net: socket: add check for negative optlen in compat setsockopt
[platform/kernel/linux-starfive.git] / mm / compaction.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * linux/mm/compaction.c
4  *
5  * Memory compaction for the reduction of external fragmentation. Note that
6  * this heavily depends upon page migration to do all the real heavy
7  * lifting
8  *
9  * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
10  */
11 #include <linux/cpu.h>
12 #include <linux/swap.h>
13 #include <linux/migrate.h>
14 #include <linux/compaction.h>
15 #include <linux/mm_inline.h>
16 #include <linux/sched/signal.h>
17 #include <linux/backing-dev.h>
18 #include <linux/sysctl.h>
19 #include <linux/sysfs.h>
20 #include <linux/page-isolation.h>
21 #include <linux/kasan.h>
22 #include <linux/kthread.h>
23 #include <linux/freezer.h>
24 #include <linux/page_owner.h>
25 #include <linux/psi.h>
26 #include "internal.h"
27
28 #ifdef CONFIG_COMPACTION
29 static inline void count_compact_event(enum vm_event_item item)
30 {
31         count_vm_event(item);
32 }
33
34 static inline void count_compact_events(enum vm_event_item item, long delta)
35 {
36         count_vm_events(item, delta);
37 }
38 #else
39 #define count_compact_event(item) do { } while (0)
40 #define count_compact_events(item, delta) do { } while (0)
41 #endif
42
43 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
44
45 #define CREATE_TRACE_POINTS
46 #include <trace/events/compaction.h>
47
48 #define block_start_pfn(pfn, order)     round_down(pfn, 1UL << (order))
49 #define block_end_pfn(pfn, order)       ALIGN((pfn) + 1, 1UL << (order))
50 #define pageblock_start_pfn(pfn)        block_start_pfn(pfn, pageblock_order)
51 #define pageblock_end_pfn(pfn)          block_end_pfn(pfn, pageblock_order)
52
53 static unsigned long release_freepages(struct list_head *freelist)
54 {
55         struct page *page, *next;
56         unsigned long high_pfn = 0;
57
58         list_for_each_entry_safe(page, next, freelist, lru) {
59                 unsigned long pfn = page_to_pfn(page);
60                 list_del(&page->lru);
61                 __free_page(page);
62                 if (pfn > high_pfn)
63                         high_pfn = pfn;
64         }
65
66         return high_pfn;
67 }
68
69 static void map_pages(struct list_head *list)
70 {
71         unsigned int i, order, nr_pages;
72         struct page *page, *next;
73         LIST_HEAD(tmp_list);
74
75         list_for_each_entry_safe(page, next, list, lru) {
76                 list_del(&page->lru);
77
78                 order = page_private(page);
79                 nr_pages = 1 << order;
80
81                 post_alloc_hook(page, order, __GFP_MOVABLE);
82                 if (order)
83                         split_page(page, order);
84
85                 for (i = 0; i < nr_pages; i++) {
86                         list_add(&page->lru, &tmp_list);
87                         page++;
88                 }
89         }
90
91         list_splice(&tmp_list, list);
92 }
93
94 #ifdef CONFIG_COMPACTION
95
96 int PageMovable(struct page *page)
97 {
98         struct address_space *mapping;
99
100         VM_BUG_ON_PAGE(!PageLocked(page), page);
101         if (!__PageMovable(page))
102                 return 0;
103
104         mapping = page_mapping(page);
105         if (mapping && mapping->a_ops && mapping->a_ops->isolate_page)
106                 return 1;
107
108         return 0;
109 }
110 EXPORT_SYMBOL(PageMovable);
111
112 void __SetPageMovable(struct page *page, struct address_space *mapping)
113 {
114         VM_BUG_ON_PAGE(!PageLocked(page), page);
115         VM_BUG_ON_PAGE((unsigned long)mapping & PAGE_MAPPING_MOVABLE, page);
116         page->mapping = (void *)((unsigned long)mapping | PAGE_MAPPING_MOVABLE);
117 }
118 EXPORT_SYMBOL(__SetPageMovable);
119
120 void __ClearPageMovable(struct page *page)
121 {
122         VM_BUG_ON_PAGE(!PageLocked(page), page);
123         VM_BUG_ON_PAGE(!PageMovable(page), page);
124         /*
125          * Clear registered address_space val with keeping PAGE_MAPPING_MOVABLE
126          * flag so that VM can catch up released page by driver after isolation.
127          * With it, VM migration doesn't try to put it back.
128          */
129         page->mapping = (void *)((unsigned long)page->mapping &
130                                 PAGE_MAPPING_MOVABLE);
131 }
132 EXPORT_SYMBOL(__ClearPageMovable);
133
134 /* Do not skip compaction more than 64 times */
135 #define COMPACT_MAX_DEFER_SHIFT 6
136
137 /*
138  * Compaction is deferred when compaction fails to result in a page
139  * allocation success. 1 << compact_defer_limit compactions are skipped up
140  * to a limit of 1 << COMPACT_MAX_DEFER_SHIFT
141  */
142 void defer_compaction(struct zone *zone, int order)
143 {
144         zone->compact_considered = 0;
145         zone->compact_defer_shift++;
146
147         if (order < zone->compact_order_failed)
148                 zone->compact_order_failed = order;
149
150         if (zone->compact_defer_shift > COMPACT_MAX_DEFER_SHIFT)
151                 zone->compact_defer_shift = COMPACT_MAX_DEFER_SHIFT;
152
153         trace_mm_compaction_defer_compaction(zone, order);
154 }
155
156 /* Returns true if compaction should be skipped this time */
157 bool compaction_deferred(struct zone *zone, int order)
158 {
159         unsigned long defer_limit = 1UL << zone->compact_defer_shift;
160
161         if (order < zone->compact_order_failed)
162                 return false;
163
164         /* Avoid possible overflow */
165         if (++zone->compact_considered > defer_limit)
166                 zone->compact_considered = defer_limit;
167
168         if (zone->compact_considered >= defer_limit)
169                 return false;
170
171         trace_mm_compaction_deferred(zone, order);
172
173         return true;
174 }
175
176 /*
177  * Update defer tracking counters after successful compaction of given order,
178  * which means an allocation either succeeded (alloc_success == true) or is
179  * expected to succeed.
180  */
181 void compaction_defer_reset(struct zone *zone, int order,
182                 bool alloc_success)
183 {
184         if (alloc_success) {
185                 zone->compact_considered = 0;
186                 zone->compact_defer_shift = 0;
187         }
188         if (order >= zone->compact_order_failed)
189                 zone->compact_order_failed = order + 1;
190
191         trace_mm_compaction_defer_reset(zone, order);
192 }
193
194 /* Returns true if restarting compaction after many failures */
195 bool compaction_restarting(struct zone *zone, int order)
196 {
197         if (order < zone->compact_order_failed)
198                 return false;
199
200         return zone->compact_defer_shift == COMPACT_MAX_DEFER_SHIFT &&
201                 zone->compact_considered >= 1UL << zone->compact_defer_shift;
202 }
203
204 /* Returns true if the pageblock should be scanned for pages to isolate. */
205 static inline bool isolation_suitable(struct compact_control *cc,
206                                         struct page *page)
207 {
208         if (cc->ignore_skip_hint)
209                 return true;
210
211         return !get_pageblock_skip(page);
212 }
213
214 static void reset_cached_positions(struct zone *zone)
215 {
216         zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn;
217         zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn;
218         zone->compact_cached_free_pfn =
219                                 pageblock_start_pfn(zone_end_pfn(zone) - 1);
220 }
221
222 /*
223  * Compound pages of >= pageblock_order should consistenly be skipped until
224  * released. It is always pointless to compact pages of such order (if they are
225  * migratable), and the pageblocks they occupy cannot contain any free pages.
226  */
227 static bool pageblock_skip_persistent(struct page *page)
228 {
229         if (!PageCompound(page))
230                 return false;
231
232         page = compound_head(page);
233
234         if (compound_order(page) >= pageblock_order)
235                 return true;
236
237         return false;
238 }
239
240 /*
241  * This function is called to clear all cached information on pageblocks that
242  * should be skipped for page isolation when the migrate and free page scanner
243  * meet.
244  */
245 static void __reset_isolation_suitable(struct zone *zone)
246 {
247         unsigned long start_pfn = zone->zone_start_pfn;
248         unsigned long end_pfn = zone_end_pfn(zone);
249         unsigned long pfn;
250
251         zone->compact_blockskip_flush = false;
252
253         /* Walk the zone and mark every pageblock as suitable for isolation */
254         for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
255                 struct page *page;
256
257                 cond_resched();
258
259                 page = pfn_to_online_page(pfn);
260                 if (!page)
261                         continue;
262                 if (zone != page_zone(page))
263                         continue;
264                 if (pageblock_skip_persistent(page))
265                         continue;
266
267                 clear_pageblock_skip(page);
268         }
269
270         reset_cached_positions(zone);
271 }
272
273 void reset_isolation_suitable(pg_data_t *pgdat)
274 {
275         int zoneid;
276
277         for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
278                 struct zone *zone = &pgdat->node_zones[zoneid];
279                 if (!populated_zone(zone))
280                         continue;
281
282                 /* Only flush if a full compaction finished recently */
283                 if (zone->compact_blockskip_flush)
284                         __reset_isolation_suitable(zone);
285         }
286 }
287
288 /*
289  * If no pages were isolated then mark this pageblock to be skipped in the
290  * future. The information is later cleared by __reset_isolation_suitable().
