break;
645                 else
646                         continue;
647
648         }
649
650         if (locked)
651                 spin_unlock_irqrestore(&cc->zone->lock, flags);
652
653         /*
654          * There is a tiny chance that we have read bogus compound_order(),
655          * so be careful to not go outside of the pageblock.
656          */
657         if (unlikely(blockpfn > end_pfn))
658                 blockpfn = end_pfn;
659
660         trace_mm_compaction_isolate_freepages(*start_pfn, blockpfn,
661                                         nr_scanned, total_isolated);
662
663         /* Record how far we have got within the block */
664         *start_pfn = blockpfn;
665
666         /*
667          * If strict isolation is requested by CMA then check that all the
668          * pages requested were isolated. If there were any failures, 0 is
669          * returned and CMA will fail.
670          */
671         if (strict && blockpfn < end_pfn)
672                 total_isolated = 0;
673
674         cc->total_free_scanned += nr_scanned;
675         if (total_isolated)
676                 count_compact_events(COMPACTISOLATED, total_isolated);
677         return total_isolated;
678 }
679
680 /**
681  * isolate_freepages_range() - isolate free pages.
682  * @cc:        Compaction control structure.
683  * @start_pfn: The first PFN to start isolating.
684  * @end_pfn:   The one-past-last PFN.
685  *
686  * Non-free pages, invalid PFNs, or zone boundaries within the
687  * [start_pfn, end_pfn) range are considered errors, cause function to
688  * undo its actions and return zero.
689  *
690  * Otherwise, function returns one-past-the-last PFN of isolated page
691  * (which may be greater then end_pfn if end fell in a middle of
692  * a free page).
693  */
694 unsigned long
695 isolate_freepages_range(struct compact_control *cc,
696                         unsigned long start_pfn, unsigned long end_pfn)
697 {
698         unsigned long isolated, pfn, block_start_pfn, block_end_pfn;
699         LIST_HEAD(freelist);
700
701         pfn = start_pfn;
702         block_start_pfn = pageblock_start_pfn(pfn);
703         if (block_start_pfn < cc->zone->zone_start_pfn)
704                 block_start_pfn = cc->zone->zone_start_pfn;
705         block_end_pfn = pageblock_end_pfn(pfn);
706
707         for (; pfn < end_pfn; pfn += isolated,
708                                 block_start_pfn = block_end_pfn,
709                                 block_end_pfn += pageblock_nr_pages) {
710                 /* Protect pfn from changing by isolate_freepages_block */
711                 unsigned long isolate_start_pfn = pfn;
712
713                 block_end_pfn = min(block_end_pfn, end_pfn);
714
715                 /*
716                  * pfn could pass the block_end_pfn if isolated freepage
717                  * is more than pageblock order. In this case, we adjust
718                  * scanning range to right one.
719                  */
720                 if (pfn >= block_end_pfn) {
721                         block_start_pfn = pageblock_start_pfn(pfn);
722                         block_end_pfn = pageblock_end_pfn(pfn);
723                         block_end_pfn = min(block_end_pfn, end_pfn);
724                 }
725
726                 if (!pageblock_pfn_to_page(block_start_pfn,
727                                         block_end_pfn, cc->zone))
728                         break;
729
730                 isolated = isolate_freepages_block(cc, &isolate_start_pfn,
731                                         block_end_pfn, &freelist, 0, true);
732
733                 /*
734                  * In strict mode, isolate_freepages_block() returns 0 if
735                  * there are any holes in the block (ie. invalid PFNs or
736                  * non-free pages).
737                  */
738                 if (!isolated)
739                         break;
740
741                 /*
742                  * If we managed to isolate pages, it is always (1 << n) *
743                  * pageblock_nr_pages for some non-negative n.  (Max order
744                  * page may span two pageblocks).
745                  */
746         }
747
748         /* __isolate_free_page() does not map the pages */
749         split_map_pages(&freelist);
750
751         if (pfn < end_pfn) {
752                 /* Loop terminated early, cleanup. */
753                 release_freepages(&freelist);
754                 return 0;
755         }
756
757         /* We don't use freelists for anything. */
758         return pfn;
759 }
760
761 /* Similar to reclaim, but different enough that they don't share logic */
762 static bool too_many_isolated(pg_data_t *pgdat)
763 {
764         unsigned long active, inactive, isolated;
765
766         inactive = node_page_state(pgdat, NR_INACTIVE_FILE) +
767                         node_page_state(pgdat, NR_INACTIVE_ANON);
768         active = node_page_state(pgdat, NR_ACTIVE_FILE) +
769                         node_page_state(pgdat, NR_ACTIVE_ANON);
770         isolated = node_page_state(pgdat, NR_ISOLATED_FILE) +
771                         node_page_state(pgdat, NR_ISOLATED_ANON);
772
773         return isolated > (inactive + active) / 2;
774 }
775
776 /**
777  * isolate_migratepages_block() - isolate all migrate-able pages within
778  *                                a single pageblock
779  * @cc:         Compaction control structure.
780  * @low_pfn:    The first PFN to isolate
781  * @end_pfn:    The one-past-the-last PFN to isolate, within same pageblock
782  * @isolate_mode: Isolation mode to be used.
783  *
784  * Isolate all pages that can be migrated from the range specified by
785  * [low_pfn, end_pfn). The range is expected to be within same pageblock.
786  * Returns errno, like -EAGAIN or -EINTR in case e.g signal pending or congestion,
787  * -ENOMEM in case we could not allocate a page, or 0.
788  * cc->migrate_pfn will contain the next pfn to scan.
789  *
790  * The pages are isolated on cc->migratepages list (not required to be empty),
791  * and cc->nr_migratepages is updated accordingly.
792  */
793 static int
794 isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn,
795                         unsigned long end_pfn, isolate_mode_t isolate_mode)
796 {
797         pg_data_t *pgdat = cc->zone->zone_pgdat;
798         unsigned long nr_scanned = 0, nr_isolated = 0;
799         struct lruvec *lruvec;
800         unsigned long flags = 0;
801         struct lruvec *locked = NULL;
802         struct page *page = NULL, *valid_page = NULL;
803         unsigned long start_pfn = low_pfn;
804         bool skip_on_failure = false;
805         unsigned long next_skip_pfn = 0;
806         bool skip_updated = false;
807         int ret = 0;
808
809         cc->migrate_pfn = low_pfn;
810
811         /*
812          * Ensure that there are not too many pages isolated from the LRU
813          * list by either parallel reclaimers or compaction. If there are,
814          * delay for some time until fewer pages are isolated
815          */
816         while (unlikely(too_many_isolated(pgdat))) {
817                 /* stop isolation if there are still pages not migrated */
818                 if (cc->nr_migratepages)
819                         return -EAGAIN;
820
821                 /* async migration should just abort */
822                 if (cc->mode == MIGRATE_ASYNC)
823                         return -EAGAIN;
824
825                 congestion_wait(BLK_RW_ASYNC, HZ/10);
826
827                 if (fatal_signal_pending(current))
828                         return -EINTR;
829         }
830
831         cond_resched();
832
833         if (cc->direct_compaction && (cc->mode == MIGRATE_ASYNC)) {
834                 skip_on_failure = true;
835                 next_skip_pfn = block_end_pfn(low_pfn, cc->order);
836         }
837
838         /* Time to isolate some pages for migration */
839         for (; low_pfn < end_pfn; low_pfn++) {
840
841                 if (skip_on_failure && low_pfn >= next_skip_pfn) {
842                         /*
843                          * We have isolated all migration candidates in the
844                          * previous order-aligned block, and did not skip it due
845                          * to failure. We should migrate the pages now and
846                          * hopefully succeed compaction.
847                          */
848                         if (nr_isolated)
849                                 break;
850
851                         /*
852                          * We failed to isolate in the previous order-aligned
853                          * block. Set the new boundary to the end of the
854                          * current block. Note we can't simply increase
855                          * next_skip_pfn by 1 << order, as low_pfn might have
856                          * been incremented by a higher number due to skipping
857                          * a compound or a high-order buddy page in the
858                          * previous loop iteration.
859                          */
860                         next_skip_pfn = block_end_pfn(low_pfn, cc->order);
861                 }
862
863                 /*
864                  * Periodically drop the lock (if held) regardless of its
865                  * contention, to give chance to IRQs. Abort completely if
866                  * a fatal signal is pending.
867                  */
868                 if (!(low_pfn % SWAP_CLUSTER_MAX)) {
869                         if (locked) {
870                                 unlock_page_lruvec_irqrestore(locked, flags);
871                                 locked = NULL;
872                         }
873
874                         if (fatal_signal_pending(current)) {
875                                 cc->contended = true;
876                                 ret = -EINTR;
877
878                                 goto fatal_pending;
879                         }
880
881                         cond_resched();
882                 }
883
884                 nr_scanned++;
885
886                 page = pfn_to_page(low_pfn);
887
888                 /*
889                  * Check if the pageblock has already been marked skipped.
890                  * Only the aligned PFN is checked as the caller isolates
891                  * COMPACT_CLUSTER_MAX at a time so the second call must
892                  * not falsely conclude that the block should be skipped.
893                  */
894                 if (!valid_page && IS_ALIGNED(low_pfn, pageblock_nr_pages)) {
895                         if (!cc->ignore_skip_hint && get_pageblock_skip(page)) {
896                                 low_pfn = end_pfn;
897                                 page = NULL;
898                                 goto isolate_abort;
899                         }
900                         valid_page = page;
901                 }
902
903                 if (PageHuge(page) && cc->alloc_contig) {
904                         ret = isolate_or_dissolve_huge_page(page, &cc->migratepages);
905
906                         /*
907                          * Fail isolation in case isolate_or_dissolve_huge_page()
908                          * reports an error. In case of -ENOMEM, abort right away.
909                          */
910                         if (ret < 0) {
911                                  /* Do not report -EBUSY down the chain */
912                                 if (ret == -EBUSY)
913                                         ret = 0;
914                                 low_pfn += (1UL << compound_order(page)) - 1;
915                                 goto isolate_fail;
916                         }
917
918                         if (PageHuge(page)) {
919                                 /*
920                                  * Hugepage was successfully isolated and placed
921                                  * on the cc->migratepages list.
922                                  */
923                                 low_pfn += compound_nr(page) - 1;
924                                 goto isolate_success_no_list;
925                         }
926
927                         /*
928                          * Ok, the hugepage was dissolved. Now these pages are
929                          * Buddy and cannot be re-allocated because they are
930                          * isolated. Fall-through as the check below handles
931                          * Buddy pages.
932                          */
933                 }
934
935                 /*
936                  * Skip if free. We read page order here without zone lock
937                  * which is generally unsafe, but the race window is small and
938                  * the worst thing that can happen is that we skip some
939                  * potential isolation targets.
940                  */
941                 if (PageBuddy(page)) {
942                         unsigned long freepage_order = buddy_order_unsafe(page);
943
944                         /*
945                          * Without lock, we cannot be sure that what we got is
946                          * a valid page order. Consider only values in the
947                          * valid order range to prevent low_pfn overflow.
948                          */
949                         if (freepage_order > 0 && freepage_order < MAX_ORDER)
950                                 low_pfn += (1UL << freepage_order) - 1;
951                         continue;
952                 }
953
954                 /*
955                  * Regardless of being on LRU, compound pages such as THP and
956                  * hugetlbfs are not to be compacted unless we are attempting
957                  * an allocation much larger than the huge page size (eg CMA).