291  */
292 static void update_pageblock_skip(struct compact_control *cc,
293                         struct page *page, unsigned long nr_isolated,
294                         bool migrate_scanner)
295 {
296         struct zone *zone = cc->zone;
297         unsigned long pfn;
298
299         if (cc->no_set_skip_hint)
300                 return;
301
302         if (!page)
303                 return;
304
305         if (nr_isolated)
306                 return;
307
308         set_pageblock_skip(page);
309
310         pfn = page_to_pfn(page);
311
312         /* Update where async and sync compaction should restart */
313         if (migrate_scanner) {
314                 if (pfn > zone->compact_cached_migrate_pfn[0])
315                         zone->compact_cached_migrate_pfn[0] = pfn;
316                 if (cc->mode != MIGRATE_ASYNC &&
317                     pfn > zone->compact_cached_migrate_pfn[1])
318                         zone->compact_cached_migrate_pfn[1] = pfn;
319         } else {
320                 if (pfn < zone->compact_cached_free_pfn)
321                         zone->compact_cached_free_pfn = pfn;
322         }
323 }
324 #else
325 static inline bool isolation_suitable(struct compact_control *cc,
326                                         struct page *page)
327 {
328         return true;
329 }
330
331 static inline bool pageblock_skip_persistent(struct page *page)
332 {
333         return false;
334 }
335
336 static inline void update_pageblock_skip(struct compact_control *cc,
337                         struct page *page, unsigned long nr_isolated,
338                         bool migrate_scanner)
339 {
340 }
341 #endif /* CONFIG_COMPACTION */
342
343 /*
344  * Compaction requires the taking of some coarse locks that are potentially
345  * very heavily contended. For async compaction, back out if the lock cannot
346  * be taken immediately. For sync compaction, spin on the lock if needed.
347  *
348  * Returns true if the lock is held
349  * Returns false if the lock is not held and compaction should abort
350  */
351 static bool compact_trylock_irqsave(spinlock_t *lock, unsigned long *flags,
352                                                 struct compact_control *cc)
353 {
354         if (cc->mode == MIGRATE_ASYNC) {
355                 if (!spin_trylock_irqsave(lock, *flags)) {
356                         cc->contended = true;
357                         return false;
358                 }
359         } else {
360                 spin_lock_irqsave(lock, *flags);
361         }
362
363         return true;
364 }
365
366 /*
367  * Compaction requires the taking of some coarse locks that are potentially
368  * very heavily contended. The lock should be periodically unlocked to avoid
369  * having disabled IRQs for a long time, even when there is nobody waiting on
370  * the lock. It might also be that allowing the IRQs will result in
371  * need_resched() becoming true. If scheduling is needed, async compaction
372  * aborts. Sync compaction schedules.
373  * Either compaction type will also abort if a fatal signal is pending.
374  * In either case if the lock was locked, it is dropped and not regained.
375  *
376  * Returns true if compaction should abort due to fatal signal pending, or
377  *              async compaction due to need_resched()
378  * Returns false when compaction can continue (sync compaction might have
379  *              scheduled)
380  */
381 static bool compact_unlock_should_abort(spinlock_t *lock,
382                 unsigned long flags, bool *locked, struct compact_control *cc)
383 {
384         if (*locked) {
385                 spin_unlock_irqrestore(lock, flags);
386                 *locked = false;
387         }
388
389         if (fatal_signal_pending(current)) {
390                 cc->contended = true;
391                 return true;
392         }
393
394         if (need_resched()) {
395                 if (cc->mode == MIGRATE_ASYNC) {
396                         cc->contended = true;
397                         return true;
398                 }
399                 cond_resched();
400         }
401
402         return false;
403 }
404
405 /*
406  * Aside from avoiding lock contention, compaction also periodically checks
407  * need_resched() and either schedules in sync compaction or aborts async
408  * compaction. This is similar to what compact_unlock_should_abort() does, but
409  * is used where no lock is concerned.
410  *
411  * Returns false when no scheduling was needed, or sync compaction scheduled.
412  * Returns true when async compaction should abort.
413  */
414 static inline bool compact_should_abort(struct compact_control *cc)
415 {
416         /* async compaction aborts if contended */
417         if (need_resched()) {
418                 if (cc->mode == MIGRATE_ASYNC) {
419                         cc->contended = true;
420                         return true;
421                 }
422
423                 cond_resched();
424         }
425
426         return false;
427 }
428
429 /*
430  * Isolate free pages onto a private freelist. If @strict is true, will abort
431  * returning 0 on any invalid PFNs or non-free pages inside of the pageblock
432  * (even though it may still end up isolating some pages).
433  */
434 static unsigned long isolate_freepages_block(struct compact_control *cc,
435                                 unsigned long *start_pfn,
436                                 unsigned long end_pfn,
437                                 struct list_head *freelist,
438                                 bool strict)
439 {
440         int nr_scanned = 0, total_isolated = 0;
441         struct page *cursor, *valid_page = NULL;
442         unsigned long flags = 0;
443         bool locked = false;
444         unsigned long blockpfn = *start_pfn;
445         unsigned int order;
446
447         cursor = pfn_to_page(blockpfn);
448
449         /* Isolate free pages. */
450         for (; blockpfn < end_pfn; blockpfn++, cursor++) {
451                 int isolated;
452                 struct page *page = cursor;
453
454                 /*
455                  * Periodically drop the lock (if held) regardless of its
456                  * contention, to give chance to IRQs. Abort if fatal signal
457                  * pending or async compaction detects need_resched()
458                  */
459                 if (!(blockpfn % SWAP_CLUSTER_MAX)
460                     && compact_unlock_should_abort(&cc->zone->lock, flags,
461                                                                 &locked, cc))
462                         break;
463
464                 nr_scanned++;
465                 if (!pfn_valid_within(blockpfn))
466                         goto isolate_fail;
467
468                 if (!valid_page)
469                         valid_page = page;
470
471                 /*
472                  * For compound pages such as THP and hugetlbfs, we can save
473                  * potentially a lot of iterations if we skip them at once.
474                  * The check is racy, but we can consider only valid values
475                  * and the only danger is skipping too much.
476                  */
477                 if (PageCompound(page)) {
478                         const unsigned int order = compound_order(page);
479
480                         if (likely(order < MAX_ORDER)) {
481                                 blockpfn += (1UL << order) - 1;
482                                 cursor += (1UL << order) - 1;
483                         }
484                         goto isolate_fail;
485                 }
486
487                 if (!PageBuddy(page))
488                         goto isolate_fail;
489
490                 /*
491                  * If we already hold the lock, we can skip some rechecking.
492                  * Note that if we hold the lock now, checked_pageblock was
493                  * already set in some previous iteration (or strict is true),
494                  * so it is correct to skip the suitable migration target
495                  * recheck as well.
496                  */
497                 if (!locked) {
498                         /*
499                          * The zone lock must be held to isolate freepages.
500                          * Unfortunately this is a very coarse lock and can be
501                          * heavily contended if there are parallel allocations
502                          * or parallel compactions. For async compaction do not
503                          * spin on the lock and we acquire the lock as late as
504                          * possible.
505                          */
506                         locked = compact_trylock_irqsave(&cc->zone->lock,
507                                                                 &flags, cc);
508                         if (!locked)
509                                 break;
510
511                         /* Recheck this is a buddy page under lock */
512                         if (!PageBuddy(page))
513                                 goto isolate_fail;
514                 }
515
516                 /* Found a free page, will break it into order-0 pages */
517                 order = page_order(page);
518                 isolated = __isolate_free_page(page, order);
519                 if (!isolated)
520                         break;
521                 set_page_private(page, order);
522
523                 total_isolated += isolated;
524                 cc->nr_freepages += isolated;
525                 list_add_tail(&page->lru, freelist);
526
527                 if (!strict && cc->nr_migratepages <= cc->nr_freepages) {
528                         blockpfn += isolated;
529                         break;
530                 }
531                 /* Advance to the end of split page */
532                 blockpfn += isolated - 1;
533                 cursor += isolated - 1;
534                 continue;
535
536 isolate_fail:
537                 if (strict)
538                         break;
539                 else
540                         continue;
541
542         }
543
544         if (locked)
545                 spin_unlock_irqrestore(&cc->zone->lock, flags);
546
547         /*
548          * There is a tiny chance that we have read bogus compound_order(),
549          * so be careful to not go outside of the pageblock.
550          */
551         if (unlikely(blockpfn > end_pfn))
552                 blockpfn = end_pfn;
553
554         trace_mm_compaction_isolate_freepages(*start_pfn, blockpfn,
555                                         nr_scanned, total_isolated);
556
557         /* Record how far we have got within the block */
558         *start_pfn = blockpfn;
559
560         /*
561          * If strict isolation is requested by CMA then check that all the
562          * pages requested were isolated. If there were any failures, 0 is
563          * returned and CMA will fail.
564          */
565         if (strict && blockpfn < end_pfn)
566                 total_isolated = 0;
567
568         /* Update the pageblock-skip if the whole pageblock was scanned */
569         if (blockpfn == end_pfn)
570                 update_pageblock_skip(cc, valid_page, total_isolated, false);
571
572         cc->total_free_scanned += nr_scanned;
573         if (total_isolated)
574                 count_compact_events(COMPACTISOLATED, total_isolated);
575         return total_isolated;
576 }
577
578 /**
579  * isolate_freepages_range() - isolate free pages.
580  * @cc:        Compaction control structure.
581  * @start_pfn: The first PFN to start isolating.
582  * @end_pfn:   The one-past-last PFN.
583  *
584  * Non-free pages, invalid PFNs, or zone boundaries within the
585  * [start_pfn, end_pfn) range are considered errors, cause function to
586  * undo its actions and return zero.
587  *
588  * Otherwise, function returns one-past-the-last PFN of isolated page
589  * (which may be greater then end_pfn if end fell in a middle of
590  * a free page).
591  */
592 unsigned long
593 isolate_freepages_range(struct compact_control *cc,
594                         unsigned long start_pfn, unsigned long end_pfn)
595 {
596         unsigned long isolated, pfn, block_start_pfn, block_end_pfn;
597         LIST_HEAD(freelist);
598
599         pfn = start_pfn;
600         block_start_pfn = pageblock_start_pfn(pfn);
601         if (block_start_pfn < cc->zone->zone_start_pfn)
602                 block_start_pfn = cc->zone->zone_start_pfn;
603         block_end_pfn = pageblock_end_pfn(pfn);
604
605         for (; pfn < end_pfn; pfn += isolated,
606                                 block_start_pfn = block_end_pfn,
607                                 block_end_pfn += pageblock_nr_pages) {
608                 /* Protect pfn from changing by isolate_freepages_block */
609                 unsigned long isolate_start_pfn = pfn;
610
611                 block_end_pfn = min(block_end_pfn, end_pfn);
612
613                 /*
614                  * pfn could pass the block_end_pfn if isolated freepage
615                  * is more than pageblock order. In this case, we adjust
616                  * scanning range to right one.
617                  */
618                 if (pfn >= block_end_pfn) {
619                         block_start_pfn = pageblock_start_pfn(pfn);
620                         block_end_pfn = pageblock_end_pfn(pfn);
621                         block_end_pfn = min(block_end_pfn, end_pfn);
622                 }
623
624                 if (!pageblock_pfn_to_page(block_start_pfn,
625                                         block_end_pfn, cc->zone))
626                         break;
627
628                 isolated = isolate_freepages_block(cc, &isolate_start_pfn,
629                                                 block_end_pfn, &freelist, true);
630
631                 /*
632                  * In strict mode, isolate_freepages_block() returns 0 if
633                  * there are any holes in the block (ie. invalid PFNs or
634                  * non-free pages).
635                  */
636                 if (!isolated)
637                         break;
638
639                 /*
640                  * If we managed to isolate pages, it is always (1 << n) *
641                  * pageblock_nr_pages for some non-negative n.  (Max order
642                  * page may span two pageblocks).
643                  */
644         }
645
646         /* __isolate_free_page() does not map the pages */
647         map_pages(&freelist);
648
649         if (pfn < end_pfn) {
650                 /* Loop terminated early, cleanup. */
651                 release_freepages(&freelist);
652                 return 0;
653         }
654
655         /* We don't use freelists for anything. */
656         return pfn;
657 }
658
659 /* Similar to reclaim, but different enough that they don't share logic */
660 static bool too_many_isolated(struct zone *zone)
661 {
662         unsigned long active, inactive, isolated;
663
664         inactive = node_page_state(zone->zone_pgdat, NR_INACTIVE_FILE) +
665                         node_page_state(zone->zone_pgdat, NR_INACTIVE_ANON);
666         active = node_page_state(zone->zone_pgdat, NR_ACTIVE_FILE) +
667                         node_page_state(zone->zone_pgdat, NR_ACTIVE_ANON);
668         isolated = node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE) +
669                         node_page_state(zone->zone_pgdat, NR_ISOLATED_ANON);
670
671         return isolated > (inactive + active) / 2;
672 }
673
674 /**
675  * isolate_migratepages_block() - isolate all migrate-able pages within
676  *                                a single pageblock
677  * @cc:         Compaction control structure.
678  * @low_pfn:    The first PFN to isolate
679  * @end_pfn:    The one-past-the-last PFN to isolate, within same pageblock
680  * @isolate_mode: Isolation mode to be used.
681  *
682  * Isolate all pages that can be migrated from the range specified by
683  * [low_pfn, end_pfn). The range is expected to be within same pageblock.
684  * Returns zero if there is a fatal signal pending, otherwise PFN of the
685  * first page that was not scanned (which may be both less, equal to or more
686  * than end_pfn).
687  *
688  * The pages are isolated on cc->migratepages list (not required to be empty),
689  * and cc->nr_migratepages is updated accordingly. The cc->migrate_pfn field
690  * is neither read nor updated.
691  */
692 static unsigned long
693 isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn,
694                         unsigned long end_pfn, isolate_mode_t isolate_mode)
695 {
696         struct zone *zone = cc->zone;
697         unsigned long nr_scanned = 0, nr_isolated = 0;
698         struct lruvec *lruvec;
699         unsigned long flags = 0;
700         bool locked = false;
701         struct page *page = NULL, *valid_page = NULL;
702         unsigned long start_pfn = low_pfn;
703         bool skip_on_failure = false;
704         unsigned long next_skip_pfn = 0;
705
706         /*
707          * Ensure that there are not too many pages isolated from the LRU
708          * list by either parallel reclaimers or compaction. If there are,
709          * delay for some time until fewer pages are isolated
710          */
711         while (unlikely(too_many_isolated(zone))) {
712                 /* async migration should just abort */
713                 if (cc->mode == MIGRATE_ASYNC)
714                         return 0;
715
716                 congestion_wait(BLK_RW_ASYNC, HZ/10);
717
718                 if (fatal_signal_pending(current))
719                         return 0;
720         }
721
722         if (compact_should_abort(cc))
723                 return 0;
724
725         if (cc->direct_compaction && (cc->mode == MIGRATE_ASYNC)) {
726                 skip_on_failure = true;
727                 next_skip_pfn = block_end_pfn(low_pfn, cc->order);
728         }
729
730         /* Time to isolate some pages for migration */
731         for (; low_pfn < end_pfn; low_pfn++) {
732
733                 if (skip_on_failure && low_pfn >= next_skip_pfn) {
734                         /*
735                          * We have isolated all migration candidates in the
736                          * previous order-aligned block, and did not skip it due
737                          * to failure. We should migrate the pages now and
738                          * hopefully succeed compaction.
739                          */
740                         if (nr_isolated)
741                                 break;
742
743                         /*
744                          * We failed to isolate in the previous order-aligned
745                          * block. Set the new boundary to the end of the
746                          * current block. Note we can't simply increase
747                          * next_skip_pfn by 1 << order, as low_pfn might have
748                          * been incremented by a higher number due to skipping
749                          * a compound or a high-order buddy page in the
750                          * previous loop iteration.
751                          */
752                         next_skip_pfn = block_end_pfn(low_pfn, cc->order);
753                 }
754
755                 /*
756                  * Periodically drop the lock (if held) regardless of its
757                  * contention, to give chance to IRQs. Abort async compaction
758                  * if contended.
759                  */
760                 if (!(low_pfn % SWAP_CLUSTER_MAX)
761                     && compact_unlock_should_abort(zone_lru_lock(zone), flags,
762                                                                 &locked, cc))
763                         break;
764
765                 if (!pfn_valid_within(low_pfn))
766                         goto isolate_fail;
767                 nr_scanned++;
768
769                 page = pfn_to_page(low_pfn);
770
771                 if (!valid_page)
772                         valid_page = page;
773
774                 /*
775                  * Skip if free. We read page order here without zone lock
776                  * which is generally unsafe, but the race window is small and
777                  * the worst thing that can happen is that we skip some
778                  * potential isolation targets.
779                  */
780                 if (PageBuddy(page)) {
781                         unsigned long freepage_order = page_order_unsafe(page);
782
783                         /*
784                          * Without lock, we cannot be sure that what we got is
785                          * a valid page order. Consider only values in the
786                          * valid order range to prevent low_pfn overflow.
787                          */
788                         if (freepage_order > 0 && freepage_order < MAX_ORDER)
789                                 low_pfn += (1UL << freepage_order) - 1;
790                         continue;
791                 }
792
793                 /*
794                  * Regardless of being on LRU, compound pages such as THP and
795                  * hugetlbfs are not to be compacted. We can potentially save
796                  * a lot of iterations if we skip them at once. The check is
797                  * racy, but we can consider only valid values and the only
798                  * danger is skipping too much.
799                  */
800                 if (PageCompound(page)) {
801                         const unsigned int order = compound_order(page);
802
803                         if (likely(order < MAX_ORDER))
804                                 low_pfn += (1UL << order) - 1;
805                         goto isolate_fail;
806                 }
807
808                 /*
809                  * Check may be lockless but that's ok as we recheck later.
810                  * It's possible to migrate LRU and non-lru movable pages.
811                  * Skip any other type of page
812                  */
813                 if (!PageLRU(page)) {
814                         /*
815                          * __PageMovable can return false positive so we need
816                          * to verify it under page_lock.
817                          */
818                         if (unlikely(__PageMovable(page)) &&
819                                         !PageIsolated(page)) {
820                                 if (locked) {
821                                         spin_unlock_irqrestore(zone_lru_lock(zone),
822                                                                         flags);
823                                         locked = false;
824                                 }
825
826                                 if (!isolate_movable_page(page, isolate_mode))
827                                         goto isolate_success;
828                         }
829
830                         goto isolate_fail;
831                 }
832
833                 /*
834                  * Migration will fail if an anonymous page is pinned in memory,
835                  * so avoid taking lru_lock and isolating it unnecessarily in an
836                  * admittedly racy check.
837                  */
838                 if (!page_mapping(page) &&
839                     page_count(page) > page_mapcount(page))
840                         goto isolate_fail;
841
842                 /*
843                  * Only allow to migrate anonymous pages in GFP_NOFS context
844                  * because those do not depend on fs locks.
845                  */
846                 if (!(cc->gfp_mask & __GFP_FS) && page_mapping(page))
847                         goto isolate_fail;
848
849                 /* If we already hold the lock, we can skip some rechecking */
850                 if (!locked) {
851                         locked = compact_trylock_irqsave(zone_lru_lock(zone),
852                                                                 &flags, cc);
853                         if (!locked)
854                                 break;
855
856                         /* Recheck PageLRU and PageCompound under lock */
857                         if (!PageLRU(page))
858                                 goto isolate_fail;
859
860                         /*
861                          * Page become compound since the non-locked check,
862                          * and it's on LRU. It can only be a THP so the order
863                          * is safe to read and it's 0 for tail pages.