958                  * We can potentially save a lot of iterations if we skip them
959                  * at once. The check is racy, but we can consider only valid
960                  * values and the only danger is skipping too much.
961                  */
962                 if (PageCompound(page) && !cc->alloc_contig) {
963                         const unsigned int order = compound_order(page);
964
965                         if (likely(order < MAX_ORDER))
966                                 low_pfn += (1UL << order) - 1;
967                         goto isolate_fail;
968                 }
969
970                 /*
971                  * Check may be lockless but that's ok as we recheck later.
972                  * It's possible to migrate LRU and non-lru movable pages.
973                  * Skip any other type of page
974                  */
975                 if (!PageLRU(page)) {
976                         /*
977                          * __PageMovable can return false positive so we need
978                          * to verify it under page_lock.
979                          */
980                         if (unlikely(__PageMovable(page)) &&
981                                         !PageIsolated(page)) {
982                                 if (locked) {
983                                         unlock_page_lruvec_irqrestore(locked, flags);
984                                         locked = NULL;
985                                 }
986
987                                 if (!isolate_movable_page(page, isolate_mode))
988                                         goto isolate_success;
989                         }
990
991                         goto isolate_fail;
992                 }
993
994                 /*
995                  * Migration will fail if an anonymous page is pinned in memory,
996                  * so avoid taking lru_lock and isolating it unnecessarily in an
997                  * admittedly racy check.
998                  */
999                 if (!page_mapping(page) &&
1000                     page_count(page) > page_mapcount(page))
1001                         goto isolate_fail;
1002
1003                 /*
1004                  * Only allow to migrate anonymous pages in GFP_NOFS context
1005                  * because those do not depend on fs locks.
1006                  */
1007                 if (!(cc->gfp_mask & __GFP_FS) && page_mapping(page))
1008                         goto isolate_fail;
1009
1010                 /*
1011                  * Be careful not to clear PageLRU until after we're
1012                  * sure the page is not being freed elsewhere -- the
1013                  * page release code relies on it.
1014                  */
1015                 if (unlikely(!get_page_unless_zero(page)))
1016                         goto isolate_fail;
1017
1018                 if (!__isolate_lru_page_prepare(page, isolate_mode))
1019                         goto isolate_fail_put;
1020
1021                 /* Try isolate the page */
1022                 if (!TestClearPageLRU(page))
1023                         goto isolate_fail_put;
1024
1025                 lruvec = mem_cgroup_page_lruvec(page);
1026
1027                 /* If we already hold the lock, we can skip some rechecking */
1028                 if (lruvec != locked) {
1029                         if (locked)
1030                                 unlock_page_lruvec_irqrestore(locked, flags);
1031
1032                         compact_lock_irqsave(&lruvec->lru_lock, &flags, cc);
1033                         locked = lruvec;
1034
1035                         lruvec_memcg_debug(lruvec, page);
1036
1037                         /* Try get exclusive access under lock */
1038                         if (!skip_updated) {
1039                                 skip_updated = true;
1040                                 if (test_and_set_skip(cc, page, low_pfn))
1041                                         goto isolate_abort;
1042                         }
1043
1044                         /*
1045                          * Page become compound since the non-locked check,
1046                          * and it's on LRU. It can only be a THP so the order
1047                          * is safe to read and it's 0 for tail pages.
1048                          */
1049                         if (unlikely(PageCompound(page) && !cc->alloc_contig)) {
1050                                 low_pfn += compound_nr(page) - 1;
1051                                 SetPageLRU(page);
1052                                 goto isolate_fail_put;
1053                         }
1054                 }
1055
1056                 /* The whole page is taken off the LRU; skip the tail pages. */
1057                 if (PageCompound(page))
1058                         low_pfn += compound_nr(page) - 1;
1059
1060                 /* Successfully isolated */
1061                 del_page_from_lru_list(page, lruvec);
1062                 mod_node_page_state(page_pgdat(page),
1063                                 NR_ISOLATED_ANON + page_is_file_lru(page),
1064                                 thp_nr_pages(page));
1065
1066 isolate_success:
1067                 list_add(&page->lru, &cc->migratepages);
1068 isolate_success_no_list:
1069                 cc->nr_migratepages += compound_nr(page);
1070                 nr_isolated += compound_nr(page);
1071
1072                 /*
1073                  * Avoid isolating too much unless this block is being
1074                  * rescanned (e.g. dirty/writeback pages, parallel allocation)
1075                  * or a lock is contended. For contention, isolate quickly to
1076                  * potentially remove one source of contention.
1077                  */
1078                 if (cc->nr_migratepages >= COMPACT_CLUSTER_MAX &&
1079                     !cc->rescan && !cc->contended) {
1080                         ++low_pfn;
1081                         break;
1082                 }
1083
1084                 continue;
1085
1086 isolate_fail_put:
1087                 /* Avoid potential deadlock in freeing page under lru_lock */
1088                 if (locked) {
1089                         unlock_page_lruvec_irqrestore(locked, flags);
1090                         locked = NULL;
1091                 }
1092                 put_page(page);
1093
1094 isolate_fail:
1095                 if (!skip_on_failure && ret != -ENOMEM)
1096                         continue;
1097
1098                 /*
1099                  * We have isolated some pages, but then failed. Release them
1100                  * instead of migrating, as we cannot form the cc->order buddy
1101                  * page anyway.
1102                  */
1103                 if (nr_isolated) {
1104                         if (locked) {
1105                                 unlock_page_lruvec_irqrestore(locked, flags);
1106                                 locked = NULL;
1107                         }
1108                         putback_movable_pages(&cc->migratepages);
1109                         cc->nr_migratepages = 0;
1110                         nr_isolated = 0;
1111                 }
1112
1113                 if (low_pfn < next_skip_pfn) {
1114                         low_pfn = next_skip_pfn - 1;
1115                         /*
1116                          * The check near the loop beginning would have updated
1117                          * next_skip_pfn too, but this is a bit simpler.
1118                          */
1119                         next_skip_pfn += 1UL << cc->order;
1120                 }
1121
1122                 if (ret == -ENOMEM)
1123                         break;
1124         }
1125
1126         /*
1127          * The PageBuddy() check could have potentially brought us outside
1128          * the range to be scanned.
1129          */
1130         if (unlikely(low_pfn > end_pfn))
1131                 low_pfn = end_pfn;
1132
1133         page = NULL;
1134
1135 isolate_abort:
1136         if (locked)
1137                 unlock_page_lruvec_irqrestore(locked, flags);
1138         if (page) {
1139                 SetPageLRU(page);
1140                 put_page(page);
1141         }
1142
1143         /*
1144          * Updated the cached scanner pfn once the pageblock has been scanned
1145          * Pages will either be migrated in which case there is no point
1146          * scanning in the near future or migration failed in which case the
1147          * failure reason may persist. The block is marked for skipping if
1148          * there were no pages isolated in the block or if the block is
1149          * rescanned twice in a row.
1150          */
1151         if (low_pfn == end_pfn && (!nr_isolated || cc->rescan)) {
1152                 if (valid_page && !skip_updated)
1153                         set_pageblock_skip(valid_page);
1154                 update_cached_migrate(cc, low_pfn);
1155         }
1156
1157         trace_mm_compaction_isolate_migratepages(start_pfn, low_pfn,
1158                                                 nr_scanned, nr_isolated);
1159
1160 fatal_pending:
1161         cc->total_migrate_scanned += nr_scanned;
1162         if (nr_isolated)
1163                 count_compact_events(COMPACTISOLATED, nr_isolated);
1164
1165         cc->migrate_pfn = low_pfn;
1166
1167         return ret;
1168 }
1169
1170 /**
1171  * isolate_migratepages_range() - isolate migrate-able pages in a PFN range
1172  * @cc:        Compaction control structure.
1173  * @start_pfn: The first PFN to start isolating.
1174  * @end_pfn:   The one-past-last PFN.
1175  *
1176  * Returns -EAGAIN when contented, -EINTR in case of a signal pending, -ENOMEM
1177  * in case we could not allocate a page, or 0.
1178  */
1179 int
1180 isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn,
1181                                                         unsigned long end_pfn)
1182 {
1183         unsigned long pfn, block_start_pfn, block_end_pfn;
1184         int ret = 0;
1185
1186         /* Scan block by block. First and last block may be incomplete */
1187         pfn = start_pfn;
1188         block_start_pfn = pageblock_start_pfn(pfn);
1189         if (block_start_pfn < cc->zone->zone_start_pfn)
1190                 block_start_pfn = cc->zone->zone_start_pfn;
1191         block_end_pfn = pageblock_end_pfn(pfn);
1192
1193         for (; pfn < end_pfn; pfn = block_end_pfn,
1194                                 block_start_pfn = block_end_pfn,
1195                                 block_end_pfn += pageblock_nr_pages) {
1196
1197                 block_end_pfn = min(block_end_pfn, end_pfn);
1198
1199                 if (!pageblock_pfn_to_page(block_start_pfn,
1200                                         block_end_pfn, cc->zone))
1201                         continue;
1202
1203                 ret = isolate_migratepages_block(cc, pfn, block_end_pfn,
1204                                                  ISOLATE_UNEVICTABLE);
1205
1206                 if (ret)
1207                         break;
1208
1209                 if (cc->nr_migratepages >= COMPACT_CLUSTER_MAX)
1210                         break;
1211         }
1212
1213         return ret;
1214 }
1215
1216 #endif /* CONFIG_COMPACTION || CONFIG_CMA */
1217 #ifdef CONFIG_COMPACTION
1218
1219 static bool suitable_migration_source(struct compact_control *cc,
1220                                                         struct page *page)
1221 {
1222         int block_mt;
1223
1224         if (pageblock_skip_persistent(page))
1225                 return false;
1226
1227         if ((cc->mode != MIGRATE_ASYNC) || !cc->direct_compaction)
1228                 return true;
1229
1230         block_mt = get_pageblock_migratetype(page);
1231
1232         if (cc->migratetype == MIGRATE_MOVABLE)
1233                 return is_migrate_movable(block_mt);
1234         else
1235                 return block_mt == cc->migratetype;
1236 }
1237
1238 /* Returns true if the page is within a block suitable for migration to */
1239 static bool suitable_migration_target(struct compact_control *cc,
1240                                                         struct page *page)
1241 {
1242         /* If the page is a large free page, then disallow migration */
1243         if (PageBuddy(page)) {
1244                 /*
1245                  * We are checking page_order without zone->lock taken. But
1246                  * the only small danger is that we skip a potentially suitable
1247                  * pageblock, so it's not worth to check order for valid range.
1248                  */
1249                 if (buddy_order_unsafe(page) >= pageblock_order)
1250                         return false;
1251         }
1252
1253         if (cc->ignore_block_suitable)
1254                 return true;
1255
1256         /* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
1257         if (is_migrate_movable(get_pageblock_migratetype(page)))
1258                 return true;
1259
1260         /* Otherwise skip the block */
1261         return false;
1262 }
1263
1264 static inline unsigned int
1265 freelist_scan_limit(struct compact_control *cc)
1266 {
1267         unsigned short shift = BITS_PER_LONG - 1;
1268
1269         return (COMPACT_CLUSTER_MAX >> min(shift, cc->fast_search_fail)) + 1;
1270 }
1271
1272 /*
1273  * Test whether the free scanner has reached the same or lower pageblock than
1274  * the migration scanner, and compaction should thus terminate.
1275  */
1276 static inline bool compact_scanners_met(struct compact_control *cc)
1277 {
1278         return (cc->free_pfn >> pageblock_order)
1279                 <= (cc->migrate_pfn >> pageblock_order);
1280 }
1281
1282 /*
1283  * Used when scanning for a suitable migration target which scans freelists
1284  * in reverse. Reorders the list such as the unscanned pages are scanned
1285  * first on the next iteration of the free scanner
1286  */
1287 static void
1288 move_freelist_head(struct list_head *freelist, struct page *freepage)
1289 {
1290         LIST_HEAD(sublist);
1291
1292         if (!list_is_last(freelist, &freepage->lru)) {
1293                 list_cut_before(&sublist, freelist, &freepage->lru);
1294                 list_splice_tail(&sublist, freelist);
1295         }
1296 }
1297
1298 /*
1299  * Similar to move_freelist_head except used by the migration scanner
1300  * when scanning forward. It's possible for these list operations to
1301  * move against each other if they search the free list exactly in
1302  * lockstep.
1303  */
1304 static void
1305 move_freelist_tail(struct list_head *freelist, struct page *freepage)
1306 {
1307         LIST_HEAD(sublist);
1308
1309         if (!list_is_first(freelist, &freepage->lru)) {
1310                 list_cut_position(&sublist, freelist, &freepage->lru);
1311                 list_splice_tail(&sublist, freelist);
1312         }
1313 }
1314
1315 static void
1316 fast_isolate_around(struct compact_control *cc, unsigned long pfn, unsigned long nr_isolated)
1317 {
1318         unsigned long start_pfn, end_pfn;
1319         struct page *page;
1320
1321         /* Do not search around if there are enough pages already */
1322         if (cc->nr_freepages >= cc->nr_migratepages)
1323                 return;
1324
1325         /* Minimise scanning during async compaction */
1326         if (cc->direct_compaction && cc->mode == MIGRATE_ASYNC)
1327                 return;
1328
1329         /* Pageblock boundaries */
1330         start_pfn = max(pageblock_start_pfn(pfn), cc->zone->zone_start_pfn);
1331         end_pfn = min(pageblock_end_pfn(pfn), zone_end_pfn(cc->zone));
1332
1333         page = pageblock_pfn_to_page(start_pfn, end_pfn, cc->zone);
1334         if (!page)
1335                 return;
1336
1337         /* Scan before */
1338         if (start_pfn != pfn) {
1339                 isolate_freepages_block(cc, &start_pfn, pfn, &cc->freepages, 1, false);
1340                 if (cc->nr_freepages >= cc->nr_migratepages)
1341                         return;
1342         }
1343
1344         /* Scan after */
1345         start_pfn = pfn + nr_isolated;
1346         if (start_pfn < end_pfn)
1347                 isolate_freepages_block(cc, &start_pfn, end_pfn, &cc->freepages, 1, false);
1348
1349         /* Skip this pageblock in the future as it's full or nearly full */
1350         if (cc->nr_freepages < cc->nr_migratepages)
1351                 set_pageblock_skip(page);
1352 }
1353
1354 /* Search orders in round-robin fashion */
1355 static int next_search_order(struct compact_control *cc, int order)
1356 {
1357         order--;
1358         if (order < 0)
1359                 order = cc->order - 1;
1360
1361         /* Search wrapped around? */
1362         if (order == cc->search_order) {
1363                 cc->search_order--;
1364                 if (cc->search_order < 0)
1365                         cc->search_order = cc->order - 1;
1366                 return -1;
1367         }
1368
1369         return order;
1370 }
1371
1372 static unsigned long
1373 fast_isolate_freepages(struct compact_control *cc)
1374 {
1375         unsigned int limit = max(1U, freelist_scan_limit(cc) >> 1);
1376         unsigned int nr_scanned = 0;
1377         unsigned long low_pfn, min_pfn, highest = 0;
1378         unsigned long nr_isolated = 0;
1379         unsigned long distance;
1380         struct page *page = NULL;
1381         bool scan_start = false;
1382         int order;
1383
1384         /* Full compaction passes in a negative order */
1385         if (cc->order <= 0)
1386                 return cc->free_pfn;
1387
1388         /*
1389          * If starting the scan, use a deeper search and use the highest
1390          * PFN found if a suitable one is not found.
1391          */
1392         if (cc->free_pfn >= cc->zone->compact_init_free_pfn) {
1393                 limit = pageblock_nr_pages >> 1;
1394                 scan_start = true;
1395         }
1396
1397         /*
1398          * Preferred point is in the top quarter of the scan space but take
1399          * a pfn from the top half if the search is problematic.
1400          */
1401         distance = (cc->free_pfn - cc->migrate_pfn);
1402         low_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 2));
1403         min_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 1));
1404
1405         if (WARN_ON_ONCE(min_pfn > low_pfn))
1406                 low_pfn = min_pfn;
1407
1408         /*
1409          * Search starts from the last successful isolation order or the next
1410          * order to search after a previous failure
1411          */
1412         cc->search_order = min_t(unsigned int, cc->order - 1, cc->search_order);
1413
1414         for (order = cc->search_order;
1415              !page && order >= 0;
1416              order = next_search_order(cc, order)) {
1417                 struct free_area *area = &cc->zone->free_area[order];
1418                 struct list_head *freelist;
1419                 struct page *freepage;
1420                 unsigned long flags;
1421                 unsigned int order_scanned = 0;
1422                 unsigned long high_pfn = 0;
1423
1424                 if (!area->nr_free)
1425                         continue;
1426
1427                 spin_lock_irqsave(&cc->zone->lock, flags);
1428                 freelist = &area->free_list[MIGRATE_MOVABLE];
1429                 list_for_each_entry_reverse(freepage, freelist, lru) {
1430                         unsigned long pfn;
1431
1432                         order_scanned++;
1433                         nr_scanned++;
1434                         pfn = page_to_pfn(freepage);
1435
1436                         if (pfn >= highest)
1437                                 highest = max(pageblock_start_pfn(pfn),
1438                                               cc->zone->zone_start_pfn);
1439
1440                         if (pfn >= low_pfn) {
1441                                 cc->fast_search_fail = 0;
1442                                 cc->search_order = order;
1443                                 page = freepage;
1444                                 break;
1445                         }
1446
1447                         if (pfn >= min_pfn && pfn > high_pfn) {
1448                                 high_pfn = pfn;
1449
1450                                 /* Shorten the scan if a candidate is found */
1451                                 limit >>= 1;
1452                         }
1453
1454                         if (order_scanned >= limit)
1455                                 break;
1456                 }
1457
1458                 /* Use a minimum pfn if a preferred one was not found */
1459                 if (!page && high_pfn) {
1460                         page = pfn_to_page(high_pfn);
1461
1462                         /* Update freepage for the list reorder below */
1463                         freepage = page;
1464                 }
1465
1466                 /* Reorder to so a future search skips recent pages */
1467                 move_freelist_head(freelist, freepage);
1468
1469                 /* Isolate the page if available */
1470                 if (page) {
1471                         if (__isolate_free_page(page, order)) {
1472                                 set_page_private(page, order);
1473                                 nr_isolated = 1 << order;
1474                                 cc->nr_freepages += nr_isolated;
1475                                 list_add_tail(&page->lru, &cc->freepages);
1476                                 count_compact_events(COMPACTISOLATED, nr_isolated);
1477                         } else {
1478                                 /* If isolation fails, abort the search */
1479                                 order = cc->search_order + 1;
1480                                 page = NULL;
1481                         }
1482                 }
1483
1484                 spin_unlock_irqrestore(&cc->zone->lock, flags);
1485
1486                 /*
1487                  * Smaller scan on next order so the total scan is related
1488                  * to freelist_scan_limit.
1489                  */
1490                 if (order_scanned >= limit)
1491                         limit = max(1U, limit >> 1);
1492         }
1493
1494         if (!page) {
1495                 cc->fast_search_fail++;
1496                 if (scan_start) {
1497                         /*
1498                          * Use the highest PFN found above min. If one was
1499                          * not found, be pessimistic for direct compaction
1500                          * and use the min mark.
1501                          */
1502                         if (highest) {
1503                                 page = pfn_to_page(highest);
1504                                 cc->free_pfn = highest;
1505                         } else {
1506                                 if (cc->direct_compaction && pfn_valid(min_pfn)) {
1507                                         page = pageblock_pfn_to_page(min_pfn,
1508                                                 min(pageblock_end_pfn(min_pfn),
1509                                                     zone_end_pfn(cc->zone)),
1510                                                 cc->zone);
1511                                         cc->free_pfn = min_pfn;
1512                                 }
1513                         }
1514                 }
1515         }
1516
1517         if (highest && highest >= cc->zone->compact_cached_free_pfn) {
1518                 highest -= pageblock_nr_pages;
1519                 cc->zone->compact_cached_free_pfn = highest;
1520         }
1521
1522         cc->total_free_scanned += nr_scanned;
1523         if (!page)
1524                 return cc->free_pfn;
1525
1526         low_pfn = page_to_pfn(page);
1527         fast_isolate_around(cc, low_pfn, nr_isolated);
1528         return low_pfn;
1529 }
1530
1531 /*
1532  * Based on information in the current compact_control, find blocks
1533  * suitable for isolating free pages from and then isolate them.
1534  */
1535 static void isolate_freepages(struct compact_control *cc)
1536 {
1537         struct zone *zone = cc->zone;
1538         struct page *page;
1539         unsigned long block_start_pfn;  /* start of current pageblock */
1540         unsigned long isolate_start_pfn; /* exact pfn we start at */
1541         unsigned long block_end_pfn;    /* end of current pageblock */
1542         unsigned long low_pfn;       /* lowest pfn scanner is able to scan */
1543         struct list_head *freelist = &cc->freepages;
1544         unsigned int stride;
1545
1546         /* Try a small search of the free lists for a candidate */
1547         isolate_start_pfn = fast_isolate_freepages(cc);
1548         if (cc->nr_freepages)
1549                 goto splitmap;
1550
1551         /*
1552          * Initialise the free scanner. The starting point is where we last
1553          * successfully isolated from, zone-cached value, or the end of the
1554          * zone when isolating for the first time. For looping we also need
1555          * this pfn aligned down to the pageblock boundary, because we do
1556          * block_start_pfn -= pageblock_nr_pages in the for loop.
1557          * For ending point, take care when isolating in last pageblock of a
1558          * zone which ends in the middle of a pageblock.
1559          * The low boundary is the end of the pageblock the migration scanner
1560          * is using.
1561          */
1562         isolate_start_pfn = cc->free_pfn;
1563         block_start_pfn = pageblock_start_pfn(isolate_start_pfn);
1564         block_end_pfn = min(block_start_pfn + pageblock_nr_pages,
1565                                                 zone_end_pfn(zone));
1566         low_pfn = pageblock_end_pfn(cc->migrate_pfn);
1567         stride = cc->mode == MIGRATE_ASYNC ? COMPACT_CLUSTER_MAX : 1;
1568
1569         /*
1570          * Isolate free pages until enough are available to migrate the
1571          * pages on cc->migratepages. We stop searching if the migrate
1572          * and free page scanners meet or enough free pages are isolated.