864                          */
865                         if (unlikely(PageCompound(page))) {
866                                 low_pfn += (1UL << compound_order(page)) - 1;
867                                 goto isolate_fail;
868                         }
869                 }
870
871                 lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
872
873                 /* Try isolate the page */
874                 if (__isolate_lru_page(page, isolate_mode) != 0)
875                         goto isolate_fail;
876
877                 VM_BUG_ON_PAGE(PageCompound(page), page);
878
879                 /* Successfully isolated */
880                 del_page_from_lru_list(page, lruvec, page_lru(page));
881                 inc_node_page_state(page,
882                                 NR_ISOLATED_ANON + page_is_file_cache(page));
883
884 isolate_success:
885                 list_add(&page->lru, &cc->migratepages);
886                 cc->nr_migratepages++;
887                 nr_isolated++;
888
889                 /*
890                  * Record where we could have freed pages by migration and not
891                  * yet flushed them to buddy allocator.
892                  * - this is the lowest page that was isolated and likely be
893                  * then freed by migration.
894                  */
895                 if (!cc->last_migrated_pfn)
896                         cc->last_migrated_pfn = low_pfn;
897
898                 /* Avoid isolating too much */
899                 if (cc->nr_migratepages == COMPACT_CLUSTER_MAX) {
900                         ++low_pfn;
901                         break;
902                 }
903
904                 continue;
905 isolate_fail:
906                 if (!skip_on_failure)
907                         continue;
908
909                 /*
910                  * We have isolated some pages, but then failed. Release them
911                  * instead of migrating, as we cannot form the cc->order buddy
912                  * page anyway.
913                  */
914                 if (nr_isolated) {
915                         if (locked) {
916                                 spin_unlock_irqrestore(zone_lru_lock(zone), flags);
917                                 locked = false;
918                         }
919                         putback_movable_pages(&cc->migratepages);
920                         cc->nr_migratepages = 0;
921                         cc->last_migrated_pfn = 0;
922                         nr_isolated = 0;
923                 }
924
925                 if (low_pfn < next_skip_pfn) {
926                         low_pfn = next_skip_pfn - 1;
927                         /*
928                          * The check near the loop beginning would have updated
929                          * next_skip_pfn too, but this is a bit simpler.
930                          */
931                         next_skip_pfn += 1UL << cc->order;
932                 }
933         }
934
935         /*
936          * The PageBuddy() check could have potentially brought us outside
937          * the range to be scanned.
938          */
939         if (unlikely(low_pfn > end_pfn))
940                 low_pfn = end_pfn;
941
942         if (locked)
943                 spin_unlock_irqrestore(zone_lru_lock(zone), flags);
944
945         /*
946          * Update the pageblock-skip information and cached scanner pfn,
947          * if the whole pageblock was scanned without isolating any page.
948          */
949         if (low_pfn == end_pfn)
950                 update_pageblock_skip(cc, valid_page, nr_isolated, true);
951
952         trace_mm_compaction_isolate_migratepages(start_pfn, low_pfn,
953                                                 nr_scanned, nr_isolated);
954
955         cc->total_migrate_scanned += nr_scanned;
956         if (nr_isolated)
957                 count_compact_events(COMPACTISOLATED, nr_isolated);
958
959         return low_pfn;
960 }
961
962 /**
963  * isolate_migratepages_range() - isolate migrate-able pages in a PFN range
964  * @cc:        Compaction control structure.
965  * @start_pfn: The first PFN to start isolating.
966  * @end_pfn:   The one-past-last PFN.
967  *
968  * Returns zero if isolation fails fatally due to e.g. pending signal.
969  * Otherwise, function returns one-past-the-last PFN of isolated page
970  * (which may be greater than end_pfn if end fell in a middle of a THP page).
971  */
972 unsigned long
973 isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn,
974                                                         unsigned long end_pfn)
975 {
976         unsigned long pfn, block_start_pfn, block_end_pfn;
977
978         /* Scan block by block. First and last block may be incomplete */
979         pfn = start_pfn;
980         block_start_pfn = pageblock_start_pfn(pfn);
981         if (block_start_pfn < cc->zone->zone_start_pfn)
982                 block_start_pfn = cc->zone->zone_start_pfn;
983         block_end_pfn = pageblock_end_pfn(pfn);
984
985         for (; pfn < end_pfn; pfn = block_end_pfn,
986                                 block_start_pfn = block_end_pfn,
987                                 block_end_pfn += pageblock_nr_pages) {
988
989                 block_end_pfn = min(block_end_pfn, end_pfn);
990
991                 if (!pageblock_pfn_to_page(block_start_pfn,
992                                         block_end_pfn, cc->zone))
993                         continue;
994
995                 pfn = isolate_migratepages_block(cc, pfn, block_end_pfn,
996                                                         ISOLATE_UNEVICTABLE);
997
998                 if (!pfn)
999                         break;
1000
1001                 if (cc->nr_migratepages == COMPACT_CLUSTER_MAX)
1002                         break;
1003         }
1004
1005         return pfn;
1006 }
1007
1008 #endif /* CONFIG_COMPACTION || CONFIG_CMA */
1009 #ifdef CONFIG_COMPACTION
1010
1011 static bool suitable_migration_source(struct compact_control *cc,
1012                                                         struct page *page)
1013 {
1014         int block_mt;
1015
1016         if ((cc->mode != MIGRATE_ASYNC) || !cc->direct_compaction)
1017                 return true;
1018
1019         block_mt = get_pageblock_migratetype(page);
1020
1021         if (cc->migratetype == MIGRATE_MOVABLE)
1022                 return is_migrate_movable(block_mt);
1023         else
1024                 return block_mt == cc->migratetype;
1025 }
1026
1027 /* Returns true if the page is within a block suitable for migration to */
1028 static bool suitable_migration_target(struct compact_control *cc,
1029                                                         struct page *page)
1030 {
1031         /* If the page is a large free page, then disallow migration */
1032         if (PageBuddy(page)) {
1033                 /*
1034                  * We are checking page_order without zone->lock taken. But
1035                  * the only small danger is that we skip a potentially suitable
1036                  * pageblock, so it's not worth to check order for valid range.
1037                  */
1038                 if (page_order_unsafe(page) >= pageblock_order)
1039                         return false;
1040         }
1041
1042         if (cc->ignore_block_suitable)
1043                 return true;
1044
1045         /* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
1046         if (is_migrate_movable(get_pageblock_migratetype(page)))
1047                 return true;
1048
1049         /* Otherwise skip the block */
1050         return false;
1051 }
1052
1053 /*
1054  * Test whether the free scanner has reached the same or lower pageblock than
1055  * the migration scanner, and compaction should thus terminate.
1056  */
1057 static inline bool compact_scanners_met(struct compact_control *cc)
1058 {
1059         return (cc->free_pfn >> pageblock_order)
1060                 <= (cc->migrate_pfn >> pageblock_order);
1061 }
1062
1063 /*
1064  * Based on information in the current compact_control, find blocks
1065  * suitable for isolating free pages from and then isolate them.
1066  */
1067 static void isolate_freepages(struct compact_control *cc)
1068 {
1069         struct zone *zone = cc->zone;
1070         struct page *page;
1071         unsigned long block_start_pfn;  /* start of current pageblock */
1072         unsigned long isolate_start_pfn; /* exact pfn we start at */
1073         unsigned long block_end_pfn;    /* end of current pageblock */
1074         unsigned long low_pfn;       /* lowest pfn scanner is able to scan */
1075         struct list_head *freelist = &cc->freepages;
1076
1077         /*
1078          * Initialise the free scanner. The starting point is where we last
1079          * successfully isolated from, zone-cached value, or the end of the
1080          * zone when isolating for the first time. For looping we also need
1081          * this pfn aligned down to the pageblock boundary, because we do
1082          * block_start_pfn -= pageblock_nr_pages in the for loop.
1083          * For ending point, take care when isolating in last pageblock of a
1084          * a zone which ends in the middle of a pageblock.
1085          * The low boundary is the end of the pageblock the migration scanner
1086          * is using.
1087          */
1088         isolate_start_pfn = cc->free_pfn;
1089         block_start_pfn = pageblock_start_pfn(cc->free_pfn);
1090         block_end_pfn = min(block_start_pfn + pageblock_nr_pages,
1091                                                 zone_end_pfn(zone));
1092         low_pfn = pageblock_end_pfn(cc->migrate_pfn);
1093
1094         /*
1095          * Isolate free pages until enough are available to migrate the
1096          * pages on cc->migratepages. We stop searching if the migrate
1097          * and free page scanners meet or enough free pages are isolated.
1098          */
1099         for (; block_start_pfn >= low_pfn;
1100                                 block_end_pfn = block_start_pfn,
1101                                 block_start_pfn -= pageblock_nr_pages,
1102                                 isolate_start_pfn = block_start_pfn) {
1103                 /*
1104                  * This can iterate a massively long zone without finding any
1105                  * suitable migration targets, so periodically check if we need
1106                  * to schedule, or even abort async compaction.
1107                  */
1108                 if (!(block_start_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages))
1109                                                 && compact_should_abort(cc))
1110                         break;
1111
1112                 page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
1113                                                                         zone);
1114                 if (!page)
1115                         continue;
1116
1117                 /* Check the block is suitable for migration */
1118                 if (!suitable_migration_target(cc, page))
1119                         continue;
1120
1121                 /* If isolation recently failed, do not retry */
1122                 if (!isolation_suitable(cc, page))
1123                         continue;
1124
1125                 /* Found a block suitable for isolating free pages from. */
1126                 isolate_freepages_block(cc, &isolate_start_pfn, block_end_pfn,
1127                                         freelist, false);
1128
1129                 /*
1130                  * If we isolated enough freepages, or aborted due to lock
1131                  * contention, terminate.