1573          */
1574         for (; block_start_pfn >= low_pfn;
1575                                 block_end_pfn = block_start_pfn,
1576                                 block_start_pfn -= pageblock_nr_pages,
1577                                 isolate_start_pfn = block_start_pfn) {
1578                 unsigned long nr_isolated;
1579
1580                 /*
1581                  * This can iterate a massively long zone without finding any
1582                  * suitable migration targets, so periodically check resched.
1583                  */
1584                 if (!(block_start_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages)))
1585                         cond_resched();
1586
1587                 page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
1588                                                                         zone);
1589                 if (!page)
1590                         continue;
1591
1592                 /* Check the block is suitable for migration */
1593                 if (!suitable_migration_target(cc, page))
1594                         continue;
1595
1596                 /* If isolation recently failed, do not retry */
1597                 if (!isolation_suitable(cc, page))
1598                         continue;
1599
1600                 /* Found a block suitable for isolating free pages from. */
1601                 nr_isolated = isolate_freepages_block(cc, &isolate_start_pfn,
1602                                         block_end_pfn, freelist, stride, false);
1603
1604                 /* Update the skip hint if the full pageblock was scanned */
1605                 if (isolate_start_pfn == block_end_pfn)
1606                         update_pageblock_skip(cc, page, block_start_pfn);
1607
1608                 /* Are enough freepages isolated? */
1609                 if (cc->nr_freepages >= cc->nr_migratepages) {
1610                         if (isolate_start_pfn >= block_end_pfn) {
1611                                 /*
1612                                  * Restart at previous pageblock if more
1613                                  * freepages can be isolated next time.
1614                                  */
1615                                 isolate_start_pfn =
1616                                         block_start_pfn - pageblock_nr_pages;
1617                         }
1618                         break;
1619                 } else if (isolate_start_pfn < block_end_pfn) {
1620                         /*
1621                          * If isolation failed early, do not continue
1622                          * needlessly.
1623                          */
1624                         break;
1625                 }
1626
1627                 /* Adjust stride depending on isolation */
1628                 if (nr_isolated) {
1629                         stride = 1;
1630                         continue;
1631                 }
1632                 stride = min_t(unsigned int, COMPACT_CLUSTER_MAX, stride << 1);
1633         }
1634
1635         /*
1636          * Record where the free scanner will restart next time. Either we
1637          * broke from the loop and set isolate_start_pfn based on the last
1638          * call to isolate_freepages_block(), or we met the migration scanner
1639          * and the loop terminated due to isolate_start_pfn < low_pfn
1640          */
1641         cc->free_pfn = isolate_start_pfn;
1642
1643 splitmap:
1644         /* __isolate_free_page() does not map the pages */
1645         split_map_pages(freelist);
1646 }
1647
1648 /*
1649  * This is a migrate-callback that "allocates" freepages by taking pages
1650  * from the isolated freelists in the block we are migrating to.
1651  */
1652 static struct page *compaction_alloc(struct page *migratepage,
1653                                         unsigned long data)
1654 {
1655         struct compact_control *cc = (struct compact_control *)data;
1656         struct page *freepage;
1657
1658         if (list_empty(&cc->freepages)) {
1659                 isolate_freepages(cc);
1660
1661                 if (list_empty(&cc->freepages))
1662                         return NULL;
1663         }
1664
1665         freepage = list_entry(cc->freepages.next, struct page, lru);
1666         list_del(&freepage->lru);
1667         cc->nr_freepages--;
1668
1669         return freepage;
1670 }
1671
1672 /*
1673  * This is a migrate-callback that "frees" freepages back to the isolated
1674  * freelist.  All pages on the freelist are from the same zone, so there is no
1675  * special handling needed for NUMA.
1676  */
1677 static void compaction_free(struct page *page, unsigned long data)
1678 {
1679         struct compact_control *cc = (struct compact_control *)data;
1680
1681         list_add(&page->lru, &cc->freepages);
1682         cc->nr_freepages++;
1683 }
1684
1685 /* possible outcome of isolate_migratepages */
1686 typedef enum {
1687         ISOLATE_ABORT,          /* Abort compaction now */
1688         ISOLATE_NONE,           /* No pages isolated, continue scanning */
1689         ISOLATE_SUCCESS,        /* Pages isolated, migrate */
1690 } isolate_migrate_t;
1691
1692 /*
1693  * Allow userspace to control policy on scanning the unevictable LRU for
1694  * compactable pages.
1695  */
1696 #ifdef CONFIG_PREEMPT_RT
1697 int sysctl_compact_unevictable_allowed __read_mostly = 0;
1698 #else
1699 int sysctl_compact_unevictable_allowed __read_mostly = 1;
1700 #endif
1701
1702 static inline void
1703 update_fast_start_pfn(struct compact_control *cc, unsigned long pfn)
1704 {
1705         if (cc->fast_start_pfn == ULONG_MAX)
1706                 return;
1707
1708         if (!cc->fast_start_pfn)
1709                 cc->fast_start_pfn = pfn;
1710
1711         cc->fast_start_pfn = min(cc->fast_start_pfn, pfn);
1712 }
1713
1714 static inline unsigned long
1715 reinit_migrate_pfn(struct compact_control *cc)
1716 {
1717         if (!cc->fast_start_pfn || cc->fast_start_pfn == ULONG_MAX)
1718                 return cc->migrate_pfn;
1719
1720         cc->migrate_pfn = cc->fast_start_pfn;
1721         cc->fast_start_pfn = ULONG_MAX;
1722
1723         return cc->migrate_pfn;
1724 }
1725
1726 /*
1727  * Briefly search the free lists for a migration source that already has
1728  * some free pages to reduce the number of pages that need migration
1729  * before a pageblock is free.
1730  */
1731 static unsigned long fast_find_migrateblock(struct compact_control *cc)
1732 {
1733         unsigned int limit = freelist_scan_limit(cc);
1734         unsigned int nr_scanned = 0;
1735         unsigned long distance;
1736         unsigned long pfn = cc->migrate_pfn;
1737         unsigned long high_pfn;
1738         int order;
1739         bool found_block = false;
1740
1741         /* Skip hints are relied on to avoid repeats on the fast search */
1742         if (cc->ignore_skip_hint)
1743                 return pfn;
1744
1745         /*
1746          * If the migrate_pfn is not at the start of a zone or the start
1747          * of a pageblock then assume this is a continuation of a previous
1748          * scan restarted due to COMPACT_CLUSTER_MAX.
1749          */
1750         if (pfn != cc->zone->zone_start_pfn && pfn != pageblock_start_pfn(pfn))
1751                 return pfn;
1752
1753         /*
1754          * For smaller orders, just linearly scan as the number of pages
1755          * to migrate should be relatively small and does not necessarily
1756          * justify freeing up a large block for a small allocation.
1757          */
1758         if (cc->order <= PAGE_ALLOC_COSTLY_ORDER)
1759                 return pfn;
1760
1761         /*
1762          * Only allow kcompactd and direct requests for movable pages to
1763          * quickly clear out a MOVABLE pageblock for allocation. This
1764          * reduces the risk that a large movable pageblock is freed for
1765          * an unmovable/reclaimable small allocation.
1766          */
1767         if (cc->direct_compaction && cc->migratetype != MIGRATE_MOVABLE)
1768                 return pfn;
1769
1770         /*
1771          * When starting the migration scanner, pick any pageblock within the
1772          * first half of the search space. Otherwise try and pick a pageblock
1773          * within the first eighth to reduce the chances that a migration
1774          * target later becomes a source.
1775          */
1776         distance = (cc->free_pfn - cc->migrate_pfn) >> 1;
1777         if (cc->migrate_pfn != cc->zone->zone_start_pfn)
1778                 distance >>= 2;
1779         high_pfn = pageblock_start_pfn(cc->migrate_pfn + distance);
1780
1781         for (order = cc->order - 1;
1782              order >= PAGE_ALLOC_COSTLY_ORDER && !found_block && nr_scanned < limit;
1783              order--) {
1784                 struct free_area *area = &cc->zone->free_area[order];
1785                 struct list_head *freelist;
1786                 unsigned long flags;
1787                 struct page *freepage;
1788
1789                 if (!area->nr_free)
1790                         continue;
1791
1792                 spin_lock_irqsave(&cc->zone->lock, flags);
1793                 freelist = &area->free_list[MIGRATE_MOVABLE];
1794                 list_for_each_entry(freepage, freelist, lru) {
1795                         unsigned long free_pfn;
1796
1797                         if (nr_scanned++ >= limit) {
1798                                 move_freelist_tail(freelist, freepage);
1799                                 break;
1800                         }
1801
1802                         free_pfn = page_to_pfn(freepage);
1803                         if (free_pfn < high_pfn) {
1804                                 /*
1805                                  * Avoid if skipped recently. Ideally it would
1806                                  * move to the tail but even safe iteration of
1807                                  * the list assumes an entry is deleted, not
1808                                  * reordered.
1809                                  */
1810                                 if (get_pageblock_skip(freepage))
1811                                         continue;
1812
1813                                 /* Reorder to so a future search skips recent pages */
1814                                 move_freelist_tail(freelist, freepage);
1815
1816                                 update_fast_start_pfn(cc, free_pfn);
1817                                 pfn = pageblock_start_pfn(free_pfn);
1818                                 cc->fast_search_fail = 0;
1819                                 found_block = true;
1820                                 set_pageblock_skip(freepage);
1821                                 break;
1822                         }
1823                 }
1824                 spin_unlock_irqrestore(&cc->zone->lock, flags);
1825         }
1826
1827         cc->total_migrate_scanned += nr_scanned;
1828
1829         /*
1830          * If fast scanning failed then use a cached entry for a page block
1831          * that had free pages as the basis for starting a linear scan.
1832          */
1833         if (!found_block) {
1834                 cc->fast_search_fail++;
1835                 pfn = reinit_migrate_pfn(cc);
1836         }
1837         return pfn;
1838 }
1839
1840 /*
1841  * Isolate all pages that can be migrated from the first suitable block,
1842  * starting at the block pointed to by the migrate scanner pfn within
1843  * compact_control.
1844  */
1845 static isolate_migrate_t isolate_migratepages(struct compact_control *cc)
1846 {
1847         unsigned long block_start_pfn;
1848         unsigned long block_end_pfn;
1849         unsigned long low_pfn;
1850         struct page *page;
1851         const isolate_mode_t isolate_mode =
1852                 (sysctl_compact_unevictable_allowed ? ISOLATE_UNEVICTABLE : 0) |
1853                 (cc->mode != MIGRATE_SYNC ? ISOLATE_ASYNC_MIGRATE : 0);
1854         bool fast_find_block;
1855
1856         /*
1857          * Start at where we last stopped, or beginning of the zone as
1858          * initialized by compact_zone(). The first failure will use
1859          * the lowest PFN as the starting point for linear scanning.
1860          */
1861         low_pfn = fast_find_migrateblock(cc);
1862         block_start_pfn = pageblock_start_pfn(low_pfn);
1863         if (block_start_pfn < cc->zone->zone_start_pfn)
1864                 block_start_pfn = cc->zone->zone_start_pfn;
1865
1866         /*
1867          * fast_find_migrateblock marks a pageblock skipped so to avoid
1868          * the isolation_suitable check below, check whether the fast
1869          * search was successful.
1870          */
1871         fast_find_block = low_pfn != cc->migrate_pfn && !cc->fast_search_fail;
1872
1873         /* Only scan within a pageblock boundary */
1874         block_end_pfn = pageblock_end_pfn(low_pfn);
1875
1876         /*
1877          * Iterate over whole pageblocks until we find the first suitable.
1878          * Do not cross the free scanner.
1879          */
1880         for (; block_end_pfn <= cc->free_pfn;
1881                         fast_find_block = false,
1882                         cc->migrate_pfn = low_pfn = block_end_pfn,
1883                         block_start_pfn = block_end_pfn,
1884                         block_end_pfn += pageblock_nr_pages) {
1885
1886                 /*
1887                  * This can potentially iterate a massively long zone with
1888                  * many pageblocks unsuitable, so periodically check if we
1889                  * need to schedule.
1890                  */
1891                 if (!(low_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages)))
1892                         cond_resched();
1893
1894                 page = pageblock_pfn_to_page(block_start_pfn,
1895                                                 block_end_pfn, cc->zone);
1896                 if (!page)
1897                         continue;
1898
1899                 /*
1900                  * If isolation recently failed, do not retry. Only check the
1901                  * pageblock once. COMPACT_CLUSTER_MAX causes a pageblock
1902                  * to be visited multiple times. Assume skip was checked
1903                  * before making it "skip" so other compaction instances do
1904                  * not scan the same block.
1905                  */
1906                 if (IS_ALIGNED(low_pfn, pageblock_nr_pages) &&
1907                     !fast_find_block && !isolation_suitable(cc, page))
1908                         continue;
1909
1910                 /*
1911                  * For async compaction, also only scan in MOVABLE blocks
1912                  * without huge pages. Async compaction is optimistic to see
1913                  * if the minimum amount of work satisfies the allocation.
1914                  * The cached PFN is updated as it's possible that all
1915                  * remaining blocks between source and target are unsuitable
1916                  * and the compaction scanners fail to meet.
1917                  */
1918                 if (!suitable_migration_source(cc, page)) {
1919                         update_cached_migrate(cc, block_end_pfn);
1920                         continue;
1921                 }
1922
1923                 /* Perform the isolation */
1924                 if (isolate_migratepages_block(cc, low_pfn, block_end_pfn,
1925                                                 isolate_mode))
1926                         return ISOLATE_ABORT;
1927
1928                 /*
1929                  * Either we isolated something and proceed with migration. Or
1930                  * we failed and compact_zone should decide if we should
1931                  * continue or not.
1932                  */
1933                 break;
1934         }
1935
1936         return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE;
1937 }
1938
1939 /*
1940  * order == -1 is expected when compacting via
1941  * /proc/sys/vm/compact_memory
1942  */
1943 static inline bool is_via_compact_memory(int order)
1944 {
1945         return order == -1;
1946 }
1947
1948 static bool kswapd_is_running(pg_data_t *pgdat)
1949 {
1950         return pgdat->kswapd && task_is_running(pgdat->kswapd);
1951 }
1952
1953 /*
1954  * A zone's fragmentation score is the external fragmentation wrt to the
1955  * COMPACTION_HPAGE_ORDER. It returns a value in the range [0, 100].
1956  */
1957 static unsigned int fragmentation_score_zone(struct zone *zone)
1958 {
1959         return extfrag_for_order(zone, COMPACTION_HPAGE_ORDER);
1960 }
1961
1962 /*
1963  * A weighted zone's fragmentation score is the external fragmentation
1964  * wrt to the COMPACTION_HPAGE_ORDER scaled by the zone's size. It
1965  * returns a value in the range [0, 100].
1966  *
1967  * The scaling factor ensures that proactive compaction focuses on larger
1968  * zones like ZONE_NORMAL, rather than smaller, specialized zones like
1969  * ZONE_DMA32. For smaller zones, the score value remains close to zero,
1970  * and thus never exceeds the high threshold for proactive compaction.
1971  */
1972 static unsigned int fragmentation_score_zone_weighted(struct zone *zone)
1973 {
1974         unsigned long score;
1975
1976         score = zone->present_pages * fragmentation_score_zone(zone);
1977         return div64_ul(score, zone->zone_pgdat->node_present_pages + 1);
1978 }
1979
1980 /*
1981  * The per-node proactive (background) compaction process is started by its
1982  * corresponding kcompactd thread when the node's fragmentation score
1983  * exceeds the high threshold. The compaction process remains active till
1984  * the node's score falls below the low threshold, or one of the back-off
1985  * conditions is met.
1986  */
1987 static unsigned int fragmentation_score_node(pg_data_t *pgdat)
1988 {
1989         unsigned int score = 0;
1990         int zoneid;
1991
1992         for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
1993                 struct zone *zone;
1994
1995                 zone = &pgdat->node_zones[zoneid];
1996                 score += fragmentation_score_zone_weighted(zone);
1997         }
1998
1999         return score;
2000 }
2001
2002 static unsigned int fragmentation_score_wmark(pg_data_t *pgdat, bool low)
2003 {
2004         unsigned int wmark_low;
2005
2006         /*
2007          * Cap the low watermark to avoid excessive compaction
2008          * activity in case a user sets the proactiveness tunable
2009          * close to 100 (maximum).
2010          */
2011         wmark_low = max(100U - sysctl_compaction_proactiveness, 5U);
2012         return low ? wmark_low : min(wmark_low + 10, 100U);
2013 }
2014
2015 static bool should_proactive_compact_node(pg_data_t *pgdat)
2016 {
2017         int wmark_high;
2018
2019         if (!sysctl_compaction_proactiveness || kswapd_is_running(pgdat))
2020                 return false;
2021
2022         wmark_high = fragmentation_score_wmark(pgdat, false);
2023         return fragmentation_score_node(pgdat) > wmark_high;
2024 }
2025
2026 static enum compact_result __compact_finished(struct compact_control *cc)
2027 {
2028         unsigned int order;
2029         const int migratetype = cc->migratetype;
2030         int ret;
2031
2032         /* Compaction run completes if the migrate and free scanner meet */
2033         if (compact_scanners_met(cc)) {
2034                 /* Let the next compaction start anew. */
2035                 reset_cached_positions(cc->zone);
2036
2037                 /*
2038                  * Mark that the PG_migrate_skip information should be cleared
2039                  * by kswapd when it goes to sleep. kcompactd does not set the
2040                  * flag itself as the decision to be clear should be directly
2041                  * based on an allocation request.
2042                  */
2043                 if (cc->direct_compaction)
2044                         cc->zone->compact_blockskip_flush = true;
2045
2046                 if (cc->whole_zone)
2047                         return COMPACT_COMPLETE;
2048                 else
2049                         return COMPACT_PARTIAL_SKIPPED;
2050         }
2051
2052         if (cc->proactive_compaction) {
2053                 int score, wmark_low;
2054                 pg_data_t *pgdat;
2055
2056                 pgdat = cc->zone->zone_pgdat;
2057                 if (kswapd_is_running(pgdat))
2058                         return COMPACT_PARTIAL_SKIPPED;
2059
2060                 score = fragmentation_score_zone(cc->zone);
2061                 wmark_low = fragmentation_score_wmark(pgdat, true);
2062
2063                 if (score > wmark_low)
2064                         ret = COMPACT_CONTINUE;
2065                 else
2066                         ret = COMPACT_SUCCESS;
2067
2068                 goto out;
2069         }
2070
2071         if (is_via_compact_memory(cc->order))
2072                 return COMPACT_CONTINUE;
2073
2074         /*
2075          * Always finish scanning a pageblock to reduce the possibility of
2076          * fallbacks in the future. This is particularly important when
2077          * migration source is unmovable/reclaimable but it's not worth
2078          * special casing.
2079          */
2080         if (!IS_ALIGNED(cc->migrate_pfn, pageblock_nr_pages))
2081                 return COMPACT_CONTINUE;
2082
2083         /* Direct compactor: Is a suitable page free? */
2084         ret = COMPACT_NO_SUITABLE_PAGE;
2085         for (order = cc->order; order < MAX_ORDER; order++) {
2086                 struct free_area *area = &cc->zone->free_area[order];
2087                 bool can_steal;
2088
2089                 /* Job done if page is free of the right migratetype */
2090                 if (!free_area_empty(area, migratetype))
2091                         return COMPACT_SUCCESS;
2092
2093 #ifdef CONFIG_CMA
2094                 /* MIGRATE_MOVABLE can fallback on MIGRATE_CMA */
2095                 if (migratetype == MIGRATE_MOVABLE &&
2096                         !free_area_empty(area, MIGRATE_CMA))
2097                         return COMPACT_SUCCESS;
2098 #endif
2099                 /*
2100                  * Job done if allocation would steal freepages from
2101                  * other migratetype buddy lists.
2102                  */
2103                 if (find_suitable_fallback(area, order, migratetype,
2104                                                 true, &can_steal) != -1) {
2105
2106                         /* movable pages are OK in any pageblock */
2107                         if (migratetype == MIGRATE_MOVABLE)
2108                                 return COMPACT_SUCCESS;
2109
2110                         /*
2111                          * We are stealing for a non-movable allocation. Make
2112                          * sure we finish compacting the current pageblock
2113                          * first so it is as free as possible and we won't
2114                          * have to steal another one soon. This only applies
2115                          * to sync compaction, as async compaction operates
2116                          * on pageblocks of the same migratetype.
2117                          */
2118                         if (cc->mode == MIGRATE_ASYNC ||
2119                                         IS_ALIGNED(cc->migrate_pfn,
2120                                                         pageblock_nr_pages)) {
2121                                 return COMPACT_SUCCESS;
2122                         }
2123
2124                         ret = COMPACT_CONTINUE;
2125                         break;
2126                 }
2127         }
2128
2129 out:
2130         if (cc->contended || fatal_signal_pending(current))
2131                 ret = COMPACT_CONTENDED;
2132
2133         return ret;
2134 }
2135
2136 static enum compact_result compact_finished(struct compact_control *cc)
2137 {
2138         int ret;
2139
2140         ret = __compact_finished(cc);
2141         trace_mm_compaction_finished(cc->zone, cc->order, ret);
2142         if (ret == COMPACT_NO_SUITABLE_PAGE)
2143                 ret = COMPACT_CONTINUE;
2144
2145         return ret;
2146 }
2147
2148 static enum compact_result __compaction_suitable(struct zone *zone, int order,
2149                                         unsigned int alloc_flags,
2150                                         int highest_zoneidx,
2151                                         unsigned long wmark_target)
2152 {
2153         unsigned long watermark;
2154
2155         if (is_via_compact_memory(order))
2156                 return COMPACT_CONTINUE;
2157
2158         watermark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
2159         /*
2160          * If watermarks for high-order allocation are already met, there
2161          * should be no need for compaction at all.