1132                  */
1133                 if ((cc->nr_freepages >= cc->nr_migratepages)
1134                                                         || cc->contended) {
1135                         if (isolate_start_pfn >= block_end_pfn) {
1136                                 /*
1137                                  * Restart at previous pageblock if more
1138                                  * freepages can be isolated next time.
1139                                  */
1140                                 isolate_start_pfn =
1141                                         block_start_pfn - pageblock_nr_pages;
1142                         }
1143                         break;
1144                 } else if (isolate_start_pfn < block_end_pfn) {
1145                         /*
1146                          * If isolation failed early, do not continue
1147                          * needlessly.
1148                          */
1149                         break;
1150                 }
1151         }
1152
1153         /* __isolate_free_page() does not map the pages */
1154         map_pages(freelist);
1155
1156         /*
1157          * Record where the free scanner will restart next time. Either we
1158          * broke from the loop and set isolate_start_pfn based on the last
1159          * call to isolate_freepages_block(), or we met the migration scanner
1160          * and the loop terminated due to isolate_start_pfn < low_pfn
1161          */
1162         cc->free_pfn = isolate_start_pfn;
1163 }
1164
1165 /*
1166  * This is a migrate-callback that "allocates" freepages by taking pages
1167  * from the isolated freelists in the block we are migrating to.
1168  */
1169 static struct page *compaction_alloc(struct page *migratepage,
1170                                         unsigned long data)
1171 {
1172         struct compact_control *cc = (struct compact_control *)data;
1173         struct page *freepage;
1174
1175         /*
1176          * Isolate free pages if necessary, and if we are not aborting due to
1177          * contention.
1178          */
1179         if (list_empty(&cc->freepages)) {
1180                 if (!cc->contended)
1181                         isolate_freepages(cc);
1182
1183                 if (list_empty(&cc->freepages))
1184                         return NULL;
1185         }
1186
1187         freepage = list_entry(cc->freepages.next, struct page, lru);
1188         list_del(&freepage->lru);
1189         cc->nr_freepages--;
1190
1191         return freepage;
1192 }
1193
1194 /*
1195  * This is a migrate-callback that "frees" freepages back to the isolated
1196  * freelist.  All pages on the freelist are from the same zone, so there is no
1197  * special handling needed for NUMA.
1198  */
1199 static void compaction_free(struct page *page, unsigned long data)
1200 {
1201         struct compact_control *cc = (struct compact_control *)data;
1202
1203         list_add(&page->lru, &cc->freepages);
1204         cc->nr_freepages++;
1205 }
1206
1207 /* possible outcome of isolate_migratepages */
1208 typedef enum {
1209         ISOLATE_ABORT,          /* Abort compaction now */
1210         ISOLATE_NONE,           /* No pages isolated, continue scanning */
1211         ISOLATE_SUCCESS,        /* Pages isolated, migrate */
1212 } isolate_migrate_t;
1213
1214 /*
1215  * Allow userspace to control policy on scanning the unevictable LRU for
1216  * compactable pages.
1217  */
1218 int sysctl_compact_unevictable_allowed __read_mostly = 1;
1219
1220 /*
1221  * Isolate all pages that can be migrated from the first suitable block,
1222  * starting at the block pointed to by the migrate scanner pfn within
1223  * compact_control.
1224  */
1225 static isolate_migrate_t isolate_migratepages(struct zone *zone,
1226                                         struct compact_control *cc)
1227 {
1228         unsigned long block_start_pfn;
1229         unsigned long block_end_pfn;
1230         unsigned long low_pfn;
1231         struct page *page;
1232         const isolate_mode_t isolate_mode =
1233                 (sysctl_compact_unevictable_allowed ? ISOLATE_UNEVICTABLE : 0) |
1234                 (cc->mode != MIGRATE_SYNC ? ISOLATE_ASYNC_MIGRATE : 0);
1235
1236         /*
1237          * Start at where we last stopped, or beginning of the zone as
1238          * initialized by compact_zone()
1239          */
1240         low_pfn = cc->migrate_pfn;
1241         block_start_pfn = pageblock_start_pfn(low_pfn);
1242         if (block_start_pfn < zone->zone_start_pfn)
1243                 block_start_pfn = zone->zone_start_pfn;
1244
1245         /* Only scan within a pageblock boundary */
1246         block_end_pfn = pageblock_end_pfn(low_pfn);
1247
1248         /*
1249          * Iterate over whole pageblocks until we find the first suitable.
1250          * Do not cross the free scanner.
1251          */
1252         for (; block_end_pfn <= cc->free_pfn;
1253                         low_pfn = block_end_pfn,
1254                         block_start_pfn = block_end_pfn,
1255                         block_end_pfn += pageblock_nr_pages) {
1256
1257                 /*
1258                  * This can potentially iterate a massively long zone with
1259                  * many pageblocks unsuitable, so periodically check if we
1260                  * need to schedule, or even abort async compaction.
1261                  */
1262                 if (!(low_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages))
1263                                                 && compact_should_abort(cc))
1264                         break;
1265
1266                 page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
1267                                                                         zone);
1268                 if (!page)
1269                         continue;
1270
1271                 /* If isolation recently failed, do not retry */
1272                 if (!isolation_suitable(cc, page))
1273                         continue;
1274
1275                 /*
1276                  * For async compaction, also only scan in MOVABLE blocks.
1277                  * Async compaction is optimistic to see if the minimum amount
1278                  * of work satisfies the allocation.
1279                  */
1280                 if (!suitable_migration_source(cc, page))
1281                         continue;
1282
1283                 /* Perform the isolation */
1284                 low_pfn = isolate_migratepages_block(cc, low_pfn,
1285                                                 block_end_pfn, isolate_mode);
1286
1287                 if (!low_pfn || cc->contended)
1288                         return ISOLATE_ABORT;
1289
1290                 /*
1291                  * Either we isolated something and proceed with migration. Or
1292                  * we failed and compact_zone should decide if we should
1293                  * continue or not.
1294                  */
1295                 break;
1296         }
1297
1298         /* Record where migration scanner will be restarted. */
1299         cc->migrate_pfn = low_pfn;
1300
1301         return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE;
1302 }
1303
1304 /*
1305  * order == -1 is expected when compacting via
1306  * /proc/sys/vm/compact_memory
1307  */
1308 static inline bool is_via_compact_memory(int order)
1309 {
1310         return order == -1;
1311 }
1312
1313 static enum compact_result __compact_finished(struct zone *zone,
1314                                                 struct compact_control *cc)
1315 {
1316         unsigned int order;
1317         const int migratetype = cc->migratetype;
1318
1319         if (cc->contended || fatal_signal_pending(current))
1320                 return COMPACT_CONTENDED;
1321
1322         /* Compaction run completes if the migrate and free scanner meet */
1323         if (compact_scanners_met(cc)) {
1324                 /* Let the next compaction start anew. */
1325                 reset_cached_positions(zone);
1326
1327                 /*
1328                  * Mark that the PG_migrate_skip information should be cleared
1329                  * by kswapd when it goes to sleep. kcompactd does not set the
1330                  * flag itself as the decision to be clear should be directly
1331                  * based on an allocation request.
1332                  */
1333                 if (cc->direct_compaction)
1334                         zone->compact_blockskip_flush = true;
1335
1336                 if (cc->whole_zone)
1337                         return COMPACT_COMPLETE;
1338                 else
1339                         return COMPACT_PARTIAL_SKIPPED;
1340         }
1341
1342         if (is_via_compact_memory(cc->order))
1343                 return COMPACT_CONTINUE;
1344
1345         if (cc->finishing_block) {
1346                 /*
1347                  * We have finished the pageblock, but better check again that
1348                  * we really succeeded.
1349                  */
1350                 if (IS_ALIGNED(cc->migrate_pfn, pageblock_nr_pages))
1351                         cc->finishing_block = false;
1352                 else
1353                         return COMPACT_CONTINUE;
1354         }
1355
1356         /* Direct compactor: Is a suitable page free? */
1357         for (order = cc->order; order < MAX_ORDER; order++) {
1358                 struct free_area *area = &zone->free_area[order];
1359                 bool can_steal;
1360
1361                 /* Job done if page is free of the right migratetype */
1362                 if (!list_empty(&area->free_list[migratetype]))
1363                         return COMPACT_SUCCESS;
1364
1365 #ifdef CONFIG_CMA
1366                 /* MIGRATE_MOVABLE can fallback on MIGRATE_CMA */
1367                 if (migratetype == MIGRATE_MOVABLE &&
1368                         !list_empty(&area->free_list[MIGRATE_CMA]))
1369                         return COMPACT_SUCCESS;
1370 #endif
1371                 /*
1372                  * Job done if allocation would steal freepages from
1373                  * other migratetype buddy lists.
1374                  */
1375                 if (find_suitable_fallback(area, order, migratetype,
1376                                                 true, &can_steal) != -1) {
1377
1378                         /* movable pages are OK in any pageblock */
1379                         if (migratetype == MIGRATE_MOVABLE)
1380                                 return COMPACT_SUCCESS;
1381
1382                         /*
1383                          * We are stealing for a non-movable allocation. Make
1384                          * sure we finish compacting the current pageblock
1385                          * first so it is as free as possible and we won't
1386                          * have to steal another one soon. This only applies
1387                          * to sync compaction, as async compaction operates
1388                          * on pageblocks of the same migratetype.
1389                          */
1390                         if (cc->mode == MIGRATE_ASYNC ||
1391                                         IS_ALIGNED(cc->migrate_pfn,
1392                                                         pageblock_nr_pages)) {
1393                                 return COMPACT_SUCCESS;
1394                         }
1395
1396                         cc->finishing_block = true;
1397                         return COMPACT_CONTINUE;
1398                 }
1399         }
1400
1401         return COMPACT_NO_SUITABLE_PAGE;
1402 }
1403
1404 static enum compact_result compact_finished(struct zone *zone,
1405                         struct compact_control *cc)
1406 {
1407         int ret;
1408
1409         ret = __compact_finished(zone, cc);
1410         trace_mm_compaction_finished(zone, cc->order, ret);
1411         if (ret == COMPACT_NO_SUITABLE_PAGE)
1412                 ret = COMPACT_CONTINUE;
1413
1414         return ret;
1415 }
1416
1417 /*
1418  * compaction_suitable: Is this suitable to run compaction on this zone now?
1419  * Returns
1420  *   COMPACT_SKIPPED  - If there are too few free pages for compaction
1421  *   COMPACT_SUCCESS  - If the allocation would succeed without compaction
1422  *   COMPACT_CONTINUE - If compaction should run now
1423  */
1424 static enum compact_result __compaction_suitable(struct zone *zone, int order,
1425                                         unsigned int alloc_flags,
1426                                         int classzone_idx,
1427                                         unsigned long wmark_target)
1428 {
1429         unsigned long watermark;
1430
1431         if (is_via_compact_memory(order))
1432                 return COMPACT_CONTINUE;
1433
1434         watermark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
1435         /*
1436          * If watermarks for high-order allocation are already met, there
1437          * should be no need for compaction at all.
1438          */
1439         if (zone_watermark_ok(zone, order, watermark, classzone_idx,
1440                                                                 alloc_flags))
1441                 return COMPACT_SUCCESS;
1442
1443         /*
1444          * Watermarks for order-0 must be met for compaction to be able to
1445          * isolate free pages for migration targets. This means that the
1446          * watermark and alloc_flags have to match, or be more pessimistic than
1447          * the check in __isolate_free_page(). We don't use the direct
1448          * compactor's alloc_flags, as they are not relevant for freepage
1449          * isolation. We however do use the direct compactor's classzone_idx to
1450          * skip over zones where lowmem reserves would prevent allocation even
1451          * if compaction succeeds.
1452          * For costly orders, we require low watermark instead of min for
1453          * compaction to proceed to increase its chances.
1454          * ALLOC_CMA is used, as pages in CMA pageblocks are considered
1455          * suitable migration targets
1456          */
1457         watermark = (order > PAGE_ALLOC_COSTLY_ORDER) ?
1458                                 low_wmark_pages(zone) : min_wmark_pages(zone);
1459         watermark += compact_gap(order);
1460         if (!__zone_watermark_ok(zone, 0, watermark, classzone_idx,
1461                                                 ALLOC_CMA, wmark_target))
1462                 return COMPACT_SKIPPED;
1463
1464         return COMPACT_CONTINUE;
1465 }
1466
1467 enum compact_result compaction_suitable(struct zone *zone, int order,
1468                                         unsigned int alloc_flags,
1469                                         int classzone_idx)
1470 {
1471         enum compact_result ret;
1472         int fragindex;
1473
1474         ret = __compaction_suitable(zone, order, alloc_flags, classzone_idx,
1475                                     zone_page_state(zone, NR_FREE_PAGES));
1476         /*
1477          * fragmentation index determines if allocation failures are due to
1478          * low memory or external fragmentation
1479          *
1480          * index of -1000 would imply allocations might succeed depending on
1481          * watermarks, but we already failed the high-order watermark check
1482          * index towards 0 implies failure is due to lack of memory
1483          * index towards 1000 implies failure is due to fragmentation
1484          *
1485          * Only compact if a failure would be due to fragmentation. Also
1486          * ignore fragindex for non-costly orders where the alternative to
1487          * a successful reclaim/compaction is OOM. Fragindex and the
1488          * vm.extfrag_threshold sysctl is meant as a heuristic to prevent
1489          * excessive compaction for costly orders, but it should not be at the
1490          * expense of system stability.
1491          */
1492         if (ret == COMPACT_CONTINUE && (order > PAGE_ALLOC_COSTLY_ORDER)) {
1493                 fragindex = fragmentation_index(zone, order);
1494                 if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold)
1495                         ret = COMPACT_NOT_SUITABLE_ZONE;
1496         }
1497
1498         trace_mm_compaction_suitable(zone, order, ret);
1499         if (ret == COMPACT_NOT_SUITABLE_ZONE)
1500                 ret = COMPACT_SKIPPED;
1501
1502         return ret;
1503 }
1504
1505 bool compaction_zonelist_suitable(struct alloc_context *ac, int order,
1506                 int alloc_flags)
1507 {
1508         struct zone *zone;
1509         struct zoneref *z;
1510
1511         /*
1512          * Make sure at least one zone would pass __compaction_suitable if we continue
1513          * retrying the reclaim.
1514          */
1515         for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
1516                                         ac->nodemask) {
1517                 unsigned long available;
1518                 enum compact_result compact_result;
1519
1520                 /*
1521                  * Do not consider all the reclaimable memory because we do not
1522                  * want to trash just for a single high order allocation which
1523                  * is even not guaranteed to appear even if __compaction_suitable
1524                  * is happy about the watermark check.
1525                  */
1526                 available = zone_reclaimable_pages(zone) / order;
1527                 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
1528                 compact_result = __compaction_suitable(zone, order, alloc_flags,
1529                                 ac_classzone_idx(ac), available);
1530                 if (compact_result != COMPACT_SKIPPED)
1531                         return true;
1532         }
1533
1534         return false;
1535 }
1536
1537 static enum compact_result compact_zone(struct zone *zone, struct compact_control *cc)
1538 {
1539         enum compact_result ret;
1540         unsigned long start_pfn = zone->zone_start_pfn;
1541         unsigned long end_pfn = zone_end_pfn(zone);
1542         const bool sync = cc->mode != MIGRATE_ASYNC;
1543
1544         cc->migratetype = gfpflags_to_migratetype(cc->gfp_mask);
1545         ret = compaction_suitable(zone, cc->order, cc->alloc_flags,
1546                                                         cc->classzone_idx);
1547         /* Compaction is likely to fail */
1548         if (ret == COMPACT_SUCCESS || ret == COMPACT_SKIPPED)
1549                 return ret;
1550
1551         /* huh, compaction_suitable is returning something unexpected */
1552         VM_BUG_ON(ret != COMPACT_CONTINUE);
1553
1554         /*
1555          * Clear pageblock skip if there were failures recently and compaction
1556          * is about to be retried after being deferred.
1557          */
1558         if (compaction_restarting(zone, cc->order))
1559                 __reset_isolation_suitable(zone);
1560
1561         /*
1562          * Setup to move all movable pages to the end of the zone. Used cached
1563          * information on where the scanners should start (unless we explicitly
1564          * want to compact the whole zone), but check that it is initialised
1565          * by ensuring the values are within zone boundaries.
1566          */
1567         if (cc->whole_zone) {
1568                 cc->migrate_pfn = start_pfn;
1569                 cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
1570         } else {
1571                 cc->migrate_pfn = zone->compact_cached_migrate_pfn[sync];
1572                 cc->free_pfn = zone->compact_cached_free_pfn;
1573                 if (cc->free_pfn < start_pfn || cc->free_pfn >= end_pfn) {
1574                         cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
1575                         zone->compact_cached_free_pfn = cc->free_pfn;
1576                 }
1577                 if (cc->migrate_pfn < start_pfn || cc->migrate_pfn >= end_pfn) {
1578                         cc->migrate_pfn = start_pfn;
1579                         zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn;
1580                         zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn;
1581                 }
1582
1583                 if (cc->migrate_pfn == start_pfn)
1584                         cc->whole_zone = true;
1585         }
1586
1587         cc->last_migrated_pfn = 0;
1588
1589         trace_mm_compaction_begin(start_pfn, cc->migrate_pfn,
1590                                 cc->free_pfn, end_pfn, sync);
1591
1592         migrate_prep_local();
1593
1594         while ((ret = compact_finished(zone, cc)) == COMPACT_CONTINUE) {
1595                 int err;
1596
1597                 switch (isolate_migratepages(zone, cc)) {
1598                 case ISOLATE_ABORT:
1599                         ret = COMPACT_CONTENDED;
1600                         putback_movable_pages(&cc->migratepages);
1601                         cc->nr_migratepages = 0;
1602                         goto out;
1603                 case ISOLATE_NONE:
1604                         /*
1605                          * We haven't isolated and migrated anything, but
1606                          * there might still be unflushed migrations from
1607                          * previous cc->order aligned block.
1608                          */
1609                         goto check_drain;
1610                 case ISOLATE_SUCCESS:
1611                         ;
1612                 }
1613
1614                 err = migrate_pages(&cc->migratepages, compaction_alloc,
1615                                 compaction_free, (unsigned long)cc, cc->mode,
1616                                 MR_COMPACTION);
1617
1618                 trace_mm_compaction_migratepages(cc->nr_migratepages, err,
1619                                                         &cc->migratepages);
1620
1621                 /* All pages were either migrated or will be released */
1622                 cc->nr_migratepages = 0;
1623                 if (err) {
1624                         putback_movable_pages(&cc->migratepages);
1625                         /*
1626                          * migrate_pages() may return -ENOMEM when scanners meet
1627                          * and we want compact_finished() to detect it
1628                          */
1629                         if (err == -ENOMEM && !compact_scanners_met(cc)) {
1630                                 ret = COMPACT_CONTENDED;
1631                                 goto out;
1632                         }
1633                         /*
1634                          * We failed to migrate at least one page in the current
1635                          * order-aligned block, so skip the rest of it.