2162          */
2163         if (zone_watermark_ok(zone, order, watermark, highest_zoneidx,
2164                                                                 alloc_flags))
2165                 return COMPACT_SUCCESS;
2166
2167         /*
2168          * Watermarks for order-0 must be met for compaction to be able to
2169          * isolate free pages for migration targets. This means that the
2170          * watermark and alloc_flags have to match, or be more pessimistic than
2171          * the check in __isolate_free_page(). We don't use the direct
2172          * compactor's alloc_flags, as they are not relevant for freepage
2173          * isolation. We however do use the direct compactor's highest_zoneidx
2174          * to skip over zones where lowmem reserves would prevent allocation
2175          * even if compaction succeeds.
2176          * For costly orders, we require low watermark instead of min for
2177          * compaction to proceed to increase its chances.
2178          * ALLOC_CMA is used, as pages in CMA pageblocks are considered
2179          * suitable migration targets
2180          */
2181         watermark = (order > PAGE_ALLOC_COSTLY_ORDER) ?
2182                                 low_wmark_pages(zone) : min_wmark_pages(zone);
2183         watermark += compact_gap(order);
2184         if (!__zone_watermark_ok(zone, 0, watermark, highest_zoneidx,
2185                                                 ALLOC_CMA, wmark_target))
2186                 return COMPACT_SKIPPED;
2187
2188         return COMPACT_CONTINUE;
2189 }
2190
2191 /*
2192  * compaction_suitable: Is this suitable to run compaction on this zone now?
2193  * Returns
2194  *   COMPACT_SKIPPED  - If there are too few free pages for compaction
2195  *   COMPACT_SUCCESS  - If the allocation would succeed without compaction
2196  *   COMPACT_CONTINUE - If compaction should run now
2197  */
2198 enum compact_result compaction_suitable(struct zone *zone, int order,
2199                                         unsigned int alloc_flags,
2200                                         int highest_zoneidx)
2201 {
2202         enum compact_result ret;
2203         int fragindex;
2204
2205         ret = __compaction_suitable(zone, order, alloc_flags, highest_zoneidx,
2206                                     zone_page_state(zone, NR_FREE_PAGES));
2207         /*
2208          * fragmentation index determines if allocation failures are due to
2209          * low memory or external fragmentation
2210          *
2211          * index of -1000 would imply allocations might succeed depending on
2212          * watermarks, but we already failed the high-order watermark check
2213          * index towards 0 implies failure is due to lack of memory
2214          * index towards 1000 implies failure is due to fragmentation
2215          *
2216          * Only compact if a failure would be due to fragmentation. Also
2217          * ignore fragindex for non-costly orders where the alternative to
2218          * a successful reclaim/compaction is OOM. Fragindex and the
2219          * vm.extfrag_threshold sysctl is meant as a heuristic to prevent
2220          * excessive compaction for costly orders, but it should not be at the
2221          * expense of system stability.
2222          */
2223         if (ret == COMPACT_CONTINUE && (order > PAGE_ALLOC_COSTLY_ORDER)) {
2224                 fragindex = fragmentation_index(zone, order);
2225                 if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold)
2226                         ret = COMPACT_NOT_SUITABLE_ZONE;
2227         }
2228
2229         trace_mm_compaction_suitable(zone, order, ret);
2230         if (ret == COMPACT_NOT_SUITABLE_ZONE)
2231                 ret = COMPACT_SKIPPED;
2232
2233         return ret;
2234 }
2235
2236 bool compaction_zonelist_suitable(struct alloc_context *ac, int order,
2237                 int alloc_flags)
2238 {
2239         struct zone *zone;
2240         struct zoneref *z;
2241
2242         /*
2243          * Make sure at least one zone would pass __compaction_suitable if we continue
2244          * retrying the reclaim.
2245          */
2246         for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2247                                 ac->highest_zoneidx, ac->nodemask) {
2248                 unsigned long available;
2249                 enum compact_result compact_result;
2250
2251                 /*
2252                  * Do not consider all the reclaimable memory because we do not
2253                  * want to trash just for a single high order allocation which
2254                  * is even not guaranteed to appear even if __compaction_suitable
2255                  * is happy about the watermark check.
2256                  */
2257                 available = zone_reclaimable_pages(zone) / order;
2258                 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
2259                 compact_result = __compaction_suitable(zone, order, alloc_flags,
2260                                 ac->highest_zoneidx, available);
2261                 if (compact_result != COMPACT_SKIPPED)
2262                         return true;
2263         }
2264
2265         return false;
2266 }
2267
2268 static enum compact_result
2269 compact_zone(struct compact_control *cc, struct capture_control *capc)
2270 {
2271         enum compact_result ret;
2272         unsigned long start_pfn = cc->zone->zone_start_pfn;
2273         unsigned long end_pfn = zone_end_pfn(cc->zone);
2274         unsigned long last_migrated_pfn;
2275         const bool sync = cc->mode != MIGRATE_ASYNC;
2276         bool update_cached;
2277
2278         /*
2279          * These counters track activities during zone compaction.  Initialize
2280          * them before compacting a new zone.
2281          */
2282         cc->total_migrate_scanned = 0;
2283         cc->total_free_scanned = 0;
2284         cc->nr_migratepages = 0;
2285         cc->nr_freepages = 0;
2286         INIT_LIST_HEAD(&cc->freepages);
2287         INIT_LIST_HEAD(&cc->migratepages);
2288
2289         cc->migratetype = gfp_migratetype(cc->gfp_mask);
2290         ret = compaction_suitable(cc->zone, cc->order, cc->alloc_flags,
2291                                                         cc->highest_zoneidx);
2292         /* Compaction is likely to fail */
2293         if (ret == COMPACT_SUCCESS || ret == COMPACT_SKIPPED)
2294                 return ret;
2295
2296         /* huh, compaction_suitable is returning something unexpected */
2297         VM_BUG_ON(ret != COMPACT_CONTINUE);
2298
2299         /*
2300          * Clear pageblock skip if there were failures recently and compaction
2301          * is about to be retried after being deferred.
2302          */
2303         if (compaction_restarting(cc->zone, cc->order))
2304                 __reset_isolation_suitable(cc->zone);
2305
2306         /*
2307          * Setup to move all movable pages to the end of the zone. Used cached
2308          * information on where the scanners should start (unless we explicitly
2309          * want to compact the whole zone), but check that it is initialised
2310          * by ensuring the values are within zone boundaries.
2311          */
2312         cc->fast_start_pfn = 0;
2313         if (cc->whole_zone) {
2314                 cc->migrate_pfn = start_pfn;
2315                 cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
2316         } else {
2317                 cc->migrate_pfn = cc->zone->compact_cached_migrate_pfn[sync];
2318                 cc->free_pfn = cc->zone->compact_cached_free_pfn;
2319                 if (cc->free_pfn < start_pfn || cc->free_pfn >= end_pfn) {
2320                         cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
2321                         cc->zone->compact_cached_free_pfn = cc->free_pfn;
2322                 }
2323                 if (cc->migrate_pfn < start_pfn || cc->migrate_pfn >= end_pfn) {
2324                         cc->migrate_pfn = start_pfn;
2325                         cc->zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn;
2326                         cc->zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn;
2327                 }
2328
2329                 if (cc->migrate_pfn <= cc->zone->compact_init_migrate_pfn)
2330                         cc->whole_zone = true;
2331         }
2332
2333         last_migrated_pfn = 0;
2334
2335         /*
2336          * Migrate has separate cached PFNs for ASYNC and SYNC* migration on
2337          * the basis that some migrations will fail in ASYNC mode. However,
2338          * if the cached PFNs match and pageblocks are skipped due to having
2339          * no isolation candidates, then the sync state does not matter.
2340          * Until a pageblock with isolation candidates is found, keep the
2341          * cached PFNs in sync to avoid revisiting the same blocks.
2342          */
2343         update_cached = !sync &&
2344                 cc->zone->compact_cached_migrate_pfn[0] == cc->zone->compact_cached_migrate_pfn[1];
2345
2346         trace_mm_compaction_begin(start_pfn, cc->migrate_pfn,
2347                                 cc->free_pfn, end_pfn, sync);
2348
2349         /* lru_add_drain_all could be expensive with involving other CPUs */
2350         lru_add_drain();
2351
2352         while ((ret = compact_finished(cc)) == COMPACT_CONTINUE) {
2353                 int err;
2354                 unsigned long iteration_start_pfn = cc->migrate_pfn;
2355
2356                 /*
2357                  * Avoid multiple rescans which can happen if a page cannot be
2358                  * isolated (dirty/writeback in async mode) or if the migrated
2359                  * pages are being allocated before the pageblock is cleared.
2360                  * The first rescan will capture the entire pageblock for
2361                  * migration. If it fails, it'll be marked skip and scanning
2362                  * will proceed as normal.
2363                  */
2364                 cc->rescan = false;
2365                 if (pageblock_start_pfn(last_migrated_pfn) ==
2366                     pageblock_start_pfn(iteration_start_pfn)) {
2367                         cc->rescan = true;
2368                 }
2369
2370                 switch (isolate_migratepages(cc)) {
2371                 case ISOLATE_ABORT:
2372                         ret = COMPACT_CONTENDED;
2373                         putback_movable_pages(&cc->migratepages);
2374                         cc->nr_migratepages = 0;
2375                         goto out;
2376                 case ISOLATE_NONE:
2377                         if (update_cached) {
2378                                 cc->zone->compact_cached_migrate_pfn[1] =
2379                                         cc->zone->compact_cached_migrate_pfn[0];
2380                         }
2381
2382                         /*
2383                          * We haven't isolated and migrated anything, but
2384                          * there might still be unflushed migrations from
2385                          * previous cc->order aligned block.
2386                          */
2387                         goto check_drain;
2388                 case ISOLATE_SUCCESS:
2389                         update_cached = false;
2390                         last_migrated_pfn = iteration_start_pfn;
2391                 }
2392
2393                 err = migrate_pages(&cc->migratepages, compaction_alloc,
2394                                 compaction_free, (unsigned long)cc, cc->mode,
2395                                 MR_COMPACTION, NULL);
2396
2397                 trace_mm_compaction_migratepages(cc->nr_migratepages, err,
2398                                                         &cc->migratepages);
2399
2400                 /* All pages were either migrated or will be released */
2401                 cc->nr_migratepages = 0;
2402                 if (err) {
2403                         putback_movable_pages(&cc->migratepages);
2404                         /*
2405                          * migrate_pages() may return -ENOMEM when scanners meet
2406                          * and we want compact_finished() to detect it
2407                          */
2408                         if (err == -ENOMEM && !compact_scanners_met(cc)) {
2409                                 ret = COMPACT_CONTENDED;
2410                                 goto out;
2411                         }
2412                         /*
2413                          * We failed to migrate at least one page in the current
2414                          * order-aligned block, so skip the rest of it.
2415                          */
2416                         if (cc->direct_compaction &&
2417                                                 (cc->mode == MIGRATE_ASYNC)) {
2418                                 cc->migrate_pfn = block_end_pfn(
2419                                                 cc->migrate_pfn - 1, cc->order);
2420                                 /* Draining pcplists is useless in this case */
2421                                 last_migrated_pfn = 0;
2422                         }
2423                 }
2424
2425 check_drain:
2426                 /*
2427                  * Has the migration scanner moved away from the previous
2428                  * cc->order aligned block where we migrated from? If yes,
2429                  * flush the pages that were freed, so that they can merge and
2430                  * compact_finished() can detect immediately if allocation
2431                  * would succeed.
2432                  */
2433                 if (cc->order > 0 && last_migrated_pfn) {
2434                         unsigned long current_block_start =
2435                                 block_start_pfn(cc->migrate_pfn, cc->order);
2436
2437                         if (last_migrated_pfn < current_block_start) {
2438                                 lru_add_drain_cpu_zone(cc->zone);
2439                                 /* No more flushing until we migrate again */
2440                                 last_migrated_pfn = 0;
2441                         }
2442                 }
2443
2444                 /* Stop if a page has been captured */
2445                 if (capc && capc->page) {
2446                         ret = COMPACT_SUCCESS;
2447                         break;
2448                 }
2449         }
2450
2451 out:
2452         /*
2453          * Release free pages and update where the free scanner should restart,
2454          * so we don't leave any returned pages behind in the next attempt.
2455          */
2456         if (cc->nr_freepages > 0) {
2457                 unsigned long free_pfn = release_freepages(&cc->freepages);
2458
2459                 cc->nr_freepages = 0;
2460                 VM_BUG_ON(free_pfn == 0);
2461                 /* The cached pfn is always the first in a pageblock */
2462                 free_pfn = pageblock_start_pfn(free_pfn);
2463                 /*
2464                  * Only go back, not forward. The cached pfn might have been
2465                  * already reset to zone end in compact_finished()
2466                  */
2467                 if (free_pfn > cc->zone->compact_cached_free_pfn)
2468                         cc->zone->compact_cached_free_pfn = free_pfn;
2469         }
2470
2471         count_compact_events(COMPACTMIGRATE_SCANNED, cc->total_migrate_scanned);
2472         count_compact_events(COMPACTFREE_SCANNED, cc->total_free_scanned);
2473
2474         trace_mm_compaction_end(start_pfn, cc->migrate_pfn,
2475                                 cc->free_pfn, end_pfn, sync, ret);
2476
2477         return ret;
2478 }
2479
2480 static enum compact_result compact_zone_order(struct zone *zone, int order,
2481                 gfp_t gfp_mask, enum compact_priority prio,
2482                 unsigned int alloc_flags, int highest_zoneidx,
2483                 struct page **capture)
2484 {
2485         enum compact_result ret;
2486         struct compact_control cc = {
2487                 .order = order,
2488                 .search_order = order,
2489                 .gfp_mask = gfp_mask,
2490                 .zone = zone,
2491                 .mode = (prio == COMPACT_PRIO_ASYNC) ?
2492                                         MIGRATE_ASYNC : MIGRATE_SYNC_LIGHT,
2493                 .alloc_flags = alloc_flags,
2494                 .highest_zoneidx = highest_zoneidx,
2495                 .direct_compaction = true,
2496                 .whole_zone = (prio == MIN_COMPACT_PRIORITY),
2497                 .ignore_skip_hint = (prio == MIN_COMPACT_PRIORITY),
2498                 .ignore_block_suitable = (prio == MIN_COMPACT_PRIORITY)
2499         };
2500         struct capture_control capc = {
2501                 .cc = &cc,
2502                 .page = NULL,
2503         };
2504
2505         /*
2506          * Make sure the structs are really initialized before we expose the
2507          * capture control, in case we are interrupted and the interrupt handler
2508          * frees a page.
2509          */
2510         barrier();
2511         WRITE_ONCE(current->capture_control, &capc);
2512
2513         ret = compact_zone(&cc, &capc);
2514
2515         VM_BUG_ON(!list_empty(&cc.freepages));
2516         VM_BUG_ON(!list_empty(&cc.migratepages));
2517
2518         /*
2519          * Make sure we hide capture control first before we read the captured
2520          * page pointer, otherwise an interrupt could free and capture a page
2521          * and we would leak it.
2522          */
2523         WRITE_ONCE(current->capture_control, NULL);
2524         *capture = READ_ONCE(capc.page);
2525         /*
2526          * Technically, it is also possible that compaction is skipped but
2527          * the page is still captured out of luck(IRQ came and freed the page).
2528          * Returning COMPACT_SUCCESS in such cases helps in properly accounting
2529          * the COMPACT[STALL|FAIL] when compaction is skipped.
2530          */
2531         if (*capture)
2532                 ret = COMPACT_SUCCESS;
2533
2534         return ret;
2535 }
2536
2537 int sysctl_extfrag_threshold = 500;
2538
2539 /**
2540  * try_to_compact_pages - Direct compact to satisfy a high-order allocation
2541  * @gfp_mask: The GFP mask of the current allocation
2542  * @order: The order of the current allocation
2543  * @alloc_flags: The allocation flags of the current allocation
2544  * @ac: The context of current allocation
2545  * @prio: Determines how hard direct compaction should try to succeed
2546  * @capture: Pointer to free page created by compaction will be stored here
2547  *
2548  * This is the main entry point for direct page compaction.
2549  */
2550 enum compact_result try_to_compact_pages(gfp_t gfp_mask, unsigned int order,
2551                 unsigned int alloc_flags, const struct alloc_context *ac,
2552                 enum compact_priority prio, struct page **capture)
2553 {
2554         int may_perform_io = gfp_mask & __GFP_IO;
2555         struct zoneref *z;
2556         struct zone *zone;
2557         enum compact_result rc = COMPACT_SKIPPED;
2558
2559         /*
2560          * Check if the GFP flags allow compaction - GFP_NOIO is really
2561          * tricky context because the migration might require IO
2562          */
2563         if (!may_perform_io)
2564                 return COMPACT_SKIPPED;
2565
2566         trace_mm_compaction_try_to_compact_pages(order, gfp_mask, prio);
2567
2568         /* Compact each zone in the list */
2569         for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2570                                         ac->highest_zoneidx, ac->nodemask) {
2571                 enum compact_result status;
2572
2573                 if (prio > MIN_COMPACT_PRIORITY
2574                                         && compaction_deferred(zone, order)) {
2575                         rc = max_t(enum compact_result, COMPACT_DEFERRED, rc);
2576                         continue;
2577                 }
2578
2579                 status = compact_zone_order(zone, order, gfp_mask, prio,
2580                                 alloc_flags, ac->highest_zoneidx, capture);
2581                 rc = max(status, rc);
2582
2583                 /* The allocation should succeed, stop compacting */
2584                 if (status == COMPACT_SUCCESS) {
2585                         /*
2586                          * We think the allocation will succeed in this zone,
2587                          * but it is not certain, hence the false. The caller
2588                          * will repeat this with true if allocation indeed
2589                          * succeeds in this zone.
2590                          */
2591                         compaction_defer_reset(zone, order, false);
2592
2593                         break;
2594                 }
2595
2596                 if (prio != COMPACT_PRIO_ASYNC && (status == COMPACT_COMPLETE ||
2597                                         status == COMPACT_PARTIAL_SKIPPED))
2598                         /*
2599                          * We think that allocation won't succeed in this zone
2600                          * so we defer compaction there. If it ends up
2601                          * succeeding after all, it will be reset.
2602                          */
2603                         defer_compaction(zone, order);
2604
2605                 /*
2606                  * We might have stopped compacting due to need_resched() in
2607                  * async compaction, or due to a fatal signal detected. In that
2608                  * case do not try further zones
2609                  */
2610                 if ((prio == COMPACT_PRIO_ASYNC && need_resched())
2611                                         || fatal_signal_pending(current))
2612                         break;
2613         }
2614
2615         return rc;
2616 }
2617
2618 /*
2619  * Compact all zones within a node till each zone's fragmentation score
2620  * reaches within proactive compaction thresholds (as determined by the
2621  * proactiveness tunable).
2622  *
2623  * It is possible that the function returns before reaching score targets
2624  * due to various back-off conditions, such as, contention on per-node or
2625  * per-zone locks.
2626  */
2627 static void proactive_compact_node(pg_data_t *pgdat)
2628 {
2629         int zoneid;
2630         struct zone *zone;
2631         struct compact_control cc = {
2632                 .order = -1,
2633                 .mode = MIGRATE_SYNC_LIGHT,
2634                 .ignore_skip_hint = true,
2635                 .whole_zone = true,
2636                 .gfp_mask = GFP_KERNEL,
2637                 .proactive_compaction = true,
2638         };
2639
2640         for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
2641                 zone = &pgdat->node_zones[zoneid];
2642                 if (!populated_zone(zone))
2643                         continue;
2644
2645                 cc.zone = zone;
2646
2647                 compact_zone(&cc, NULL);
2648
2649                 VM_BUG_ON(!list_empty(&cc.freepages));
2650                 VM_BUG_ON(!list_empty(&cc.migratepages));
2651         }
2652 }
2653
2654 /* Compact all zones within a node */
2655 static void compact_node(int nid)
2656 {
2657         pg_data_t *pgdat = NODE_DATA(nid);
2658         int zoneid;
2659         struct zone *zone;
2660         struct compact_control cc = {
2661                 .order = -1,
2662                 .mode = MIGRATE_SYNC,
2663                 .ignore_skip_hint = true,
2664                 .whole_zone = true,
2665                 .gfp_mask = GFP_KERNEL,
2666         };
2667
2668
2669         for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
2670
2671                 zone = &pgdat->node_zones[zoneid];
2672                 if (!populated_zone(zone))
2673                         continue;
2674
2675                 cc.zone = zone;
2676
2677                 compact_zone(&cc, NULL);
2678
2679                 VM_BUG_ON(!list_empty(&cc.freepages));
2680                 VM_BUG_ON(!list_empty(&cc.migratepages));
2681         }
2682 }
2683
2684 /* Compact all nodes in the system */
2685 static void compact_nodes(void)
2686 {
2687         int nid;
2688
2689         /* Flush pending updates to the LRU lists */
2690         lru_add_drain_all();
2691
2692         for_each_online_node(nid)
2693                 compact_node(nid);
2694 }
2695
2696 /*
2697  * Tunable for proactive compaction. It determines how
2698  * aggressively the kernel should compact memory in the
2699  * background. It takes values in the range [0, 100].