1636                          */
1637                         if (cc->direct_compaction &&
1638                                                 (cc->mode == MIGRATE_ASYNC)) {
1639                                 cc->migrate_pfn = block_end_pfn(
1640                                                 cc->migrate_pfn - 1, cc->order);
1641                                 /* Draining pcplists is useless in this case */
1642                                 cc->last_migrated_pfn = 0;
1643
1644                         }
1645                 }
1646
1647 check_drain:
1648                 /*
1649                  * Has the migration scanner moved away from the previous
1650                  * cc->order aligned block where we migrated from? If yes,
1651                  * flush the pages that were freed, so that they can merge and
1652                  * compact_finished() can detect immediately if allocation
1653                  * would succeed.
1654                  */
1655                 if (cc->order > 0 && cc->last_migrated_pfn) {
1656                         int cpu;
1657                         unsigned long current_block_start =
1658                                 block_start_pfn(cc->migrate_pfn, cc->order);
1659
1660                         if (cc->last_migrated_pfn < current_block_start) {
1661                                 cpu = get_cpu();
1662                                 lru_add_drain_cpu(cpu);
1663                                 drain_local_pages(zone);
1664                                 put_cpu();
1665                                 /* No more flushing until we migrate again */
1666                                 cc->last_migrated_pfn = 0;
1667                         }
1668                 }
1669
1670         }
1671
1672 out:
1673         /*
1674          * Release free pages and update where the free scanner should restart,
1675          * so we don't leave any returned pages behind in the next attempt.
1676          */
1677         if (cc->nr_freepages > 0) {
1678                 unsigned long free_pfn = release_freepages(&cc->freepages);
1679
1680                 cc->nr_freepages = 0;
1681                 VM_BUG_ON(free_pfn == 0);
1682                 /* The cached pfn is always the first in a pageblock */
1683                 free_pfn = pageblock_start_pfn(free_pfn);
1684                 /*
1685                  * Only go back, not forward. The cached pfn might have been
1686                  * already reset to zone end in compact_finished()
1687                  */
1688                 if (free_pfn > zone->compact_cached_free_pfn)
1689                         zone->compact_cached_free_pfn = free_pfn;
1690         }
1691
1692         count_compact_events(COMPACTMIGRATE_SCANNED, cc->total_migrate_scanned);
1693         count_compact_events(COMPACTFREE_SCANNED, cc->total_free_scanned);
1694
1695         trace_mm_compaction_end(start_pfn, cc->migrate_pfn,
1696                                 cc->free_pfn, end_pfn, sync, ret);
1697
1698         return ret;
1699 }
1700
1701 static enum compact_result compact_zone_order(struct zone *zone, int order,
1702                 gfp_t gfp_mask, enum compact_priority prio,
1703                 unsigned int alloc_flags, int classzone_idx)
1704 {
1705         enum compact_result ret;
1706         struct compact_control cc = {
1707                 .nr_freepages = 0,
1708                 .nr_migratepages = 0,
1709                 .total_migrate_scanned = 0,
1710                 .total_free_scanned = 0,
1711                 .order = order,
1712                 .gfp_mask = gfp_mask,
1713                 .zone = zone,
1714                 .mode = (prio == COMPACT_PRIO_ASYNC) ?
1715                                         MIGRATE_ASYNC : MIGRATE_SYNC_LIGHT,
1716                 .alloc_flags = alloc_flags,
1717                 .classzone_idx = classzone_idx,
1718                 .direct_compaction = true,
1719                 .whole_zone = (prio == MIN_COMPACT_PRIORITY),
1720                 .ignore_skip_hint = (prio == MIN_COMPACT_PRIORITY),
1721                 .ignore_block_suitable = (prio == MIN_COMPACT_PRIORITY)
1722         };
1723         INIT_LIST_HEAD(&cc.freepages);
1724         INIT_LIST_HEAD(&cc.migratepages);
1725
1726         ret = compact_zone(zone, &cc);
1727
1728         VM_BUG_ON(!list_empty(&cc.freepages));
1729         VM_BUG_ON(!list_empty(&cc.migratepages));
1730
1731         return ret;
1732 }
1733
1734 int sysctl_extfrag_threshold = 500;
1735
1736 /**
1737  * try_to_compact_pages - Direct compact to satisfy a high-order allocation
1738  * @gfp_mask: The GFP mask of the current allocation
1739  * @order: The order of the current allocation
1740  * @alloc_flags: The allocation flags of the current allocation
1741  * @ac: The context of current allocation
1742  * @prio: Determines how hard direct compaction should try to succeed
1743  *
1744  * This is the main entry point for direct page compaction.
1745  */
1746 enum compact_result try_to_compact_pages(gfp_t gfp_mask, unsigned int order,
1747                 unsigned int alloc_flags, const struct alloc_context *ac,
1748                 enum compact_priority prio)
1749 {
1750         int may_perform_io = gfp_mask & __GFP_IO;
1751         struct zoneref *z;
1752         struct zone *zone;
1753         enum compact_result rc = COMPACT_SKIPPED;
1754
1755         /*
1756          * Check if the GFP flags allow compaction - GFP_NOIO is really
1757          * tricky context because the migration might require IO
1758          */
1759         if (!may_perform_io)
1760                 return COMPACT_SKIPPED;
1761
1762         trace_mm_compaction_try_to_compact_pages(order, gfp_mask, prio);
1763
1764         /* Compact each zone in the list */
1765         for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
1766                                                                 ac->nodemask) {
1767                 enum compact_result status;
1768
1769                 if (prio > MIN_COMPACT_PRIORITY
1770                                         && compaction_deferred(zone, order)) {
1771                         rc = max_t(enum compact_result, COMPACT_DEFERRED, rc);
1772                         continue;
1773                 }
1774
1775                 status = compact_zone_order(zone, order, gfp_mask, prio,
1776                                         alloc_flags, ac_classzone_idx(ac));
1777                 rc = max(status, rc);
1778
1779                 /* The allocation should succeed, stop compacting */
1780                 if (status == COMPACT_SUCCESS) {
1781                         /*
1782                          * We think the allocation will succeed in this zone,
1783                          * but it is not certain, hence the false. The caller
1784                          * will repeat this with true if allocation indeed
1785                          * succeeds in this zone.
1786                          */
1787                         compaction_defer_reset(zone, order, false);
1788
1789                         break;
1790                 }
1791
1792                 if (prio != COMPACT_PRIO_ASYNC && (status == COMPACT_COMPLETE ||
1793                                         status == COMPACT_PARTIAL_SKIPPED))
1794                         /*
1795                          * We think that allocation won't succeed in this zone
1796                          * so we defer compaction there. If it ends up
1797                          * succeeding after all, it will be reset.
1798                          */
1799                         defer_compaction(zone, order);
1800
1801                 /*
1802                  * We might have stopped compacting due to need_resched() in
1803                  * async compaction, or due to a fatal signal detected. In that
1804                  * case do not try further zones
1805                  */
1806                 if ((prio == COMPACT_PRIO_ASYNC && need_resched())
1807                                         || fatal_signal_pending(current))
1808                         break;
1809         }
1810
1811         return rc;
1812 }
1813
1814
1815 /* Compact all zones within a node */
1816 static void compact_node(int nid)
1817 {
1818         pg_data_t *pgdat = NODE_DATA(nid);
1819         int zoneid;
1820         struct zone *zone;
1821         struct compact_control cc = {
1822                 .order = -1,
1823                 .total_migrate_scanned = 0,
1824                 .total_free_scanned = 0,
1825                 .mode = MIGRATE_SYNC,
1826                 .ignore_skip_hint = true,
1827                 .whole_zone = true,
1828                 .gfp_mask = GFP_KERNEL,
1829         };
1830
1831
1832         for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
1833
1834                 zone = &pgdat->node_zones[zoneid];
1835                 if (!populated_zone(zone))
1836                         continue;
1837
1838                 cc.nr_freepages = 0;
1839                 cc.nr_migratepages = 0;
1840                 cc.zone = zone;
1841                 INIT_LIST_HEAD(&cc.freepages);
1842                 INIT_LIST_HEAD(&cc.migratepages);
1843
1844                 compact_zone(zone, &cc);
1845
1846                 VM_BUG_ON(!list_empty(&cc.freepages));
1847                 VM_BUG_ON(!list_empty(&cc.migratepages));
1848         }
1849 }
1850
1851 /* Compact all nodes in the system */
1852 static void compact_nodes(void)
1853 {
1854         int nid;
1855
1856         /* Flush pending updates to the LRU lists */
1857         lru_add_drain_all();
1858
1859         for_each_online_node(nid)
1860                 compact_node(nid);
1861 }
1862
1863 /* The written value is actually unused, all memory is compacted */
1864 int sysctl_compact_memory;
1865
1866 /*
1867  * This is the entry point for compacting all nodes via
1868  * /proc/sys/vm/compact_memory
1869  */
1870 int sysctl_compaction_handler(struct ctl_table *table, int write,
1871                         void __user *buffer, size_t *length, loff_t *ppos)
1872 {
1873         if (write)
1874                 compact_nodes();
1875
1876         return 0;
1877 }
1878
1879 int sysctl_extfrag_handler(struct ctl_table *table, int write,
1880                         void __user *buffer, size_t *length, loff_t *ppos)
1881 {
1882         proc_dointvec_minmax(table, write, buffer, length, ppos);
1883
1884         return 0;
1885 }
1886
1887 #if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
1888 static ssize_t sysfs_compact_node(struct device *dev,
1889                         struct device_attribute *attr,
1890                         const char *buf, size_t count)
1891 {
1892         int nid = dev->id;
1893
1894         if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
1895                 /* Flush pending updates to the LRU lists */
1896                 lru_add_drain_all();
1897
1898                 compact_node(nid);
1899         }
1900
1901         return count;
1902 }
1903 static DEVICE_ATTR(compact, 0200, NULL, sysfs_compact_node);
1904
1905 int compaction_register_node(struct node *node)
1906 {
1907         return device_create_file(&node->dev, &dev_attr_compact);
1908 }
1909
1910 void compaction_unregister_node(struct node *node)
1911 {
1912         return device_remove_file(&node->dev, &dev_attr_compact);
1913 }
1914 #endif /* CONFIG_SYSFS && CONFIG_NUMA */
1915
1916 static inline bool kcompactd_work_requested(pg_data_t *pgdat)
1917 {
1918         return pgdat->kcompactd_max_order > 0 || kthread_should_stop();
1919 }
1920
1921 static bool kcompactd_node_suitable(pg_data_t *pgdat)
1922 {
1923         int zoneid;
1924         struct zone *zone;
1925         enum zone_type classzone_idx = pgdat->kcompactd_classzone_idx;
1926
1927         for (zoneid = 0; zoneid <= classzone_idx; zoneid++) {
1928                 zone = &pgdat->node_zones[zoneid];
1929
1930                 if (!populated_zone(zone))
1931                         continue;
1932
1933                 if (compaction_suitable(zone, pgdat->kcompactd_max_order, 0,
1934                                         classzone_idx) == COMPACT_CONTINUE)
1935                         return true;
1936         }
1937
1938         return false;
1939 }
1940
1941 static void kcompactd_do_work(pg_data_t *pgdat)
1942 {
1943         /*
1944          * With no special task, compact all zones so that a page of requested
1945          * order is allocatable.
1946          */
1947         int zoneid;
1948         struct zone *zone;
1949         struct compact_control cc = {
1950                 .order = pgdat->kcompactd_max_order,
1951                 .total_migrate_scanned = 0,
1952                 .total_free_scanned = 0,
1953                 .classzone_idx = pgdat->kcompactd_classzone_idx,
1954                 .mode = MIGRATE_SYNC_LIGHT,
1955                 .ignore_skip_hint = false,
1956                 .gfp_mask = GFP_KERNEL,
1957         };
1958         trace_mm_compaction_kcompactd_wake(pgdat->node_id, cc.order,
1959                                                         cc.classzone_idx);
1960         count_compact_event(KCOMPACTD_WAKE);
1961
1962         for (zoneid = 0; zoneid <= cc.classzone_idx; zoneid++) {
1963                 int status;
1964
1965                 zone = &pgdat->node_zones[zoneid];
1966                 if (!populated_zone(zone))
1967                         continue;
1968
1969                 if (compaction_deferred(zone, cc.order))
1970                         continue;
1971
1972                 if (compaction_suitable(zone, cc.order, 0, zoneid) !=
1973                                                         COMPACT_CONTINUE)
1974                         continue;
1975
1976                 cc.nr_freepages = 0;
1977                 cc.nr_migratepages = 0;
1978                 cc.total_migrate_scanned = 0;
1979                 cc.total_free_scanned = 0;
1980                 cc.zone = zone;
1981                 INIT_LIST_HEAD(&cc.freepages);
1982                 INIT_LIST_HEAD(&cc.migratepages);
1983
1984                 if (kthread_should_stop())
1985                         return;
1986                 status = compact_zone(zone, &cc);
1987
1988                 if (status == COMPACT_SUCCESS) {
1989                         compaction_defer_reset(zone, cc.order, false);
1990                 } else if (status == COMPACT_PARTIAL_SKIPPED || status == COMPACT_COMPLETE) {
1991                         /*
1992                          * Buddy pages may become stranded on pcps that could
1993                          * otherwise coalesce on the zone's free area for
1994                          * order >= cc.order.  This is ratelimited by the
1995                          * upcoming deferral.
1996                          */
1997                         drain_all_pages(zone);
1998
1999                         /*
2000                          * We use sync migration mode here, so we defer like
2001                          * sync direct compaction does.
2002                          */
2003                         defer_compaction(zone, cc.order);
2004                 }
2005
2006                 count_compact_events(KCOMPACTD_MIGRATE_SCANNED,
2007                                      cc.total_migrate_scanned);
2008                 count_compact_events(KCOMPACTD_FREE_SCANNED,
2009                                      cc.total_free_scanned);
2010
2011                 VM_BUG_ON(!list_empty(&cc.freepages));
2012                 VM_BUG_ON(!list_empty(&cc.migratepages));
2013         }
2014
2015         /*
2016          * Regardless of success, we are done until woken up next. But remember
2017          * the requested order/classzone_idx in case it was higher/tighter than
2018          * our current ones
2019          */
2020         if (pgdat->kcompactd_max_order <= cc.order)
2021                 pgdat->kcompactd_max_order = 0;
2022         if (pgdat->kcompactd_classzone_idx >= cc.classzone_idx)
2023                 pgdat->kcompactd_classzone_idx = pgdat->nr_zones - 1;
2024 }
2025
2026 void wakeup_kcompactd(pg_data_t *pgdat, int order, int classzone_idx)
2027 {
2028         if (!order)
2029                 return;
2030
2031         if (pgdat->kcompactd_max_order < order)
2032                 pgdat->kcompactd_max_order = order;
2033
2034         if (pgdat->kcompactd_classzone_idx > classzone_idx)
2035                 pgdat->kcompactd_classzone_idx = classzone_idx;
2036
2037         /*
2038          * Pairs with implicit barrier in wait_event_freezable()
2039          * such that wakeups are not missed.
2040          */
2041         if (!wq_has_sleeper(&pgdat->kcompactd_wait))
2042                 return;
2043
2044         if (!kcompactd_node_suitable(pgdat))
2045                 return;
2046
2047         trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, order,
2048                                                         classzone_idx);
2049         wake_up_interruptible(&pgdat->kcompactd_wait);
2050 }
2051
2052 /*
2053  * The background compaction daemon, started as a kernel thread
2054  * from the init process.
2055  */
2056 static int kcompactd(void *p)
2057 {
2058         pg_data_t *pgdat = (pg_data_t*)p;
2059         struct task_struct *tsk = current;
2060
2061         const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2062
2063         if (!cpumask_empty(cpumask))
2064                 set_cpus_allowed_ptr(tsk, cpumask);
2065
2066         set_freezable();
2067
2068         pgdat->kcompactd_max_order = 0;
2069         pgdat->kcompactd_classzone_idx = pgdat->nr_zones - 1;
2070
2071         while (!kthread_should_stop()) {
2072                 unsigned long pflags;
2073
2074                 trace_mm_compaction_kcompactd_sleep(pgdat->node_id);
2075                 wait_event_freezable(pgdat->kcompactd_wait,
2076                                 kcompactd_work_requested(pgdat));
2077
2078                 psi_memstall_enter(&pflags);
2079                 kcompactd_do_work(pgdat);
2080                 psi_memstall_leave(&pflags);
2081         }
2082
2083         return 0;
2084 }
2085
2086 /*
2087  * This kcompactd start function will be called by init and node-hot-add.
2088  * On node-hot-add, kcompactd will moved to proper cpus if cpus are hot-added.
2089  */
2090 int kcompactd_run(int nid)
2091 {
2092         pg_data_t *pgdat = NODE_DATA(nid);
2093         int ret = 0;
2094
2095         if (pgdat->kcompactd)
2096                 return 0;
2097
2098         pgdat->kcompactd = kthread_run(kcompactd, pgdat, "kcompactd%d", nid);
2099         if (IS_ERR(pgdat->kcompactd)) {
2100                 pr_err("Failed to start kcompactd on node %d\n", nid);
2101                 ret = PTR_ERR(pgdat->kcompactd);
2102                 pgdat->kcompactd = NULL;
2103         }
2104         return ret;
2105 }
2106
2107 /*
2108  * Called by memory hotplug when all memory in a node is offlined. Caller must
2109  * hold mem_hotplug_begin/end().
2110  */
2111 void kcompactd_stop(int nid)
2112 {
2113         struct task_struct *kcompactd = NODE_DATA(nid)->kcompactd;
2114
2115         if (kcompactd) {
2116                 kthread_stop(kcompactd);
2117                 NODE_DATA(nid)->kcompactd = NULL;
2118         }
2119 }
2120
2121 /*
2122  * It's optimal to keep kcompactd on the same CPUs as their memory, but
2123  * not required for correctness. So if the last cpu in a node goes
2124  * away, we get changed to run anywhere: as the first one comes back,
2125  * restore their cpu bindings.
2126  */
2127 static int kcompactd_cpu_online(unsigned int cpu)
2128 {
2129         int nid;
2130
2131         for_each_node_state(nid, N_MEMORY) {
2132                 pg_data_t *pgdat = NODE_DATA(nid);
2133                 const struct cpumask *mask;
2134
2135                 mask = cpumask_of_node(pgdat->node_id);
2136
2137                 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
2138                         /* One of our CPUs online: restore mask */
2139                         set_cpus_allowed_ptr(pgdat->kcompactd, mask);
2140         }
2141         return 0;
2142 }
2143
2144 static int __init kcompactd_init(void)
2145 {
2146         int nid;
2147         int ret;
2148
2149         ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
2150                                         "mm/compaction:online",
2151                                         kcompactd_cpu_online, NULL);
2152         if (ret < 0) {
2153                 pr_err("kcompactd: failed to register hotplug callbacks.\n");
2154                 return ret;
2155         }
2156
2157         for_each_node_state(nid, N_MEMORY)
2158                 kcompactd_run(nid);
2159         return 0;
2160 }
2161 subsys_initcall(kcompactd_init)
2162
2163 #endif /* CONFIG_COMPACTION */