2700  */
2701 unsigned int __read_mostly sysctl_compaction_proactiveness = 20;
2702
2703 int compaction_proactiveness_sysctl_handler(struct ctl_table *table, int write,
2704                 void *buffer, size_t *length, loff_t *ppos)
2705 {
2706         int rc, nid;
2707
2708         rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
2709         if (rc)
2710                 return rc;
2711
2712         if (write && sysctl_compaction_proactiveness) {
2713                 for_each_online_node(nid) {
2714                         pg_data_t *pgdat = NODE_DATA(nid);
2715
2716                         if (pgdat->proactive_compact_trigger)
2717                                 continue;
2718
2719                         pgdat->proactive_compact_trigger = true;
2720                         wake_up_interruptible(&pgdat->kcompactd_wait);
2721                 }
2722         }
2723
2724         return 0;
2725 }
2726
2727 /*
2728  * This is the entry point for compacting all nodes via
2729  * /proc/sys/vm/compact_memory
2730  */
2731 int sysctl_compaction_handler(struct ctl_table *table, int write,
2732                         void *buffer, size_t *length, loff_t *ppos)
2733 {
2734         if (write)
2735                 compact_nodes();
2736
2737         return 0;
2738 }
2739
2740 #if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
2741 static ssize_t compact_store(struct device *dev,
2742                              struct device_attribute *attr,
2743                              const char *buf, size_t count)
2744 {
2745         int nid = dev->id;
2746
2747         if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
2748                 /* Flush pending updates to the LRU lists */
2749                 lru_add_drain_all();
2750
2751                 compact_node(nid);
2752         }
2753
2754         return count;
2755 }
2756 static DEVICE_ATTR_WO(compact);
2757
2758 int compaction_register_node(struct node *node)
2759 {
2760         return device_create_file(&node->dev, &dev_attr_compact);
2761 }
2762
2763 void compaction_unregister_node(struct node *node)
2764 {
2765         return device_remove_file(&node->dev, &dev_attr_compact);
2766 }
2767 #endif /* CONFIG_SYSFS && CONFIG_NUMA */
2768
2769 static inline bool kcompactd_work_requested(pg_data_t *pgdat)
2770 {
2771         return pgdat->kcompactd_max_order > 0 || kthread_should_stop() ||
2772                 pgdat->proactive_compact_trigger;
2773 }
2774
2775 static bool kcompactd_node_suitable(pg_data_t *pgdat)
2776 {
2777         int zoneid;
2778         struct zone *zone;
2779         enum zone_type highest_zoneidx = pgdat->kcompactd_highest_zoneidx;
2780
2781         for (zoneid = 0; zoneid <= highest_zoneidx; zoneid++) {
2782                 zone = &pgdat->node_zones[zoneid];
2783
2784                 if (!populated_zone(zone))
2785                         continue;
2786
2787                 if (compaction_suitable(zone, pgdat->kcompactd_max_order, 0,
2788                                         highest_zoneidx) == COMPACT_CONTINUE)
2789                         return true;
2790         }
2791
2792         return false;
2793 }
2794
2795 static void kcompactd_do_work(pg_data_t *pgdat)
2796 {
2797         /*
2798          * With no special task, compact all zones so that a page of requested
2799          * order is allocatable.
2800          */
2801         int zoneid;
2802         struct zone *zone;
2803         struct compact_control cc = {
2804                 .order = pgdat->kcompactd_max_order,
2805                 .search_order = pgdat->kcompactd_max_order,
2806                 .highest_zoneidx = pgdat->kcompactd_highest_zoneidx,
2807                 .mode = MIGRATE_SYNC_LIGHT,
2808                 .ignore_skip_hint = false,
2809                 .gfp_mask = GFP_KERNEL,
2810         };
2811         trace_mm_compaction_kcompactd_wake(pgdat->node_id, cc.order,
2812                                                         cc.highest_zoneidx);
2813         count_compact_event(KCOMPACTD_WAKE);
2814
2815         for (zoneid = 0; zoneid <= cc.highest_zoneidx; zoneid++) {
2816                 int status;
2817
2818                 zone = &pgdat->node_zones[zoneid];
2819                 if (!populated_zone(zone))
2820                         continue;
2821
2822                 if (compaction_deferred(zone, cc.order))
2823                         continue;
2824
2825                 if (compaction_suitable(zone, cc.order, 0, zoneid) !=
2826                                                         COMPACT_CONTINUE)
2827                         continue;
2828
2829                 if (kthread_should_stop())
2830                         return;
2831
2832                 cc.zone = zone;
2833                 status = compact_zone(&cc, NULL);
2834
2835                 if (status == COMPACT_SUCCESS) {
2836                         compaction_defer_reset(zone, cc.order, false);
2837                 } else if (status == COMPACT_PARTIAL_SKIPPED || status == COMPACT_COMPLETE) {
2838                         /*
2839                          * Buddy pages may become stranded on pcps that could
2840                          * otherwise coalesce on the zone's free area for
2841                          * order >= cc.order.  This is ratelimited by the
2842                          * upcoming deferral.
2843                          */
2844                         drain_all_pages(zone);
2845
2846                         /*
2847                          * We use sync migration mode here, so we defer like
2848                          * sync direct compaction does.
2849                          */
2850                         defer_compaction(zone, cc.order);
2851                 }
2852
2853                 count_compact_events(KCOMPACTD_MIGRATE_SCANNED,
2854                                      cc.total_migrate_scanned);
2855                 count_compact_events(KCOMPACTD_FREE_SCANNED,
2856                                      cc.total_free_scanned);
2857
2858                 VM_BUG_ON(!list_empty(&cc.freepages));
2859                 VM_BUG_ON(!list_empty(&cc.migratepages));
2860         }
2861
2862         /*
2863          * Regardless of success, we are done until woken up next. But remember
2864          * the requested order/highest_zoneidx in case it was higher/tighter
2865          * than our current ones
2866          */
2867         if (pgdat->kcompactd_max_order <= cc.order)
2868                 pgdat->kcompactd_max_order = 0;
2869         if (pgdat->kcompactd_highest_zoneidx >= cc.highest_zoneidx)
2870                 pgdat->kcompactd_highest_zoneidx = pgdat->nr_zones - 1;
2871 }
2872
2873 void wakeup_kcompactd(pg_data_t *pgdat, int order, int highest_zoneidx)
2874 {
2875         if (!order)
2876                 return;
2877
2878         if (pgdat->kcompactd_max_order < order)
2879                 pgdat->kcompactd_max_order = order;
2880
2881         if (pgdat->kcompactd_highest_zoneidx > highest_zoneidx)
2882                 pgdat->kcompactd_highest_zoneidx = highest_zoneidx;
2883
2884         /*
2885          * Pairs with implicit barrier in wait_event_freezable()
2886          * such that wakeups are not missed.
2887          */
2888         if (!wq_has_sleeper(&pgdat->kcompactd_wait))
2889                 return;
2890
2891         if (!kcompactd_node_suitable(pgdat))
2892                 return;
2893
2894         trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, order,
2895                                                         highest_zoneidx);
2896         wake_up_interruptible(&pgdat->kcompactd_wait);
2897 }
2898
2899 /*
2900  * The background compaction daemon, started as a kernel thread
2901  * from the init process.
2902  */
2903 static int kcompactd(void *p)
2904 {
2905         pg_data_t *pgdat = (pg_data_t *)p;
2906         struct task_struct *tsk = current;
2907         long default_timeout = msecs_to_jiffies(HPAGE_FRAG_CHECK_INTERVAL_MSEC);
2908         long timeout = default_timeout;
2909
2910         const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2911
2912         if (!cpumask_empty(cpumask))
2913                 set_cpus_allowed_ptr(tsk, cpumask);
2914
2915         set_freezable();
2916
2917         pgdat->kcompactd_max_order = 0;
2918         pgdat->kcompactd_highest_zoneidx = pgdat->nr_zones - 1;
2919
2920         while (!kthread_should_stop()) {
2921                 unsigned long pflags;
2922
2923                 /*
2924                  * Avoid the unnecessary wakeup for proactive compaction
2925                  * when it is disabled.
2926                  */
2927                 if (!sysctl_compaction_proactiveness)
2928                         timeout = MAX_SCHEDULE_TIMEOUT;
2929                 trace_mm_compaction_kcompactd_sleep(pgdat->node_id);
2930                 if (wait_event_freezable_timeout(pgdat->kcompactd_wait,
2931                         kcompactd_work_requested(pgdat), timeout) &&
2932                         !pgdat->proactive_compact_trigger) {
2933
2934                         psi_memstall_enter(&pflags);
2935                         kcompactd_do_work(pgdat);
2936                         psi_memstall_leave(&pflags);
2937                         /*
2938                          * Reset the timeout value. The defer timeout from
2939                          * proactive compaction is lost here but that is fine
2940                          * as the condition of the zone changing substantionally
2941                          * then carrying on with the previous defer interval is
2942                          * not useful.
2943                          */
2944                         timeout = default_timeout;
2945                         continue;
2946                 }
2947
2948                 /*
2949                  * Start the proactive work with default timeout. Based
2950                  * on the fragmentation score, this timeout is updated.
2951                  */
2952                 timeout = default_timeout;
2953                 if (should_proactive_compact_node(pgdat)) {
2954                         unsigned int prev_score, score;
2955
2956                         prev_score = fragmentation_score_node(pgdat);
2957                         proactive_compact_node(pgdat);
2958                         score = fragmentation_score_node(pgdat);
2959                         /*
2960                          * Defer proactive compaction if the fragmentation
2961                          * score did not go down i.e. no progress made.
2962                          */
2963                         if (unlikely(score >= prev_score))
2964                                 timeout =
2965                                    default_timeout << COMPACT_MAX_DEFER_SHIFT;
2966                 }
2967                 if (unlikely(pgdat->proactive_compact_trigger))
2968                         pgdat->proactive_compact_trigger = false;
2969         }
2970
2971         return 0;
2972 }
2973
2974 /*
2975  * This kcompactd start function will be called by init and node-hot-add.
2976  * On node-hot-add, kcompactd will moved to proper cpus if cpus are hot-added.
2977  */
2978 int kcompactd_run(int nid)
2979 {
2980         pg_data_t *pgdat = NODE_DATA(nid);
2981         int ret = 0;
2982
2983         if (pgdat->kcompactd)
2984                 return 0;
2985
2986         pgdat->kcompactd = kthread_run(kcompactd, pgdat, "kcompactd%d", nid);
2987         if (IS_ERR(pgdat->kcompactd)) {
2988                 pr_err("Failed to start kcompactd on node %d\n", nid);
2989                 ret = PTR_ERR(pgdat->kcompactd);
2990                 pgdat->kcompactd = NULL;
2991         }
2992         return ret;
2993 }
2994
2995 /*
2996  * Called by memory hotplug when all memory in a node is offlined. Caller must
2997  * hold mem_hotplug_begin/end().
2998  */
2999 void kcompactd_stop(int nid)
3000 {
3001         struct task_struct *kcompactd = NODE_DATA(nid)->kcompactd;
3002
3003         if (kcompactd) {
3004                 kthread_stop(kcompactd);
3005                 NODE_DATA(nid)->kcompactd = NULL;
3006         }
3007 }
3008
3009 /*
3010  * It's optimal to keep kcompactd on the same CPUs as their memory, but
3011  * not required for correctness. So if the last cpu in a node goes
3012  * away, we get changed to run anywhere: as the first one comes back,
3013  * restore their cpu bindings.
3014  */
3015 static int kcompactd_cpu_online(unsigned int cpu)
3016 {
3017         int nid;
3018
3019         for_each_node_state(nid, N_MEMORY) {
3020                 pg_data_t *pgdat = NODE_DATA(nid);
3021                 const struct cpumask *mask;
3022
3023                 mask = cpumask_of_node(pgdat->node_id);
3024
3025                 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3026                         /* One of our CPUs online: restore mask */
3027                         set_cpus_allowed_ptr(pgdat->kcompactd, mask);
3028         }
3029         return 0;
3030 }
3031
3032 static int __init kcompactd_init(void)
3033 {
3034         int nid;
3035         int ret;
3036
3037         ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
3038                                         "mm/compaction:online",
3039                                         kcompactd_cpu_online, NULL);
3040         if (ret < 0) {
3041                 pr_err("kcompactd: failed to register hotplug callbacks.\n");
3042                 return ret;
3043         }
3044
3045         for_each_node_state(nid, N_MEMORY)
3046                 kcompactd_run(nid);
3047         return 0;
3048 }
3049 subsys_initcall(kcompactd_init)
3050
3051 #endif /* CONFIG_COMPACTION */